Discretized Streams

An Efficient and Fault-Tolerant Model for Stream Processing on Large Clusters

Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, Ion Stoica
Motivation

• Many important applications need to process large data streams arriving in real time
 – User activity statistics (e.g. Facebook’s Puma)
 – Spam detection
 – Traffic estimation
 – Network intrusion detection

• Our target: large-scale apps that must run on tens-hundreds of nodes with O(1 sec) latency
Challenge

• To run at large scale, system has to be both:
 – **Fault-tolerant**: recover quickly from failures and stragglers
 – **Cost-efficient**: do not require significant hardware beyond that needed for basic processing

• Existing streaming systems don’t have both properties
Traditional Streaming Systems

• “Record-at-a-time” processing model
 – Each node has mutable state
 – For each record, update state & send new records
Traditional Streaming Systems

Fault tolerance via replication or upstream backup:

- **Node 1**
- **Node 2**
- **Node 1'**
- **Node 2'**
- **Node 3**
- **Node 3'**

Synchronization

Input

Standby
Traditional Streaming Systems

Fault tolerance via replication or upstream backup:

Fast recovery, but 2x hardware cost

Only need 1 standby, but slow to recover
Traditional Streaming Systems

Fault tolerance via replication or upstream backup:

Neither approach tolerates stragglers
Observation

- **Batch** processing models for clusters (e.g. MapReduce) provide fault tolerance efficiently
 - Divide job into deterministic tasks
 - Rerun failed/slow tasks in parallel on other nodes

- Idea: run a streaming computation as a series of very small, deterministic batches
 - Same recovery schemes at much smaller timescale
 - Work to make batch size as small as possible
Discretized Stream Processing

$t = 1$:
- Input
- Pull
- Immutable dataset (stored reliably)

$t = 2$:
- Input

batch operation

Immutable dataset (output or state); stored in memory without replication
Parallel Recovery

- Checkpoint state datasets periodically.
- If a node fails/straggles, recompute its dataset partitions in parallel on other nodes.

Faster recovery than upstream backup, without the cost of replication.
How Fast Can It Go?

- Prototype built on the Spark in-memory computing engine can process **2 GB/s (20M records/s)** of data on 50 nodes at **sub-second** latency.

Max throughput within a given latency bound (1 or 2s)
How Fast Can It Go?

- Recovers from failures within 1 second

Sliding WordCount on 10 nodes with 30s checkpoint interval
Programming Model

• A discretized stream (D-stream) is a sequence of immutable, partitioned datasets
 – Specifically, resilient distributed datasets (RDDs), the storage abstraction in Spark

• Deterministic transformations operators produce new streams
API

• LINQ-like language-integrated API in Scala
• New “stateful” operators for windowing

```scala
pageViews = readStream("...", "1s")
ones = pageViews.map(ev => (ev.url, 1))
counts = ones.runningReduce(_ + _)
```

Incremental version with “add” and “subtract” functions

```
sliding = ones.reduceByWindow("5s", _ + _, _ - _)
```

Scala function literal
Other Benefits of Discretized Streams

• Consistency: each record is processed atomically

• Unification with batch processing:
 – Combining streams with historical data
 \[
 \text{pageViews} \cdot \text{join} (\text{historicCounts}) \cdot \text{map}(\ldots)
 \]
 – Interactive ad-hoc queries on stream state
 \[
 \text{pageViews} \cdot \text{slice} (\text{"21:00"}, \text{"21:05"}) \cdot \text{topK}(10)
 \]
Conclusion

• D-Streams forgo traditional streaming wisdom by *batching* data in small timesteps

• Enable efficient, new parallel recovery scheme

• Let users seamlessly intermix streaming, batch and interactive queries
Related Work

- Bulk incremental processing (CBP, Comet)
 - Periodic (~5 min) batch jobs on Hadoop/Dryad
 - On-disk, replicated FS for storage instead of RDDs

- Hadoop Online
 - Does not recover stateful ops or allow multi-stage jobs

- Streaming databases
 - Record-at-a-time processing, generally replication for FT

- Parallel recovery (MapReduce, GFS, RAMCloud, etc)
 - Hwang et al [ICDE’07] have a parallel recovery protocol for streams, but only allow 1 failure & do not handle stragglers
Timing Considerations

• D-streams group input into intervals based on when records arrive at the system

• For apps that need to group by an “external” time and tolerate network delays, support:
 – **Slack time:** delay starting a batch for a short fixed time to give records a chance to arrive
 – **Application-level correction:** e.g. give a result for time t at time $t+1$, then use later records to update incrementally at time $t+5$
D-Streams vs. Traditional Streaming

<table>
<thead>
<tr>
<th>Concern</th>
<th>Discretized Streams</th>
<th>Record-at-a-time Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latency</td>
<td>0.5–2s</td>
<td>1-100 ms</td>
</tr>
<tr>
<td>Consistency</td>
<td>Yes, batch-level</td>
<td>Not in msg. passing systems; some DBs use waiting</td>
</tr>
<tr>
<td>Failures</td>
<td>Parallel recovery</td>
<td>Replication or upstream bkp.</td>
</tr>
<tr>
<td>Stragglers</td>
<td>Speculation</td>
<td>Typically not handled</td>
</tr>
<tr>
<td>Unification with</td>
<td>Ad-hoc queries from Spark</td>
<td>Not in msg. passing systems; in some DBs</td>
</tr>
<tr>
<td>batch</td>
<td>shell, join w. RDD</td>
<td></td>
</tr>
</tbody>
</table>