
GraphFrames: An Integrated API for Mixing Graph and
Relational Queries

Ankur Dave?, Alekh Jindal�, Li Erran Li†, Reynold Xin�, Joseph Gonzalez?, Matei ZahariaO �
?University of California, Berkeley OMIT † Uber Technologies �Databricks �Microsoft

ABSTRACT
Graph data is prevalent in many domains, but it has usually required
specialized engines to analyze. This design is onerous for users
and precludes optimization across complete workflows. We present
GraphFrames, an integrated system that lets users combine graph
algorithms, pattern matching and relational queries, and optimizes
work across them. GraphFrames generalize the ideas in previous
graph-on-RDBMS systems, such as GraphX and Vertexica, by let-
ting the system materialize multiple views of the graph (not just the
specific triplet views in these systems) and executing both iterative
algorithms and pattern matching using joins. To make applications
easy to write, GraphFrames provide a concise, declarative API based
on the “data frame” concept in R that can be used for both interactive
queries and standalone programs. Under this API, GraphFrames
use a graph-aware join optimization algorithm across the whole
computation that can select from the available views.

We implement GraphFrames over Spark SQL, enabling parallel
execution on Spark and integration with custom code. We find
that GraphFrames make it easy to express end-to-end workflows
and match or exceed the performance of standalone tools, while
enabling optimizations across workflow steps that cannot occur in
current systems. In addition, we show that GraphFrames’ view
abstraction makes it easy to further speed up interactive queries
by registering the appropriate view, and that the combination of
graph and relational data allows for other optimizations, such as
attribute-aware partitioning.

1. INTRODUCTION
Analyzing the graphs of relationships that occur in modern datasets

is increasingly important, in domains including commerce, social
networks, and medicine. To date, this analysis has been done
through specialized systems like Neo4J [17], Titan [16] and GraphLab [11].
These systems offer two main capabilities: pattern matching to find
subgraphs of interest [17] and graph algorithms such as shortest
paths and PageRank [12, 11, 7].

While graph analytics is powerful, running it in a separate system
is both onerous and inefficient. Most workflows involve building
a graph from existing data, likely in a relational format, then run-
ning search or graph algorithms on it, and then performing further

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GRADES 2016, June 24 2016, Redwood Shores, CA, USA
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4780-8/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2960414.2960416

gf = GraphFrame(vertices, edges)

triples = gf.pattern("(x:User)->(p:Product)<-(y:User)")

pairs.where(pairs.p.category == "Books")
.groupBy(pairs.p.name)
.count()

Listing 1: An example of the GraphFrames API. We create a Graph-
Frame from two tables of vertices and edges, and then we search for
all instances pattern, namely two users that bought the same product.
The result of this search is another table that we can then perform
filtering and aggregation on. The system will optimize across these
steps, e.g., pushing the filter above the pattern search.

computations on the result. With isolated graph analysis systems,
users have to move data manually and there is no optimization of
computation across these phases of the workflow. Several recent
systems have started to bridge this gap by running graph algorithms
on a relational engine [7, 9], but they have no support for pattern
matching and do not optimize across graph and relational queries.

We present GraphFrames, an integrated system that can combine
relational processing, pattern matching and graph algorithms and
optimize computations across them. GraphFrames generalize the
ideas behind GraphX [7] and Vertexica [9] by maintaining arbitrary
views of a graph (e.g., triplets or triangles) and executing queries
using joins across them. They then optimize execution across the
relational and graph portions of the computation. A key challenge
in achieving this goal is query planning. For this purpose, we extend
a graph-aware dynamic programming algorithm by Huang et al. [8]
to select among multiple input views and compute a join plan. We
also propose an algorithm for suggesting new views based on the
query workload.

To make complete graph analytics workflows easy to write, Graph-
Frames provide a declarative API similar to “data frames” in R,
Python and Spark that integrates into procedural languages like
Python. Users build up a computation out of relational operators,
pattern matching, and calls to algorithms, as shown in Listing 1.
The system then optimizes across these steps, selecting join plans
and performing algebraic optimizations. Similar to systems like
Pig [14] and Spark SQL [4], the API makes it easy to build a com-
putation incrementally while receiving the full benefits of relational
optimization. Finally, the GraphFrames API is also designed to be
used interactively: users can launch a session, define views that
will aid their queries, and query data interactively from a Python
shell. Unlike current tools, GraphFrames let analysts perform their
complete workflow in a single system.

We have implemented GraphFrames over Spark SQL [4], and
made them compatible with Spark’s existing DataFrame API. We
show that GraphFrames match the performance of other distributed

http://dx.doi.org/10.1145/2960414.2960416

graph engines for various tasks, while enabling optimizations across
the tasks that would not happen in other systems. Support for
multiple views of the graph adds significant benefits: for example,
materializing a few simple views can speed up queries by 10× over
the algorithm in [8]. Finally, by building on Spark, GraphFrames
interoperate easily with custom UDFs (e.g., ETL code) and with
Spark’s machine learning library and external data sources.

In summary, our contributions are:
• A declarative API that lets users combine relational process-

ing, pattern matching and graph algorithms into complex
workflows and optimizes across them.

• An execution strategy that generalizes those in Vertexica and
GraphX to support multiple views of the graph.

• A graph-aware query optimization algorithm that selects join
plans based on the available views.

• An implementation and evaluation of GraphFrames on Spark.

