Delay Scheduling

A Simple Technique for Achieving Locality
and Fairness in Cluster Scheduling

Matei Zaharia, Dhruba Borthakur®, Joydeep Sen Sarma’,
Khaled Elmeleegy*, Scott Shenker, lon Stoica

UC Berkeley, "Facebook Inc, *Yahoo! Research

1/
RAD @

\

Motivation

 MapReduce / Hadoop originally designed for high
throughput batch processing

* Today’s workload is far more diverse:

— Many users want to share a cluster
* Engineering, marketing, business intelligence, etc

— Vast majority of jobs are short
* Ad-hoc queries, sampling, periodic reports

— Response time is critical
 Interactive queries, deadline-driven reports

» How can we efficiently share MapReduce clusters
between users?

Example: Hadoop at Facebook

600-node, 2 PB data warehouse, growing at 15 TB/day
* Applications: data mining, spam detection, ads

200 users (half non-engineers)

7500 MapReduce jobs / day

1 10 100 1000 10000 100000

Job Running Time (s)

Approaches to Sharing

* Hadoop default scheduler (FIFO)

— Problem: short jobs get stuck behind long ones

* Separate clusters

— Problem 1: poor utilization
— Problem 2: costly data replication

* Full replication across clusters nearly infeasible at
Facebook/Yahoo! scale

 Partial replication prevents cross-dataset queries

Our Work

* Hadoop Fair Scheduler
— Fine-grained sharing at level of map & reduce tasks
— Predictable response times and user isolation

e Main challenge: data locality
— For efficiency, must run tasks near their input data

— Strictly following any job queuing policy hurts locality:
job picked by policy may not have data on free nodes

* Solution: delay scheduling
— Relax queuing policy for limited time to achieve locality

The Problem

Master |JobljJob2|

Slave Slave Slave Slave Slave Slave

File1: [2][3](6] [2](5][8] [3](5][8] [1] 79 ez

File 2: 1 2 1 3 2 3

The Problem

Master | [Jjob2 Jyoba]

Problem: Fair decision hurts locality

Especially bad for jobs with small input files

Locality vs. Job Size at Facebook

Data Locality in Production at Facebook

» 100%
LY
0]
é‘ 50% v, 58% of jobs
=
S 40%
]
wd
= 20%
= v
& 0%
10 100 1000 10000 100000

Job Size (Number of Input Blocks)

——Node Locality —*Rack Locality

Special Instance: Sticky Slots

* Under fair sharing, locality can be poor even when all
jobs have large input files
* Problem: jobs get “stuck” in the same set of task slots

— When one a task in job j finishes, the slot it was running in is
given back to j, because j is below its share

— Bad because data files are spread out across all nodes

Master Job Fair Running
PARN Share Tasks
,/// ,/ \\ \\\\]Ob 1 2
~ Task ~ Task [Task] J Taskl Job 2 2 2

Slave Slave Slave Slave

Special Instance: Sticky Slots

* Under fair sharing, locality can be poor even when all
jobs have large input files

* Problem: jobs get “stuck” in the same set of task slots

— When one a task in job j finishes, the slot it was running in is
given back to j, because j is below its share

— Bad because data files are spread out across all nodes

Data Locality vs. Number of Concurrent Jobs
100%
80%
60%
40%
20%
0%

% Local Map Tasks

5 Jobs 10 Jobs 20 Jobs 50 Jobs

Solution: Delay Scheduling

* Relax queuing policy to make jobs wait for a
limited time if they cannot launch local tasks

* Result: Very short wait time (1-5s) is
enough to get nearly 100% locality

Delay Scheduling Example

Master |Job2JJobl]
-~

_-71\Ss. Scheduling order
P /// ,I \\ \\\\ \\\
/ s - / ’ ’ \\ \ s ~ \
Slave Slave Slave Slave Slave Slave
rile 1: (2)(3)[6) (258 B (& 268 FE
File 2: ; ; ; ; ; s

Idea: Wait a short time to get data-local
scheduling opportunities

Delay Scheduling Details

* Scan jobs in order given by queuing policy,
picking first that is permitted to launch a task

* Jobs must wait before being permitted to
launch non-local tasks
— If wait < T,, only allow node-local tasks
— If T, <wait < T,, also allow rack-local
— [f wait > T,, also allow off-rack

* Increase a job’s time waited when it is skipped

Analysis

 When is it worth it to wait, and for how long?
» Waiting worth it if E(wait time) < cost to run non-locally

* Simple model: Data-local scheduling opportunities arrive
following Poisson process

* Expected response time gain from delay scheduling:

E(gain) = (1 - e/9(d - t)

\ Expected time to get local
Wait amount scheduling opportunity

Delay from running non-locally

» Optimal wait time is infinity

Analysis Continued

E(gain) = (1 - e/9(d - t)
\ Expected time to get local

Wait amount scheduling opportunity

Delay from running non-locally

* Typical values of t and d:
t = (avg task length) / (file replication x tasks per node)

d = (avg task length) 3 6

More Analysis

 What if some nodes are occupied by long tasks?

