
DelayAVF
Calculating Architectural Vulnerability Factors

for Delay Faults

Peter Deutsch* (MIT), Vincent Ulitzsch* (MIT/TU Berlin)

Sudhanva Gurumurthi (AMD), Vilas Sridharan (AMD)

Joel Emer (MIT), Mengjia Yan (MIT)

MICRO 2024 – Session 2C

November 4th, 2024

CPUs can have defects, resulting in Silent Data Corruptions (SDCs)!

2

SDCs can result in silently incorrect outputs, often
only realized much later in the execution!

Faulty CPU

ADD

1 + 1

Example
Input

Program
1 + 1 = 3

ADD

1 + 1

Example
Input

Program
1 + 1 = 2

CPU

DelayAVF Overview

3

Recent findings point to small delay faults caused by marginal chip
defects as an emergent reason for failures at scale.

Our Contribution: DelayAVF

A methodology to assess vulnerability to small delay faults,
demonstrating actionable architectural insights.

Our current ability to reason about small delay faults is limited as
vulnerability estimation work primarily focuses on particle strikes.

Small delay faults (SDFs) can disturb timing, causing bit-flips!

4

Normal Propagation
Delay

Upstream
Circuit

Element

Normal Circuit Execution

Additional
Small Delay

Upstream
Circuit

Element

Execution with Small Delay Fault

State
Element
Errors!

We examine the impact of small delay faults caused by marginal defects
(e.g., high resistance vias, shorts, etc.)

We assume:
1. Defects occur at random locations in the chip, and
2. Result in a sub-cycle delay fault condition that lasts for a single cycle.

Underlying Defects’ Fault Behaviors

5

Marginal defects are
prohibitively hard to test
for as they appear to
manifest at random.

6

We need to add resilience
at the design stage, but
this can be expensive.

DelayAVF identifies which architectural structures are most vulnerable
to small delay faults, providing an avenue for prioritized protections.

Marginal defects are
prohibitively hard to test
for as they appear to
manifest at random.

7

Guiding Question:

How should a computer architect prioritize the placement of
protections against faults?

Observation: Not all faults are created equal

8

Bit-Flip!

Bit-Flip!

Observation: Not all faults are created equal

9

Definition
ACE

State element x is 𝐴𝐶𝐸 if a bit-flip in cycle 𝑖
in x results in a program-visible error.

Y is ACE

Z is not ACE

Identifying Vulnerable Structures using Architectural Vulnerability Factor

10

AVF = 0

AVF = High!

1 + 1 = 2

1 + 1 = 3ALU

ADD

1 + 1

Rank structures according to their Architectural Vulnerability Factor (AVF):

𝐴𝑉𝐹 𝑆 = ෍

𝑖=1

𝑁
of 𝐴𝐶𝐸 flops in structure S in cycle 𝑖

Total number of cycles 𝑁 ⋅ # of Flops in S

Branch
Predictor

Fault has no chance to result
in a program-visible error

Fault likely results in a
program-visible error

This Work: DelayAVF

11

We want to estimate a structure’s DelayAVF:

The probability that a small delay fault in a particular
architectural structure results in a program-visible error.

12

Can we re-leverage the concept of ACE
to estimate a structure’s DelayAVF?

Two key challenges emerge as we can no longer reason about
small delay faults via individual state elements!

Challenge 1: The point of fault is no longer the point of error

Particle Strike Model Small Delay Fault Model

The particle directly strikes the state element,
which subsequently has an error.

The delay affects the wire, however the error is
only observed at downstream state elements!

Bit-flip in Flop Y

Particle Strike
on Flop Y

13

Bit-flip in Flop Y

Delay Fault on
Wire a

Bit-flip in Flop Z

We cannot reason about vulnerability to small delay faults by solely
examining state elements!

Delay Long
Enough?

Logical Masking?

Signal Toggles?

Challenge 2: Delay faults can result in multiple simultaneous bit flips

14

We need to reason about errors that occur simultaneously,
potentially interacting with each other!

Bit-flip in Flop Y

Delay Fault on
Wire a

Bit-flip in Flop Z

15

DelayAVF’s Key Idea: Reason about the vulnerability of the
structure’s circuit elements (e.g., wires or gates) rather than
state elements.

