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Abstract. Deep Neural Networks (DNNs) are often successful in problems needing to
extract information from complexe, high-dimensional inputs, for which useful features are
not obvious to design. This paper presents our work on applying DNNs to brain tumor
segmentation for the BRATS challenge. We are currently experimenting with several several
DNN architectures, leveraging the recent advances in the field such as convolutional layers,
max pooling, Maxout units and Dropout regularization. We present preliminary results,
for our best performing network on the BRATS2013 training set, leaderboard dataset and
challenge dataset.

The results are obtained from the evaluation tool available on the Virtual Skeleton database.
While we do not beat the best results of BRATS2013 participants with our current archi-
tecture, our results are promising.

1 Introduction

Deep Neural Networks (DNNs) have recently attracted more attention due to their state-of-
the-art performance on several datasets such as ImageNet [7] and CIFAR-10 [5]. DNNs have
also been applied successfully to segmentation problems [2, 6], the type of task considered here.
However, to the best of our knowledge, there is no existing work on DNNs applied to brain tumor
segmentation.

We are currently experimenting with several architectural variations of DNNs, for tackling
brain segmentation. Our best architecture, which we briefly describe here, is based on convo-
lutional layers, Maxout [5] and Dropout [9]. We also describe future variations we’d like to
investigate before the end of the challenge.

The data used here is the one available for the BRATS2013 challenge, whose training set
is composed of 20 brains of High Grade (HG) patients and 10 brains of Low Grade (LG) pa-
tients. There are 5 segmentation labels: Non-tumor, Necrosis, Edema, Non-enhancing tumor and
Enhancing Tumor. While the BRATS2014 challenge introduces two new optional tasks (Longi-
tudinal Lesion Segmentation and Diagnostic Image Classification), we do not plan to participate
to those.

2 Methods

We start by defining some of the building blocks that we are investigating and using in our DNN
architectures. Specifically, these building blocks allow us to form different types of Convolutional
Neural Networks (CNNs). CNNs are a very efficient and effective class of models for computer
vision, and they have been shown to learn and extract visual features able to generalize well
across many tasks [3].

We attack the problem of brain tumor segmentation by solving it slice by slice from the
axial view. Thus, the input x of our model corresponds to 2D image (slice), where each pixel is
associated with multiple channels, each corresponding to a different image modality.
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Convolutional layer CNN features are modeled by a set of kernels convolved over the input image
x, followed by an optional element-wise non-linearity (e.g. a sigmoidal non-linearity). The result
of the convolution of each kernel is referred to as a feature map. The size (width, height) of
the kernels are hyper-parameters that must be specified by the user. However the kernel itself is
learned during training. By treating the different feature maps as channels, resulting output of
a convolutional layer can again be interpreted as an image, allowing for the stacking of multiple
such layers.

From the neural network perspective, feature maps correspond to a layer of several hidden
artificial neurons. Specifically, each coordinate within a feature map corresponds to an individual
neuron, for which the size of its receptive field corresponds to the kernel’s size. A kernel’s value
also represents the weights of the connections between the layer’s neurons and the neurons in
the previous layer. It is often found in practice that the learned kernels resemble edge detectors,
each kernel being tuned to a different spatial frequency, scale and orientation, as is appropriate
for the statistics of the training data.

Maxout convolutional layer This is a variant of a convolutional layer. In this case, each feature
map is instead associated with 2 kernels. The feature map is computed by convolving both kernels
and taking the pair-wise maximum value between both convolutions. See [5] for more details.

Max pooling layer In order to introduce invariance to local deformations such as translation, it
has been found beneficial to subsample feature maps by taking the maximum feature (neuron)
value over sub-windows, within each feature map. Such an operation is known as max pooling.

Fully connected layer Neurons in a convolutional layer have limited receptive field, meaning that
each neuron only depends on a small local patch within the image. Moreover, within a feature
map, neurons share the same set of weights for their connections with the previous layer. Fully
connected layer do without these constraints: each hidden unit in the layer is connected to all
units in the previous layer, and the weights of these connections are specific to each neuron. The
size of the hidden layer must be specified and is considered as a hyper-parameter.

Fully connected Maxout layer This is simply the fully connected version of the Convolutional
Maxout layer. In practice we use 5 set of weights for this layer instead of 2 as opposed to the
convolutional Maxout layer.

