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Overview

• Inference in dense graphical models is hard to parallelize

• Simply running Gibbs updates in parallel can be very effective
• going “Hogwild!”1

• but no theory!

• We analyze the Gaussian case

• Connections to numerical linear algebra and general results on
synchronous and asynchronous methods2

1F. Niu et al. (2011). “Hogwild!: A lock-free approach to parallelizing
stochastic gradient descent”. In: Advances in Neural Information Processing
Systems.

2Dimitri P Bertsekas and John N Tsitsiklis (1989). Parallel and distributed
computation. Old Tappan, NJ (USA); Prentice Hall Inc.



Gibbs sampling in dense graphs

• Without structure, variables must be resampled sequentially

• What if we just run parallel updates anyway. . . ?



Going “Hogwild!” with Gibbs

Require: Data distributed on K processors
1: Initialize latent variables
2: for ` = 1, 2, . . . until convergence do
3: Communicate global statistics
4: for each processor k = 1, 2, . . . , K in parallel do
5: Run q(k, `) local Gibbs steps on processor k

1.2 AD-LDA works great

All of these are from D. Newman et al. (2009). “Distributed
algorithms for topic models”. In: The Journal of Machine
Learning Research 10, pp. 1801–1828

NEWMAN, ASUNCION, SMYTH AND WELLING

particular processor, unlike the training documents. Each processor learns a document mixture θ jp
using the fold-in part for each test document. For each processor, the likelihood is calculated over
the words in the fold-in part in a manner analogous to (7), and these likelihoods are normalized to
form the responsibilities, rp. To compute perplexity, we compute the likelihood over the test words,
using a responsibility-weighted average of probabilities over all processors:

log p(xtest) =∑
j,w
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p
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Computing perplexity in this manner prevents the possibility of seeing or using test words during
the training and fold-in phases.

4.1 Perplexity

The perplexity results for KOS and NIPS in Figure 5 clearly show that the model perplexity is
essentially the same for the distributed models AD-LDA and AD-HDP at P = 10 and P = 100 as
their single-processor versions at P= 1. The figures show the test set perplexity, versus number of
processors, P, for different numbers of topics K for the LDA-type models, and also for the HDP-
models which learn the number of topics. The P = 1 perplexity is computed by LDA (circles) and
HDP (triangles), and we use our distributed algorithms—AD-LDA (crosses), HD-LDA (squares),
and AD-HDP (stars)—to compute the P= 10 and P= 100 perplexities. The variability in perplexity
as a function of the number of topics is much greater than the variability due to the number of
processors. Note that there is essentially no perplexity difference between AD-LDA and HD-LDA.
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Figure 5: Test perplexity on KOS (left) and NIPS (right) data versus number of processors P. P= 1
corresponds to LDA and HDP. At P= 10 and P= 100 we show AD-LDA, HD-LDA and
AD-HDP.

Even in the limit of a large number of processors, the perplexity for the distributed algorithms
matches that for the sequential version. In fact, in the limiting case of just one document per
processor, P= 3000 for KOS and P= 1500 for NIPS, we see that the perplexities of AD-LDA are
generally no different to those of LDA, as shown in the rightmost point in each curve in Figure 6.
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Figure 6: AD-LDA test perplexity versus number of processors up to the limiting case of number
of processors equal to number of documents in collection. Left plot shows perplexity for
KOS and right plot shows perplexity for NIPS.

AD-HDP instantiates fewer topics but produces a similar perplexity to HDP. The average num-
ber of topics instantiated by HDP on KOS was 669 while the average number of topics instantiated
by AD-HDP was 490 (P = 10) and 471 (P = 100). For NIPS, HDP instantiated 687 topics while
AD-HDP instantiated 569 (P = 10) and 569 (P = 100) topics. AD-HDP instantiates fewer topics
because of the merging across processors of newly-created topics. The similar perplexity results for
AD-HDP compared to HDP, despite the fewer topics, is partly due to the relatively small probability
mass in many of the topics.

