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1 Intuitive Problem Statement

Consider an urn containing colored balls, where the number of different colors is unknown. Suppose we draw
a sample of balls from the urn (with replacement) and find some number of red and blue balls. Given our
sample, we wish to estimate the probability of drawing from the urn a red ball, a blue ball, or a ball of an
unseen color (the “missing mass”).

The Good-Turing class of estimators provides estimates for these and similar quantities. This paper dis-
cusses bounds on the error convergence of the Good-Turing estimators as functions of a confidence parameter,
and in particular provides a relatively tight upper bound on the true “missing mass.”

2 Formal Setup

V Vocabulary (countable set of words)
P Probability distribution over V
Pw Probability of drawing word w ∈ V according to P
S Sample of words from V
m |S|: Sample size

c(w) Number of times w occurs in sample S
Sk {w|c(w) = k}: Set of words that occur k times in sample
Mk

∑

w∈Sk
Pw: Total mass of words in Sk, M0 is the “missing mass”

Gk Good-Turing estimate of Mk

M+
0

∑

w:Pw>1/m,c(w)=0

Pw

M−
0

∑

w:Pw≤1/m,c(w)=0

Pw

∀δ “with probability at least 1 − δ over the sample choice”

Table 1: Notation and quantities of interest.

We consider a countable vocabulary V and a probability distribution P over V such that word w has
probability Pw. We draw a sample set S of size m i.i.d. from P . Let c(w) be the number of times word w
occurs in S, and Sk be the set of words such that c(w) = k; that is, it is the set of words that occur k times
in our sample.

We additionally define Mk to be the probability of drawing a word in Sk from V . In particular, M0 is
called the “missing mass”: it is the cumulative probability mass of the words in V that don’t appear in our
sample.

The Good-Turing estimators provide estimates of Mk (which can then provide estimates of Pw for sampled
words). The Good-Turing estimate of Mk will be denoted by Gk, and it is given by

Gk =
k + 1

m − k
|Sk+1|

In particular, the estimator G0 of the missing mass is given by G0 = 1
m |S1|, which is simply the fraction

of words that occur only once in the sample.
Intuitively, a more “natural” estimate of Mk would be something like k|Sk|/m. However, that natural

estimate would estimate the missing mass at zero, and may therefore also greatly overestimate the mass of
the words that do appear in the sample. Consider a very large vocabulary with a uniform distribution and a
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relatively small sample; it is likely that all words in the sample only occur once, in which case the “natural”
estimate of M1 would be 1, while its true value is near zero.

Good’s Theorem, given below, is an important bound on the bias of the Good-Turing estimators as a
function of m and k. It is also the result that the paper seeks to extend via notions of confidence.

Theorem (Good’s Theorem). Theorem 1 in the paper states the following:

E[Mk] = E[Gk] − k + 1

m − k
E[Mk+1].

Since Mk+1 ∈ [0, 1], we can use this to provide a bound on the estimator bias (Corollary 2 in the paper):

|E[Mk] − E[Gk]| ≤ k + 1

m − k

In particular we have |E[G0] − E[M0]| ≤ 1/m.

3 Main Results

(1) The error in the Good-Turing estimator converges with a confidence of 1 − δ according to

∀δ > 0 ∀δS |Gk − Mk| ≤







2 ln
(

3m
δ

)

√

2 ln( 3

δ )
m k small compared to ln(3m/δ)

2k

√

2 ln( 3

δ )
m k large compared to ln(3m/δ)

which, for fixed δ, converges to zero at a rate of O((ln m)/
√

m). This result is Theorem 3 in the paper.
Note that k must always be small compared to m.

(2) As a tighter upper bound on the special case of G0 we have

∀δ > 0 ∀δS M0 ≤ G0 + (2
√

2 +
√

3)

√

ln
(

3
δ

)

m

or, in other words, with probability at least 1 − δ over the choice of the sample,

M0 ≤ G0 + O

(
√

ln(1/δ)

m

)

independent of the underlying distribution P . This result is Theorem 9 in the paper.

We will focus on Main Result (2), since estimating M0 is of primary interest when discussing Good-Turing
estimators. The hierarchy of the proof is given in Figure 1.

Theorem 9

Lemma 12 Lemma 13 Eq. (4)

Lemma 10 Lemma 11

Lemma 14 Lemma 15

Good's Thm. McDiarmid on G0

McDiarmid

Figure 1: Proof Hierarchy for Main Result (2), titled Theorem 9 in the paper. The black is the main
dependency on the lemmas given in the paper, and the red gives an idea as to how some lemmas are proven.
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