Softmax layer This is a special case of fully connected layer, where the activation function is the
softmax function: softmax(a) = exp(a)/Z where Z is a normalization constant. In words, this
function converts real valued vectors into a vector with positive entries that sum to one, and
thus that can be interpreted as a probability distribution. Such a layer is usually used for the
last (output) layer, to obtain a distribution over segmentation labels.

Dropout Dropout is a regularization method that stochastically adds noise in the computation
of the hidden layers of a DNN. This is done by multiplying each hidden or input unit by 0 (i.e.
masking) with a certain probability (e.g. 0.5), independently for each unit. This encourages the
neural network to learn features that are useful ”on their own” since each unit cannot assume
that other units in the layer won’t be masked. At test time, units are instead multiplied by one
minus the probability of being masked. For more details, see [9].

The above building blocks open the door to several architectural choices in designing a DNN
model. We are currently exploring several such variations. In this paper, we focus on the archi-
tecture that has been working best so far.

2.1 Preprocessing

In an attempt to test the ability of DNNs to learn useful features from scratch, we employed
only minimal preprocessing. We removed the 1% highest and lowest intensities, as done in [8].
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We then applied the N4ITK filter on the T1 and T1c modalities. We did not applied it to T2
and FLAIR, because the intensity of the tumor can get attenuated by the filter when the tumor
region is large, especially at the center of the tumor. These choices were found to work best in
our experiments. To apply N4ITK, we used ANTS [1]. We then normalized the data within each
input channel, by subtracting channel’s mean and dividing by the channel’s standard deviation.
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Fig. 1: Our best architecture has two paths: one concentrates on a small region around the pixel to classify,
while the other looks at a wider region. The smaller path uses a fully connected Maxout layer, while the
larger path is composed of two Maxout convolutional layers. The two paths’ outputs are merged into a
fully-connected softmax layer, which is used as our model for the segmentation’s label distribution.

2.2 Current best architecture

Our best architecture is illustrated in Figure 1. It is a DNN trained on patches taken from 2D
slices of the brains. Specifically, it is trained on 32x32 patches of 2D slices to predict the label of
the pixel at the center of the patch.

The network has two pathways: The first is a convolutional pathway, connected to the entire
32x32 patch, while the second is full-connected to a smaller 5x5 sub-window at the center of
the patch and has fewer layers. The motivation for this architectural choice is that we want the
decision on the label of a pixel to be influenced by two aspects: the visual details of the region
around that pixel and its larger ”context” (are we near the skull, etc.). The full-connected pathway
serves the first purpose while the convolutional pathway serves the latter. In our experiments,
we find that the full-connected pathway is not as vital to get good performance, but helps get
better contours (Figure 2).

3 Implementation details

Our implementation is based on the Pylearn2 library [4]. Pylearn2 is an open-source machine
learning library specializing in deep learning algorithms. It also supports the use of GPUs, which
can greatly accelerate the execution of deep learning algorithms.

To train the network, we use stochastic gradient descent with Dropout. The loss is the negative
log of the probability of the correct label, where probability is read out of the output softmax
layer. We first train on inputs chosen randomly, but such that all labels are equiprobable. Then,
we re-train the softmax layer with a more representative distribution of the labels. We found
that regularisation is very important in obtaining good results. On all the layers, we bound the
absolute value of the weights and on the softmax layer we apply both L1 and L2 regularization
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Fig. 2: The FLAIR and T1C of brain HG 0310, slice 77, followed by the segmentation produced by a
network with our best architecture and by the segmentation from a similar network but without the full
connected pathway. We see that the full connected pathway allows the network to more finely detail the
boundary between different labels.

