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Abstract

We consider the problem of using nearest neighbor methods toprovide a condi-
tional probability estimate,P (y|a), when the number of labelsy is large and the
labels share some underlying structure. We propose a methodfor learning label
embeddings (similar to error-correcting output codes (ECOCs)) to model the sim-
ilarity between labels within a nearest neighbor framework. The learned ECOCs
and nearest neighbor information are used to provide conditional probability esti-
mates. We apply these estimates to the problem of acoustic modeling for speech
recognition. We demonstrate significant improvements in terms of word error rate
(WER) on a lecture recognition task over a state-of-the-art baseline GMM model.

1 Introduction

Recent work has focused on the learning of similarity metrics within the context of nearest-neighbor
(NN) classification [7, 8, 12, 15]. These approaches learn anembedding (for example a linear
projection) of input points, and give significant improvements in the performance of NN classifiers.

In this paper we focus on the application of NN methods to multi-class problems, where the number
of possible labels is large, and where there is significant structure within the space of possible labels.
We describe an approach that induces prototype vectorsMy ∈ ℜL (similar to error-correcting
output codes (ECOCs)) for each labely, from a set of training examples{(ai, yi)} for i = 1 . . . N .
The prototype vectors are embedded within a NN model that estimatesP (y|a); the vectors are
learned using a leave-one-out estimate of conditional log-likelihood (CLL) derived from the training
examples. The end result is a method that embeds labelsy into ℜL in a way that significantly
improves conditional log-likelihood estimates for multi-class problems under a NN classifier.

The application we focus on is acoustic modeling for speech recognition, where each inputa ∈ ℜD

is a vector of measured acoustic features, and each labely ∈ Y is an acoustic-phonetic label. As
is common in speech recognition applications, the size of the label spaceY is large (in our ex-
periments we have 1871 possible labels), and there is significant structure within the labels: many
acoustic-phonetic labels are highly correlated or confusable, and many share underlying phonolog-
ical features. We describe experiments measuring both conditional log-likelihood of test data, and
word error rates when the method is incorporated within a full speech recogniser. In both settings the
experiments show significant improvements for the ECOC method over both baseline NN methods
(e.g., the method of [8]), as well as Gaussian mixture models(GMMs), as conventionally used in
speech recognition systems.

While our experiments are on speech recognition, the method should be relevant to other domains
which involve large multi-class problems with structured labels—for example problems in natural
language processing, or in computer vision (e.g., see [14] for a recent use of neighborhood com-
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ponents analysis (NCA) [8] within an object-recognition task with a very large number of object
labels). We note also that the approach is relatively efficient: our model is trained on around 11
million training examples.

2 Related Work

Several pieces of recent work have considered the learning of feature space embeddings with the
goal of optimizing the performance of nearest-neighbor classifiers [7, 8, 12, 15]. We make use of
the formalism of [8] as the starting point in our work. The central contrast between our work and
this previous work is that we learn an embedding of thelabelsin a multi-class problem; as we will
see, this gives significant improvements in performance when nearest-neighbor methods are applied
to multi-class problems arising in the context of speech recognition.

Our work is related to previous work on error-correcting output codes for multi-class problems.
[1, 2, 4, 9] describe error-correcting output codes; more recently [2, 3, 11] have described algorithms
for learning ECOCs. Our work differs from previous work in that ECOC codes are learned within
a nearest-neighbor framework. Also, we learn the ECOC codesin order to model the underlying
structure of the label space and not specifically to combine the results of multiple classifiers.

3 Background

The goal of our work is to derive a model that estimatesP (y|a) wherea ∈ ℜD is a feature vector
representing some input, andy is a label drawn from a set of possible labelsY. The parameters of
our model are estimated using training examples{(a1, y1), ..., (aN , yN )}. In general the training
criterion will be closely related to the conditional log-likelihood of the training points:

N
∑

i=1

log P (yi|ai)

We choose to optimize the log-likelihood rather than simpleclassification error, because these esti-
mates will be applied within a larger system, in our case a speech recognizer, where the probabilities
will be propagated throughout the recognition model; henceit is important for the model to provide
well-calibrated probability estimates.

