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Abstract
Runtime reflection facilities, as present in Java and .NET, are pow-
erful mechanisms for inspecting existing code and metadata, as
well as generating new code and metadata on the fly. Such power
does come at a high price though. The runtime reflection support
in Java and .NET imposes a cost on all programs, whether they use
reflection or not, simply by the necessity of keeping all metadata
around and the inability to optimize code because of future possible
code changes. A second—often overlooked—cost is the difficulty
of writing correct reflection code to inspect or emit new metadata
and code and the risk that the emitted code is not well-formed.

In this paper we examine a subclass of problems that can be ad-
dressed using a simpler mechanism than runtime reflection, which
we call compile-time reflection. We argue for a high-level construct
called a transform that allows programmers to write inspection and
generation code in a pattern matching and template style, avoiding
at the same time the complexities of reflection APIs and providing
the benefits of staged compilation in that the generated codeand
metadata is known to be well-formed and type safe ahead of time.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Code generation; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Patterns

General Terms Languages, Design, Verification

Keywords Reflection, Generative Programming, Patterns, Tem-
plates, C#

1. Introduction
The ability to reflect over a program’s metadata (types and mem-
bers) as well as code—commonly called reflection—enables both
highly dynamic applications (such as runtime upgrading of code),
as well as generative programming. Today’s mainstream platforms
such as Sun’s JVM and Microsoft’s .NET execution environment
support reflection.

Reflection appears to the programmer as an API that provides
access to metadata and code, as well as facilities to emit newmeta-
data and code. Using these APIs is not easy. Programmers usually
need to be familiar with basic programming language implemen-
tation techniques to successfully master the constructionof new
types and code using reflection. Even just writing reflectioncode
that inspects metadata is tedious to write and tricky to get right.
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We are interested in providing main-stream programmers with
a very simple form of generative programming that avoids the
complications of reflection APIs and statically guaranteesthe well-
formedness of the generated code and metadata.

A natural starting point for such an investigation is to provide
metadata pattern matching facilities and then let programmers pass
the pattern matching results to code generating templates.How-
ever, in order to statically guarantee the well-formednessof the
generated code and metadata, patterns must contain quite a bit of
information about the matching context. For example, it might be
necessary to know that a certain type is a subtype of another type,
that a type contains (or does not contain) a certain member (e.g.,
a constructor), or that a method has a certain set of formal argu-
ments. These requirements not only force patterns to be precisely
specified, but also mandate the transmission of all this contextual
information from the pattern to the generation template. Our in-
sight is that these two needs are best addressed by combiningpat-
terns and generation templates into a single construct thatwe call a
transform.

In this paper we describe our design calledCompile-Time Re-
flection (CTR). CTR aims to provide a powerful, yet accessible
replacement for complicated reflection APIs by adopting thefol-
lowing principles:

• CTR allows inspection of static metadata, but not code nor run-
time values. While this choice limits the possible applications, it
1) allows for static compilation and full compiler support,2) en-
ables static checks that prove the well-formedness of all subse-
quently generated code, and 3) allows generative programming
in environments that don’t have runtime reflection mechanisms
(e.g. [12]).

• We focus on the generation and addition of new metadata and
code, not the modification of existing elements. This makes it
easier to reason about the behavior of the final generated code
and its well-formedness.

• CTR does not provide a programmatic reflection API. Both
metadata inspection and code generation are done via patterns
and templates that look like ordinary C# code. We believe that
complex reflection APIs present a significant hurdle for pro-
grammers who want to quickly and easily write code genera-
tors.

• New syntactic constructs are kept to an absolute minimum.
We avoid the explicit quoting and unquoting conventions of
many generative and macro programming approaches as they
can often make writing code generators unwieldy. Tight C#

integration means that programmers need only learn the proper
use of meta-variables and a few new, but intuitive, keywords.

• Transforms are applied during target application compilation.
This allows the compiler to help programmers by emitting er-
rors if a compilation would produce missing types, members,



or code due to patterns not matching or transforms failing to
generate all expected code.

• Transforms can be compiled and distributed like regular code.
Because of our close C# integration, transforms can be com-
piled to standard MSIL. This allows transforms to be distributed
along with libraries and other such distributions with ease.
Moreover, since the well-formedness properties of transforms
are checked at transform compile time, our safety guarantees
still hold.

The rest of the paper is organized as follows: Section 2 gives
an overview of transforms using a simple example. Sections 3
and 4 describe the general form of transform patterns and gener-
ation constructs. Section 5 defines in more detail how transforms
match target contexts. Section 6 provides an informal discussion
of our safety and well-formedness claims. Section 7 shows how
transforms can be used to help implement a software transactional
memory system and automate process startup. Section 8 contains
more details on our implementation and Section 9 discusses related
work. Shortcomings of our design are explored in Section 10.

2. Simple example
Consider the following generative programming problem: Toau-
tomate the generation of unit test harnesses for our code base, we
want to mark entry points for unit testing using attributes in our
code and then generate methods that invoke all unit tests. Here’s
the transform that achieves this task:

1 public class UnitTestEntry : Attribute {
2 public UnitTestEntry( string name) {}
3 }
4

5 transform GenerateUnitTestHarness {
6

7 public class $$C {
8 public $$C();
9

10 [UnitTestEntry($name)]
11 void $$TestMethods();
12

13 generate public static void UnitTest () {
14 $$C c;
15 forall ( $m in $$TestMethods ) {
16 c = new $$C();
17 Console.WriteLine(”Invoking test ’{0}’” , $m.$name);
18 c.$m();
19 }
20 }
21 }
22

23 generate class ModuleUnitTest {
24 public static void Main() {
25 forall ( $TC in $$C ) {
26 $TC.UnitTest();
27 }
28 }
29 }
30 }

We can apply this transform to the unit below.

