Securing Cryptographic Software via Typed Assembly Language

Shixin Song’
shixins@mit.edu
Massachusetts Institute of Technology
Cambridge, United States

Julian Zanders
jzanders@mit.edu
Massachusetts Institute of Technology
Cambridge, United States

Tingzhen Dong”
rogerdtz@mit.edu
Massachusetts Institute of Technology =~ Massachusetts Institute of Technology
Cambridge, United States

Andres Erbsen
andreser@mit.edu
Google
Cambridge, United States

Kosi Nwabueze
kosinw(@mit.edu

Cambridge, United States

Adam Chlipala
adamc@csail.mit.edu
Massachusetts Institute of Technology
Cambridge, United States

Mengjia Yan
mengjiay@mit.edu
Massachusetts Institute of Technology
Cambridge, United States

Abstract

Authors of cryptographic software are well aware that their code
should not leak secrets through its timing behavior, and, until 2018,
they believed that following industry-standard constant-time coding
guidelines was sufficient. However, the revelation of the Spectre
family of speculative execution attacks injected new complexities.

To block speculative attacks, prior work has proposed annotating
the program’s source code to mark secret data, with hardware
using this information to decide when to speculate (i.e., when only
public values are involved) or not (when secrets are in play). While
these solutions are able to track secret information stored on the
heap, they suffer from limitations that prevent them from correctly
tracking secrets on the stack, at a cost in performance.

This paper introduces SecSep, a transformation framework that
rewrites assembly programs so that they partition secret and pub-
lic data on the stack. By moving from the source-code level to
assembly rewriting, SecSep is able to address limitations of prior
work. The key challenge in performing this assembly rewriting
stems from the loss of semantic information through the lengthy
compilation process. The key innovation of our methodology is a
new variant of typed assembly language (TAL), Octal, which al-
lows us to address this challenge. Assembly rewriting is driven by
compile-time inference within Octal. We apply our technique to
cryptographic programs and demonstrate that it enables secure
speculation efficiently, incurring a low average overhead of 1.2%.

CCS Concepts

« Security and privacy — Side-channel analysis and counter-
measures; « Theory of computation — Type structures.

“Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution 4.0 International License.
CCS °25, Taipei

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1525-9/2025/10

https://doi.org/10.1145/3719027.3765116

Keywords

Side-channel attacks and mitigation, information-flow security

ACM Reference Format:

Shixin Song, Tingzhen Dong, Kosi Nwabueze, Julian Zanders, Andres Erbsen,
Adam Chlipala, and Mengjia Yan. 2025. Securing Cryptographic Software
via Typed Assembly Language. In Proceedings of the 2025 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’25), October
13-17, 2025, Taipei. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3719027.3765116

1 Introduction

Cryptographic software has strong security requirements and is
often strengthened to prevent information leakage through timing
side channels by adhering to constant-time coding, which forbids
secret-dependent values as branch conditions or memory addresses.

However, recent speculative-execution attacks, notably various
Spectre attacks [34-36, 39, 51], have invalidated the security guar-
antees offered by constant-time programming. Modern processors
employ aggressive speculative-execution mechanisms that predict
upcoming instructions to be executed and roll back architectural
state if the prediction is later found to be incorrect. While offer-
ing significant performance benefits, such speculative-execution
mechanisms introduce a large attack surface, enabling attackers to
trigger a program to execute unintended instructions speculatively
to access secrets and transmit them via timing side channels.

Recent work [9, 13] has uncovered multiple vulnerabilities in real-
world cryptographic libraries even under constrained speculative-
execution models, such as only mispredicting limited types of
branches. As modern processors evolve with ever-more-complex
speculation mechanisms, we need mitigation solutions that pro-
tect broader speculative behaviors. Practical mitigation needs to
navigate the complex trade-offs between security guarantees, per-
formance overhead, and hardware complexity.

Many mitigation solutions [17, 19, 50, 58, 60, 65] share a common
philosophy: identify secret data and then delay speculative execu-
tion for operations that may transmit such data. The key research
challenge in these approaches lies in how to identify the secret
data precisely without incurring high overhead. One promising

https://orcid.org/0009-0007-5638-5164
https://orcid.org/0000-0002-0514-923X
https://orcid.org/0009-0002-0770-0344
https://orcid.org/0009-0003-2615-637X
https://orcid.org/0000-0002-9854-7500
https://orcid.org/0000-0001-7085-9417
https://orcid.org/0000-0002-6206-9674
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719027.3765116
https://doi.org/10.1145/3719027.3765116
https://doi.org/10.1145/3719027.3765116

CCS 25, October 13-17, 2025, Taipei

design [19] is to augment the hardware with fine-grained taint
tracking at the register level and coarse-grained taint tracking at
the memory level (e.g., at page or section granularity). This archi-
tecture avoids the prohibitive costs of byte- or word-level tracking
while retaining sufficient granularity to enforce secure speculation.

However, this hardware design requires the software to parti-
tion secret and public data into distinct memory regions explicitly,
so that the hardware can interpret the secrecy status of the data
accurately using its coarse-grained taint-tracking capability. Per-
formance and security of the hardware design are contingent on
precise annotation of secret data. Prior projects, ProSpeCT [19]
and ConTExXT [50], set out to add this partitioning capability to
software through requiring fine-grained source-code annotations.
Specifically, these methods require programmers to mark variables
in the source code (e.g., C) as either secret or public. This informa-
tion is then used as follows: For heap data, a customized memory
allocator allocates secret and public objects in different memory
pools. Stack data is protected by annotating secret and public stack
variables manually to relocate them to different regions.

These source-level approaches work well for heap data but less
so for the stack. Critically, they are unable to partition the stack ac-
curately, requiring conservative partitioning and thereby suffering
from performance loss. These limitations are inherent to source-
level annotation methodologies. First, operating at the source level
gives no visibility or control over register spills. Consequently, if
a secret register is spilled to the stack, the programmer is forced
to mark the whole stack as secret conservatively, leading to over-
tainting and unnecessary performance overhead. Second, some
approaches relocate stack variables into global memory regions,
which may compromise functional correctness under concurrency.
Most importantly, source-level transformations heavily rely on
strong assumptions about compiler internals. However, given the
complexity and opaqueness of modern compilers, source-level trans-
formation suffers from a significantly enlarged trusted computing
base (TCB) and fragile compilation process that is difficult to verify.

1.1 This Paper

In this paper, we introduce SecSep, an assembly-transformation
framework that partitions stack data securely.

We allow key information (usually lost during compilation) to be
reintroduced in code through a new variant of typed assembly lan-
guage (TAL), Octal, which facilitates sound program transformation.
Octal is designed to enable static fine-grained taint tracking.

We design the type system by assigning dependent types and
taint types to all registers and data objects in memory. The key
idea is to leverage the dependent types to track the value ranges
of registers and memory objects, so that we can construct the full
picture of their points-to relationships throughout the program.
While precise points-to analysis is infeasible for arbitrary programs,
we take advantage of a domain-specific property, that is, crypto-
graphic software is typically written following the constant-time
programming discipline, making it amenable to our analysis. Octal
also ensures well-typed programs are memory-safe.

Building upon Octal, we design a program-transformation frame-
work SecSep consisting of two important components. The frontend
is a heuristic type-inference algorithm that operates on off-the-shelf

Shixin Song et al.

x86-64 assembly programs (plus debug tables already produced by
Clang, plus type annotations for function interfaces). The analysis
involves a set of heuristic rules to reason about pointer arithmetic
and loop counters. The outcome of the inference tool is an Oc-
tal program where the taint status of every memory operation is
identified explicitly.

The backend of our framework is the code-transformation tool
that rewrites assembly programs based on their taint types. It sup-
ports real-world cryptographic programs, which involve complex
interleaving of secret and public reads/writes and shared pointer-
based structures. After locating memory operations with taint types,
they are rewritten depending on their secrecy statuses.

We formally prove the type safety of Octal. We also prove that
SecSep’s transformation separates secret and public data while guar-
anteeing functional correctness. We implement a hardware ex-
tension that achieves secure speculation with register-level and
memory-segment-level taint tracking on the gem5 simulator [10,
38]. We evaluate SecSep’s transformation with the hardware ex-
tension using six cryptographic benchmarks [25] and show that it
enables secure speculation with a negligible overhead of 1.2% on
average.

In summary, we make the following contributions:

e We propose Octal, a variant of typed assembly language (TAL)
with static fine-grained taint tracking for assembly programs.

e We design a program-transformation framework SecSep that (1)
heuristically infers types for off-the-shelf cryptographic assembly
programs and (2) rewrites them to split their secret and public
data across coarse-grained memory regions.

e We prove soundness of the technique [55], provide a prototype
implementation, and carry out an empirical evaluation.

Availability. Our prototype for SecSep is open-sourced at https:
//github.com/MATCHA-MIT/secsep.

2 Background
2.1 Microarchitectural Side-Channel Attacks

Microarchitectural side-channel attacks exploit transmitter instruc-
tions that leave visible side effects on microarchitectural state like
caches [46, 61-63], TLBs [26], branch predictors [1, 22], and oth-
ers [2, 5, 18, 21, 28, 29, 40, 48, 52, 57, 59]. Cryptographic programs
prevent these attacks by following the constant-time coding disci-
pline, which avoids executing such transmitter instructions with
secret-dependent operands.

However, speculative-execution attacks [34-36, 39, 51] exploit
the side effects of speculatively executed transmitters to leak the
secrets, which are not blocked by the constant-time discipline.

2.2 Typed Assembly Language

Conventional assembly language omits most high-level semantic
information, making static analysis challenging. Typed assembly
language (TAL) [24, 27, 41-43] was introduced to regain some of
that information. We extend past results around memory safety to
information-flow tracking to guide program transformation.

https://github.com/MATCHA-MIT/secsep
https://github.com/MATCHA-MIT/secsep
https://github.com/MATCHA-MIT/secsep
https://github.com/MATCHA-MIT/secsep

Securing Cryptographic Software via Typed Assembly Language

3 Threat Model & Security Properties

We aim to protect cryptographic applications against transient-
execution attacks. Specifically, we assume the software is written
following the constant-time coding discipline, in which the program
avoids using secret-dependent values as branch conditions and
memory addresses. However, the underlying hardware employs
aggressive speculative-execution mechanisms, including prediction
on both direct and indirect branches, which can result in transient
instruction sequences that violate the constant-time requirements.

Our proposed assembly-rewriting technique is a key component
in a software-hardware codesign mitigation. On the software side,
our rewriting tool transforms the constant-time cryptographic pro-
grams to separate secret and public data into distinct regions. On
the hardware side, we use an existing Spectre mitigation [19] with
a fine-grained taint-tracking mechanism at the register level and
coarse-grained taint tracking at the memory level, for a good trade-
off between performance, cost, and security. The hardware uses the
taint-tracking information to delay the execution of any potential
transmitter instructions, which may leak information via timing
side channels, when their operands are tainted.