For the speech recognition application considered in this paper,Y consists of 1871 acoustic-phonetic
classes that may be highly correlated with one another. Leveraging structure in the label space will
be crucial to providing good estimates ofP (y|a); we would like to learn the inherent structure
of the label space automatically. Note in addition that efficiency is important within the speech
recognition application: in our experiments we make use of around 11 million training samples,
while the dimensionality of the data isD = 50.

In particular, we will develop nearest-neighbor methods that give an efficient estimate ofP (y|a).
As a first baseline approach—and as a starting point for the methods we develop—consider the
neighbor components analysis (NCA) method introduced by [8]. In NCA, for any test pointa, a
distributionα(j|a) over the training examples is defined as follows whereα(j|a) decreases rapidly
as the distance betweena andaj increases.

α(j|a) =
e−||a−aj ||

2

∑N
m=1 e−||a−am||2

(1)

The estimate ofP (y|a) is then defined as follows:

Pnca(y|a) =

N
∑

i=1,yi=y

α(i|a) (2)
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In NCA the original training data consists of points(xi, yi) for i = 1 . . . N , wherexi ∈ ℜD′

,
with D′ typically larger thanD. The method learns a projection matrixA that defines the modified
representationai = Axi (the same transformation is applied to test points). The matrix A is learned
from training examples, to optimize log-likelihood under the model in Eq. 2.

In our experiments we assume thata = Ax for some underlying representationx and a projection
matrix A that has been learned using NCA to optimize the log-likelihood of the training set. As
a result the matrixA, and consequently the representationa, are well-calibrated in terms of using
nearest neighbors to estimateP (y|a) through Eq. 2. A first baseline method for our problem is
therefore to directly use the estimates defined by Eq. 2.

We will, however, see that this baseline method performs poorly at providing estimates ofP (y|a)
within the speech recognition application. Importantly, the model fails to exploit the underlying
structure or correlations within the label space. For example, consider a test point that has many
neighbors with the phonemic label/s/. This should be evidence that closely related phonemes,
/sh/ for instance, should also get a relatively high probabilityunder the model, but the model is
unable to capture this effect.

As a second baseline, an alternative method for estimatingP (y|a) using nearest neighbor informa-
tion is the following:

Pk(y|a) =
# of k-nearest neighbors ofa in training set with labely

k

Here the choice ofk is crucial. A smallk will be very sensitive to noise and necessarily lead to
many classes receiving a probability of zero, which is undesirable for our application. On the other
hand, ifk is too large, samples from far outside the neighborhood ofa will influencePk(y|a). We
will describe a baseline method that interpolates estimates from several different values ofk. This
baseline will be useful with our approach, but again suffersfrom the fact that it does not model the
underlying structure of the label space.

4 Error-Correcting Output Codes for Nearest-Neighbor Classifiers

We now describe a model that uses error correcting output codes to explicitly represent and learn the
underlying structure of the label spaceY. For each labely, we defineMy ∈ ℜL to be a prototype
vector. We assume that the inner product〈My,Mz〉 will in some sense represent the similarity
between labelsy andz. The vectorsMy will be learned automatically, effectively representing an
embedding of the labels inℜL. In this section we first describe the structure of the model,and then
describe a method for training the parameters of the model (i.e., learning the prototype vectorsMy).

4.1 ECOC Model

The ECOC model is defined as follows. When considering a test samplea, we first assign weights
α(j|a) to pointsaj from the training set through the NCA definition in Eq. 1. LetM be a matrix
that contains all the prototype vectorsMy as its rows. We can then construct a vectorH(a;M) that
uses the weightsα(j|a) and the true labels of the training samples to calculate the expected value of
the output code representinga.

