
Data Streams: Algorithms and Applications
by S. Muthukrishnan

Presentation by Ramesh Sridharan and Matthew Johnson

1 So what is a streaming algorithm?

• From Wikipedia: “A streaming algorithm is a method of managing a flow of data by examining arriving
items once and then discarding them. The benefit of a streaming algorithm is that it can be used to
manage data that is continuously generated and and where the total volume is extremely large, even
if the volume is too large for memory.”

• The relevant problems often involve computing a relatively simple function of a large sequential stream
under severe space and sometimes time constraints. According to the monograph, relevant applications
include IP network traffic analysis, mining text message streams, and tackling huge observation streams
such as new particle physics experiments with 40TB/s.

2 Some Illustrative Examples [Sec. 1]

Finding Missing Numbers

Let π be a permutation of {1, . . . , n}, and π−1 be π with one arbitrary element missing. Paul shows Carole
π−1[i] in increasing i, and Carole is tasked with determining the missing integer. But she can only use
O(log n) bits of memory!

s =
n(n+ 1)

2
−

∑
j≤i

π−1[j]

What if n is unknown in advance? Just keep track of the maximum.
What if Carole must solve the puzzle with two elements missing, i.e. she observes π−2 and must find

both missing elements? Can it be generalized?
One solution would be to keep both s as above and ss as

ss =
n(n+ 1)(2n+ 1)

6
−

∑
j≤i

(π−2[j])2

.
Such formulae continue for arbitrary power sums.

Fishing

Paul goes fishing, and in his lake there is a set of possible fish U = {1, . . . , u}. Paul catches one fish at a
time, recording his catches as the sequence (at)t∈N with at ∈ U . ct[j] is the number of times he catches
species j up to time t.

We might say species j is rare at time t if it appears precisely once in his catch up to time t, and the
rarity of his current catch might be the proportion of all fish that are rare in his catch:

ρ[t] =
|{j|ct[j] = 1}|

u

Paul wants to maintain a calculation of the rarity of his catch using only the few bits he brought along
with him: o(u), preferably O(1).

It can’t be done, by an “information” lower-bound proof. But it can be approximated in a straightforward
way.

Suppose we consider a new definition of rarity, where rarity is defined relative to Paul’s catch-so-far
instead of the entire population:

1

γ[t] =
|{j|ct[j] = 1}|
|{j|ct[j] 6= 0}|

The problem is now harder since more information about the catch is needed, but an approximation can
be built using random min-wise independent hash functions.

With a probabilistic description of fish samples, this problem can be related to Good-Turing estimators
for missing mass.

Pointer and Chaser

In this puzzle, we have n+ 1 starting positions, and n destinations. Each starting position points to a single
destination; by the pigeonhole principle, there must be at least one destination that is pointed to by multiple
starting positions. We want to find this duplicate position.

Aside from the obvious iterative solution, which requires O(log n) bits of space and O(n2) time, we can
apply a more clever multiple-pass approach. Here, we loop over all the starting positions. In the first pass,
we maintain two counters, a “low” counter and a “high” counter. The low counter is incremented whenever
the position points to a destination with value less than n/2, and the high counter is incremented whenever
the position points to a destination with value greater than n/2. After we complete one pass, whichever of
the two counters is bigger will tell us where in the destination set our duplicate lies. We can then repeat the
process, over the appropriate subsection. We thus only require O(log n) space and O(n log n) time.

A final solution is to treat the starting positions and the destinations as the same set. In this case, the
problem reduces to finding the loop point of a cyclic linked list that starts at node n+ 1. This can be solved
by maintaining two pointers. At even-numbered time steps, we advance the first pointer, or “slow” pointer
by one node, and at odd-numbered time steps we advance the second pointer, or “fast” pointer, by two
nodes. After each time step, we check if the two pointers point to the same place; if they do, we have found
our cycle. This takes O(log n) bits of space as before, but now only requires linear time. However, it also
requires constant-time random access over the input stream, which may not always be available in practice.

3 Formalism [Sec. 4]

We consider input streams, which represent underlying shorter signals. We will use a1, a2, . . . , at, . . . to
represent the input stream, where at arrives at time t. This stream describes some underlying signal, A[i]
for i ∈ [1, N] for some dimensionality N , which we would like to query. There are three typical models used:

• Time Series: In this model, at = A[t]. This is the simplest model, and we will not see it often in this
paper.

• Cash Register: In this model, each at = (j, It), and at time t, we update At, the value of the signal
at time t, as At[j] = At−1[j] + It. In this model, we restrict It to be nonnegative. We will often see
the case where It = 1∀t. In this case, the signal contains counts of elements j that we see in our signal.

• Turnstile: In this model, we again receive our signal at = (j, It) and update A[j] accordingly, but
now we do not restrict the values of It. In the strict turnstile model, A[j] ≥ 0∀j at all times.

4 Basic Mathematical Techniques [Sec. 5]

This section overviews the mathematical and probabilistic arguments that are common in data streaming
problems. It employs many examples, most of which are summarized below. There are two main categories
that the author has identified: sampling, which refers to problems where only a polylog size subset of the
input is of interest, and random projections, which make use of randomly-chosen summary data to estimate
quantities of interest with probabilistic performance guarantees.

