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Motivation

MapReduce greatly simplified “big data” analysis
on large, unreliable clusters

But as soon as it got popular, users wanted more:

» More complex, multi-stage applications
(e.g. iterative machine learning & graph processing)

» More interactive ad-hoc queries

Response: specialized frameworks for some of
these apps (e.g. Pregel for graph processing)



Motivation

Complex apps and interactive queries both need
one thing that MapReduce lacks:

Efficient primitives for data sharing

N
In MapReduce, the only way to share data

across jobs is stable storage =» slow!




Examples

HDFS HDFS HDFS HDFS
i read write i read write i

Input

HDFS query 1 result 1

read

query 2 result 2

query 3 result 3

Input

Slow due to replication and disk I/O,
but necessary for fault tolerance
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Challenge

How to design a distributed memory abstraction
that is both fault-tolerant and efficient?



Challenge

Existing storage abstractions have interfaces

based on fine-grained updates to mutable state
» RAMCloud, databases, distributed mem, Piccolo

Requires replicating data or logs across nodes

for fault tolerance

» Costly for data-intensive apps
» 10-100x slower than memory write



Solution: Resilient Distributed
Datasets (RDDs)

Restricted form of distributed shared memory
» Immutable, partitioned collections of records
» Can only be built through coarse-grained
deterministic transformations (map, filter, join, ...)

Efficient fault recovery using lineage
» Log one operation to apply to many elements
» Recompute lost partitions on failure
» No cost if nothing fails
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Generality of RDDs

Despite their restrictions, RDDs can express

surprisingly many parallel algorithms
» These naturally apply the same operation to many items

Unify many current programming models

» Data flow models: MapReduce, Dryad, SQL, ...
» Specialized models for iterative apps: BSP (Pregel),
iterative MapReduce (Haloop), bulk incremental, ...

Support new apps that these models don’t



Tradeoff Space

Fine

Granularity
of Updates

Coarse

Network Memory
bandwidth bandwidth

K-V stores, : Best for
databases, @.» —» transactional

RAMCloud

workloads

HDFS

Low

Write Throughput



Outline

Spark programming interface
Implementation
Demo

How people are using Spark



Spark Programming Interface

DryadLINQ-like API'in the Scala language
Usable interactively from Scala interpreter

Provides:
» Resilient distributed datasets (RDDs)
» Operations on RDDs: transformations (build new RDDs),
actions (compute and output results)
» Control of each RDD’s partitioning (layout across nodes)
and persistence (storage in RAM, on disk, etc)



Example: Log Mining

Load error messages from a log into memory, then
interactively search for various patterns

lines = spark.textFile(“hdfs://...")
errors = lines.filter(_.startswith(“ERROR"))
messages = errors.map(_.split(‘\t’)(2))
messages.persist()

messages.filter(_.contains(“foo”)).count

messages.filter(_.contains(“bar”)).count

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)




Fault Recovery

RDDs track the graph of transformations that
built them (their lineage) to rebuild lost data

Eg messages = textFile(...).filter(_.contains(“error”))
.map(_.split(‘\t’)(2))

HadoopRDD FilteredRDD MappedRDD
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Fault Recovery Results
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Example: PageRank

1. Start each page with arank of 2
2. On each iteration, update each page’s rank to

ZiEneighbors ranl<i / |neighborsi|
links = // RDD of (url, neighbors) pairs
ranks = // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
ranks = links.join(ranks).flatmMap {
(url, (links, rank)) =>
Tinks.map(dest => (dest, rank/links.size))
}.reduceByKey(_ + _)

}



Optimizing Placement

Links Ranks,

(url, neighbors) (url, rank)
<‘-§§~§““1ljom
Contribs,

l reduce

Contribs,

l reduce
Ranks,

b

1inks & ranks repeatedly joined

Can co-partition them (e.g. hash
both on URL) to avoid shuffles

Can also use app knowledge,
e.g., hash on DNS name

Tinks = Tinks.partitionBy(
new URLPartitioner())



PageRank Performance
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Implementation

Runs on Mesos [NSDI 11]
to share clusters w/ Hadoop d """

\

Can read from any Hadoop

input source (HDFS, S3, ...) wwww

No changes to Scala language or compiler
» Reflection + bytecode analysis to correctly ship code

www.spark-project.org




Programming Models
Implemented on Spark

RDDs can express many existing parallel models
» MapReduce, DryadLINQ \
» Pregel graph processing [200 LOC]
» Iterative MapReduce [200 LOC]

» SQL: Hive on Spark (Shark)

All are based on
~ coarse-grained
operations

-

Enables apps to efficiently intermix these models



Demo



Open Source Community

15 contributors, 5+ companies using Spark,
3+ applications projects at Berkeley

User applications:
» Data mining 4ox faster than Hadoop (Conviva)
» Exploratory log analysis (Foursquare)
» Traffic prediction via EM (Mobile Millennium)
» Twitter spam classification (Monarch)
» DNA sequence analysis (SNAP)

» ...



Related Work

RAMCloud, Piccolo, GraphLab, parallel DBs

» Fine-grained writes requiring replication for resilience

Pregel, iterative MapReduce
» Specialized models; can’t run arbitrary [ ad-hoc queries

DryadLINQ, FlumelJava

» Language-integrated “distributed dataset” API, but cannot
share datasets efficiently across queries

Nectar [OSDI 10]

» Automatic expression caching, but over distributed FS

PacMan [NSDI 12]
» Memory cache for HDFS, but writes still go to network/disk



Conclusion

RDDs offer a simple and efficient programming
model for a broad range of applications

Leverage the coarse-grained nature of many
parallel algorithms for low-overhead recovery

Try it out at www.spark-project.org




Behavior with Insufficient RAM
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Scalability

Logistic Regression
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Breaking Down the Speedup
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Spark Operations

map flatMap
filter union
Transformations sample join
(define a new RDD) groupByKey cogroup
reduceByKey Cross
sortByKey mapValues
collect
Actions reduce
(return a result to count
driver program) save

lookupKey




Task Scheduler

Dryad-like DAGs

Pipelines functions
within a stage

Locality & data
reuse aware

Partitioning-aware
to avoid shuffles

W = cached data partition



