Matching a photograph to satellite images

Roger Grosse and Matthew Johnson
MIT CSAIL and LIDS

Abstract

We describe a method for generating location estimates
for a photograph by automatically matching it to satellite
imagery. First, a user labels interest points in the pho-
tograph corresponding to stationary objects also identifi-
able from the air. We show how to compute robust in-
variants which can be matched against a large database
of satellite views, and we evaluate several invariants on
simulated data. We also explore the problem of automatic
tree detection, and combine it with the invariants technique
in a proof-of-concept demonstration of our image location
method on a photograph from the Arnold Arboretum.

1. Introduction

A system to automatically estimate the spot where an
photograph was taken based solely on matching the photo-
graph to satellite imagery would have many exciting appli-
cations. For example, it could serve as a tool to locate terror-
ists or criminals from supposedly anonymous photographs
or videos, or it could allow for the easy markup of personal
photographs for high-granularity location-based organiza-
tion without the use of GPS.

In our formulation of the problem, we allow for human
markup on the ground-based photograph, since a photo-
graph that we are interested in locating would likely warrant
a few moments of a human’s time. However, we require
all satellite image processing and all comparisons between
the ground-based photograph and the satellite imagery to
be performed automatically, since the assumption is that the
database of satellite images to compare against is large.

While low-level features such as SIFT have been suc-
cessful at matching images up to small transformations (as
in the PhotoSynth system [7]), for our problem the perspec-
tive change is so great that we would not expect these low-
level features to be preserved. Indeed, experiments have
shown SIFT is robust to some small levels of rotation, but
certainly not to the transformation from satellite to ground.
Instead, we use the geometry of large, stationary objects,
since we can perform the matching using well-studied geo-
metric mathematics. In particular, we focus on the relative

locations of trees on the ground plane, because they are dis-
crete stationary objects which can (in principle) be reliably
detected in both images, and because we are left with a 2-D
rather than a 3-D matching problem. However, the mathe-
matical framework and basic techniques we develop should
be extendable to other objects (including non-point objects
such as roads).

In this paper we describe a method for identifying possi-
ble matches by performing nearest-neighbor queries on ge-
ometric invariants computed from the estimated tree posi-
tions. To make this possible, we define a geometric invari-
ant on an ordered tuple of trees, as well as a way of assign-
ing a canonical order to an unordered cluster of trees. We
compare several alternatives for the invariant and canoni-
cal order on simulated data, and we show a demonstration
of our first implementation of a complete system applied to
arboretum photographs.

This paper proceeds as follows: first, we briefly outline
related work in Section 2. Second, in Section 3 we discuss
the possible formulations of the geometry of the problem
along with some fundamental tradeoffs. Next, in Section 4,
we describe our proposed system, including our approaches
to the problems of tree detection and geometric invariant
comparison. Finally, in Section 5 we both evaluate our ge-
ometric methods on simulated data and show a demonstra-
tion of a first implementation of the complete system.

2. Related work

The task of registering photographs with location and
map data has been approached from several directions. The
recent Viewfinder project [9] allows humans to align a photo
with Google Earth’s 3-D world models. Their method uses
either user input or GPS data to find the geographic loca-
tion of the image, and hand-labeled point correspondences
to fix the other camera parameters. Because of its reliance
on hand-labeled correspondences, their method does not
seem directly practical for matching against large satellite
databases, but it may be useful as a post-processing step to
refine the matches our method retrieves.

Another approach is the IM2GPS project [3], in which
image summary statistics such as color histograms, line fea-
tures, and GIST features are compared to a large database of

GPS-tagged photographs to estimate the rough geographic
location. The IM2GPS method is able to consider photos
from practically anywhere on the planet and effectively re-
turn a distribution over geographic regions. However, while
the IM2GPS method provides distributions over regions,
countries, and continents of the entire planet, we aim to
solve the slightly different problem of locating an image’s
exact position, which is likely only possible within much
smaller search areas. Thus, these methods could be used in
conjunction, with IM2GPS generating region estimates and
our method refining them into exact locations.

The Astrometry.net automated astrometry project [4] is
also related. Their system compares relative geometric po-
sitions of stars in a photograph (via geometric invariants)
to those in a large database, and is thus able to estimate
the camera parameters of the photo and identify the stars
within. The project has been very successful, and its ex-
cellent performance motivates similar geometric invariant
techniques in our method. However, it should be noted that
the possible transformations in the astrometry task are much
more restricted than in our own task, since astronomical im-
ages are always taken from approximately the same cosmo-
logical viewpoint (Earth) and so the camera parameters only
affect scale, rotation, and translation. In comparing satellite
photos of the Earth to ground-based photos, there are sev-
eral extra degrees of freedom in the perspective change.

