Defeating Transient Execution Attacks by Limiting Secret Reachability
through REGISTER HIDING and SHADOWCFI

Daniél Trujillo
MIT CSAIL
danieltr@mit.edu

Jagadish Kotra
AMD
jagadish.kotra@amd.com

Abstract—Modern processors incorporate aggressive branch
prediction mechanisms for indirect branches, offering various
unanticipated ways to influence speculative behavior during a
transient execution attack. Existing mitigations against these
so-called Spectre v2-style attacks are often ad-hoc, highly
specific to the discovered attack and the targeted microarchi-
tecture, and thus fail to generalize. In this paper, we identify a
core requirement previously overlooked that all of these attacks
share: secret reachability. Building upon this, we propose
REGISTER HIDING and SHADOWCFI, two complementary but
independent software-based and hardware-agnostic techniques
which target the attacker’s ability to reach secrets in registers
and memory. REGISTER HIDING hides the architectural regis-
ter state before a misprediction can occur, while SHADOWCFI
ensures the architectural register state can only be restored at
the correct target. To demonstrate their merit, we implement a
fully functional patch for Linux kernel version 6.8.0, protecting
against known and futuristic Spectre v2-style attacks, including
all those which target indirect jumps, indirect calls and returns.
We provide a security analysis and corresponding scanner to
verify that an attacker cannot restore the register state during
misprediction in our proof-of-concept. Replacing the most
recently deployed Spectre v2 defenses with REGISTER HIDING
and SHADOWCFTI reduces the overall mitigation overhead on
AMD Zen 4 from 114.1% to 75.9% for LEBench, and from
33.4% to 25.8% on average across server workloads.

1. Introduction

Speculative execution is paramount for the performance
of pipelined processors. However, mispredictions can be
dangerous, potentially leaving secret-dependent traces be-
hind. Indirect branch mispredictions (Spectre v2-type) are
one of the most dangerous, allowing an attacker to execute
arbitrary gadgets in the victim’s address space. Various
mitigations have been proposed and implemented to protect
against these attacks, targeting different attack ingredients.
In this paper, we identify an ingredient that remained untar-
geted so far, and propose to tackle this as a defense against
Spectre v2-style attacks.

Indirect branch mispredictions. Although speculative ex-
ecution is beneficial for performance, it has been less

David Kaplan Mengjia Yan
AMD MIT CSAIL
david.kaplan@amd.com mengjiay @mit.edu

favorable for security. By mistraining predictors in the
CPU’s Branch Prediction Unit (BPU), attackers can leak
data through side-channels that they architecturally have no
access to [1]. A large number of these so-called transient
execution attacks have been discovered, either targeting
different predictors or training them in distinct ways [2],
[31, [4], [5], [6], [7], [8], [9]. By mistraining the BPU, an
attacker causes mispredictions to a disclosure gadget during
victim execution, leaving secret-dependent traces behind in
microarchitectural structures such as the cache. Spectre v2-
style attacks target indirect branches and are particularly
powerful, allowing any sequence of bytes in the victim’s
address space to serve as a disclosure gadget. Recent attacks
targeting indirect branches such as Retbleed [3], BHI [10],
Inception [4] and BPI [8] show the relevance of these
attacks, even today.

Mitigations. Various mitigations against transient execution
attacks targeting indirect branches have been proposed and
implemented in recent years. While some work focused
on removing disclosure gadgets from the victim’s address
space [11], most defenses attempt to prevent disclosure
gadgets from being reached under speculation, either in soft-
ware (e.g., retpoline) or in hardware (e.g., IBRS) [12], [13],
[14], [15], [16], [17], [18], [19]. Other defenses propose
to remove secrets from the victim’s address space [20],
[10]. Lastly, a large number of academic works proposed
hardware changes to prevent side-channels due to transiently
executed instructions [21], [22], [23], [24], [25].

Attack ingredients. Surveying previously proposed miti-
gations of Spectre attacks targeting indirect branches, we
realize that they all overlook one ingredient: secret reach-
ability. Previous work assumes that if a secret exists, it is
automatically reachable as well, i.e., the disclosure gadget
can find a way to consume the desired secret. During our
analysis of previous Spectre attacks, we come to the conclu-
sion that they all achieve secret reachability by relying on the
architectural register state, i.e., the register state committed
prior to the misprediction. Can we limit secret reachability
for transient execution attacks by blocking access to the
architectural register state during mispredictions?

REGISTER HIDING and SHADOWCFI. Instead of lim-
iting speculation or fighting side-channels, we propose to
tackle secret reachability. Before each potentially vulnerable
branch, REGISTER HIDING empties the register state, restor-
ing it only at the destination of a branch. In this way, the
attacker has very limited options for reaching secrets, sig-
nificantly raising the bar for exploitation. To ensure we only
release the register state at the correct target, we furthermore
introduce SHADOWCFI, a control-flow integrity mechanism
that compares the speculative target to the architectural
target, preventing the register state from being released at
an incorrect target.

Our defense is general, software-only and hardware-
agnostic. Furthermore, we validate the kernel to be free
of any gadgets which allow an attacker to restore the
register state, or bypass SHADOWCFI, speculatively. Un-
like currently deployed mitigations, our defense does not
force mispredictions, and therefore enjoys high throughput.
Our benchmarking results show that we obtain significantly
higher performance than default mitigations in the Linux
kernel, despite the additional instructions we introduce.
Again in contrast to recently deployed mitigations, our
defense protects against indirect mispredictions regardless
of the attack used to trigger them. Owing to this generality,
it defeats all known transient execution attacks targeting
indirect branches, and offers resilience against potential
future variants, without any hardware support or hardware
assumptions.

Contributions

In summary, our contributions are:

o We identify a core ingredient of transient execution
attacks mispredicting indirect branches, not targeted by
any previous defense: secret reachability.

o We introduce REGISTER HIDING, a novel approach to
protect against Spectre v2-style attacks by ensuring an
empty register state upon a misprediction.

o We present SHADOWCFI, a run-time control-flow in-
tegrity mechanism which exposes the speculative in-
struction pointer to software, allowing comparison
against the architectural branch target.

o We build a proof-of-concept for Linux kernel version
6.8.0. LEBench results on AMD Zen 4 demonstrate a
reduction in overall mitigation overhead from 114.1%
to 75.9% when protecting against Spectre v2 attacks
using REGISTER HIDING and SHADOWCFI.

o We validate our defense using a security analysis and
corresponding gadget scanner, verifying the inability of
an attacker to restore the architectural register state at
an incorrect target under speculation. This allows the
attacker to cause misprediction to any byte-aligned ad-
dress, even those not corresponding to an architectural
instruction boundary.

Our proof-of-concept defense using REGISTER HID-
ING and SHADOWCEFI, along with the validating gadget
analyzer, is available at https://github.com/MATCHA-MIT/
register-hiding-and-shadowcfi.

2. Background

2.1. Branching and speculative execution

Branch instructions determine the next instruction
pointer, but may have dependencies and take time to com-
plete. To deal with this, the processor could just stall,
waiting for the outcome of the branch. Instead, virtually
all CPUs opt for a more performant solution. By predicting
the next instruction pointer, the pipeline can be filled up
with instructions that can be worked on while the branch is
being resolved. This technique, called speculative execution,
improves processor performance considerably. When the
prediction is confirmed to be correct, instructions executed
after the prediction can commit to the architectural state. If
mispredictions occur, the processor eventually re-steers to
the correct execution path, discarding instructions executed
after the mispredicted branch.

Among the different branch types, indirect branches are
most flexible with their context-dependent targets. Indirect
jumps update the instruction pointer to a new target read
from a register or from memory, while indirect calls addi-
tionally push a return address onto the stack. Return instruc-
tions update the instruction pointer to the target last pushed
onto the stack by a call instruction (i.e., from memory), and
are thus also considered indirect branches.

Given that indirect branches update the instruction
pointer to arbitrary targets, mispredictions can cause spec-
ulative execution of an intractable number of paths. In this
paper, we focus on all indirect branches — jumps, calls and
returns.

2.2. Branch prediction for indirect branches

To best guess the next instruction pointer, the front-
end of the processor is embodied with a BPU. The BPU’s
task is to have a new instruction pointer ready at all times,
facilitating new instructions being fetched and fed into the
pipeline. Given the different types of branches that exist, the
BPU itself consists of various components that help with its
decisions.

Branch Target Buffer. The Branch Target Buffer (BTB)
records previously seen branch targets, and typically con-
tains thousands of entries [26]. On AMD CPU s, this includes
targets for all branches except return targets [15]. On Intel
CPUs, the BTB also records previously seen targets of
return instructions [16]. Reverse engineering efforts show
that the BTB is normally indexed with a hash of the current
instruction pointer [27], [3], [28], [1]. As a result, colli-
sions may occur in the BTB between independent branches,
causing mispredictions. In addition to a target, the BTB
is also known to predict the type of the branch on some
microarchitectures [5], [4].

Return Stack Buffer. To help predict the outcome of return
instructions, the BPU is equipped with a dedicated buffer

called the Return Stack Buffer (RSB), which acts as a micro-
architectural stack. When a return address is pushed onto the
stack (due to a direct or indirect call), the return address is
additionally pushed on the RSB. A return instruction pops
from this stack to obtain a target for speculative execution.
The RSB is typically 16 or 32 entries big [16], [15], and
may operate as a circular stack. Due to its limited size, an
underflow can happen. On Intel CPUs, the BTB is used for
return instructions upon an RSB underflow [29].

Branch History Buffer. A Branch History Buffer (BHB)
records the most recent branches in the execution flow.
With the value recorded in the BHB, a choice can be
made between multiple target candidates in the BTB for
indirect branches. The value is commonly a concatenation
or combination of instruction pointer hashes for the recently
executed branches [6].

2.3. Transient execution attacks

While improving performance, speculative execution can
lead to unintended information disclosure when the proces-
sor mispredicts. In 2018, Kocher et al. revealed Spectre,
showing that speculative execution can be abused to leak
data across security domains [1]. By carefully executing
code snippets, the CPU can be trained to take certain
predictions in the future. A misprediction triggers transient
execution, opening a transient window of instructions which
are wrongfully executed under speculation. If these instruc-
tions constitute a so-called disclosure gadget, mispredictions
can lead to information disclosure across security domains.
A universal disclosure gadget is one that allows the attacker
to leak arbitrary secrets in the system.