1 using System;
2 using Microsoft .SingSharp. Reflection ;
3

4 [assembly:Transform(typeof(GenerateUnitTestHarness))]
5

6 public class ClassA {
7 public ClassA() {}
8

9 [UnitTestEntry(”A1”)]
10 void MethodA1() {}
11 void MethodA2() {}
12 [UnitTestEntry(”A3”)]
13 void MethodA3() {}
14 void MethodA4() {}
15 }
16

17 public class ClassB {
18 public ClassB() {}
19

20 void MethodB1() {}
21 [UnitTestEntry(”B2”)]
22 void MethodB2() {}
23 void MethodB3() {}
24 [UnitTestEntry(”B4”)]
25 void MethodB4() {}
26 }

When invoking the generated methodModuleUnitTest.Main in the
final executable, the following output is produced:

Invoking test ’A1’

Invoking test ’A3’

Invoking test ’B2’

Invoking test ’B4’

We now explain the elements of this example in detail. Lines 1–
3 define a standard C# attribute calledUnitTestEntry that takes a
string argument. We use this attribute in our units to mark methods
that serve as unit test entry points. The string argument canbe used
to give each test a descriptive name.

2.1 Patterns

Each transform is named. Our example transform starts on line
5 and is calledGenerateUnitTestHarness. The transform has two
pattern members (here two classes). The first class$$C is on lines
7–21 and the second classModuleUnitTest on lines 23–29. The
first class pattern has a meta-variable$$C, meaning it matches
classes of any name. Furthermore, the meta-variable is a multi-
match variable (variable starting with two$$ signs) as opposed to
a single-match variable (starting with a single$). The first pattern
thus matches a list of classes, where each class’s members must
match the members in the$$C pattern. The pattern$$C has three
members, a constructor pattern, a method pattern$$TestMethods,
and a static method generation patternUnitTest. Note that within
the scope of class pattern$$C, the name$$C refers to exactly
one element of the eventual set of matches for$$C. Thus, the
constructor pattern matches only one constructor, not a set(not that
a class could have multiple nullary constructors anyway).

The$$TestMethods method pattern matches any number of in-
stance methods that have theUnitTestEntry attribute, returnvoid

and take no parameters. First note that the pattern involving the
attribute is not a match by name. The pattern does not match all
attributes calledUnitTestEntry. Instead, it refers directly to the dec-
laration ofUnitTestEntry used during the compilation of the trans-
form. This attribute need not be defined in the same compilation
unit as the transform. It could have been defined in a separate
compilation unit referenced by the compilation of the transform.
The type checking of the transform however guarantees that the at-
tribute type exists. This is in contrast to reflection based code which
is always dependent on matching names as character strings.

Second, note that the expression meta-variable$name is bound
within the context of a single method of$$TestMethods, meaning
that each method matched by$$TestMethods can have a distinct
name. This is determined by the fact that$name does not appear in
a matching position outside of the$$TestMethods scope.



The method generation patternUnitTest matches exactly when
a class under consideration doesnot have such a method. In other
words, generation patterns are anti-patterns that match ifthey don’t
clash with existing members. This guarantees that we don’t gener-
ate a member that is already present in a target context. Similarly,
the class generation patternModuleUnitTest matches only if there is
no top-level class calledModuleUnitTest in the target compilation
unit.

2.2 Generation

Let’s turn our attention to the body of method generation pattern
UnitTest. It contains ordinary C# code with the extension of the
use of meta-variables and theforall construct that allows iteration
over all matches of multi-match meta-variables. Recall that since
UnitTest is within the context of class pattern$$C, type$$C refers
to a single type, not the list. Thus, the body starts out declaring a
local variable of type$$C. The next statement is aforall iteration
statement. It generates a sequence of blocks, one for each match in
the set of matches being iterated. Here, we iterate over all methods
$m in the set$$TestMethods. For each such method, we create a
fresh object of type$$C and assign it to localc. We then write
a message to the console describing which test is being executed.
Note the use of$m.$name to refer to the string argument of the
UnitTestEntry attribute of the matched method$m. We use this
qualified path to access such dependent information. Finally, we
invoke the test method onc using the usual method invocation
syntax, albeit using a bound meta-variable for the method name.

2.3 Well-formedness

Consider what the compiler needs to know about the matching
context in order to guarantee that the body ofUnitTest is well-
formed. The declaration of localc requires knowing that type$$C
exists and is distinct fromvoid. Clearly, we are in the context of a
class$$C and thus$$C cannot bevoid. In fact our design is such
that meta-variables never match typevoid, only the literal typevoid

matchesvoid. We have found this to be the most useful approach in
practice. Theforall construct binds a single method$m of the set
$$TestMethods. We know from the method pattern$$TestMethods,
that$m thus is an instance method of$$C taking no arguments. This
information is sufficient to check the method call on line 18.On line
16, we exploit the fact that the constructor pattern establishes the
existence of a constructor of$$C taking no parameters. Finally, on
line 17, we know that there was an attribute on$m and we thus have
a binding for$m.$name.

Observe that all these constraints naturally follow from the
patterns themselves. In this example, we did not need to further
constrain the match to guarantee well-formedness. Clearly, the
constructor pattern was motivated by the need to construct an object
of type$$C. If we matched static test methods instead, that pattern
could have been omitted.

The well-formedness of the generated classModuleUnitTest
can be argued similarly. It generates a singleMain method which
iterates over all classes$TC in the multi-match pattern$$C and
calls$TC’s UnitTest method. Note that in order to check the validity
of this method call, we are again using the knowledge gleaned
from the combination of the pattern and generation templates in
that we know for a fact that we generate the static methodUnitTest
for each class$TC. Were we to use an approach that would allow
one to splice together generated code from a variety of sources,
the necessary reasoning would be much more complicated. This
insight, we believe, is a major contribution of this work.