As alluded to in the introduction, SIFT features have
had much success in finding correspondences between pho-
tographs with much smaller transformations than the ones
we are interested in. While SIFT features do not survive
significant perspective changes, there has been work on ex-
tended affine-invariant low-level features such as ASIFT
[5]. However, even these features assume a flat surface, and
thus would not apply to complex 3-D objects such as trees.
Such features may still be useful for capturing information
about ground texture, although this would probably require
finding satellite images from the same time of year as the
photo was taken.

Finally, there has been a large amount of research into
geometric invariants by the vision community, and the use
of invariant indexing has been explored in applications such
as object recognition [6]. Our method is able to leverage
some of the geometric invariant framework that has been
developed, and it can be viewed as a novel application of
such techniques.

3. Geometric models

We assume we are given a set of hand-labeled trees in a
photograph which we must match against a large database
of processed satellite images. In particular, we assume the
human labels each tree at the point where its trunk meets
the ground plane. Because we can also interpret the trees
in the satellite image as lying in a 2-D plane, we model the

image ground plane as a 2-D projective transformation of
the “true” world plane.

Depending how much work the user puts in, we can re-
cover varying amounts of information from the photograph.
In order from least to most specific, we can directly re-
cover the locations of the points up to a projective, affine,
similarity, or rigid transformation. Then, the problem be-
comes a matter of matching a set of query points against a
large database in a way that is invariant to the corresponding
transformation.

In particular, if the user simply labels the locations of the
trees on the screen, the image points can be any projective
transformation of the world points. If the user additionally
provides a horizon line, we can recover the affine shape of
the points. If the user labels a square on the ground plane,
we can extract the locations up to a similarity transforma-
tion (and the problem becomes equivalent to the astrome-
try problem [4]). Finally, if we assume the photograph is
taken from a known height, we have the locations up to a
rigid transformation (translation and rotation). In all four
cases, we may assume the transformation is orientation-
preserving.

Each transformation has an associated number of de-
grees of freedom (dof) d. Since an (ordered) tuple of k
points on the plane has 2k degrees of freedom, the set of
points contains 2k — d degrees of freedom modulo the trans-
formation. This quantity determines the maximum number
of dof that an invariant may have, as well as the minimum
number of points required to find an unambiguous match.
The possible transformations and their properties are sum-
marized in Table 1.

This choice of transformations gives us a tradeoff be-
tween the specificity of the representation and the label-
ing noise. On the one hand, the invariants for more gen-
eral transformations are more prone to measurement noise.
Also, they require more trees to have been correctly labeled
by the tree detection algorithm. On the other hand, more
specific transformations require more detailed input from
the user, which provides an additional source of noise. We
believe the optimal transformation model depends on the
particular photograph. For instance, if the horizon line is
clearly visible, the user might as well label it; however, we
have found it difficult to accurately estimate an occluded
horizon line, and in such cases, the projective model may
be more accurate.

For the remainder of the paper, we will focus primar-
ily on the affine transformation case, since it is the one we
found most appropriate for the data used in our demo.

4. Procedure

The pipeline of our proposed method is summarized in
Figure 1. First, both satellite and ground photographs are
labeled with tree positions, the former being automatically

Transformation dof points needed preserves requires labeling
Projective 8 5 lines, cross-ratio, convex hull points on screen
Affine 6 4 ratio of areas, parallel lines horizon
Similarity 4 3 ratio of lengths, angles square on ground
Rigid 3 2 length height of camera

Table 1. Comparison of different transformation models: degrees of freedom of the transformation, minimum number of points to estimate
an invariant, some quantities that are preserved, and additional information required from the user (each transformation requires the labels

of those transformations listed above as well).

processed. Automatic tree detection methods are discussed
in Section 4.1. The ground photograph may also be labeled
with auxiliary information, particularly that required to re-
cover affine shape as described in Section 4.2. Next, invari-
ants are computed as “fingerprints” for the cluster geometry,
as described in Sections 4.3 and 4.4, while compensating
for anisotropic noise is discussed in Section 4.5. Finally,
matching is established by comparing the invariants in the
two images.

