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Abstract

Hardware information flow tracking (IFT) using taint anal-
ysis provides a methodology to check whether a hardware
design satisfies certain security properties. Previous work
has shown a broad trade-off space between precision and
complexity when using different taint analysis schemes. A
careful investigation of this space has led to the insight that
applying different taint schemes to different components of
a hardware design can improve overall efficiency.

We present ComPass, a systematic framework to guide
users in designing appropriate taint schemes that are as light-
weight as possible while still sufficient to accomplish their
security verification goals. We first establish a unified termi-
nology to comprehensively capture existing taint schemes.
We then apply counterexample-guided abstraction refine-
ment (CEGAR) for taint refinement to iteratively improve the
taint scheme. We evaluated ComPAss on a set of open-source
RISCV processors to verify the information flow properties
for speculative execution vulnerabilities, and demonstrate
that Compass significantly improves both simulation speed
and formal-verification scalability of taint analysis.

CCS Concepts: « Security and privacy — Information
flow control; Side-channel analysis and countermea-
sures; « Hardware — Model checking.
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1 Introduction

Recent recurring discoveries of hardware microarchitectural
attacks [26, 27, 31, 33, 34] call for efficient and comprehensive
security evaluation solutions for hardware designs, including
both formal verification and testing. Many of these security
problems can be formulated as an information flow property,
also referred to as non-interference property. For example,
when verifying a side-channel mitigation mechanism, we
aim to check whether a specified secret value located in
the victim domain can affect any microarchitectural signals
that can be observed by an attacker. If the attacker’s ob-
servations do not change even with changing values of the
secret, we consider the system to have achieved the desired
non-interference property.

Hardware information flow tracking (IFT) using taint anal-
ysis provides a general methodology to check whether a
given hardware design satisfies a specified information flow
property. A taint analysis scheme assigns taint bits to cir-
cuit elements to indicate whether these elements can be
influenced by the secret. It also involves a taint propagation
scheme, which takes the source of taint and a sink (e.g., at-
tacker observable signals in hardware), and propagates the
taint from the source to determine whether the sink will be
tainted.

1.1 Motivation

Different taint-propagation schemes such as GLIFT [46], Cel-
IIFT [39], and RTLIFT [1] make different tradeoffs between
taint precision and taint-propagation complexity. Lower pre-
cision provides lower propagation complexity but may result


https://orcid.org/0000-0001-8695-5139
https://orcid.org/0000-0003-2475-3675
https://orcid.org/0000-0002-8468-8409
https://orcid.org/0000-0002-0837-5443
https://orcid.org/0000-0002-6206-9674
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3779212.3790144
https://doi.org/10.1145/3779212.3790144

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

in larger overapproximation and thus more false taint prop-
agation of the secret to the sink. One research challenge
of using taint analysis for formal verification is balancing
this precision-complexity tradeoff to find a lightweight taint
scheme that is still precise enough to verify a given property.

Rather than picking one global taint scheme uniformly
for all the gates in the design, a more effective approach is
to use different taint schemes in different hardware modules.
For example, consider an out-of-order processor consisting
of various modules, including a branch predictor unit and an
ROB. The designer implements a speculative execution miti-
gation in the processor to prevent the secret from influencing
the branch predictor, and thus prevents side channel leakage
of the program counter (PC). If we treat the branch predictor
unit in the exact same way as other modules, we will assign
one taint bit for every bit in the branch predictor and com-
pose the corresponding taint tracking logic. This is linear
in the size of the branch predictor and hence will generate
significant taint overhead given the size and complexity of
modern branch predictors.

When a defense scheme is correctly implemented, there
should be no chance for any taint bit inside the branch predic-
tor to become tainted. As such, an optimization opportunity
emerges from this insight: we can use a single bit to conser-
vatively track the taint status of the whole branch predictor
module. This coarse-grained approach is adequate because,
if the defense scheme is incorrectly implemented, that sin-
gle bit for the branch predictor will be tainted, capture the
leakage, and offer useful information for bug localization.

However, we cannot blindly apply this optimization to
other structures in the processor, such as the reorder buffer
(ROB). Different entries and fields in the ROB can have dif-
ferent taint statuses. Using an overly coarse-grained taint
scheme will lead to false alarms. Hu et al. [21] made similar
observations on cryptographic accelerators.

In summary, it is promising to mix taint schemes in a
design to optimize for verification efficiency. However, the
space of possible taint scheme combinations is enormous. For
example, given a Rocket processor with around 193K gates,
assuming we have even only 3 taint options for each gate,
the total configuration space grows exponentially to 319K
options. Confronted by the challenge of finding effective
strategies within the vast space of taint schemes, users can
feel overwhelmed, unsure of where to begin to explore the
space of taint schemes and craft an effective taint scheme for
each circuit element that balances precision with complexity.

1.2 Scope and Contributions

In this paper, we present a systematic and mechanical frame-
work Compass, to help users navigate the vast space of taint
schemes for RTL verification.

(1) Taint Terminology. We start by establishing a uni-
fied terminology to comprehensively capture existing taint

Yuheng Yang, Qinhan Tan, Thomas Bourgeat, Sharad Malik, and Mengjia Yan

schemes. There exist various taint schemes proposed by prior
work [22], including GLIFT [46], CellIFT [39], and RTLIFT [1].
These taint schemes differ from each other in various aspects,
such as operating on different abstraction levels or provid-
ing varied logic complexity. Our terminology defines and
structures the taint space—a multi-dimensional space of taint
schemes—that will be later explored by Compass.

(2) CEGAR for Hardware Taint Refinement. COMPAsS
is the first work that explores this taint space by apply-
ing the counterexample-guided abstraction refinement (CE-
GAR) [11] principle. An abstraction over-approximates all
possible behaviors of a design and is easier to verify com-
pared to the original design. Similarly, taint analysis over-
approximates the information flow of a design.

In a CEGAR loop, the user starts with an abstraction of the
implementation of a design and checks whether the abstrac-
tion satisfies the specified security property using automatic
formal verification tools (typically, a model checker). If the
verification tool generates a spurious counterexample (false
positive), the user (or an algorithm) inspects the counterex-
ample, comes up with a refinement of the abstraction, and
repeats the above operations until the security property is
proved or a valid counterexample is found.

(3) Taint Refinement Algorithm. Compass uses CEGAR
to refine taint schemes. We start by using a very coarse-
grained taint scheme throughout the circuit, and use a coun-
terexample generated by a model checker to locate a place
where imprecision is introduced. Locating the imprecision
is done automatically using a backward information flow
tracing algorithm using the values at the gates and the taint
propagation logic set by the counterexample. We then let the
user refine the taint scheme at this location by examining
several options in a predefined order. It is as if the user is
faced with a gigantic map (the circuit/netlist), and our tool
works as a compass to step-by-step guide the user to de-
rive an efficient taint scheme that is lightweight and precise
enough to accomplish the verification task.

(4) Experimental Validation. We demonstrate the ef-
ficacy of Compass on a set of open-source RISCV proces-
sors in verifying information-flow properties for speculative
execution vulnerabilities. Compass generates lightweight
taint schemes, improving both simulation speed and formal-
verification scalability.

First, Compass finds lightweight taint schemes with signif-
icantly reduced taint logic (gates and register bits) overhead
compared to the state-of-the-art taint scheme, CellIFT [39],
and reduces simulation overhead from 351% to 205%. Sec-
ond, our framework can improve model checking scalability
across all verification tasks. For example, when verifying
Sodor [10], the refined taint scheme helps reduce the time
taken to produce an unbounded proof from hours to just
5.2 minutes (including the time spent on taint refinement).
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When verifying the Rocket [2] core, Compass finds a taint
scheme that improves the cycle bound in bounded model
checking from 41 (by using the baseline taint scheme for 7
days) to 159 (by using Compass for 25.3 hours).

Furthermore, we analyze the taint scheme generated by
Compass for the target security property, showing how the
taint scheme is tailored in a property-specific manner and
achieves sufficient precision with less overhead than prior
property-agnostic approaches.

Comprass is open-sourced at https://github.com/MATCHA-
MIT/Compass.

2 Background
2.1 Information Flow Property

Information flow properties describe whether a signal can
affect another signal in software programs or hardware sys-
tems. They are often used to model security-related proper-
ties, such as confidentiality [43], where secrets should not
leak to a public attacker-observable location, and integrity,
where a secret value cannot be overwritten by an attacker.

