
DAGguise
Mitigating Memory Controller Side Channels

Peter W. Deutsch*, Yuheng Yang*, Thomas Bourgeat, 

Jules Drean, Joel Emer, and Mengjia Yan

ASPLOS 2022 (Session 3A)



Microarchitectural Side-Channels

2

😭
Victim

😈
Attacker

Key Defense Tradeoff: Security vs. Performance

😢
Victim

👿
Attacker

Shared Resource 
Contention
Insecure!

Partitioned
Resource

Poor Performance!



DAGguise Key Idea

3

CPU 0

CPU 1

Memory 
Shaper

Memory Controller

Victim

Attacker

Directed Acyclic 
Request Graph

(rDAG)

DAGguise achieves:

✓ Formally-Verified Security
and

✓ Good Performance



Outline

• Memory Controller + Scheduler-based Side Channels

• Existing Approaches
• Static Partitioning

• Traffic Shaping

• DAGguise
• Directed Acyclic Request Graphs (rDAGs)

• Security + Performance Evaluation

• Generalizability

4



Memory Controller Side Channels

5

CPU 0

CPU 1

L1/L2

L1/L2

Memory Controller

0

N

D
R

A
M

 B
an

ks

...

Victim

Attacker

Resource 
Contention

LLC

This is a class of “scheduler-based” side channels!



Scheduler-Based Side Channels

6



Timing Attack Example

7

The attacker uses its own latencies to leak information!

Victim Access

Memory Controller

Victim

Attacker

CPU 0

CPU 1

Time
Victim Secret 1

One Access

Time
Victim Secret 0

No Accesses

Attacker Access

n 2n



Static Partitioning in Time

8

✓ Secure
Static partitioning, no leakage

✗ Bad Performance
Poor bandwidth utilization!

0

Slot Allocation Timeline

1 2 3 0 1 2 3

Avoiding Information Leakage in the Memory Controller with Fixed Service Policies (Shafiee et al., Utah, ISCA 2015)

Use a Round Robin, No-Skip Arbitration Policy

Security 
Domain 0

Security 
Domain 1

Security 
Domain 2

Security 
Domain 3



Traffic Shaping

9

Victim Access

Victim Secret 1
One Access

Victim Secret 0
No Accesses

Attacker Access

Time

2n

Shaping Strategy: Delay victim’s existing requests and add fake requests

Time

2n

Fake Request

How do we do this for real applications without significant costs?



Camouflage’s Traffic Shaping Strategy

10
Camouflage: Memory Traffic Shaping to Mitigate Timing Attacks (Zhou et al., Princeton, HPCA 2017)

Fr
e

q
u

e
n

cy

Inter-Arrival Time

✓ Good Performance
Dynamic sharing of the 

memory controller

✗ Insecure
Ordering or bank information can 

reveal the secret!

✗ Expensive Profiling
Ideal shaping distribution 
depends on co-running 

applications

CPU 0

CPU 1

Memory 
Controller

Victim

Attacker

Memory 
Shaper

Shape memory requests to a secret-independent timing distribution

ProfilingVictim 
Application

Single Application

Victim 
Application

Co-Located
Applications

+

Increased Background 
Bandwidth Usage



DAGguise’s Traffic Shaping Strategy

11

CPU 0

CPU 1

Memory 
Shaper

Memory Controller

Victim

Attacker

Defense rDAG

Shape memory requests to a secret-independent 
Directed Acyclic Request Graph (rDAG)

✓ Secure

✓ Good Performance

✓ Profile Victim Alone



Directed Acyclic Request Graphs

12

Vertices
Memory requests with variable latency

Time

Edges
Dependencies between memory requests with fixed latency

V0

V1

V2

V3 V4

W01

W02

W13

W23

W34

Memory Controller

Traffic Shaper

Variable
Fixed



Why shape requests to an rDAG?

