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ABSTRACT
Energy and sustainability issues raise a large number of
problems that can be tackled using approaches from data
mining and machine learning, but traction of such problems
has been slow due to the lack of publicly available data. In
this paper we present the Reference Energy Disaggregation
Data Set (REDD), a freely available data set containing de-
tailed power usage information from several homes, which is
aimed at furthering research on energy disaggregation (the
task of determining the component appliance contributions
from an aggregated electricity signal). We discuss past ap-
proaches to disaggregation and how they have influenced our
design choices in collecting data, we describe the hardware
and software setups for the data collection, and we present
initial benchmark disaggregation results using a well-known
Factorial Hidden Markov Model (FHMM) technique.

1. INTRODUCTION
Energy and sustainability problems represent one of the
greatest challenges facing society. More than 83% of the
world’s energy comes from (unsustainable) fossil fuels, with
renewable energy from wind, solar, geothermal and biomass
making up only approximately 2% of the total [11]. Mean-
while, the demand for energy is constantly growing: world-
wide energy production grew by 46% in the the 20 years
from 1987 to 2007 [11]. The simple physical limits of our
current energy resources, as well as the environmental and
climate impact of burning massive amounts of fossil fuels,
make a research focus on issues of sustainability imperative.
Furthermore, there are numerous problems in sustainability
that are fundamentally data analysis and prediction tasks,
areas where techniques from data mining and machine learn-
ing can prove invaluable.

Despite the importance of sustainability research and the
relevance of data mining and machine learning techniques,
there has been relatively little work in these areas, at least
compared to other applications areas such as computational
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Figure 1: An example of energy consumption over
the course of a day for one of the houses in REDD.

biology or machine vision. We argue that this situation is at
least partly due to the scarcity of publicly available data for
such domains. For example, although there are vast amounts
of data relevant to energy domains (the energy consumption
of each individual building and household in the country, the
loading of each electrical transmission and distribution line)
the majority of this data is unavailable to researchers. Fur-
thermore, there is significant evidence that publicly avail-
able data sets have spurred previous applications areas in
machine learning and data mining: biological applications
have been aided greatly by the data sharing mandates of
biological journals and government organizations [16, 12];
many early successes in natural language processing were
spawned by the now-classic Wall Street Journal corpus [10];
and machine vision research has been aided greatly by com-
mon benchmark datasest such as MNIST digit recognition
[9], CalTech 101 [3], and the PASCAL challenge [2]. De-
spite some initial progress towards this same goal for energy
and sustainability domains [17], there are currently few such
data sets geared to the ML and data mining communities.

In this paper, we present our work on developing a public
data set of this type, termed the Reference Energy Disag-
gregation Data Set (REDD). The data is specifically geared
towards the task of energy disaggregation: determining the
component devices from an aggregated electricity signal.
REDD consists of whole-home and circuit/device specific
electricity consumption for a number of real houses over
several months’ time. For each monitored house, we record
(1) the whole home electricity signal (current monitors on
both phases of power and a voltage monitor on one phase)
recorded at a high frequency (15kHz); (2) up to 24 individ-
ual circuits in the home, each labeled with its category of



appliance or appliances, recorded at 0.5 Hz; (3) up to 20
plug-level monitors in the home, recorded at 1 Hz, with a
focus on logging electronics devices where multiple devices
are grouped to a single circuit. An example of this type of
data is shown in Figure 1. As of the time of writing (June
15th, 2011), we have 10 homes monitored, with a total of 119
days of data (combined over all homes), 268 unique moni-
tors, and more than 1 terabyte of raw data. To the best of
our knowledge, REDD represents the largest publicly avail-
able data set for disaggregation with the true loads of each
house identified. The entirety of the data as well as code for
parsing the data and running basic algorithms is publicly
available on the web: http://redd.csail.mit.edu.

While we present some basic results on disaggregation here,
the focus of this paper is the data set itself: the design
decisions that went into the data collection, as well as the
hardware and software system. We begin by presenting a
brief overview of existing work on disaggregation and dis-
cuss how this influenced our choices of which data to collect
from each home and at what frequency. We then describe
the software and hardware systems we have built for this
task, and discuss their strengths and limitations. Finally,
we present brief results on the data, and highlight several
directions for future algorithmic work.