We use two observation models [[-], and [-] ., following nota-

pub’
tions from prior work [31], to constrain our software requirements:
constant-time and separating secret/public data. Specifically, [[-]
represents the observation trace of executing a program at the ar-

chitectural level. Supposing the architectural trace of executing

program P is S, 2, Si 2, , the observation trace is then defined
as [P] (So) = 0102

Here, [[-]|, records the trace of load/store addresses and branch
targets, and [[~]]pub records a trace of data values stored in the
public memory region. We then define public noninterference, the
software property guaranteed by SecSep, where S =1, S’ constrains
that two architectural states S and S’ have equal values in the public
memory region [55].

Definition 1 (Software Public Noninterference). A program P sat-
isfies software public noninterference for a specific public region if
for all initial configurations S and 8, if S >y, S, then [P](S) =
[P]..(S") and [[P]]pub(S) = [[P]]pub(S’).

We use {P[} (S) to denote the microarchitectural observation
trace of running program P on our out-of-order processor with
initial state S [31]. The hardware must obey the following condition.

Definition 2 (Hardware Public Noninterference). A processor sat-
isfies hardware public noninterference if for all programs P and
all initial states S, S, if [[P]]pub(s) = [[P]]pub(S’) and [P],(S) =

[P1ct(S"), then {P[(S) = {P}(S").

In summary, SecSep achieves secure speculation by ensuring
that the software component satisfies the public noninterference
contract. For the hardware component, we refer readers to the
ProSpeCT paper [19], which provides formal proof that the taint-
tracking hardware mechanism described above satisfies hardware
public noninterference. Together, the software-hardware contract
ensures end-to-end security of the overall system, where secret
data do not influence microarchitectural side channels, even in the
presence of speculative execution.

CCS 25, October 13-17, 2025, Taipei

4 Motivation and Overview
4.1 Limitations of Source-Level Annotation

A fundamental limitation of source-level code transformation used
by prior works [19, 50] lies in its heavy reliance on assumptions
about compiler internals. For example, to relocate secret stack vari-
ables, programmers must manually annotate their declarations with
the section label secret, and the compiler is expected to allocate
the variables in that section instead of the original stack. How-
ever, this strategy fails to guarantee public noninterference, due
to lack of control over register allocation, spilling, and compiler
optimizations.

To illustrate how such a strategy can go wrong in practice, we
present a case study from a cryptographic function salsa20_words.
Figure 1 shows both the annotated C code (Figure 1a) and the
corresponding assembly code generated by clang-16 (Figure 1b). In
the C code, the function takes a pointer d and a secret array s[16]
as input. It then declares a local array x[4][41], which is used to
hold secret data from array s (lines 7-8) and is further used for
computation in lines 11-12.

Given that array x holds secret data, a programmer can annotate
it with the section label secret, expecting the compiler to allocate
it in the secret-marked global region. However, the generated as-
sembly code shown in Figure 1b deviates significantly from this
expectation.

First, the compiler notices the array size is small enough to be
stored in registers and decides to skip memory allocation for x
completely. Specifically, in lines 6-9 of the assembly code, multiple
elements inside the secret input array (base pointer rsi) are loaded
into distinct registers, with no redirection to a secret region.

Second, we observe that in line 11, a secret register is spilled
onto the stack, mixing secret data with many other public stack val-
ues. Since the source-level annotation has no control over register
spilling, the programmer is forced to mark the whole stack as secret,
resulting in overtainting and serious performance degradation. For
example, according to our experiment on the salsa20 application,
this conservative approach results in 70% performance degradation.

4.2 Overview of SecSep

We propose SecSep, a framework to perform the secret-public mem-
ory separation at the assembly level. By operating after compilation,
we have full control over the memory layout. Our approach ad-
dresses the following two challenges.

First, we lack high-level semantic and pointer information. As
high-level semantic information is lost during compilation, we need
to recover it to identify which instructions operate on secret data
and need to be transformed. A further complication is the use
of weakly typed pointers and potential pointer aliasing, which is
particularly difficult to resolve without explicit type information.
To deal with this challenge, we design a variant of typed assembly
language called Octal and an inference algorithm to deduce type
information for off-the-shelf x86-64 programs.

Second, we face the challenge of performing assembly transfor-
mation under architectural constraints. Specifically, we may not use
extra registers, which would require complex register management
and register spilling. To deal with the challenge, we arrange our
memory layout to have the secret region (i.e., secret stack) and the

CCS 25, October 13-17, 2025, Taipei

Shixin Song et al.

1 vo@d salsazo_wor'“ds f salsa20_words:
2 (u1nt32_’F *d, uint32_t s[16]) { 1 salsa20_words:) # rdi: d, rsi: s, rsp: p
3 —-_attribute__ 2 5 # Public spill
4 (gsection("secret"))) static 3 # Public spill B movq %rdi, _64(%rsp)|p764,p756),0
5 91:t32_t x[4][4]; 4 , rgovq %rdit 76171(Zorsp) 5 # Source: line 7-8
6 int i; 5 ource: line 7- o\ [5.5464)1 o
; for (i=0; i<16; ++i) 6 movl (%rsi), %riad 6 movl (irsi)lss*ett, griad
; co47 - a[id. i o 7 movl 4(%rsi)lsst64:1 9rq1d
8 x[1/4]1[1i%4] = s[i]; 7 movl 4(%rsi), %ri1id ’
9 // Omit calculation on x 8 movl 8(%rsi), %rod 8 movl 8(%rsi)[sst60-1, yrod
0 ... 9 movl 12(%rsi), %eax 9 movl 12(%rsi)[ss+60.1 geax
11 for (i=0; i<16; ++i) 10 # Secret spill 10 # Secret spill
12 d[i] = x[i/41[i%4] + s[il; 11 movq %rax, -88(%rsp) 11 movq %rax, S5-88(%rsp)P-88p-80).1
13 3 12 .. 12

(a) Annotated source code

(b) Original assembly code

(c) Transformed assembly code

Figure 1: Program transformation: source-code annotation v.s. assembly rewriting

original stack (i.e., public stack) maintain a constant distance (5)
from each other. As a result, redirecting memory accesses between
the stacks only requires pointer offsetting by 8.

To illustrate the effectiveness of our mechanism, we revisit the
example in Figure 1. In Figure 1c, we show the type annotations de-
rived by our inference tool. For brevity, we only show the memory-
related annotations. Each memory operand is annotated with a
dependent type that constrains its memory-access range and a taint
type indicating secrecy. For example, in line 6, the array base pointer
rsi, which references the secret input, is inferred to access the range
of [s, s + 64) with taint type 1, indicating secrecy. In line 11, another
stack access is annotated with the access range as [p — 88, p — 80)
and is similarly marked as secret.

Transformation should relocate any memory operand with taint
type 1. For example, in line 11, the offset is incremented by § to
move the write to the secret stack. Additionally, the parent function
(not shown) adds § to the base pointer rsi before passing it as an
argument to the callee, ensuring all the accesses within the callee
are redirected to the secret stack.

The following sections go into detail on the main components
of our approach: type system (Section 5), type inference (Section 6),
and transformation (Section 7).

5 Octal

We propose Octal, a variant of typed assembly language [43] that
helps reason about information flow statically. The abstract ISA
machine for Octal applies taint tracking on registers and memory
at the byte level. This machine tracks the secret flow and does not
allow executing instructions that transmit tainted values through
side channels. For example, it gets stuck when executing load/store
with tainted addresses or branches with tainted conditions.

The goal of Octal’s type system is to ensure that a well-typed
program and the program generated from it by our transformation
are constant-time, thereby never getting stuck on this abstract
machine. It is challenging to reason statically about the program’s
taint flow, since high-level abstractions such as pointers and array
indices are missing in original x86-64 assembly programs. Octal
enriches programs with types that not only constrain the taint
status but also bound the values of registers and memory slots.

Furthermore, Octal splits memory into nonoverlapping slots
according to the memory layout of the source program, associating
a type to each memory slot. In this work, we only consider assembly

op = r|i|t]ig(ry,riis)®" Operand
inst = movqop,,op, | leaq op,, op, Instruction
| addq op;, op, | cmpq op;, op,
| jne £ | jmp £° | callq £7call-Oret
| retq | halt
I = jmp¢° |retq | halt Instruction
| inst; I sequence
F = {t1:L,....8, : I, fret : Tetq} Function
P = {fi:F,....fu:Fu} Program
R == {ri:(opty),...} Register file
M = {addry: (v1,t1)...} Memory
S = (R M, pc) State
e = x|ou|T|lede| e Dependent type
T = x|0|1|yVr Taint type
p = (er1) Basic type
R = {r:p...} Register type
M = {sl : (s;’ahd, Bi), .. } Memory type
S = (ARM) State type
I == {&:(A, R, Mp),...} Function type
P = {fi:N0,...} Program type

Figure 2: Octal syntax

programs compiled from constant-time C/C++ programs, so each
memory slot contains either a scalar, pointer, or array, the last of
which can have lengths not known at compile time, thanks to the
use of symbolic descriptions of address ranges.

This design choice offers an additional benefit for information-
flow tracking. Specifically, in cryptographic programs, although
each static instruction may access different memory bytes during
dynamic execution, it idiomatically only accesses data within the
address range corresponding to a specific data object in the source
program. Therefore, each static instruction in Octal programs has
fixed registers/memory slots acting as its taint source and destina-
tions, allowing easy regulation of taint flow statically with types.

5.1 Octal Syntax

Program Syntax. Octal (selected syntax in Figure 2) is built based
on x86-64. We require that each basic block end with halt, retq,

Securing Cryptographic Software via Typed Assembly Language

or an unconditional branch. Octal also requires that each function
f (except for the top-level one) has a basic block f.; that only
contains one return instruction to serve as the unique exit point
for the function, which simplifies the typing rules.

Octal also introduces type annotations on load/store operands,

branch instructions, and function calls (highlighted in blue in Fig-
ure 2). These annotations help to constrain well-typed programs,
which will be detailed in Section 5.2.
Type Syntax. As mentioned before, an Octal abstract machine,
with its machine state denoted as S = (R, M, pc), applies byte-level
taint tracking on the registers R and memory M and gets stuck on
insecure operations (e.g., load/store with tainted addresses).

Octal’s program type P is a map from function names to function
types, and a function type I' is a map from the function’s basic-block
labels to state types S, which serve as block preconditions.

A type S contains three parts: the type context A, register-file
type R, and memory type M. Specifically, A is a set of constraints
that must be satisfied by type variables in R and M. Partial map
R assigns register names to their dependent and taint types. A
well-formed program can only read from registers that appear in R.
Partial map M assigns disjoint memory slots (s) each to a region of
addresses whose contents are initialized (s*?'%) and a type of data
found therein. Each slot corresponds to a data object in the source
program or a register spill. Octal tracks pointers in registers and
memory using dependent types, and both memory slots s and valid
regions s"2 are sets of addresses represented by dependent types.
Hence, with the dependent types of load/store addresses, Octal can
easily track which memory slot is accessed by each instruction.

5.2 Typing Rules

In Octal, program type-correctness is determined by the type-
correctness of each function in the program, in turn determined
by the type-correctness of each block in the function. Intuitively,
the state type of a basic block (or more generally, an instruction
sequence) ensures that the abstract machine whose state satisfies
the type constraints can execute the block (instruction sequence)
without getting stuck. When the machine is about to jump to an-
other block at a branch instruction, its state should also satisfy the
target’s state type. Figures 3-5 elaborate with typing rules.