H(a;M) =

N
∑

j=1

α(j|a)Myj

Given this definition ofH(a;M), our estimate under the ECOC model is defined as follows:

Pecoc(y|a;M) =
e〈My,H(a;M)〉

∑

y′∈Y e〈My′ ,H(a;M)〉
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L average CLL
2 -4.388
10 -2.748
20 -2.580
30 -2.454
40 -2.432
50 -2.470
60 -2.481

Table 1: Average CLL achieved byPecoc over DevSet1 for different values ofL

This distribution assigns most of the probability for a sample vectora to classes whose proto-
type vectors have a large inner product withH(a;M). All labels receive a non-zero weight under
Pecoc(y|a;M).

4.2 Training the ECOC Model

We now describe a method for estimating the ECOC vectorsMy in the model. As in [8] the method
uses a leave-one-out optimization criterion, which is particularly convenient within nearest-neighbor
approaches. The optimization problem will be to maximize the conditional log-likelihood function

F (M) =

N
∑

i=1

log P (loo)
ecoc (yi|ai;M)

whereP
(loo)
ecoc (yi|ai;M) is a leave-one-out estimate of the probability of labelyi given the input

ai, assuming an ECOC matrixM. This criterion is related to the classification performance of the
training data and also discourages the assignment of very low probability to the correct class.

The estimateP (loo)
ecoc (yi|ai;M) is given through the following definitions:

α(loo)(j|i) =
e−||ai−aj ||

2

∑N
m=1,m 6=i e−||ai−am||2

if i 6= j and0 otherwise

H(loo)(ai;M) =
N

∑

j=1

α(loo)(j|i)Myj

P (loo)
ecoc (y|ai;M) =

e〈My,H(loo)(a;M)〉

∑

y′∈Y e〈My′ ,H(loo)(a;M)〉

The criterionF (M) can be optimized using gradient-ascent methods, where the gradient is as fol-
lows:

∂F (M)

∂Mz

= ∇(z) −∇′(z)

∇(z) =

N
∑

i=1

N
∑

j=1

[α(loo)(j|i)(δz,yi
Myj

+ δyj ,zMyi
)]

∇′(z) =
N

∑

i=1

∑

y′∈Y

P (loo)
ecoc (y′|ai;M)





N
∑

j=1

[α(loo)(j|i)(δz,y′Myj
+ δyj ,zMy′)]
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Model Average CLL on DevSet 1 Perplexity
Pnca -2.657 14.25
Pnn -2.535 12.61
Pecoc -2.432 11.38
Pfull -2.337 10.35
Pgmm -2.299 9.96
Pmix -2.165 8.71

Table 2: Average conditional log-likelihood (CLL) ofPnca, Pnn, Pecoc, Pnn′ , Pgmm andPmix on
DevSet1. The corresponding perplexity values are indicated as well where the perplexity is defined
ase−x given thatx is the average CLL.

Hereδa,b = 1 if a = b andδa,b = 0 if a 6= b. Sinceα(loo)(j|i) will be very small if ||ai − aj ||
2 is

large, the gradient calculation can be truncated for such pairs of points which significantly improves
the efficiency of the method (a similar observation is used in[8]). This optimization is non-convex
and it is possible to converge to a local optimum.

In our experiments we learn the matrixM using conjugate gradient ascent, though alternatives such
as stochastic gradient can also be used. A random initialization of M is used for each experiment.
We selectL = 40 as the length of the prototype vectorsMy. We experimented with different
values ofL. The average conditional log-likelihood achieved on a development set of approximately
115,000 samples (DevSet1) is listed in Table 1. The performance of the method improves initially
as the size ofL increases, but the objective levels off aroundL = 40.

5 Experiments on Log-Likelihood

We test our approach on a large-vocabulary lecture recognition task [6]. This is a challenging task
that consists of recognizing college lectures given by multiple speakers. We use the SUMMIT
recognizer [5] that makes use of 1871 distinct class labels.The acoustic vectors we use are 112
dimensional vectors consisting of eight concatenated 14 dimensional vectors of MFCC measure-
ments. These vectors are projected down to 50 dimensions using NCA as described in [13]. This
section describes experiments comparing the ECOC model to several baseline models in terms of
their performance on the conditional log-likelihood of sample acoustic vectors.