2.4 Transform application

Figure 1 shows the general model how to compile and apply
transforms. Given a set of source files T containing one or more

T

C

T.dll

C.dll

sgc

sgc

Figure 1. Transform compilation and application

transforms, our compiler (sgc) checks the transforms for well-
formedness and produces a library T.dll containing a compiled
form of the transforms. To apply any of the transforms in T.dll, the
programmer adds a[Transform(t)] attribute into his client code C,
specfiying which transform t is to be applied (see the unit test code
on line 4). The compilation of the client code C thus references
the assembly containing the transforms (T.dll). After compilation
of the client code C, the desired transform is matched against the
entire compilation unit C. If it matches unambiguously, theeffects
of the transform are applied at the MSIL level, prior to writing the
resulting library C.dll. Otherwise, the compiler emits a message
explaining why the transform could not be applied.

3. Transforms
A transform is a combination of patterns and code1 to be generated.
As the introductory example illustrated, this combinationallows
the pattern to naturally provide the constraints required to check
the well-formedness of the generated code. This section describes
in more detail the elements of transforms and their well-formedness
conditions.

3.1 Meta-variables

Meta-variables serve both to bind elements to be matched and
to refer to such matches. Transforms contain two kinds of meta-
variables, single-match variables, starting with a single$ sign, and
multi-match variables, starting with a double$$ sign. As their
names suggest, a single-match variable matches a single element,
whereas a multi-match variable matches zero or more elements.

3.1.1 Variable scopes

Each meta-variable in a transform is assigned a scope. Nested
scopes are introduced at each multi-match meta-variable and ex-
tend for the subtree matched by that list. These sub-scopes exist
to maintain the correlation between sub-parts of each matchof a
multi-match variable. The scope of a multi-match meta-variable is
its own scope.

The binding occurrence of a multi-match variable is either a
member2, an attribute name, or the formals of a method pattern.
Multi-match variables can only be referenced from within their own
scope (if referring to a type), or in a context where a list is expected
(such as aforall iteration).

The scope of a single-match meta-variable is the outermost
scope in which it occurs in a binding position. A binding position
is any occurrence other than in a method body or in a signature
of a generation pattern. For example, theGenerateUnitTestHarness
transform in Section 2 has three scopes. The outermost scopeis
the transform itself. Inside that scope is the scope of multi-match
variable$$C. Within that scope is the scope of multi-match variable

1 To avoid repeating the phrase “code and metadata”, we use theword
“code” to mean both declarations of types and members, as well as code
bodies when used in the context of generation.
2 Classes and structs are considered members since they can appear nested
inside other types.



$$TestMethods. This is also the scope of the single-match variable
$name.

Single-match variables are also used to range over the elements
of a multi-match in forall constructs. Such single-match variables
cannot be referenced outside the bindingforall construct.

3.2 Member patterns

A transform is made up of type member patterns such as classes
and structs at top-level. Each type pattern in turn is made upof
general member patterns corresponding to C# entities, such as
fields, methods, events, properties, and nested types. We distinguish
between ordinary member patterns not prefixed bygenerate or
implement, and generation or implementation patterns. The next
sections describe ordinary patterns, followed by generation- and
implementation-patterns. The matching of entire member lists is
described in Section 5.

3.2.1 Fields

A field pattern consists of a name (possibly a meta-variable), a type
reference pattern, a visibility (public, protected, internal, private),
an optional static modifier, and optional attribute patterns, but no
initializer. It matches a target field if all pattern parts match the
corresponding actual characteristics.

3.2.2 Methods

A method pattern consists of a name, a type reference pattern
for the return type, a formal argument list pattern, a visibility,
an optional static modifier, and optional attribute patterns for the
method and or the return type, but no method body. It matches a
target method if all the pattern parts match the corresponding actual
characteristics.

3.2.3 Properties

A property pattern consists of a name, a type reference pattern, a
visibility, an optional static modifier, and optional attribute patterns.
In addition, the property pattern indicates the presence ofa getter
and/or setter, like abstract property declarations do, without method
bodies. Property patterns match if all pattern parts match the corre-
sponding actual characteristics, including the presence of a getter
and/or setter if the pattern requires it.

3.2.4 Types

An ordinary type pattern is either a class or struct declaration. It
consists of a name, visibility, optional attribute patterns, and a list of
member patterns. Class patterns additionally indicate if they match
abstract classes, a possible base class and interface constraints in
the form of type reference patterns. A type member pattern matches
a target type if the type kind (struct or class) matches, and all
pattern parts match the corresponding characterstics. Additionally,
class patterns match only if the actual type’s base class is asubtype
of the base class pattern and the actual class implements (possibly
indirectly) all interfaces in the class pattern.

3.2.5 Implementation patterns

When writing code in conjunction with transforms, one oftenneeds
to be able to reference a member that will be generated by a trans-
form. To provide a clear interface between original code andgener-
ated code that allows such forward references, our design provides
the reflective qualifier to introduce such forward member declara-
tions. Reflective declarations are similar to extern declarations, i.e.,
they do not provide bodies for methods, or initializers for fields.

Reflective members are matched by implementation patterns,
i.e., member implementation patterns prefixed by theimplement

qualifier. An implementation pattern actually provides a definition

of the forward declared member, such as a field initializer, amethod
body, getter and/or setter methods for properties. (Implementation
type patterns do not differ from ordinary type patterns.)