2. GRAPHFRAME API
The main programming abstraction in GraphFrames’ API is a

GraphFrame. Conceptually, it consists of two relations (tables)
representing the vertices and edges of the graph, as well as a set of
materialized views of subgraphs. The vertices and edges may have
multiple attributes that are used in queries. The views are defined
using patterns to match various shapes of subgraphs, as we shall
describe in Section 2.2.2. For example, a user might create a view
of all the triangles in the graph, which can then be used to quickly
answer other queries involving triangles.

GraphFrames expose a concise language-integrated API that uni-
fies graph analytics and relational queries. We based this API on
DataFrames, a common abstraction for data science in Python and
R that is also available as a declarative API on Spark SQL [4]. In
this section, we first cover some background on DataFrames, and
then discuss the additional operations available on GraphFrames.
We demonstrate the generality of GraphFrames for analytics by
mapping the core primitives in GraphX into GraphFrame operations.
Finally, we discuss how GraphFrames integrate with the rest of
Apache Spark (e.g., the machine learning library).

All the code examples are shown in Python. We show the Graph-
Frame API itself in Scala because it explicitly lists data types.

2.1 DataFrame Background
DataFrames are the main programming abstraction for manipu-

lating tables of structured data in R, Python, and Spark. Different
variants of DataFrames have slightly different semantics. For the pur-
pose of this paper, we describe Spark’s DataFrame implementation,
which we build on [4]. Each DataFrame contains data grouped into
named columns, and keeps track of its own schema. A DataFrame is
equivalent to a table in a relational database, and can be transformed
into new DataFrames using various relational operators available in
the API.

As an example, the following code snippet computes the number
of female employees in each department by performing aggregation
and join between two data frames:

employees
.join(dept, employees.deptId == dept.id)
.where(employees.gender == "female")
.groupBy(dept.id, dept.name)
.agg(count("name"))

employees is a DataFrame, and employees.deptId is an expres-
sion representing the deptId column. Expression objects have many
operators that return new expressions, including the usual compar-
ison operators (e.g., == for equality test, > for greater than) and

arithmetic ones (+, -, etc). They also support aggregates, such as
count("name").

Internally, a DataFrame object represents a logical plan to com-
pute a dataset. A DataFrame does not need to be materialized, until
the user calls a special “output operation” such as save. This enables
rich optimization across all operations that were used to build the
DataFrame.1

In terms of data type support, DataFrame columns support all
major SQL data types, including boolean, integer, double, decimal,
string, date, and timestamp, as well as complex (i.e., non-atomic)
data types: structs, arrays, maps and unions. Complex data types can
also be nested together to create more powerful types. In addition,
DataFrame also supports user-defined types [4].

2.2 GraphFrame Data Model
A GraphFrame is logically represented as two DataFrames: an

edge DataFrame and a vertex DataFrame. That is to say, edges and
vertices are represented in separate DataFrames, and each of them
can contain attributes that are part of the supported types. Take
a social network graph for an example. The vertices can contain
attributes including name (string), age (integer), and geographic
location (a struct consisting of two floating point values for longitude
and latitude), while the edges can contain an attribute about the
time a user friended another (timestamp). The GraphFrame model
supports user-defined attributes with each vertex and edges, and
thus is equivalent to the property graph model used in many graph
systems including GraphX and GraphLab. GraphFrame is more
general than Pregel/Giraph since GraphFrame supports user-defined
attributes on edges.

Similar to DataFrames, a GraphFrame object is internally repre-
sented as a logical plan, and as a result the declaration of a Graph-
Frame object does not necessarily imply the materialization of its
data.

Next, we explain how a GraphFrame can be constructed and
operations available on them.

class GraphFrame {
// Different views on the graph
def vertices: DataFrame
def edges: DataFrame
def triplets: DataFrame
// Pattern matching
def pattern(pattern: String): DataFrame

// Relational-like operators
def filter(predicate: Column): GraphFrame
def select(cols: Column*): GraphFrame
def joinV(v: DataFrame, predicate: Column): GraphFrame
def joinE(e: DataFrame, predicate: Column): GraphFrame

// View creation
def createView(pattern: String): DataFrame

// Partition function
def partitionBy(Column*) GraphFrame
}

Listing 2: GraphFrame API in Scala

2.2.1 Graph Construction
A GraphFrame can be constructed using two DataFrames: a

vertex DataFrame and an edge DataFrame. A DataFrame is merely
a logical view (plan) and can support a wide range of sources that

1 This aspect of Spark DataFrames is different from R and Python;
in those languages, DataFrame contents are materialized eagerly
after each operation, which precludes optimization across the whole
logical plan [4].

implement a data source API. Some examples of a DataFrame input
include:
• a table registered in Spark SQL’s system catalog

• a table in an external relational database through JDBC

• JSON, Parquet, Avro, CSV files on disk

• a table in memory in columnar format

• a set of documents in ElasticSearch or Solr

• results from relational transformations on the above
The following code demonstrates constructing a graph using a

user table in a live transactional database and the edges table from
some JSON based log files in Amazon S3:

users = read.jdbc("mysql://...")
likes = read.json("s3://...")
graph = GraphFrame(users, likes)

Again, since DataFrames and GraphFrames are logical abstrac-
tions, the above code does not imply that users, likes, or graph are
materialized.