The baseline model,Pnn, makes use of estimatesPk(y|a) as defined in section 3. The setK is a set
of integers representing different values fork, the number of nearest neighbors used to evaluatePk.
Additionally, we assumed functions over the the labels,P1(y), ...,Pd(y). (More information on the
functionsPj(y) that we use in our experiments can be found in the appendix. Wehave found these
functions over the labels are useful within our speech recognition application.) The model is then
defined as

Pnn(y|a; λ̄) =
∑

k∈K

λkPk(y|a) +
d

∑

j=1

λ0
jPj(y)

whereλk ≥ 0,∀k ∈ K, λ0
j ≥ 0 for j = 1, ..., d, and

∑

k∈K λk +
∑d

j=1 λ0
j = 1. Theλ̄ values were

estimated using the EM algorithm on a validation set of examples (DevSet2). In our experiments,
we selectK = {5, 10, 20, 30, 50, 100, 250, 500, 1000}. Table 2 contains the average conditional log-
likelihood achieved on a development set (DevSet1) byPnca, Pnn andPecoc. These results show
thatPecoc clearly outperforms these two baseline models.

In a second experiment we combinedPecoc with Pnn to create a third modelPfull(y|a). This model
includes information from the nearest neighbors, the output codes, as well as the distributions over
the label space. The model takes the following form:

Pfull(y|a; λ̄) =
∑

k∈K

λkPk(y|a) +

d
∑

j=1

λ0
jPj(y) + λecocPecoc(y|a;M)
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Acoustic Model WER (DevSet3) WER (Test Set)
Baseline Model 36.3 35.4

Augmented Model 35.2 34.5

Table 3: WER of recognizer for different acoustic models on the development and test set.

The values of̄λ here have similar constraints as before and are again optimized using the EM algo-
rithm. Results in Table 2 show that this model gives a furtherclear improvement overPecoc.

We also compare ECOC to a GMM model, as conventionally used inspeech recognition systems.
The GMM we use is trained using state-of-the-art algorithmswith the SUMMIT system [5]. The
GMM defines a generative modelPgmm(a|y); we derive a conditional model as follows:

Pgmm(y|a) =
Pgmm(a|y)αP (y)

∑

y′∈Y Pgmm(a|y′)αP (y′)

The parameterα is selected experimentally to achieve maximum CLL on DevSet2 andP (y) refers
to the prior over the labels calculated directly from their relative proportions in the training set.
Table 2 shows thatPfull andPgmm are close in performance, withPgmm giving slightly improved
results. A final interpolated model with similar constraints on the values of̄λ trained using the EM
algorithm is as follows:

Pmix(y|a; λ̄) =
∑

k∈K

λkPk(y|a) +

d
∑

j=1

λ0
jPj(y) + λecocPecoc(y|a;M) + λgmmPgmm(y|a)

Results forPmix are shown in the final row in the table. This interpolated model gives a clear
improvement over both the GMM and ECOC models alone. Thus theECOC model, combined with
additional nearest-neighbor information, can give a clearimprovement over state-of-the-art GMMs
on this task.

6 Recognition Experiments

In this section we describe experiments that integrate the ECOC model within a full speech recog-
nition system. We learn parametersλ̄ using both DevSet1 and DevSet2 forPfull(y|a). However,
we need to derive an estimate forP (a|y) for use by the recognizer. We can do so by using an esti-
mate forP (a|y) proportional toP (y|a)

P (y) [16]. The estimates forP (y) are derived directly from the
proportions of occurrences of each acoustic-phonetic class in the training set.

In our experiments we consider the following two methods forcalculating the acoustic model.