Spectre attacks that poison the BTB to cause indirect
branch mispredictions are referred to as Spectre v2 attacks.
Being able to mispredict to arbitrary targets, it becomes
significantly easier for the attacker to transiently execute
a disclosure gadget. A large number of Spectre v2-style
attacks followed after its initial discovery. Spectre-RSB
triggers mispredictions of return instructions by mistraining
the RSB [7], [9]. In [30], it was shown that fence instruc-
tions do not protect indirect branches from starting tran-
sient windows large enough for data leakage. In Retbleed,
researchers showed that return instructions can mispredict
due to BTB-poisoning as well [3]. Branch History Injection
(BHI) showed the BHB can be manipulated across security
domains on Intel CPUs, triggering mispredictions of indirect
branches without poisoning the BTB [6]. Phantom showed
that even non-branch instructions can mispredict due to
BTB poisoning on x86 microarchitectures [5]. Inception
transiently trains the RSB with Phantom to hijack return
instructions on AMD microarchitectures. InSpectre [31]
showed that non-trivial disclosure gadgets can lead to infor-
mation disclosure. Training Solo revealed that an attacker
can realistically trick the Linux kernel into training its
own indirect branches on Intel CPUs [2]. Lastly, Branch
Privilege Injection (BPI) showed that BTB updates are made

asynchronously on Intel CPUs, allowing indirect branch
predictions to be inserted with incorrect privilege tags [8].

2.4. Transient execution attack mitigations

Software mitigations. The original Spectre v2 attack was
mitigated with retpoline [13], transforming indirect branches
into return instructions, forcefully mispredicting them us-
ing the RSB. On AMD microarchitectures, retpoline was
replaced with a different variant which simply placed an
1fence before the indirect branch [32]. After this variant
was proven to be insecure, AMD switched to the default
repoline as well. To protect against Spectre-RSB, the RSB is
stuffed, i.e., it is filled up with benign targets after potential
attacker influence [14].

When retpoline was shown to be insufficient due to
Retbleed, it was enhanced with call-depth tracking on Intel
CPUs, which prevents RSB underflows [29]. For AMD
CPUs, retpoline was replaced by jmp2ret, a mitigation which
centralizes all returns into a single location [17]. This single
return is “untrained” upon kernel entry, guaranteeing it is
free of attacker influence. When jmp2ret was bypassed by
Inception, AMD replaced it with saferet [18]. This mitiga-
tion furthermore executes a call before the centralized return,
providing the guarantee that the top-of-the-RSB value is
known and benign. However, this comes at a performance
cost: all returns are mispredicted.

Hardware mitigations. In addition to software mitigations,
CPU vendors released a number of hardware mitigations.
Indirect Branch Prediction Barrier IBPB) provides a barrier
such that indirect branches following it are free of influence
of those executed prior to the barrier [15], [16]. Single
Thread Indirect Branch Predictors (STIBP) furthermore iso-
lates these predictions between sibling hyperthreads. Like-
wise, Indirect Branch Restricted Speculation (IBRS) lim-
its indirect branch predictions from being influenced by
lower-level privilege software. Newer AMD and Intel CPUs
provide Automatic IBRS and Enhanced IBRS respectively,
which are IBRS that are active in the background, with-
out the need of explicitly triggering them on a privilege
switch. Furthermore, many of the shown attacks triggered
microcode updates which provide ad-hoc mitigations [33],
[18], [34].

2.5. Control-flow integrity for software security

Control-Flow Integrity (CFI) mechanisms help defend
against software attacks in hardware. Newer Intel CPUs sup-
port Control-flow Enforcement Technology (CET), which
compares stack values against a Shadow Stack for re-
turns [35]. In addition, indirect branches are protected using
Indirect Branch Tracking (IBT), restricting indirect branch
targets to those which start with an endbr instruction.
On newer AMD CPUs, Shadow Stack is supported, but
protection for indirect branches is not.

While Shadow Stack and IBT were not designed to de-
fend against transient execution attacks, IBT on Intel CPUs

provide some guarantee about the maximum number of
instructions that may execute after a missing endbr. Older
Intel CPUs may execute less than 8§ instructions transiently,
while newer Intel CPUs are not supposed to transiently
execute past a missing endbr at all [35]. Recent offensive
work showed, however, that even newer Intel CPUs allow
for a single load to execute after a missing endbr [31].

FineIBT furthermore restricts indirect branch targets to a
smaller and more precise set on Intel CPUs, mainly for soft-
ware security [36]. It also aimed to reduce the speculative
attack surface, although it was later bypassed [31].

3. Threat model

We assume a strong and realistic threat model, covering
and going beyond what previous Spectre attacks targeting in-
direct branches have demonstrated. We assume the attacker
is able to execute unprivileged but arbitrary code, aiming to
leak data from a victim program on the same machine. In
particular, we focus on the Linux kernel, which has access
to all mapped memory on the system, but our techniques
could be applied to other victims as well.

We consider misprediction to occur while executing any
indirect branch (jump, call, return). We broadly consider
all possible ways for an attacker to establish the desired
branch predictor state: the attacker may be training across
privilege domains out-of-place, or the victim may even be
training itself (in-place/same-domain). We do not assume the
predictor which serves the speculative branch target either.
This covers a broader threat model than many previously
deployed mitigations [17], [18], [13], [15], [16].

Furthermore, we allow the attacker to arbitrarily choose
any address to speculate into. This address may not be
the start of a function (i.e., we do not rely on IBT or the
like [35]), and it may not even be the start of an existing
instruction. That is, we allow the attacker to pick any byte-
aligned address in the victim’s address space. This is again
going beyond what previous mitigations assume [35], [36].

4. Motivation

In this section, we outline the motivation behind REGIS-
TER HIDING. First, in Section 4.1, we explore the require-
ments for Spectre v2-style attacks that have been targeted
by previous defensive work. In Section 4.2 we identify that
one requirement — secret reachability — was overlooked by
previous work, serving as the motivation behind our defense.
Lastly, in Section 4.3 we discuss how secret reachability is
dependent on the architectural register state, providing a path
toward a practical mechanism to limit it.

4.1. Attack ingredients

Previous defense work can be categorized by which
ingredient of Spectre v2-style attacks they target. We rec-
ognize that previous work has targeted four distinct in-
gredients: () gadget availability, 2) gadget reachability,

i DA—

%]

} E
c
©

_ » call*funcion | ®[L IS

w) @)S

% @ secret = *addr; <" 8

% @ x = array[secret * 64]; | - - -»|

—>» Transient execution ---» Influences transiently

—>» Architectural execution ----» Influences architecturally

Figure 1: Example attack. Previous defenses target (1) gadget
availability, (2) gadget reachability, (3) secret availability, and
@ secret transmittability. What about (5) secret reachability?

Q) secret availability and @) secret transmittability. To
explain what these ingredients mean, we discuss each in
detail below. We use the example attack shown in Figure 1
throughout this explanation, which depicts a cross-privilege
Spectre v2-style attack, leaking an arbitrary secret from the
privileged kernel.

(D Gadget availability. The first requirement is rather
trivial: a disclosure gadget must be present in the victim’s
address space. The one shown in Figure 1 first loads the
secret pointed to by addr (under control of the attacker
in user-space) into secret, and then accesses a secret-
dependent entry in the array pointed to by array. However,
this is by no means the only type of disclosure gadget that
can result in data leakage [37], [31]. Any code snippet that
performs secret-dependent operations may introduce a side-
channel and serve as a disclosure gadget.

Previous work built scanners to determine the presence
of disclosure gadgets in a victim binary for exploitation [3],
[38], [31], [39]. Recent defensive work proposed to map the
kernel only partially in the virtual address space, decreasing
the number of disclosure gadgets that can be exploited by
an attacker [11].

2 Gadget reachability. In addition to the existence of a
disclosure gadget, it must also be reachable under specula-
tion. In other words, the victim must be able to trigger a
misprediction during its execution, causing transient execu-
tion of the disclosure gadget. In Figure 1, an indirect call
mispredicts to the disclosure gadget, because the attacker
was able to manipulate the branch predictor from user-space.

A large number of offensive works have been published
on novel ways to achieve gadget reachability [1], [3], [5],
[4], [6], [7]. On the defensive side, the majority of mit-
igations against transient execution attacks target gadget
reachability, including retpoline, IBRS, and saferet [12],
(131, [17], [7], [14], [15], [16], [18], [29], [30], [40].

) Secret availability. Having a disclosure gadget and the
ability to reach it transiently, the attacker needs a secret

to leak. In Figure 1, the secret is available in the kernel
address space, allowing operations to be performed on the
secret during transient execution.

Prior defense work proposed to make secrets unavailable
by unmapping them from the address space [10], [11]. Sim-
ilarly, Address Space Isolation (ISO) was proposed for the
Linux kernel, unmapping memory which is not immediately
needed [20].

@ Secret transmittability. Lastly, the gadget must be able
to transmit the secret to the attacker using a side-channel. In
Figure 1, the secret is used to access an offset in the array
pointed to by array, leaving a secret-dependent trace in
a shared microarchitectural structure. This can be recovered
by the attacker in user space, finalizing the attack.

To combat side-channels due to speculative executed
instructions, hardware changes were proposed by previous
defensive work [21], [22], [23], [24], [25]. In addition,
prior work has proposed to isolate victim and attacker by
eliminating shared microarchitectural resources [41].

4.2. Secret reachability

Our categorization of prior work highlights an impor-
tant requirement that has been overlooked. While previous
defenses have made a clear distinction between gadget avail-
ability and reachability, they have failed to do so for secrets.
We define secret reachability as the disclosure gadget’s
ability to consume the secret desired by the attacker. For
example, Figure 1 labels secret reachability with (5), since
the disclosure gadget consumes the secret by de-referencing
a pointer to memory.

Existing defenses that focus on secrets solely target
their availability [10], [11], [20], assuming that if a se-
cret exists, it can be reached by the attacker. This belief
is even reflected in widely used terminology; disclosure
gadgets consisting of two dependent loads are known as
universal read gadgets [42], taking secret reachability for
granted. While address-space randomization techniques such
as ASLR complicate secret reachability, they were not de-
signed as a transient execution defense, and are typically
easily bypassed under speculation [3], [5], [4].

We have identified a previously underexplored require-
ment of transient execution attacks. This observation is
especially interesting, since the far majority of deployed
defenses target gadget reachability, which often comes at
high performance overhead, and are tailored to specific
attacks and predictors. By instead targeting secret reacha-
bility, it becomes possible to design a more generic and
performant defense against Spectre attacks — an approach
we will discuss in the remainder of this paper.