2.2.2 Edges, Vertices, Triplets, and Patterns
A GraphFrame exposes four tabular views of a graph: edges,

vertices, triplets, and a pattern view that supports specifying graph
patterns using a syntax similar to the Cypher pattern language in
Neo4J [17].

The edges view and the vertices view should be self-evident. The
triplets view consists of each edge and its corresponding source and
destination vertex attributes. It can actually be constructed using the
following 3-way join:

e.join(v, v.id == e.srcId)
.join(v, v.id == e.dstId)

We provide it directly since the triplets view is used commonly
enough. Note that edges, vertices, and triplets views are also the
three fundamental views in GraphX, and GraphFrames is at least as
expressive as GraphX from the perspective of views.

In addition to the three basic tabular views, a GraphFrame also
supports a pattern operator that accepts a graph pattern in a Cypher-
like syntax and returns a DataFrame consisting of edges and vertices
specified by the pattern. This pattern operator enables easy expres-
sion of pattern matching in graphs.

Typical graph patterns consist of two nodes connected by a di-
rected edge relationship, which is represented in the format ()-[]->().
Nodes are specified using parentheses (), and relationships are spec-
ified using square brackets, []. Nodes and relationships are linked
using an arrow-like syntax to express edge direction. The same node
may be referenced in multiple relationships, allowing relationships
to be composed into complex patterns. Additionally, nodes and
edges can be constrained using inline type predicates expressed
using colons.

For example, the following snippet shows a user u who viewed
both item x and item y.

(u:Person)-[viewed]->(x: Item), u-[viewed]->(y: Item)

The resulting DataFrame from the above pattern should contain 3
structs: u, x, and y.

Note that the pattern operator is a simple and intuitive way to
specify pattern matching. Under the hood it is implemented using
the join and filter operators available on a GraphFrame. We provide
it because it is often more natural to reason about graphs using
patterns than using relational joins. The pattern operator can also
be combined with other operators, as demonstrated in the next
subsection.

Figure 1: View Reuse

Programmatic Pattern Generation and Pattern Library Pat-
terns such as cliques can be cumbersome to specify for interactive
queries. We therefore provide a pattern library to programmatically
generate and compose patterns. For example, a star of size K can
be specified as (hub, spokes) = star(nodePred, edgePred, K).
nodePred and edgePred filters out nodes and edges. The pattern
returns a hub and a list of K-1 spokes. Their names can then be used
in further pattern specification, or materialized immediately.

2.2.3 View Creation
To enable reuse of computation, GraphFrames support view cre-

ation. The system materializes the view internally and uses it to
speed up subsequent queries. For example, in Figure 1, if we create
a view on triplets, we can reuse it to create a triangle view. The
system will avoid rematerializing the triplet view for computing the
triangle view. We will discuss how our query planner performs view
selection to optimize the computation in the next section.

2.2.4 Relational Operators
Since a GraphFrame exposes the four tabular views, it already

supports all the relational operators (e.g. project, filter, join) avail-
able on these tabular views. Relational operators on these views can
already support many graph analysis algorithms. For example, the
following snippet computes the out-degree for each vertex:

g.edges.groupBy(g.edges.srcId).count()

In addition to relational operators on the tabular views, a Graph-
Frame also includes a few relational-like operators on a graph,
namely select, filter, and join. These graph operators apply
the corresponding relational operators to the vertices and/or edges,
as appropriate. For example, filter applies a predicate to the ver-
tex and edge tables, then removes dangling edges to ensure graph
integrity. Similarly, join allows updating the vertex or edge table
by joining in external data.

2.2.5 Attribute-Based Partitioning
Similar to GraphX, GraphFrames by default partitions a graph

based on the natural partitioning scheme of the edges. In [7], it was
shown that natural partitioning can lead to great performance when
the input is pre-partitioned.

In addition, GraphX supports partitioning a graph based on arbi-
trary vertex or edge attributes. This is more general than GraphX or
Giraph because they only support partitioning on vertex identifiers.
This enables users to partition a graph based on their domain-specific
knowledge that can lead to strong data locality and minimize data
communications.

Take the Amazon dataset [13] for example. The following snippet
partitions the bipartite graph based on product categories:

g.partitionBy(g.vertices.productCategory)

Intuitively, customers are more likely to buy products in the same
category. Partitioning the Amazon graph this way puts products of
the same categories and their associated edges closer to each other.

2.2.6 User-defined Functions
GraphFrame also supports arbitrary user-defined functions (UDFs)

in Scala, Java, and Python. The udf function accepts a lambda func-
tion as input and creates an expression that can be used in relational
and graph projection. For example, given a model object for a ma-
chine learning model, we could create a UDF predicting some user
behavior based on users’ age and registrationTime attributes.

model: LogisticRegressionModel = ...
predict = udf(lambda x, y: model.predict(Vector(x, y)))
g.select(
predict(g.vertices.age, g.vertices.registrationTime))

Unlike database systems which often require UDFs to be de-
fined in a separate programming environment that is different from
the primary query interfaces, our GraphFrame API supports inline
definition of UDFs. We do not need complicated packaging and
registration process found in other database systems.

2.3 Generality of GraphFrames
As simple as it is, the GraphFrame abstraction is powerful enough

to express many workloads. We demonstrate the expressiveness
by mapping all GraphX operators to operators in GraphFrame.
Since GraphX can be used to model the programing abstractions
in GraphLab, Pregel, and BSP [7], by mapping GraphX operations
to GraphFrame, we demonstrate that GraphFrame is at least as
expressive as GraphX, GraphLab, Pregel, and BSP.