4.1. Tree detection

The problem of tree detection in satellite and aerial im-
agery has been approached several times, particularly in re-
search related to Geographic Information Systems (GIS).
Methods vary in complexity from simple intensity maxima
and template matching to incorporation of geometric infor-
mation. We chose to implement two tree detection meth-
ods: template matching and Viola-Jones boosting. How-
ever, since we have not tuned and engineered these meth-
ods, it is likely that much better performance is possible,
even with these same methods.

4.1.1 Template Matching

Template matching is the method of sliding a small pro-
totypical tree image across a larger image and evaluating
L2 distance between the template and the underlying image
pixels, giving the “distance from template” as a function of
position. Any local minima below some threshold are taken
to be tree detections. Such a technique has been employed
for tree detection with considerable success in the past, and
it is included in the comparison paper [2]. An example out-
put using a single template is shown in Figure 8§, and the
performance is discussed in Section 5.2.

An advantage of this method is that it does not require
large amounts of labeled training data, but instead the se-
lection of a few template trees. Such templates could be
chosen on a per-region or even per-image basis without re-
quiring significant human effort. However, it is not clear
how well the method will scale with region complexity, e.g.
to more varied forests or even urban scenes. (Choosing tem-
plates specific to a region may be sufficient, because a sys-
tem such as IM2GPS [3] can identify the rough location of

the image.)

4.1.2 Viola-Jones Boosting

Viola-Jones boosting has had much success in real-time
face detection [8]. This boosting method trains a cascade of
weak classifiers to achieve both speed and accuracy. Since
the method is not specific to face detection, it has been em-
ployed for various other detection tasks, and here we evalu-
ate its potential for tree detection.

One disadvantage of V-J boosting relative to template
matching is that it requires much more hand-labeling work
from the user. Also, though the classifier is computationally
inexpensive to run, the training of the classifier can take a
considerable amount of time, even on modern processors.1
However, we believe it has the potential to generalize better
than template matching to different regions of the world. A
sample run of the our trained Viola-Jones tree detector can
be seen in Figure 2.

4.2. Recovering affine shape from a photograph

Let us consider how to recover from an image the affine
shape of a set of points on a ground plane, assuming the user
has labeled the horizon. For simplicity, let us assume that
the person taking the picture is facing directly forward, so
that the image plane is orthogonal to the ground plane. (A
generalization of this method where this orthogonality as-
sumption does not hold is described in [1].) We may choose
any orthogonal coordinate system we like for 3-space, so
let’s define the y axis as the direction normal to the ground
plane and the z axis as normal to the image plane. In other
words, the ground plane is defined by the equation y = yj,
for yo < 0, and the image plane is defined by z = f.

Finally, we assume the transformation from the image
plane to pixels is given by a scaling and a translation; since
the scaling factor can be factored into the focal length f,
we can model this transformation as simply a translation.
Therefore, the pixel locations (u,v) for a given point are

'In our evaluation we only trained 10 stages, which corresponds di-
rectly to a high false-positive rate (since false positives decrease exponen-
tially with the number of stages, and most applications seem to use many
more than 10 stages).

Photograph

Tree cIusters)—)(CanonicaI order)—»(lnvariants)

Hand-labeling

Tree detection

Satellite view Tree cIusters)—)(Canonical order)—»(lnvariants

Figure 1. Flowchart of our system.

Figure 2. Output of the Viola-Jones boosting tree detection algo-
rithm on a satellite view of the arboretum. The red boxes indicate
detected trees. Note that the erroneous detections are primarily
false positives.

given by:

u:B—i—uO v:Q—&—vo.
z z
By letting z approach infinity, we find that v = vy is the
equation of the horizon line. For a point (z, yg, z) on the

ground plane, we get that

JYo = z(u — up) _ Yo(u — uo)

T u—wo o f v — g

Now, we still do not know the values of f, yq, or ug, but
changing these values only causes an affine transformation
to our set of points. Therefore, we may choose any non-
trivial values for these constants to retrieve the true loca-
tions of the points up to an affine transformation.

4.3. Invariants

Suppose we are given an ordered tuple of k points
(p1,...,pr) on the ground plane. We can define an affine

invariant as follows: we consider p;, ps, and p3 to be “spe-
cial.” For any three pairs of non-collinear points, there is a
unique affine transformation which maps the first point of
each pair to the second one. We compute the affine trans-
formation 7" which maps p;, ps, and p3 to an equilateral
triangle. Then, we concatenate the coordinates of the trans-
formed k£ — 3 non-special points T'(py4), ..., T (pr) to get
the invariant. Since each point has two degrees of freedom,
this invariant has 2(k — 3) degrees of freedom. We saw in
Section 3 that this is the most degrees of freedom we can
hope for in an affine invariant.