2. ENERGY DISAGGREGATION
Energy disaggregation, also referred to as a non-intrusive
load monitoring (NILM),1 is the task of using an aggregate
energy signal, such as that coming from a whole-home power
monitor, to make inferences about the different individual
loads of the system. The value of this technology is that
information about individual appliances is much more use-
ful to consumers than simply total electricity usage; stud-
ies have shown that user feedback of this type can induce
behavior chances that improve user efficiency by 15% [1,
13]. Disaggregation technology is also seen as an intermedi-
ate between existing electricity meters (which merely record
whole-home power usage at some frequency) and a fully
energy-aware home appliance network, where each device
reports its consumption to a central location; an oft-stated
goal of disaggregation research is to push energy awareness
to a ubiquitous level, paving the way for more detailed en-
ergy monitoring in the future.

Academic work on energy disaggregation began with the
work of Hart et. al [6] in the 1980s and 1990s. The initial
approaches look for sharp edges (corresponding to device
on/off events) in both the real and reactive power signals,
and would cluster devices according to these changes in con-
sumption. Later work has explored a number of different
directions: using more complex device models with multi-
ple states, integrating frequency analysis and other features
of the AC waveforms, and making use of external features
such as time of day or weather conditions. A recent review
of numerous existing techniques for energy disaggregation
can be found in [18]. In this paper, we highlight here some
of the key distinctions which have characterized past work
in energy disaggregation and how they have informed our
choices for REDD.

1Some authors make subtle distinctions between energy dis-
aggregation and NILM, but for our purposes we treat these
terms as synonymous.

Frequency of Measurements. Past work has spanned a
broad range in terms of the frequency of energy measure-
ments used for disaggregation: some work has used average
power measurements over periods as long as an hour [8],
while others have analyzed the harmonics of AC waveforms
using Mhz resolutions [14, 5].2 Most approaches fall some-
where in between these two extremes, with many studies
either using power readings on the order of a 1 Hz rate or
AC current measurements on the order of several kilohertz.
Since higher-frequency measurements can be sub-sampled to
produce lower frequency data, for our purposes of data col-
lection it makes sense to collect data at the highest frequency
possible up to the feasibility of storing the data. We chose
15kHz monitoring (for the whole-home data) as a trade-off
between these factors.

Real / Reactive Power. Past work has also differed in
whether the methods consider only the real power signal or
both the real and reactive powers.3 This decision is con-
nected to the point above, since real and reactive powers
can be computed using measurements of the AC waveform,
but reactive power is a common enough quantity to merit
its own distinction. For REDD, since we are collecting the
AC waveform itself, we can easily compute both real and
reactive powers.

Use of External Features. Some past approach use ex-
ternal features such as time of day, day of year, or weather
information, whereas some merely use the power signal it-
self. All data in REDD is recorded with UTC time stamps,
along with general geographical information (only up to a
city level, for privacy reasons), so that it can be associated
with such external features.

Supervised / Unsupervised Training. Most approaches
to energy disaggregation have been supervised, in that the
system is trained on individual device power signals (or is
given manually identified device change-points in a whole-
home energy signal). Alternatively, some recent work has
advocated unsupervised approaches that consider the whole
home signal without labeling, and automatically separate
different signals [7]. To facilitate supervised approaches and
to aid in evaluating all approaches, REDD includes as much
“supervised” information as possible: we monitor each in-
dividual circuit in the home (especially important for large
loads that cannot be easily monitored by a plug load) as well
as many large plugs loads as is feasible.

Training / Testing Generalization. Another key dis-
tinction (which has not been greatly considered in past en-
ergy disaggregation work) is generalizing from training data
to test data. The vast majority of previous disaggregation
approaches (at least those with rigorous quantitative evalu-

2The work of Patel el al. is substantially different from
most other approaches to disaggregation, as they use high
frequency measurements to look for transients of the voltage
signal of the home, and not necessarily the current.
3Since the data mining community may not be familiar
with this terminology, briefly, real power corresponds to the
power that is actual consumed by an appliance, whereas re-
active power corresponds to current that flows through a
circuit, but is put back into the system typically via an in-
ductive load in the appliance. Any text on AC power will
include a rigorous description of these quantities.



ation) have typically evaluated the algorithms on the same
devices (but in different conditions) as they were trained
on; that is, they attempt to build a model that can dis-
aggregate a given appliance even in new conditions, but do
not attempt to build models that explicitly generalize across
multiple different devices of the same category. In our own
past work [8] we have considered this challenge of general-
izing across multiple homes, but the data used in that work
was only available at an extremely low resolution (one hour),
and was not permitted to be made publicly available, greatly
limiting the ability of researchers to directly compare to the
approach. In contrast, a goal of REDD is to consider several
different homes, such that work that attempts to generalize
across device types can be rigorously evaluated using this
data set. As expected, and as we illustrate concretely in
Section 4, generalization across homes and device categories
makes disaggregation a much more challenging problem.