Formally, an information flow property can be expressed
as a non-interference property [12] on a transition system.
Consider a transition system M = (1,0, S, T) where I and O
are vectors of input and output variables within domains I
and O, respectively. S is a vector of state variables in domain
S and a transition function on these states is defined by
T:(Sx7I — 8 xO0).Let r denote a trace of a transition
system and 7(x) denote the sequence of values of variable
x (7(x)[i] denotes the value of x at step i). [(xr) denotes
the length of a trace. We define the valid set of traces of
executing M from the initial state S, as:

Trace(M) = {7z | 7(S)[0] = Sy A (Vi€ [0,1(n)),
T(2(S)[i], 2(D[i])= (x(S)[i+1], 7(0)[i])) }

A non-interference property specifies a source signal that
is part of the inputs (src € I) and a sink signal that is part
of the outputs (sink € 0).! It states that “the sink variables
cannot be interfered with by the source variables” as follows.

NonInterference(src,sink, M) :=V my, 1, € Trace(M),
(V x €I\ {src},m(x) = ﬂz(x)) = m(sink) = my(sink)

Verification of the non-interference property can be ex-
pensive as it is a hyperproperty [12], i.e., a property defined
over a pair of traces and thus a naive approach will require
reasoning over all possible pairs of traces. The standard way
to verify non-interference is called self-composition [5]. Fol-
lowing the non-interference definition in Formula 2.1, the
verification procedure creates two copies of the same tran-
sition system, configures the inputs that are not selected
as the source to be equal across the two copies, and leaves

IThe definition of non-interference is the same with slightly modified nota-
tion for the cases when the source and sink variables are internal variables
of the transition system, or they include multiple variables.
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the source signals in the two copies as two different free
variables. It then checks whether the sink signals in the two
copies are equal. However, self-composition usually suffers
from scalability issues as it doubles the size of the design
under verification (DUV). It becomes ever more challenging
for model checking, where computation complexity usually
scales exponentially with the number of bits of state.

2.2 Taint Analysis

Taint analysis, also known as information flow tracking (IFT),
is a method for verifying information flow properties. In taint
analysis, each input, output, and state variable in a system is
assigned a “taint variable” that tracks its influence on other
parts of the system. Taint propagation policies define how
these taint variables should be updated to reflect their infor-
mation flow status. Hu et al. [22] provide a comprehensive
survey on hardware taint propagation policies [22].

Using taint analysis, we can define a property to over-
approximate the noninterference property. In taint analy-
sis, the sink is considered not to be interfered with by the
source if the taint variable associated with it is 0. Unlike self-
composition, which requires comparing two traces, taint
analysis enables verifying information flow using a single
trace. Therefore, taint analysis offers a more efficient way to
verify information flow properties.

Over-Approximation. The cost of efficiency is impreci-
sion, as most taint schemes used in practice over-approximate
the check results obtained from self-composition. Hu et
al. [24] have shown that for a taint scheme to precisely verify
the non-interference property, the taint logic would need
to scale exponentially with the circuit size, which is an im-
practical requirement for most designs. Therefore, all taint
schemes [1, 6, 23, 39, 40, 46] used today conservatively cap-
ture information flow, potentially introducing false positives,
where a taint may indicate the existence of a flow that actu-
ally does not truly exist. On the positive side, all these taint
schemes do not have false negatives, meaning it reliably
and comprehensively captures all information flows. This
property is referred to as the soundness of taint schemes.

Application of Taint Analysis. Taint analysis can be
used for two different purposes: pre-silicon security analysis
and runtime intrusion detection. For security analysis, taint
logic is applied during the design phase and often used by
model checking or simulation. The goal is to identify poten-
tial vulnerabilities and remove them before chip tape-out.
Here, the taint logic is only added temporarily to assist ver-
ification or testing and will be removed after validation is
complete. Taint analysis can also be synthesized with the de-
sign for runtime attack detection, raising alerts when invalid
information flows are detected. Runtime detection mecha-
nisms include DIFT [42], Execution Lease [45], and STT [54].
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In this paper, we focus on evaluating our taint logic in the
verification and testing scenarios, but our taint logic can be
used for other purposes.

2.3 Counterexample-Guided Abstraction
Refinement (CEGAR)

Abstraction is a technique often used to address the scala-
bility issue of formal verification. An abstract state machine
has a smaller state space, and thus is simpler to be verified
compared to the original design state machine. However, an
abstract machine over-approximates the possible behaviors
of the design and thus not only covers all possible execution
traces (sequences of state transitions) in the concrete ma-
chine but also introduces execution traces not possible in the
concrete machine. Consequently, if a property holds on the
abstract machine it holds on the concrete machine but the
abstraction might lead to spurious counterexamples (false
positives). When encountering spurious counterexamples,
the abstract machine needs to be refined (introducing more
states and removing spurious transitions in the abstract ma-
chine) until there is no spurious counterexample, i.e., either
giving a real counterexample or proving the property.

Clarke et al. [11] proposed a framework, counterexample-
guided abstraction refinement (CEGAR), to automate the
above procedure. It can be viewed as a verification loop
consisting of 3 steps:

1. Initialization: Design an initial abstraction for the design.

2. Model checking: Check the property on the abstract ma-
chine. If the property is proven or a valid counterexample
is generated, exit the loop. If the counterexample is spuri-
ous, proceed to step 3 to refine the abstract machine.

3. Refine the abstraction: Figure out how the spurious coun-
terexample is introduced and add more states to the ab-
stract machine to remove spurious state transitions. Go
back to step 2.

One key challenge in applying CEGAR to a verification
task lies in step 3, i.e., how to use the counterexample to
figure out an effective abstraction refinement solution. Al-
though manual refinement is possible, it demands extensive
domain expertise [36] and becomes especially burdensome
for large systems. A naive automated approach is to exclude
the specific spurious counterexample generated in step 2.
However, this often results in a similar counterexample in
the next iteration, as this method fails to address the under-
lying cause of imprecision. Moreover, it has been shown that
finding the most coarse refinement is NP-hard [11].

This paper is the first work to apply CEGAR to refine taint
schemes for hardware designs. Further, we demonstrate that
when applying CEGAR to taint schemes, a key component
of the refinement process can be automated, that is, to locate
taint logic that causes the imprecision of the overall taint
scheme and thus should be refined (Section 5.3).
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3 Systemizing the Taint Space

We present a unified terminology to classify all the existing
taint tracking schemes and potential future ones. The goal is
not to present new taint schemes, but rather to provide the
space to be explored by our Compass tool.

3.1 Three-Dimensional Taint Space

We describe the hardware taint tracking space as a three-
dimensional space. The three dimensions are unit level, taint
bit granularity, and logic complexity. We show how existing
works fit into our space in Section 8 with Table 5.

Unit Level. The unit level dimension specifies at which
abstraction level the taint scheme is designed. Gate level
means the taint scheme is designed for the smallest logical
operation in low-level netlists, such as an AND, OR gate. In
contrast, macrocell (or cell for short) stands for the logical
macrocell abstraction in high-level Hardware Description
Languages (HDLs). A cell is a pre-defined operator and only
contains combinational circuits. For example, in many HDLs
such as SystemVerilog, one can use the “+” operator to in-
stantiate a multi-bit adder cell and the “*” operator for a
multiplier cell.

To take another step further, one can design taint schemes
at the module level, which groups multiple gates and cells to-
gether to perform certain functions. A module usually repre-
sents an architectural-level abstraction, such as a branch pre-
dictor module or a memory module. SystemVerilog, Chisel,
and other HDLs provide the keyword “module” for program-
mers to use to specify this unit level. Different from a cell,
a module is written by an RTL designer and can include
complex sequential circuits.

When designing taint schemes, we first pick the unit level,
then choose options from the next two dimensions. Gate-
level and cell-level taint schemes can be generated automat-
ically. However, constructing module-level taint schemes
usually requires domain knowledge, and in this paper, we
consider this can only be done manually.

Taint Bit Granularity. The taint bit granularity (or “taint
granularity”) dimension specifies how a taint bit associates
with each circuit element in the original circuit.

