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Abstract

Runtime reflection facilities, as present in Java and .NES paw-
erful mechanisms for inspecting existing code and metadata

well as generating new code and metadata on the fly. Such power

does come at a high price though. The runtime reflection stippo
in Java and .NET imposes a cost on all programs, whether g&y u
reflection or not, simply by the necessity of keeping all rdata
around and the inability to optimize code because of futossible
code changes. A second—often overlooked—cost is the dtfficu
of writing correct reflection code to inspect or emit new ndeta
and code and the risk that the emitted code is not well-formed

In this paper we examine a subclass of problems that can be a
dressed using a simpler mechanism than runtime reflectibichw
we call compile-time reflection. We argue for a high-levetsuct
called a transform that allows programmers to write inspaecind
generation code in a pattern matching and template stybédiag
at the same time the complexities of reflection APIs and plingi
the benefits of staged compilation in that the generated aode
metadata is known to be well-formed and type safe ahead ef tim

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage¥ Processors—Code generation; D.38dgramming Lan-
guage§ Language Constructs and Features—Patterns

General Terms Languages, Design, Verification

Keywords Reflection, Generative Programming, Patterns, Tem-
plates, G

1. Introduction

The ability to reflect over a program’s metadata (types anthie
bers) as well as code—commonly called reflection—enablés bo
highly dynamic applications (such as runtime upgradingaufe),

as well as generative programming. Today’s mainstreanfophas
such as Sun’s JVM and Microsoft's .NET execution environimen
support reflection.

Reflection appears to the programmer as an API that provides
access to metadata and code, as well as facilities to emitmeder
data and code. Using these APIs is not easy. Programmeriyusua
need to be familiar with basic programming language impleme
tation techniques to successfully master the construafonew
types and code using reflection. Even just writing reflectiode
that inspects metadata is tedious to write and tricky toigat.r
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We are interested in providing main-stream programmers wit

a very simple form of generative programming that avoids the
complications of reflection APIs and statically guarantbeswell-
ormedness of the generated code and metadata.

A natural starting point for such an investigation is to pdev

metadata pattern matching facilities and then let progrararpass
the pattern matching results to code generating templbtes-
ever, in order to statically guarantee the well-formednafsthe
generated code and metadata, patterns must contain quitefa b
information about the matching context. For example, ithhige
necessary to know that a certain type is a subtype of another t

d_that a type contains (or does not contain) a certain membegy, (e
a constructor), or that a method has a certain set of forngai-ar
ments. These requirements not only force patterns to beésphec
specified, but also mandate the transmission of all thisexbual
information from the pattern to the generation templater Du
sight is that these two needs are best addressed by comipaing
terns and generation templates into a single constructbagll a
transform

In this paper we describe our design call@dmpile-Time Re-

flection (CTR). CTR aims to provide a powerful, yet accessible
replacement for complicated reflection APIs by adoptingftie
lowing principles:

e CTR allows inspection of static metadata, but not code nor ru
time values. While this choice limits the possible applimas, it
1) allows for static compilation and full compiler supp&}en-
ables static checks that prove the well-formedness of bieu
quently generated code, and 3) allows generative progragimi
in environments that don’t have runtime reflection mechasis
(e.g. [12]).

¢ We focus on the generation and addition of new metadata and
code, not the modification of existing elements. This makes i
easier to reason about the behavior of the final generatesl cod
and its well-formedness.

e CTR does not provide a programmatic reflection API. Both
metadata inspection and code generation are done vianmtter
and templates that look like ordinar#@ode. We believe that
complex reflection APIs present a significant hurdle for pro-
grammers who want to quickly and easily write code genera-
tors.

New syntactic constructs are kept to an absolute minimum.
We avoid the explicit quoting and unquoting conventions of
many generative and macro programming approaches as they
can often make writing code generators unwieldy. Tight C
integration means that programmers need only learn thesprop
use of meta-variables and a few new, but intuitive, keywords

Transforms are applied during target application comipifat
This allows the compiler to help programmers by emitting er-
rors if a compilation would produce missing types, members,
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or code due to patterns not matching or transforms failing te
generate all expected code. 10

¢ Transforms can be compiled and distributed like regularecod 12
Because of our close#Cintegration, transforms can be com- ,,
piled to standard MSIL. This allows transforms to be distrédal 1,
along with libraries and other such distributions with ease:s
Moreover, since the well-formedness properties of tramsfo 16
are checked at transform compile time, our safety guarante&
still hold. 18

19

The rest of the paper is organized as follows: Section 2 gives
an overview of transforms using a simple example. Sections 23
and 4 describe the general form of transform patterns andrgen®
ation constructs. Section 5 defines in more detail how toarnss zj
match target contexts. Section 6 provides an informal dision
of our safety and well-formedness claims. Section 7 shows ho,
transforms can be used to help implement a software trdosatt
memory system and automate process startup. Section 8ronta
more details on our implementation and Section 9 discustated
work. Shortcomings of our design are explored in Section 10.

