
Matthew Johnson
February 21, 2013

6.945: Symbolic Programming

Problem Set 1

Problem 1.1:

See the code in Listing 1 and the trace in Listing 2.

1 (define-syntax remove-advice

2 (syntax-rules ()

3 ((remove-advice p)

4 (if (eq-get p ’old-version)

5 (begin

6 (set! p (eq-get p ’old-version))

7 ’done)

8 (warn "procedure was not advised"))

9 )))

10
11 (define-syntax advise-unary

12 (syntax-rules ()

13 ((advise-unary p wrapper)

14 (define p

15 (let ((saved-p p) (ewrapper wrapper))

16 (let ((new-p (named-lambda (p x) (ewrapper ’p saved-p x))))

17 (if (procedure-of-arity? p 1)

18 (begin

19 (eq-put! new-p ’old-version saved-p)

20 new-p)

21 (begin

22 (warn "procedure not unary")

23 saved-p))))))))

24
25 (define-syntax advise-binary

26 (syntax-rules ()

27 ((advise-binary p wrapper)

28 (define p

29 (let ((saved-p p) (ewrapper wrapper))

30 (let ((new-p (named-lambda (p x y) (ewrapper ’p saved-p x y))))

31 (if (procedure-of-arity? p 2)

32 (begin

33 (eq-put! new-p ’old-version saved-p)

34 new-p)

35 (begin

36 (warn "procedure not binary")

37 saved-p))))))))

38
39 (define-syntax advise-nary

40 (syntax-rules ()

41 ((advise-nary p wrapper)

42 (define p

43 (let ((saved-p p) (ewrapper wrapper))

44 (let ((new-p (named-lambda (p . arglist) (ewrapper ’p saved-p arglist))))

45 (eq-put! new-p ’old-version saved-p)

46 new-p))))))

Listing 1: Code for Problem 1.1.

1



Matthew Johnson 6.945: Symbolic Programming Problem Set 1

1 1 ]=> (advise-binary cons (lambda (name oldf x y)

2 (if (< (random 1.0) 0.5)

3 (oldf x y)

4 ;Value: cons

5 1 ]=> (cons 1 2)

6 ;Value 10: (2 . 1)

7 1 ]=> (cons 1 2)

8 ;Value 11: (2 . 1)

9 1 ]=> (cons 1 2)

10 ;Value 12: (2 . 1)

11 1 ]=> (cons 1 2)

12 ;Value 13: (1 . 2)

13 1 ]=> (cons 1 2)

14 ;Value 14: (1 . 2)

15 1 ]=> (remove-advice cons)

16 ;Value: done

17
18 1 ]=> (advise-nary + (lambda (name oldf args)

19 (if (any inexact? args)

20 (warn "inexact addition"))

21 (apply oldf args)))

22 ;Value: +

23 1 ]=> (+ 1 2)

24 ;Value: 3

25 1 ]=> (+ 1.0 2)

26 ;Warning: inexact addition

27 ;Value: 3.

28 1 ]=> (remove-advice +)

29 ;Value: done

30
31 1 ]=> (advise-unary cons (lambda (name oldf x) ’()))

32 ;Warning: procedure not unary

33 ;Value: cons

34 1 ]=> (remove-advice +)

35 ;Warning: procedure was not advised

36 ;Unspecified return value

37 1 ]=> (+ 1 2)

38 ;Value: 3

Listing 2: Trace for Problem 1.1.

Problem 1.2:

a. Yes, I think it is necessary to break tail recursion because printing out the “Leaving” message and
returning value means that the recursive call is not the last thing the wrapped function does. The
data that must be added to the stack include the return addresses into the wrapper procedure body,
and the number of such return addresses added to the stack corresponds to the number of times the
“Leaving” statement must be printed before returning to the original caller.

b. See the code in Listing 3 and the trace in Listing 4. Since my solution dynamically un-advises the
procedure, if the procedure calls another procedure which in turn calls the first procedure, this tracing
mechanism won’t reveal that second “distinct” call into this procedure. However, it seems necessary
to remove the advice wrapper to allow tail recursion.

2



Matthew Johnson 6.945: Symbolic Programming Problem Set 1

1 (define (simpler-full-trace-wrapper procname proc args)

2 (newline)

3 (display ";Entering ") (write procname)

4 (display " with ") (write args)

5 (let ((val (fluid-let ((procname proc)) (apply proc args))))

6 (newline)

7 (display ";Leaving ") (write procname)

8 (display " Value=") (write val)

9 val))

Listing 3: Code for Problem 1.2.

1 1 ]=> (advise-nary fact simpler-full-trace-wrapper)

2 ;Value: fact

3 1 ]=> (fact 5)

4 ;Entering fact with (5)

5 ;Leaving fact Value=120

6 ;Value: 120

Listing 4: Trace for Problem 1.2.