The most fine-grained option is to assign one taint bit for
each bit (a wire or a bit in a register) in the original circuit.
Alternatively, one can group multiple bits to form a word,
such as a 32-bit register entry, and assign a single bit to track
the taint status for every bit in this word. Specifically, we
consider every bit in the word is tainted when at least one
of the bits is tainted, which can potentially introduce false
positives. Furthermore, an even more coarse-grained option
is to assign one taint bit for a group of registers,? like the
example of branch predictor in Section 1, where we assign

2We intentionally avoid the case of assigning a taint bit for a group of wires
as it introduces the risk of creating combinational loops in the taint logic.
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one taint bit to track the taint status for all the BTB and
BHB entries. Even though registers could be grouped up
arbitrarily, our framework only considers grouping registers
within a module.

There exists a clear precision and complex tradeoff when
choosing taint bit granularity. Coarser-grained choices re-
duce the number of taint bits required, but come with the
cost of reduced precision.

Logic Complexity. The logic complexity dimension spec-
ifies how much dynamic information to include in taint com-
putation. Thus, in the paper, we may also refer to this di-
mension as the “dynamic level” of a taint logic. We classify
them into three options: 1) Naive (no dynamic): do not use
any dynamic values of the inputs, 2) partially dynamic: use
the dynamic values of a subset of the inputs, and 3) fully
dynamic: use dynamic values of all the inputs. To understand
the differences, consider the taint logic for a single-bit AND
gate: O = A - B. The suffix t refers to the taint bit of the
corresponding input or output.

e Naive (No dynamic): Ot = At + Bt
e Partially dynamic: Ot = At + (A - Bt)
o Fully dynamic: Ot = (B- At) + (A-Bt) + (At- Bt)

Essentially, the dynamic options recognize that if the value
of some input of the AND gate is 0, then the other input
cannot influence the output. Incorporating more dynamic
information into the taint computation logic increases its
precision but also incurs higher overhead in terms of the
number of gates for the taint logic.

3.2 Composing Lower-level Taint Schemes

We typically need to compose the taint-propagation logic
for lower-level units to create a taint scheme for higher-level
units. Such composition can result in a large design space of
taint schemes that Compass targets to explore.

Consider a 2:1 multiplexer (MUX), which uses a single-bit
selector S to choose between two bits A and B. A cell-level
representation of this MUX is O = S ? A : B. Alternatively,
its gate-level representation is O = (S - A) + ((=S) - B). Now,
we have 2 strategies to design taint logic for it, following the
three-dimensional taint space we presented:

o Customizing taint logic at cell-level: This strategy enables
arbitrary precision-complexity trade-off. However, each
design point needs to be manually explored. For example,
the most precise taint logic is:

Ot =5t ((A#B)+At +Bt) + (S 7 At : Br) 1)

e Composing taint logic at gate-level: A MUX is composed of
1 NOT gate, 1 OR gate, and 2 AND gates. NOT gates, with a
single-bit input, only have 1 type of taint scheme, while OR
and AND gates have 4 types of taint schemes, given that
the dynamic value of either input bit can be used to refine
their taint logic. This means a total of 1! x 4! x 42 taint
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Figure 1. ComPASs overview.

schemes® can be automatically composed for the MUX.
For example, the most precise taint logic can be simplified
to:

Ot = (St-A)+(S-At)+(St-At)+(St-B)+(~S-Bt)+(St-Bt) (2)

For designs more complex than a MUX cell, such as proces-
sors, composing taint schemes from lower-level units is the
only feasible option. It results in a large, in fact exponentially
large, design space to explore.

Additionally, composition comes at the cost of precision,
even if the most precise taint logic is used for each lower-
level units. By carefully examining the two formulas above,
Formula 1 is actually more precise than Formula 2 because
when A = B = 1, At = Bt = 0, St = 1, the cell-level taint logic
correctly leaves the output untainted, while the gate-level
falsely taints it. Such precision loss comes from composition
and has been extensively discussed in previous work [24, 46].
As the source of this imprecision comes from the correlation
between signals (e.g., S - A and (=S) - B cannot both be 1 in
our example), this imprecision is also called correlation-based
imprecision.

Compass Targets all Imprecision Except Correlation-
based. As a final remark of this section, CoMPASS as a tool
aims to remove all local imprecision in taint schemes (i.e.,
imprecision arising from low taint bit granularity or low
taint logic complexity) and considers correlation-based im-
precision beyond its scope. As shown in Section 5.4, when
discovering correlation-based imprecision, Compass will out-
put an alert to ask users to manually identify the source of
this imprecision and customize more precise taint logic at a
higher unit level (e.g., at the module level).

4 Counterexample-Guided Taint
Refinement

Using taint analysis for RTL verification requires making
delicate trade-offs between precision and complexity. The
goal is to craft an appropriate taint scheme that is as simple as
possible and, meanwhile, sufficiently precise to accomplish
a verification task. Compass applies counterexample-guided
abstraction refinement (CEGAR, Section 2.3) to the problem
of taint refinement. Figure 1 describes how we leverage the
CEGAR loop to navigate the taint space, consisting of the
following 3 steps:

3Some of these taint schemes can be logically equivalent.
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Step 1: Taint Initialization. We begin the refinement
process with a coarse-grained taint scheme as the initial
configuration. Specifically, we assign a single taint bit for
the entire module, which tracks whether any of the registers
in the module hold tainted values, and apply the naive taint
logic using no dynamic values. This scheme represents the
most coarse-grained tracking capability and introduces the
lowest taint propagation overhead. We also refer to it as a
blackboxing taint scheme.

Step 2: Model Checking and Counterexample Valida-
tion. Given an RTL design with taint instrumentation, we
check whether it satisfies the security property using a model
checker. The model checker can have several outcomes: (1)
It can generate an unbounded proof to confirm the design
is secure. (2) It might fail to produce an unbounded proof
within the compute budget (i.e., timeout), and hence only
finish with a bounded proof for a certain number of cycles.
This is still valuable since it provides some confidence in
the design’s security within a fixed number of cycles from
the reset state. (3) It generates a counterexample, and we
need to examine whether this counterexample is valid or
spurious, that is, whether the sink is correctly tainted due to
an actual information flow from the source, or falsely tainted
due to imprecision in the taint scheme. The latter indicates a
spurious counterexample and requires us to proceed to step
3 to refine the taint scheme.

Testing Falsely Tainted Signals. Given a concrete ex-
ecution trace of a counterexample, we say that a signal is
“falsely tainted” if it is marked as tainted, but the taint source
has no influence on the signal’s value. More precisely, the
falsely-tainted signal’s value stays the same for all possible
values of the taint source within the given trace.

We can construct a model checking task to test whether
a signal is falsely tainted. We first construct two copies of
the original design. The public inputs are initialized with
the concrete values from the counterexample. For private
inputs, we initialize the first copy using the concrete values
from the counterexample and initialize the second copy with
symbolic values. If the model checker proves that the tainted
signal under study in the two copies remains identical for
k cycles (k is the length of the counterexample trace), we
conclude that the signal is falsely tainted.

Note that this model checking task for determining falsely
tainted signals is lightweight for two reasons: (1) Only pri-
vate inputs in one copy are symbolic. Private inputs in the
second copy and public inputs are concrete values from the
counterexample. (2) The analysis only requires a bounded
check for the number of cycles in the counterexample.

Step 3: Taint Refinement. Abstraction refinement is widely
recognized as the most challenging step in the original CE-
GAR loop, often requiring significant domain expertise and
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Figure 2. A circuit example (top) and its corresponding taint
tracking logic (bottom). Refining the taint logic for the sec-
ond multiplexer acts as a cut in the taint propagation graph.

deep familiarity with formal methods. As the main contri-
bution of Compass, we significantly reduce the burden on
verifiers when refining taint logic. A taint refinement task
involves answering two key questions: (1) where to refine,
and (2) how to refine.

The first question is to identify taint logic instances that
are responsible for imprecision. Given that realistic designs
contain thousands to millions of gates, this step poses sig-
nificant challenges that urgently need automation. To solve
them, we develop a fully automated algorithm to identify
the taint refinement location, that is, to determine which
of the taint logic instances need to be replaced with a more
fine-grained alternative. The second question is to decide
which new taint scheme to substitute for the existing impre-
cise taint instance. At each identified refinement location,
we propose an ordered strategy to select taint options.

After the refinement, we go back to step 2 (forming the
loop) to perform another round of model checking using the
updated taint scheme.