4.3. Secret reachability and the architectural reg-
ister state

We realize that there exist three ways of achieving secret
reachability, which we discuss in detail below. Figure 2

©0)

.. = $secret

v

| ($secret) = $dummy |

v

Btz 1$secret_addr ‘ Oxdeadbeef — $secret_addr ‘
| ($secret_addr) — $secret } . ‘ ($secret_addr) = $secret ‘

($secret) = $dummy

($secret) = $dummy

D Transient execution —>» Transient branch

Architectural execution Optional transient branch

Figure 2: Three cases of secret reachability. () architec-
tural register-state: the secret is available in a register,
@) architectural register-state referenced: the secret is
in memory, and it is referenced by a register, or 3) ar-
chitectural register-state independent: the secret is not
depending on the architectural register state.

shows example disclosure gadgets for each of the three
cases, where green depicts architectural execution, i.e., exe-
cution which eventually commits, and red denotes transient
execution. We note that each instruction in reality may
consist of multiple instructions, and that they furthermore
can be separated by branches, meaning that the entire gadget
is executed in nested speculation (as in [43]).

(D Architectural register-state. The secret may be read-
ily available in the architectural register state, such as
when it has been fetched from memory during architectural
execution, prior to the misprediction [1]. An example is
cryptographic code; registers may contain the secret key
while performing encryption or decryption. In this case, an
attacker can use this register to compute a secret-dependent
address during a misprediction, allowing a single load to
leak the secret value.

@ Architectural register-state referenced. This case is
more dangerous, allowing even arbitrary secret leakage if
the architectural register state is controlled by the attacker.
In this case, the secret resides in memory, and therefore,
it must first be loaded into a register before it can be
leaked. A plethora of previous offensive works leak arbitrary
secrets from memory by relying on a register as the (base)
address [3], [4], [1], [6], [5], [44], [31]. In most cases, these
are controlled by the attacker from user-space.

(3@ Architectural register-state independent. In this case,
the secret is completely independent of the architectural

register state. The CPU transiently computes the address
of the desired secret out of nowhere, before it discloses
the secret using a regular disclosure gadget. The attacker
is able to obtain a reference to the secret “out of thin
air”, by only using the victim’s code, independently of the
architectural register state. Needless to say, this requires
extraordinary circumstances which are unlikely to exist for
arbitrary secrets in a reasonable victim program.

After reviewing previous offensive work, we come to the
conclusion that all previous offensive work uses (D architec-
tural register-state or (2) architectural register-state depen-
dent secret reachability. That is, in all of them, an attacker
relies on the architectural register state during the transient
window. In our example attack shown in Figure 1, we use
Q) architectural register-state dependent secret reachability.

We are unaware of any previous offensive work that uses
() architectural register-state independent secret reachabil-
ity. Having derived this insight, this paper proposes to limit
secret reachability by preventing access to the architectural
register state during mispredictions.

5. REGISTER HIDING & SHADOWCFI

In this section, we present REGISTER HIDING and
SHADOWCFI, two complementary but independent tech-
niques which together thwart transient execution attacks that
target indirect branches. First, in Section 5.1 we discuss our
high-level idea and the challenges we need to overcome.
In Section 5.2 and Section 5.3 we discuss the design of
REGISTER HIDING and SHADOWCFI respectively. Lastly,
Section 5.4 provides a discussion of the alternative config-
uration and design options.

5.1. Overview

To leverage our insight, we propose to hide the architec-
tural register state during mispredictions. Prior to executing
any indirect branch, we hide the architectural register state,
and at the correct target only, we release the architectural
register state. As a result, any code executed transiently has
to work without the architectural register state, blocking all
previously used ways of achieving secret reachability.

Challenges. There are a number of challenges to be solved
before we can actually limit secret reachability by hiding
the architectural register state. As a first challenge, we need
to find a way to efficiently hide the architectural register
state:

Challenge C1.

Hiding the register state during mispredictions.

In Section 5.2 we present REGISTER HIDING, which moves
the architectural register state to a hidden storage and clears
the register state prior to any indirect branch. At valid branch

targets (i.e., function entry or return site), the architectural
register state is restored from the hidden storage.

While this prevents access to the architectural state for
mispredictions to addresses which are not branch targets, an
attacker may still mispredict to a valid but incorrect branch
target. Therefore, our second challenge is:

Challenge C2.

Ensuring control-flow integrity to prevent mispredic-
tions to incorrect but valid targets.

In Section 5.3 we introduce SHADOWCFI, a control-flow
integrity mechanism that only releases the register state
when the speculative target matches the correct architectural
branch target, blocking an attacker which triggers mispre-
dictions to incorrect, but valid targets.

REGISTER HIDING and SHADOWCFI are only secure
if the hidden storage cannot be accessed transiently during
victim execution. This is a non-trivial property to verify,
especially since the attacker can speculate into any byte-
aligned target, potentially introducing non-architectural in-
structions which can access the hidden storage. Therefore,
our last challenge is:

Challenge C3.

Validating the inaccessibility of the hidden storage
during misprediction through (non-architectural) in-
struction analysis.

In Section 6 we provide a security analysis using induction
to identify the software requirements necessary to ensure
the hidden storage is inaccessible at an incorrect target. We
discuss the design of our sound and complete instruction
analyzer which can validate that these requirements are
satisfied.

5.2. REGISTER HIDING

Our goal is to hide the architectural register state during
mispredictions. In order to do this, we propose to store
a snapshot of the architectural register state in a hidden
storage prior to taking the branch. It should be infeasible
for an attacker to access the hidden storage speculatively
(i.e., it should be hidden). After creating the snapshot, we
can safely clear the register state and execute the indirect
branch. Creating the snapshot and clearing the architectural
register state is done by a Register Hide step, which we
insert prior to each indirect branch in the victim binary.

At each valid branch target, we furthermore insert a Reg-
ister Restore step, which restores the architectural register
state using the snapshot stored in the hidden storage. This
ensures correct execution of the branch target. Valid branch
targets can be easily inferred: every instruction following a
call is a valid return site, and every valid function target is
labeled by the compiler to support IBT. Figure 3 depicts the
high-level operation of REGISTER HIDING. During transient

General-purpose

Victim code i Hidden storage

registers

. secret ptr

Hide sp
Branch . |secret| ptr
ranc hidden| | ... sp
. |secret| ptr
Gadget hidden| . | .. sp
ET— . : secret| ptr
hidden| - sp

Function secret] pir

Sp

---» Transient execution —> Architectural execution

Figure 3: The design of REGISTER HIDING. The architec-
tural register state is cleared prior to a misprediction.

execution, the register state is hidden (row 3). Only when
reaching a Register Restore, the register state is recovered
from the hidden storage.

The only register we cannot safely clear is the stack
pointer (RSP), since interrupts push to the stack, and they
can happen while the architectural register state is hidden.
However, we should not leave RSP intact, since this register
may be used to achieve secret reachability (case) in
Figure 2). Therefore, in the Register Hide step, we store
RSP in the hidden storage, and overwrite it with a pointer
to an empty memory region. This per-core hidden stack is
allocated at boot-times, specifically for interrupt handlers to
use. Section 7 expands on our operation when an interrupt
occurs in a hidden state.

SSE as hidden storage. We are left with finding a suitable
candidate for our hidden storage. We realize that during
execution of many applications, including the Linux kernel,
a part of the x86 ISA is largely unused. In particular, we
find that Streaming SIMD Extensions (SSE) are rarely used
in the Linux kernel, and we can pick a build configuration
such that they are not used at all. SSE introduces a large
number of extra registers: in its original implementation,
XMMO-XMM15 provide sixteen 128-bit registers during 64-
bit execution, easily large enough to store a snapshot of
the general-purpose register state. Later SSE versions in-
troduced more and larger registers, but for simplicity and
compatibility, we will exclusively focus on XMM registers.
The first x86 processors with SSE were shipped decades
ago, and thus any x86 processor currently in use offers its
support.

Leveraging this underutilization, our design uses SSE
registers as the hidden storage. In our Register Hide step, we
move the general-purpose register state to the SSE registers
using movq instructions, after which we clear the register

Hide | Branch ~——| Restore — Function

N
N

4 .- ~{\
./ Gadget
Hide | Branch ———> Restore | g
\4Funct|on

Context B Context A

---» Transient execution —> Architectural execution

Figure 4: An attacker can cause a misprediction to an
incorrect target (the target from context B). In context A,
this target serves as a disclosure gadget.

state using xor instructions. In the Register Restore step,
we simply move the values back from the SSE registers
into the general-purpose registers. While this introduces a
large number of additional instructions, we explore some
optimizations in Section 7.2 that reduce the number of
registers that need to be restored.

In rare cases where the victim program does need to
use SSE, conflicts with REGISTER HIDING only arise if
1) the same SSE registers in use by REGISTER HIDING
are also used by the victim program, and if 2) these SSE
registers need to remain consistent across indirect branches
for correct program execution. Fortunately, SSE usage in
the kernel is limited and mostly isolated to cryptographic
modules, where typically at most a small subset of SSE
registers need to persist across control-flow boundaries,
remaining compatible with REGISTER HIDING. If broader
consistency is required, code would need to be manually
patched to preserve the SSE state across an indirect branch.

5.3. SHADOWCFI

REGISTER HIDING ensures that mispredictions to ad-
dresses which are not valid targets execute without access
to the architectural register state, limiting secret reachability.
However, with our Register Restore step, we have inserted
gadgets that restore the register state at all valid targets in
our victim binary. An attacker can thus still trigger mispre-
dictions to incorrect, but valid targets, leaving a remaining
attack surface similar as in BHI [6] or as in software attacks
on an IBT-protected machine [35]. We thus have context-
insensitive CFL. If there happens to be a disclosure gadget
at a valid target, an attacker can abuse the Register Restore
step at this target to restore the register state before the
disclosure gadget executes. Figure 4 depicts this scenario.
When executing context A, a misprediction to the target
of the branch in context B restores the register state and
consequently allows for secret reachability.

To mitigate this scenario, we require a context-sensitive
CFI mechanism which helps to restore the register state
exclusively at the correct target of the indirect branch. Our
approach is to expose the speculative instruction pointer
to our software defense, i.e., the instruction pointer we are

Register Hide with SHADOWCFI1

SHADOWCFEFI
REGISTER HIDING

movqg (%rsp), S%target
movg %$rax, %$xmmO
movqg %$rbx, %$xmml

XOor %rax, %rax
xor %rbx, %rbx

ret Branch

Register Restore with SHADOWCFI
0x810777:

movg $xmm0O, %rax REGISTER HIDING

movqg $xmml, $rbx
movqg %$target, %temp SHADOWCFI
xor $0x810777, S%temp

sub $1, S%temp

sbb %$temp, %temp

and %temp, %$rax

and %temp, %rbx

Function

Figure 5: REGISTER HIDING enhanced with SHADOWCFI.
temp is a temporary register not in use by the target.
target is in the hidden storage.

currently performing speculative execution at. This allows
comparison against the architectural branch target, i.e., the
actual target the indirect branch is supposed to branch into.
We are essentially comparing a ready-to-commit data value
from the CPU’s back end (architectural branch target) to a
control-flow prediction from the front end (speculative in-
struction pointer). The architectural branch target is available
in the hidden storage, and the speculative instruction pointer
can be obtained by reading the virtual address of the Register
Restore step under speculative execution.