An implementation pattern matches a target member only when
the ordinary member pattern matches and in addition, the target
member was declared asreflective . Thus, the linking points be-
tween non-generated and generated code are always formed by
reflective members and correspondingimplement patterns.

Consider a slight variation of theGenerateUnitTestHarness that
does not generate aMain method, but aRunTests method. In order
for a unit to contain code that calls theRunTests method, the unit
uses a reflective place holder for this method and the transform
uses an implementation pattern for this method.

1 transform GenerateUnitTestHarness2 {
2 public class $$C {
3 ...
4 }
5 public class $UnitTestClass {
6 implement public static void RunTests() {
7 forall ( $TC in $$C ) {
8 $TC.UnitTest();
9 }

10 }
11 }
12 }

This transform matches units that provide a class with a reflective
method calledRunTests.

using System;
using Microsoft .SingSharp. Reflection ;

[assembly:Transform(typeof(GenerateUnitTestHarness2))]
public class ClassA {

...
}

public class ClassB {
...

}

public class UnitTesting {
reflective public static void RunTests();

public static void Main(string args ) {
// invoke unit tests if argument switch is selected

... UnitTesting .RunTests (); ...
}

}

Class pattern$UnitTestClass matches classUnitTesting and imple-
ments theRunTests method. TheUnitTesting class (or any other
part of that compilation unit) can thus refer to theRunTests method
and call it when desired.

3.2.6 Generation patterns

Whereas implementation patterns match only if the target context
anticipates the implementation of such a member, a generation pat-
tern is used to generate a member that the target module does not
already have and does not refer to directly. A member generation
pattern thus has the same parts as an ordinary member pattern, but
it is prefixed by thegenerate modifier and contains an implementa-
tion. The implementation is either a method body, a field initializer,
property getters and setters, or class and struct members.

The name of a member generation pattern can be a single-match
meta-variable, which is then interpreted as a fresh identifier gener-
ator, guaranteed to not clash with existing member names. Other-
wise, a generation pattern represents an anti-match, i.e.,it matches



a context only if it does not clash with any existing members in the
target context according to the rules of the .NET platform.

For type generation patterns, all members of the type are implic-
itly considered generation patterns and implementation patterns are
disallowed.

3.2.7 Scope patterns

Scope patterns are a special construct that has no equivalent in or-
dinary C# members. A scope pattern describes a set of subsets of
members in the current scope, allowing the same kind of trans-
formation on each subset. As an example, consider the following
generative programming problem: Properties (or getter andsetter
methods in Java) are commonly used to abstract over field accesses.
Most properties are backed up directly by a field in the containing
type and programmers have to write boiler plate code for suchpat-
terns as follows3:

class C {
T XbackingField ;
public T XProperty {

get { return this . XbackingField ; }
set { this . XbackingField = value ; }

}
}

This practice is useful in software engineering in that codeevolu-
tion is easier to handle. If the property set and get operations change
over time, only the methods have to be updated, not all clients. To
ease generation of such default boilerplate code though, program-
mers might want the backing field and the setter and getter gener-
ated automatically by writing just the property as follows:

class C {
[AutoProperty]
reflective public T XProperty { get; set ; }

}

The idea of course is to use a transform to generate the backing
field, as well as getter, and setter methods. Scope patterns allow us
to express such a transform easily:

transform AutoPropertyTransform {
public class $$C {

scope $$AutoProperties {
[AutoProperty]
implement public $T $Property {

get { return this . $backingField ; }
set { this . $backingField = value ; }

}
generate $T $backingField ;

}
}

}

A scope consists of a list of member patterns. The example contains
a property implementation pattern and a field generation pattern. A
scope matches any number of times in the member context in which
it appears. Thus, the above transform would generate a backing
field and setter and getter implementations for every reflective
property with an[AutoProperty] attribute in every public class.

Note the natural way this transform solves this simple task.
We know of no traditional generative programming approach that
solves this as elegantly as the scope construct.

3.3 Type reference patterns

A type reference pattern corresponds to a type reference in C#.
Here we consider only two forms, named types (class or struct) and

3 value is the implicit parameter of the setter in C#

array types. A named type pattern is either a literal type reference,
which will match exactly that type, a meta-variable, which matches
any type, or a type reference to a type within the transform, which
matches whatever that type member matches. An array type refer-
ence pattern is then simply an array type whose element type is a
type reference pattern.

In practice, it is often necessary to constrain the super types of
a type reference pattern. We use syntax similar to that of generic
constraints to achieve this effect as in the following example:

transform Test
where $T : ICollection

{
class $C {

public $T GetCollection ();
}

}

The where clause constrains a type reference meta-variable$T
to implement theICollection interface. Thus, the method pattern
GetCollection only matches methods returning a type deriving from
ICollection .

3.4 Attribute patterns

Attribute patterns occur wherever attributes can be written in C#
programs. An attribute pattern consists of a named type reference
pattern, and an expression list pattern. An attribute pattern matches
a single attribute in the target context, unless the type reference
pattern is a multi-match meta-variable, in which case it canmatch
zero or more times.

3.4.1 Expression list patterns

An expression list pattern for attributes consists of a sequence of ex-
pression patterns. An expression pattern is either a base literal (al-
lowed to occur as an attribute argument, such as numbers, booleans,
and strings, typeof), or a meta-variable. We restrict an expression
list pattern to contain at most one multi-match meta-variable to
avoid matching ambiguity.

3.5 Formal argument patterns

Formal argument lists patterns consist of a list of type namepairs,
with optional attribute patterns for each parameter. The names
of formals are immaterial for matching purposes in our current
design, so no meta-variables need to be employed for formals.
Alternatively, the entire sequence of formals can be matched with
a single multi-match meta-variable.