5 Automating Taint Refinement
5.1 Introducing Cuts to Taint Propagation Graphs

We formulate the taint refinement task as a graph cut prob-
lem. As discussed in Section 2.2, taint logic works as an over-
approximation of the information flow in a circuit. Conceptu-
ally, by unrolling the circuit over time, we can represent the
information flow captured by the taint tracking logic as a di-
rected acyclic graph (DAG), describing how taint propagates
from sources to sinks. In this graph, some edges represent
true flows, while others correspond to spurious, false flows
due to the over-approximation of the taint logic. Refining
taint logic works by introducing cuts to the graph to elimi-
nate selected false-flow edges. In the following discussion,
we refer to this graph as a taint propagation graph.

Figure 2 illustrates a concrete example. The top half of
the figure depicts a circuit consisting of three multiplexers
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connecting a source to a sink. The bottom half shows the
corresponding taint tracking logic, where we first use a naive
taint scheme that computes the output taint by ORing the
taint bits of all inputs and then show its refinement below.

The red line shows the taint propagation graph. In the
counterexample introducing this taint propagation, the first
multiplexer selects the secret source, producing a true infor-
mation flow from the source to intermediate signal o1 (solid
line). In contrast, the second and third multiplexers select
public values, resulting in false flows (dotted lines) from o1
to 02, and then from o2 to the sink. These false flows cause
the sink to be falsely tainted.

The taint refinement task involves selecting a taint logic
and replacing it with a more precise version to block the
false flow. In this example, we show a refinement strategy
that targets the second multiplexer’s taint logic, replacing
the coarse-grained OR gate with a more precise but also
more complex scheme. Since the multiplexer selects a public
input, the refined taint logic computes a taint value of 0 for
02, therefore effectively cutting the taint propagation graph.
This refinement is denoted by the green cross symbol.

Challenges. Identifying which taint logic instance to re-
fine presents several challenges. First, along a single taint
propagation path from the source to the sink, there may be
multiple potential refinement locations. For example, in Fig-
ure 2, refining the taint logic of the third multiplexer has the
same effect as refining the second one. This raises the ques-
tion: how should we choose among alternative refinement
locations that achieve the same outcome?

Second, when multiple taint propagation paths exist be-
tween the source and the sink, it may be necessary to refine
several taint logic instances together. In such cases, multiple
cuts must be applied in combination to eliminate the spurious
taint. This leads to another challenge: how can we identify a
sufficient set of refinements to block the counterexample?

Finally, given the inherent tradeoff between precision and
the overhead of taint schemes, it is natural to ask for a mini-
mal number of cuts on the taint propagation graph. However,
recall that the whole CEGAR loop may require us to elimi-
nate multiple spurious counterexamples, each of which cor-
responds to a potentially different taint propagation graph. A
global solution minimizing the number of refinements across
all these graphs poses significant algorithmic challenges.

In this paper, we propose a practical heuristic solution,
and leave finding the minimum solution as future work.

5.2 Comprass’s Taint Refinement Overview

The goal of refinement is to eliminate spurious counterexam-
ples. We aim to perform refinement over one or multiple taint
logic instances, each corresponding to a cut in the taint prop-
agation graph, and eliminate the false taint at the sink. To
find all these refinements, we propose an iterative approach
to identify and apply one refinement per iteration.
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Figure 3. Overview of refining a taint scheme (Step 3 in the
CEGAR loop).

Figure 3 describes the iterative procedure. Each iteration
begins by locating a refinement location using an automated
backtracing algorithm (Section 5.3). Once a refinement lo-
cation is identified, we explore taint refinement options in
a prioritized order (Section 5.4). This step is not automated
in our current infrastructure and requires human interven-
tion due to infrastructure compatibility issues — this can be
resolved with further engineering effort.

At the end of each iteration, we simulate the counterex-
ample over the netlist and the updated taint logic to check
whether the refinement performed so far is sufficient to block
the counterexample (i.e., the sink is correctly untainted). If
the spurious taint persists, we proceed to the next iteration
with the updated taint logic.

5.3 Automated Backtracing Algorithm

To identify a taint refinement location, we propose an algo-
rithm to perform a backward traversal of the taint propaga-
tion graph, starting from the falsely tainted sink and tracing
upstream toward the source. During this traversal, the algo-
rithm addresses two key decisions at each gate: (1) whether
to refine the taint logic at the current gate, or to continue
tracing backwards; and (2) if the gate has multiple inputs,
which input should be selected for further tracing back.

Base Algorithm. We present a basic version of the algo-
rithm and then identify and address its two limitations. This
base algorithm traces back to all falsely tainted fan-ins and
identifies a refinement location closer to the source.

The pseudocode of the algorithm is in Algorithm 1 (ig-
noring the blue code). It takes as input a circuit netlist and
a waveform generated by simulating the counterexample
on the circuit. It begins at the sink signal and marks it as
the current falselyTaintedSignal, and identifies all the
fan-in signals of the current output signal (line 4). Lines 5-
10 collect fan-in signals to trace back: For each fan-in, we
check whether it is falsely tainted. If so, it is added to a set
of traceback candidates. Next, lines 11-15 decide whether
to trace back further. If the candidate set is non-empty, we
randomly select one signal from this set to trace back in
the next iteration (line 12). Otherwise, if no candidate exists,
meaning any taints on the inputs are not false taints, then
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Algorithm 1: Backward tracing algorithm

1 Function findRefinementLocation(netlist, waveform):

2 falselyTaintedSignal = netlist.getSink()

3 while True do

4 allFanIns = netlist.getFanIns(falselyTaintedSignal)
5 candidates = []

6 for fanln « allFanIns do

7 if fanln.isFalselyTainted(waveform) &

fanIn.isObservable(waveform) then

8 ‘ candidates.append(fanIn)

9 end

10 end

1 if candidates.notEmpty() then

12 ‘ falselyTaintedSignal = candidates.pickOne()
13 else

14 ‘ return falselyTaintedSignal

15 end

16 end
17 end

the imprecision arises from the taint logic that computes the
current falsely-tainted signal’s taint bit (line 14).

Despite its simplicity, this basic version of the algorithm
exhibits two limitations that can lead to prohibitive perfor-
mance overheads. First, frequently querying whether a signal
is falsely tainted can be computationally expensive. Second,
randomly selecting a tainted input for backward tracing can
result in a substantial number of unnecessary refinements.

Fast Test to Identify False Taint. Recall that testing for
falsely tainted signals can be performed via constructing a
model checking task (Section 4). For efficient refinement, we
propose a fast test approach to approximate whether a signal
is falsely tainted via simulation.

The key intuition is that, if a signal is truly tainted, it will
likely be influenced by secrets in a large number of cases.
Rather than exhaustively analyzing all possible secret inputs
using symbolic values and model checking, we simply test a
second concrete secret (by flipping all bits) via simulation
to see if it can change the output value. If it is sufficient
to change the output, then we are sure the output is truly
tainted. Otherwise, we claim it to be falsely tainted.

As a consequence, we may claim more signals as falsely
tainted and eventually make more refinements than nec-
essary. Importantly, each of our refinements preserves the
soundness of the overall taint scheme, as the refined taint
logic still over-approximates information flow. These extra
refinements do not affect the soundness of Compass, but
might increase the complexity of the final taint scheme. Nev-
ertheless, our empirical evaluation (Section 6) shows that the
refined taint logic produced using the fast test still provides
a substantial advantage over existing taint schemes.
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Figure 4. Priority among refinement strategies.

Limiting Tracing Back to Observable Fan-ins. The
other limitation of the base algorithm is that it often traces
back to signals that are unobservable at the sink which results
in unnecessary refinements. We use the term “observable” to
refer to a set of fan-ins of a given gate that, under the given
concrete assignment of the gate’s input signals, can influ-
ence the output of the gate, i.e., it is possible to change the
gate output by changing the value of this set of inputs. Con-
versely, “unobservable” fan-ins do not influence the gate’s
output under the current assignments of the other fan-ins.
A rigorous definition of observability is in Appendix A.

Consider a case where we currently trace back to a mul-
tiplexer (MUX): O = S ? A : B. The counterexample states
S = 1, meaning the MUX selects A, and thus B is unob-
servable. When both A and B are falsely tainted, the base
algorithm might randomly pick B to trace back. However, as
B is not selected by this MUX, even if we manage to untaint
B with refinements, it cannot help further untaint the output
O. We found such unnecessary refinements very common
in our experiments.

To address this limitation, we propose to only trace back to
observable fan-ins. See the blue code in line 7 in Algorithm 1.
In the MUX example above, the updated algorithm will not
trace back to B and avoid unnecessary refinements.