Evaluation Metrics. Finally, previous work in power dis-
aggregation has used different metrics for evaluating perfor-
mance: initial work typically focused only on on/off changes
for devices, and the natural metric here is whether or not the
algorithm can correctly classify which device is turning on
or off given a change point in the whole home signal. An al-
ternative approach is to the look at the percentage of energy
correctly classified (the original work by Hart et al., [6] con-
sidered both these metrics). The latter has the advantage
that it is more generally applicable to disaggregation tasks,
since it does not rely on extracting edges in the aggregate
power signal, and applies to devices with multiple states or
“smooth” power ons. This metric naturally weights high-
power devices more heavily than low-power devices. While
we argue that this feature is often desirable, since the ab-
solute power consumed is the ultimate quantity we ope to
influence, the metric may indicate good performance even
when low-power devices are classified poorly, and in some
cases these low-power devices are those over which the user
has greatest control. Thus, while we will consider the “total
energy properly classified”metric in our experiments, REDD
can accommodate many performance metrics.

3. THE REDD HARDWARE AND
SOFTWARE SYSTEMS

We developed the REDD hardware and software systems
with the considerations of the previous section in mind. The
hardware system in each house logs data from the whole-
home current and voltage (at high-frequency) from each in-
dividual circuit and from selected plugs. The data is logged
both locally and to central database, which stores informa-
tion from all the houses and can be accessed via a web in-
terface. A schematic of the system is shown in Figure 2.

3.1 Hardware Setup
For plug-level data, we use a wireless plug monitoring system
developed by Enmetric (http://www.enmetric.com), shown
in Figure 3. The system consists of several power strips,
each containing four independently monitored outlets, and
a router that connects to the home’s internet connection via
DHCP and processes the reading from each of the wireless
devices. Energy information is then sent to a central server
at a rate of 1Hz. Because the system reports at a sufficient
rate and is fairly easy to install in most homes, we use the

Figure 2: Schematic of the different components of
the REDD hardware and software system.

Figure 3: Enmetric router and Power Port, designed
and built by Enmetric Systems, Inc.

system as-is for the plug level data collection.

Circuit-level data and whole-home data require a more in-
volved setup. For circuit level data, we again make use of
an off-the-shelf solution: the eMonitor, developed by Pow-
erhouse Dynamics (http://www.powerhousedynamics.com),
shown in Figure 4. The eMonitor comes with current trans-
formers (CTs) that attach to each individual circuit of the
home in a house’s circuit breaker panel; the version we use
monitors up to 24 circuits independently. However, the
eMonitor reports power consumption to a central server at a
maximum rate of once per minute. Since we are looking for
more frequent power readings, we directly request measure-
ments from the monitor using its API at the highest rate
possible (for the current hardware, about one reading for all
the circuits every 3 seconds).

Figure 4: The eMonitor, designed and built by Pow-
erhouse Dynamics, Inc.



Figure 5: The REDDBox, installed in a home (left)
and showing internals (right).

To measure whole-home AC waveforms at high frequency, we
use CTs from a TED (http://www.theenergydetective.com)
to measure current in the power mains, a Pico TA041 oscillo-
scope probe (http://www.picotechnologies.com) to measure
voltage for one of the two phases in the home, and a National
Instruments NI-9239 analog to digital converter to transform
both these analog signals to digital readings. This A/D con-
verter has 24 bit resolution with noise of approximately 70
µV, which determines the noise level of our current and volt-
age readings: the TED CTs are rated for 200 amp circuits
and a maximum of 3 volts, so we are able to differentiate be-
tween currents of approximately ((200))(70 × 10−6)/(3) =
4.66mA, corresponding to power changes of about 0.5 Watts.
Similarly, since we use a 1:100 voltage stepdown in the os-
cilloscope probe, we can detect voltage differences of about
7mV. All the data is sent to a laptop, which logs the data
and sends a subset of the raw data to our central server.

Finally, since the system contains a number of electronics
in close proximity to the circuit breaker box (the eMoni-
tor, A/D converter, oscilloscope proper, computer, external
hard drive, and various power supplies/cables), we have built
small boxes, dubbed “REDDBoxes,” to contain all these
parts in a single unit. A picture of the complete system
as it would be installed near a circuit breaker box is shown
in Figure 5.

3.2 Software System
The software system on the laptops in each REDDBox con-
tains all the logic to query data from each of the monitors,
store the readings locally, and send processed information
(power from each of the monitors at at most 1Hz) to a cen-
tral database. Recall that we log two phases of current and
one phase of voltage at 15kHz; readings from the A/D con-
verter are 24-bit, resulting in ≈ 11GB of data logged from
each home per day (which we can compress 1.5-3X using
bzip2). It is infeasible to send this much information over
the network, so we log the data locally to an external hard
disk, which we manually collect periodically and copy to
the REDD server. Since developing new features from AC
waveforms is a principle research direction for disaggregation
methods, we include this full data for researchers to analyze
if desired, though we also compute simple power information
from the signal.