In general, each of the instruction-sequence typing rules is struc-
tured as follows. First, the instruction sequence’s state type should
provide enough constraints so that the abstract machine can ex-
ecute the first instruction in the sequence safely without getting
stuck. Second, the rule derives new type constraints for the machine
state after executing the first instruction. It requires that the next
instruction sequence to be executed is well-typed with respect to
the derived state type. Some examples illustrate the pattern.

TYPING-MOVQ-M-R constrains a load instruction to be memory-
safe and constant-time, via a type annotation tracking taint status
of the load data. It invokes TYPING-LoaD in Figure 4, which requires
that the load range fall in the initialized region in s (syqdar svalid)
for memory safety, and the taint type of data in the slot must satisfy
7. Octal also requires the load address to be untainted.

TYPING-MoVQ-R-M also constrains store instructions to be
memory-safe and constant-time. It invokes TYPING-STOREOP-SPILL
or TYPING-STOREOP-NON-SPILL depending on whether the store

CCS 25, October 13-17, 2025, Taipei

TYPING-MOVQ-M-R
A, R, M +1oad(ig(rp, riy is)>",8) : B
R =R[ro>] P.THI: (AR, M)

P,T + movq iq(rp, i, is)*",ro; I : (A, R,M)

TyYPING-MOVQ-R-M
A, R, M store(id(rb, Ti, iS)S,T’ 8, R[rl]) . (svalid’ ﬁ)
M = M[s — (Svalid’ﬁ)] P,F I (A,R, M/)

P,T +movqry,ig(ry, ri,is)> 1 : (AR, M)

TyPING-CMPQ-R-R
R[ri] = (e1, 1) R[ro] = (eo, 0)
P, T+ I: (A setFlag(R, (ep — €1, 79 V 11), cmpq), M)

P,T + empqry,ro; I : (AR, M)

TYPING-JNE
R[ZF] = (e =0,0)

A + isNonChangeExp (e = 0) getlnputVar(dom(o)) =0
getTaintVar(dom(o)) =0 Vx € dom(o). o(x) # T
PITrI:(AU{e=0}L,R M) L(¢) = (AN, R, M)

dom(M’") = dom(M) (Au{e#0},RM)Co(AN, R M)

P,T +jnet?;I: (AR M)

TypING-CALLQ
e=sp+c R[resp] = (e, 0) Mle-38,e] =(0,_)
Vx, ocann(x) = e,isPtr(x). A + isNonChangeExp(e — getPtr(e))
Vx € dom((fcall)- o—call(x) T Oret ZYI) - ?Z)
Rpy = Rlresp = (€= 8,01 (A Rpp, M) T ocat (P () (£))
B ¢ (ARM) (App RP1’ Mpl) = (0cant U 0ret) (P (f) (fret)
P.THI:(AUA,,Rp [rrsp = (e,0)], updateMem(M, M,,))

P,T F callq foalbrt T : (A, R, M)

Figure 3: Instruction-sequence typing

slot holds a spill or a data object in the source code. The difference
arises from the different lifetimes of the two types of slots.

When storing to a spill slot, as shown in TYPING-STOREOP-SPILL,
Octal always derives the type for the next state by overwriting the
slot’s valid region and type with the store range and store data type.
Even for a partial store, the type system “forgets” the type for the
data in the part of the slot that is not overwritten by the operand.

When storing to a nonspill slot, as shown in TYPING-STOREOP-
NoN-SpiLL, Octal requires the store data’s taint status to satisfy
the original taint type of the target memory slot. It also updates
the valid region and dependent type by combining the store data
and the existing data in the slot. For a partial store, Octal may only
consider the updated dependent type as T for simplicity. Since each
nonspill slot corresponds to a data object in the source file, we
impose uniformity on the slot’s taint type during its lifetime, i.e.,
the whole function. Then, we can use its taint type as a hint for its
target placement during transformation, to change all load/store
operands accessing it accordingly. We do not require the unified
taint for register spills since we consider the register spill lifetime
ends after the next register spill (or store) to the same slot.

CCS 25, October 13-17, 2025, Taipei

TYPING-ADDR
Rlrs] = (o) R[ri] = (&1,)
R v ig(rp,riris) : (ep + €; X is + ig, Tp V T3)

TypPIiNG-LoAD
R+ ig(rp, risis) : (€addr> 0)
A + isNonChangeExp(e,qdr — getPtr(s))
Saddr = [€addr» €addr + €) M(s] = (svalid’ (e,7))
A+ Spdar C sV € = (At spaqr =" 2e: T
¢/ =T = (A + isNonChangeExp(e))

A, R, M +load(ig(rp, ri,is)>F, ¢) : (€', 1)

TyPING-STOREOP-SPILL
R+ id(rb, Ti, is) : (eaddr; 0)
A + isNonChangeExp(e,qdr — getPtr(s))
Saddr = [€addrs €addr + C) s € dom(M)
isSpill(s) AF Saddr C S Avrr=r1

A, R, M store(iq(rp, ri, is)>", ¢, (€, 71)) : (Saddr» (€, 7))

TyPING-STOREOP-NON-SPILL
R+ ig(rp. ris is) : (€adar,0) Saddr = [€addr» €addr + €)
A + isNonChangeExp(e,qdr — getPtr(s))
M(s] = (s (eg, 7)) =isSpill(s)
At Suqdr C s Ar =1 € =(ArsM Cgua)?e T
¢/ =T = (A + isNonChangeExp(ey) A isNonChangeExp(e;))

AR, M+ store(ig(rp, ri,is) 7, ¢, (e1,71)) = (Sadar U s¥, (¢, 7))

Figure 4: Memory-operation typing (note that, predicate
isSpill relies on debug tables generated by Clang)

TYPING-JNE specifies the rule for a conditional-branch instruc-
tion. Octal requires the flag holding the branch condition to be
untainted so that the program is constant-time. Furthermore, Octal
also tracks whether each dependent type refers to pointer values
that might be changed by our transformation. To guarantee func-
tional correctness of the transformation, Octal requires that the
branch condition is independent from these pointer values, denoted
as isNonChangeExp(e). Then, Octal derives the next state types
after executing the branch, including both cases where the branch
is taken and not taken.

For the not-taken side, similar to previous cases for non-branch
instructions, Octal derives the next state type by adding the nega-
tion of the branch condition (i.e., e = 0) to the type constraints.

For the taken side, Octal derives the next state type by asserting
the branch condition (i.e., e # 0). The primary goal is to ensure
that the machine state at the branch instruction is well-formed
to jump to the target block. We define the subtype judgment for
state types as shown in Figure 5. Intuitively, this judgment ensures
that for any machine state S that satisfies a state type Sy, if S; is
a subtype of S;, then S must also satisfy S,. TYPING-JNE requires
that the state type for the branch’s taken side is a subtype of the
target block’s type I'(£). Note that in this rule, we are checking
the subtype relation against o(I'(¢)), where the branch annotation
o is a substitution that instantiates type variables in I'(¢) using
expressions over variables in the current block’s type context. We

Shixin Song et al.

REG-SUBTYPE
A+ ey =e; V (isNonChangeExp(e;) Ae; = T)
Ar1T=10

Ar (e, 11) E (e, 1)

MEM-SLOT-SUBTYPE
AFsy; Cs A + isSpill(sy) = isSpill(sy)
A+ e; =e; V (isNonChangeExp(e;) Ae; =T) Vs, =0
A1 =1,V (isSpill(s;) A sz = 0) getPtr(s;) = getPtr(sz)

A+ (s1, (e1,71)) E (52, (€2, 72))

STATE-SUBTYPE
A F A, Vr e dOl’l’l(Rz) A+ R] [r] C Rz [r
Vs € dom(My). Tsy. Ap + (s2 € s; A My[s1] T Mz[sz])

F (A1, Ry, My) E (Ag, Ry, My)

Figure 5: State subtyping

use o(-) as syntax sugar for applying the substitution o to a variety
of syntactic objects. Our type checker implements every entail-
ment check A F ... as a call to an SMT solver. In this rule, Octal
also has some extra constraints on o to guarantee type safety and
transformation correctness, detailed in [55].

TyPING-CALLQ specifies type constraints and changes of each
step of calling a function. It first derives the state type (A, Ry, M)
after pushing the return address, checking that the state type is
a subtype of the callee function’s first block type P (f)(f) with
respect to the function call’s annotation o,y. Here, oc,y represents
the type-variable substitution between the callee and the caller.

Next, Octal derives the state type after returning from the callee,
using the type of the callee’s exit block. There are several details
to note. First, we need to convert the return-state type represented
under the callee’s type context to the caller’s context. Compared to
the callee’s first block type P (f) (f), its return-state type P (f) (fret)
may introduce new type variables. The type annotation oyt maps
these new variables to the caller’s context. Hence, we perform
type-variable substitution using both substitutions to represent
the return-state type for the caller, i.e., (A, Ry, Mp,) = (0canl U
Oret) (P (f) (fret)). We then add the return state’s type constraints
Ap, to the next state type’s context. Second, the callee’s return-state
type only specifies how it updates the memory region covered by
its memory type, which is a subset of the memory region covered
by the caller’s memory type. On the other hand, according to our
typing rules for load and store operations, the memory regions
that do not belong to the callee’s memory type remain unchanged
across the function call. Following this philosophy, we apply the
callee’s changes to memory slots to the parent’s memory type to
get the final memory type after return (updateMem(M, M,,)). We
also pop the return address to get the final return-state type.

5.3 Type Soundness

In this section, we formalize the type safety of Octal programs, that
is, Octal guarantees well-typed programs to be executed on an Octal
abstract machine without getting stuck. We define well-formedness
of Octal abstract machine states as follows. A state S is well-formed,

Securing Cryptographic Software via Typed Assembly Language

ie. P,P kS, if all its registers and memory values satisfy con-
straints specified by the state type of the instruction sequence to be
executed next. Then, the type safety is formalized using the follow-
ing theorem. We provide details of the well-formedness definition
and the proof of the type safety theorem in [55].

THEOREM 3 (TYPE SAFETY). IfP,P tra, S, then for someS’, S —
S" and P, P v S’; orS is a termination state.

6 Type Inference

In this section, we introduce our type-inference algorithm that
generates types for assembly programs. Note that the inference
algorithm is heuristic and does not guarantee type correctness.
Instead, the correctness is checked separately by applying typing
rules introduced in Section 5.

According to our type definitions, we need to generate state
types of basic blocks and type annotations on instructions. Our
type-inference algorithm consists of three parts. First, we introduce
unification type variables to represent state types and type anno-
tations. Second, we plug the type expressions into Octal’s typing
rules to collect type constraints. Then, the third step is to solve for
arithmetic predicates on type variables, which will be used to enrich
the A of each block’s state type so that it satisfies the typing con-
straints. We iterate a process of learning new typing information
and exploring its implications.

6.1 Type initialization

We begin type inference by using type-unification variables to
represent state types (i.e., (A, R, M)) and type annotations (i.e.,
load/store’s destination-slot taint annotations; type-variable sub-
stitutions for branches and calls). Our goal is to add appropriate
constraints on these type variables to the type context A so that the
state types and annotations satisfy the typing rules in Section 5.2.