2. Simple example

Consider the following generative programming problem:aie
tomate the generation of unit test harnesses for our code tas
want to mark entry points for unit testing using attributesour
code and then generate methods that invoke all unit testg'He
the transform that achieves this task:

public class UnitTestEntry : Attribute {
public UnitTestEntry(string name) {}

}

transform GenerateUnitTestHarness {

public class $$C {
public $$C();
[UnitTestEntry($name)]
void $$TestMethods();
generate public static void UnitTest() {
$$C c;
forall ( $m in $$TestMethods ) {
c = new $$C();
Console. WriteLine(" Invoking._test .'{0}'", $m.$name);
c.$m();
}
}
generate class ModuleUnitTest {
public static void Main() {
forall ( $TCin $$C ) {
$TC.UnitTest();
}
}
}
}

We can apply this transform to the unit below.

using System;
using Microsoft . SingSharp. Reflection ;

[assembly: Transform(typeof(GenerateUnit TestHarness ))]

public class ClassA {
public ClassA() {}

[UnitTestEntry (" A1")]
void MethodA1() {}
void MethodA2() {}
[UnitTestEntry (" A3")]
void MethodA3() {}
void MethodA4() {}

}

public class ClassB {
public ClassB() {}

void MethodB1() {}
[UnitTestEntry (" B2")]
void MethodB2() {}
void MethodB3() {}
[UnitTestEntry (" B4")]
void MethodB4() {}

}

When invoking the generated methdthduleUnitTest.Main in the
final executable, the following output is produced:

Invoking test ‘A1’
Invoking test ’A3’
Invoking test ’B2’
Invoking test ’B4’

We now explain the elements of this example in detail. Lines 1
3 define a standard#Cattribute calledUnitTestEntry that takes a
string argument. We use this attribute in our units to markhogs
that serve as unit test entry points. The string argumenbearsed
to give each test a descriptive name.

2.1 Patterns

Each transform is named. Our example transform starts @n lin
5 and is calledGenerateUnitTestHarness. The transform has two
pattern members (here two classes). The first d&€ss on lines
7-21 and the second clasgoduleUnitTest on lines 23-29. The
first class pattern has a meta-variaBC, meaning it matches
classes of any name. Furthermore, the meta-variable is & mul
match variable (variable starting with tv§$ signs) as opposed to
a single-match variable (starting with a single The first pattern
thus matches a list of classes, where each class’s membeats mu
match the members in tH$C pattern. The patterf$C has three
members, a constructor pattern, a method pagéTastMethods,
and a static method generation patt&itTest. Note that within
the scope of class patted$C, the name$sC refers to exactly
one element of the eventual set of matches §#¢. Thus, the
constructor pattern matches only one constructor, not @eethat

a class could have multiple nullary constructors anyway).

The $$TestMethods method pattern matches any number of in-
stance methods that have theitTestEntry attribute, returrvoid
and take no parameters. First note that the pattern ingplihe
attribute is not a match by name. The pattern does not makch al
attributes calledUnitTestEntry. Instead, it refers directly to the dec-
laration ofUnitTestEntry used during the compilation of the trans-
form. This attribute need not be defined in the same comepilati
unit as the transform. It could have been defined in a separate
compilation unit referenced by the compilation of the tfans.
The type checking of the transform however guaranteesiaitt
tribute type exists. This is in contrast to reflection bassdkonhich
is always dependent on matching names as character strings.

Second, note that the expression meta-varigidene is bound
within the context of a single method $$ TestMethods, meaning
that each method matched B§TestMethods can have a distinct
name. This is determined by the fact thaime does not appear in
a matching position outside of ti$$TestMethods Scope.



The method generation pattetnitTest matches exactly when
a class under consideration doest have such a method. In other
words, generation patterns are anti-patterns that mathkyfdon’t
clash with existing members. This guarantees that we demeg
ate a member that is already present in a target contextlasiyni
the class generation pattavieduleUnit Test matches only if there is
no top-level class calletfoduleUnitTest in the target compilation
unit.

2.2 Generation

Let’s turn our attention to the body of method generatioriguat
UnitTest. It contains ordinary & code with the extension of the
use of meta-variables and tHerall construct that allows iteration
over all matches of multi-match meta-variables. Recall #irace
UnitTest is within the context of class patte$sC, type$$C refers
to a single type, not the list. Thus, the body starts out diegaa
local variable of types$C. The next statement is orall iteration
statement. It generates a sequence of blocks, one for edch ma
the set of matches being iterated. Here, we iterate overethoals
$m in the set$$TestMethods. For each such method, we create a
fresh object of types$C and assign it to locat. We then write
a message to the console describing which test is being &xkcu
Note the use ofm.$name to refer to the string argument of the
UnitTestEntry attribute of the matched methdsh. We use this
qualified path to access such dependent information. kjna
invoke the test method oa using the usual method invocation
syntax, albeit using a bound meta-variable for the methodena

2.3  Well-formedness

Consider what the compiler needs to know about the matching
context in order to guarantee that the bodyWiitTest is well-
formed. The declaration of localrequires knowing that typ&$C
exists and is distinct fromoid. Clearly, we are in the context of a
class$$C and thus$$C cannot bevoid. In fact our design is such
that meta-variables never match tyéd, only the literal typevoid
matchesoid. We have found this to be the most useful approach in
practice. Theforall construct binds a single methdeh of the set
$$TestMethods. We know from the method patte$fi TestMethods,
that$m thus is an instance method$$#C taking no arguments. This
information is sufficient to check the method call on line @8.line

16, we exploit the fact that the constructor pattern esthbb the
existence of a constructor 6$C taking no parameters. Finally, on
line 17, we know that there was an attribute$enand we thus have

a binding for$m.$name.

Observe that all these constraints naturally follow frone th
patterns themselves. In this example, we did not need tbdurt
constrain the match to guarantee well-formedness. Cletrey
constructor pattern was motivated by the need to construabject
of type $$C. If we matched static test methods instead, that pattern
could have been omitted.