In addition to the software running locally at each home,
we have a central database that stores power readings from
all the homes as well as a web interface that displays the

Figure 6: Live web interface displaying power con-
sumption at the circuit level in a home.
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Figure 7: Graphical model representation of the
Factorial Hidden Markov Model (FHMM).

real-time status of the system and allows user to see recent
data from the houses. A view of the web interface is shown
in Figure 6.

3.3 Privacy Considerations
Finally, given the nature of this public data set, we want to
briefly discuss the privacy concerns involved. Sharing some-
one’s real-time power data in addition to their identity is
potentially quite harmful: in addition to simply being able
to estimate private information such as the amount of time
someone spends watching television, it would be quite easy
to determine if someone was home or not based upon their
power usage. For these reasons, we (1) store no identifying
information about the houses in the database, and disclose
only that they are in the greater Boston area, and (2) release
only historical data, and keep the live portion of the website
for private use alone (and, of course, all participants in the
study are made aware of these stipulations). Although pri-
vacy concerns are still an issue that requires constant moni-
toring, our hope is that these safeguards greatly decrease the
risk of disclosing or identifying personal information from
the data.

4. EXPERIMENTAL RESULTS
Here we present examples of simple algorithms applied to
REDD. The goal of this section is not to present state-of-
the-art performance results, but rather to demonstrate the
performance of a well-studied algorithm for this task and
highlight some of the challenges for future work.

We focus on the Factorial Hidden Markov Model (FHMM)
[4], which has been considered recently as a method for dis-



House Monitors Device Categories

1 20 Electronics, Lighting, Refrigera-
tor, Disposal, Dishwasher, Furnace,
Washer Dryer, Smoke Alarms,
Bathroom GFI, Kitchen Outlets,
Microwave

2 19 Lighting, Refrigerator, Dishwasher,
Washer Dryer, Bathroom GFI,
Kitchen Outlets, Oven, Microwave,
Electric Heat, Stove

3 24 Electronics, Lighting, Refrigera-
tor, Disposal, Dishwasher, Furnace,
Washer Dryer, Bathroom GFI,
Kitchen Outlets, Microwave, Electric
Heat, Outdoor Outlets

4 19 Lighting, Dishwasher, Furnace,
Washer Dryer, Smoke Alarms, Bath-
room GFI, Kitchen Outlets, Stove,
Disposal, Air Conditioning

5 10 Lighting, Refrigerator, Disposal, Dish-
washer, Washer Dryer, Kitchen Out-
lets, Microwave, Stove

Table 1: Description of the houses and devices used
in the evaluation.

aggregation [7]. In the FHMM, each of the n devices (or cir-
cuits) in the home is described via a Hidden Markov Model
(HMM). Each device has a discrete hidden state, denoted

x
(i)
t

∈ {1, . . . , Ni} for the state at time t for device i, which
corresponds roughly to the internal state of the device (“off”,
or in one of several possible “on” states). At each time t,
given the internal state, the ith device emits a Gaussian-

distributed power, denoted y
(i)
t

, with state-specific mean
and variance parameters. However, we only observe the

sum of all the power outputs at each time, ȳt =
∑

n

i=1 y
(i)
t

.
The disaggregation task can then be framed as an infer-
ence problem: given an observed sequence of aggregate en-
ergy ȳ1, . . . , ȳT , we aim to compute the posterior probabil-

ity of the individual device consumptions y
(i)
t

, i = 1, . . . , n,
t = 1, . . . , T . A graphical model depicting representing this
FHMM is shown in Figure 7.

Although training and inference in an FHMM is nontrivial,
the algorithms are described in detail in other work, and so
we only discuss them briefly here and include code for the
algorithm in the REDD release. To build the model from
data we use the individual appliance energy sequences, as
collected by the individual device monitors, and train HMMs
using the standard Baum-Welch (EM) algorithm (thus, the
algorithm we are describing falls under the “supervised”des-
ignation of Section 2). Exact posterior inference in the
FHMM model is not tractable (we use 4 states per device,
and typically around 20 devices per home for a total of
420 ≈ 1 × 1012 different combinations of hidden states), so
we use a blocked Gibbs sampling scheme: we fix the hidden
states of all but one of the chains, resulting in a Gaussian
posterior over the emissions over the remaining chain; at
this point, we can efficiently sample over hidden states for
the held-out chain, and repeat the process until the distri-
bution over all hidden states mixes. (We also anneal the
sampling procedure by artificially inflating the variance of
the observed aggregate outputs during the early iterations
of Gibbs sampling.)