For register types, we simply assign a unification variable to each

register; and for type annotations, we follow a similar strategy. To
initialize memory typing M, we first need to figure out dom(M)
for each function.
Determine Memory Layout. Core cryptographic routines usually
do not allocate memory on the heap dynamically for reasons of
performance, so we consider the following three kinds of memory
slots to determine each function’s memory layout: (1) data objects
referenced by pointers in the function arguments; (2) local stack
referenced by the stack pointer; (3) global variables referenced by
global pointers.

We require simple type annotations in C source code, imple-
mented through our custom annotation system, to explain the rela-
tionships among function arguments. Figure 6 provides an example
using our annotation to describe a function argument (mlen) that
gives the size of an array that another argument (message) points
to. These annotations are compiled down to assembly and serve
as specifications for functions. We also obtain the following infor-
mation with simple compiler support: address ranges of function
stack frames using a Clang pass, and locations of global variables
indicated directly in assembly code. With the above support, our
inference tool focuses on inferring type information for basic blocks
within each function.

CCS 25, October 13-17, 2025, Taipei

1 VeSS

2 * @secsep message : @size(mlen), @valid(@, mlen);
3 * @secsep mlen : @taint[e];

4 */

5 void foo(uint8_t *message, uint64_t mlen) { ... }

Figure 6: Example type annotations for function arguments
in C source code, which means that (1) the pointer message
points to an array with size mlen, and the whole array is
initialized; (2) mlen is a public variable whose taint type is 0.

CONSTRAINT-MOVQ-M-R-UNKNOWN
R+ id(rb) i, lS) : (ea, Ta)
R =R[ro > (T,1)] PITrI: (AR M) =C
P,T + movqiq(rp, ri,is)>", ro; I+ (A, R, M)
= [eq, €4 +8) C s;s € dom(M); 7, =0;C

CONSTRAINT-MOVQ-R-M-UNKNOWN

R"id(rbsri:is): (ea>Ta) P,FI-I:(A,‘R,M) = C
P.T +movqry,ig(rp, ri, is)™ 1 : (AR, M)
= [eq, €4 +8) C s;s € dom(M); 7, =0;C

CONSTRAINT-JNE
R[ZFl=(e=0,7) P.TrI:(AU{e=0}L,RM)=C
P,T +jnet?;I: (AR M)
=7=0;(AU{e#0},R, M) Ca(T(l);C

Figure 7: Typing-constraints generation

6.2 Type-Constraint Generation

In this section, we describe rules to generate constraints on the
initialized block-state types. We provide several example rules
in Figure 7, where the generated constraints are highlighted .
Given a state type and the corresponding instruction sequence,
the constraint-generation rule consists of two parts, following a
similar structure to Octal typing rules.

First, a rule generates constraints on the state type so that the
current instruction executes safely. For example, the first two rules
in Figure 7 constrain that a load/store operation must access a mem-
ory slot from the memory type, and the address must be untainted.
The third rule requires that the branch condition is untainted.

Second, a rule derives the next state type after executing the
first instruction in the sequence and generates constraints for the
next type. Note that the state types are initialized using unification
variables not constrained by predicates, so we may not be able to
derive the next state type deterministically. For example, as shown
in CONSTRAINT-MoOVQ-R-M-UNKNOWN, we cannot determine the
target slot of the store operand and thereby are not able to update
the memory type correspondingly. In this case, we use the unmodi-
fied memory type to generate constraints for the next instruction
sequence. Note that these heuristic rules cannot generate all proper
type constraints. We rely on these partially correct constraints to
derive predicates and use the newly solved predicates to improve
constraint generation in the next round.

CCS 25, October 13-17, 2025, Taipei

6.3 Dependent-Type Inference

In this section, we show how we derive arithmetic predicates of
dependent type variables from type constraints. As shown in Fig-
ure 7, we generate two kinds of constraints for dependent types:
(1) state-subtype and (2) load/store-address constraints.

6.3.1 Solving Subtype Constraints. Octal requires that the state
type at each branch should be a subtype of the target block’s state
type (e.g., (A U {e #0},R, M) C o(I'(¢{)) in CONSTRAINT-JNE).
Intuitively, the subtype relation requires that the range of each
register/memory slot’s value at the target block, represented by
dependent type variables, should be a superset of the range of its
value at the branch that jumps to the target block. By unfolding all
subtype constraints, we can get concrete constraints on the range
of each dependent type variable. We propose a set of inference
rules that syntactically apply to the range constraints with certain
patterns and solve the predicates of each variable heuristically.
We primarily focus on inferring type variables used for pointer
arithmetic, which is useful for reasoning about dependent types
for load/store operations. Luckily, we target type inference for
cryptographic programs, whose dependent-type range constraints
share simple and intuitive patterns. Our empirical analysis found
they follow the two basic code patterns in Figure 8. In both examples,
we demonstrate applying our rules to figure out the range for type
variable a that represents rax’s dependent type at block .L0. We
denote the range of a as S, and derive constraints on S, by unfolding
all state subtype constraints.
Infer set of values. The first example (Figure 8a) shows the case
where rax contains different values when entering basic block .L0
from different branches. Specifically, the range of rax is {e;} when
jumping from .L1 and is {e;} when jumping from .L2. The subset
constraint and the derived solution can be formulated as follows:

g: 3 EZ;}}} = S, ={e, ex}.

Infer range of loop counter. The second example (Figure 8b)
shows the case where rax acts as a loop counter. rax is initialized
to eyp when entering the loop body from block .L1 and increased by
a constant step ¢y in each iteration. The loop ends when rax is equal
to the boundary value e,. Without loss of generality, we discuss the
case where ¢y > 0. According to our constraint-generation rules,
when jumping back to the loop head .L9, the state type satisfies
A={a€ S, a+co—e, #0}andR = {rax: a+ cg}. So we can use
the set {a+co:a €Sy Aa+cy— e, # 0} to represent the range of
rax before jumping back. Thus, the subtype constraint and the
corresponding heuristic rule can be formulated as follows:

Sa 2 {80} co > 0

= S, = [eo, en — cole -
SaQ{a+coza€SaAa+coien}} a = leo en = coleo

This rule extracts three key features from the constraints:

o ¢: the loop counter’s base value at the loop’s entrance;
o ¢): the per-iteration step value for the counter;
e ¢,: the loop boundary in the branch condition.

Then, the rule heuristically determines that the range of a is S, =
[eo, en — col¢,- Here, we use [a, b]. to represent a set of values in
range [a, b] with stride c¢. In our implementation, we apply the
above strategy to infer the range of loop counters.

Shixin Song et al.

LT
movq $ey, %rax
movq $ej, %rbx

jmp .LO
L1 .L2:
movq $eq, %rax movq $ey, %rax ;
jmp .LO jmp .LO .Lo:
A={aeSsbeSp}
\—$‘—‘ # R={rax:a,rbx:b}
addq $cp, %rax
.L0o: addg $cp, %rbx
A={ae S,} cmpq $e,, %rax
R ={rax:a} jne .LO

L |

(a) Infer set of values (b) Infer loop counter

Figure 8: Examples for dependent-type inference

Infer implicit relation between variables. Another challenge is
that assembly programs do not explicitly keep semantic relations
between type variables. However, these relations are crucial to
deriving accurate range constraints for variables. For example, in
Figure 8b, rax and rbx are increased consistently during each loop
iteration, but the loop condition only constrains the boundary of
rax when jumping back to the loop header. By unfolding the sub-
type constraints, we can only get the following constraints related
tob: S, 2 {e1} and Sp 2 {b + ¢1 : b € Sp}, which implies that Sy, is
infinite, thereby not accurately constraining the range of b.

As a solution, we introduce another rule that infers the linear
relation between type variables that share similar constraint pat-
terns. In our example, rax and rbx are increased synchronously
following the same loop structure, so we can use the range of rax
to constrain the range of rbx, as shown in the following formula.

Sp 2 {e1}
Sy 2{b+ci:beS,} :>5b=
Sa 2 {eo} {—(a_:;o)cl + e1 :aeSa}.

Se2{a+co:aeS, Aa+cy#en}

6.3.2 Solving load/store constraints. Octal also requires that the
dependent type of each load/store address belong to a specific mem-
ory slot. These constraints can be satisfied automatically with the
predicates derived from the subtype relation when the load/store
address and the memory slot have simple formulas, e.g., shifted
from the base pointer by a constant offset. However, when access-
ing an array with a variable length or a variable index, we need
extra predicates for bounds checks regarding the length/index type
variables, inferred by the following two methods.

Propagate branch conditions. First, the function may already
include proper bounds checks to guarantee memory safety. For
example, as shown in Figure 9a, line 10 loads from [p, p + 8], and
we lack the predicate n > 8 to validate it. On the other hand, the
program checks the branch condition n > 8 before jumping to . L0,
which implies this missing predicate. Motivated by this common
pattern, we propose the following rule to deduce predicates by
propagating branch conditions across basic blocks.

o1(A R, M) 3 ({o1(e)} U Ay, Ry, My)
O'Q(A, R,M) | ({0'2(6)} U Az,Rz,Mz) =e€eA

Securing Cryptographic Software via Typed Assembly Language

1 foo: foo:
2 # R={rdi:p,rsi:n} # foo (uint64_t p[8],
3 # M={[pp+n):_} # uint64_t k);
4 cmpg $8, %rsi # R={rdi:p,rsi:k}
5 jae .LO # M={[p,p+64):_}
6 retq # Missing predicate:
7 .Lo: # A={kel0,7]}
8 # Missing predicate: movq (%rdi, %rsi, 8), %rax
9 # A={n=>38}
10 movq (%rdi), %rax
(a) Boundary check (b) Implicit assumption

Figure 9: Missing predicates to validate memory accesses

Each subtype constraint listed here corresponds to one branch that
jumps to the specific block with state type (A, R, M). This rule
states that for all branches that jump to this block, if a predicate
is always satisfied before branching, then it can be added to the
block’s type context.

Reverse-engineer load/store operations. However, not all miss-
ing predicates can be deduced from branch conditions in the func-
tion. For example, as shown in Figure 9b, the function takes two
inputs: pointer p to an array with 8 entries and index k. The pro-
grammer implicitly assumes that the function is only called with
k € [0, 7] and loads from the kth entry of p without performing any
boundary checks. We propose a two-step method to infer these im-
plicit assumptions by reverse-engineering the necessary conditions
to validate the memory safety of load/store operations.

First, for each load/store address without any known target mem-
ory slot, we heuristically guess which slot it belongs to based on its
address pattern. For example, it is expected to belong to a memory
slot that shares the same base pointer.

Second, we constrain the load/store operation to fall in the slot
by adding the corresponding predicates to the current block’s state
type. As required by subtype constraints, this newly generated
predicate must also be satisfied by every previous basic block that
jumps to the current one. Hence, we apply the following rule to
propagate each newly generated predicate to the previous blocks.

o1({e} UA, R, M) 2 (A, Ry, My) o1(e) € Ay
oa({e} UA R, M) 2 (Ag, Ro, Ma) t = {aa(e) € Ay

Note that both inference strategies require us to substitute lo-
cal type variables properly for each basic block, i.e., to know the
branch annotation o. This type-variable substitution can be built
by unifying each register and memory slot’s type from the target
block’s state type and the state type before branching.