Deriving DelayAVF via the vulnerability of individual circuit elements

16

Assume delay
fault on wire a

Error in Z
↓

a is not DelayACE

Definition
DelayACE

Circuit element a is 𝐷𝑒𝑙𝑎𝑦𝐴𝐶𝐸𝑑(𝑎, 𝑖) in cycle 𝑖 if a
small delay fault of duration 𝑑 on a results in a

program-visible error.

Deriving DelayAVF via the vulnerability of individual circuit elements

17

Definition
DelayACE

Assume delay
fault on wire a

Error in Y
↓

a is DelayACE

Circuit element a is 𝐷𝑒𝑙𝑎𝑦𝐴𝐶𝐸𝑑(𝑎, 𝑖) in cycle 𝑖 if a
small delay fault of duration 𝑑 on a results in a

program-visible error.

18

How can we calculate DelayACE in practice?

We can compute DelayACE into two steps:
1. What is the set of state elements experiencing an error?
2. Will simultaneous errors in these state elements cause a

program-visible error?

Two-step approach to determining whether a circuit element is DelayACE

19

= 0

𝑫𝒚𝒏𝒂𝒎𝒊𝒄𝑹𝒆𝒂𝒄𝒉𝒂𝒃𝒍𝒆𝒅 𝒂, 𝒊 = {Z}

𝑫𝒚𝒏𝒂𝒎𝒊𝒄𝑹𝒆𝒂𝒄𝒉𝒂𝒃𝒍𝒆𝑑 𝑎, 𝑖

What is the set of state elements
experiencing an error?

Two-step approach to determining whether a circuit element is DelayACE

20

𝑫𝒚𝒏𝒂𝒎𝒊𝒄𝑹𝒆𝒂𝒄𝒉𝒂𝒃𝒍𝒆𝒅 𝒂, 𝒊 = {Y, Z}

= 1

𝑫𝒚𝒏𝒂𝒎𝒊𝒄𝑹𝒆𝒂𝒄𝒉𝒂𝒃𝒍𝒆𝑑 𝑎, 𝑖

What is the set of state elements
experiencing an error?

Two-step approach to determining whether a circuit element is DelayACE

21

𝑮𝒓𝒐𝒖𝒑𝑨𝑪𝑬 𝒀, 𝒁 = 𝒀𝒆𝒔, 𝑫𝒆𝒍𝒂𝒚𝑨𝑪𝑬𝒅 𝒂, 𝒊 = 𝒀𝒆𝒔

= 1

𝐷𝑒𝑙𝑎𝑦𝐴𝐶𝐸𝑑 𝑎, 𝑖 = 𝑮𝒓𝒐𝒖𝒑𝑨𝑪𝑬(𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝑑 𝑎, 𝑖 , 𝑖 + 1)

What is the set of state elements
experiencing an error?

Will simultaneous errors in these state
elements cause a program-visible error?

Concretely determining DelayAVF

𝑫𝒆𝒍𝒂𝒚𝑨𝑪𝑬𝒅 𝒂, 𝒊 = 𝑮𝒓𝒐𝒖𝒑𝑨𝑪𝑬(𝑫𝒚𝒏𝒂𝒎𝒊𝒄𝑹𝒆𝒂𝒄𝒉𝒂𝒃𝒍𝒆𝒅 𝒂, 𝒊 , 𝒊 + 𝟏)

22

This two-step approach enables tractable computation
of 𝐷𝑒𝑙𝑎𝑦𝐴𝐶𝐸!

23

DelayAVF Definition

The fraction of circuit elements in a structure S that are DelayACE,
averaged over all cycles of a reference program.

𝐷𝑒𝑙𝑎𝑦𝐴𝑉𝐹𝑑 𝑆 = ෍

𝑖=1

𝑁
Number of 𝐷𝑒𝑙𝑎𝑦𝐴𝐶𝐸𝑑 elements in structure 𝑆 in cycle 𝑖

Number of Cycles 𝑁 ∙ # Total Number Of Elements in 𝑆

Case Study: IBEX RISC-V Core

24

• We evaluate DelayAVF for several
structures in IBEX, an in-order open-
source RISC-V core.

• We compute DelayAVF with reference
to the Beebs benchmark suite using a
45nm technology library.