2

4.1 Sampling

Heavy Hitters

Consider the cash register model. Estimating maxiA[i] is impossible in o(N) space, and estimating the k
most frequent items is at least as hard. Instead, researchers consider a slightly relaxed problem of finding
the heavy hitters: those items where the multiplicity exceeds the fraction φ of the total size of the data
stream. Note that if we did not have such a tight space constraint, a heap structure would solve our
problem, but in fact we can show that any algorithm that guarantees to find all and only items i such that
A[i] > (1/k + 1) ||A||1 must store Ω(N) bits.

Thus, we allow some approximation, and define the (φ, ε)-heavy hitters as all i such that A[i] ≥ φ ||A||1
with no “ε-bad false positives”, i.e. no i such that A[i] ≤ (φ− ε) ||A||1.

We can design an algorithm with no false negatives but bad false positives by keeping a set of K counters
(where K does not depend on N but only φ). Each counter corresponds to an element recently seen in the
input stream, so the size of K grows as we receive the stream. When |K| > 1/φ, decrement each of the
counts by 1 and eliminate the ones with count 0. There is a way to augment this algorithm with O(1/ε)
space usage to eliminate the bad false positives.

Distinct Sampling

Here, we define the “inverse signal”:

A−1[i] =
|{j|A[j] = i, i 6= 0}|
|{j|A[j] 6= 0}|

It is the proportion of values i such that A[j] = i. In the cash register model with Ii = 1, it corresponds
to the proportion of values (js) that occurred i times.

For an error bound ε and probability of error δ, we can approximate A−1 with O(1
ε2 log 1

δ) samples. The
key to this algorithm is that the samples are chosen in such a way that each distinct item in the input stream
j is equally likely to be sampled. We can then approximate A−1[i] by the fraction of samples that occurred
i times within the sample.

4.2 Random Projections

Moments estimation

Here, we want to estimate the kth moment of a stream: Fk
∑
iA[i]k. This is useful in many practical settings,

as we will see over the next few weeks. In this section, we focus on F2.
We consider the random vectors Xij [i] of length N whose elements are ±1 and fourwise independent. We

also define Xij = 〈A,Xij〉 =
∑
`A[`]Xij [`].

We can show E[X2
ij] = F2 by considering the square of the sum above, and noting that in expectation,

the cross terms between Xij are 0. We can also show that var(X2
ij) = 2F 2

2 using a similar approach for X4
ij ,

the second moment of the random variable X2
ij .

To obtain an approximation that lies within (1± ε)F2 with probability greater than (1− δ), we consider
i in the range {1, . . . , log 1

ε2 }, and j in the range {1, . . . , log 1
δ }.

Count-min sketch

We often want to keep track of A[i] for all i, but this violates our space constraints. So, instead of maintaining
A[i] for all i, we instead maintain a 2-dimensional d× w array called count, where w = d eε e and d = dln 1

δ e.
Associated with the array are d hash functions h1, . . . , hd : {1, . . . , N} → {1, . . . , w}. When we receive an
update ai = (j, Ii), for each hash function hk, we update count[k, hk(j)] to be count[k, hk(j)] + Ii; that is,
each cell maintains the cumulative sum of all updates whose index hashes to that value.

This allows us to efficiently solve the point-estimation problem, i.e. find A[i] for an arbitrary i. Our
estimate is

3

Â[i] = min
j

count[j, hj(i)]

This is (certainly) bounded from below by A[i] and (with probability at least 1 − δ) from above by
A[i] + ε ||A||1.

Note that count[j, hj(i)] has not only the Iks corresponding to index i, but also the Iks corresponding to
any other index that hashes to the same value. So, Â[i] is bounded from below because of these “extra values.”
The bound from above comes from applying the Markov inequality to the probability P(Â[i] ≤ A[i]+ε ||A||1).
This is equivalent to P(count[j, hj(i)] ≤ A[i] + ε ||A||1 ∀j). This is equivalent to the probability that the sum
of the “extra values” is less than ε ||A||1. The expectation of this “extra weight” is ||A||1 /w, and since
they are pairwise independent, we can obtain a bound by multiplying their probabilities. Using the Markov
inequality then gives the desired result.

Note that many of the problems expressed in earlier sections can be solved using this technique.

Estimating Number of Distinct Elements

The problem is to estimate D = |{i|A[i] 6= 0}|. If A[i] is the number of occurrences of i in the stream, D is
the number of distinct items. More generally, D is the support of A[i].

One way of estimating D in the cash register model keeps a bit vector c of length log2N and uses a hash
function f : [1, N] → {1, 2, . . . , log2N} such that P[f(i) = j] = 2−j and any update j to item i sets c[f(i)]
to 1. An unbiased estimate of the number of distinct items is given by 2k(c), where k(c) is the lowest index
j such that c[j] = 0. Intuitively, if the probability that any item is mapped into the counter at index j is
2−j , then if there are D distinct items, we expect D/2 of them to be mapped to c[1], D/4 to be mapped to
c[2], etc. However, that relies on the existence of a fully random hash function, and so it has been extended
to allow a hash function that can be stored in O((1

ε2 log logm + logm log(1/ε)) log(1/δ)). For the turnstile
model, the methods for estimating D uses Lp-sum estimation for small p.

4