In our implementation, we use JasperGold’s “why” func-
tion [8] to collect observable fan-ins of gates.

5.4 Choosing a Refinement Strategy

After identifying a taint logic instance for refinement, the
next step is to determine which new taint scheme should re-
place it to improve the overall precision of the taint analysis.
Guided by the three-dimensional taint design space intro-
duced in Section 3.1, we explore candidate taint schemes
following a predefined order to minimize overhead. For each
candidate scheme, we manually test whether substituting it
for the original taint logic blocks the false taint, i.e., flips the
output taint bit at the refinement location from 1 to 0. As
both substitution and re-evaluation are performed locally at
the chosen refinement location, this process is lightweight.

Figure 4 illustrates the order in which the candidate taint
schemes are considered for refinement. Each node in the
figure represents a taint option, and directed arrows indicate
the order in which these options are explored. Neighboring
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nodes to the right and below each circle represent viable next
steps that increase taint precision. The ordering prioritizes
options that incur lower overhead, first by increasing logic
complexity, then by refining bit granularity, and finally by
applying module-level customization.

We note that if none of the refinement options can yield
an effective taint cut, this indicates that the imprecision is
likely due to correlation-based effects, and our framework
will generate an alert to notify the user. We never encoun-
tered this in our experiment (represented as dotted arrows
in Figure 4). As discussed in Section 3.2, our tool is designed
to address local imprecision. Addressing correlation-based
imprecision needs to address a distinct set of challenges [25]
and is beyond the scope of this paper.

6 Evaluation

We first present how our refined taint logic helps reduce
circuit overhead and achieve faster simulation (Section 6.2),
followed by showing its advantages in achieving faster model
checking (Section 6.3). Then, we provide detailed statistics
for the CEGAR refinement loop (Section 6.4) as well as the
final taint scheme (Section 6.5).

6.1 Experiment Setup

We evaluate Compass on several open-source processors
to verify information flow properties related to speculative
execution vulnerabilities [31, 34]. We choose this class of
security properties because they have received significant
recent attention from the community. At the same time,
there are still significant scalability challenges to verify these
properties [30, 44, 50].

Information Flow Properties. The information flow prop-
erty for secure speculation can be formulated as a software-
hardware contract [19]. Such a contract states that if a pro-
gram satisfies a non-interference assumption when executed
on a single-cycle ISA machine, the program should also pre-
serve non-interference when executing on a hardware imple-
mentation of the processor (the DUV). In previous work [44],
this non-interference assumption is referred to as the con-
tract constraint check, and the subsequent non-interference
verification is called the leakage assertion check.

We use taint analysis to perform both checks. Since taint
analysis provides a conservative check for non-interference,
applying it to the contract constraint check slightly changes
the semantics of the contract. Nonetheless, this is acceptable
as long as the contract constraint check (which checks a
program’s ISA-level behavior) is no more conservative than
generally used program analysis techniques such as type
systems [4, 9].

There exist several variations of contracts, and we used
the sandboxing contract in our evaluation. For the ProSpeCT
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Table 1. Detailed processor configurations.

In-order processor
Sodor Configuration: 2-stage pipeline, 1-cycle DCache
[10] Code size: 9 modules, 6k lines of code
In-order processor
Rocket Configuration: 5-stage pipeline, 2-cycle DCache
[2] Code size: 43 modules, 18k lines of code
BOOM Out-of-order processor
BOOM-S Configuration: 16-entry ROB, 2-cycle DCache
[57] Code size: 105 modules, 26k lines of code
ProSpeCT | Out-of-order processor with speculative defense
ProSpeCT-S | Configuration: 16-entry ROB
[13] Code size: 41 modules, 8k lines of code

processor, we use the property specified in its original pa-
per [13]. Formalization of these security properties is pro-
vided in Appendix B.

Design under Verification. We evaluate CoMPASS on
four different processors, shown in Table 1. BOOM-S rep-
resents BOOM with speculative execution vulnerabilities
patched by delaying load instructions from issuing until
reaching the head of ROB. ProSpeCT-S comes from fixing
two implementation bugs in ProSpeCT (detailed in Appen-
dix C). We discovered these bugs during our experiments
and confirmed them with the authors.

For model checker verification, we configure each proces-
sor to use its L1 cache as the main memory, assuming no
cache misses occur. As the memory address is an attacker-
observable output in the contract property, any information
flow to the memory address will be detected as timing side-
channel leakage. Both the data and instruction caches are
configured with a capacity of 64 bytes, which is one cache
line and can hold 16 RISCV instructions. We configure the
last 8 bytes of the data cache to store secret values and the
rest to store public values. This scaled-down setup is con-
sistent with previous formal verification work [44, 50] to
manage the scalability issue of dealing with large memory
arrays. When evaluating the simulation performance of the
generated taint schemes, we configure the cache size to 2
KB.

For each processor, we add shadow logic to extract commit-
stage information for the contract constraint check, follow-
ing the procedure described in [44].

Compass Setup. The Compass taint refinement loop re-
quires a taint logic generation engine and a model checker.
We implement the taint generation process as a FIRRTL com-
piler pass. FIRRTL [29] is an intermediate representation (IR)
language for RTL used when compiling Chisel [3] code to
Verilog. Our pass can generate the taint logic at different bit
granularity and logic complexity (Section 3.1) based on user
annotations in Chisel or FIRRTL.

We perform model checking using the commercial hard-
ware verification tool JasperGold [8]. We use its Mp, AM, and
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Figure 5. Number of logic gates and register bits in proces-
sors instrumented using CelllIFT and Compass, normalized
to the number in the original, uninstrumented processors.

I solving engines for unbounded checks and proofs, and
use the Ht engine for bounded checks and bug finding. The
performance results were obtained on a server with an In-
tel Xeon 5220 processor running at 3.9 GHz. We defer the
description of our simulation setup to Section 6.2.

6.2 Reduced Logic Overhead and Simulation Time

We start by comparing our scheme with CellIFT [39] in terms
of taint logic overhead on gates and register bits as well as the
time to simulate instrumented designs. Figure 5 and 6 present
our results, both normalized to the original, uninstrumented
design under verification (DUV).

Gates and Bits. CellIFT [39] uses the most precise taint
logic (i.e., per-bit granularity and fully dynamic logic) for
each macrocell, requiring an average of 293% logic gate over-
head compared to the original design, incurring even higher
overhead than self-composition (which has 100% overhead
as it duplicates the DUV). Using Compass to refine taint
schemes manages to reduce the gate overhead to 46% on
average.

In terms of register bits introduced by the taint scheme,
Comprass reduces the overhead from 100% in CellIFT to an
average of 15%. Most of the reduction comes from the benefits
of using 1 taint bit per module and per-word taint granularity,
in contrast to the 1 taint bit per data bit granularity in CellIFT.

Simulation. Figure 6 shows that the reduction of taint
logic gates and bits can directly result in faster simulation.*
The results are collected by simulating a set of RISC-V bench-
marks [28, 37, 52] (median, rsort, gsort, matrix_mul, rsa) us-
ing Verilator [49]. To support these benchmarks, we increase

4We did not include simulation results for ProSpeCT due to a framework
incompatibility issue — ProSpeCT is developed using SpinalHDL [41]. We
can only derive taint refinement annotations after converting it to FIRRTL.
However, we cannot increase the memory size at the FIRRTL level to run
our simulation benchmarks due to the complex, low-level memory indexing
scheme.
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Figure 6. Simulation time of running a set of benchmarks
on processors instrumented using CellIFT [39] and ComPAss.
Numbers are first normalized to DUVs and then averaged
across all benchmarks. Black vertical lines indicate the range
of variation across benchmarks.

the L1 data and instruction caches to 2KB, and reduce input
data sizes to fit into these caches. The first 4 elements in the
input data are tainted initially.

On average, Compass reduces the simulation overhead
from 351% to 205%, demonstrating its efficacy in evaluating
security using simulation-based testing.

Although Compass generates smaller taint schemes, en-
abling faster simulation, it does not sacrifice precision in the
same way as prior work [6, 23]. For the property on which
we run the refinement loop, precision is fully preserved up
to the cycle bound that was checked during refinement. For
other properties, however, we do not provide any precision
guarantees. We will show how the generated taint schemes
achieve this property-specific feature in Section 6.5.

6.3 Improving Model Checking Coverage

We show how Compass’s lighter-weight taint schemes im-
prove model-checking coverage. We compare the verification
performance of the refined taint schemes produced by Com-
pAss against self-composition (as used in Contract Shadow
Logic [44]) and CellIFT [39].