* Suppose we have:
— Fraction ¢ of active tasks are long

— Rreplicas of each block
— L task slots per node

* For a given data block,
P(all replicas blocked by long tasks) = Rt

With R =3 and L = 6, this is less than 2% if ¢ < 0.8

Evaluation

* Macrobenchmark
— [0-heavy workload
— CPU-heavy workload
— Mixed workload
e Microbenchmarks
— Sticky slots
— Small jobs
— Hierarchical fair scheduling
* Sensitivity analysis
* Scheduler overhead

Macrobenchmark

100-node EC2 cluster, 4 cores/node

Job submission schedule based on job sizes and
inter-arrival times at Facebook

— 100 jobs grouped into 9 “bins” of sizes

Three workloads:
— [0-heavy, CPU-heavy, mixed

Three schedulers:

— FIFO

— Fair sharing

— Fair + delay scheduling (wait time = 5s)

CDF

Results for 10-Heavy Workload

0.8

0.6

0.4

0.2

'l FIFO
Fair
| Fair + DS

| | | |

50 100 150
Time (s)

Small Jobs
(1-10 input blocks)

Job Response Times

1

0.8 -

0.6

0.4

0.2

| /

T

4

(—)
[40% /

FIFO

Fair

Fair + DS
|

J

100
Time (s)

150

Medium Jobs

(50-800 input blocks)

200

0.8

0.6

0.4

0.2

FIFO
Fair
Fair + DS

| | |

|

100 200 300 400 500
Time (s)

Large Jobs
(4800 input blocks)

Results for 10-Heavy Workload

“ FIFO Fair & Fair + Delay Sched.

100%
80% Ak
60% mlE =B m B

40%
20%
0% -

80%

Percent Local Maps

o))
)
=

NN
)
X

DO
3
S

Speedup from
Delay Scheduling

|
IPE NS SN Y

Sticky Slots Microbenchmark

100%
80%
60%
40%

20%
0% - - — —

* 5-50jobs on EC2

e 100-node cluster

Percent Local Maps

* 4 cores / node 5Jobs 10Jobs 20]Jobs 50 Jobs

“ Without Delay Scheduling “ With Delay Scheduling

* 5sdelay scheduling 50

w b
o O

—
o

Benchmark Running
Time (minutes)
DN
o (a)

5 Jobs 10Jobs 20]Jobs 50]obs

“ Without Delay Scheduling “ With Delay Scheduling

Conclusions

* Delay scheduling works well under two conditions:
— Sulfficient fraction of tasks are short relative to jobs

— There are many locations where a task can run efficiently
* Blocks replicated across nodes, multiple tasks/node

* Generalizes beyond MapReduce and fair sharing

— Applies to any queuing policy that gives ordered job list
* Used in Hadoop Fair Scheduler to implement hierarchical policy

— Applies to placement needs other than data locality

Thanks!

* This work is open source, packaged with
Hadoop as the Hadoop Fair Scheduler

— 0ld version without delay scheduling in use at
Facebook since fall 2008

— Delay scheduling will appear in Hadoop 0.21

My email: matei@eecs.berkeley.edu

Related Work

* Quincy (SOSP ‘09)
— Locality aware fair scheduler for Dryad
— Expresses scheduling problem as min-cost flow
— Kills tasks to reassign nodes when jobs change
— One task slot per machine

* HPC scheduling

— Inelastic jobs (cannot scale up/down over time)
— Data locality generally not considered

* Grid computing

— Focused on common interfaces for accessing compute
resources in multiple administrative domains

Delay Scheduling Details

when there is a free task slot on node n:
sort jobs according to queuing policy
forjin jobs:

if j has node-local task t on n:
J.level := 0; j.wait := 0; return t
else if j has rack-local task t on n and (j.level = 1 or jwait = T,):
J.level := 1; j.wait := 0; return ¢t
else if j.level = 2 or (j.level = 1 and j.wait 2 'T,)
or (j.level =0 and jwait =T, + T,):
J.level := 2; jwait := 0; return t
else:
J.wait += time since last scheduling decision

Sensitivity Analysis

100%

©
3
=N

60%
40%

20%

Percent Local Maps

0%

98% 99%

100%100%

No Delay 1s Delay 5s Delay

“ 4-Map Jobs

“12-Map Jobs

10s Delay