Despite no formal convergence guarantees, the approximate distributed algorithms, AD-LDA
and AD-HDP, converged to good solutions in every single experiment (of the more than one hun-
dred) we conducted using multiple real-world data sets. We also tested both our distributed LDA
algorithms with adversarial/non-random distributions of topics across processors using synthesized
data. One example of an adversarial distribution of documents is where each document only uses a
single topic, and these documents are distributed such that processor p only has documents that are
about topic p. In this case the distributed topic models have to learn the correct set of P topics, even
though each processor only sees local documents that pertain to just one of the topics. We ran mul-
tiple experiments, starting with 1000 documents that were hard-assigned to K = 10 topics (i.e., each
document is only about one topic), and distributing the 1000 documents over P = 10 processors,
where each processor contained documents belonging to the same topic (an analogy is one proces-
sor only having documents about sports, the next processor only having documents about arts, and
so on). The perplexity performance of AD-LDA and HD-LDA under these adversarial/non-random
distribution of documents was as good as the performance when the documents were distributed
randomly, and as good as the performance of single-processor LDA.

To demonstrate that the low perplexities obtained from the distributed algorithms with P =
100 processors are not just due to averaging effects, we split the NIPS corpus into one hundred
15-document collections, and ran LDA separately on each of these hundred collections. The test
perplexity at K = 40 computed by averaging 100-separate LDA models was 2117, significantly
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Hogwild! Gibbs on LDA

Require: Data distributed on K processors
1: Initialize latent variables
2: for ` = 1, 2, . . . until convergence do
3: Communicate global statistics
4: for each processor k = 1, 2, . . . , K in parallel do
5: Run local Gibbs on processor k

1.2 AD-LDA works great

All of these are from D. Newman et al. (2009). “Distributed algorithms for topic models”. In: The Journal of Machine Learning Research
10, pp. 1801–1828
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particular processor, unlike the training documents. Each processor learns a document mixture θ jp
using the fold-in part for each test document. For each processor, the likelihood is calculated over
the words in the fold-in part in a manner analogous to (7), and these likelihoods are normalized to
form the responsibilities, rp. To compute perplexity, we compute the likelihood over the test words,
using a responsibility-weighted average of probabilities over all processors:
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Computing perplexity in this manner prevents the possibility of seeing or using test words during
the training and fold-in phases.

4.1 Perplexity

The perplexity results for KOS and NIPS in Figure 5 clearly show that the model perplexity is
essentially the same for the distributed models AD-LDA and AD-HDP at P = 10 and P = 100 as
their single-processor versions at P= 1. The figures show the test set perplexity, versus number of
processors, P, for different numbers of topics K for the LDA-type models, and also for the HDP-
models which learn the number of topics. The P = 1 perplexity is computed by LDA (circles) and
HDP (triangles), and we use our distributed algorithms—AD-LDA (crosses), HD-LDA (squares),
and AD-HDP (stars)—to compute the P= 10 and P= 100 perplexities. The variability in perplexity
as a function of the number of topics is much greater than the variability due to the number of
processors. Note that there is essentially no perplexity difference between AD-LDA and HD-LDA.
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Figure 5: Test perplexity on KOS (left) and NIPS (right) data versus number of processors P. P= 1
corresponds to LDA and HDP. At P= 10 and P= 100 we show AD-LDA, HD-LDA and
AD-HDP.

Even in the limit of a large number of processors, the perplexity for the distributed algorithms
matches that for the sequential version. In fact, in the limiting case of just one document per
processor, P= 3000 for KOS and P= 1500 for NIPS, we see that the perplexities of AD-LDA are
generally no different to those of LDA, as shown in the rightmost point in each curve in Figure 6.
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Figure 6: AD-LDA test perplexity versus number of processors up to the limiting case of number
of processors equal to number of documents in collection. Left plot shows perplexity for
KOS and right plot shows perplexity for NIPS.

AD-HDP instantiates fewer topics but produces a similar perplexity to HDP. The average num-
ber of topics instantiated by HDP on KOS was 669 while the average number of topics instantiated
by AD-HDP was 490 (P = 10) and 471 (P = 100). For NIPS, HDP instantiated 687 topics while
AD-HDP instantiated 569 (P = 10) and 569 (P = 100) topics. AD-HDP instantiates fewer topics
because of the merging across processors of newly-created topics. The similar perplexity results for
AD-HDP compared to HDP, despite the fewer topics, is partly due to the relatively small probability
mass in many of the topics.

