1 Background

Let $X=\left(X_{t}\right)_{t=1}^{T}$ be a zero-mean real vector-valued stochastic process with $X_{t} \in \mathbb{R}^{n}$ and $\mathbb{E}\left[X_{t}\right]=0$ for $t=1,2, \ldots, T$. Consider the variance of the sum

$$
\begin{align*}
\operatorname{Var}\left(\sum_{t=1}^{T} X_{t}\right) & =\sum_{t=1}^{T} \sum_{t^{\prime}=1}^{T} \operatorname{Cov}\left(X_{t}, X_{t^{\prime}}\right) \tag{1}\\
& =\sum_{t} \operatorname{Var}\left(X_{t}\right)+\sum_{t} \sum_{t^{\prime}>t} \operatorname{Cov}\left(X_{t}, X_{t^{\prime}}\right)+\operatorname{Cov}\left(X_{t^{\prime}}, X_{t}\right) \tag{2}
\end{align*}
$$

where $\operatorname{Cov}\left(X_{t}, X_{t^{\prime}}\right)=\mathbb{E}\left[X_{t} X_{t^{\prime}}^{\top}\right]$ and $\operatorname{Var}\left(X_{t}\right)=\operatorname{Cov}\left(X_{t}, X_{t}\right)$. Given the marginal variances $\operatorname{Var}\left(X_{t}\right)$ and pairwise covariances $\operatorname{Cov}\left(X_{t}, X_{t^{\prime}}\right)$ of the elements of X, the variance above can be computed directly in time proportional to T^{2}. However, given some assumptions on X we might compute the variance (1) more efficiently. Below we list two possible assumptions.
X is stationary We say X is stationary if $\operatorname{Var}\left(X_{t}\right)$ is independent of t and $\operatorname{Cov}\left(X_{t}, X_{t^{\prime}}\right)$ depends only on the indices t and t^{\prime} only through the difference $\left|t-t^{\prime}\right|$ (noting that we always have $\operatorname{Cov}\left(X_{t}, X_{t^{\prime}}\right)=\operatorname{Cov}\left(X_{t^{\prime}}, X_{t}\right)$). In this case, we can simplify the expression in (1) as

$$
\begin{equation*}
\operatorname{Var}\left(\sum_{t=1}^{T} X_{t}\right)=T \operatorname{Var}\left(X_{1}\right)+\sum_{d=1}^{T-1} \operatorname{Cov}\left(X_{1}, X_{1+d}\right)+\operatorname{Cov}\left(X_{1+d}, X_{1}\right) \tag{3}
\end{equation*}
$$

Given the autocovariance function of X, this expression can be computed in time linear in T.
X is a stationary linear autoregressive process An even stronger assumption is that X is not only stationary but also forms a Markov chain, and in addition that Markov chain takes the form of a linear autoregressive process:

$$
\begin{equation*}
X_{t+1}=A X_{t}+\epsilon_{t} \tag{4}
\end{equation*}
$$

where the spectral radius of A is less than 1 and where the noise process $\epsilon=\left(\epsilon_{t}\right)_{t=1}^{T-1}$ stationary and uncorrelated, with $\operatorname{Var}\left(\epsilon_{t}\right)$ independent of t and $\operatorname{Cov}\left(\epsilon_{t}, \epsilon_{t^{\prime}}\right)=0$ when $t \neq t^{\prime}$. In this case, we can write a sum of consecutive covariances as a finite geometric series,

$$
\begin{equation*}
\sum_{d=1}^{T-1} \operatorname{Cov}\left(X_{1+d}, X_{1}\right)=\sum_{d=1}^{T-1} A^{d} \operatorname{Var}\left(X_{1}\right)=M \operatorname{Var}\left(X_{1}\right) \tag{5}
\end{equation*}
$$

where $M \triangleq A(I-A)^{-1}\left(I-A^{T-1}\right)$. Thus we can simplify the variance (1) as

$$
\begin{equation*}
\operatorname{Var}\left(\sum_{t=1}^{T} X_{t}\right)=T \operatorname{Var}\left(X_{1}\right)+M \operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{1}\right) M^{\top} \tag{6}
\end{equation*}
$$

Given A this expression can be computed in time constant in T. Note that if X were a nonstationary linear autoregressive process, with

$$
\begin{equation*}
X_{t+1}=A_{t} X_{t}+\epsilon_{t} \tag{7}
\end{equation*}
$$

then to compute $\sum_{t, t^{\prime}} \operatorname{Cov}\left(X_{t}, X_{t^{\prime}}\right)$ we would need to compute $\sum_{t, t^{\prime}} \prod_{k=\min \left(t, t^{\prime}\right)}^{\max \left(t, t^{\prime}\right)} A_{k}$, which would require time quadratic in T.