The well-formedness of the generated clagsduleUnitTest
can be argued similarly. It generates a singlgn method which
iterates over all classesrC in the multi-match patter§$C and
calls$TC’s UnitTest method. Note that in order to check the validity
of this method call, we are again using the knowledge gleaned
from the combination of the pattern and generation temgplate
that we know for a fact that we generate the static methaeTest
for each clas$TC. Were we to use an approach that would allow
one to splice together generated code from a variety of ssurc
the necessary reasoning would be much more complicated. Thi
insight, we believe, is a major contribution of this work.

2.4 Transform application

Figure 1 shows the general model how to compile and apply
transforms. Given a set of source files T containing one oremor

T.dll

sgc >

;
;

Figure 1. Transform compilation and application

c.dil

sgc >

transforms, our compiler (sgc) checks the transforms foll-we
formedness and produces a library T.dll containing a caedpil
form of the transforms. To apply any of the transforms in[Tttile
programmer adds frransform(t)] attribute into his client code C,
specfiying which transform t is to be applied (see the unitdede
on line 4). The compilation of the client code C thus refesmnc
the assembly containing the transforms (T.dll). After cdatjon
of the client code C, the desired transform is matched ag#ies
entire compilation unit C. If it matches unambiguously, éffects
of the transform are applied at the MSIL level, prior to wriithe
resulting library C.dll. Otherwise, the compiler emits assege
explaining why the transform could not be applied.

3. Transforms

A transform is a combination of patterns and cottebe generated.
As the introductory example illustrated, this combinatelfows
the pattern to naturally provide the constraints requie@heck
the well-formedness of the generated code. This sectiocrides
in more detail the elements of transforms and their weltfedness
conditions.

3.1 Meta-variables

Meta-variables serve both to bind elements to be matched and
to refer to such matches. Transforms contain two kinds ofaimet
variables, single-match variables, starting with a sirsgégyn, and
multi-match variables, starting with a doub$$ sign. As their
names suggest, a single-match variable matches a singhemte
whereas a multi-match variable matches zero or more element

3.1.1 Variable scopes

Each meta-variable in a transform is assigned a scope. dNeste
scopes are introduced at each multi-match meta-variateegn
tend for the subtree matched by that list. These sub-scopss e
to maintain the correlation between sub-parts of each mafteh
multi-match variable. The scope of a multi-match metaalalg is

its own scope.

The binding occurrence of a multi-match variable is either a
membef, an attribute name, or the formals of a method pattern.
Multi-match variables can only be referenced from withigitlown
scope (if referring to a type), or in a context where a lisiigexted
(such as aforall iteration).

The scope of a single-match meta-variable is the outermost
scope in which it occurs in a binding position. A binding piosi
is any occurrence other than in a method body or in a signature
of a generation pattern. For example, GerateUnitTestHarness
transform in Section 2 has three scopes. The outermost ssope
the transform itself. Inside that scope is the scope of rméttch
variable$$C. Within that scope is the scope of multi-match variable

1To avoid repeating the phrase “code and metadata’, we usevdhe
“code” to mean both declarations of types and members, dsawelode
bodies when used in the context of generation.

2Classes and structs are considered members since they fear aypsted
inside other types.



$$TestMethods. This is also the scope of the single-match variable
$name.

Single-match variables are also used to range over the pteme
of a multi-match inforall constructs. Such single-match variables
cannot be referenced outside the bindifagall construct.

3.2 Member patterns

of the forward declared member, such as a field initializereghod
body, getter and/or setter methods for properties. (Implaation
type patterns do not differ from ordinary type patterns.)

An implementation pattern matches a target member only when
the ordinary member pattern matches and in addition, tlgetar
member was declared agflective . Thus, the linking points be-
tween non-generated and generated code are always formed by

A transform is made up of type member patterns such as classesreflective members and correspondifigplement patterns.

and structs at top-level. Each type pattern in turn is madefup
general member patterns corresponding tb edtities, such as
fields, methods, events, properties, and nested types.dfilegliish
between ordinary member patterns not prefixedgbiferate or
implement, and generation or implementation patterns. The next
sections describe ordinary patterns, followed by geramatand
implementation-patterns. The matching of entire memists lis
described in Section 5.

A field pattern consists of a name (possibly a meta-variablg)pe
reference pattern, a visibility (public, protected, imi@r private),
an optional static modifier, and optional attribute patetsut no
initializer. It matches a target field if all pattern partstofathe
corresponding actual characteristics.

1
2
3
4
3.2.1 Fields 5
6
7
8
9

10
11
12

3.2.2 Methods

A method pattern consists of a name, a type reference pattern

for the return type, a formal argument list pattern, a vigipi
an optional static modifier, and optional attribute pattefor the

Consider a slight variation of th@enerateUnitTestHarness that
does not generateMain method, but &unTests method. In order
for a unit to contain code that calls tiRnTests method, the unit
uses areflective place holder for this method and the transform
uses an implementation pattern for this method.

transform GenerateUnitTestHarness2 {
public class $$C {

}
public class $UnitTestClass {
implement public static void RunTests() {
forall ( $TCin $3C) {
$TC.UnitTest();
}
}
}
}

This transform matches units that provide a class with actfe
method calledRunTests.

using System;

method and or the return type, but no method body. It matches ausing Microsoft.SingSharp. Reflection ;

target method if all the pattern parts match the correspaonactual
characteristics.

3.2.3 Properties

A property pattern consists of a name, a type referencerpate
visibility, an optional static modifier, and optional aliite patterns.
In addition, the property pattern indicates the presence gétter
and/or setter, like abstract property declarations ddyaut method
bodies. Property patterns match if all pattern parts mdteflcorre-
sponding actual characteristics, including the presefieegetter
and/or setter if the pattern requires it.