Despite no formal convergence guarantees, the approximate distributed algorithms, AD-LDA
and AD-HDP, converged to good solutions in every single experiment (of the more than one hun-
dred) we conducted using multiple real-world data sets. We also tested both our distributed LDA
algorithms with adversarial/non-random distributions of topics across processors using synthesized
data. One example of an adversarial distribution of documents is where each document only uses a
single topic, and these documents are distributed such that processor p only has documents that are
about topic p. In this case the distributed topic models have to learn the correct set of P topics, even
though each processor only sees local documents that pertain to just one of the topics. We ran mul-
tiple experiments, starting with 1000 documents that were hard-assigned to K = 10 topics (i.e., each
document is only about one topic), and distributing the 1000 documents over P = 10 processors,
where each processor contained documents belonging to the same topic (an analogy is one proces-
sor only having documents about sports, the next processor only having documents about arts, and
so on). The perplexity performance of AD-LDA and HD-LDA under these adversarial/non-random
distribution of documents was as good as the performance when the documents were distributed
randomly, and as good as the performance of single-processor LDA.

To demonstrate that the low perplexities obtained from the distributed algorithms with P =
100 processors are not just due to averaging effects, we split the NIPS corpus into one hundred
15-document collections, and ran LDA separately on each of these hundred collections. The test
perplexity at K = 40 computed by averaging 100-separate LDA models was 2117, significantly
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• Figure reproduced from Newman et al.3

• Very effective at fitting LDA topic models on real data

3D. Newman et al. (2009). “Distributed algorithms for topic models”. In:
The Journal of Machine Learning Research 10, pp. 1801–1828.



Analysis?

• Hogwild! Gibbs sometimes works!
• at least for one interesting model. . .
• at least for the datasets that were tried. . .

• When should we expect it to work? Can we analyze it?

• Start by analyzing Gaussian distributions



Gibbs for Gaussians

NEWMAN, ASUNCION, SMYTH AND WELLING

higher than the P = 100 test perplexity of 1575 for AD-LDA and HD-LDA. This shows that a
baseline approach of simple averaging of results from separate processors performs much worse
than the distributed coordinated learning algorithms that we propose in this paper.

4.2 Convergence

One could imagine that distributed algorithms, where each processor only sees its own local data,
may converge more slowly than single-processor algorithms where the data is global. Consequently,
we performed experiments to see whether our distributed algorithms were converging at the same
rate as their sequential counterparts. If the distributed algorithms were converging slower, the com-
putational gains of parallelization would be reduced. Our experiments consistently showed that the
convergence rate for the distributed LDA algorithms was just as fast as those for the single processor
case. As an example, Figure 7 shows test perplexity versus iteration of the Gibbs sampler for the
NIPS data at K = 20 topics. During burn-in, up to iteration 200, the distributed algorithms are ac-
tually converging slightly faster than single processor LDA. Note that one iteration of AD-LDA or
HD-LDA on a parallel multi-processor computer only takes a fraction (at best 1P ) of the wall-clock
time of one iteration of LDA on a single processor computer.
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Figure 7: Convergence of test perplexity versus iteration for the distributed algorithms AD-LDA
and HD-LDA using the NIPS data set and K = 20 topics.

We see slightly different convergence behavior in the non-parametric topic models. AD-HDP
converges more slowly than HDP, as shown in Figure 8, due to AD-HDP’s heavy averaging of new
topics resulting frommerging by topic-id (i.e., no matching). This slower convergence may partially
be a result of the lower number of topics instantiated. The number of new topics instantiated in one
pass of AD-HDP is limited to the maximum number of new topics instantiated on any one processor.
For example, in the right plot, after 500 iterations, HDP has instantiated 360 topics, whereas AD-
HDP has instantiated 210 (P = 100) and 250 (P = 10) topics. Correspondingly, at 500 iterations,
the perplexity of HDP is lower than the perplexity of AD-HDP. After three thousand iterations, AD-
HDP produces the same perplexity as HDP, which is reassuring because it indicates that AD-HDP
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”While we have shown experimental results showing
that AD-LDA produces models with similar perplexity
and similar convergence rates to LDA, it is not obvious
why this algorithm works so well in practice.” [Section
6]

2 Gaussian Gibbs background
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Gibbs for Gaussians
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higher than the P = 100 test perplexity of 1575 for AD-LDA and HD-LDA. This shows that a
baseline approach of simple averaging of results from separate processors performs much worse
than the distributed coordinated learning algorithms that we propose in this paper.

