DAGguise

Mitigating Memory Controller Side Channels

Peter W. Deutsch*, Yuheng Yang*, Thomas Bourgeat,

Jules Drean, Joel Emer, and Mengjia Yan

ASPLOS 2022 (Session 3A)

Ut Agk
II CSAIL

I Microarchitectural Side-Channels

Y @

Attacker Victim Attacker Victim
Shared Resource Partitioned
Contention Resource
Insecure! Poor Performance!

[Key Defense Tradeoff: Security vs. Performance }

I DAGguise Key Idea

Directed Acyclic

-

Request Graph
(rDAG)
Victim l
Memory
cPUO Shaper
» Memory Controller
CPU 1

Attacker

_

DAGguise achieves:

v/ Formally-Verified Security
and
Vv Good Performance

~

J

Outline

* Memory Controller + Scheduler-based Side Channels

* Existing Approaches
 Static Partitioning
 Traffic Shaping

* DAGguise
 Directed Acyclic Request Graphs (rDAGs)

 Security + Performance Evaluation
* Generalizability

I Memory Controller Side Channels

A

Resource
Contention

LLC

» Memory Controller

<

4

Victim
CPUO L1/L2
CPU 1 «— L1/L2
Attacker

[This is a class of “scheduler-based” side channels! J

s)ueq INVHA

I Scheduler-Based Side Channels

We mtrodace the fiey
tacks that everage coeli
There are two challeng
expioit thas channel. Fin
comnet's fusctioning

This is the extended versivm of @ paper that apypesrs iy USENIX Secwriey 2027

Lord of the Ring(s): Side Channel Attacks on the

CPU On-Chip Ring Interconnect Are Practical DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks
Riccardo Paccagnella Licheng Luo Chnstopher W. Fletcher Peter Pessl, Daniel Gruss, Ciémentine Maurice, Michacl Schwarz and Stefan Mangard
University of Hlinods ar Urbana-Champaign Graz University of Technology, Austria

Bandwidth Utilization Side-Channel on ML tnchiiiccansll

oneo co-ocamed of

Inference Accelerators Thes, everating & SMoTherSpectre: Exploiting Speculative Execution