3.2.4 Types

An ordinary type pattern is either a class or struct dedlamatt
consists of a name, visibility, optional attribute pat&r@nd a list of
member patterns. Class patterns additionally indicateelf tmatch
abstract classes, a possible base class and interfaceabotssin
the form of type reference patterns. A type member pattetnhmea

a target type if the type kind (struct or class) matches, dhd a
pattern parts match the corresponding charactersticstifuaally,
class patterns match only if the actual type’s base classubtype

of the base class pattern and the actual class implemergsilfpo
indirectly) all interfaces in the class pattern.

3.25

When writing code in conjunction with transforms, one ofteeds

to be able to reference a member that will be generated bysa-tra
form. To provide a clear interface between original codegerter-
ated code that allows such forward references, our desayidas
the reflective qualifier to introduce such forward member declara-
tions. Reflective declarations are similar to extern datians, i.e.,
they do not provide bodies for methods, or initializers fetds.

Implementation patterns

[assembly: Transform(typeof(GenerateUnitTestHarness2))]
public class ClassA {

}

public class ClassB {

}

public class UnitTesting {
reflective public static void RunTests();

public static void Main(string args) {
// invoke unit tests if argument switch is selected

. UnitTesting . RunTests (); ...

}
}

Class patteri$UnitTestClass matches clas®nitTesting and imple-
ments theRunTests method. TheUnitTesting class (or any other
part of that compilation unit) can thus refer to thenTests method
and call it when desired.

3.2.6 Generation patterns

Whereas implementation patterns match only if the targetest
anticipates the implementation of such a member, a genaraéit-
tern is used to generate a member that the target module does n
already have and does not refer to directly. A member geperat
pattern thus has the same parts as an ordinary member patiern
itis prefixed by thegenerate modifier and contains an implementa-
tion. The implementation is either a method body, a fieldaliter,
property getters and setters, or class and struct members.

The name of a member generation pattern can be a single-match

Reflective members are matched by implementation patterns, meta-variable, which is then interpreted as a fresh identféner-

i.e., member implementation patterns prefixed by ithplement
qualifier. An implementation pattern actually provides &irdgon

ator, guaranteed to not clash with existing member namd®erot
wise, a generation pattern represents an anti-matchit neatches



a context only if it does not clash with any existing membarthie
target context according to the rules of the .NET platform.

For type generation patterns, all members of the type arkdmp
itly considered generation patterns and implementatittepe are
disallowed.

3.2.7 Scope patterns
Scope patterns are a special construct that has no equivalen

array types. A named type pattern is either a literal typeresfce,
which will match exactly that type, a meta-variable, whichtanes
any type, or a type reference to a type within the transfortichv
matches whatever that type member matches. An array type ref
ence pattern is then simply an array type whose element $ype i
type reference pattern.

In practice, it is often necessary to constrain the superstyys
a type reference pattern. We use syntax similar to that oérien

dinary Gt members. A scope pattern describes a set of subsets ofconstraints to achieve this effect as in the following exmp

members in the current scope, allowing the same kind of trans
formation on each subset. As an example, consider the finigpw
generative programming problem: Properties (or gettersattir
methods in Java) are commonly used to abstract over fieldsese
Most properties are backed up directly by a field in the comai
type and programmers have to write boiler plate code for path
terns as follows

class C {
T _XbackingField;
public T XProperty {
get { return this._XbackingField; }
set { this._XbackingField = value; }

}
}

This practice is useful in software engineering in that cedelu-
tion is easier to handle. If the property set and get operaitbange
over time, only the methods have to be updated, not all diéft
ease generation of such default boilerplate code thougigram-
mers might want the backing field and the setter and gettezrgen
ated automatically by writing just the property as follows:

class C {
[AutoProperty]
reflective public T XProperty { get; set; }

}

The idea of course is to use a transform to generate the lgackin
field, as well as getter, and setter methods. Scope pattbonsis
to express such a transform easily:

transform AutoPropertyTransform {
public class $$C {
scope $$AutoProperties {
[AutoProperty]
implement public $T $Property {
get { return this . $backingField ; }
set { this.$backingField = value; }

}
generate $T $backingField;

}
}
}

A scope consists of a list of member patterns. The exampl@iren
a property implementation pattern and a field generatiorepatA
scope matches any number of times in the member context ahwhi
it appears. Thus, the above transform would generate angacki
field and setter and getter implementations for every réfiect
property with an[ AutoProperty] attribute in every public class.

Note the natural way this transform solves this simple task.
We know of no traditional generative programming approduti t
solves this as elegantly as the scope construct.

3.3 Type reference patterns

A type reference pattern corresponds to a type referencetin C
Here we consider only two forms, named types (class or 3tanct

3value is the implicit parameter of the setter iftC

transform Test
where $T : ICollection

class $C {
public $T GetCollection ();
}
}

The where clause constrains a type reference meta-variabie
to implement thelCollection interface. Thus, the method pattern
GetCollection only matches methods returning a type deriving from
ICollection .

3.4 Attribute patterns

Attribute patterns occur wherever attributes can be writteC#

programs. An attribute pattern consists of a named typeaete
pattern, and an expression list pattern. An attribute pattetches
a single attribute in the target context, unless the typeregice
pattern is a multi-match meta-variable, in which case it wetich
zero or more times.

3.4.1 Expression list patterns

An expression list pattern for attributes consists of a saga of ex-
pression patterns. An expression pattern is either a bsal l{al-
lowed to occur as an attribute argument, such as numbengdis
and strings, typeof), or a meta-variable. We restrict arresgion
list pattern to contain at most one multi-match meta-vaeigb
avoid matching ambiguity.