✓ Security
• Shaping to a secret-independent defense rDAG

makes victim request patterns indistinguishable

• Defense rDAGs are public and are the only thing an 
attacker can recover

✓ Performance
• Allows for dynamic sharing of memory resources in 

the memory controller

✓ Profiling Cost
• Does not require knowledge of co-located 

applications

13

V0

V1

V2

V3 V4

W01

W02

W13

W23

W34



The shaper output is always the same, no matter the secret!

Simple Shaping Example

14

Fake Request



Indistinguishability Property

15

Victim’s Request

Attacker’s Request

Victim’s Response

Attacker’s Response

The attacker’s observations should be independent from victim’s request pattern

rDAG Shaper

Memory Controller



Indistinguishability Property

16

Victim Request Patterns

Attacker Request Patterns
A B C … …

X Attacker’s Response Pattern X

Y Attacker’s Response Pattern Y

… … … …

• Attacker’s observation is independent from victim’s request pattern
• Given an attacker’s request pattern, the attacker has an identical observation 

when contending with ANY victim’s request pattern

• This holds for ANY attacker’s request pattern

Attacker’s Observations when Contending with Victim



Formalization & Verification

• Formalize the indistinguishability property using state transitions

• Verification with Rosette:
• First k cycles: symbolic execution

• Arbitrary cycles: k-induction

17



rDAG Adaptivity

18

rDAG’s adaptivity allows for better bandwidth utilization!

(a) Victim’s Request Patterns

(b) Unprotected Program’s Request Patterns

(c) Contention between Victim and Unprotected Program on Memory Controller

Adapt!

Static Partition:

Camouflage:
Re-Profile



Offline Profiling Step

• Not for security, any secret-independent 
rDAG ensures security

• Low profiling cost
• Victim is profiled alone

• Reduce search space by finding parameters for 
an rDAG template

19

4-Parallel rDAG Template

0

1

2

3

4

5

6

7

x

x

x

x



Experimental Setup

• Simulator: gem5 and DRAMSim2

• Architectural Specifications:
• 2 and 8 out-of-order CPU cores
• 32KB L1i/d, 256kB L2, 1MB/core L3

• Evaluated Configurations:
• DAGguise
• Fixed Service (Bank Triple Alternation)
• Baseline

• Evaluated Applications:
• Unprotected SPEC benchmark(s) co-running alongside DAGguise protected 

application(s)

20



Experimental Results

21

DAGguise’s improves 
performance for both 

protected and unprotected 
applications!

DAGguise achieves a 12% performance improvement over Fixed Service in 
an 8-CPU system

Static 
Partitioning

Traffic 
Shaping



DAGguise Generalization

22

Victim 
Thread

Attacker 
Thread

Scheduler

Decode
Pipeline

μ-ops

Port 0 Port 1 Port 5 Port 7

Resource 
Contention

SMT Contention Network on Chip Contention

Attacker 
Accesses

Victim 
Accesses

Router

Resource 
Contention



More in the Paper

• Implementation details of DAGguise shaper

• Formal security verification using symbolic execution and k-induction

• Detailed rDAG offline profiling process

• More performance and area overhead evaluation

• Generalizations to other scheduler-based side channels (e.g. port 
contention)

23



Conclusion

• DAGguise
• A memory traffic shaper which:

• Completely eliminates data leakage
• Allows for dynamic contention
• Requires only simple profiling

• rDAGs
• A general and adaptive request 

representation

• A formal model of correctness using 
Rosette

• A generalized scheduler-based attack 
mitigation framework

24

CPU 0

CPU 1

Memory 
Shaper

Memory 
Controller

Victim

Attacker

Defense 
rDAG



DAGguise
Mitigating Memory Controller Side Channels

Peter W. Deutsch
pwd@mit.edu

Yuheng Yang
yuhengy@mit.edu

Thomas Bourgeat
bthom@mit.edu

Jules Drean
drean@mit.edu

Joel S. Emer
jsemer@mit.edu

Mengjia Yan
mengjiay@mit.edu

mailto:Pwd@mit.edu
mailto:Pwd@mit.edu
mailto:bthom@mit.edu
mailto:drean@mit.edu
mailto:jsemer@mit.edu
mailto:jsemer@mit.edu