crocial. While the

erbobar | , tion, shaccd Bardwy through Port Contention
molsy By meture wnd k| Sarbartha Banerjee Shijia Wei Prakash Ramrakhyani ory bes, can leak o
O fict chalicage, we p The University of Texas at Austin The University of Texas at Austin ARM Research sons. shared memd
:‘": s ey F: sarbartha@ utexas.edu jiawei @ utexas.edu prakash.ramrakhyani@arm.com ablod. Fantheemare, Atri Bhattacharyya” Alexandra Sandudescu * Matthias Neugschwandtner”
s CPU. Jn this g BN IRV Research - Zonch 1N Reseanch - Zurich
eowe overt chasmel over Mohit Tiwari aslow o CPUE wearch - Lok anch - Zun
‘:_::‘:‘:_m’“ '"'::"l The University of Texas at Austin known. 1n contrast, Alessandro Somioets * Babak Falsafi' Mathias Payer
£ chanc g <
e docoud chillidgndl tiwari@ austin,utexas.edu channel a5 well 1 TRM Resensch - Zaurich EFFL EPFL
9 ACTONS PEOCERUWN 3
pomerms of ring COBCTAN besld these stacks, N Anil Kurmus "
We demastrate ow afla 1] Abstract—Accelerators used for machine learning (ML) infer- T wd | [@ @ 1 [771 address mappiegs. T 1B Resriack - Zuewh
abic EADSA and RSAE O cnce provide great perfe -
he precise imng of key O 1 confidential model in it 1 ABSTRAC
3 attacks is critical in har Lo Spee, ek
1 Introduct ®) practice. “:;:,&""“' ,}) bernch, yper Session 10D: VulnDet 2 + Side Channels 2 €C5'18, October 15-19, 2018, Toronto, ON, Canada
\ 5 again ’ ol
In this paper, we demor 2014 IEEE Symposium on Security and Privacy et o
L -1 O weakiwwees b
weoreg X TS =
er . ~
This side channel is inde vode, may by = H
across computing units, | — T side < Jnet Port Contention for Fun and Profit = e aetacka| Rendered Insecure: GPU Side Channel Attacks are Practical
fered significant beoefll 04 can be monitored throug) z W lntrod
:::::du sursd lt.lu!e: U s enst Akgandro Cabecra Aldaya*, Billy Bob Brumiey!, Sobaib ul Hassan', Cesar Pereida Garcia®, Nicola Tuveri® bt “‘;hr"':; y H"‘?"‘ l\a:ghlbquu) b‘?n Sk '.Aj_aya N_eupane
hetec ” s 1 “Universadad Tecrodigica de 1a Hahana (CUJAE), Habana, Cuba & poachmar University of California. Riverside University of California, Riverside
of solveare-basod cover i t 3 " - VIS e hnagh001@ucr.edu ajaya@ucredu
T R ariiag o] Tampere Universty, Tampere. Finkand = comlemiion 4
focts feg. liming vanatl g e ; [Wovkd pellgntl Zhiy ia Nael Abu-Ghazaleh
-specific comput b e ST iyun Qian ael Abu-Ghazale
FOsOUrCe (o surreplitions > G . - empars:| it e 5 miversity of Californi 7 3
o gy IS |:_(;v;u.c .;:lckr::n il R N SMT) scts. machine lcaming fockalgacs. nor reverse enginecring P Qe oo Sl University ‘nl C ahfnm.m. Riverside University o‘l Cnl}fﬂmu. Riverside
¢ ot VN ; bt ')‘:::mu& ?II%T ::. actractive tangets Sor u.-:.:' c::h.c‘ attackers, -: sechmques) -+ .‘:‘... yx| zhiyung@cs.ucredu nael@cs.ucr.edu
B of keaking infoma system-on-chip (SoC) | ’.‘*:"m"" Mryuder winck MP-I e - Fo demeastrae PoarSyase i actios. we poesent a com _f: G ’:: | ABSTRACT 1 INTRODUCTION
ample. many coche bas e f tacks. In thix work, we explore XMT cxrcution cogine sharing 1o% 3d-0-cnd allack in 3 real-workd siing amacking the - s oo _ X 2o i g 2
rrscdan o I Inference-as-a-service (a8 3 vide-chammel Weakage sowrce. We target pocts to siacks of NIST P 354 curve during sighomsee peteration i a TLS wever — UpwendSL by Graphics Processing Units (GPUs) are commonly integrated with Graphics Processing Units (GPUs) are integral components to most
= i) o il o providers like Amazon ! eveoetion unls 0o cremte 3 high-resdution timing side-chaneed compiled againe OpenSSL 1106 for crypto fuscoonality (ol O ploemat | computing devices to enhance the performance and capabilities modern computing devices, used to optimize the performance of
rgraphic ey L == on ML accelerators. Th duc o port comlention. loherently sicalthy dace # dony 080 (g Sy program measures the port cotfestion delay whike & 2L o of graphical workloads. In addition. they are increasingly being today's graphxnand multi-media heavy workloads, They are also
webbeoasers [ML6LTT ot trained models on depend wa the meemony subysici Bhe other cuche o6 TUR oo oL FODSA PSS signature. seaceation, o COSCONC integrated in data centers und clouds such that they can be used tegrated on comsputing servers to accelerate a range
1 confidential user data 1 :‘: ,:';“ ;erm‘. “1:“ m‘. —— n:-w—:‘ creating 2 timiag signal trace COOLINISE 3 DOLSY soguERce Of e « Socurnity an to accelerate data intensive workloads. Under a number of scenar- of .q»phc..mm from domains including sccurity. computer vision.
S data like disease classif 28 odtecd atiack that recorers 4 PSS peivety kry fram sl 20 dowile Operations daring scalwr multiphcation. We > meswre ios the GPU can be shared between multiple applications at afine computational finance. bio-informatics and many others [52]. Both
5 From the security pe an OpmSSi-pawered TLS wrver wing 3 weall sember of thon process the signal using vanioss lechoigues %0 cican the ; o granulasity allowing a spy application to monitor side channels and these classes of applications can operate on sensitive data [25, 31
>'< the cloud provider to Tvpeated TIN handibale attemptr. Vorthermore, we sbow thal onal nd redace crmors i the iforastion exizactad from cach - KEYwOm attempt to infer the behavior of the victim. For example, OpenGL 57) which can be comp d by security vulnerabilities in the
S parameters as well as (iraces tarpeting shared Whearics. st bullde, and SGX eochves arace. We then pass this parsial key infomation 10 & recovery T dechunaek and WebGL send workloads to the GPU at the granularity of a GPU stack
{T8]. [20) show how ks ‘"um . wie el dase. cressing lasce problem instances which sitmately i a—— frame, allowing an attacker to interfeave the use of the GPU to Although the security of GPUs is only starting to be explored,
_— used to steal @ victim’s ! Vil e TIS senver's ECDSA privase Loy g measure the side-cffects of the victim computation through perfor- several vulnerabilities have already been demonstrated [46. 49. 55,
similar accuracy. An an 1 INTRODUCTIONNS We extend cur asalvsis t0 SGX, showing it Is possidie 0 [p—— mance counters or other resource tracking APIs. We demonstrate 58. 63. 71. 74). Most related to this paper. Luo et al. demonstrated a