Figure 5 shows the instructions in the Register Hide
and Register Restore step, enhanced by SHADOWCFI. The
architectural branch target is stored in SSE register target
at the start of the Register Hide step. After restoring the
architectural register state in the Register Restore step, we
xor the current speculative instruction pointer (0x810777
in the example) with the architectural branch target stored
in target. The current speculative instruction pointer is
baked in to the Register Hide step, and is unique for each
target. If the two values are equal, subtracting 1 of the
resulting value sets the carry flag (CF), which allows us
to create a mask of —1 using the sbb instruction. If the
two values are not equal, CF is not set, and sbb produces
a mask of 0. This mask allows us to perform a logical and
on all general-purpose registers, leaving them untouched at
the correct target, but masking them out at a wrong target.
There are many possible implementations of SHADOWCFI
that may have better or worse performance than this imple-
mentation, depending on the underlying microarchitecture.
For example, it is also possible to use cmov instructions,
conditionally overwriting the restored registers with 0. Note

that to avoid mispredictions, SHADOWCFI’s implementation
must be free of any branches.

Comparison to traditional CFI. SHADOWCFI is a control-
flow integrity mechanism specifically designed for specula-
tion, and is significantly different than traditional work that
aims to enforce CFIL. In particular, prior work accomplishes
CFI by comparing the speculative or architectural instruc-
tion pointer against a branch target derived through static
analysis, which cannot be fully context-sensitive.
SHADOWCFI does not use static analysis and is fully
context-sensitive, by leveraging data dependencies on the
correct resolution of a branch. This data dependency is
also used by Swivel’s register interlocking for WebAssem-
bly [45], clearing the heap- and stack pointer during mis-
prediction, and by speculative load-hardening for Spectre
v1 [46], which masks array indices during mispredictions.

5.4. Variations & configurations

Section 5.2 introduces REGISTER HIDING, clearing the
architectural register state prior to each indirect branch.
Section 5.3 introduces SHADOWCFI, preventing the archi-
tectural register state from being restored at an incorrect,
but valid target. We have now presented the entire design
of REGISTER HIDING and SHADOWCFI, which together
thwart transient execution attacks targeting indirect branches
by limiting secret reachability. We will now proceed to
discuss a few configuration options in our design, allowing
flexibility to adapt to the underlying hardware and assump-
tions.

Alternative hidden storage. While we identify SSE regis-
ters as a suitable candidate for our hidden storage, we note
that our design is independent of the exact choice of hidden
storage. For example, one could also opt to use memory as
hidden storage, which has as a benefit that we avoid SSE
register state corruption on each indirect branch. Further-
more, SHADOWCFI can be implemented more efficiently
by only masking the memory pointer referencing the archi-
tectural register state, as opposed to each individual register
as shown in Figure 5. However, using memory as hidden
storage may make it more difficult or impossible to validate
the security of our defense, as we will do in Section 6. In
contrast, SSE registers are only interacted with using well-
defined instruction sequences, enabling complete validation.
Nevertheless, we evaluate the performance feasibility of a
memory-based REGISTER HIDING variant in Section 8.3.

Modular configurability. We point out that our defense
is heavily modular. Our proposed technique is designed to
require minimal assumptions about the underlying hardware
features or mitigations. This design choice ensures that
our approach remains applicable across a wide range of
platforms, including those where speculation is largely un-
constrained due to known attacks or missing hardware mit-
igations. However, we realize that depending on the under-
lying hardware, varying levels of speculative control can be

assumed. As such, our defense is modular and can be selec-
tively combined and/or adapted with hardware mechanisms
to reduce redundancy or improve performance. For example,
our techniques could be applied to only indirect jumps
and calls, assuming returns are protected using a different
mechanism. Likewise, speculation restriction mechanisms
providing context-insensitive CFI may be enhanced with
SHADOWCEFT only, offering more comprehensive protection.

To highlight and fully demonstrate the software-only and
hardware-agnostic nature of our defense, we choose to eval-
uate REGISTER HIDING and SHADOWCFI on a platform
equipped with minimal attack-proof hardware mitigations
against indirect branch misprediction, while still being new.
We therefore implement and evaluate our defense on AMD
Zen 4, which does not support IBT, allowing large specula-
tion windows at arbitrary speculative targets. Furthermore,
return instructions on AMD Zen 4 CPUs are known to
be vulnerable to attacker influence [4], and there exists no
efficient hardware mitigation against this vulnerability.

Additionally, to show the generality and modularity of
our defense, we evaluate the performance overhead of com-
plementing IBT with SHADOWCFI on an Intel CPU. While
IBT prevents long speculation windows at targets not start-
ing with an endbr [35], [31], SHADOWCFI furthermore
masks out the register state at any incorrect endbr destina-
tion, effectively making IBT context-sensitive. On machines
which exclusively mispredict to valid kernel targets, SHAD-
OWCEFI thus limits secret reachability for attacks that trick
the victim into mispredicting to a valid but incorrect target
(e.g., BHI attacks [6]).

6. Security analysis & gadget validation

In this section, we present a security analysis based on
induction to identify the software requirements that ensure
the register state can be restored exclusively at the correct
target. To help do this explicitly and comprehensively, we
aim to satisfy speculative non-interference (SNI) with re-
spect to branch misprediction as our security goal, assuming
that an attacker cannot transiently reach secrets using archi-
tectural register-independent operations () in Section 4.3).
Specifically, for any two architectural register states that
yield identical observation traces under sequential execu-
tion, speculative execution should produce indistinguishable
microarchitectural observation traces. We then show that the
derived software requirements are satisfied in our REGISTER
HIDING and SHADOWCFTI protected kernel using a binary
scanner (Section 6.5).

We define our SNI property in Section 6.2, and ex-
plain how it slightly deviates from prior work [47], [48].
For readability, we provide an overview of our machine
semantics and the high-level inductive reasoning, deferring
the complete formal discussion to Appendix A.

6.1. Machine semantics

We define speculative machine states and sequential
machine states, along with their respective operations.

Speculative machine. The speculative machine has state:
(R, H7 Hsnapshota hidedepth, PC7 PCsnapshot7 misspec, B)

where R is the current register state, H is the hidden
storage, hidedepth is a logical counter that keeps track of
the number of times the register state was hidden in H, PC'
is the current program counter, and B is the binary file under
execution by the machine.

The snapshot-related components and misspec are nec-
essary for re-steering speculative execution. Since the se-
curity analysis focuses on analyzing information leakage
during misprediction, we omit these snapshot components
and simply write the speculative state as:

S = (R, H, hidedepth, PC, B)

For simplicity, we do not model memory. Instead, we as-
sume all secrets are held in registers directly (protecting
against (1) in Section 4.3). Our analysis would follow a
similar structure if memory was modeled as well.

The speculative machine can support the following oper-
ations, whose precise semantics are defined in Appendix A:

1) hide — Register Hide step: saves the current register
state R into H, and increments hidedepth.

2) restore — Register Restore step: restores H into R
and decrements hidedepth if it has reached the correct
target; otherwise resets R = 0.

3) branch: sets the next PC to its speculative target.

4) ready: reads from hidden storage H into R.

5) writey: writes from R or H into H.

6) nop,,: represents any operations that do not interact
with H, but may operate on R. There are two subtypes:
nOpZan.s7rLitter and nop%ontransmitter’ where the first
leaks their operands through a microarchitectural side-
channel, and the latter does not.

Following our threat model, the speculative machine can
mispredict a branch to any byte-aligned address. Conse-
quently, the speculative machine can fetch and execute in-
structions from locations that do not correspond to intended
instruction boundaries, giving rise to non-architectural in-
structions. In our analysis, we consider binaries that do not
contain architectural ready; and writey; operations.

Sequential machine. The sequential machine has state
A= (R,H,PC,B)

The sequential machine supports only a subset of operations:
hide, restore, branch, and nopy. In the sequential
model, branches always jump to the architecturally correct
target, and the machine does not execute ready, and writey
operations, as these may only appear as non-architectural
instructions in the binary.

6.2. Security goal

Our speculative non-interference (SNI) deviates from
prior work [47], [48], particularly in how we define observa-
tion traces and establish the mapping relationship between
speculative and sequential machines.

Observation traces. We define what can be observed by
an attacker when executing the speculative machine and
sequential machine described above. Among the opera-
tions supported by the machines, we consider branch
and nop4ms™iter a5 potential transmitters and thus their
arguments (the target of branch and any operands of
nopk;@nsmittery are included in the observation trace de-
noted as 7.

An architectural trace 74 represents the sequence of ob-
servations produced when executing the sequential machine
AT A , starting from an initial architectural state A and
reaching a final state A’ after multiple steps. Likewise, a

*
speculative trace 7 is defined as S % S’

Speculative non-interference. We instantiate two pairs of
machines, where each pair contains a sequential machine
and a speculative machine, whose states are denoted as
A1, S1, Ao, and S5. We initialize the four machines with
identical PC' and binary file B. For each pair, we initialize
the register state using [?; and Ry respectively. Our goal
is to show that for any B, R; and Ro, if the sequential
machine states A; and A5 produce indistinguishable traces,
then the speculative machine states S; and S; do so as well:

Security goal: Speculative non-interference

TA] = TAy = TSy = TS,

Mapping relationship between speculative and sequential
machines. We define a mapping from a speculative machine
state to a corresponding sequential machine state. If a spec-
ulative machine and an architectural machine are initialized
with the same PC, R, and B, the following relationships
hold:

e When hidedepth = 0, there exists a valid architectural
state A where A.R = S.R and A.PC = S.PC. This
corresponds to the situation when no hide operation
has occurred or a restore has reached the correct
architectural target. In this case, speculative and se-
quential executions converge, and SNI naturally holds.

e When hidedepth > 0, there exists a valid architectural
state A such that A.H = S.Hgnapshot and A.PC =
S.PCsnapshot- We focus on this case in our security
analysis, since it represents an ongoing misprediction
following a hide.

6.3. Software requirements

To assist with systematically identifying software re-
quirements, we categorize each program counter (architec-
tural or non-architectural) into one of three classes. This
classification captures the control-flow relationships between
operations in a control-flow graph, where every indirect
branch’s outgoing edges may target any byte-aligned ad-
dress, matching our speculative execution semantics.