GraphX’s operators can be divided into three buckets: collection
views, relational-like operators, and graph-parallel computations.
Section 2.2.2 already demonstrated that GraphFrame provides all
the three fundamental collection views in GraphX (edges, vertices,
and tripets).

All relational-like operators in GraphX can be trivially mapped
one-to-one to GraphFrame operators. For example, the select
operator is a superset of GraphX’s mapV and mapE operators, and
joinV and joinE are the generalized variant of GraphX’s leftJoinV
and leftJoinE operators. The filter operator is a more general
version of GraphX’s subgraph operator.

In GraphX, graph-parallel computations consist of aggregateMessages2
and its variants. Similar to the Gather phase in the GAS abstraction,
aggregateMessages encodes a two-stage process of graph-parallel
computation. Logically, it is the composition of a projection fol-
lowed by an aggregation on the triplets view. In [7], it was illustrated
using the following SQL query:

SELECT t.dstId, reduceF(mapF(t)) AS msgSum
FROM triplets AS t GROUP BY t.dstId

This SQL query can indeed be expressed using the following
GraphFrame operators:

g.triplets
.select(mapF(g.triplets.attribute[s]).as("mapOutput"))
.groupBy(g.triplets.dstId)
.agg(reduceF("mapOutput"))

We demonstrated that GraphFrame can support all the operators
available in GraphX and consequently can support all operations
in GraphLab, Pregel, and BSP. For convenience, we also provide
similar APIs as GraphX’s Pregel variant in GraphFrame for imple-
menting iterative algorithms. We have also implemented common
graph algorithms including connected components, PageRank, tri-
angle counting.

2.4 Spark Integration
Because GraphFrames builds on top of Spark, this brings three

benefits. First, GraphFrames can load data from and save data
2aggregateMessages was called mrTriplets in [7], but renamed in
the open source GraphX system.

into existing Spark SQL data sources such as HDFS files in Json,
Parquet format, HBASE, Cassandra, etc. Second, GraphFrame can
use a growing list of machine learning algorithms in MLlib. Third,
GraphFrames can call Spark DataFrame API. As an example, the
following code reads user-product rating information from HDFS
into a DataFrame. We then select the review text and use user ID
and product ID pair as the key. We can call the topic model to
learn the topics of reviews. With the topics, we can compute similar
products, etc as in [13] and do graph pattern matching to uncover
user communities who bought similar products.
corpus = rating.read.parquet("hdfs:///...")
.select(pair(user_id, product_id), review_txt)
ldaModel = LDA.train(corpus, k=10000)
topics = ldaModel.topicsMatrix()

2.5 Putting It Together

1. ETL
users: [id: int, attributes: MapType(user_name)]
products: [id: int, attributes: MapType(brand,
category, price)]
ratings: [user_id: int, product_id: int,
rating: int, review_text: string]
cobought: [product_1_id: int, product_2_id: int]

vertices = users.union(products)
graph = GraphFrame(vertices, ratings)

2. Run ALS to get top 1M inferred recommendations
predictedRatings: [user_id: int, product_id: int,
predicted_rating: int]
predictedRatings = ALS.train(graph, iterations=20)
.recommendForAll(1e6)

densifiedGraph = GraphFrame(vertices,
ratings.union(predictedRatings).union(cobought))

3. Find groups of users with the same interests
densifiedGraph.pattern("""(u1)-[r1]->(p1);
(u2)-[r2]->(p2); (p1)-[]->(p2)""")
.filter("r1.rating > 3 && r2.rating > 3")
.select("u1.id", "u2.id")

Listing 3: GraphFrame End-to-End Example in Python

We show that the ease of developing an end-to-end graph analytics
pipeline with an example in Listing 3. The example is an ecommerce
application that groups users of similar interests.

The first step is to perform ETL to extract information on users,
products, ratings and cobought. They are represented as DataFrames.
We then construct a GraphFrame graph. The vertices contain both
user nodes and product nodes. The edges are between users and
products. An edge exists between a user and a product if the user
rated the product. This is a bipartite graph.

For the second step, we run collaborative filtering to compute
predicted ratings of users, i.e. to uncover latent ratings not present in
the dataset. We then create a graph densifiedGraph with the same
vertex node as graph and more edges by adding product-product
edges. A product-product edge is added if the two are cobought.

As the final step, we will find pairs of users who have good ratings
for at least two products together. We can also find group of users
of size K .

This example shows the ease of using the GraphFrames API.
We performed ETL, iterative graph algorithms and graph pattern
matching in one system. It is much more intuitve than coding the
pipeline in SQL. Language integration also makes it easy to plug in
UDFs. For example, we can create a UDF to extract product topics
and topics user interested.

In the next section, we will high light the opportunities for joint
optimization.

3. IMPLEMENTATION
We implemented GraphFrames as a library on top of Spark SQL.

The library consists of the GraphFrame interface described in Sec-
tion § 2, a pattern parser, and our view-based query planner. We also
made improvements to Spark SQL’s Catalyst optimizer to support
GraphFrames.