6.4 Valid-Region Inference

In this section, we explain how to infer valid regions of each basic
block’s state type, which is constrained by two aspects: (1) each
load instruction can only read from valid regions (TYPING-LOAD);
(2) each memory slot’s valid region at a branch instruction must
be a superset of its valid region at the destination block (MEM-
SLoT-SUBTYPE). Our overall inference strategy is to constrain the
valid region of each memory slot using constraint (2) and find
the most accurate solution that covers the largest valid region to
satisfy constraint (1). Specifically, the second constraint can be
derived from subtype constraints. For example, for o1 (A, R, M) 3

CCS 25, October 13-17, 2025, Taipei

L1 # R={rdi:p}, M={[p.p+64):(0,)}
movqg $0, %rax
jmp .LO
Lo: # R={rdi:p,rax:a}, M= {[p,p+ 64) : (s,)}
A={aec[0,63]}
movb %rsi, (%rdi, %rax)
addq $1, %rax
cmpq $64, %rax
jne .LO% # o(a)=a+1

e R N GO,

Figure 10: Infer the valid region of an array

(A1, R1, My) and memory slot s where M([s] = (s,), My[s] =
(s}’ahd, _), the constraint on s¥ld is gy (svalid) C s‘l’ahd.

For a memory slot that is fully initialized at the beginning of
the function, its valid region is always equal to its address range. It
is also straightforward to infer the valid region for a memory slot
that holds a primitive type of data (e.g., int) or a register spill since
the program usually writes to the full slot or leaves the full slot
uninitialized. Hence, its valid region is usually the slot address range
or the empty set. The major challenge is to infer the valid region for
an array, where the program writes to part of it at a time, steadily
increasing its valid region. We provide heuristic rules to represent
the valid region accurately using dependent type variables.

For example, as shown in Figure 10, the program fills an array by
looping over all its entries. We can derive the following constraints
on the array’s valid region at . L@.

[0/a] (s**lid) c 0 a€[0,63] valid
[a+1/a] (sid) € svlid Y [p+ap+a+1) =s =[p.p+a)

Our inference algorithm extracts the valid region’s boundary from
the pattern s**4 U [p + @, p + a + 1). The key insight is that the next
array write is always to the next uninitialized slot.

6.5 Taint-Type Inference

In this section, we demonstrate how to unify local taint variables at
each block with each function’s input taint variables and generate
necessary predicates to satisfy all constraints.

According to Section 5.2 and Section 6.2, Octal constrains taint
types via the following three aspects:

(1) Load/store addresses and branch conditions are untainted. De-
note each of their taint types as 7 = x; V x3 V ... x,. We can
rewrite the constraintas x; = 0Ax, = 0A...x, = 0.

(2) The taint type of the accessed memory slot is equal to the

taint annotation of a load/store operand (under some scenar-

ios). According to type-constraint generation, both the mem-
ory slot’s taint type and the load/store operand’s taint anno-
tation, denoted as xgot and xop, are only represented by taint
variables or constant taint values (instead of complex taint ex-
pressions). Therefore, the taint constraint can be written as

Xslot = Xop N Xop = Xslot>

If store data is tainted, then the store operand’s taint annotation

is also tainted. Denote the store data’s taint type as x; V x; V

-++V x, and the store operand’s taint type as x.p. We can write

the constraint as x; = Xop A X2 = Xop A -+ A Xp = Xop.

—
w
=~

In short, the taint constraints can be summarized in the form E; A
E; A --- A E,. Here, each Ej has the form x; = x, where x; and

CCS 25, October 13-17, 2025, Taipei

x5 are either taint variables or constant taint values. This formula
clearly constrains the taint flow among all taint variables.

Here is how we derive taint predicates. For each local taint vari-
able, we can identify its taint source represented by input taint
variables. If there is no taint source, we set it to 0. Otherwise, we
set it to the logical OR of all its taint sources. We can also collect
predicates for input taint variables in a similar form x; = x; and
add them to the state type of the function’s input block.

7 Transformation

We define a transformation that takes a well-typed Octal program
as input and generates another program that satisfies our software
contract, public noninterference (defined in Section 3). As discussed
in Section 4.2, the overall strategy of our transformation is to main-
tain a secret stack that is shifted from the original stack by & bytes.
If a stack slot contains secrets, we shift its location by § to move it
onto the secret stack. If a stack slot contains public data, we do not
change its location. Note that our transformation does not affect
heap/global variables, while we do use Octal’s type system to ensure
that they are used properly from an information-flow perspective.
We first present two basic transformation strategies and illustrate
how we apply these two strategies to transform programs. We
then formally prove that the transformation maintains the original
program’s functionality while guaranteeing public noninterference.

7.1 Two Memory-Relocation Strategies

Load/store instructions in x86-64 (and other ISAs) support the fol-
lowing addressing mode: taking a precalculated base pointer and
adding an offset to the pointer to derive the target address. There are
thus two basic applicable strategies to transform memory accesses
in assembly programs:

TransPtr We can modify the base pointer before it is used in the
memory operand so that the memory operand automatically
switches to accessing the relocated object.

TransOp When we want to shift the target address by a constant
offset, we can directly modify the memory operand to add
this offset.

However, each strategy has limited applicability. First, TransOp
is a context-insensitive change, which uniformly shifts the memory-
access address. As a result, TransOp is only suitable for the case
where we statically know how the data object accessed by the
instruction should be relocated (e.g., whether to move it to the
secret stack). However, the program may reuse the same instruction
to operate on public and secret data in different situations. For
example, the memset function might be called to set either public or
secret data objects, where we want to relocate them with different
offsets. Note that on the caller side, we may know more context
information such as whether the data object is secret or not. Hence,
we choose TransPtr rather than TransOp to transform those store
instructions in memset by modifying the pointer argument passed to
memset, so that all the store instructions inside the memset function
can automatically access the designated region.

On the other hand, when applying TransPtr to shift a base
pointer, all load/store operands using the same base pointer will
shift their target addresses. In other words, all memory slots ref-
erenced by the same base pointer will be relocated together by

10

Shixin Song et al.

TransPtr, so it is only suitable for the case where those referenced
slots share the same taint type. For example, a function may access
a struct that contains both secret and public fields (slots) through
the same base pointer of the struct. In this case, we use TransOp to
avoid relocating the public slots.

One important case worth discussing is about translating mem-
ory accesses to slots referenced by the stack pointer. On the one
hand, the stack pointer, stored in rsp, is used to reference different
memory slots on the function’s local stack, including both tainted
and untainted ones. So, we should not apply TransPtr to transform
the stack pointer. On the other hand, the program may pass base
pointers of stack objects as arguments to functions such as memset.
These pointers are stored in registers such as rdi according to
x86-64’s calling convention, and they are only used to access the
corresponding data objects instead of arbitrary slots on the stack.
Hence, although the pointer points to the stack, we can still apply
TransPtr as long as all slots within the corresponding object share
the same taint.

7.2 Transformation Details

Determine transformation strategy. The first step of our trans-
formation is to decide which transformation strategy to use for
each memory access. We first determine the strategy for each mem-
ory slot and transform all memory accesses to that slot with the
slot’s strategy. Given a function with input memory type M, we
generate a map o : dom(M) — {TransOp, TransPtr} that maps
each memory slot to its transformation strategy.

Following the discussion of the pros and cons of TransPtr and

TransOp in Section 7.1, we propose the the following approach to
decide which strategy to use: w(s) = TransPtr if and only if (1) s
is referenced by a pointer passed through a function argument, and
(2) all slots in M referenced by this pointer have the same taint
type.!
Transform load/store operands. Next, our transformation uses
a pass Cp to transform all load/store operands that access mem-
ory slots with transformation strategy TransOp. For each memory
operand, denoted as ig(rp, 14, is)*>7, s is the memory slot accessed
by the operand, and 7 is the slot taint type. If w(s) = TransOp and
7 # 0 (i.e., the slot might be tainted), Cop will rewrite the operand to
8+i4(rp, ri, is) so that its target address is shifted by § and relocated
to the secret region.

For instructions that perform load/store without explicit load/store
operands in their ISA representations (e.g., pushq, popq), Cop also
synthesizes the transformed behavior accordingly. Specifically, for
simplicity, we will use pushsecq and popsecq to represent push/pop
on the secret stack, which will be synthesized to valid x86-64 in-
structions in the final transformed program.

Transform pointer arguments. We define another pass Cp, to
perform TransPtr, which transforms pointer arguments passed to
each callee function accordingly so that they use the transformed
pointer to access designated regions. Specifically, from the callee
function’s perspective, if a pointer argument references tainted
slots with transformation strategy TransPtr, it should be shifted
by 8 by the caller at the call site, and no transformation is needed

'We also require that for slot s where its base pointer is a function argument and
w(s) = TransOp, its taint type is constant (0 or 1).

Securing Cryptographic Software via Typed Assembly Language

1 fchild: fparent_sec: fparent_pub: ‘

2 pushsecq %r12 pushsecq %r125t9:7 pushsecq %r125+t%7

3 movq $sec, %ri2 movq $ptr, %ri2

4 popsecq %ri2 movq %ri12, (%rsp)s?
5 #r12 is callqg child callqg child

6 # from tainted movq (%rsp)*?, %ri2
7 # stack movq %rax, (%ri2)

8 popsecq %r125+5.7 popsecq %r125+5.7

(a) r12 — tainted (b) Secret r12 (c) Public r12

Figure 11: Restore callee-saved registers’ taint

on the callee side. On the caller side, if the transformation strategy
of the slots referenced by the same pointer is also TransPtr, we
further propagate the transformation responsibility to the caller’s
call site. On the other hand, if the transformation strategy of those
slots is TransOp, then the pointer is not transformed yet, so we
need to add § to the pointer argument when passing it to the callee.
Restore callee-saved registers’ taint. With C,, and Gy, our
transformation can ensure that all memory operands accessing
secret data on the stack are redirected to accessing the secret stack.
However, recall that TransOp shifts a memory operand’s target
address to the secret stack as long as the corresponding memory
slot has taint type 7 # 0 (i.e., it might be tainted). In other words,
our transformation may conservatively redirect memory accesses
to the secret stack even though they may operate on the public data
under some circumstances, causing performance loss.

Specifically, each function usually saves callee-saved registers
to its stack if needed, restoring them before returning to the call
site. Since the callee-saved registers can be tainted or untainted de-
pending on the call site, we transform the function to always push
them to the secret stack to avoid potential leakage. For example, in
Figure 11, fparent_sec calls fchild with one callee-saved register
r12 containing secret data, while fparent_pub calls fchild with
r12 containing a public pointer. We then transform fchild to save
r12 to the secret stack. As a result, when returning to fparent_pub
after calling fchild, r12 is marked as tainted by a processor with
coarse-grained memory taint tracking and secure speculation. Since
r12 is used as the store address on line 7, and the processor de-
lays speculative memory accesses with tainted addresses to avoid
leaking secrets, this store will be delayed until the commit stage,
hurting performance.