« ReadSafe: If there exists a nop;, which consumes the
location to which a previous ready wrote, or there

10

ReadSafe

b

q writey, || nopy

hide

ready || nopy

restore

t branch

nopy

Unknown
[_1Non-architectural

Figure 6: Categorization of PCs in the victim binary with
the allowed transitions according to Property 1, Property 2,
and their definitions. Arrows indicate allowed transitions
between categories.

exists a hide operation as a successor of this PC,
then a restore must be on the path to this successor.
Intuitively, ReadSafe guarantees that any value in R
speculatively restored from the hidden storage will be
lost before it can be consumed and potentially leaked
by a nop4,, and before it can be consumed by a hide.

o WriteSafe: If there exists a restore operation as a
successor of this PC, then a hide must be on the path
to this successor. Intuitively, WriteSafe guarantees that
any value speculatively written to the hidden storage
H will be overwritten before it can be consumed by a
restore.

o Unknown: A PC is Unknown if no security guarantees
can be inferred. In this case, interacting with the hidden
storage H may result in leakage.

Having defined these three PC classes, we derive the
following two software properties, which must hold for all
binaries instrumented with REGISTER HIDING and SHAD-
OWCEFI, as validated by our binary scanner. The scanner
analyzes code byte-by-byte to enforce the properties below
on any non-architectural reads; and writey operation.

Property 1:

Every ready and its successors up to and including the next
restore are ReadSafe.

Property 2:

Every writey, and its successors up to and including the next
hide are WriteSafe.

Figure 6 depicts the three PC classes, given their defi-
nitions, Property 1, and Property 2. Any ready, restore
and nop, in between must be ReadSafe. Any writey;, hide
and nop4, in between must be WriteSafe.

A PC within some class may be followed by any other
PC in the same class, except for two cases. First, a PC
that decodes as a hide forces the next PC to be Unknown
(branch). Second, a PC that decodes as a restore
forces the next PC to be WriteSafe. Note that by definition

of ReadSafe and WriteSafe, a branch operation must be
Unknown, as such operation poses no restriction on the
next PC to be executed. Likewise, any operation which
is ReadSafe may not be WriteSafe and vice versa, due to
conflicting definitions.

6.4. Overview of inductive reasoning

We use induction to show that the software require-
ments defined above are sufficient to ensure speculative
non-interference (SNI) on our speculative machine model.
The key invariant in our induction is register equivalence,
which states that for all program counters not classified as
ReadSafe, the register states of S; and S5 remain equivalent
and therefore cannot leak information. Additional helper in-
variants and the inductive steps are provided in Appendix A.

Invariant 1: Register equivalence

(PC ¢ ReadSafe A hidedepth > 0) = Rs, = Rs,

Invariant 1, Property 1 and our mapping relation together
show that our security goal holds.

e If hidedepth > 0 and the PC is not ReadSafe, the
two register states of the speculative machine are equal
(Invariant 1), and thus 75, = 7s,.

o If hidedepth > 0 and the PC is ReadSafe, there exists
no nop,, which consumes a value restored from the
hidden storage (Property 1), and thus 75, = 7g,.

o Lastly, if hidedepth = 0, T, = T4, and 7s, = Ta,
(mapping relation). Since the property assumes 74, =
TA,, We have 7g, = Tg,.

6.5. Gadget validation

Having identified the software requirements necessary
to achieve speculative non-interference, we now proceed
to validate Properties 1 and 2 by statically scanning from
_text to _end (our configuration has no loadable mod-
ules), verifying that every read is ReadSafe, and every
write is WriteSafe. We discharge all cases that could be
verified automatically, and manually check the remainder.
To reduce the number of non-architectural SSE-reading and
SSE-writing instructions, we insert nop instructions at some
locations that non-architecturally decode as a SSE-read or
SSE-write instruction. While our induction in the previous
subsections disregard memory for simplicity, our scanner
does take memory into account to ensure full coverage of
potential gadgets.

Table 1 shows the results for our configuration. We
find 20 non-architectural instructions that read from SSE
registers, of which one is followed by bytes that do not
successfully decode. The remaining 19 sites are manually
inspected, which shows that none of them can be fol-
lowed by an instruction that consumes the read value, prior
to the next Register Restore. In particular, most of them
either write to addresses which are not read afterwards
(e.g., 0x4801e983 (%rax)), or write to registers which

11

Total | Auto. Safe | Manual Safe | Not Safe
SSE read 20 1 19 0
SSE write 785 785 0 0

TABLE 1: Validation results of REGISTER HIDING and
SHADOWCFTI using non-architectural instruction analysis.
Safe indicates ReadSafe for SSE reads, and WriteSafe for
SSE writes.

are afterwards overwritten. Likewise, all of the 785 non-
architectural instructions that write to SSE registers are
WriteSafe. That is, we automatically determine that none
of the SSE writes can be speculatively followed by Register
Restore prior to the next Register Hide. Upon executing a
Register Restore, the SSE registers are thus guaranteed to
contain the values hidden by the previous Register Restore.
Note that KASLR causes some immediates in the text
section to differ across boots, leading to slight variations
in the numbers presented in Table 1.

We successfully validated the security of our defense:
there should be no way to restore and use the architectural
register state anywhere except at the correct branch target.

7. Implementation

We implement a proof-of-concept of REGISTER HID-
ING and SHADOWCEFT as a patch for Linux kernel version
6.8.0. Below we discuss some implementation details.

7.1. Functionality

GCC changes. To support REGISTER HIDING, we patch
GCC version 14 . 0. 0 to insert the Register Hide step before
each indirect branch. Furthermore, we insert the Register
Restore step at all targets of indirect calls and indirect jumps.
Likewise, each return target is followed by our Register
Restore step.

Manual patching. To support BPF, its framework is patched
with instrumented instructions for REGISTER HIDING and
SHADOWCEFI. Furthermore, the Linux kernel contains static
calls which are patched in during boot. To support REG-
ISTER HIDING and SHADOWCEFI for these calls as well,
the static calls need to be patched in with instrumentation.
Lastly, assembly code is not automatically instrumented
using GCC, and need to be patched manually.

Patching Register Restore. To support SHADOWCFI, we
need to patch the Register Restore steps with their unique
targets, as shown in Figure 5. For this, we use self-modifying
code using the alternatives framework, allowing us to patch
each Register Restore step during boot time.

Using SSE freely in the kernel. Before using SSE
registers, kernel code 1is required to call an API
(kernel_fpu_begin ()). This call has significant over-
head, since it stores the entire FPU register state, and starts

non-preemptive code execution. To freely use SSE registers,
we patch the entry points of the kernel to push the SSE
register state onto the stack. Likewise, the exit paths are
patched to restore the SSE register state by popping from
the stack. To furthermore implement support for virtual
machines (VMs), we patch KVM to store the SSE registers
in memory upon exiting the VM, allowing us to restore them
when re-entering the VM.

Interrupt support. An interrupt may occur while the archi-
tectural register state is hidden. This has three implications.
First, we need to save the SSE registers on the stack, to
ensure we can safely overwrite them by executing indirect
branches inside the interrupt. Second, while hiding the ar-
chitectural register state, RSP is set to a hidden stack, as
explained in Section 5.2. To ensure we do not overwrite data
pushed upon interrupt entry (e.g., using nested interrupts),
we switch back to the architectural stack as soon as an inter-
rupt occurs, moving already-pushed data. Third, interrupts
often happen in bursts. To prevent having to switch off the
hidden stack repeatedly, we restore all registers on the kernel
thread originally interrupted. Note that this requires moving
the instruction pointer of the original kernel thread passed
the indirect branch that was intended to be executed after
the Register Hide step completes, as otherwise an indirect
branch executes with restored registers after the interrupt
finishes. We can find the target in the hidden storage, and
update the instruction pointer accordingly.

7.2. Performance trade-offs

Callee-saved registers. While Register Hide and Register
Restore need to save and restore all registers upon indirect
jumps and indirect calls, they only need to save and restore
callee-saved registers for return instructions. Since return
instructions are the most common type of indirect branch,
we patch Linux to turn R12-R15 into caller-saved registers
instead. This significantly reduces the size of the Register
Hide and Register Restore steps for return instructions. Note
that we always clear the entire architectural register state.

Global Register Hide. Instead of adding movqg and xor in-
structions prior to every indirect branch in the kernel, we opt
for a single Global Register Hide step to which we branch
before every indirect branch. Note that this branch is direct
and thus does not require protection itself, and the return
of this function is executed with a cleared register state.
Furthermore, the indirect branch remains inlined, supporting
accurate prediction. This significantly decreases the kernel’s
code footprint.

Global Register Restore. The Register Restore step is short
for targets of returns, especially with a reduced number of
callee-saved registers. However, for targets of other indirect
branches, the Register Restore steps increase the kernel’s
code footprint significantly.

On some microarchitectures, it may be possible to ensure
safe speculation for indirect branches at certain addresses.

12

mov $1, %valid_stack

Hide | Branch ——> Function
call Global Restore
Global
Restore
—>» Architectural execution Dependency

Safe speculation

Figure 7: We have a single Global Register Restore for
indirect branches which are not returns. valid_stack is
an SSE register. The return in the Global Register Restore
is untrained upon kernel entry.

On AMD CPUs, it is possible to untrain a particular return
in the kernel upon entry, guaranteeing it is free of attacker
influence [18], [17]. Therefore, we call into a Global Reg-
ister Restore function at targets of indirect branches which
are not returns. Before this branch, we move a value into
valid_stack (part of hidden storage) which indicates
that the top-of-the-stack value was pushed by a real call to
the Global Register Restore. This facilitates SHADOWCFI
without a baked-in target (as in Figure 5). That is, the Global
Register Restore will compare target from the Register
Hide step against *RSP to create a mask if valid_stack
has the expected value (else the mask is 0). This technique
ensures we do not violate our security validation presented
in Section 6.

Figure 7 depicts how the Global Register Restore is
called to reduce the instruction footprint of the kernel. By
executing the Global Register Restore once at kernel entry
with a cleared register state, we untrain its return instruction,
ensuring safe speculation back to the target after restoring
the architectural state. Note that unlike the saferet [18]
mitigation, our defense allows the return in the Global
Register Restore to be predicted correctly using the RSB,
while still ensuring its security.

8. Evaluation

Having built a proof-of-concept of REGISTER HIDING
and SHADOWCFI, we now proceed to evaluate its security
and performance.

8.1. Experiment setup

Experiments are conducted on a dual-socket system
equipped with two AMD EPYC 9124 16-core processors
(Zen 4), providing a total of 32 physical cores and 64
hardware threads. The system was configured with 512 GB
of DDR5-4800 memory and ran Ubuntu 22.04.4 LTS. We
use microcode version 0x0a101148. We consider three
different kernel configurations:

(D Insecure baseline: we compile Linux 6. 8. 0 and boot
it with mitigations=off. This makes the kernel

Linux 6.8, with mitigations=off

— Access Time
x Leak

Linux 6.8, with REGISTER HIDING and SHADOWCFI

Access Time

100 150
Reload Buffer Entry

Figure 8: Results of performing an Inception attack on AMD
Zen 4, leaking a single byte from a kernel module.

vulnerable to attacks like Spectre v2 [1] and Incep-
tion [4].