3.5 Formal argument patterns

Formal argument lists patterns consist of a list of type npaies,
with optional attribute patterns for each parameter. Theewa

of formals are immaterial for matching purposes in our aurre
design, so no meta-variables need to be employed for formals
Alternatively, the entire sequence of formals can be matehi¢h

a single multi-match meta-variable.

4, Generation

As we have seen in the previous sections, code is generated by
implement Or generate members. For simple templates, these mem-
bers contain ordinary £code with meta-variables. However, to
generate a piece of code for every match in a multi-matchdist
design provides dorall construct.

4.1 Statement iteration

To generate a block of statements for each match in a mulithna
the forall block construct is used. The general form is:

forall ( $m in [Path].$$C ) {

statement— list

}

where the meta-variablém will range over each match in the
multi-match variable$$C. Within the body of the forall block,
meta-variables nested with#$C's scope are accessible by qual-
ifying their name with$m (see example in Section 2).




4.2 Member iteration

Atfirst, it might seem useful to providéorall iteration at the mem-
ber level to generate, say, a member (or collection of mes)lier
each match in a particular multi-match. However, such atcocis
poses problems in that it is not clear how to refer to the gerdr
members outside théorall construct. Instead, we can observe that
the scope construct can span arbitrary contexts and permits us to
solve such tasks directly, as the next example shows. Tlmioly
transform generates delegation methods in a class to fdreadis

onto a delegate target object stored in a field. }
// increment the current match candidate at patternindex

while (GotoNextCandidate(candidates,

bool FindNextMatch(int[] candidates,
ref int patternindex,
MemberMatcher[] matchers,
Member[] members,
MatchEnvironment matchEnv)
requires candidates.Length matchers.Length;

if (patternindex > candidate.Length) {
// found a successful match for all matchers
return true;

transform Delegation {

scope $$D { patternindex,
class $C { members.Length))
[DelegationTarget ] {

int memberindex = candidates[patternindex];
MatchEnvironment nestedEnv = matchEnv.NewUndoScope();
generate $T $Method($$formals) { Member member = members[memberindex];
return this . $target . $m(); if (matchers[patternindex |. Matches(member, nestedEnv)) {
} // found a match at current pattern index
} // find matches for remaining patterns
patternindex ++;
if (FindNextMatch(candidates, ref patternindex,
matchers, members, nestedEnv)) {

private $DelegateTarget $target ;

class $DelegateTarget {
public $T $Method($$formals);

} // yes, can complete the match
} return true;
’ // no try another member at this level .
Scope$s$D gathers all matches consisting of a classhaving a )

field annotated with §DelegationTarget] attribute. The field type
should match a clastDelegateTarget and this class should have a
method with arbitrary arguments and return type. For each su }
match in scope$$D, we generate a method $C that simply
invokes the target method using the field as the target iostand
the same parameters. Thus, this transform will generateafoling
methods for all classes, all fields with the [Delegation&t;gand
all methods in the target class. We abuse our syntax to naene th
generated method with the same name as the target method by
reusing the meta-variabfethod.

This example illustrates not only the power of #wpe con-

// no more matches at this level
return false ;

bool GotoNextCandidate(int[] candidates, int patternindex,
int count) {
do {
int memberindex = ++-candidates[patternindex];
if (memberlndex >= count) {
return false ; // no more candidates for this pattern

} while ( Duplicatelndex (candidates, patternindex ));

struct, but also a limitation of our design. The delegatiasges
the parameters to the delegate target unchanged. If we evémte
transform the actual arguments before calling the targétote we
would need a way to construct arbitrary argument lists. We Inat

return true;

}

Listing 1. Member matching algorithm

yet explored the issues surrounding inspection and castiiruof
formal and actual argument lists.

1. Find a match environment that satisfies all single-mateimm
ber matchers (ordinary single-match member patterns and im
plementation patterns)

2. Check that given this match environment, none of the gener
tion members clash with existing members

5. Matching

So far we have described matching of individual parts, such a
names, members, and type references. What remains to bedlefin
however is how member lists are matched against lists of eemb
patterns.
Member lists are matched in three places, 1) at the transform 3-
top-level, where only type patterns are matched, at mendiézm
lists of nested types within the transform, and within scogiterns.
Matching a list of member patterns against a member list pro-
duces a set of all matches such that each match is a mappimng fro
patterns to members. Within a match, there exists a unighe su
stitution of all meta-variables that makes the patternscméteir
corresponding member.

Given this match environment, record match lists for alltm
match member patterns individually against all memberg Th
reason multi-matchers are only considered last is that doey
not determine the match since they always match (in the worst
case zero times) and given our scoping rules, there cannot be
any meta-variables nested within a multi-match that is atem
outside the multi-match, unless it is being determined by a
matcher in step 1.

If all three steps succeed, we have found one possible mabch.
find all matches, simply repeat without considering comtiames
in step one that have already been tried.

Listing 1 contains the pseudo-code for finding all matches fo
step 1. TheFindNextMatch method is initially called with an array

5.1 Matching algorithm

We use a brute force algorithm to enumerate all possible mgpp
of patterns to members to find all matchees. Matching of membe
lists proceeds in three phases:



where candidates[0]=—1 and patternindex = 0, meaning that we

start the search by considering members starting with the¢ ne

member (0) for pattern 0. The helper mettmgblicatelndex checks

if the new candidate member index is a member we have already

used for preceeding patterns. This step is optional, butmeketfie
matching semantics more intuitive if single-match (mustahp
patterns don't overlap.