We introduce another pass Ceajiee that saves public callee-saved
registers to the public stack before each call and retrieves them
afterward. Ceallee guarantees that when running the transformed
program on a machine that does coarse-grained taint tracking, the
callee-saved registers are never overtainted after function calls.

Extra stack space need not be allocated. As shown in Figure 11c,
fparent_pub pushes r12 to the secret stack slot s+ before using it,
while the corresponding slot s on the public stack is unused. Thus,
we can use s to save and restore the public value in r12 before and
after calling fchild (highlighted in Figure 11c).

Note that although Ccajee helps avoid unnecessary delays on
speculation, it inserts extra instructions into the program and may
cause performance overhead. We will evaluate this tradeoff by
measuring the performance with and without Cgjee in Section 8.2.

11

CCS 25, October 13-17, 2025, Taipei

7.3 Transformation Soundness

Functional Correctness. First, we define a simulation relation
P,P + § < S, which correlates abstract machine states running
the transformed program and the original program P. Intuitively,
the simulation relation maps the relocated memory data objects in
the transformed program’s state to those in the original program’s.
It also requires that paired objects and registers in the two states
have matching values as long as they are not pointers that might
be changed by TransPtr.

Denoting our overall transformation as C, we can formalize the
functional correctness of our transformation using the following
theorem.

THEOREM 4 (FUNCTIONAL CORRECTNESS). If P,P tp S and

P,P v S < S, then there exists Sy and S| such that S Inst, S1,
S’ m S1,andP,P + S < Si;0rS and S’ are termination states.
Public Noninterference. Next, we briefly justify that the trans-
formed program satisfies software public noninterference. In our
transformation, we pick the address shift § so that || is larger than
the input program’s maximum stack size. Then, we can denote the
original stack region as spub = [Spjp; + 9, Spiy;) and the new secret
stack region as Ssec = [Spy; + 20, Py + 6), where sp; ., is the stack
base. Intuitively, C will apply either TransOp or TransPtr to en-
sure that every instruction that accesses the original stack sp,p, and
operates on tainted data will have its target address shifted by § and
access the secret stack s;. instead. Hence, C successfully ensures
that the transformed program never stores secrets to the public
stack region, thereby satisfying software public noninterference.

Detailed formalization of the transformation and proof for the
two properties can be found in [55], where we focus on the proof
for major passes Cop and Cpir and omit details for the optional pass
Ceallee that is relatively more straightforward.

8 Evaluation

8.1 Implementation and Experiment Setup

SecSep Toolchain. We implement a prototype toolchain in OCaml,
using Z3 [20] as the SMT solver. It includes (1) a parser for SecSep’s
C source code annotations, (2) a parser for compiled x86-64 assem-
bly programs, (3) type-inference rules and algorithms (Section 6),
(4) a checker that validates inferred types against typing rules (Sec-
tion 5.2), and (5) transformation based on inferred types (Section 7).
This prototype is designed to cover the instructions in the bench-
marks used for evaluation, and can be extended to support more
instructions if needed. The toolchain incorporates LLVM/Clang to
compile both the original and the transformed benchmark.
Hardware Defense. We implement our hardware-defense part
in gem5 simulator v22.1 [10, 38] replicating the defense idea from
ProSpeCT [19]. Specifically, modules including ROB, register file,
scheduler (InstructionQueue),load/store queue, and branch squash
logic (Commit, IEW) are modified to support taint tracking and to
delay transmitter instructions that leak secrets. We apply a microar-
chitecture configuration similar to that used in prior work on secure
speculation [17]. We model an 8-issue out-of-order superscalar pro-
cessor with 32 load-queue entries, 32 store-queue entries, and 192
ROB entries. We use a tournament branch-prediction policy with

CCS 25, October 13-17, 2025, Taipei

(a) Software overhead with hardware defense disabled

Shixin Song et al.

(b) Comprehensive overhead with hardware defense enabled

50 4. 100 44 40. 01.4 15, 51,

g 407 i 2 80’

g 3.01 g 60 -

o 2.07]]

< 1.01 10 £ 407 e

g 00- - - .—H 2401] °>-’ 204 ’_ﬂ_‘; —‘

o U7 =] o 1 2.4 5
-1.0 0

.
salsa20 gnads1Z (acha20 95519 po\y1302 425519 519" AVO

[ProSpeCT (public stack)”

[ProSpeCT (secret stack)

salsa?0 gnas12 nacha20 15519 (1305) ogyg sign AVO

3 SecSep (no Ceaee) [0 SecSep

Figure 12: Execution-time overhead of transformed programs relative to original programs. * means the scheme is not secure.

4096 BTB entries and 16 RAS entries. The memory system models
a 32KB 4-way L1 I-cache, a 64 KB 8-way L1 D-cache, and a 2 MB
16-way L2 cache, with 64 B cache lines.
Experiment Setup. We evaluate SecSep on six cryptographic bench-
marks: our own implementation of salsa20 and five other bench-
marks from BoringSSL [25] (sha512, chacha20, poly1305, x25519
and ed25519_sign). ed25519_verify is excluded due to the cur-
rent lack of declassification support, which can be implemented
with minor extensions (see Section 9). To minimize the instability
due to cold caches, each benchmark is modified to repeat its main
routine 100 times. In addition, we apply slight changes to some of
the benchmarks, the details of which can be found in [55].

We conduct our experiments on a test platform equipped with an
Intel® Core™ i9-14900K CPU. Benchmarks are transformed using
d = —8 MB and simulated in gem5 under syscall-emulation mode.

8.2 Performance of Transformed Programs

We evaluate and compare the performance overhead of the follow-
ing four transformation schemes:

(1) ProSpeCT (public stack): Manually annotate and relocate secret
stack variables, while treating the original stack as public. Note
that it cannot relocate secret stack spills and thus is insecure.

(2) ProSpeCT (secret stack): Manually relocate public stack vari-
ables while treating the original stack as secret. This approach
conservatively protects any register spills and thus is secure.

(3) SecSep (no Cellee): Perform transformation passes Cop and Cp.

(4) SecSep: Perform all transformation passes, Cop, Cptr, and Ceallee-

Software Overhead. We compare the execution time of trans-
formed programs running on unmodified hardware, scaled to the
execution time of the original program, shown in Figure 12a. This is
to understand the software overhead introduced by the additional
or transformed instructions and their microarchitectural impacts.
On average, all the schemes have relatively low overhead below
4.2%, with ProSpeCT (public stack) having the highest overhead and
SecSep (n0 Ceallee) having a close-to-zero overhead. The performance
difference mainly comes from the number of extra instructions
introduced during transformation and whether the transformed
program accesses regions far from the stack, which can result in
worse cache performance.
Comprehensive Overhead. We now examine the execution time
of the transformed programs on hardware equipped with the de-
fense, shown in Figure 12b. This is to understand how precisely
each transformation separates secret/public data and the combined
overhead introduced by software and hardware.

12

Benchmark ProSpeCT (pub stack) SecSep
Name LOC #F #F #Var #Anno #Arg #Anno
salsa2e 72 5 3 9(5) 4(2) 6 5
shas512 290 16 3 24 (2) 14 (1) 6 5
chacha2e 100 7 3 8 (7) 4(3) 8 7
x25519 1034 41 5 | 361(11) 335 (4) 10 7
poly1305 314 11 7 | 33(32) 26 (25) 11 74
ed25519_sign 2314 72 11 | 512(77) 476 (69) 25 24

Table 1: Comparison of annotation efforts between ProSpeCT
and SecSep. #F denotes the number of functions present in the
benchmark, while #F’ denotes the number of functions called
during the execution of the benchmark. #Var denotes the
number of stack variables that need to be examined for cor-
rect annotation in ProSpeCT, and #Arg denotes the number
of function arguments examined by SecSep. #Anno reports
the number of lines of annotation.

On average, SecSep achieves the lowest overhead of 1.2% among
all schemes, while ProSpeCT (secret stack) can incur as high as
151.1% overhead. Compared to other secure schemes, SecSep ben-
efits from a more precise secret/public data separation, thereby
minimizing overtainting and enabling efficient execution when
the defense is enabled. ProSpeCT (public stack) also achieves low
overhead. However, its performance gains stem from undertainting,
which compromises security. Nevertheless, it remains slower than
SecSep, likely due to the notable software overhead shown in 12(a).
Effect of Ceapiee- To assess the role of Ceajiee, we compare SecSep (no
Ceallee) With SecSep. When Cealiee is absent, the software overhead
is lowered by 0.9%. However, a significant overhead increase of
25% occurs when the hardware defense is enabled, highlighting
the severity of overtainting caused by called routines. Therefore,
despite adding extra instructions, Ceallee is essential for efficient
secure speculation. Hence, we include it as a key component in
SecSep’s standard transformation scheme.

8.3 Manual Effort

We also compare the manual effort required by ProSpeCT and SecSep
to annotate the source code for transformation as shown in Table 1.
We focus on ProSpeCT’s public-stack scheme, as it exhibits efficient
execution and can be secure for certain benchmarks [19]. ProSpeCT
requires examining stack variables in all functions (denoted as F),
while SecSep only requires examining arguments of functions in
the binary’s call graph (denoted as F’). For fair comparison, we

Securing Cryptographic Software via Typed Assembly Language

also count the stack variables and ProSpeCT annotations when
examining only F’, with these numbers enclosed in parentheses.

Note the number of SecSep annotations grows linearly with the
number of function arguments, because SecSep only requires identi-
fying the memory layout and taint types of all function arguments
for functions called during the execution of an application (F’).
The annotation burst in poly1305 is due to the frequent use of a
17-field structure as function arguments, while 14 of them share
identical attributes and thus identical annotations. Writing SecSep
annotations takes low effort since cryptographic functions usually
have clear interfaces and seldom use complex data structures with
unpredictable sizes (e.g., linked lists).

We also observe that the number of variables to examine using
ProSpeCT (#Var) is generally higher than the number of function
arguments to examine using SecSep (#Arg), even when the scope
is restricted to F> when counting #Var. This pattern indicates that
SecSep places less burden on the user by requesting only function-
interface-level annotations to harden cryptographic programs.

9 Limitations and Future Work

While SecSep offers appealing features to rewrite assembly pro-
grams and separate secret/public data automatically, we acknowl-
edge that it has several limitations worth discussing. First, we use
heuristic-based type inference to transform assembly programs
compiled by the off-the-shelf compiler LLVM, where the heuris-
tics are developed through an empirical review of these assembly
programs. The limitation is that it is not guaranteed to handle all
possible assembly code patterns, and we need new heuristics for
new compiler optimizations. This limitation can be alleviated by
more engineering effort to derive better heuristics.

Second, our inference algorithm relies on extra information (e.g.,
memory layout, valid regions, and taint) provided by source-code
annotations to generate types. On the one hand, it is relatively
straightforward for the programmer to provide these annotations
since they only need to emphasize the high-level meanings of func-
tion arguments. On the other hand, we acknowledge that extra
manual effort is required to go through each function argument,
thereby increasing the barrier to using our tools (evaluated in Sec-
tion 8.3). Future work might be conducted to improve the inference
algorithm to lift the need for these manual annotations.