Table 2 presents the model-checking results, demonstrat-
ing our improvement for both unbounded and bounded
proofs. For each verification task, we report the verifica-
tion time if an unbounded proof is produced, or the number
of cycles successfully checked when the verification times
out. A higher number of checked cycles indicates stronger
confidence in the security of the design. We give CoMPAsS
a 24-hour time-out limit and give other approaches 7-day
limits, overcompensating for the time spent on Compass’s
refinement step.

First, for Sodor, Compass reduces the verification time
from 1.6 hours when using CellIFT to 9.8 seconds (or to 5.2
minutes, including refinement time), indicating a significant
improvement in proof efficiency. Next, for both Rocket and

SCompass maintains its advantage in reducing taint logic overhead when
using a 2KB cache configuration, decreasing gate overhead from 255% to
45% and bit overhead from 100% to 15%, relative to CellIFT.
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Table 2. Summary of verification time.

self-composition CellIFT Compass
[44] [39] lveri  Irefine * lveri
Sodor 23h 1.6h 9.8s 5.2min
Rocket 7d (19) 7d (41) 24h (159) 25.3h (159)
BOOM-S 7d (22) 7d (26) 24h (28)  55h (28)
ProSpeCT-S 7d (29) 7d (29) 24h(29)  59h (29)

T Green entries indicate proofs being found. Other entries indicate time-
outs for finding proofs (7 days for self-composition and CellIFT, 24 hours
for Compass), and the number of cycles being checked is shown in the
parentheses following the verification time. For Compass, we show both
the verification time using the final taint logic it derives (fyeri) and the
end-to-end time spent on refinement plus verification (fyefine + Zveri)-

BOOM-S. Compass identifies refined taint schemes that sig-
nificantly increase the number of cycles verified with much
shorter times. As a highlight, our approach enables checking
up to 159 cycles on Rocket, compared to only 41 cycles when
using CellIFT. Lastly, although Compass does not improve
the bound it checks on ProSpeCT in Table 2, we report a
more detailed data point, showing Compass still improves
model checking performance: To achieve a 29-cycle proof,
using the taint scheme from Compass takes 15 hours, while
CellIFT takes 47 hours, and self-composition takes 76 hours.

6.4 Analysis of the Refinement Process

Recall that the refinement procedure uses the model checker
to generate counterexamples, each of which may require
one or multiple refinements. For each counterexample, we
invoke our automated backtracing algorithm to identify a
refinement location, and then substitute a more precise taint
scheme at that location. We repeat this process until the coun-
terexample no longer causes the sink to be falsely tainted.
Table 3 summarizes the statistics of the refinement process
for different processors. We report in each column (1) the
number of counterexamples (“CEX” for short) eliminated
before the model checker times out, (2) the accumulated
number of refinements performed over all eliminated coun-
terexamples, and (3) the breakdown of total runtime.

The first observation is that for complex designs like
BOOM-S and ProSpeCT-S, the model checking time con-
sumes most of the runtime. This is primarily because the
false counterexamples require longer execution traces com-
pared to the ones generated for the other cores, leading to
longer model checking times. Second, across all evaluated
processors, simulating the counterexamples on the hardware
designs also contributes notably to the runtime. This simula-
tion time includes compiling Verilog into simulation binaries
and executing the counterexample over a fixed number of
cycles. Among these two phases, compilation dominates the
overall simulation time, while executing the compiled bi-
nary is relatively fast, as each counterexample typically only
spans 10-30 cycles.
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Table 3. Statistics for the taint refinement procedure.

# of CEX # of Runtime Breakdown

Eliminated Refinement #yic ISimu !BT !Gen

Sodor 6 12 0.8m 2.6m 1.3m 0.3m
Rocket 15 74 18m 44m 14m 3.4m
BOOM-S 14 161 21.4h 6.5h 1.8h 0.9h
ProSpeCT-S 13 39 32.2h 1.0h 0.8h 0.7h

 The total runtime is broken down into 4 columns: total model checking
time (fpmc), simulation time (fsimy, including compiling Verilog into sim-
ulation binaries), backward tracing algorithm time (¢gT), and taint logic
generation time (fGen). We stopped the refinement when no more coun-
terexamples could be found by model checkers in 24h.

6.5 Analysis of the Final Taint Scheme

Table 4 summarizes the final taint scheme generated for
Rocket, with the design hierarchy expanded up to two levels
(column 1, 2). Column 3 shows the taint bit granularity, as
well as the detailed numbers of register bits in the original
design (before taint instrumentation) and taint register bits
added. Column 4 shows the total number of cells in the
original, uninstrumented design and the fraction of those
cells that are associated with partially or fully refined taint
logic.

Before trying to understand the result, we want to point
out that our CEGAR loop can still generate unnecessary re-
finements, which will be discussed at the end of this subsec-
tion. Until then, we will focus on describing and summarizing
necessary refinements.

Choice of Bit Granularity and Logic Complexity. First,
we observe that a per-module granularity is selected if the
module shares a consistent secret status (all secret or all
public) across any input programs, such as I/D-TLB, Page
Table Walker (PTW), and MulDiv modules, contributing to
substantial savings in taint bits. Otherwise, if secret and
public data can be mixed inside the module, the refinement
process decides to use per-word granularity. For example, the
DCache data array is partially initialized with secrets, and
some pipeline registers inside the Core module can also be
reached by secrets. Thus, per-word granularity is necessary
for them to avoid over-approximating the taint status.

Second, we find that refined taint logic is used when
the original logic is selecting among secret and public data
sources, and naive taint logic is used when only public data
is involved. The last column of Table 4 shows a significant
amount of refined taint logic is used in the top modules
of Frontend, Core, and DCache. The following representa-
tive examples illustrate the choices made by Compass and
were obtained after examining the detailed refinement re-
sults (Appendix D). In the Core module, the writeback data

®These numbers do not exactly match Figure 5 as they are collected in-
side the taint logic generation compiler pass before various RTL-specific
optimizations are applied and Verilog code is generated.
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Table 4. The final taint scheme for Rocket.

Modules Bit Granularity |RefinedCell
(taintBit/origBit)| /OrigCell
Frontend (Pipeline) word (42/266) 137/393
I-TLB (1) module (1/2015) 75/635
ICache word (62/1282) 0/200
BTB word (724/2103) 4/2863
Fetch Queue word (80/630) 0/207
Core (RF+Pipeline) | word (199/3514) 485/1175
IBuf (1) word (24/179) 23/406
Breakpoint word (0/0) 0/62
CSR word (260/2889) 358/1234
ALU word (0/0) 0/95
MulDiv module (1/346) 32/99
FPU (35) mixed (150/4281) | 135/3497
DCache | (Tag+Pipeline) | word (172/1481) 886/1854
Tag Arbiter word (0/0) 56/63
Data Array word (130/1029) 394/531
Data Arbiter word (0/0) 27/30
D-TLB (1) module (1/2015) | 76/1154
PMAChecker (1)| module (1/2015) 76/1154
PTW (1) module (1/922) 0/1099

T We report refinement statistics for the five top-level modules in Rocket, and
expand selected modules to a depth of two levels. For each expanded module,
the first row reports statistics for logic directly contained in the module,
followed by rows for its immediate submodules. If a submodule contains
multiple deeper, unexpanded modules, their statistics are aggregated into a
single row, with the number of child modules shown in parentheses.

is selected among memory data, ALU result, and CSR data
using a MUX cell with signals such as dmem_resp_valid,
io.dmem.resp.bits.tag, and wb_ctrl.csr. The dynamic
values of these signals are used to refine the taint logic of this
MUX cell. This ensures that, in execution traces where public
value flows through, the taint bit will not propagate. Similar
selector signals also exist inside DCache, such as valid sig-
nals (s1_valid_not_nacked, io.cpu.req.valid), pipeline
commands (s1_flush_valid, s2_req.cmd), and load-store
hazard (pstorel1_valid_likely, pstorel_addr), which are
all used to refine taint logic. On the other hand, decode logic,
such as logic that computes whether an instruction is mem-
ory or ALU type and whether a memory command should
be load or store, uses naive taint logic, as it only deals with
public signals.