In the context of a transform or type member list, matchiny on
succeeds if there’s a unique match for the member list magchi
For scopes on the other hand, all matches are considered.

6. Static safety

In this section, we describe what safety guarantees theratexde
code satisfies and informally argue why safety follows frgmwet
checking of transforms.

transform AorB {
[CaseA]
class $A {
generate void FooBar () { ...
}

[CaseB]
class $B {
generate void FooBar () { ...

case A code }

case B code }

}

The transform above adds one of two FooBar methods to classes
depending on whether they have the [CaseA] or [CaseB] at&ib

If the transform checking were conservative, it would havee-

ject the above, as a class could have both [CaseA] and [CaseB]
attributes at the same time and would thus end up with clgshin

There are two guarantees we want from the compilation of a FooBar members. Clearly, the writer of the above transferesk

transform: 1) that the transform represents a well-formaitepn
that can be interpreted unambiguously by the matching iltgpor
and 2) whenever a transform matches in a compilation urgtreh
sulting .NET assembly produced by applying the transforsspa
the verifier.

The well-formedness of a transform checks that all refezdnc

tablishing a usage rule for the transform in that only onéefttvo
attributes should appear on a class. Our methodology ddes-no
low capturing such conventions. We do not want to rule outiegp
tions such as the above. Therefore, we made the trade-dfiettke
for member clashes at transform application time. Givesdtab-
servations, it is clear that transforms with@#nerate members

types and members are defined or are meta-variables with non-having concrete names are guaranteed not to cause clashes.

ambiguous binding scopes.

The well-formedness of the result of applying a transform ca
be split into two components: 1) method-body verificatiand &)
metadata verification. The former requires that the codeache
method body is type safe, and that all referenced types ama-me
bers exist and have the expected signatures. The metadéta ve
cation requires well-formedness on the type and membestatey
such as a non-cyclic inheritance hierarchy, implemematibab-
stract and interface methods, as well as absence of comfjictem-
ber signatures.

Our implementation is structured in such a way that the nbrma
semantic checks performed during compilation take care @ftm
of the semantic checks for the well-formedness of the coae ge
erated by transforms. For example, a type meta-variabléy risa
represented as a type during compilation, with all charesties
specified in the pattern. Thus, uses of this type are autoedlti
checked against the knowledge given by the pattern. If the pa
tern is under-constraining the desired usage criteriactimepiler
will detect it and emit an error. This approach has the adgmnbf
reusing the existing compiler functionality without hagito dupli-

Our approach to guarantee type safety of generated methodcate it, as well as reducing the chances of missing certainksh

bodies uses the same principle as type checking in the dooftex
generic type parameters [14], or more appropriately, typeck-
ing of functors in ML [18]. When type checking a functor bodly i
ML, the functor argument signatures are added to the typing e
ronment and are indistinguishable from other typing assiomg

in the context. We use the same principle for typing tramsfor
Patterns give rise to typing assumptions, either about retely
named classes and structs, or about type meta-variabld® lat-
ter case, we treat the types similar to type variables inditioaal
C# type checker, except that we have more detailed constramts
these type variables than is expressible in standardiiCother
words, we type check the generated method bodies of a tramsfo
as code parameterized by types. A formal approach would teave
establish a substitution lemma, showing that typing is gmesd
under substitutions satisfying the type constraints.

This approach also encompasses fvall construct by treating
the bound meta-variable as a generic parameter as wellirscop
guarantees a single such parameter is sufficient as a winrests
elements in the eventual multi-match list.

Guaranteeing the well-formedness of the metadata parta$an
sembly during transform checking time leads to a desigretctti
between usefulness and early-checking. Of the three rotesdta-
data well-formedness (acyclic inheritance, proper imgetation
of all abstract/interface members, and no clashing membees
check the first two at transform checking time, but leave #st |
one to transform application time. The first two issues aledrout
because transforms cannot modify the existing inheritdmesr-
chy except for the addition of new subtrees in the hierarchy.

For example, scoping and lookup rules are complicated asytea
get wrong, and member visibility checking might be overledk

7. Applications
7.1 Software transactional memory

Herlihy has published a software transactional memory émgn-
tation named SXM. SXM is based or#t@nd uses &€s runtime re-
flection capabilities to provide an easily accessible safentrans-
actional memory model; no language or runtime modificatiames
required [8]. Users annotate a type as atomic, designdtaigeads
and writes to its fields should be recorded and treated tcéinsa
ally with respect to other concurrent transactions. To supihis
easily, SXM mandates that accesses to atomically handlkt fie
be redirected through#properties. At runtime, SXM locates the
properties of atomic types and wraps their implementatiith thie
appropriate calls to the SXM runtime. SXM must also add addi-
tional shadow fields and backup and restore methods totéeili
object rollback on aborted transactions.

SXM is the quintessential example of the utility of our ap-
proach. SXM’s transformations rely solely on static infation.
While many problems require runtime information, a purefy d
namic approach to reflection places an undue burden on SXd/, an
other such applications, where dynamic information isedfuired.

In addition to performance penalties, writing the apprajari
code to emit wrappers is a complex process. First, there @a n
trivial amount of APl work required to simply find the annadt
types and prepare the appropriate metaobjects for codeajeme

The problem of checking for clashing members is best seen in Second, Herlihy has expressed that generating bytecoteC#

the following simple example:

Reflection.Emit capabilities is tedious, time-consumiagd bug



prone when not automated. Reflection.Emit places a heftgeour
on the programmer’s abilities to both write and documentrtien-
tions. As a result, SXM’s reflection implementation comesisl-
most 500 lines of well documented and formattedo@de whereas
an equivalent implementation with CTR, which is given in Ap-
pendix A, is roughly 60 lines of code.