Default mitigations: we compile Linux 6.8.0 and
boot it normally. This enables default mitigations
against Spectre attack, which includes AutoIBRS [15]
for indirect branches, RSB stuffing for returns, and
saferet [18] for returns. Recent reverse-engineering
work revealed that AutoIBRS prevents speculative ex-
ecution due to indirect branches in the kernel com-
pletely [2], while safefret forcibly mispredicts returns.
REGISTER HIDING + SHADOWCFI: we compile
Linux 6.8.0 with our defense using REGISTER HID-
ING and SHADOWCFI. We instrument and protect all
indirect branches, and so AutoIBRS and saferet are dis-
abled. We leave RSB stuffing enabled, since according
to documentation, it may help to block user-space to
user-space attacks.

We consider) and 3) to be similar in security guar-
antees. However, we note that (3) is better prepared for
futuristic attacks, since it does not assume which predictor
is used by the attacker to trigger a misprediction, and how
these predictors work. For example, saferet assume very
specific behavior of the branch predictor, including the exact
predictor which is used, the behavior of the RSB and the
indexing function of the BTB.

Intel. We furthermore evaluate the performance overhead of
complementing IBT with SHADOWCFI on a CET-enabled
machine. We conduct experiments on an Intel Core Ul-
tra 9 285H 16-core processor (Meteor Lake). The system
was equipped with 64GB of DDR5-5600 memory, running
Ubuntu 22.04.4 LTS (microcode version 0x00000118).

We compile Linux 6. 8.0 with IBT and SHADOWCFI,
and keep default mitigations enabled (eIBRS and RSB stuff-
ing). While IBT limits the speculation window of indirect
branch predictions (jumps and calls) to targets missing an
endbr, SHADOWCFI furthermore clears the register state
at any incorrect endbr-target.

13

8.2. Security evaluation

We evaluate the effectiveness of REGISTER HIDING
and SHADOWCFI against an Inception attack [4] on our
AMD Zen 4 machine. For simplicity, we insert a custom
victim kernel module, with known addresses and register
allocation. The attacker attempts to leak a single byte (55).
The attacker first inserts the PhantomJMP and recursive
PhantomCALL from user-space, and then calls the kernel
module. This executes a return in kernel space, triggering
transient execution of a disclosure gadget that loads a secret-
dependent entry in the user’s reload buffer. Back in user
space, the attacker reloads all of the 256 entries in its reload
buffer, measuring the latency to determine the secret.

Figure 8 shows the results on an unprotected kernel
(top), and a kernel protected with REGISTER HIDING and
SHADOWCEFI (bottom). Clearly, the attacker can deduce the
secret on the unprotected kernel. However, in the protected
kernel, the disclosure gadget executes with a cleared register
state, preventing secret reachability.

8.3. Performance evaluation

For performance evaluation, we disable turbo boost and
configure the CPU frequency governor to performance,
fixing the frequency range between 1.5 GHz and 3.0 GHz
(AMD) and between 0.4 GHz and 2.9 GHz (Intel). Simul-
taneous Multithreading (SMT) remains enabled throughout
all experiments.

LEBench. We first evaluate the performance using
LEBench [49]. We leave the benchmark settings as is, but
report the median across all iterations instead of the average,
since we noticed that outliers can make the average unstable
between multiple runs.

Figure 9 shows unequivocally that REGISTER HIDING
+ SHADOWCFTI performs better than the default mitigations
on Linux. Over all tests, we reduce the average performance
overhead from 114.1% to 75.9%, while relying on software-
only solutions without hardware support.

To further understand this performance gain, we use
perf to sample performance counters while executing
LEBench. We determine that while we commit twice as
many instructions on the REGISTER HIDING + SHAD-
OWCFI kernel during the execution on LEBench, our
throughput is more than doubled compared to default mit-
igations. The latter can be mostly attributed to the branch
misprediction rate: default mitigations trigger almost 10x
more mispredictions than REGISTER HIDING + SHAD-
OWCFI. This can be easily explained by the fact that the
recent saferet mitigation forcefully mispredicts all returns in
the kernel.

On our Intel CPU, SHADOWCFI shows an average
LEBench overhead of 13.5% compared to only default
mitigations.

Server workloads. In addition to LEBench, we bench-
mark nginx, httpd (Apache), memcached and redis on the

B Default mitigations

250 | mEE REeGISTER HIDING and SHADOWCFI

200

150 1

100 +

Latency overhead (%)

50 4

Q ¢ R [T DX @ ¥ Q & o

K N LN KR . < F
s &§ffd s esggfe d s §
§ § a5 S o 085 0 0.9 0.4
S EFLLIFTRPEFEFVF P FpONIS
s 6§ &5 8 A 3, g
"‘g? g X &0 <9 &

w§ & < <

T QAR E T LSS XS LS DR
SEEFFFEFTFITIFTFIFTEFT 555 ¢
QEQKWKSMSWE\ Qe?,’ 5 gawg‘of’
s & % 9§« g ¥ g i N
§ 3 ¥ ¢ @ 9 g s & 2
P o & F g < “ R
< & o & &
g & s 'Y
& M s

Figure 9: REGISTER HIDING and SHADOWCFI show an average performance overhead of 75.9% on LEBench, while default

mitigations have an overhead of 114.1%.

REGISTER HIDING + SHADOWCFI kernel and on a kernel
with default mitigations. To reduce noise, we use numact 1
to pin threads and memory of the client and server to
separate NUMA nodes. We use the same parameters as
previous profiling work [50], but additionally increase the
number of requests to 1M for each service. As in previous
work, we use ab to benchmark ngninx and httpd, and
redis-benchmark for redis. To benchmark memcached,
we use memtier—benchmark as a client [51].

Figure 10 shows the results, again proving superior
performance of REGISTER HIDING and SHADOWCFI com-
pared to default mitigations. On average, we have a 25.8%
overhead for the kernel protected with REGISTER HIDING
and SHADOWCFI, compared to 33.4% for the kernel with
default mitigations. In particular, nginx and httpd have an
overhead of 29.8% and 27.8% on our kernel, compared to
38.6% and 36.7% respectively on the kernel with default
mitigations. The number of requests per second on the
baseline are 29.9K and 26.1K respectively. memcached and
redis have an overhead of 21.3% and 24.4%, compared to
26.9% and 31.4% on the kernel with default mitigations. The
number of requests per second on the baseline are 89.4K and
81.4K, for memcached and redis respectively.

On our Intel CPU, SHADOWCFI incurs an additional
average overhead of 8.9% compared to just default mitiga-
tions for the server workloads. Specifically, nginx and httpd
show an overhead of 11.5% and 10.8%, respectively, while
memcached and redis show overheads of 6.4% and 7%.

Alternative hidden storage. As mentioned in Section 5.4,
memory could be used instead of SSE registers to implement
the hidden storage. To estimate the performance overhead

14

404

38.6%

Bl Default mitigations
BN REGISTER HIDING and SHADOWCFT
33.4%

36.7%

301
26.9%

201

Requests/s overhead (%)

101

apache memcached redis

nginx

Average

Figure 10: Performance impact of REGISTER HIDING and
SHADOWCEFTI on server applications, compared to Linux’s
default mitigations.

of this alternative implementation, we compare REGISTER
HIDING using memory (push/pop) and SSE registers with a
micro-benchmark. Specifically, for one billion iterations, we
1) save registers in the hidden storage, 2) clear all registers,
3) execute an indirect branch, and 4) restore the registers.

Our results show that the SSE-variant takes on average
23.11 cycles per iteration for indirect jumps and indirect
calls, while returns (which save and restore fewer registers)
only take 8.03 cycles. The memory-variant takes 16.06 (-
30.50%) and 6.49 cycles (-19.10%) respectively.

We thus believe a memory-based variant to be perfor-

mant. However, implementing a verifiably-secure version
of a memory-based variant may be more difficult. First, a
reference to the hidden storage memory location needs to
be held somewhere to accommodate Register Restore, which
should not be used during misprediction. Furthermore, we
would not be able to limit our security analysis to a well-
defined set of instructions that interact with the hidden
storage locations, as done in Section 6.

9. Related work

Spectre attacks have prompted extensive research into
mitigation strategies that target various stages of the attack
pipeline. While some propose principled ways of prevent-
ing Spectre attacks, those that have made it to real-world
hardware and software have been mostly specific to attack
variants and victim microarchitectures, or involved hardware
changes.

Spectre mitigations. A large number of software mitiga-
tions against Spectre attacks were introduced in recent years,
including barriers such as 1fence to limit the speculation
window [12]. Likewise, retpoline [13], RSB stuffing [14],
jmp2ret [17] and saferet [18] forcefully trigger benign
mispredictions, preventing an attacker from influencing the
prediction. Other works propose hardware changes to pre-
vent secrets from being transmitted under speculation [21],
[22], [23], [24], [25], [41]. Most of these mitigations target
gadget reachability or secret transmittability. In this paper,
we target a new ingredient, secret reachability, and show
how we can use this to provide a software mitigation against
Spectre attacks, while being agnostic to the attack variant
and underlying hardware.

Speculative control-flow integrity. Intel’s Control-flow En-
forcement Technology (CET) forces indirect branches (ex-
cept returns) to be followed by an endbr instruction. While
mostly meant for software attacks, Intel makes claims about
the number of instructions that may execute under specu-
lation before a missing endbr is detected [16]. FineIBT
uses CET to provide more fine-grained control-flow in-
tegrity [36], and shows that it only leaves room for a very
small speculation window. SpecCFI is a CFI mechanism
designed specifically for transient execution attacks [52].
Lastly, Swivel uses register interlocking, masking the heap-
and stack pointer on mispredicted paths in WebAssem-
bly [45]. As SHADOWCFI, it does so by creating a de-
pendency on the correct target or branch condition, with the
goal of preventing memory accesses, whereas SHADOWCFI
prevents access to the architectural register state.

However, both FineIBT and SpecCFI require overap-
proximation of potential branch targets, which are inferred
using static analysis. That is, they are not fully context-
sensitive. Furthermore, FineIBT and Swivel’s register inter-
locking require CET (Intel only) and SpecCFI even requires
hardware changes. In constrast, SHADOWCFI is a context-
sensitive CFI, not requiring any overapproximation nor any
hardware support.

15

Secret reachability. Previous work has accomplished lim-
iting secret reachability for Spectre v1, using a technique
called speculative load hardening or index masking [46].
By limiting the attacker’s control over register values un-
der speculation, arbitrary secrets are prevented from being
reached. While Spectre v1 attacks trigger mispredictions to
known targets, Spectre v2-style attacks can trigger mispre-
dictions to arbitrary targets, increasing the complexity of
limiting secret reachability significantly.