The same procedure yields invariants for similarity or
projective transformations, except that the similarity invari-
ant uses two special points instead of three, while the pro-
jective invariant uses four special points. The similarity case
is the same invariant used by Astrometry.net [4].

4.4. Canonical ordering for affine transformations

Recall that, to build the tree database, we index all clus-
ters of k trees such that all the trees are sufficiently close
to each other. For each k-cluster in the hand-labeled pho-
tograph, we wish to find its best matches in the database.
However, since our invariants are defined over ordered tu-
ples, this would seemingly require one of two unappealing
strategies: (a) index all k! permutations of each cluster, or
(b) store only one permutation but run k! separate queries.
Since neither of these approaches is practical, we instead
define a canonical ordering of the trees in a cluster, where
the ordering is invariant to affine transformations. This way,
for each (unordered) cluster, we simply need to store the
invariant for its canonical ordering. When we search for a
cluster in our database, we only need to search for its canon-
ical ordering.

We define the canonical ordering as follows. Because
affine transformations preserve ratios of determinants, the
three “special” points will be the triplet with the largest de-
terminant. (Conveniently, the transformation mapping these
points to the equilateral triangle is likely to be the most sta-
ble, and therefore give the most reliable estimates of the
invariant.) There are still 6 possibilities for the order of
these three points. We define the first point p; to be the

one with the minimum distance to any other point in the
transformed space, and the second and third points ps and
p3 to be in counterclockwise order. Finally, we put all of
the non-special points in order by their angle from p;, go-
ing counterclockwise, starting from po. (Because we know
the camera is above the ground plane, we can choose the
affine shape in a way that preserves orientation, and there-
fore these last steps are invariant to affine transformation.)

4.5. Modeling uncertainty

As we mentioned previously, the schema for invariants
described in Section 4.3 preserves all available information
in the noiseless case. However, in reality, both the automatic
tree detection and the hand-labeling are noisy, and some-
times the invariant is unstable and therefore amplifies the
noise. Figure 3 shows a scatterplot of estimated invariants
for ten different randomly generated 4-tuples, each with dif-
ferent amounts of random noise generated. Clearly, differ-
ent sets of random points show different error covariances
in the invariants.

Because the tree detection is an automated procedure, we
may assume that the noise it contributes is much larger than
the noise in the hand-labeling. Assuming that a particular
tree was correctly detected, the estimated location may not
be at the exact center of the tree. Let’s suppose the offset of
each detection from the center is given by a Gaussian with
(unknown) variance o2I. Assuming o2 is small, we can
approximate the error in the invariant as a linear function of
the detection offset. Thus, the error in the invariant will be a
gaussian with some variance Y. For a given k-tuple, we can
estimate > by randomly adding small white gaussian noise
to each of the points, computing the invariants, and using
the empirical covariance matrix of these invariants. This
gives us the noise covariance up to a scale factor, which is
sufficient to rank the matches. We can compute ¥ for each
of the tree clusters as we add it to the database.

Finally, given a query invariant a (which we take to be
exact), we rank the tree clusters b in our database according
to our noise model:

1
p(bla) = N(bla,) = ONEE

5. Experiments
5.1. Simulations

In order to understand the tradeoffs in the design of our
system, we have run simulations on randomly generated
data. Suppose we are trying to match a set of hand-labeled
trees against our database. There are several questions we
must answer:

1. Should we use a projective, affine, or similarity trans-
formation model?

exp ((b—a)"S; ' (b—a)).

x%%%

P

Figure 3. Ten random 4-tuples were generated from a uniform dis-
tribution, and white gaussian noise was added to each. The in-
variants of the noisy observations are plotted. Note that the noise
covariance is non-isotropic and varies greatly from one 4-tuple to
another.

2. What algorithm should we use for matching?

3. How many trees should be in the cluster we try to
match?

Naturally, we would like to maximize our probability of
finding a correct match. There are three ways we can fail
to do so:

1. The tree detection algorithm misses at least one of the
trees.

2. The canonical order of the query or the correct match
is wrong.

3. The estimated invariant of the query or the correct
match is noisy.

The first source of error, missed detection, only depends
on the number of trees in a cluster. The more we try to
match, the greater the probability of a missed detection. The
other two sources of error are more subtle, and we present
simulations illustrating the tradeoffs.