I Timing Attack Example

A

Victim CPUO

\ 4

Memory Controller

A

Attacker CPU 1

_ Attacker Access | | [— : Eﬁ——f
Time Time
Victim Secret O Victim Secret 1
No Accesses One Access

{ The attacker uses its own latencies to leak information! J

Static Partitioning in Time

Use a Round Robin, No-Skip Arbitration Policy

Avoiding Information Leakage in the Memory Controller with Fixed Service Policies (Shafiee et al., Utah, ISCA 2015)

Slot Allocation Timeline

Security Security Security Security
Domain 0 Domain 1 Domain 2 Domain 3
0 2 3 1 3
—

-

_

v Secure
Static partitioning, no leakage

X Bad Performance
Poor bandwidth utilization!

~

I Traffic Shaping

Shaping Strategy: Delay victim’s existing requests and add fake requests

Fake Request

7 /
< 2n > < 2n >
 Attacker Access 00— e -
Time ' Time '
Victim Secret 0 Victim Secret 1
No Accesses One Access

{ How do we do this for real applications without significant costs? J

I Camouflage’s Traffic Shaping Strategy

Shape memory requests to a secret-independent timing distribution

Profiling

Victim
Application

Single Application

Increased Background
Bandwidth Usage

Camouflage: Memory Traffic Shaping to Mitigate Timing Attacks (Zhou et al., Princeton, HPCA 2017)

Frequency

Inter-Arrival Time

CPUO

I

CPU 1

A

Memory
Shaper

Memory
Controller

v Good Performance\

Dynamic sharing of the
memory controller

X Insecure

Ordering or bank information can
reveal the secret

X Expensive Profiling

A

depends on co-running
applications

Ideal shaping distribution

10

I DAGguise’s Traffic Shaping Strategy

Shape memory requests to a secret-independent
Directed Acyclic Request Graph (rDAG)

Victim

Memory
CPUO Shaper
CPU 1

» Memory Controller

Vv Secure
Vv Good Performance

V' Profile Victim Alone

Attacker

11

Directed Acyclic Request Graphs

Vertices
Memory requests with variable latency

Edges
Dependencies between memory requests with fixed latency

Memory Controller

Traffic Shaper

12

Why shape requests to an rDAG?

v’ Security

e Shaping to a secret-independent defense rDAG
makes victim request patterns indistinguishable

* Defense rDAGs are public and are the only thing an
attacker can recover

v’ Performance

* Allows for dynamic sharing of memory resources in
the memory controller

v’ Profiling Cost

* Does not require knowledge of co-located
applications

13

Simple Shaping Example

—> Timing Dependency [VMemory Request [| Queue Delay

original IoAS ' 100 100 100 100 10
100 100 100 100 o Original Requests | SN
Secret 0 S -
o 100 100 100 100
= B betayed Requests I 3 I3 S 0 >
200 9
Secret 1 Q 4 O g n Shaper Output -—>-—>- 150 o] 150 I >
Defense rDAG :
' 200 200 200
150 150 /7 N ~— Original Requests i g | SHl—E - >
' 200
5 Delayed Requests ("~ W W~
@ :
n Shaper Output | 150 150 150 150 > 7

Fake Request

The shaper output is always the same, no matter the secret!