Problem 1.3:

a. It’s really not clear to me what kinds of cryptographic mechanisms would be reasonable here, so here
are some assumptions that might yield a reasonable model:

– There must be some restricted access to “internal” data structures (the tables accessed by the
authorization wrapper with eq-put and eq-get, though the code itself must also be un-editable).
If not, a user could write into both types of table so that any security procedure that relies
only on checking the data in those tables would be compromised. Therefore I’ll assume that the
“procedure authorization-keys” tables and the “user authorizations” tables are both read-only to
the user. (Other combinations of readability and writeability that make sense don’t seem to be
any different.)

– It’s hard to invert the hash function.

– Each user has a secret key (or password). (Alternatively, the usernames could be secret, but that’s
weird.)

– Users can’t use remove-advice.

In the original system, a user without access to the sin function could gain access simply by by running
(define user-id gjs). With these assumptions, we can add a simple mechanism to prevent users
from such circumventions of the authorization system even if they can read the authorization system’s
data structures: all we need to do is change the user id check to one based on a hard-to-invert function
of the secret key.

User IDs seemed redundant, so now permissions are associated with secret keys.

See the code in Listing 5 and the trace in Listing 6.

This modification is really simplistic and contrived, but I can’t think of something that makes more
sense.

b. In addition to restricting eq-put action on the data structures relevant to the authorization system and
restricting the ability to remove the authorization advice, subprocess also shouldn’t be allowed unless

3



Matthew Johnson 6.945: Symbolic Programming Problem Set 1

users are meant to have general shell access and TCP sockets should be restricted so that malicious
users can’t intercept other users’ connections (though that may be prevented by the OS’s security
for port binding). In general it seems that OS-level or even hardware-level (hypervisor) sandboxing
provide good authorization mechanisms to prevent unauthorized data access, so the restrictions that
we’d want inside a Scheme environment depend on what utilization model we want to enforce.

1 (define (authorization-wrapper procname proc args)

2 (cond ((memq (eq-get proc ’authorization-key)

3 (or (eq-get (string-hash (md5-string secret-key)) ’authorizations)

4 ’()))

5 (apply proc args))

6 (else

7 (error "Unauthorized access" procname))))

8
9 ;; here’s how a superuser might restrict access to a function and add

10 ;; permissions for a user (usually eq-put! can’t be called on these

11 ;; structures!)

12
13 (eq-put! sin ’authorization-key ’ok-to-sin)

14 (advise-nary sin authorization-wrapper)

15 (eq-put! (string-hash (md5-string "louisreasonerkey")) ’authorizations

16 ‘(ok-to-sin))

Listing 5: Code for Problem 1.3.

1 ;; here’s how a user might use his powers of trigonometry

2 1 ]=> (define secret-key "louisreasonerkey")

3 ;Value: secret-key

4 1 ]=> (sin 0)

5 ;Value: 0

6
7 ;; here’s how a user might fail at the same

8 1 ]=> (define secret-key "bjarne")

9 ;Value: secret-key

10 1 ]=> (sin 0)

11 ;Unauthorized access sin

Listing 6: Trace for Problem 1.3.

Problem 1.4:

See the code in Listing 7 and the trace in Listing 8. There is almost certainly also a good way to hash
argument lists to accomplish the same tasks; I think there might be pitfalls there, though.

4



Matthew Johnson 6.945: Symbolic Programming Problem Set 1

1 (define (all-list-elements-eqv l1 l2)

2 (or (and (null? l1) (null? l2))

3 (and (not (or (null? l1) (null? l2)))

4 (eqv? (car l1) (car l2))

5 (all-list-elements-eqv (cdr l1) (cdr l2)))))

6
7 (define assvl (association-procedure all-list-elements-eqv car))

8
9 (define (memo-wrapper-nary procname proc args)

10 (let ((seen (assvl args (eq-get proc ’old-values))))

11 (if seen

12 (cdr seen) ;; for testing, replace with (begin (display ";got cached") (cdr seen))

13 (let ((v (apply proc args)))

14 (eq-put! proc

15 ’old-values

16 (cons (cons args v)

17 (eq-get proc ’old-values)))

18 v))))

Listing 7: Code for Problem 1.4.

1 1 ]=> (eq-put! + ’old-values ’())

2 ;Value 2: #[arity-dispatched-procedure 2]

3 1 ]=> (advise-nary + memo-wrapper-nary)

4 ;Value: +

5 1 ]=> (+ 1 2 3)

6 ;Value: 6

7 1 ]=> (+ 1 2 3)

8 ;got cached

9 ;Value: 6

Listing 8: Trace for Problem 1.4.

5