First, we compared the three kinds of invariants. To es-
timate the probability of getting the canonical order cor-
rect, we randomly generated k-tuples from the unit box
and added small amounts of white gaussian noise. If the
canonical ordering was the same with and without noise,
we counted it as correct. Similarly, to estimate the reliabil-
ity of the invariant, we repeatedly generated 1000 k-tuples.
We selected one of the tuples, added noise to it, and then
ranked all 1000 tuples according to their invariants. If the
correct match was in the top 10, we counted it as a success.
The results of these experiments are shown in Figure 4. As
we would expect, the more general transformation models

Comparison of invariants

=
=]

—— Similarity
— Affine
—— Projective

I o o
kS o ®

I
N

Probability that correct match is ranked in top 1%

o
o

10° 10* 10° 107 10 10
(a) Input noise variance

-
o

10 Probability of correct canonical order

m Similarity
= Affine
=== Projective

0.8}

0.6|

0.4}

0.2}

0.0

10° 10° 10* 10° 107 10" 10°
(b)

Figure 4. Comparison of different invariants. (a) Probability that the correct match is in the top 1% returned by the algorithm, for randomly
generated k-tuples. (b) Probability of correct canonical order. In both cases, we used the minimum number of points which can define the

invariant (as given in Table 1).

are less robust to noise.2

Next, we compared four different matching algorithms.
First, the most basic was simply to compute the invariants
of each of the k-tuples and rank them by squared Euclidean
distance. Second, we used the probabilistic approach de-
scribed in Section 4.5. Third, we tried exhaustively fitting
the transformations from each of the indexed tuples to the
query and ordering them by the closeness of the fit. This ex-
haustive procedure is far too expensive to apply in practice,
but it provides an upper bound on the performance we can
expect from an invariant-based method. Finally, we tried a
cascade approach where all of the tuples were ranked ac-
cording to the probabilistic approach, and then the top 5%
of matches were re-ranked using the exhaustive procedure.

As shown in Figure 5 (a), for affine and projective in-
variants, there is significant room for improvement relative
to exhaustive search. Figure 5 (b) compares the four differ-
ent matching procedures. The probabilistic approach does
not appear to do any better than the basic least-squares ap-
proach.® The cascade approach closes much of the gap be-
tween the probabilistic and exhaustive approaches, suggest-
ing that it is both fast and efficient in practice.

Finally, we looked at the tradeoff between different num-
bers of points in the tuple. As shown in Figure 6, using more

2This experiment underestimates the performance of the affine invari-
ant in practice, because the tuples were randomly generated without re-
spect to the canonical order. As described in Section 4.4, our canonical
order is chosen such that the invariant is likely to be stable.

3In our original simulations, we measured the expected rank of the cor-
rect match, rather than the probability of the rank being in the top 1%. Us-
ing this other statistic, the probabilistic approach gave a large improvement
over least-squares. We believe this is because the expected rank is domi-
nated by the most unstable invariants, where the probabilistic approach is
most likely to help. On the other hand, if the correct match is in the top 1%,
the invariant was probably stable anway, perhaps explaining why the prob-
abilistic approach doesn’t help in these cases. We report the newer statistic
because it more directly reflects the overall success rate of the system.

points increases the specificity of the invariant, leading to a
larger probability of the correct match being in the top 1%.
The drawback is that the canonical form is less likely to be
correct. In our experiments with real data, we used 5 points
in each cluster.

5.2. Example

Finally, we tried our system out on a small-scale exper-
iment with real images. We photographed a scene at the
Arnold Arboretum and attempted to register it against satel-
lite images from Google Maps. The photograph is shown
in Figure 7 (a), along with the hand-labeled horizon line
and trees. Using the procedure from Section 4.2, we re-
trieved the affine shape of this tree cluster. The affine shape
is shown, in its canonical order, in Figure 7 (b).

Next, we applied our template-matching approach from
Section 4.1 to detect the trees, and the result is shown in
Figure 8. (This figure represents the full set of trees in-
dexed.) The tree detector successfully labeled most of the
trees which were similar in size to the template, but failed to
detect trees which were significantly larger or smaller than
the template. We believe this problem can be solved by
searching with multiple templates. We indexed all of the
clusters of five trees, such that the trees were all within 60
pixels of one another. This gave a total of 16,006 clusters.