4. Generation
As we have seen in the previous sections, code is generated by
implement or generate members. For simple templates, these mem-
bers contain ordinary C# code with meta-variables. However, to
generate a piece of code for every match in a multi-match list, our
design provides aforall construct.

4.1 Statement iteration

To generate a block of statements for each match in a multi-match,
the forall block construct is used. The general form is:

forall ( $m in [Path].$$C ) {
statement− list

}

where the meta-variable$m will range over each match in the
multi-match variable$$C. Within the body of the forall block,
meta-variables nested within$$C’s scope are accessible by qual-
ifying their name with$m (see example in Section 2).



4.2 Member iteration

At first, it might seem useful to provideforall iteration at the mem-
ber level to generate, say, a member (or collection of members) for
each match in a particular multi-match. However, such a construct
poses problems in that it is not clear how to refer to the generated
members outside theforall construct. Instead, we can observe that
the scope construct can span arbitrary contexts and permits us to
solve such tasks directly, as the next example shows. The following
transform generates delegation methods in a class to forward calls
onto a delegate target object stored in a field.

transform Delegation {
scope $$D {

class $C {
[DelegationTarget ]
private $DelegateTarget $target ;

generate $T $Method($$formals) {
return this . $target .$m();

}
}

class $DelegateTarget {
public $T $Method($$formals);

}
}

}

Scope$$D gathers all matches consisting of a class$C having a
field annotated with a[DelegationTarget ] attribute. The field type
should match a class$DelegateTarget and this class should have a
method with arbitrary arguments and return type. For each such
match in scope$$D, we generate a method in$C that simply
invokes the target method using the field as the target instance and
the same parameters. Thus, this transform will generate forwarding
methods for all classes, all fields with the [DelegationTarget], and
all methods in the target class. We abuse our syntax to name the
generated method with the same name as the target method by
reusing the meta-variable$Method.

This example illustrates not only the power of thescope con-
struct, but also a limitation of our design. The delegation passes
the parameters to the delegate target unchanged. If we wanted to
transform the actual arguments before calling the target method, we
would need a way to construct arbitrary argument lists. We have not
yet explored the issues surrounding inspection and construction of
formal and actual argument lists.

5. Matching
So far we have described matching of individual parts, such as
names, members, and type references. What remains to be defined
however is how member lists are matched against lists of member
patterns.

Member lists are matched in three places, 1) at the transform
top-level, where only type patterns are matched, at member pattern
lists of nested types within the transform, and within scopepatterns.

Matching a list of member patterns against a member list pro-
duces a set of all matches such that each match is a mapping from
patterns to members. Within a match, there exists a unique sub-
stitution of all meta-variables that makes the patterns match their
corresponding member.

5.1 Matching algorithm

We use a brute force algorithm to enumerate all possible mappings
of patterns to members to find all matchees. Matching of member
lists proceeds in three phases:

bool FindNextMatch(int[] candidates ,
ref int patternIndex ,
MemberMatcher[] matchers,
Member[] members,
MatchEnvironment matchEnv)

requires candidates .Length == matchers.Length;
{

if ( patternIndex > candidate.Length) {
// found a successful match for all matchers
return true ;

}
// increment the current match candidate at patternIndex
while (GotoNextCandidate(candidates,

patternIndex ,
members.Length))

{
int memberIndex = candidates[patternIndex];
MatchEnvironment nestedEnv = matchEnv.NewUndoScope();
Member member = members[memberIndex];
if (matchers[patternIndex ].Matches(member, nestedEnv)) {

// found a match at current pattern index
// find matches for remaining patterns
patternIndex++;
if (FindNextMatch(candidates, ref patternIndex ,

matchers, members, nestedEnv)) {
// yes , can complete the match
return true ;

}
// no try another member at this level .

}
}
// no more matches at this level
return false ;

}

bool GotoNextCandidate(int[] candidates , int patternIndex ,
int count) {

do {
int memberIndex = ++candidates[patternIndex];
if (memberIndex >= count) {

return false ; // no more candidates for this pattern
}

} while (DuplicateIndex (candidates , patternIndex ));
return true ;

}

Listing 1. Member matching algorithm

1. Find a match environment that satisfies all single-match mem-
ber matchers (ordinary single-match member patterns and im-
plementation patterns)

2. Check that given this match environment, none of the genera-
tion members clash with existing members

3. Given this match environment, record match lists for all multi-
match member patterns individually against all members. The
reason multi-matchers are only considered last is that theydo
not determine the match since they always match (in the worst
case zero times) and given our scoping rules, there cannot be
any meta-variables nested within a multi-match that is alsoused
outside the multi-match, unless it is being determined by a
matcher in step 1.

If all three steps succeed, we have found one possible match.To
find all matches, simply repeat without considering combinations
in step one that have already been tried.

Listing 1 contains the pseudo-code for finding all matches for
step 1. TheFindNextMatch method is initially called with an array



where candidates[0]=−1 and patternIndex = 0, meaning that we
start the search by considering members starting with the next
member (0) for pattern 0. The helper methodDuplicateIndex checks
if the new candidate member index is a member we have already
used for preceeding patterns. This step is optional, but we find the
matching semantics more intuitive if single-match (must match)
patterns don’t overlap.

In the context of a transform or type member list, matching only
succeeds if there’s a unique match for the member list matching.
For scopes on the other hand, all matches are considered.

6. Static safety
In this section, we describe what safety guarantees the generated
code satisfies and informally argue why safety follows from type-
checking of transforms.

There are two guarantees we want from the compilation of a
transform: 1) that the transform represents a well-formed pattern
that can be interpreted unambiguously by the matching algorithm,
and 2) whenever a transform matches in a compilation unit, the re-
sulting .NET assembly produced by applying the transform passes
the verifier.