7.2 Process startup boiler-plate

Our work on compile-time reflection was motivated in the esit
of the Singularity project [12]. Singularity is a researgierating
system built almost entirely in managed code. Its runtinstesy is
a stripped version of .NET. In particular, it does not suppon-
time reflection. We use compile-time reflection to build mse
startup boiler-plate code from declarative specificatioha pro-
cess’ startup arguments [21]. The generated code retproesss
arguments through a uniform kernel API, casts the arguments
their appropriate declared type, and populates a startjgetotor
the process containing a field per parameter. This transused
in the regular build process of more than 100 test applinatio

8. Implementation

We have built an experimental compiler extension ta Trans-
forms can be separately compiled into (non-executable).Bi&
semblies [1]. The IL representation of a transform is a clambthe

time as pre-conditions to check the safety of the generatee.c
Safegen’s formulae are more expressive than our pattelbresf a
more difficult to write. We believe that formulae are besttedi

for complicated matches and we consider augmenting ouerpatt
with formulae as possible future work.

Multi-staged programmingThe research on MetaML [22] was
the first work to propose designing languages that enablgano
mers to write program generators that are guaranteed tor-gene
ate well-formed programs. Apart from this very importanhé&e
fit, multi-staged programs are still complex to write and &r-p
ticular hard to read, since they manipulate code as data f@d o
make heavy use of quoting and unquoting or constructor gynta
Work on typed macros [6] has shown, however, that quotingoean
avoided in most contexts, except for explicit recursive racSe-
mantically, CTR can be viewed as a typed generative mactersys
where we are able to avoid the need for quasi-quotes because n
cursive macros are expressible. Furthermore, CTR actstageds
program which is provided with the program under transfdioma
as a data object that can be inspected. Note that expres3iRg C
directly in a multi-staged program would require dependgpés
to reflect constraints obtained from inspection into thargpof
generated code [19]. Furthermore, multi-staged progragran-
guages generally disallow inspection of code as it can leaddss
of equational reasoning and/or static type-safety [23, 6].

Although only a two stage language, compile-time reflective

transform member patterns are represented as membersdwith a ML [9] has the same characteristics as multi-stage progriamgm

ditional information represented as attributes. Type matéables

are represented as dummy class types within the transfotm. A

tribute patterns are serialized into pattern attributes. nding

purposes, we generate static fields in the transform reptiiage
expression meta-variables. The forall statement cortsisuepre-
sented as a dummy try-all block with extra information derél

into attributes.

in this context.

XML Processing Language§.he explosion in popularity of
XML as a universal mechanism for describing and exchangatg d
has led to a number of XML processing and transformation lan-
guages. The challenges researchers have faced in desigaing
ageable, yet capable languages for processing and gemexaiL
are much akin to our own. XQuery provides general mechanisms

To apply a transform during compilation of another assembly for pattern matching, iterating, and generating XML eletad8].

we simply reference the dll containing the previously cdetpi
transform representation and use an assembly level ddstio
specify which transforms to apply to the compilation (seguFeé 1).
For debugging purposes, it is possible to have the compiigrud
detailed information of what is and what isn't matched byam&-
form, as well as instances of ambiguous matches.

Hosoya and Pierce have devised XDuce, a statically typed XML
processing language that integrates XML patterns withiet sto-

tion of typing to guarantee the type-safety of generated XiA)].
While these languages provided the initial insight on thigyiof
patterns for code generation, the generality and regulaiXML's
structure enables these languages to provide complexipainel

Due to Gt's rich type system of structs and classes, we use a matching structures that would be hard formalize and ditfico-

specialization phase after instantiating code templaielsandle
corner cases such as the necessary insertion of boxing oximgpb
operations on struct values.

9. Related work

Reflective Program Generator@ur work is closest to other
work that shares the desire to make program generation daiky w
guaranteeing type safety and other well-formedness dondiof
the generated code. Genoupe [5] is # &tension allowing pro-
grammers to define program generators and apply them at lesmpi

time. Our work can be seen as overcoming some of Genoupets mos

serious limitations: it cannot guarantee many well-formess con-
ditions of the generated code because parameters (suchess ty
etc) do not carry enough constraints to allow such checlkimgpn-
trast, our patterns serve the dual purpose of describing#tehing
context and recording the necessary constraints for stiagicking.

A second serious limitation of Genoupe is that it can onlyegate

new programming elements, not add to existing ones. The ieomb

nation of patterns and generators within a single transfoakes
extension very natural in our approach.

SafeGen [11] is a very ambitious system that uses first-order

logic formulae to express patterns and templates to geneoate.
The formulae in their approach are similar to our patternthat
they express not only what is to be matched, they serve atithe s

plement in a large, mainstream language like C

Language Extensiblitgseveral popular languages and language
extensions provide extensible compilation mechanismd,[2,7].
These mechanisms enable programmers to do everything fnom s
ple textual macro expansion to general AST manipulationland
guage semantics modification. OpenJava and OpenC++ provide
programmers with a Meta-Object Protocol (MOP) for the exten
sion and manipulation of Java and C++ classes, respectiMetse
MOPs allow programmers to devise custom, first-class atinota
for types and members and then give an alternate or exterded s
mantics to these annotated elements. Just as in our appprach
grammers can generate new members and implement interfaces
(similar to our reflective keyword). These MOPs also go further
in allowing programmers to specify alternate semanticsyfoe in-
stance creations sites and field references for annotaped gnd
fields. However, programmers must generate and maniputate e
plicit ASTs with a compile time reflection API in order to ingal
ment their desired functionality.