Each GraphFrame is represented as two Spark DataFrames (a ver-
tex DataFrame and a edge DataFrame), a collection of user-defined
views. Implementations of each of the GraphFrame methods follow
naturally from this representation, and the GraphFrame interface
is 250 lines of Scala. The GraphFrame operations delegate to the
pattern parser and the query planner.

Our query planner is implemented as a layer on top of Spark
Catalyst, taking patterns as input, collecting statistics using Cata-
lyst APIs, and emitting a Catalyst logical plan. At query time, the
planner receives the user-specified views from the GraphFrame in-
terface. The planner additionally can suggest views when requested
by the user. The query planner also accepts custom attribute-based
partitioners which it uses to make more accurate cost estimates and
incorporates into the generated plans.

To simplify the query planner, we modified Catalyst to support
join elimination when allowed by the foreign key relationship be-
tween vertices and edges. This change required adding support for
unique and foreign key constraints on DataFrames to Spark SQL.
Join elimination enables the query planner to emit one join per refer-
enced vertex, and joins unnecessary to produce the final output will
be eliminated. This change required 800 lines of Scala.

Our pattern parser uses the Scala parser combinator library and is
implemented in 50 lines of Scala.

Finally, building on top of Spark enables GraphFrames to easily
integrate with data sources and call its machine learning libraries.

3.1 Query Optimization
The GraphFrame query planner extends the dynamic program-

ming algorithm of Huang et al. [8] to the distributed setting and adds
a view rewrite capability. The user can register arbitrary material-
ized views and the planner will automatically rewrite the query to
reuse a materialized view when appropriate. This is useful because
pattern queries could be very expensive to run and reusing computa-
tions across several queries can improve the user experience. Our
optimizer also offers suggestions for which views to create. See
appendix for details on this algorithm.

4. EVALUATION
In this section we demonstrate that GraphFrames benefit greatly

in some cases by materializing appropriate views and outperform a
mix of systems on analytics pipelines by avoiding communication
between systems and optimizing across the entire pipeline.

All experiments were conducted on Amazon EC2 using 8 r3.2xlarge
worker nodes in November 2015. Each node has 8 virtual cores, 61
GB of memory, and one 160 GB SSD.

4.1 Impact of Views
We first demonstrate that materializing the appropriate views

reduces query time, and in some cases can greatly improve the plan
selection. We ran the six queries shown in Figure 2a on a web graph
dataset released by Google in 2002 [10]. This graph has 875,713
vertices and 5,105,039 edges. It is the largest graph used for these
queries in [8]. Before running these queries we registered the views
listed in Table 1. We then ran each query with and without view
rewrite enabled. The results are reported in Figure 2b.

Queries 1, 2, 3, and 6 do not benefit much from views, because the
main cost in these queries comes from generating unavoidably large
intermediate result sets. For example, in Query 1 the bidirectional

View Query Size in Google graph
2-cycle (a)->(b)->(a) 1,565,976
V (c)<-(a)->(b) 67,833,471
Triangle (a)<-(b)->(c)->(a) 28,198,954
3-cycle (a)->(b)->(c)->(a) 11,669,313

Table 1: Views registered in the system to explore their impact on
queries in [8]

edge between vertices A and B can use the 2-cycle view, but by far
the more expensive part of the plan is joining C and D to the view,
because this generates all pairs of such vertices.

However, in Query 4 we observe a large speedup when using
views. In Query 4, the order-of-magnitude speedup is because
the view equivalence check exposes an opportunity to reuse an
intermediate result that the planner would otherwise miss. This
is because the reuse requires recognizing that two subgraphs are
isomorphic despite having different node labels, a problem that is
difficult in general but becomes much easier with the right choice
of view. In particular, the Triangle view is applicable both to the
BCD triangle and the BCE triangle in Query 4, so the planner can
replace the naive 5-way join with a single self-join of the Triangle
view with equality constraints on vertices B and C.

Additionally, in Query 5, precomputing views speeds up the main
query by a factor of 2 by moving the work of computing the BCD
and BED triangles from the main query into the Triangle 2 and
3-cycle views. These views are expensive to create, and since they
are common patterns it is reasonable to precompute them.

4.2 End-to-End Pipeline Performance
We next evaluate the end-to-end performance of a multi-step

pipeline that finds groups of users with the same interests in an
Amazon review dataset. We will see that using Spark and Graph-
Frames for the whole pipeline allows more powerful optimizations
and avoids the overhead of moving data between system boundaries.

We ran the pipeline described in Listing 3 on an Amazon re-
view dataset [13] with 82,836,502 reviews and 168,954,245 pairs
of related products. Additionally, after finding groups of users with
the same interests in step 3, we aggregated the result for each user
to find the number of users with the same interests. To simulate
running this pipeline without GraphFrames as a comparison point,
we ran each stage separately using Spark, saving and loading the
working data between stages. In addition to the I/O overhead, this
prevented projections from being pushed down into the data scan,
increasing the ETL time. Figure 2c shows this comparison.

5. RELATED WORK
To our knowledge, GraphFrames is the first system that lets users

combine graph algorithms, pattern matching and relational queries
in a single API, and optimizes computations across them. Graph-
Frames builds on previous work in graph analytics using relational
databases, query optimization for pattern matching, and declarative
APIs for data analytics.

