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Microarchitectural Side-Channels
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DAGguise Key Idea
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DAGguise achieves:

✓ Formally-Verified Security
and

✓ Good Performance



Outline

• Memory Controller + Scheduler-based Side Channels

• Existing Approaches
• Static Partitioning

• Traffic Shaping

• DAGguise
• Directed Acyclic Request Graphs (rDAGs)

• Security + Performance Evaluation

• Generalizability
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Memory Controller Side Channels
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This is a class of “scheduler-based” side channels!



Scheduler-Based Side Channels
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Timing Attack Example
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The attacker uses its own latencies to leak information!
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Static Partitioning in Time
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✓ Secure
Static partitioning, no leakage

✗ Bad Performance
Poor bandwidth utilization!
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Avoiding Information Leakage in the Memory Controller with Fixed Service Policies (Shafiee et al., Utah, ISCA 2015)

Use a Round Robin, No-Skip Arbitration Policy
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Traffic Shaping
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How do we do this for real applications without significant costs?



Camouflage’s Traffic Shaping Strategy
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Camouflage: Memory Traffic Shaping to Mitigate Timing Attacks (Zhou et al., Princeton, HPCA 2017)
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✓ Good Performance
Dynamic sharing of the 

memory controller

✗ Insecure
Ordering or bank information can 

reveal the secret!

✗ Expensive Profiling
Ideal shaping distribution 
depends on co-running 

applications
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DAGguise’s Traffic Shaping Strategy
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Shape memory requests to a secret-independent 
Directed Acyclic Request Graph (rDAG)

✓ Secure

✓ Good Performance

✓ Profile Victim Alone



Directed Acyclic Request Graphs
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Why shape requests to an rDAG?

✓ Security
• Shaping to a secret-independent defense rDAG

makes victim request patterns indistinguishable

• Defense rDAGs are public and are the only thing an 
attacker can recover

✓ Performance
• Allows for dynamic sharing of memory resources in 

the memory controller

✓ Profiling Cost
• Does not require knowledge of co-located 

applications
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The shaper output is always the same, no matter the secret!

Simple Shaping Example
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Indistinguishability Property
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Victim’s Request

Attacker’s Request

Victim’s Response

Attacker’s Response

The attacker’s observations should be independent from victim’s request pattern

rDAG Shaper
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Indistinguishability Property
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Victim Request Patterns

Attacker Request Patterns
A B C … …

X Attacker’s Response Pattern X

Y Attacker’s Response Pattern Y

… … … …

• Attacker’s observation is independent from victim’s request pattern
• Given an attacker’s request pattern, the attacker has an identical observation 

when contending with ANY victim’s request pattern

• This holds for ANY attacker’s request pattern

Attacker’s Observations when Contending with Victim



Formalization & Verification

• Formalize the indistinguishability property using state transitions

• Verification with Rosette:
• First k cycles: symbolic execution

• Arbitrary cycles: k-induction
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rDAG Adaptivity
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rDAG’s adaptivity allows for better bandwidth utilization!

(a) Victim’s Request Patterns

(b) Unprotected Program’s Request Patterns

(c) Contention between Victim and Unprotected Program on Memory Controller

Adapt!

Static Partition:

Camouflage:
Re-Profile



Offline Profiling Step

• Not for security, any secret-independent 
rDAG ensures security

• Low profiling cost
• Victim is profiled alone

• Reduce search space by finding parameters for 
an rDAG template
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Experimental Setup

• Simulator: gem5 and DRAMSim2

• Architectural Specifications:
• 2 and 8 out-of-order CPU cores
• 32KB L1i/d, 256kB L2, 1MB/core L3

• Evaluated Configurations:
• DAGguise
• Fixed Service (Bank Triple Alternation)
• Baseline

• Evaluated Applications:
• Unprotected SPEC benchmark(s) co-running alongside DAGguise protected 

application(s)
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Experimental Results
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DAGguise’s improves 
performance for both 

protected and unprotected 
applications!

DAGguise achieves a 12% performance improvement over Fixed Service in 
an 8-CPU system
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DAGguise Generalization
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More in the Paper

• Implementation details of DAGguise shaper

• Formal security verification using symbolic execution and k-induction

• Detailed rDAG offline profiling process

• More performance and area overhead evaluation

• Generalizations to other scheduler-based side channels (e.g. port 
contention)
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Conclusion

• DAGguise
• A memory traffic shaper which:

• Completely eliminates data leakage
• Allows for dynamic contention
• Requires only simple profiling

• rDAGs
• A general and adaptive request 

representation

• A formal model of correctness using 
Rosette

• A generalized scheduler-based attack 
mitigation framework
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