IBEX Block Diagram

DelayAVF’s Insights

25

26

DelayAVF reveals that different microarchitectural
structures can have significantly different

vulnerabilities to small delay faults!

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

 Decoder Regfile ALU

N
o

rm
al

iz
ed

 D
el

ay
A

V
F

10% 20% 30% 40% 50% 60% 70% 80% 90%

Delay Duration (% of Clock Cycle)

Normalized DelayAVF Values for Varying Structures and Delay Durations

Q1: Is DelayAVF useful in guiding placement of mitigations? Yes!

27

High vulnerability to particle strikes does not imply a high
vulnerability to small delay faults (and vice-versa).

0

0.2

0.4

0.6

0.8

1

Register File Load Store Queue Prefetcher

N
o

rm
al

iz
ed

D

el
ay

A
V

F
/

A
V

F

DelayAVF (90% delay) Particle Strike AVF

Comparison of Normalized DelayAVF and AVF Values

Q2: Could we just use particle-strike AVF? No, it leads to different rankings!

28

Both program and architectural-level effects can
influence vulnerability to delay faults.

0

0.2

0.4

0.6

0.8

1

md5 bubblesort strstr fibcall matmult

N
o

rm
al

iz
ed

 D
el

ay
A

V
F

10% 20% 30% 40% 50% 60% 70% 80% 90%

ALU DelayAVF for Different Benchmarks in Beebs Suite

Delay Duration (% of Clock Cycle)

Q3: Is Static Timing Analysis Sufficient to Reason About Delay Vulnerability? No!

Much more in the paper!

29

How we model circuit timing, when small delay faults occur,
and their impact.

Analysis of interactions between multiple simultaneous
errors (ACE Compounding & Interference).

A method to heuristically approximate GroupACE via
particle-strike ACEness.

https://github.com/viniul/delayAVF

Summary: A methodology to target mitigations against delay faults

30

Questions/Comments?
pwd@mit.edu, viniul@mit.edu

▪ Prior work: Estimate AVF through the
ACEness of state elements.

▪ This work: A metric to quantify the
vulnerability to small delay faults.

▪ Key Insights: We can estimate
DelayAVF through DelayACEness,
shifting the focus from state elements
to circuit elements.

▪ Future Work: We hope that DelayAVF
will inspire future work examining
delay faults.

𝐷𝑒𝑙𝑎𝑦𝐴𝐶𝐸𝑑 𝑎, 𝑖
= 𝐺𝑟𝑜𝑢𝑝𝐴𝐶𝐸(𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝑑 𝑎, 𝑖 , 𝑖 + 1)

mailto:pwd@mit.edu
mailto:viniul@mit.edu

	Default Section
	Slide 1: DelayAVF Calculating Architectural Vulnerability Factors for Delay Faults
	Slide 2: CPUs can have defects, resulting in Silent Data Corruptions (SDCs)!
	Slide 3: DelayAVF Overview
	Slide 4: Small delay faults (SDFs) can disturb timing, causing bit-flips!
	Slide 5: Underlying Defects’ Fault Behaviors
	Slide 6:
	Slide 7:
	Slide 8: Observation: Not all faults are created equal
	Slide 9: Observation: Not all faults are created equal
	Slide 10: Identifying Vulnerable Structures using Architectural Vulnerability Factor
	Slide 11: This Work: DelayAVF
	Slide 12
	Slide 13: Challenge 1: The point of fault is no longer the point of error
	Slide 14: Challenge 2: Delay faults can result in multiple simultaneous bit flips
	Slide 15
	Slide 16: Deriving DelayAVF via the vulnerability of individual circuit elements
	Slide 17: Deriving DelayAVF via the vulnerability of individual circuit elements
	Slide 18
	Slide 19: Two-step approach to determining whether a circuit element is DelayACE
	Slide 20: Two-step approach to determining whether a circuit element is DelayACE
	Slide 21: Two-step approach to determining whether a circuit element is DelayACE
	Slide 22: Concretely determining DelayAVF
	Slide 23
	Slide 24: Case Study: IBEX RISC-V Core
	Slide 25: DelayAVF’s Insights
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Much more in the paper!
	Slide 30: Summary: A methodology to target mitigations against delay faults