Graph Databases Graph databases such as Neo4j [17] and Ti-
tan [16] focus on mostly on graph queries, often using pattern
matching languages like Cypher [17] and Gremlin [15]. They have
very limited support for graph algorithms such as PageRank and for
connecting with relational data outside the graph database. Graph-
Frames use the pattern matching abstraction from these systems,
but can also support other parts of the graph processing workflow,
such as building the graph itself out of relational queries on multi-
ple tables, and running analytics algorithms in addition to pattern
matching. GraphFrames then optimizes query execution across this
entire workflow. GraphFrames’ language-integrated API also makes

(a) Pattern queries [8]

Q1 Q2 Q3 Q4 Q5 Q6
0

50

100

150

200

250

300

350

400

450

R
u
n
ti

m
e
 (

s)

110

21

122

204

30

417

105

19

138

34 34

409Without views

With views

View creation

(b) Performance of pattern queries with and with-
out views

Multiple
systems

Single
system

0

50

100

150

200

250

300

R
u
n
ti

m
e
 (

s) 187

149

ETL

Training

Query

(c) End-to-end pipeline per-
formance: multiple systems
vs. single system

it easy to call user-defined functions (e.g., ETL code) and, in our
Spark-based implementation, to call into Spark’s built-in libraries,
giving users a single environment in which to write end-to-end
workflows.

Graph-Parallel Programming Standalone systems including
Pregel and GraphLab [12, 11] have been designed to run graph
algorithms, but they require separate data export and import and thus
make end-to-end workflows complex to build. GraphFrames use
similar parallel execution plans to many of these systems (e.g., the
Gather-Apply-Scatter pattern) while supporting broader workflows.

Graph Processing over RDBMS GraphX and Vertexica [7, 9]
have explored running graph algorithms on relational databases or
dataflow engines. Of these, GraphX materializes a triplets view of
the graph to speed up the most common join in iterative graph algo-
rithms, while the others use the raw tables in the underlying database.
GraphFrames generalize the execution strategy in these systems by
letting the user materialize multiple views of arbitrary patterns,
which can greatly speed up common types of queries. GraphFrames
also provide a much broader API, including pattern matching and
relational queries, where these tasks can all be combined, whereas
previous systems only focused on graph algorithms.

6. DISCUSSION AND CONCLUSION
Graph analytics applications typically require relational process-

ing, pattern matching and iterative graph algorithms. However, these
applications previously had to be implemented in multiple systems,
adding both overhead and complexity. In this paper, we aim to unify
the three with the GraphFrames abstraction. The GraphFrames API
which is concise and declarative, based on the “data frame” con-
cept in R, and enables easy expression and mixing of these three
paradigms. GraphFrames optimize the entire computation using
graph-aware join optimization and view selection algorithm that
generalizes the execution strategies in previous graph-on-RDBMS
systems. GraphFrames are implemented over Spark SQL, enabling
parallel execution on Spark and easy integration with Spark’s ex-
ternal data sources, built-in libraries, and custom ETL code. We
showed that GraphFrames make it easy to write complete graph
processing pipelines and enable optimizations across them that are
not possible in current systems.

We have open sourced our system to allow other researchers to
build upon it [1].

Our current optimization algorithm produces a tree of pairwise
join operators. As part of future work, we would like to support other
options, such as one-shot join algorithms over multiple tables [2]
and worse-case optimal join algorithms [6]. It should be possible to
integrate these algorithms into our System-R based framework.

Additionally, GraphFrames currently do not provide support for

processing dynamic graphs. In the future, we would like to develop
efficient incremental graph update and processing support. We plan
to leverage the newly available IndexedRDD [3] project to do this
over Spark, or a relational database engine as an alternative backend.
One interesting addition here will be deciding which graph views
we wish to maintain incrementally as the graph changes.

7. REFERENCES

[1] GraphFrames: DataFrame-based graphs.
https://github.com/graphframes/graphframes, Apr. 2016.

[2] Afrati, F. N., et al. GYM: a multiround join algorithm in
MapReduce. CoRR abs/1410.4156 (2014).

[3] Apache Spark. Spark IndexedRDD: An efficient updatable
key-value store for Apache Spark.
https://github.com/amplab/spark-indexedrdd, 2015.

[4] Armbrust, M., et al. Spark SQL: relational data processing in
Spark. In SIGMOD (2015).

[5] Chirkova, R., et al. A formal perspective on the view
selection problem. VLDB 2002.

[6] Chu, S., et al. From theory to practice: Efficient join query
evaluation in a parallel database system. In SIGMOD (2015).

[7] Gonzalez, J., et al. GraphX: Graph processing in a
distributed dataflow framework. In OSDI (2014).

[8] Huang, J., et al. Query optimization of distributed pattern
matching. In ICDE (2014).

[9] Jindal, A., et al. Vertexica: Your relational friend for graph
analytics! VLDB (2014).

[10] Leskovec, J., et al. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

[11] Low, Y., et al. GraphLab: A new framework for parallel
machine learning. In UAI (2010).

[12] Malewicz, G., et al. Pregel: A system for large-scale graph
processing. In SIGMOD (2010).

[13] McAuley, J., et al. Inferring networks of substitutable and
complementary products. In KDD (2015).

[14] Olston, C., Reed, B., Srivastava, U., Kumar, R., and Tomkins,
A. Pig Latin: A not-so-foreign language for data processing.
In SIGMOD (2008).

[15] Rodriguez, M. A. The Gremlin graph traversal machine and
language. CoRR abs/1508.03843 (2015).