4.2 Convergence

One could imagine that distributed algorithms, where each processor only sees its own local data,
may converge more slowly than single-processor algorithms where the data is global. Consequently,
we performed experiments to see whether our distributed algorithms were converging at the same
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and similar convergence rates to LDA, it is not obvious
why this algorithm works so well in practice.” [Section
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Gaussian Gibbs and Gauss-Seidel

• We can write one Gibbs sweep as

x (t+1) = M−1Nx (t) + M−1h + v (t)

where J = M − N and v (t)
iid∼ N (0,MT + N)

• Expectation is Gauss-Seidel on Jµ = h

• Gauss-Seidel + diagonal noise = Gaussian Gibbs sampler

• splitting-based4 iterative solver + noise = Gaussian sampler

4P-regular
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Hogwild! Gaussian Gibbs as linear dynamics

• Split J = A + B + C intra- and inter-processor potentials

A B C

• Hogwild! Gibbs dynamics are

x (t+1) = (B−1C )
q
x (t) +

q−1∑

j=0

(B−1C )
j
B−1

(
Ax (t) + h + v (t,j)

)

where v (t,j)
iid∼ N (0,D)

• Expectation is the update of a “two-stage”5 linear solver

5A. Frommer and D.B. Szyld (1994). “Asynchronous two-stage iterative
methods”. In: Numerische Mathematik 69.2, pp. 141–153.
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Results: stability and means

Claim 1. If stable then µhog = µ (satisfies fixed-point)

Proof.

(I � T )µhog = (I � Tind)(I � Tblock)µhog = (I � Tind)(B � C)�1h

(I � (B � C)�1A)µhog = (B � C)�1hµhog = (B � C �A)�1h

• But when can we guarantee stability?

Theorem 1. If there exists a diagonal R such that JR
satisfies

(JR)ii � |
X

j 6=i

(JR)ij |

then for any h and number of local iterations q Hogwild
Gibbs converges on (J, h).

Proof. We construct a lifted system and do Gauss-Seidel
on it. Diagonal dominance is preserved by the lifting and
is su�cient for Gauss-Seidel convergence.

With J = A + B + C we form the (2qn)⇥ (2qn) system
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Update to last block entry is the deterministic part of the
Hogwild update.

• existing numerical linear algebra result, but our proof is
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Results: exact local samples

Look at support pattern and consider S ! 0 as local sam-
plers mix.

Block diagonal cov. entries not a↵ected to first order

O↵-block diagonal cov. entries degrade with local mixing

Models are J = B � C � tA where B � C � A = QQT,

Qij
iid⇠ N (0, 1), n = 150, K = 3.

3.2.3 what if we let local samplers mix?

• What if local samplers converge between global syncs?

• Simple stability condition from block bipartite lifting

• Allows inexpensive correction to covariance estimate
(but not samples)

Prop. 4. With exact local samples, stable if

((B � C)�
1
2 A(B � C)�

1
2 )2 � I
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Prop. 5. If we run local samplers to convergence, then

⌃ = (I + (B � C)�1A)⌃Hog

||⌃� ⌃Hog||  ||(B � C)�1A|| ||⌃Hog||

where ⌃ = J�1 is the exact target covariance and || · || is
any submultiplicative matrix norm.

Proof. Using the lifting,

⌃Hog = ((B � C)�A(B � C)�1A)�1 = [I + ((B � C)�1A)2 + · · · ](B � C)�1

We can compare this series to the exact expansion in (??)
to see that ⌃Hog includes exactly the even powers (due to
the block-bipartite lifting), so therefore

⌃� ⌃Hog = [(B � C)�1A + ((B � C)�1A)3 + · · · ](B � C)�1 = (B � C)�1A⌃Hog

4 End
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Results: covariances when interactions are small
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Summary

• Gaussian analysis framework and easy proofs

• A new reason to love diagonal dominance

• Can say some things about async case too

• See the paper6 for more!

6Matthew J. Johnson et al. (2013). “Analyzing Hogwild Parallel Gaussian
Gibbs Sampling”. In: Advances in Neural Information Processing Systems 26,
pp. 2715–2723.