While our design does not approach the full generality of MOP
we believe that programmers can combine our patterns with C
attributes to provide extended semantics for several #$ @ro-
gram elements. More importantly, our construction letgypam-
mers write generative implementations ist @ther than through
the manipulation of ASTs. Further, our design provides gotges



on well-formedness at pattern compilation time rather thap-
plication or generated code compilation time.

Aspect-Oriented Programminéspect-Oriented Programming
proposes that crosscutting concerns—design decisiorssfizan
module boundaries—can be coalesced mgpects[16]. Aspects
allow programmers to supplement or replgai@ points(code ex-
ecution events) witladvice(code fragments). Programmers write
patterns to specifypointcuts(sets of join points) to which they'd
like to contribute advice. AOP languages, such as Aspeatide
programmers with models to contribute advice to join pogush
as method calls, field references, and exception handleuggas
[15]. While aspects are typically weaved into the existindebase
statically, aspect execution is a dynamic consideratidmusT As-
pectJ provides some functionality to both constrain anduraghe
dynamic matching context.

AOP approaches differ from our goal in that they seek to give
programmers tools to, primarily, modify existing prograehhv-
ior. We, on the other hand, have sought a purely generative ap

proach. Programmers that use our system can only genenate ne

functionality or implement "fill-in-the-blank” functioray as spec-
ified by the reflective keyword. Thus, unlike AOP, our goal steers
away from many of the violation of modularity and encapsatat
claims that are often lodged at AOP approaches. Furtheragur
proach is purely static and metadata introspective. Whikryjng
static and dynamic values is a useful tool for code genearation-
ditional/dependent code generation places an extra burdehe
well-formedness claims of generative systems.

LogicAJ 2 extends the principles of AspectJ's take on AOP
with richer pointcut patterns [24]. In LogicAJ 2, progranmse
can specify arbitrary code structures as join points. Mudh &
our approach, programmers specify patterns as Java codeheit
addition of meta-variables that can abstract and captuierany
code elements or lists of such elements. However, this fléxib
comes at a price; the level of well-formedness provided k& th
system is unclear.

Runtime Code GeneratioRuntime code generation is another
similar domain. Runtime code generators, such as Jumbaafi8]
‘C [20], provide programmers with a rich set of language trts
that allow for flexible code generation at runtime. Thesdesys
further improve on bytecode emission constructs by allgwiro-
grammers to specify code fragments at the original sourgpiage
level (i.e. Java for Jumbo and C for ‘C). Both systems utitjpet-
ing and unquoting operators to facilitate compositionalecgen-
eration. Moreover, Jumbo permits higher-order generaifaode
that generates code through nested quoting and an AST-F{e A
‘C further provides static typing facilities to ensure ttlgnami-
cally generated code is well-formed.

11. Conclusion

The transform design described in this paper addressesrvis p
lems we see in generative programming and compile-timecrefle
tion systems. First, writing programs to inspect code antegee
new code should be made simple and intuitive so that progensim
do not have to be experts in compiler implementation teakesdo
use it. Our design uses patterns and templates that lookynli@st
ordinary code to achieve this. Our powerdtbpe construct enables
concise descriptions of non-trivial patterns and templaecond,
we do not want to forgo safety of the generated code in oveirgpm
the first problem. Our insight is that patterns describirgititer-
esting matching contexts also serve as constraints thatesttee
checking of well-formedness of the generated code. Ourcagpr
does trade-off expressiveness in order to achieve these goa

We believe that our approach is an excellent point in thegthesi
trade-off between simplicity, safety of generated codd, expres-
siveness.
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A. STM Transform

We assume the following declarations for interfa@acoverable
and clasSransactionManager, similar to Herlihy's implementation.

interface |Recoverable {
void Backup();
void Restore ();

class TransactionManaager {
public Transaction GetCurrentTransaction ();

/// returns a conflicting transaction or null
public Transaction OpenForRead(IRecoverable object,
Transaction t);

/// returns a conflicting transaction or null
public Transaction OpenForWrite(IRecoverable object,
Transaction t);

public void ResolveConflict (Transaction us,
Transaction them);

The transform below then implements transactable pragseftr
atomic classes using a scope pattern to add a current andack
field for each property. For each atomic class tekup and
Restore methods of théRecoverable interface are also implemented
by the transform by calling all Backup (respectively Res}aneth-
ods for individual properties.

using TM = TransactionManager;

transform MakeTransactional {
[Atomic]
class $$C : IRecoverable {

scope $$TransactionalProperties {

[Atomic]
implement public $T $Property {
get {
Transaction me = TM.GetCurrentTransaction();
Transaction conflict = null;

while(true) {
lock( this) {
conflict = TM.OpenForRead(this, me);
if ( conflict == null) {
return $currentValue;

}

TM.ResolveConflict(me, conflict );

}
}

set {
Transaction me = TM.GetCurrentTransaction ();
Transaction conflict = null;

while(true) {

lock( this) {
conflict = TM.OpenForWrite(this, me);
if ( conflict == null)

$currentValue = value;

TM.ResolveConflict(me, conflict );
}
}
}

generate $T S$currentValue;
generate $T $backupValue;

generate void $BackupProp() {
$backupValue = $currentValue;
}

generate void $RestoreProp() {
$currentValue = $backupValue;

} ;/ end scope

implement void IRecoverable. Restore () {
forall ( $Property in $$TransactionalProperties ) {
$Property .$RestoreProp ();

}

implement void IRecoverable.Backup() {
forall ( $Property in $$TransactionalProperties ) {
$Property.$BackupProp();