[16] Titan distributed graph database.
http://thinkaurelius.github.io/titan/.

[17] Webber, J. A programmatic introduction to Neo4j. In
SPLASH (2012).

https://github.com/graphframes/graphframes
https://github.com/amplab/spark-indexedrdd
http://snap.stanford.edu/data
http://thinkaurelius.github.io/titan/

Algorithm 1: FindPlanWithViews
Input :query Q; graph G; views GV1, .., GVn ; partitioning P
Output :Solutions for running Q

1 if Q.sol != null then
2 return null; // already generated plans for Q

3 if Q has only one edge e = (v1, v2)) then
4 Q.sol = (“match e", scan cost of Ei , P(ei), cei);
5 Q.sol = Q.sol ∪MatchViews(Q.sol, views);
6 return;

7 if all edges in Q are co-partitioned w.r.t P then
8 Q.sol = (“co-l join of Q",co-l join cost i, P(Q), cei);
9 Q.sol = Q.sol ∪MatchViews(Q.sol, views);

10 return;

11 T = φ ;
12 LD = LinearDecomposition(Q) ;
13 foreach linear decomposition (q1,q2) in LD do
14 FindPlan(q1);
15 FindPlan(q2);
16 linearPlans = GenerateLinearPlans(q1,q2);
17 T = T ∪ linearPlans;
18 T = T ∪MatchViews(linearPlans, views);

19 LDAGs = GenerateLayeredDAGs(Q) ;
20 foreach layered DAG d in LDAGs do
21 (q1, q2, ..., qn−1, qn) = BushyDecomposition(d) ;
22 for i from 1 to n do
23 FindPlan(qi);

24 bushyPlans = GenerateBushyPlans(q1, ..., qn);
25 T = T ∪ bushyPlans;
26 T = T ∪MatchViews(bushyPlans, views);

27 Q.sol = EliminateNonMinCosts(T);

APPENDIX
A. QUERY OPTIMIZATION

GraphFrame operators, including both the graph as well as the
relational operators, are compiled to relational operators. Thereafter,
we optimize the complete pipeline by extending Catalyst. To do this,
the GraphFrame query planner extends the dynamic programming
algorithm of Huang et al. [8] to the distributed setting and adds the
view rewrite capability. The user can register arbitrary materialized
views and the planner will automatically rewrite the query to reuse a
materialized view when appropriate. This is useful because pattern
queries could be very expensive to run and reusing computations
across several queries can improve the user experience. GraphFrame
API also allows users to get suggestions for the views to create. We
also describe how we can further extend the query planning to create
the views adaptively.

Additionally, by building on top of Spark SQL, GraphFrames
also benefit from whole-stage code generation.

A.1 Query Planner
The dynamic programming algorithm proposed in [8] recursively

decomposes a pattern query into fragments, the smallest fragment
being a set of co-partitioned edges, and builds a query plan in a
bottom-up fashion. The original algorithm considers a single input
graph. In this paper, we extend it to views, i.e., the algorithm
matches the views in addition to matching the pattern query. The
input to the algorithm is the base graph G, a set of graph views
{GV1,GV2, ..,GVn }, and the pattern query Q = (Vq ,Eq). Each
graph view GVi consists of the view query that was used to create
the view and a cost estimator CEi . The algorithm also takes the
partitioning function P as an input, as opposed to a fixed partitioning
in the original algorithm. The output is the best query plan (lowest
cost) to process the query Q.

Algorithm 2: MatchViews
Input :query plan solution set S; graph views GV1, .., GVn

Output :query plan solution set from matching views

1 V = φ ;
2 foreach Solution S in S do
3 foreach Graph View GVi do
4 queryFragment = S.plan.query;
5 viewQuery = GVi .query;
6 if viewQuery is equivalent to queryFragment then
7 V = V ∪ (“scan", scan cost of GVi , GVi .p, CEi);

8 return V;

The algorithm starts by recursively decomposing the pattern query
into smaller fragments and building the query plan for each fragment.
At the leaf level, i.e., when the fragment consists of only a single
edge, we lookup the edge (along with its associated predicates) in
the base graph. At higher levels, we combine the child query plans to
produce larger plans. At each level, we also check whether the query
fragment matches with the view query of any of the graph views. In
case a match is found, we add the view as a candidate solution to the
query fragment. This also takes care of combining child query plans
from multiple graph views, i.e., we consider all combinations of
the graph views and later pick the best one. Algorithm 1 shows the
extended algorithm for finding plans using views. Each time a new
plan is generated for a query fragment, we match the fragment with
the set of graph views, as shown in blue in Algorithm 1. Algorithm 2
shows the pseudocode for view matching. For every query plan
solution, we check whether its query fragment is equivalent to a
view query3 and add the view to the solution set in case a match is
found. Note that we keep both the solutions, one which uses the
view and one which does not, and later pick the best one. Also
note that we match the views on the logical query fragments in a
bottom-up fashion, i.e., a view matched a lower levels could still be
replaced by a larger view (and thus more useful view) at the higher
levels.

Combining graph views, however, produces a new (intermediate)
graph view and so we need to consider the new (combined) cost
estimate when combining it further. To handle this, we keep track
of four things in the query plan solution at each level: (i) the query
plan, (ii) the estimated cost, (iii) the partitioning, and (iv) the cost
estimator. When combining the solutions, we combine their cost
estimates as well4.