The well-formedness of a transform checks that all referenced
types and members are defined or are meta-variables with non-
ambiguous binding scopes.

The well-formedness of the result of applying a transform can
be split into two components: 1) method-body verification, and 2)
metadata verification. The former requires that the code of each
method body is type safe, and that all referenced types and mem-
bers exist and have the expected signatures. The metadata verifi-
cation requires well-formedness on the type and member structure,
such as a non-cyclic inheritance hierarchy, implementation of ab-
stract and interface methods, as well as absence of conflicting mem-
ber signatures.

Our approach to guarantee type safety of generated method
bodies uses the same principle as type checking in the context of
generic type parameters [14], or more appropriately, type check-
ing of functors in ML [18]. When type checking a functor body in
ML, the functor argument signatures are added to the typing envi-
ronment and are indistinguishable from other typing assumptions
in the context. We use the same principle for typing transforms.
Patterns give rise to typing assumptions, either about concretely
named classes and structs, or about type meta-variables. Inthe lat-
ter case, we treat the types similar to type variables in a traditional
C# type checker, except that we have more detailed constraintson
these type variables than is expressible in standard C#. In other
words, we type check the generated method bodies of a transform
as code parameterized by types. A formal approach would haveto
establish a substitution lemma, showing that typing is preserved
under substitutions satisfying the type constraints.

This approach also encompasses theforall construct by treating
the bound meta-variable as a generic parameter as well. Scoping
guarantees a single such parameter is sufficient as a witnessfor all
elements in the eventual multi-match list.

Guaranteeing the well-formedness of the metadata part of anas-
sembly during transform checking time leads to a design trade-off
between usefulness and early-checking. Of the three rules for meta-
data well-formedness (acyclic inheritance, proper implementation
of all abstract/interface members, and no clashing members), we
check the first two at transform checking time, but leave the last
one to transform application time. The first two issues are ruled out
because transforms cannot modify the existing inheritancehierar-
chy except for the addition of new subtrees in the hierarchy.

The problem of checking for clashing members is best seen in
the following simple example:

transform AorB {
[CaseA]
class $A {

generate void FooBar () { ... case A code }
}

[CaseB]
class $B {

generate void FooBar () { ... case B code }
}

}

The transform above adds one of two FooBar methods to classes
depending on whether they have the [CaseA] or [CaseB] attribute.
If the transform checking were conservative, it would have to re-
ject the above, as a class could have both [CaseA] and [CaseB]
attributes at the same time and would thus end up with clashing
FooBar members. Clearly, the writer of the above transform is es-
tablishing a usage rule for the transform in that only one of the two
attributes should appear on a class. Our methodology does not al-
low capturing such conventions. We do not want to rule out applica-
tions such as the above. Therefore, we made the trade-off to check
for member clashes at transform application time. Given these ob-
servations, it is clear that transforms withoutgenerate members
having concrete names are guaranteed not to cause clashes.

Our implementation is structured in such a way that the normal
semantic checks performed during compilation take care of most
of the semantic checks for the well-formedness of the code gen-
erated by transforms. For example, a type meta-variable really is
represented as a type during compilation, with all characteristics
specified in the pattern. Thus, uses of this type are automatically
checked against the knowledge given by the pattern. If the pat-
tern is under-constraining the desired usage criteria, thecompiler
will detect it and emit an error. This approach has the advantage of
reusing the existing compiler functionality without having to dupli-
cate it, as well as reducing the chances of missing certain checks.
For example, scoping and lookup rules are complicated and easy to
get wrong, and member visibility checking might be overlooked.

7. Applications
7.1 Software transactional memory

Herlihy has published a software transactional memory implemen-
tation named SXM. SXM is based on C# and uses C#’s runtime re-
flection capabilities to provide an easily accessible software trans-
actional memory model; no language or runtime modificationsare
required [8]. Users annotate a type as atomic, designating that reads
and writes to its fields should be recorded and treated transaction-
ally with respect to other concurrent transactions. To support this
easily, SXM mandates that accesses to atomically handled fields
be redirected through C# properties. At runtime, SXM locates the
properties of atomic types and wraps their implementation with the
appropriate calls to the SXM runtime. SXM must also add addi-
tional shadow fields and backup and restore methods to facilitate
object rollback on aborted transactions.

SXM is the quintessential example of the utility of our ap-
proach. SXM’s transformations rely solely on static information.
While many problems require runtime information, a purely dy-
namic approach to reflection places an undue burden on SXM, and
other such applications, where dynamic information isn’t required.

In addition to performance penalties, writing the appropriate
code to emit wrappers is a complex process. First, there is a non-
trivial amount of API work required to simply find the annotated
types and prepare the appropriate metaobjects for code generation.
Second, Herlihy has expressed that generating bytecode with C#’s
Reflection.Emit capabilities is tedious, time-consuming,and bug



prone when not automated. Reflection.Emit places a hefty burden
on the programmer’s abilities to both write and document hisinten-
tions. As a result, SXM’s reflection implementation comprises al-
most 500 lines of well documented and formatted C# code whereas
an equivalent implementation with CTR, which is given in Ap-
pendix A, is roughly 60 lines of code.

7.2 Process startup boiler-plate

Our work on compile-time reflection was motivated in the context
of the Singularity project [12]. Singularity is a research operating
system built almost entirely in managed code. Its runtime system is
a stripped version of .NET. In particular, it does not support run-
time reflection. We use compile-time reflection to build process
startup boiler-plate code from declarative specificationsof a pro-
cess’ startup arguments [21]. The generated code retrievesprocess
arguments through a uniform kernel API, casts the argumentsto
their appropriate declared type, and populates a startup object for
the process containing a field per parameter. This transformis used
in the regular build process of more than 100 test applications.