We computed the affine invariants of the query and of
the indexed clusters, and ranked all of the clusters accord-
ing to the least-squares criterion. (We have not had time
to try the other criteria yet.) Out of these 16,006 clusters,
the correct match was ranked 10th. This suggests that, even
with the noise introduced by hand-labeling and automatic
tree detection, our procedure provides enough information
to find good matches. There were about 20 tree clusters
which looked very similar to the query shape, suggesting
that it would be difficult to improve this result simply by

10 Comparison with exhaustive search

—— Similarity
— Affine
—— Projective

0.8

0.6

0.4

0.2

Probability that correct match is ranked in top 1%

0.0
10" 10° 10*

10° 107 10 10

Input noise variance

(a)

(b)

Probability of hit in top 1%

1.0 T ™,
...... - = Least Squares
2 e == Probabilistic
= =in1 Cascade
E 0.8l nnn Exhaustive
o
g
5
20.61
g
s
£
9
5 0.4r
2z
5 0.2
3
<
0.0
10° 10° 10* 100 10° 10" 10°

Input noise variance

Figure 5. Comparison of different matching algorithms. Both figures show the probability that the correct match is in the top 1%. (a) For
all three transformation models, matching by invariant is shown in solid, and matching by exhaustively fitting transformations is shown in
dashed lines. (All three curves for the exhaustive approach line up with the curve for similarity invariants.) Clearly, using invariants loses
a lot of information, especially for the projective model. (b) Comparison of four matching algorithms for the affine model: least-squares
matching of invariants, probabilistic matching of invariants (Section 4.5), the cascade of ranking algorithms, and exhaustive search (both
defined in Section 5.1).

1.0
== 4 points
8 nini 5 points
§ 6 points
2os
5
g
s
0.6
§
2
£
g
504
£
z
Z 0.2
K
g
0.0
10° 10° 10* 10° 107 10" 10°

()

Input noise variance

(b)

Probability of correct canonical order

1.0
L ” = 4 points
"y i1 5 points
...... 6 points
0.8| 1
0.6|
0.4}
0.2}
0.0
10° 10° 10* 10° 107 10" 10°

Input noise variance

Figure 6. Comparison of different numbers of points for affine transformations, matching invariants with the probabilistic approach. (a)
Probability of correct match in top 1%. (b) Probability of correct canonical order. Using more points gives a more specific invariant, at the
cost of a less reliable canonical order.

improving the invariants. Instead, to scale up our system,
we believe it is necessary to match multiple clusters from
the photograph and apply a voting procedure to select a sin-
gle best match.

References

(1]

(2]

(3]

A. Criminisi. Single view metrology. International Journal of
Computer Vision, pages 123-148, 2000.

M. Erikson and K. Olofsson. Comparison of three individual
tree crown detection methods. Mach. Vis. Appl., 16(4):258—
265, 2005.

J. Hays and A. A. Efros. im2gps: estimating geographic in-
formation from a single image. In Proceedings of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2008.

(4]

(5]

(6]

(7]

(8]

D. W. Hogg, M. Blanton, D. Lang, K. Mierle, and S. Rowesis.
Automated Astrometry (Invited). In R. W. Argyle, P. S.
Bunclark, and J. R. Lewis, editors, Astronomical Data Anal-
ysis Software and Systems XVII, volume 394 of Astronomical
Society of the Pacific Conference Series, pages 27—, Aug.
2008.

J. Morel and G. Yu. ASIFT: A New Framework for Fully
Affine Invariant Image Comparison. SIAM Journal on Imag-
ing Sciences, 2(2):438-469, 2009.

C. A. Rothwell. Object Recognition through Invariant Index-
ing. Oxford Science Publications, 1995.

N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Ex-
ploring photo collections in 3d. In SIGGRAPH Conference
Proceedings, pages 835-846, New York, NY, USA, 2006.
ACM Press.

P. Viola and M. Jones. Robust real-time object detection. In
International Journal of Computer Vision, 2001.

() (b)

Figure 7. (a) The query photo, with trees and the horizon labeled. (b) The affine shape extracted from the labels, in its canonical order.

Detections

Figure 8. Output of the template-based tree detection algorithm on the satellite view of the arboretum. The template is circled in blue, and
the correct match is shown in red. Notice that most of the trees which are similar in size to the template are correctly detected, while the
detector fails for trees which are much larger or smaller.

[9] W. Carter et al Viewfinder, May 2009.
interactive.usc.edu/viewfinder/index.html.