Figure 2 illustrates the query planning using views. The system
takes the given pattern query and the three graph views, V1, V2,
and V3 as inputs. The linear decomposition (recursively) splits the
query into two fragments, such that at least one of them is not
decomposable (i.e., it is either a single edge or co-partitioned set
of edges). The lower left part of Figure 2 shows one such linear
decomposition and the corresponding candidate query plan using
views. Here we match a view with a query fragment only when
it contains the exact same set of edges. The bushy decomposition
generates query fragments none of which may be non-decomposable
(i.e., each query fragment could be further split into linear or bushy
decompositions). The lower right part of Figure 2 shows one such
bushy decomposition. We can see that the corresponding candidate
query plan is different and could not have been generated by the
linear decomposition alone.

3Instead of looking for exact match, the algorithm could also be
extended to match views which contain the query fragment, as in
traditional view matching literature.
4We can do this more efficiently by pre-computing the estimates for
all combinations of the graph views.

C

A

B D

E A

B B

E

DC D

E

C

A

B

E

DD

E

V1 V2 V3

Query Views

(V1 ⋈ V2) ⋈ V3

Linear Decomposition

Candidate Plan:

B

C

B

A B

D

D

E

Bushy Decomposition

V1 ⋈ (V2 ⋈ V3)Candidate Plan:

Figure 2: View Matching during Linear and Bushy Decompositions.

S.No. View
1 A← B, A← C, B ← F
2 A← B, A← C, C ← E
3 A← B, A← C, D ← B
4 A← B, A← C, E ← C
5 B ← A, B ← D, E ← B

Table 2: Top-5 views of size three suggested by the system for the
workload in [8]

Our extend view matching algorithm can still leverage all of the
optimizations proposed by Huang et al. [8], including considering
co-partitioned edges as the smallest fragment since they can be
computed locally, performing both linear and bushy decomposition
of the queries, and applying cycle-based optimization.

A.2 View Selection via Query Planning
The assumption so far was that the user manually creates the

views. The system then generates query plans to process pattern
queries using one or more of them. However, in some cases, the
user may not be able to select which views to create. The question
therefore is whether the system can suggest users the views to
create in such scenarios. Notice that the nice thing about recursive
query planning is that we are anyways traversing the space of all
possible query fragments that are relevant for the given query. We
can consider each of these query fragments as candidate views. This
means that every time we generate a query plan for a fragment, we
add it to a global set of candidate views.

In the end, we can rank the candidate views using different utility
functions and present the top ones. One such function could be the
ratio of cost, i.e., savings due to the view, and size, i.e., the spend-
ing on the view. Recall that each query plan solution (the candidate
view) contains its corresponding cost estimator as well, which could
be used to compute these metrics. The system could also collect
the candidate views over several queries before presenting the in-
teresting ones to the user. We refer the readers to traditional view
selection literature for more details [5].

The key thing to take away from here is that we can generate
interesting candidate views as a side-effect of dynamic programming
based query planning. This means that the user can start running his
pattern queries on the input graph and later create one or more of
the suggested views to improve the performance. To illustrate, we
ran the view suggestion API for the six query workload from [8].
Table 2 shows the top-5 views of size three produced by the system.

A.3 Adaptive View Creation

We discussed how the system can help users to select views.
However, the views are still created manually as an offline pro-
cess. This is expensive and often the utility of a view is not known
a-priori. Let us now see how we can leverage the query plan-
ning algorithm to adaptively create the graph views. The key idea
is to start by materializing smaller query fragments and progres-
sively combine them to create views of larger query fragments.
To do this, we annotate each solution with the list of graph views
it processes, i.e., solution s now have five pieces of information:
(plan,cost,partitioning,estimator, {GVi }). When combining the
child query plans, we union the graph views from the children.

When the algorithm runs for the first time there is only a single
input graph view which is the base graph itself. We look at all
the leaf level query plans, and materializing the one(s) having the
maximum utility, i.e., they are the most useful. In each subsequent
runs, we consider materializing the query plans which combine
existing views, i.e., we essentially move the view higher up in the
query tree. We still consider materializing new leaf level plans from
the base graph. Rather than combining the graph views greedily, a
more fancy version can also keep counters on how many times each
graph view is used. We can then combine the most frequent as well
as most useful graph views.

The above adaptive view creation technique has two major advan-
tages. First, it amortizes the cost of creating the view over several
queries. This is because creating views at the lower levels involve
fewer joins and hence it is cheaper. The system only spends more
resources on creating a view in case it is used more often. Second,
this approach starts from more general leaf level views, which could
be used across a larger set of queries, and gradually specializes to
larger views higher up in the query tree. This is useful in scenarios
where a user starts from ad-hoc analysis and later converges to a
specific query workload — something which is plausible in pattern
matching queries.

	Introduction
	GraphFrame API
	DataFrame Background
	GraphFrame Data Model
	Graph Construction
	Edges, Vertices, Triplets, and Patterns
	View Creation
	Relational Operators
	Attribute-Based Partitioning
	User-defined Functions

	Generality of GraphFrames
	Spark Integration
	Putting It Together

	Implementation
	Query Optimization

	Evaluation
	Impact of Views
	End-to-End Pipeline Performance

	Related work
	Discussion and Conclusion
	References
	Query Optimization
	Query Planner
	View Selection via Query Planning
	Adaptive View Creation