To summarize, the final taint scheme is tailored to block
information flow at the boundary between secret and pub-
lic values. This boundary is fundamentally specific to the
property under study. For locations that secret values can
never reach under any program, as well as locations where
secret values are allowed to flow legitimately, the scheme
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captures information flow coarsely using per-module gran-
ularity with naive taint logic. In contrast, for specific cells
where information flow depends on dynamic, run-time val-
ues from program execution, the scheme captures informa-
tion flow precisely using per-word granularity and refined
taint logic.

Reused Structures. We observe that when similar struc-
tures are reused in a system, they may or may not end up
with similar taint schemes. For example, I/D-TLB, DCache
Data Array, and ICache all contain register arrays. The arrays
storing DCache data use a more precise taint scheme than
others. As discussed above, this is because the DCache data
array is at the boundary between secret and public values.
Another example is that pipeline registers with associated
update/stall logic widely exist in the Frontend, the Core, and
the DCache. However, the taint status of these registers can
be updated with very different taint logic depending on how
they interact with secret values.

Unnecessary Refinements. Lastly, we provide examples
of unnecessary refinement and explain why they occur in
our CEGAR loop. In units such as CSR and MulDiyv, it is
unexpected to see lots of refined taint logic, as secrets should
never flow to them. Such refinements help block counterex-
amples early in the CEGAR loop by cutting information flow
closer to the sink. However, they become unnecessary once
the CEGAR loop introduces refinements closer to the source.

Specifically, in counterexamples early in the CEGAR loop,
input data to these units are falsely tainted, and refinements
are made to avoid these falsely tainted data to flow through
the modules. For example, inside CSR, io.rw.cmd is used
to decide whether CSR will be read or write, and a false
counterexample can flow input taint into CSR even if it is
a read command. In this case, using the dynamic value of
io.rw.cmd to refine the CSR write logic can help block the
counterexample. Later, when the input taint of this module is
fully blocked, this refinement becomes unnecessary. Similar
unnecessary refinements appear in all pipelined modules,
such as MulDiv (io.req.valid, state) and the frontend
pipeline (s2_valid, s2_btb_taken, s2_btb_resp_valid).
Future work can improve ComMpass by pruning unnecessary
refinements.

7 Discussion

Soundness and Precision. Ideal taint schemes should be
sound and precise to avoid false negatives and false positives
when analyzing security properties.

A taint scheme is sound if it does not miss any information
flow leakage. All taint schemes explored by Compass are
sound because the taint logic of each hardware unit in our
library is manually designed to be sound, and the soundness
is preserved [46] when composing the taint logic of smaller
units to create taint schemes for larger units.
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As shown in Section 6.5, the precision of taint schemes
generated by Compass is optimized for the security property
under study. For this property, it is precise and will not gen-
erate false positives (i.e., false counterexamples) up to the
number of cycles checked by the model checker (Table 2),
but it may produce false positives beyond that bound. Fun-
damentally, Compass explores different trade-offs between
precision and overhead by being property-specific, while ex-
isting works [1, 6, 23, 39, 40, 46] are property-agnostic.

Scalability of Model Checking. As described in Sec-
tion 6.4, Compass can be limited by the scalability of the
model checker in generating false counterexamples. Specifi-
cally, Compass targets to simplify taint logic while leaving
the original design unmodified, delegating the complexity
of the full design to model checkers. As future work, it is
possible to incorporate orthogonal works to optimize this
analysis on original designs, for example, through functional-
ity abstraction (7, 32, 38] and invariants learning [11, 15, 35].

8 Related Work

Both CEGAR and taint analysis are widely used in formal
verification for software and hardware systems. We now
discuss the works that are closely relevant to us.

CEGAR for Taint Refinement. To the best of our knowl-
edge, Lazy self-composition [53] is the only existing work
that explores using CEGAR for taint refinement. It is de-
signed for generic transition systems, focusing on software
programs. When encountering a spurious counterexample,
Lazy self-composition will use the model checker’s internal
information about the counterexample to refine the taint
logic "for relevant parts of the program.” Only a single re-
finement scheme is proposed: self-composition for the se-
lected section of the program. In contrast, our approach (1)
addresses CEGAR taint refinement for hardware and (2) pro-
vides an algorithm to identify the part(s) of the design that
need taint refinement for a given false counter-example and
(3) selects the simplest taint-refinement scheme that can
eliminate the false counter-example.

The scalability of Lazy self-composition is unclear. They
have only evaluated the approach on small C programs with
up to 100 lines of code and fewer than 500 variables. Given
that their implementation is not open-sourced, we are unable
to test their approach on the processors in our case studies.

Existing Taint Schemes. Table 5 shows how existing
hardware taint schemes fit into the three-dimensional taint
space we have defined. GLIFT [46] uses taint logic that uses
1 taint bit for every data bit and fully dynamic values. Impre-
cise Security [23] and Arbitrary Precision [6] allow trade-offs
between precision and complexity by adjusting the dynamic
level. RTLIFT [1] introduces taint logic for operators in the
Verilog syntax tree and supports two choices of dynamic
level: fully dynamic and no dynamic. Similarly, CellIFT [39]
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Table 5. Analyze existing taint schemes using our three-
dimensional taint space.

Unit Level | Bit Granularity | Logic Complexity

= ~ =Y 3 )

GLIFT [46] |V v v
[23], [6] v v v Vv VvV
RTLIFT [1] v v v v
CellIFT [39] v v v v

HybriDIFT [40] V| Customized Customized

Compass vV VIV V VI IV Vv V

is a macrocell-level taint scheme that allows choosing be-
tween fully dynamic and no dynamic for those cells. Hy-
briDIFT [40] customizes taint logic for memory modules.

Taint Analysis for Hardware Security Verificaiton.
Hu et al. [21] leverage static analysis to determine relevant
logic gates for the given security property and only generate
taint logic for these gates. However, they still use the precise
taint logic for all such gates.

Multiple works use taint analysis to discover timing side-
channel vulnerabilities. However, they consistently use a
global uniform taint scheme for the whole design, and do not
explore the taint space as we do. For example, IODINE [47]
and Xenon [48] check whether a hardware design leaks se-
crets via timing. Their taint schemes do not use any dy-
namic values except for the select signals of multiplexers.
SecVerilog [56] and SpecVerilog [55] develop security-typed
hardware description languages and include taint analysis
in their type-checking rules. Given they perform taint anal-
ysis during compilation, their taint logic only uses static
values. RTL2MpPath [20] uses CellIFT [39] to identify in-
structions that exhibit multiple microarchitecture execution
paths. Isadora [14] uses RTLIFT [1] to extract information
flow properties from hardware execution traces.

Formal Verification for Secure Speculation. Several ex-
isting works represent the state-of-the-art in verifying specu-
lation contracts on RTL designs, including UPEC [16, 17, 30],
LEAVE [51] and Contract Shadow Logic [44]. All these three
works use self-composition to check contract properties. In
our evaluation, we have shown that Compass has better
performance in formal verification than self-composition.

9 Conclusion

We propose CoMpass, a framework to help users navigate
the vast design space of taint tracking schemes and craft
taint schemes that are light-weight and sufficiently precise
for their verification tasks. The key insight of Compass is
to apply counterexample-guided abstraction refinement to
iteratively refine taint schemes. At the core, we introduce
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a backtracing algorithm to automatically identify the taint
logic that causes imprecision. We evaluate CoMPAsS in gener-
ating taint schemes to verify speculation contract properties
for four open-source processors. The evaluation results show
that Compass finds taint schemes with significantly reduced
logic overhead and taint bits overhead compared to CellIFT.
Moreover, these schemes also achieve better security evalu-
ation performance in both simulation and model checking
scenarios.
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A Observable Fan-in Signals

We use the concept of observability to describe, given a
gate and a waveform, which inputs can affect an output.
This concept helps our backtracing algorithm traverse only
part of the upstream netlist of this gate that can influence
its output. The basic idea of formalizing observability can
be similar to the non-interference property in Section 2.1.
However, the complexity arises when multiple inputs need
to be changed together to influence the output, as shown in
the definitions below.

Consider a combinational logic F: 7 — O. We use I to
denote its input variable vector (within domain 7) and o
to denote its single output variable (within domain O). We
define v as a valuation of the function, i.e., given an input
or output variable x, v(x) provides its value. Then, given a
set of inputs A C I, we define whether this set is observable
under a concrete valuation as:

observable(A,v,F) := 3V,
(Vx e I\ AV (x) = v(x)) A (v (0) # v(0))

This formula states that a set of inputs is observable if and
only if it is possible to flip the output by changing only the
values of the inputs within this set.