14

Indistinguishability Property

Victim’s Request === rDAG Shaper 1

Victim’s Response
Memory Controller
Attacker’s Response

Attacker’s Request

[The attacker’s observations should be independent from victim’s request pattern J

15

Indistinguishability Property

e Attacker’s observation is independent from victim’s request pattern

* Given an attacker’s request pattern, the attacker has an identical observation
when contending with ANY victim’s request pattern

* This holds for ANY attacker’s request pattern

Attacker’s Observations when Contending with Victim

Attacker Request Patterns

X Attacker’s Response Pattern X

Formalization & Verification

* Formalize the indistinguishability property using state transitions

P(Sy,n) :== V Reqr,,Reqr,, V Reqp,

. Respr,.,Respp. Resp/,, ,Resp .
if S < » S, and S ¢ s S/

ReqTac ’ReqRaz Reqf_z"a; aReqR;c

then Resp, = Resplp,

* Verification with Rosette:
* First k cycles: symbolic execution
* Arbitrary cycles: k-induction

17

rDAG Adaptivity

iginal rDA _
Original rDAG Re-Profile
100 ~N\100_/~\ 100 /~\100 Camouflage: >
Secret 0 S

200 /7 200
Secret1() >O>
N

Static Partition:

Defense rDAG Ada pt!
150 150 Yo > 290 > 325 ,
- shaper output [l - ;>
(a) Victim’s Request Patterns =
Unprotected Requests I:- > - TN T >
L J L J
T S
300 300 /7 \ RN N Phase 1 Phase 2
.) .) —> Timing Dependency B Memory Request [1 Queue Delay
Y Y
Phase 1 Phase 2 (c) Contention between Victim and Unprotected Program on Memory Controller

(b) Unprotected Program’s Request Patterns

rDAG’s adaptivity allows for better bandwidth utilization!

18

I Offline Profiling Step

* Not for security, any secret-independent a °
rDAG ensures security

* Low profiling cost
* Victim is profiled alone

e Reduce search space by finding parameters for
an rDAG template

838

4-Parallel rDAG Template

19

Experimental Setup

e Simulator: gem5 and DRAMSim2

* Architectural Specifications:
e 2 and 8 out-of-order CPU cores
e 32KB L1i/d, 256kB L2, 1MB/core L3

* Evaluated Configurations:
* DAGguise
 Fixed Service (Bank Triple Alternation)
* Baseline

* Evaluated Applications:

* Unprotected SPEC benchmark(s) co-running alongside DAGguise protected
application(s)

20

Average Normalized IPC

Experimental Results

Static Traffic
Partitioning Shaping

CIFS B DAGguise XS DocDist ZZADNACISPEC

L0 ~

o \1(’6\!

© o

-

_

DAGguise’s improves
performance for both
protected and unprotected
applications!

~

J

DAGguise achieves a 12% performance improvement over Fixed Service in

an 8-CPU system

21

DAGguise Generalization

Network on Chip Contention

SMT Contention
Victim Decode Attacker
) S —
Thread Pipeline Thread
E3
L 4
Scheduler

Pcet 1l Port5
Resource
Contention

Attacker
Accesses

|

L

Router
A

Resource
Contention

Victim
Accesses

22

More in the Paper

* Implementation details of DAGguise shaper

* Formal security verification using symbolic execution and k-induction
* Detailed rDAG offline profiling process

* More performance and area overhead evaluation

e Generalizations to other scheduler-based side channels (e.g. port
contention)

23

Conclusion

* DAGguise
* A memory traffic shaper which:
 Completely eliminates data leakage

* Allows for dynamic contention
e Requires only simple profiling

* rDAGS

* A general and adaptive request
representation

* A formal model of correctness using
Rosette

* A generalized scheduler-based attack
mitigation framework

Memory
Controller

Defense
rDAG
Victim l
Memory
CPUO > «
Shaper
CPU 1
Attacker

24

DAGguise

Mitigating Memory Controller Side Channels

Peter W. Deutsch Yuheng Yang
pwd@mit.edu vuhengy@mit.edu
Thomas Bourgeat Jules Drean Joel S. Emer Mengjia Yan
bthom@mit.edu drean@mit.edu jsemer@mit.edu mengjiay@mit.edu

CSAIL

mailto:Pwd@mit.edu
mailto:Pwd@mit.edu
mailto:bthom@mit.edu
mailto:drean@mit.edu
mailto:jsemer@mit.edu
mailto:jsemer@mit.edu