10. Conclusion

Transient execution attacks that target indirect branches
remain a serious issue today. Currently deployed mitiga-
tions are microarchitecture-dependent, attack-dependent or
require hardware support. In this paper, we are the first to
propose to limit secret reachability, preventing disclosure
gadgets from consuming desired secrets. We introduce REG-
ISTER HIDING and SHADOWCFI, two independent tech-
niques which together form a software-only and hardware-
agnostic defense against transient execution attacks. We
validate our defense using a security analysis and corre-
sponding scanner, showing that the kernel is free of any
gadget that could bypass our defense, even considering non-
architectural instructions. Furthermore, REGISTER HIDING
and SHADOWCFT have significantly better performance than
mitigations enabled today in the Linux kernel by default.
We believe this work offers immediate applicability, as
well as inspiration for future defenses against the evolving
landscape of transient execution attacks.

Acknowledgments

We thank our anonymous shepherd and reviewers for
their valuable feedback, and Shixin Song for her help on
the inductive analysis. This work was supported by the
Department of Defense (DoD) through the National Defense
Science & Engineering Graduate (NDSEG) Fellowship Pro-
gram, and by ACE, one of the seven centers in JUMP
2.0, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA.

References

[1] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre attacks: Ex-
ploiting speculative execution,” Communications of the ACM, vol. 63,

no. 7, pp. 93-101, 2020.

S. Wiebing and C. Giuffrida, “Training solo: On the limitations of
domain isolation against spectre-v2 attacks,” in 2025 [EEE Sympo-
sium on Security and Privacy (SP). 1EEE Computer Society, 2025,
pp. 3599-3616.

J. Wikner and K. Razavi, “RETBLEED: Arbitrary speculative code
execution with return instructions,” in 31st USENIX Security Sympo-
sium (USENIX Security 22), 2022, pp. 3825-3842.

D. Trujillo, J. Wikner, and K. Razavi, “Inception: Exposing new
attack surfaces with training in transient execution,” in 32nd USENIX
Security Symposium (USENIX Security 23), 2023, pp. 7303-7320.

(1

(6]

(71

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

J. Wikner, D. Trujillo, and K. Razavi, “Phantom: Exploiting decoder-
detectable mispredictions,” in Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture, 2023, pp.
49-61.

E. Barberis, P. Frigo, M. Muench, H. Bos, and C. Giuffrida, “Branch
history injection: On the effectiveness of hardware mitigations against
cross-privilege spectre-v2 attacks,” in 31/st USENIX Security Sympo-
sium (USENIX Security 22), 2022, pp. 971-988.

E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,”
in 12th USENIX Workshop on Offensive Technologies (WOOT 18),
2018.

S. Riiegge, J. Wikner, and K. Razavi, “Branch privilege injection:
Compromising spectre v2 hardware mitigations by exploiting branch
predictor race conditions,” USENIX Security Symposium, 2025,
Aug. 2025, [Online]. Available: https://comsec.ethz.ch/wp-content/
files/bprc_sec25.pdf.

G. Maisuradze and C. Rossow, “ret2spec: Speculative execution using
return stack buffers,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp.
2109-2122.

J. Behrens, A. Cao, C. Skeggs, A. Belay, M. F. Kaashoek, and
N. Zeldovich, “Efficiently mitigating transient execution attacks using
the unmapped speculation contract,” in /4th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), 2020, pp.
1139-1154.

T. H. Kim, D. Rudo, K. Zhao, Z. N. Zhao, and D. Skarlatos, ‘“Per-
spective: A principled framework for pliable and secure speculation
in operating systems,” in 2024 ACM/IEEE 51st Annual International
Symposium on Computer Architecture (ISCA). 1EEE, 2024, pp. 739—
755.

Intel Corporation, “Speculative execution side channel mitigations,”
2018, [Online]. Available: https://www.intel.com/content/www/us/
en/developer/articles/technical/software-security- guidance/technical-
documentation/speculative-execution-side-channel-mitigations.html.

P. Turner, ‘“Retpoline: a software construct for
ing branch-target-injection,” 2018, [Online].

https://support.google.com/faqs/answer/7625886.

prevent-
Available:

Intel Corporation, “Post-barrier return stack buffer predictions
/ cve-2022-26373 / intel-sa-00706,” 2022, [Online]. Available:
https://www.intel.com/content/www/us/en/developer/articles/
technical/software-security- guidance/advisory- guidance/post-barrier-
return-stack-buffer-predictions.html.

K. Phillips, “[patch 0/3] x86/speculation: Support automatic
ibrs,” 2022, [Online]. Available: https://lore.kernel.org/lkml/
20221104213651.141057-1-kim.phillips @amd.com/T/.

Intel Corporation, “Indirect branch restricted speculation,” 2018,
[Online]. Available: https://www.intel.com/content/www/us/en/
developer/articles/technical/software-security-guidance/technical-
documentation/indirect-branch-restricted-speculation.html.

A. M. Devices, “Technical guidance for mitigating branchtype
confusion,” 2022, [Online]. Available: https://www.amd.com/
content/dam/amd/en/documents/resources/technical- guidance-for-
mitigating-branch-type-confusion.pdf.

L. K. A. Guide, “Speculative return stack overflow (srso),”
2023, [Online]. Available: https://docs.kernel.org/admin-guide/hw-
vuln/srso.html.

Intel Corporation, “Branch history injection and intra-mode branch
target injection / cve-2022-0001, cve-2022-0002 / intel-sa-00598,”
2024, [Online]. Available: https://www.intel.com/content/www/us/
en/developer/articles/technical/software-security- guidance/technical-
documentation/branch-history-injection.html.

J. Corbet, “A call to reconsider address-space isolation,” 2022, [On-
line]. Available: https://lwn.net/Articles/909469/.

16

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Torrel-
las, “Invisispec: Making speculative execution invisible in the cache
hierarchy,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 1EEE, 2018, pp. 428-441.

C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Sjélander, “Un-
derstanding selective delay as a method for efficient secure speculative
execution,” IEEE Transactions on Computers, vol. 69, no. 11, pp.
1584-1595, 2020.

J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher, “Speculative taint tracking (stt) a comprehensive protection
for speculatively accessed data,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
954-968.

K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Pono-
marev, and N. Abu-Ghazaleh, “Safespec: Banishing the spectre of a
meltdown with leakage-free speculation,” in 2019 56th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2019, pp. 1-6.

S. Ainsworth, “Ghostminion: A strictness-ordered cache system for
spectre mitigation,” in MICRO-54: 54th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2021, pp. 592-606.

AMD, “Software optimization guide for the amd zen4 microarchitec-
ture,” 2020, accessed on 05.11.2025.

D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over
aslr: Attacking branch predictors to bypass aslr,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2016, pp. 1-13.

T. Zhang, K. Koltermann, and D. Evtyushkin, “Exploring branch pre-
dictors for constructing transient execution trojans,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2020, pp. 667—
682.

P. Zijlstra and T. Gleixner, “[patch v3 00/59] x86/retbleed: Call depth
tracking mitigation,” 2022, [Online]. Available: https://lkml.org/lkml/
2022/9/15/4217.

A. Milburn, K. Sun, and H. Kawakami, “You cannot always win the
race: Analyzing the Ifence/jmp mitigation for branch target injection,”
arXiv preprint arXiv:2203.04277, 2022.

S. Wiebing, A. de Faveri Tron, H. Bos, and C. Giuffrida, “Inspec-
tre gadget: Inspecting the residual attack surface of cross-privilege
spectre v2,” in USENIX Security, 2024.

AMD, “Software techniques for managing speculation
on amd processors,” 2022, [Online]. Available: https:
/lwww.amd.com/content/dam/amd/en/documents/resources/software-
techniques-for-managing-speculation.pdf.

Intel Corporation, “Retpoline: A branch target injection mitigation,”
2022, [Online]. Available: https://www.intel.com/content/www/us/
en/developer/articles/technical/software-security- guidance/technical-

documentation/indirect-branch-restricted-speculation.html.

“Indirect branch predictor delayed updates,” 2025,
[Online]. Available: https://www.intel.com/content/www/us/en/
developer/articles/technical/software-security- guidance/advisory-
guidance/indirect-branch-predictor-delayed-updates.html.

——, “Control-flow enforcement technology specification,” 2019,
accessed on 05.12.2025.

A. J. Gaidis, J. Moreira, K. Sun, A. Milburn, V. Atlidakis, and V. P.
Kemerlis, “Fineibt: Fine-grain control-flow enforcement with indirect
branch tracking,” in Proceedings of the 26th International Symposium
on Research in Attacks, Intrusions and Defenses, 2023, pp. 527-546.

A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “Smotherspectre: exploiting
speculative execution through port contention,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 785-800.

[38] B. Johannesmeyer, J. Koschel, K. Razavi, H. Bos, and C. Giuffrida,
“Kasper: Scanning for generalized transient execution gadgets in the
linux kernel.” in NDSS, vol. 1, 2022, p. 12.

[39] A. S. Jordy Zomer, “Finding gadgets for cpu side-channels
with static analysis tools,” 2023, [Online]. Available:
https://github.com/google/security-research/blob/master/pocs/cpus/
spectre- gadgets'README.md.

[40] M. Schwarzl, C. Canella, D. Gruss, and M. Schwarz, “Specfuscator:
Evaluating branch removal as a spectre mitigation,” in Financial
Cryptography and Data Security: 25th International Conference, FC
2021, Virtual Event, March 1-5, 2021, Revised Selected Papers, Part
125. Springer, 2021, pp. 293-310.

[41] M. Hertogh, M. Wiesinger, S. Osterlund, M. Muench, N. Amit,
H. Bos, and C. Giuffrida, “Quarantine: Mitigating transient execution
attacks with physical domain isolation,” in Proceedings of the 26th
International Symposium on Research in Attacks, Intrusions and
Defenses, 2023, pp. 207-221.

[42] E. Goktas, K. Razavi, G. Portokalidis, H. Bos, and C. Giuffrida,
“Speculative probing: Hacking blind in the spectre era,” in Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 1871-1885.

[43] A. Bhattacharyya, A. Sanchez, E. M. Koruyeh, N. Abu-Ghazaleh,
C. Song, and M. Payer, “SpecROP: Speculative exploitation of ROP
chains,” in 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020), 2020, pp. 1-16.

[44] M. Hertogh, S. Wiebing, and C. Giuffrida, “Leaky address mask-
ing: Exploiting unmasked spectre gadgets with noncanonical address
translation,” in 2024 IEEE Symposium on Security and Privacy (SP).
IEEE Computer Society, 2024, pp. 158-158.