However, with the above definition, a trivial observable
set is the set of all inputs. In fact, we are more interested in
those observable sets that are minimal:

MinObserableSets(v, F) = {A | observable(A, v, F)
A=(3 A, A" Anobservable(A’,v,F))}

Finally, despite the concept of minimal observable sets pre-
cisely describing all different ways that inputs can affect an
output, it cannot be easily incorporated into our backtracing
algorithm. For example, what if an input appears in multiple
sets? Should we give higher priority to tracing back on this
input? For simplicity, we use a naive solution that traces
back on inputs as long as they appear in any one of these
minimal observable sets, with equal priority. The following
definition formalizes the notion of observable fan-ins:

ObserableFanlns(v, F) = U MinObserableSets(v, F)

A fan-in is considered observable if it belongs to this set. This
definition is used in Section 5.3 and Algorithm 1.

B Security Properties

In this section, we give the formal definition of the security
properties we verify in Section 6. We adopt the notation and
definitions from [44].
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Original Contract Property. Software-hardware con-
tracts [19] aim at differentiating the information leakage
at the software (architectural) and hardware (microarchitec-
tural) levels. An architectural observation Ojs4 includes the
information that is observable on the software level, e.g.,
writeback data of committed instructions in the case of the
sandboxing contract we verify. It can be viewed as part of
the execution trace of an ISA (1-cycle) machine. A microar-
chitectural observation Oy 4, includes the cycle-by-cycle
information of microarchitectural signals in the processor
that are observable through side channels, such as commit
signal, memory address, etc.

For a processor, let P denote a program, Mp,,, denote the
public region in memory, and Ms.. denote the secret region.
The security property that a processor must adhere to is:

v P, Mpuba Msec, M;

sec’

if Orsa(P, Mpub> Msec) = Orsa(P, Mpub> M; )

sec

then O,uArch (P> Mpuba Msec) = O,uArch (P, Mpubv Ms/ec)

Note that the assumption (if) and assertion (then) are both
information flow properties. The contract property states
that for arbitrary P, My, and any pairs Msec, M., if the
secret is not leaked through architectural observation on
an ISA machine, then it should also not be leaked through

microarchitectural observation in the processor.

Contract Property with Taint. The original contract
property can be rephrased using taint logic by replacing the
equivalence checks between two traces in the formula with
taint checks. Let M;ub, M, be the taint status of My, Mec,
let O, be the taint trace for the ISA machine that captures
whether any of the observable signals is tainted at every cy-
cle, and let O; rcp, D€ the similar taint trace for the processor.

The rephrased contract property is:
VP, Mpuba Msec,
initialize M;ub to be 0, initialize Mstec to be 1,

if Ojg, = [0,0,..0] then o;Arch =[0,0, ...0]

This property requires that if Ojs4 is not tainted, then
Oparch should also not be tainted. There are 2 differences
from the original contract property:

o The assumption becomes stronger because of the conser-
vativeness of taint logic. This means it is possible that
valid attack programs are filtered out by the assumption
check. However, this gap can be minimized by using the
most precise version of taint (i.e., CellIFT [39] in our case)
for the ISA machine. Besides, it is a common practice to
use taint analysis or more conservative type systems in
verifying software information flow properties such as
constant-time programming [4, 9, 58].

o The assertion also becomes stronger, which may lead to
spurious counterexamples. We use Compass to refine the
taint logic until there are no spurious counterexamples.
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ProSpeCT Property. ProSpeCT [13] defines a slightly dif-
ferent security property from the software-hardware con-
tract. Its memory is statically partitioned into public and
secret regions, and loaded data is classified as secret if and
only if its address lies in the secret region. The ProSpeCT
property can be defined as follows using taint logic:

VP, Mpuby Msec,
hardwire M[tmb to be 0, hardwire M, to be 1,

if Opg4 = [0,0,..0] thenO,, , =[0,0,...0]

C New Bugs Discovered on ProSpeCT

When evaluating Compass on ProSpeCT, we found two bugs
that break the security mechanism.

The first bug is a simple typo. When the taint status of
rs2 register of an instruction should be used as part of logic
to determine whether the it should be fired, it uses the taint
status of rs1 by mistake.

The second bug arises from incorrect tracking of tran-
sient instructions in a complex scenario involving two nested
branches. The inner branch is mispredicted, the outer branch
is correctly predicted, and the inner branch is resolved earlier.
Then, when the outer branch is resolved, all in-flight instruc-
tions are marked as non-transient, including those following
the mispredicted inner branch. As a result, no mitigation is
applied to these instructions, allowing transient instructions
following the inner branch to bypass the security checks.

After confirming these two bugs with the ProSpeCT au-
thors and fixing them, we obtain ProSpeCT-S, which is the
secure version of ProSpeCT that we use in our evaluation
(Section 6).

D Refined Signals in Rocket

Following Table 4, we now provide signals in each module
whose dynamic values are used to refine taint logic. This
signal list corresponds to tag 1.11.0 of the chipyard reposi-
tory [18].

// Frontend

Top: io.cpu.req.valid,
io.ptw.customCSRs.csrs(Q).value,
icache.io.s2_kill, icache.io.resp.valid,
btb.io.resp.valid, fq.io.mask, s1_valid,
s2_valid, s2_xcpt, s2_speculative,
s2_can_speculatively_refill,
s2_kill_speculative_tlb_refill,
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s2_tlb_resp.cacheable, s2_tlb_resp.miss,
s2_btb_resp_valid, s2_btb_taken,

predictBranch, predictJump, predictReturn

I-TLB: pmp.io.pmp(1).cfg.a

BTB: reset_waddr

// Core

Top: ibuf.io.inst(@).bits.replay, take_pc_wb,
take_pc_mem_wb, id_ctrl.mem, id_ctrl.rocc,
id_ctrl.amo, id_ctrl.fence_i, id_raddri,
id_amo_rl, id_reg_fence, rf_wen, rf_waddr,

ex_ctrl.mem, ex_ctrl.rocc, ex_ctrl.sel_alul,
ex_ctrl.sel_alu2, ex_ctrl.rxs2, ex_reg_rs_1lsb,

ex_reg_rs_bypass, ex_pc_valid, csr.io.rw_stall,
csr.io.interrupt, csr.io.eret, mem_ctrl.fp,
mem_ctrl.wxd, mem_pc_valid, mem_wrong_npc,
dmem_resp_valid, io.dmem.resp.bits.tag,
mem_reg_valid, mem_reg_xcpt, mem_reg_flush_pipe,
wb_ctrl.mem, wb_ctrl.rocc, wb_ctrl.csr, wb_xcpt,
replay_wb, ctrl_stalld

IBuf: io.imem.bits.pc, io.imem.bits.btb.taken,
io.imem.bits.btb.bridx, nBufValid, nReady

CSR: io.rw.cmd, io.rw.addr, io.pc(1),
io.exception, csr_wen, wdata(2), reg_mstatus.v,
reg_debug, reg_bp(@).control.dmode,
reg_pmp.cfg.a, reg_pmp.cfg.l, reg_dcsr.step,
insn_call, insn_break

MulDiv: io.req.valid, state

// FPU

Top: divSqrt_killed

DivSqrtRawFN_small: entering, cycleNum

// DCache

Top: io.cpu.req.valid, tl_out.d.valid,
tl_out.d.ready, tlb_port.req.valid, s@_clk_en,
s1_valid, sl_valid_not_nacked, sl1_xcpt_valid,
s1_flush_valid, sl1_vaddr, sl_write, s2_valid,

s2_valid_no_xcpt, s2_valid_masked,
s2_valid_hit_pre_data_ecc_and_waw,
s2_valid_miss, s2_valid_cached_miss, s2_req.cmd,
s2_probe, s2_dont_nack_miscio.cpu.req.bits.cmd,
s2_victimize, s2_uncached, s2_req.addr,
advance_pstorel, pstorel_valid_likely,
pstorel_addr, inWriteback, grantIsUncachedData,
release_state, release_ack_wait,
release_ack_addr

Tag Arbiter: io.in.valid

Data Array: io.req.valid, io.req.bits.addr,
io.req.bits.write, io.req.bits.way_en,
io.req.bits.wordMask

Data Arbiter: io.in.valid

D-TLB: pmp.io.pmp(1).cfg.a

PMAChecker: pmp.io.pmp(1).cfg.a
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