8. Implementation
We have built an experimental compiler extension to C#. Trans-
forms can be separately compiled into (non-executable) .NET as-
semblies [1]. The IL representation of a transform is a classand the
transform member patterns are represented as members with ad-
ditional information represented as attributes. Type meta-variables
are represented as dummy class types within the transform. At-
tribute patterns are serialized into pattern attributes. For binding
purposes, we generate static fields in the transform representing
expression meta-variables. The forall statement construct is repre-
sented as a dummy try-all block with extra information serialized
into attributes.

To apply a transform during compilation of another assembly,
we simply reference the dll containing the previously compiled
transform representation and use an assembly level attributes to
specify which transforms to apply to the compilation (see Figure 1).
For debugging purposes, it is possible to have the compiler output
detailed information of what is and what isn’t matched by a trans-
form, as well as instances of ambiguous matches.

Due to C#’s rich type system of structs and classes, we use a
specialization phase after instantiating code templates to handle
corner cases such as the necessary insertion of boxing or unboxing
operations on struct values.

9. Related work
Reflective Program Generators.Our work is closest to other

work that shares the desire to make program generation easy while
guaranteeing type safety and other well-formedness conditions of
the generated code. Genoupe [5] is a C# extension allowing pro-
grammers to define program generators and apply them at compile-
time. Our work can be seen as overcoming some of Genoupe’s most
serious limitations: it cannot guarantee many well-formedness con-
ditions of the generated code because parameters (such as types,
etc) do not carry enough constraints to allow such checking.In con-
trast, our patterns serve the dual purpose of describing thematching
context and recording the necessary constraints for staticchecking.
A second serious limitation of Genoupe is that it can only generate
new programming elements, not add to existing ones. The combi-
nation of patterns and generators within a single transformmakes
extension very natural in our approach.

SafeGen [11] is a very ambitious system that uses first-order
logic formulae to express patterns and templates to generate code.
The formulae in their approach are similar to our patterns inthat
they express not only what is to be matched, they serve at the same

time as pre-conditions to check the safety of the generated code.
Safegen’s formulae are more expressive than our patterns, albeit
more difficult to write. We believe that formulae are best suited
for complicated matches and we consider augmenting our patterns
with formulae as possible future work.

Multi-staged programming.The research on MetaML [22] was
the first work to propose designing languages that enable program-
mers to write program generators that are guaranteed to gener-
ate well-formed programs. Apart from this very important bene-
fit, multi-staged programs are still complex to write and in par-
ticular hard to read, since they manipulate code as data and often
make heavy use of quoting and unquoting or constructor syntax.
Work on typed macros [6] has shown, however, that quoting canbe
avoided in most contexts, except for explicit recursive macros. Se-
mantically, CTR can be viewed as a typed generative macro system,
where we are able to avoid the need for quasi-quotes because no re-
cursive macros are expressible. Furthermore, CTR acts as a staged
program which is provided with the program under transformation
as a data object that can be inspected. Note that expressing CTR
directly in a multi-staged program would require dependenttypes
to reflect constraints obtained from inspection into the typing of
generated code [19]. Furthermore, multi-staged programming lan-
guages generally disallow inspection of code as it can lead to a loss
of equational reasoning and/or static type-safety [23, 6].

Although only a two stage language, compile-time reflective
ML [9] has the same characteristics as multi-stage programming
in this context.

XML Processing Languages.The explosion in popularity of
XML as a universal mechanism for describing and exchanging data
has led to a number of XML processing and transformation lan-
guages. The challenges researchers have faced in designingman-
ageable, yet capable languages for processing and generating XML
are much akin to our own. XQuery provides general mechanisms
for pattern matching, iterating, and generating XML elements [3].
Hosoya and Pierce have devised XDuce, a statically typed XML
processing language that integrates XML patterns with a strict no-
tion of typing to guarantee the type-safety of generated XML[10].
While these languages provided the initial insight on the utility of
patterns for code generation, the generality and regularity of XML’s
structure enables these languages to provide complex pattern and
matching structures that would be hard formalize and difficult im-
plement in a large, mainstream language like C#.

Language Extensiblity.Several popular languages and language
extensions provide extensible compilation mechanisms [2,4, 17].
These mechanisms enable programmers to do everything from sim-
ple textual macro expansion to general AST manipulation andlan-
guage semantics modification. OpenJava and OpenC++ provide
programmers with a Meta-Object Protocol (MOP) for the exten-
sion and manipulation of Java and C++ classes, respectively. These
MOPs allow programmers to devise custom, first-class annotations
for types and members and then give an alternate or extended se-
mantics to these annotated elements. Just as in our approach, pro-
grammers can generate new members and implement interfaces
(similar to our reflective keyword). These MOPs also go further
in allowing programmers to specify alternate semantics fortype in-
stance creations sites and field references for annotated types and
fields. However, programmers must generate and manipulate ex-
plicit ASTs with a compile time reflection API in order to imple-
ment their desired functionality.

While our design does not approach the full generality of MOPs,
we believe that programmers can combine our patterns with C#’s
attributes to provide extended semantics for several of C#’s pro-
gram elements. More importantly, our construction lets program-
mers write generative implementations in C# rather than through
the manipulation of ASTs. Further, our design provides guarantees



on well-formedness at pattern compilation time rather thanat ap-
plication or generated code compilation time.