[45] S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi, E. Johnson,
Z. Gang, A. Vahldiek-Oberwagner, R. Sahita, H. Shacham, D. Tullsen
et al., “Swivel: Hardening WebAssembly against spectre,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 1433—
1450.

[46] F. Pizlo, “What spectre and meltdown mean for webkit,” 2018,
[Online]. Available: https://webkit.org/blog/8048/what-spectre-and-
meltdown-mean-for-webkit/.

[47] M. Guarnieri, B. Kopf, J. Reineke, and P. Vila, “Hardware-software
contracts for secure speculation,” in 2021 IEEE Symposium on Secu-
rity and Privacy (SP). 1EEE, 2021, pp. 1868-1883.

[48] M. Guarnieri, B. Kopf, J. F. Morales, J. Reineke, and A. Sanchez,
“Spectector: Principled detection of speculative information flows,” in
2020 IEEE Symposium on Security and Privacy (SP). 1EEE, 2020,
pp. 1-19.

[49] X. Ren, K. Rodrigues, L. Chen, C. Vega, M. Stumm, and D. Yuan,
“An analysis of performance evolution of linux’s core operations,”
in Proceedings of the 27th ACM Symposium on Operating Systems
Principles, 2019, pp. 554-569.

[50] M. Ugur, C. Jiang, A. Erf, T. Ahmed Khan, and B. Kasikci, “One
profile fits all: Profile-guided linux kernel optimizations for data cen-
ter applications,” ACM SIGOPS Operating Systems Review, vol. 56,
no. 1, pp. 26-33, 2022.

[51] RedisLabs, “memtier_benchmark: A high-throughput benchmarking
tool for redis and memcached,” 2023, [Online]. Available: https:/
github.com/RedisLabs/memtier_benchmark.

[52] E. M. Koruyeh, S. H. A. Shirazi, K. N. Khasawneh, C. Song,
and N. Abu-Ghazaleh, “Speccfi: Mitigating spectre attacks using cfi
informed speculation,” in 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 2020, pp. 39-53.

Appendix A.
Inductive analysis

In this appendix, we present our induction used to ar-
gue that our defense satisfies speculative non-interference,

continuing Section 6. We have two speculative machines
with states S; = (Rs,, Hs,, hidedepth, PC) and Sy =
(Rs,, Hs,, hidedepth, PC). Note that we use hidedepth
and PC for both machines, as they never diverge.

The operations that may be performed by the machines
are shown in Operations 1, which includes mechanisms
to support re-steering speculative execution. Whenever the
machine speculates to an incorrect target, misspec is set.
Furthermore, the machine sets PCspapshot and Hgpopshot tO
the correct target and current hidden storage [, respectively.
At any moment, the machine may choose to resteer,
which resets misspec, and sets the PC' to the correct desti-
nation stored in PCjspqpshot, along with the correct hidden
storage state Hgpapshot- In addition, hidedepth is set back
to 1, which it was guaranteed to be before misprediction.
For the purpose of our induction, we ignore re-steering as
a possible machine action. Our goal is to use induction to
show Invariant 1:

Invariant 1: Register equivalence

(PC ¢ ReadSafe A hidedepth > 0) = Rs, = Rs,

To help show this invariant holds, we furthermore in-
troduce three helper invariants. First, if hidedepth > 1, the
hidden storage of S7 and S; are equivalent as well. Second,
hidedepth is always greater than 1 if the PC is not Write-
Safe, or greater than O if the PC is WriteSafe. Intuitively, this
means that the number of restore operations performed
never exceeds the number of hide operations executed.

Invariant 2: Hidden storage equivalence

hidedepth > 1 = Hs, = Hs,

Invariant 3: Hidedepth positivity 1

PC ¢ WriteSafe = hidedepth > 1

Invariant 4: Hidedepth positivity 2

PC € WriteSafe = hidedepth > 0

Initialization. We start with hidedepth = 0, Hgs, = 0,
and Hg, = 0. The starting PC may be any WriteSafe PC
that constitutes an architectural instruction boundary, since
hide is expected to execute before branch or restore.

Base step. Invariant 1 (Register equivalence) and Invari-
ant 2 (Hidden storage equivalence) trivially hold for the
initial step S, as their preconditions are unsatisfied. Since
hidedepth = 0 and PC' € WriteSafe, Invariants 3 and 4
(Hidedepth positivity) hold.

Inductive step. We assume that all Invariants hold for
S1 and Sy, and wish to argue that they hold for the next
states Sy, = (R, , Hg, , hidedepth’, PC") as well, where
k = 0,1. The speculative machines execute PC, which
corresponds to an operation OP = B[PC]:

Operations 1 Machine operations

41:
42:
43:
44:

45:
46:
47:
48:
49:
50:
51:
52:

. procedure ready (i, 7)
Rli] < HI[j]
PC = nextPC
end procedure

procedure write(7)
H[i] +?
PC = nextPC
end procedure

> Either from H or R

procedure branch(target, spec_target)
if misspec == 0 A target # spec_target then
for : =1ton do
Hsnapshot M < H[Z]
end for
PCsnapshot = target
misspec = 1
end if
PC = spec_target
end procedure

procedure hide(target, spec_target)
Ht] « target
for : =1 to n do
HJi] + RJi]
R[i] + 0
end for
hidedepth < hidedepth + 1
PC = nextPC
: end procedure

: procedure restore(target)
if H[t] == target then
for : =1ton do
R[i] «+ H[i]
end for
hidedepth < hidedepth — 1
else
for : =1 to n do
R[i] «+ 0
end for
end if
PC = nextPC
end procedure

procedure nopy

> May change R independently of H
PC = nextPC

end procedure

procedure resteer
for i =1ton do
H[Z] < Hsnapshot [Z]
end for
hidedepth = 1
misspec = 0
PC = Pcsnapshot
end procedure

> Will execute restore next

18

* hide. Unconditionally, R’ =

Hidedepth-preserving:

e ready. According to Property 1, PC' is ReadSafe, and

PC'" will be ReadSafe. Thus Invariant 1 (Register equiv-
alence) will trivially hold for Sj, since its precondition
is not satisfied. Likewise, since ready does not alter
Hg, or hidedepth (i.e., Hg = Hg, and hidedepth’
hidedepth), Invariant 2 (Hidden storage equivalence) and
Invariant 3 and 4 (Hidedepth positivity) still hold for Sj..
writeg. Since write does not alter Rg, nor hidedepth
(e, Rg, = Rs, and hidedepth’ = hidedepth), In-
variant 1 (Register equivalence) and Invariants 3 and 4
(Hidedepth positivity) still hold for Sj. If hidedepth =
hidedept’ > 1, then Rg, = Rg, (Invariant 1) and
Hs, = Hg, (Invariant 2), and since the write to Hyg_
must come from either Rg, or Hg,, Invariant 2 (Hidden
storage equivalence) still holds for Sj. If hidedepth =
hidedepth’ # 1, Invariant 2 trivially holds, since its
precondition is not satisfied.

nopy . This operation updates R and R identically,
independently of Hg, . Thus, Invariant 1 (Register equiv-
alence) holds for S,’C. Likewise, nopy does not alter
H gk or hidedepth’, and thus Invariant 2 (Hidden storage
equivalence) and Invariants 3 and 4 (Hidedepth positivity)
still hold for Sj,.

branch. This operation does not update Ry , Hg, or
hidedepth’, and thus Invariants 1 and 2 still hold for
S Likewise, since PC' ¢ WriteSafe, hidedepth’ =
hidedepth > 1, and Invariants 3 and 4 will hold inde-
pendently of which class PC” falls in.

Hidedepth-modifying:

0, and thus Invariant 1
(Register equivalence) holds for S’. If:

1) hidedepth > 0 (and thus hidedepth’ > 1), then

R{ = Ry (Invariant 1), and since hide sets H' = R,

Invariant 2 (Hidden storage equivalence) is satisfied for
S

k
2) hidedepth = 0 (and thus hidedepth’ = 1), Invariant 2

trivially holds for S} due to an unsatisfied precondition.

Invariant 3 and Invariant 4 hold for S,’C, since
hidedepth > 0, and hidedepth’ = hidedepth +1 > 1.

e restore. There are two cases:

1) H|[t] # target. Since R = 0, Invariant 1 (Register
equivalence) holds for 5.

2) H[t] = target. There exists again two cases
(hidedepth > 1 due to Invariant 3):

a) hidedepth > 1. Since Hg, = Hg, (Invari-
ant 2), Rgl 192 after restoration, and In-
variant 1 (Register equivalence) holds for .Sj,.

b) hidedepth = 1. Invariant 1 (Register equiva-
lence) trivially holds as since its precondition
is not satisfied (hidedepth’ = 0).

Invariant 2 holds for S; as Hg, is unaltered from
Hg, . Since PC’ will be WriteSafe, Invariant 3 trivially
holds. Likewise, since hidedepth’ = hidedepth > 1 or
hidedepth’ = hidedepth — 1 > 0, Invariant 4 holds.

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2026 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

The paper presents a new defense against Spectre-v2
style attacks that relies on limiting secret reachability under
speculation. For this, the authors combine two new tech-
niques: (1) RegisterHiding, which saves the content of the
register state in a shadow location whenever speculation
happens (and wipes out the actual state), and (2) Shad-
owCFI, which ensures that the shadow register state can be
restored only at “architectural” jump targets. The authors
implement a prototype of their defense and apply it to
secure the Linux kernel, and they compare the performance
overhead w.r.t. other Spectre-v2 mitigations. Moreover, they
also provide a security analysis of the new defense.

B.2. Scientific Contributions

o Creates a New Tool to Enable Future Science

o Addresses a Long-Known Issue

o Provides a Valuable Step Forward in an Established
Field

B.3. Reasons for Acceptance

1) This paper addresses a long-known issue and provides a
valuable step forward in an established field. Preventing
Spectre-v2 attacks at software-level is still an open
problem. The paper provides an interesting compiler-
level defense against Spectre v2 based on limiting
secret reachability under speculation.

2) The paper creates a new tool to enable future sci-
ence. The authors provide a full implementation of the
proposed mitigation and promise to make it available
as open-source. This will enable developers to benefit
from increased security and it will allow researchers to
use it for reproducing the paper’s results and as a basis
for future research on Spectre countermeasures.

B.4. Noteworthy Concerns

1) The security analysis presented in §5.4, which attempts
to justify the mitigation’s security guarantees, is uncon-
vincing due to its informal and imprecise nature. Many
core concepts are fuzzy and require further explanation
(trace models, machine semantics and operations). In
particular, the proposed mitigation would benefit from
a formal proof of security precisely characterizing its
security guarantees.

19

