DIFFERENTIAL GEOMETRY: REVIEW

Ramesh Sridharan and Matthew Johnson

Quick Reference

 $f: U \to \mathbb{R}^{n+1}$, where U is an open set in \mathbb{R}^n , parametrizes an n-dimensional submanifold in n+1 dimensions.

The first fundamental form is

$$I(X,Y) = \langle X,Y \rangle_{\mathbb{R}^{n+1}} \text{ for } X,Y \in T_u f$$

$$(V,W) \mapsto \langle Df|_u(V), Df|_u(W) \rangle_{\mathbb{R}^{n+1}} \text{ for } V,W \in T_u U$$

$$= \langle V, (g_{ij})W \rangle_U$$

$$g_{ij} = \left\langle \frac{\partial f}{\partial u_i}, \frac{\partial f}{\partial u_j} \right\rangle$$

The Gauss map $\nu: U \to S^n$ gives the unit normal perpendicular to $T_u f$. The shape operator maps $T_u f$ to itself. It is given by

$$L_u \stackrel{\Delta}{=} (D\nu|_u) \circ (Df|_u)^{-1}$$

The second fundamental form is

$$II(X,Y) = \langle L_u X, Y \rangle_{\mathbb{R}^{n+1}} \text{ for } X, Y \in T_u f$$

$$(V,W) \mapsto \langle V, (h_{ij})W \rangle_U \text{ for } V, W \in T_u U$$

$$h_{ij} = \left\langle \nu, \frac{\partial^2 f}{\partial u_i \partial u_j} \right\rangle$$

$$= -\left\langle \frac{\partial \nu}{\partial u_i}, \frac{\partial f}{\partial u_j} \right\rangle$$

The **principal curvatures** κ_i are the eigenvalues of L_u . They are also the extrema of II(X,X) subject to I(X,X) = 1 for $X \in T_u f$. The **Gaussian curvature** K is their product, and the **mean curvature** K is their arithmetic mean.

$$\{\kappa_i\} = \operatorname{eig}(L_u)$$

$$K = \det(L_u)$$

$$H = \frac{1}{n}\operatorname{tr}(L_u)$$

By doing algebraic manipulations, we can also find

$$K = \det(L_u) = \frac{\det(h_{ij})}{\det(g_{ij})}$$

Intuition to Remember

First Fundamental Form

Our manifold is parametrized by a function $f:U\to\mathbb{R}^{n+1}$, where U is an open set in \mathbb{R}^n (it is often referred to as the parameter space). The first fundamental form is defined as $I(X,Y)=\langle X,Y\rangle_{\mathbb{R}^{n+1}}$ for $X,Y\in T_uf$; that is, at a particular point on the manifold, it restricts the standard inner product to that point's tangent hyperplane. We can also consider the corresponding inner product in the parameter space U. For $(v,w)\in T_uU\times T_uU$, we say that $(V,W)\mapsto \langle Df|_u(V),Df|_u(W)\rangle_{\mathbb{R}^{n+1}}=\langle V,(g_{ij})W\rangle_U$, where (g_{ij}) is the first fundamental form matrix: $(g_{ij})=\left(\left\langle \frac{\partial f}{\partial u_i},\frac{\partial f}{\partial u_j}\right\rangle\right)$. Note that G is $(Df|_u)^T(Df|_u)$; in some sense it is the square of the Jacobian. For 2-dimensional submanifolds in 3 dimensions, surface integrals are given by $\iint_{\mathcal{O}} \alpha(\cdot) dA = \iint_{\mathcal{O}} (\alpha \circ f)(u,v) \sqrt{\det(g_{ij})} \, du \, dv$.

Gauss Map and Shape Operator

The Gauss map is defined as $\nu: U \to S^n$. It maps points u in our parameter space to the unit normal vector to the manifold at f(u).

The shape operator is defined as $L_u \stackrel{\triangle}{=} -(D\nu|_u) \circ (Df|_u)^{-1}$, where in order to take the inverse of $Df|_u$, we restrict ourselves to the image of $Df|_u$. It is a map from T_uf to T_uf . In particular, given a vector in the tangent space, it maps that vector to the corresponding differential change in the normal vector while moving in that direction.

We can see this by considering L_uX for some $X \in T_uf$. Applying $(Df|_u)^{-1}$ maps X to its corresponding preimage in T_uU ; call this vector V. We then act on V with $(D\nu|_u)$, which maps V to the tangent space of ν . Since the tangent space of ν at ν is parallel to the tangent space of ν at ν , these spaces can be thought of as the same.

Second Fundamental Form and Curvature

The **second fundamental form** is defined as $II(X,Y) = II(L_uX,Y)$ for $X,Y \in T_uf$. Again, we consider the corresponding vectors in our parameter space, and as with G for the first fundamental form above, we define H for the second: $(V,W) \mapsto \langle L_uDf|_u(V), Df|_u(W)\rangle_{\mathbb{R}^{n+1}} = \langle V, (h_{ij}W)_U$. Therefore, $(h_{ij}) = \left(\langle v, \frac{\partial^2 f}{\partial u_i \partial u_j} \rangle\right) = \left(-\langle \frac{\partial v}{\partial u_i}, \frac{\partial f}{\partial u_j} \rangle\right)$. Note that II(X,X) is the inner product of a tangent vector X with the corresponding change it induces in v by moving in the direction of X.

The **principal curvatures** $\{\kappa_i\}$ at a point on a submanifold are the local extrema of II(X,X) subject to I(X,X)=1. They are also the eigenvalues of the shape operator L_u . The **Gaussian curvature** is their product, or alternately the determinant of L_u . The **average or mean curvature** is the trace of L_u scaled by 1/n (n is the dimension of the submanifold), or equivalently the arithmetic mean of the principal curvatures.