Third, we provided a prototype to demonstrate the overall idea,
while more features could be supported to improve the usabil-
ity of our tool. For example, declassification is an essential no-
tion in cryptographic programs supported by prior works such as
ProSpeCT [19] but not included in our type system. To extend our
prototype to support declassification, one can define a special func-
tion that takes a secret input and writes it to a given address in the
public region (passed as an argument of the function). The function
is excluded from type inference and checking, so the program can
call this function to write secrets to public regions for declassifi-
cation. SecSep can also be improved to be compatible with more
programs by supporting dynamically linked libraries and handling
analysis with dynamically allocated heap data and pointer type
casting.

13

CCS 25, October 13-17, 2025, Taipei

10 Related Work

We first discuss prior works on typed assembly language to justify
the novelty and contribution of Octal. Next, we discuss prior mit-
igations, including software and hardware approaches, that aim
to protect cryptographic programs against speculative-execution
attacks. We also discuss prior work that transforms programs to
separate secret and public data via a compiler approach.

Typed assembly language. Prior works [24, 27, 41-43] propose
typed assembly language (TAL) and type-preserving compilation
from high-level programs to TAL, where the types help guarantee
the security of assembly programs. Instead of compiling high-level
programs to generate assembly programs, SecSep rewrites assembly
programs generated by an off-the-shelf compiler (LLVM) while us-
ing inferred types to guarantee security and functional correctness.
Hence, the transformed programs still benefit from the optimiza-
tions of realistic compilers.

Jiang et al. [33] also propose a type system and corresponding
type-inference algorithm for assembly programs. Their type system
introduces more accurate information-flow tracking at bit granular-
ity and helps detect side-channel vulnerabilities in cryptographic
libraries. Note that the soundness of their type system relies on an
assumption of memory safety, while our type system accurately
tracks possible address ranges of each memory access and guaran-
tees memory safety.

Other prior works [6, 8, 54] design information-flow type sys-
tems to guarantee that well-typed programs satisfy speculative
constant time and implement their approaches in the Jasmin frame-
work [3]. In this framework, the developers directly program in
Jasmin, an assembly-like programming language, which requires
more manual effort compared with programming in higher-level
languages such as C and is not compatible with some off-the-shelf
cryptographic libraries such as BoringSSL [25].

Software mitigations against Spectre. Several prior works [6, 8,
16, 44, 45, 47, 53, 54, 56, 66] harden cryptographic programs against
Spectre attacks by analyzing the programs’ speculative control flow
and blocking insecure speculation at the software level, e.g., by
memory-fence insertion or speculative load hardening (SLH) [12].
Many of these approaches [16, 44, 45, 47, 56, 66] introduce large
performance overhead since they unavoidably block safe specu-
lation conservatively when blocking insecure speculation. Other
works [6, 8, 53, 54] managed to achieve speculative noninterfer-
ence with marginal overhead by applying SLH intelligently, but
they are built upon research-prototype source languages such as
FaCT [15] or Jasmin [3, 4], thereby not compatible with off-the-
shelf cryptographic libraries such as BoringSSL [25]. Furthermore,
many of them [8, 16, 47, 53, 54, 56, 66] only consider speculation
at conditional branches in their speculative control-flow analysis,
so they cannot prevent leakage introduced by other speculation
primitives [14, 30, 32, 35, 36, 49].

Hardware mitigations against Spectre. Prior works [7, 17, 37, 58,
64, 65] adopt hardware taint tracking and delay speculative opera-
tions that transmit secrets. These pure hardware solutions require
no software changes but face challenges in identifying secret data in
memory. STT [65] and others [7, 58, 64] only consider speculatively
loaded data as secrets, while leaving nonspeculatively loaded data
unprotected, thereby not guaranteeing constant time [31]. SPT [17]

CCS 25, October 13-17, 2025, Taipei

solves this problem by considering all data loaded from memory
as tainted and only marking data as public if it is transmitted by
the program nonspeculatively, but it introduces complex hardware
changes to achieve good performance.

The authors of ProSpeCT [19] and others [23, 50] propose to

make the software separate secret and public data into coarse-
grained regions so that the hardware can easily identify secrets.
Our paper provides an assembly-rewriting approach to generating
programs satisfying this requirement, which offers more accurate
separation and requires less manual effort.
Compiler approach to separate secret and public data. Conf-
LLVM [11] also uses a transformation technique that separates
secret/public stack data into different regions. However, its static
analysis cannot guarantee a program never writes secret data to the
public region, so it relies on inserted run-time checks to ensure the
correctness of the separation, which introduces extra overhead.

11 Conclusion

This paper proposed Octal, a new variant typed assembly language
that helps rewrite cryptographic programs so that they split their
secret and public data across coarse-grained memory regions. We
provide a heuristic inference algorithm to infer the types of off-
the-shelf cryptographic programs and automate the transformation
process. The transformed programs enable hardware with fine-
grained taint tracking at the register level and coarse-grained taint
tracking at the memory level to achieve secure speculation with
low performance overhead.

Acknowledgments

The authors thank the Matcha Group (MIT) for their help and
the anonymous CCS reviewers for their feedback. This work was
supported in part by a gift from Amazon; by the Air Force Office of
Scientific Research (AFOSR) under grant FA9550-22-1-0511; by ACE,
one of the seven centers in JUMP 2.0, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA.

References

[1] Onur Aciigmez, Cetin Kaya Kog, and Jean-Pierre Seifert. 2007. Predicting secret
keys via branch prediction. In Cryptographers’ Track at the RSA Conference.
Springer, 225-242.

Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida

Garcia, and Nicola Tuveri. 2019. Port contention for fun and profit. In 2019 IEEE

Symposium on Security and Privacy (SP). IEEE, 870-887.

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin
Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and
Pierre-Yves Strub. 2017. Jasmin: High-assurance and high-speed cryptography. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 1807-1823.

[4] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien
Koutsos, Vincent Laporte, Tiago Oliveira, and Pierre-Yves Strub. 2020. The last
mile: High-assurance and high-speed cryptographic implementations. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 965-982.

[5] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner,

and Hovav Shacham. 2015. On subnormal floating point and abnormal timing.

In 2015 IEEE Symposium on Security and Privacy. IEEE, 623-639.

Santiago Arranz Olmos, Gilles Barthe, Chitchanok Chuengsatiansup, Benjamin

Gregoire, Vincent Laporte, Tiago Oliveira, Peter Schwabe, Yuval Yarom, and

Zhiyuan Zhang. 2025. Protecting cryptographic code against Spectre-RSB:(and,

in fact, all known Spectre variants). In Proceedings of the 30th ACM International

Conference on Architectural Support for Programming Languages and Operating

Systems, Volume 2. 933-948.

Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and Radu Teodorescu. 2019.

SpecShield: Shielding speculative data from microarchitectural covert channels.

[2

=

=

14

—
&

—
)

=
=2

[11

[12

(13

[14

[15

[16]

(17

[18

[19

)
=

[21

[22]

[23

&
2

Shixin Song et al.

In 2019 28th International Conference on Parallel Architectures and Compilation
Techniques (PACT). IEEE, 151-164.

Gilles Barthe, Sunjay Cauligi, Benjamin Grégoire, Adrien Koutsos, Kevin Liao,
Tiago Oliveira, Swarn Priya, Tamara Rezk, and Peter Schwabe. 2021. High-
assurance cryptography in the Spectre era. In 2021 IEEE Symposium on Security
and Privacy (SP). IEEE, 1884-1901.

Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-
dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019. SMoTher-
Spectre: Exploiting speculative execution through port contention. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security
(London, United Kingdom) (CCS ’19). Association for Computing Machinery,
New York, NY, USA, 785-800. doi:10.1145/3319535.3363194

Nathan L. Binkert, Bradford M. Beckmann, Gabriel Black, Steven K. Reinhardt,
Ali G. Saidi, Arkaprava Basu, Joel Hestness, Derek Hower, Tushar Krishna, So-
mayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib Bin Altaf, Nilay
Vaish, Mark D. Hill, and David A. Wood. 2011. The gem5 simulator. SGARCH
Comput. Archit. News 39, 2 (2011), 1-7. doi:10.1145/2024716.2024718

Ajay Brahmakshatriya, Piyus Kedia, Derrick P. McKee, Deepak Garg, Akash Lal,
Aseem Rastogi, Hamed Nemati, Anmol Panda, and Pratik Bhatu. 2019. ConfLLVM:
A compiler for enforcing data confidentiality in low-level code. In Proceedings of
the Fourteenth EuroSys Conference 2019. 1-15.

Chandler Carruth. n.d.. Speculative load hardening. https://llvm.org/docs/
SpeculativeLoadHardening.html

Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Dean Tullsen, Deian
Stefan, Tamara Rezk, and Gilles Barthe. 2020. Constant-time foundations for
the new Spectre era. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (London, UK) (PLDI 2020).
Association for Computing Machinery, New York, NY, USA, 913-926. doi:10.
1145/3385412.3385970

Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi, Gilles Barthe, and Deian
Stefan. 2022. SoK: Practical foundations for software Spectre defenses. In 2022
IEEE Symposium on Security and Privacy (SP). IEEE, 666-680.

Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S. Wahby,
John Renner, Benjamin Grégoire, Gilles Barthe, Ranjit Jhala, and Deian Stefan.
2019. FaCT: A DSL for timing-sensitive computation. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
174-189.

Rutvik Choudhary, Alan Wang, Zirui Neil Zhao, Adam Morrison, and Christo-
pher W. Fletcher. 2023. Declassiflow: A static analysis for modeling non-
speculative knowledge to relax speculative execution security measures. In Pro-
ceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security. 2053-2067.

Rutvik Choudhary, Jiyong Yu, Christopher Fletcher, and Adam Morrison. 2021.
Speculative privacy tracking (SPT): Leaking information from speculative ex-
ecution without compromising privacy. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture. 607-622.

Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter.
2009. Practical mitigations for timing-based side-channel attacks on modern x86
processors. In 30th IEEE Symposium on Security and Privacy. IEEE, 45-60.
Lesly-Ann Daniel, Marton Bognar, Job Noorman, Sébastien Bardin, Tamara
Rezk, and Frank Piessens. 2023. ProSpeCT: Provably secure speculation for
the Constant-Time policy. In 32nd USENIX Security Symposium (USENIX Security
23). 7161-7178.

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In
Proceedings of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS 08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337-340.
Dmitry Evtyushkin and Dmitry Ponomarev. 2016. Covert channels through
random number generator: Mechanisms, capacity estimation and mitigations. In
Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 843-857.

Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry Ponomarev.
2018. BranchScope: A new side-channel attack on directional branch predictor.
ACM SIGPLAN Notices 53, 2 (2018), 693-707.

Jacob Fustos, Farzad Farshchi, and Heechul Yun. 2019. SpectreGuard: An efficient
data-centric defense mechanism against Spectre attacks. In Proceedings of the
56th Annual Design Automation Conference 2019. 1-6.

Neal Glew and Greg Morrisett. 1999. Type-safe linking and modular assem-
bly language. In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. 250-261.

Google. n.d.. BoringSSL. https://boringssl.googlesource.com/boringssl

Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation
leak-aside buffer: Defeating cache side-channel protections with TLB attacks. In
27th USENIX Security Symposium (USENIX Security 18). 955-972.

