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Outline

* Memory Controller + Scheduler-based Side Channels

* Existing Approaches
 Static Partitioning
 Traffic Shaping

* DAGguise
 Directed Acyclic Request Graphs (rDAGs)

 Security + Performance Evaluation
* Generalizability



I Memory Controller Side Channels
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I Scheduler-Based Side Channels
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I Timing Attack Example
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{ The attacker uses its own latencies to leak information! J




Static Partitioning in Time

Use a Round Robin, No-Skip Arbitration Policy

Avoiding Information Leakage in the Memory Controller with Fixed Service Policies (Shafiee et al., Utah, ISCA 2015)

Slot Allocation Timeline

Security Security Security Security
Domain 0 Domain 1 Domain 2 Domain 3
0 2 3 1 3
—

-

\_

v Secure
Static partitioning, no leakage

X Bad Performance
Poor bandwidth utilization!
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I Traffic Shaping

Shaping Strategy: Delay victim’s existing requests and add fake requests

Fake Request

7 /
< 2n > < 2n >
 Attacker Access 00— e -
Time ' Time '
Victim Secret 0 Victim Secret 1
No Accesses One Access

{ How do we do this for real applications without significant costs? J




I Camouflage’s Traffic Shaping Strategy

Shape memory requests to a secret-independent timing distribution

Profiling

Victim
Application

Single Application

Increased Background
Bandwidth Usage

Camouflage: Memory Traffic Shaping to Mitigate Timing Attacks (Zhou et al., Princeton, HPCA 2017)
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CPUO
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CPU 1
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Memory
Shaper

Memory
Controller

v Good Performance\

Dynamic sharing of the
memory controller

X Insecure

Ordering or bank information can
reveal the secret

X Expensive Profiling

A

depends on co-running
applications

Ideal shaping distribution
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I DAGguise’s Traffic Shaping Strategy

Shape memory requests to a secret-independent
Directed Acyclic Request Graph (rDAG)

Victim

Memory
CPUO Shaper
CPU 1

» Memory Controller

Vv Secure
Vv Good Performance

V' Profile Victim Alone

Attacker
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Directed Acyclic Request Graphs

Vertices
Memory requests with variable latency

Edges
Dependencies between memory requests with fixed latency

Memory Controller

Traffic Shaper
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Why shape requests to an rDAG?

v’ Security

e Shaping to a secret-independent defense rDAG
makes victim request patterns indistinguishable

* Defense rDAGs are public and are the only thing an
attacker can recover

v’ Performance

* Allows for dynamic sharing of memory resources in
the memory controller

v’ Profiling Cost

* Does not require knowledge of co-located
applications
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Simple Shaping Example
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The shaper output is always the same, no matter the secret!
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Indistinguishability Property

Victim’s Request === rDAG Shaper 1

Victim’s Response
Memory Controller
Attacker’s Response

Attacker’s Request

[The attacker’s observations should be independent from victim’s request pattern J
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Indistinguishability Property

e Attacker’s observation is independent from victim’s request pattern

* Given an attacker’s request pattern, the attacker has an identical observation
when contending with ANY victim’s request pattern

* This holds for ANY attacker’s request pattern

Attacker’s Observations when Contending with Victim

Attacker Request Patterns

X Attacker’s Response Pattern X




Formalization & Verification

* Formalize the indistinguishability property using state transitions

P(Sy,n) :== V Reqr,,Reqr,, V Reqp,

. Respr,.,Respp. Resp/,, ,Resp .
if S < » S, and S ¢ s S/

ReqTac ’ReqRaz Reqf_z"a; aReqR;c

then Resp, = Resplp,

* Verification with Rosette:
* First k cycles: symbolic execution
* Arbitrary cycles: k-induction
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rDAG Adaptivity

iginal rDA _
Original rDAG Re-Profile
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L J L J
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300 300 /7 \ RN N Phase 1 Phase 2
. ) . ) —> Timing Dependency B Memory Request [ 1 Queue Delay
Y Y
Phase 1 Phase 2 (c) Contention between Victim and Unprotected Program on Memory Controller

(b) Unprotected Program’s Request Patterns

rDAG’s adaptivity allows for better bandwidth utilization!
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I Offline Profiling Step

* Not for security, any secret-independent a °
rDAG ensures security

* Low profiling cost
* Victim is profiled alone

e Reduce search space by finding parameters for
an rDAG template

838

4-Parallel rDAG Template
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Experimental Setup

e Simulator: gem5 and DRAMSim2

* Architectural Specifications:
e 2 and 8 out-of-order CPU cores
e 32KB L1i/d, 256kB L2, 1MB/core L3

* Evaluated Configurations:
* DAGguise
 Fixed Service (Bank Triple Alternation)
* Baseline

* Evaluated Applications:

* Unprotected SPEC benchmark(s) co-running alongside DAGguise protected
application(s)

20



Average Normalized IPC

Experimental Results

Static Traffic
Partitioning Shaping
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DAGguise’s improves
performance for both
protected and unprotected
applications!

~
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DAGguise achieves a 12% performance improvement over Fixed Service in

an 8-CPU system
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DAGguise Generalization
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More in the Paper

* Implementation details of DAGguise shaper

* Formal security verification using symbolic execution and k-induction
* Detailed rDAG offline profiling process

* More performance and area overhead evaluation

e Generalizations to other scheduler-based side channels (e.g. port
contention)

23



Conclusion

* DAGguise
* A memory traffic shaper which:
 Completely eliminates data leakage

* Allows for dynamic contention
e Requires only simple profiling

* rDAGS

* A general and adaptive request
representation

* A formal model of correctness using
Rosette

* A generalized scheduler-based attack
mitigation framework

Memory
Controller

Defense
rDAG
Victim l
Memory
CPUO > «
Shaper
CPU 1
Attacker
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