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Overview

Inference in dense graphical models is hard to parallelize
Simply running Gibbs updates in parallel can be very effective
e going “Hogwild!"!
e but no theory!

We analyze the Gaussian case

Connections to numerical linear algebra and general results on
synchronous and asynchronous methods?

'F. Niu et al. (2011). “Hogwild!: A lock-free approach to parallelizing
stochastic gradient descent”. In: Advances in Neural Information Processing

Systems.
2Dimitri P Bertsekas and John N Tsitsiklis (1989). Parallel and distributed
computation. Old Tappan, NJ (USA); Prentice Hall Inc.



Gibbs sampling in dense graphs

e Without structure, variables must be resampled sequentially

e What if we just run parallel updates anyway...?




Going “Hogwild!" with Gibbs

Require: Data distributed on K processors
1: Initialize latent variables

2: for £ =1,2,... until convergence do

3: Communicate global statistics

4: for each processor k =1,2,..., K in parallel do
5: Run ¢(k,¢) local Gibbs steps on processor k



Hogwild! Gibbs on LDA
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e Figure reproduced from Newman et al.3
e Very effective at fitting LDA topic models on real data

3D. Newman et al. (2009). “Distributed algorithms for topic models”.

The Journal of Machine Learning Research 10, pp. 1801-1828.
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Analysis?

e Hogwild! Gibbs sometimes works!

e at least for one interesting model. ..
e at |least for the datasets that were tried. ..

e When should we expect it to work? Can we analyze it?

e Start by analyzing Gaussian distributions



Gibbs for Gaussians

Goal: Given (J,h) where J ! =% and Ju = h,
sample z ~ N (p, %)

Note: Computing p is solving a linear system



Gibbs for Gaussians

Goal: Given (J,h) where J ! =% and Ju = h,
sample z ~ N (p, %)

Note: Computing p is solving a linear system

e Gibbs sampling iterates linear Gaussian updates

1
p(l‘l’xﬁz = :f’_,i) X exp {—§Jnl‘f + (hl — Jl_.lll,‘ﬁl)l‘@}

i.e. Xj — J%,(hi — JiniX-i) + vi where v; < N(0, Ji,,)



Gaussian Gibbs and Gauss-Seidel

e We can write one Gibbs sweep as

XD = M= nx() 4 pth 4 ()

where J = M — N and v(® % A(0, MT + 1)
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Gaussian Gibbs and Gauss-Seidel

e We can write one Gibbs sweep as

D) = M= X 4 pth 4 ()

where J = M — N and v(®) & A7(0, MT + )

e Expectation is Gauss-Seidel on Ju = h

e Gauss-Seidel + diagonal noise = Gaussian Gibbs sampler

*P-regular



Gaussian Gibbs and Gauss-Seidel

e We can write one Gibbs sweep as

D) = M= X 4 pth 4 ()

where J = M — N and v(®) & A7(0, MT + )

e Expectation is Gauss-Seidel on Jiu = h
e Gauss-Seidel + diagonal noise = Gaussian Gibbs sampler

e splitting-based* iterative solver + noise = Gaussian sampler

*P-regular



Hogwild! Gaussian Gibbs as linear dynamics

e Split J = A+ B + C intra- and inter-processor potentials

®A. Frommer and D.B. Szyld (1994). “Asynchronous two-stage iterative
methods”. In: Numerische Mathematik 69.2, pp. 141=153.



Hogwild! Gaussian Gibbs as linear dynamics

e Split J = A+ B + C intra- and inter-processor potentials

A B C
e Hogwild! Gibbs dynamics are
q-—1 .
Xt = (B71C) X0 + ¥ (B ¢y B! (Ax(t) +h+ v(fvf))
j=0

where v(t) 1 A7(0, D)
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Hogwild! Gaussian Gibbs as linear dynamics

e Split J = A+ B + C intra- and inter-processor potentials

A B C
e Hogwild! Gibbs dynamics are
q-—1 .
Xt = (B71C) X0 + ¥ (B ¢y B! (Ax(t) +h+ v(fvf))
j=0

where v(t) 1 A7(0, D)

e Expectation is the update of a “two-stage"® linear solver

®A. Frommer and D.B. Szyld (1994). “Asynchronous two-stage iterative
methods”. In: Numerische Mathematik 69.2, pp. 141=153.



Results: stability and means

Prop. 1. If stable then pupoq = pu (satisfies fized-point)

e But when can we guarantee stability?
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Prop. 1. If stable then pupoq = pu (satisfies fized-point)
e But when can we guarantee stability?
Theorem 1. If there exists diagonal R such that
(JR)ii = > _[(JR)s|
J#i

then for any h, processor partition, and any number of local
iterations q, Hogwild Gibbs is stable when run on (J,h).



Results: stability and means

Prop. 1. If stable then oy = v (satisfies fized-point)

e But when can we guarantee stability?
Theorem 1. If there exists diagonal R such that

(JR)ii = > _[(JR)s|
J#i
then for any h, processor partition, and any number of local
iterations q, Hogwild Gibbs is stable when run on (J,h).

e Implies stability for diagonally dominant,
walk-summable, and latent tree models

e Reminiscent of Hogwild! SGD condition (Niu et al., 2011)



Results: exact local samples

e What if local samplers converge between global syncs?
e Simple stability condition from block bipartite lifting

e Allows inexpensive correction to covariance estimate
(but not samples)



Results: exact local samples

e What if local samplers converge between global syncs?
e Simple stability condition from block bipartite lifting

e Allows inexpensive correction to covariance estimate
(but not samples)

Prop. 4. With exact local samples, stable if
(B-C) 2A(B-C)"%)> <1
Prop. 5. If we run local samplers to convergence, then

r= (I+ (B - C)_IA)EHOg
1 = Zrogl| < 1B = C) LAl S rr0g|



Results: covariances when interactions are small

e Linearized analysis for error in covariance with small A

o Tradeoff between local mixing and inter-processor
covariances:

Block diagonal cov. entries not affected to first order

Off-block diagonal cov. entries degrade with local mixing
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Summary

Gaussian analysis framework and easy proofs

e A new reason to love diagonal dominance

Can say some things about async case too

See the paper® for more!

®Matthew J. Johnson et al. (2013). “Analyzing Hogwild Parallel Gaussian
Gibbs Sampling”. In: Advances in Neural Information Processing Systems 26,
pp. 2715-2723.