House
FHMM Simple Mean

Train Test Train Test
1 71.5% 46.6% 41.4% 21.5%
2 59.6% 50.8% 39.0% 36.7%
3 59.6% 33.3% 46.7% 18.8%
4 69.0% 52.0% 52.7% 32.5%
6 62.9% 55.7% 33.7% 19.8%

Total 64.5% 47.7% 42.7% 25.9%

Table 2: Percentage of total energy classified cor-
rectly for different houses, using FHMM disaggre-
gation and a simple model that predicts the device’s
average consumption percentage at each time.

To evaluate the method, we used 2 weeks of data from 5 of
the houses in REDD; since the plug-level monitors had not
yet collected sufficient data at the time of writing, we use
the whole-home and circuit level data. A description of the
devices in each of these homes is given in Table 1. In the
presented experiments we sub-sampled the data to 10 second
intervals using a median filter. To evaluate the performance
of the method, we used the “total energy correctly assigned”
metric described in Section 2, defined formally as

Acc = 1−

∑

T

t=1

∑

n

i=1

∣

∣

∣
ŷ
(i)
t

− y
(i)
t

∣

∣

∣

2
∑

T

t=1 ȳt
(1)

where ŷ
(i)
t

denotes the algorithm’s prediction for the ith de-
vice at the tth time step, and where the 2 factor in the
denominator comes from the that that the absolute value
will “double count” errors, since

∑

n

i=1 y
(i)
t

=
∑

n

i=1 ŷ
(i)
t

.

Table 2 shows the disaggregation performance of the FHMM
model on the five houses we consider. We focus on two test-
ing procedures: in the first case we build HMM models from
devices in a given house, and then attempt to disaggregate
energy in that house; in the second case, we train on four of
the houses and test on the remaining held-out house. This
procedure is analogous to “training” versus “testing” error,
and we label the results accordingly in Table 2. For com-
parison we also show the performance of a simple mean pre-
diction algorithm, which estimates the total percentage that
each device type consumes and predicts that the total energy
breaks down according to this percentage at all times.

As seen in Table 2, the FHMM is able to disaggregate the
power data reasonably well; as expected, there is a signif-
icant drop in accuracy when moving from training predic-
tion to test prediction, but the FHMM method still works
substantially better than simple mean prediction. Although
average accuracies of around 50% may seem low, we empha-
size that this is for the case of predicting a previously unseen
set of devices, and this metric measures the percentage of
total energy correctly classified at each 10 second interval.
If we aggregate the predictions over a longer time horizon,
then errors tend to ”cancel out,” and we often obtain much
higher accuracy. Figure 8, for example, shows the total true
and predicted energy for house 5 (training only on houses
1-5), summed over two weeks. At this level of aggregation,
the method classifies 82% of the energy correctly, and such
“aggregated” charts have significant value for user feedback.
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is trained only on houses 1-4), averaged over the
course of two weeks.
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the refrigerator in House 5.

5. CONCLUSION
This paper has introduced REDD, a data set for research
energy disaggregation. Energy disaggregation is an algo-
rithmic challenge where advances can have a real impact on
energy efficiency and sustainability. We have described the
hardware and software setup and demonstrated a standard
algorithm, the FHMM, for the disaggregation task.

Our ultimate goal in developing REDD, however, is to pro-
vide an easily-accessible data set for researchers working in
data mining or machine learning to energy. Thus, we high-
light the fact that while FHMMs performed reasonably well
in the experiments we presented, there is also much room for
improvement. For example, Figure 9 shows an actual and
predicted signal for the refrigerator in House 5; although the
FHMM sometimes extracts the signal correctly, it also often
fails to detect the refrigerator or estimates a noisy and un-
related signal. Many modifications, such including explicit
durations via an HSMM [15], incorporating hard constraints
on device signals, or looking at more complex features of the
power signal can all help to improve this performance. Of
particular interest to us is how such techniques could will ex-
tend to generalize across different devices in multiple homes.
We are also excited by the prospect of semi-supervised tech-
niques for disaggregation; while REDD aims to be a large
resource, we can only outfit so many homes with such de-
tailed sensing, and a great challenge that remains is to dis-
cover ways to merge this type of high-fidelity measurements
with the massive amounts of (unlabeled) smart meter data
that utility currently generate. Our hope is that the avail-
ability of a data set such as REDD can further motivate the
machine learning and data mining communities to tackle
this problem.
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