Dan Grossman and Greg Morrisett. 2000. Scalable certification for typed assembly
language. In International Workshop on Types in Compilation. Springer, 117-145.
Johann Grof3schidl, Elisabeth Oswald, Dan Page, and Michael Tunstall. 2009. Side-
channel analysis of cryptographic software via early-terminating multiplications.

https://doi.org/10.1145/3319535.3363194
https://doi.org/10.1145/2024716.2024718
https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1145/3385412.3385970
https://boringssl.googlesource.com/boringssl

Securing Cryptographic Software via Typed Assembly Language

In International Conference on Information Security and Cryptology. Springer,
176-192.

Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-
gard. 2016. Prefetch side-channel attacks: Bypassing SMAP and kernel ASLR. In
Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 368-379.

Roberto Guanciale, Musard Balliu, and Mads Dam. 2020. InSpectre: Breaking
and fixing microarchitectural vulnerabilities by formal analysis. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security.
1853-1869.

Marco Guarnieri, Boris Kopf, Jan Reineke, and Pepe Vila. 2021. Hardware-
software contracts for secure speculation. In 2021 IEEE Symposium on Security
and Privacy (SP). IEEE, 1868-1883.

Jann Horn. 2018. Speculative execution, variant 4: Speculative store bypass.
https://project-zero.issues.chromium.org/issues/42450580. (2018).

Ke Jiang, Yuyan Bao, Shuai Wang, Zhibo Liu, and Tianwei Zhang. 2022. Cache
refinement type for side-channel detection of cryptographic software. In Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security. 1583-1597.

Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative buffer overflows:
Attacks and defenses. arXiv preprint arXiv:1807.03757 (2018).

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre attacks: Exploiting speculative execution. In 40th
IEEE Symposium on Security and Privacy (S&P’19).

Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu Song, and Nael
Abu-Ghazaleh. 2018. Spectre returns! Speculation attacks using the return stack
buffer. In 12th USENIX Workshop on Offensive Technologies (WOOT 18).

Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish
Narayanasamy, and Baris Kasikci. 2021. DOLMA: Securing speculation with
the principle of transient non-observability. In 30th USENIX Security Symposium
(USENIX Security 21). 1397-1414.

Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, Matteo Andreozzi, Adria Armejach, Nils Asmussen, Srikant Bharad-
wayj, Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues Carvalho,
Jerénimo Castrillon, Lizhong Chen, Nicolas Derumigny, Stephan Diestelhorst,
Wendy Elsasser, Marjan Fariborz, Amin Farmahini Farahani, Pouya Fotouhi,
Ryan Gambord, Jayneel Gandhi, Dibakar Gope, Thomas Grass, Bagus Hanind-
hito, Andreas Hansson, Swapnil Haria, Austin Harris, Timothy Hayes, Adrian
Herrera, Matthew Horsnell, Syed Ali Raza Jafri, Radhika Jagtap, Hanhwi Jang,
Reiley Jeyapaul, Timothy M. Jones, Matthias Jung, Subash Kannoth, Hamidreza
Khaleghzadeh, Yuetsu Kodama, Tushar Krishna, Tommaso Marinelli, Christian
Menard, Andrea Mondelli, Tiago Miick, Omar Naji, Krishnendra Nathella, Hoa
Nguyen, Nikos Nikoleris, Lena E. Olson, Marc S. Orr, Binh Pham, Pablo Prieto,
Trivikram Reddy, Alec Roelke, Mahyar Samani, Andreas Sandberg, Javier Setoain,
Boris Shingarov, Matthew D. Sinclair, Tuan Ta, Rahul Thakur, Giacomo Travaglini,
Michael Upton, Nilay Vaish, Ilias Vougioukas, Zhengrong Wang, Norbert Wehn,
Christian Weis, David A. Wood, Hongil Yoon, and Eder F. Zulian. 2020. The
gemb5 simulator: Version 20.0+. CoRR abs/2007.03152 (2020). arXiv:2007.03152
https://arxiv.org/abs/2007.03152

Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative execution
using return stack buffers. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 2109-2122.

Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and Berk Sunar. 2019.
Memjam: A false dependency attack against constant-time crypto implementa-
tions. International Journal of Parallel Programming 47 (2019), 538-570.

Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Frederick
Smith, David Walker, Stephanie Weirich, and Steve Zdancewic. 1999. TALx86: A
realistic typed assembly language. In 1999 ACM SIGPLAN Workshop on Compiler
Support for System Software (Atlanta, GA, USA). 25-35.

Greg Morrisett, Karl Crary, Neal Glew, and David Walker. 1998. Stack-based
typed assembly language. In International Workshop on Types in Compilation.
Springer, 28-52.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. 1999. From system F
to typed assembly language. ACM Transactions on Programming Languages and
Systems (TOPLAS) 21, 3 (1999), 527-568.

Nicholas Mosier, Hamed Nemati, John C Mitchell, and Caroline Trippel. 2024.
Serberus: Protecting cryptographic code from spectres at compile-time. In 2024
IEEE Symposium on Security and Privacy (SP). IEEE, 4200-4219.

Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi, Evan John-
son, Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita, Hovav Shacham, Dean
Tullsen, et al. 2021. Swivel: Hardening WebAssembly against Spectre. In 30th
USENIX Security Symposium (USENIX Security 21). 1433-1450.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and counter-
measures: The case of AES. In Topics in Cryptology-CT-RSA 2006: The Cryptogra-
phers’ Track at the RSA Conference 2006, San Jose, CA, USA, February 13-17, 2005.
Proceedings. Springer, 1-20.

[47

[48

[49

[50

5
=

[52

[53

o
=

[55

[56]

[57

(58]

[59

[60

[62

[63]

[64]

[65]

(66

CCS 25, October 13-17, 2025, Taipei

Marco Patrignani and Marco Guarnieri. 2021. Exorcising spectres with secure
compilers. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. 445-461.

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. DRAMA: Exploiting DRAM addressing for Cross-CPU attacks.
In 25th USENIX Security Symposium (USENIX Security 16). 565-581.

Hernéan Ponce-de Leén and Johannes Kinder. 2022. Cats vs. Spectre: An axiomatic
approach to modeling speculative execution attacks. In 2022 IEEE Symposium on
Security and Privacy (SP). IEEE, 235-248.

Michael Schwarz, Moritz Lipp, Claudio Alberto Canella, Robert Schilling, Florian
Kargl, and Daniel Gruss. 2020. ConTExT: A generic approach for mitigating
Spectre. In Network and Distributed System Security Symposium 2020.

Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss.
2019. NetSpectre: Read arbitrary memory over network. In Computer Security—
ESORICS 2019: 24th European Symposium on Research in Computer Security, Lux-
embourg, September 23-27, 2019, Proceedings, Part I 24. Springer, 279-299.
Youngjoo Shin, Hyung Chan Kim, Dokeun Kwon, Ji Hoon Jeong, and Junbeom
Hur. 2018. Unveiling hardware-based data prefetcher, a hidden source of infor-
mation leakage. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. 131-145.

Basavesh Ammanaghatta Shivakumar, Jack Barnes, Gilles Barthe, Sunjay Cauligi,
Chitchanok Chuengsatiansup, Daniel Genkin, Sioli O’Connell, Peter Schwabe,
Rui Qi Sim, and Yuval Yarom. 2023. Spectre declassified: Reading from the right
place at the wrong time. In 2023 IEEE Symposium on Security and Privacy (SP).
IEEE, 1753-1770.

Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Grégoire, Vincent
Laporte, Tiago Oliveira, Swarn Priya, Peter Schwabe, and Lucas Tabary-Maujean.
2023. Typing high-speed cryptography against Spectre v1. In 2023 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 1094-1111.

Shixin Song, Tingzhen Dong, Kosi Nwabueze, Julian Zanders, Andres Erbsen,
Adam Chlipala, and Mengjia Yan. 2025. Securing cryptographic software via
typed assembly language (extended version). arXiv:2509.08727 [cs.CR] https:
//arxiv.org/abs/2509.08727

Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay Cauligi,
Rami Gokhan Kici, Ranjit Jhala, Dean Tullsen, and Deian Stefan. 2021. Au-
tomatically eliminating speculative leaks from cryptographic code with Blade.
Proceedings of the ACM on Programming Languages 5, POPL (2021), 1-30.
Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A. Gunter. 2017. Leaky cauldron
on the dark land: Understanding memory side-channel hazards in SGX. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 2421-2434.

Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F. Wenisch, and Baris Kasikci. 2019.
NDA: Preventing speculative execution attacks at their source. In Proceedings
of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.
572-586.

Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In 2015
IEEE Symposium on Security and Privacy. IEEE, 640-656.

Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher
Fletcher, and Josep Torrellas. 2018. InvisiSpec: Making speculative execution
invisible in the cache hierarchy. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 428-441.

Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy
Campbell, and Josep Torrellas. 2019. Attack directories, not caches: Side channel
attacks in a non-inclusive world. In 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 888-904.

Yuval Yarom and Katrina Falkner. 2014. FLUSH + RELOAD: A high resolution,
low noise, L3 cache side-channel attack. In 23rd USENIX Security Symposium
(USENIX Security 14). 719-732.

Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2017. CacheBleed: A timing
attack on OpenSSL constant-time RSA. Journal of Cryptographic Engineering 7
(2017), 99-112.

Jiyong Yu, Namrata Mantri, Josep Torrellas, Adam Morrison, and Christopher W.
Fletcher. 2020. Speculative data-oblivious execution: Mobilizing safe predic-
tion for safe and efficient speculative execution. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 707-720.
Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and
Christopher W. Fletcher. 2019. Speculative taint tracking (STT): A comprehensive
protection for speculatively accessed data. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 954-968.

Zhiyuan Zhang, Gilles Barthe, Chitchanok Chuengsatiansup, Peter Schwabe, and
Yuval Yarom. 2023. Ultimate SLH: Taking speculative load hardening to the next
level. In 32nd USENIX Security Symposium (USENIX Security 23). 7125-7142.

https://project-zero.issues.chromium.org/issues/42450580
https://arxiv.org/abs/2007.03152
https://arxiv.org/abs/2007.03152
https://arxiv.org/abs/2509.08727
https://arxiv.org/abs/2509.08727
https://arxiv.org/abs/2509.08727

	Abstract
	1 Introduction
	1.1 This Paper

	2 Background
	2.1 Microarchitectural Side-Channel Attacks
	2.2 Typed Assembly Language

	3 Threat Model & Security Properties
	4 Motivation and Overview
	4.1 Limitations of Source-Level Annotation
	4.2 Overview of SecSep

	5 Octal
	5.1 Octal Syntax
	5.2 Typing Rules
	5.3 Type Soundness

	6 Type Inference
	6.1 Type initialization
	6.2 Type-Constraint Generation
	6.3 Dependent-Type Inference
	6.4 Valid-Region Inference
	6.5 Taint-Type Inference

	7 Transformation
	7.1 Two Memory-Relocation Strategies
	7.2 Transformation Details
	7.3 Transformation Soundness

	8 Evaluation
	8.1 Implementation and Experiment Setup
	8.2 Performance of Transformed Programs
	8.3 Manual Effort

	9 Limitations and Future Work
	10 Related Work
	11 Conclusion
	Acknowledgments
	References