Aspect-Oriented Programming.Aspect-Oriented Programming
proposes that crosscutting concerns–design decisions that span
module boundaries–can be coalesced intoaspects[16]. Aspects
allow programmers to supplement or replacejoin points(code ex-
ecution events) withadvice(code fragments). Programmers write
patterns to specifypointcuts(sets of join points) to which they’d
like to contribute advice. AOP languages, such as AspectJ, provide
programmers with models to contribute advice to join pointssuch
as method calls, field references, and exception handler executions
[15]. While aspects are typically weaved into the existing code base
statically, aspect execution is a dynamic consideration. Thus, As-
pectJ provides some functionality to both constrain and capture the
dynamic matching context.

AOP approaches differ from our goal in that they seek to give
programmers tools to, primarily, modify existing program behav-
ior. We, on the other hand, have sought a purely generative ap-
proach. Programmers that use our system can only generate new
functionality or implement ”fill-in-the-blank” functionality as spec-
ified by the reflective keyword. Thus, unlike AOP, our goal steers
away from many of the violation of modularity and encapsulation
claims that are often lodged at AOP approaches. Further, ourap-
proach is purely static and metadata introspective. While querying
static and dynamic values is a useful tool for code generation, con-
ditional/dependent code generation places an extra burdenon the
well-formedness claims of generative systems.

LogicAJ 2 extends the principles of AspectJ’s take on AOP
with richer pointcut patterns [24]. In LogicAJ 2, programmers
can specify arbitrary code structures as join points. Much akin to
our approach, programmers specify patterns as Java code with the
addition of meta-variables that can abstract and capture arbitrary
code elements or lists of such elements. However, this flexibility
comes at a price; the level of well-formedness provided by the
system is unclear.

Runtime Code Generation.Runtime code generation is another
similar domain. Runtime code generators, such as Jumbo [13]and
‘C [20], provide programmers with a rich set of language constructs
that allow for flexible code generation at runtime. These systems
further improve on bytecode emission constructs by allowing pro-
grammers to specify code fragments at the original source language
level (i.e. Java for Jumbo and C for ‘C). Both systems utilizequot-
ing and unquoting operators to facilitate compositional code gen-
eration. Moreover, Jumbo permits higher-order generationof code
that generates code through nested quoting and an AST-like API.
‘C further provides static typing facilities to ensure thatdynami-
cally generated code is well-formed.

We view these systems as somewhat orthogonal to what our
design seeks to achieve; these systems seek to provide programmer
guided optimization and runtime extensibility. On the other hand,
our approach aims to allow programmers to glue together metadata
level program elements in a user-defined, property driven manner.
As a result, we believe that the enormous flexibility given bysuch
systems is unnecessary to achieve our goal.

10. Future Work
The expressiveness of our patterns is limited at the moment.We
have no conditional (zero or one match) patterns or patternsthat
must match one or more times. We already mentioned the possible
addition of formulae in the style of SafeGen to augment the match-
ing power of our patterns, while maintaining the same overall de-
sign. A formula is akin to a pure transform (a transform without
generation or implementation parts).

Another open issue that needs to be addressed is how to com-
pose multiple transforms when applied to the same code.

11. Conclusion
The transform design described in this paper addresses two prob-
lems we see in generative programming and compile-time reflec-
tion systems. First, writing programs to inspect code and generate
new code should be made simple and intuitive so that programmers
do not have to be experts in compiler implementation techniques to
use it. Our design uses patterns and templates that look mostly like
ordinary code to achieve this. Our powerfulscope construct enables
concise descriptions of non-trivial patterns and templates. Second,
we do not want to forgo safety of the generated code in overcoming
the first problem. Our insight is that patterns describing the inter-
esting matching contexts also serve as constraints that enable the
checking of well-formedness of the generated code. Our approach
does trade-off expressiveness in order to achieve these goals.

We believe that our approach is an excellent point in the design
trade-off between simplicity, safety of generated code, and expres-
siveness.
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A. STM Transform
We assume the following declarations for interfaceIRecoverable
and classTransactionManager, similar to Herlihy’s implementation.

interface IRecoverable {
void Backup();
void Restore ();

}

class TransactionManaager {
public Transaction GetCurrentTransaction ();

/// returns a conflicting transaction or null
public Transaction OpenForRead(IRecoverable object,

Transaction t );

/// returns a conflicting transaction or null
public Transaction OpenForWrite(IRecoverable object,

Transaction t );

public void ResolveConflict (Transaction us,
Transaction them);

}

The transform below then implements transactable properties for
atomic classes using a scope pattern to add a current and backup
field for each property. For each atomic class theBackup and
Restore methods of theIRecoverable interface are also implemented
by the transform by calling all Backup (respectively Restore) meth-
ods for individual properties.

using TM = TransactionManager;

transform MakeTransactional {
[Atomic]
class $$C : IRecoverable {

scope $$TransactionalProperties {

[Atomic]
implement public $T $Property {

get {
Transaction me = TM.GetCurrentTransaction();
Transaction conflict = null ;

while(true) {
lock( this ) {

conflict = TM.OpenForRead(this, me);
if ( conflict == null) {

return $currentValue ;
}

}
TM.ResolveConflict(me, conflict );

}
}

set {
Transaction me = TM.GetCurrentTransaction();
Transaction conflict = null ;

while(true) {
lock( this ) {

conflict = TM.OpenForWrite(this, me);
if ( conflict == null)

$currentValue = value;
}
TM.ResolveConflict(me, conflict );

}
}

}

generate $T $currentValue;
generate $T $backupValue;

generate void $BackupProp() {
$backupValue = $currentValue;

}

generate void $RestoreProp() {
$currentValue = $backupValue;

}
} // end scope

implement void IRecoverable.Restore () {
forall ( $Property in $$TransactionalProperties ) {
$Property.$RestoreProp();

}
}

implement void IRecoverable.Backup() {
forall ( $Property in $$TransactionalProperties ) {
$Property.$BackupProp();

}
}

}
}