• Baseline Model:β1 log Pgmm(a|y)

• Augmented Model:β2 log
(

γPgmm(y|a)+(1−γ)Pfull(y|a)
P (y)

)

The baseline method is just a GMM model with the commonly usedscaling parameterβ1. The
augmented model combinesPgmm linearly withPfull using parameterγ and the log of the combi-
nation is scaled by parameterβ2. The parametersβ1, β2, γ are selected using the downhill simplex
algorithm by optimizing WER over a development set [10]. Our development set (DevSet3) consists
of eight hours of data including six speakers and our test setconsists of eight hours of data including
five speakers. Results for both methods on the development set and test set are presented in Table 3.

The augmented model outperforms the baseline GMM model. This indicates that the nearest neigh-
bor information along with the ECOC embedding, can significantly improve the acoustic model.
Overall, an absolute reduction of1.1% in WER on the development set and0.9% on the test set are
achieved using the augmented acoustic model. These resultsare significant withp < 0.001 using
the sign test calculated at the utterance level.
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Figure 1: Plot of 2-dimensional output codes correspondingto 73 acoustic phonetic classes. The
red circles indicate noise and silence classes. The phonemic classes are divided as follows: vowels,
semivowels, nasals, stops and stop closures, fricatives, affricates, and the aspirant/hh/.

7 Discussion

7.1 Plot of a low-dimensional embedding

In order to get a sense of what is learned by the output codes ofPecoc we can plot the output codes
directly. Figure 1 shows a plot of the output codes learned whenL = 2. The output codes are learned
for 1871 classes, but only 73 internal acoustic-phonetic classes are shown in the plot for clarity. In
the plot, classes of similar acoustic-phonetic category are shown in the same color and shape. We can
see that items of similar acoustic categories are grouped closely together. For example, the vowels
are close to each other in the bottom left quadrant, while thestop-closures are grouped together in
the top right, the affricates in the top left, and the nasals in the bottom right. The fricatives are a
little more spread out but usually grouped close to another fricative that shares some underlying
phonological feature such as/sh/ and/zh/ which are both palatal and/f/ and/th/ which are
both unvoiced. We can also see specific acoustic properties emerging. For example the voiced stops
/b/, /d/, /g/ are placed close to other voiced items of different acousticcategories.
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7.2 Extensions

The ECOC embedding of the label space could also be co-learned with an embedding of the input
acoustic vector space by extending the approach of NCA [8]. It would simply require the reintro-
duction of the projection matrixA in the weightsα.

α(j|x) =
e−||Ax−Axj ||

2

∑N
m=1 e−||Ax−Axm||2

H(x;M) andPecoc would still be defined as in section 4.1. The optimization criterion would now
depend on bothA andM. To optimizeA, we could again use gradient methods. Co-learning the
two embeddingsM andA could potentially lead to further improvements.

8 Conclusion

We have shown that nearest neighbor methods can be used to improve the performance of a GMM-
based acoustic model and reduce the WER on a challenging speech recognition task. We have
also developed a model for using error-correcting output codes to represent an embedding of the
acoustic-phonetic label space that helps us capture cross-class information. Future work on this task
could include co-learning an embedding of the input acoustic vector space with the ECOC matrix to
attempt to achieve further gains.

Appendix

We define three distributions based on the prior probabilities,P (y), of the acoustic phonetic classes.
The SUMMIT recognizer makes use of 1871 distinct acoustic phonetic labels [5]. We divide the set
of labels,Y, into three disjoint categories.

• Y(1) includes labels involvinginternalphonemic events (e.g./ay/)

• Y(2) includes labels involving thetransition from one acoustic-phonetic event to another
(e.g./ow/->/ch/)

• Y(3) includes labels involving onlynon-phoneticevents like noise and silence

We define a distributionP (1)(y) as follows. DistributionsP (2)(y) andP (3)(y) are defined similarly.

P (1)(y) =

{

P (y), if y ∈ Y(1)

0, otherwise
∑

y′∈Y(1) P (y′)
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