Name Dice score Positive Predictive Value Sensitivity

HG 0301
HG 0302
HG 0303
HG 0304
HG 0305
HG 0306
HG 0307
HG 0308
HG 0309
HG 0310
Total

Complete Core Enhancing
0.83 0.80 0.72
0.85 0.68 0.76
0.84 0.86 0.70
0.83 0.79 0.62
0.85 0.70 0.64
0.87 0.77 0.70
0.87 0.36 0.42
0.90 0.87 0.67
0.81 0.73 0.79
0.83 0.88 0.81
0.85 0.74 0.68

Complete Core Enhancing
0.80 0.75 0.64
0.77 0.83 0.74
0.84 0.82 0.61
0.85 0.76 0.53
0.80 0.72 0.50
0.93 0.85 0.73
0.86 0.24 0.40
0.88 0.91 0.59
0.96 0.68 0.73
0.85 0.83 0.72
0.85 0.74 0.62

Complete Core Enhancing
0.87 0.85 0.83
0.94 0.58 0.78
0.84 0.90 0.82
0.81 0.82 0.73
0.90 0.69 0.88
0.82 0.70 0.67
0.88 0.70 0.44
0.92 0.84 0.78
0.70 0.78 0.86
0.81 0.93 0.92
0.85 0.78 0.77

Table 1: Results per brain and on the total for the 2013 Challenge dataset.

to prevent overfitting. We’ve also found that adding additional layers to the network doesn’t give
any performance improvement.

At test time, when segmenting an entire brain, we have to compute predictions one pixel at
a time, which takes around 20 minutes per brain (using a GPU and including preprocessing).
Faster predictions could be made by implementing the computation of both pathways as with
convolutions over the entire brain. This is due to the nature of convolutions, where the weights
are shared along different spatial positions.

4 Results

Table 1 shows our results on the 2013 Challenge dataset for our best architecture. We didn’t
have time to train and test our network on the 2014 dataset. In Table 2 are also presented our
results on the Training and Leaderboard datasets.

With the current version of the architecture without any post processing, we are ranked 10th

on the Challenge, 8th on the Training and 5th on the Leaderboard datasets.

Given the minimal preprocessing we have used, these results are quite good. Additional pre-
processing, such as the identification of white/gray matter and the cerebro-spinal fluid (CSF)
would surely help the network have fewer false positives and increase its performance. Postpro-
cessing could also help us remove some false positives. The network tends to have more false
positives near the skull and at the top and the bottom of the brain.

4.1 Other architectural variations tested

We tried variations of the architecture to incorporate 3D information from the data. However,
the results were not satisfying. A variation we tried was to give 3 adjacent patches along the third
dimension as input, instead of a single slice. However it made no difference in the performance
of the model, suggesting a single slice contains sufficiently enough information.
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Name Dice score Positive Predictive Value Sensitivity

Train HG/LG
Leaderboad

Complete Core Enhancing
0.79 0.68 0.57
0.72 0.63 0.56

Complete Core Enhancing
0.81 0.75 0.54
0.69 0.64 0.50

Complete Core Enhancing
0.79 0.67 0.63
0.82 0.68 0.68

Table 2: Results for the 2013 Training and Leaderboard datasets.

Also, we tried giving 3 orthogonal patches around the pixel to classify, by taking slides along
the 3 possible directions. Due to differences in resolutions of the MRI data, we found this archi-
tecture to overfit on the training data and not generalize well.

5 Future work

We intend to further investigate architectural variations before the challenge’s deadline.
Instead of training based on the prediction of an individual (center) pixel, we wish to design

architectures that can jointly predict several neighbouring labels. This would allow us to more
directly model the expected dependencies between the labels of nearby pixels. We mention in
Section 3 that predictions at multiple locations could be obtained by implementing both the
convolutional and fully-connected pathways as convolutions over larger regions than the current
32x32 input patches. We have already implemented a simpler version of this approach (without
the full-connected pathway path), for which predictions on an entire brain takes around 1 minute
(using a GPU). We are thus in a good position to start exploring models making structured
predictions of the labels.

One approach we will investigate is to incorporate the DNN’s outputs within a Conditional
Random Field (CRF) model of the distribution over the labels. The CRF would incorporate
pair-wise potentials between adjacent pixel positions. Another approach would be to design an
architecture with cascaded predictions, where predictions further down the cascade would use as
inputs the predictions computed earlier in the cascade.

6 Conclusion

In this paper we have proposed a way to do brain tumor segmentation with deep neural networks.
We described our current best architecture and identified certain modeling choices that we’ve
found important to obtain good performances. The time needed to segment an entire brain is
around 20 minutes with a GPU accelerated implementation and we are confident we can decrease
this to just a few minutes. We are optimistic that better results will be obtained with the not-yet-
implemeted architecture using a CRF output model and improved preprocessing/postprocessing.
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Extremely randomized trees based brain tumor
segmentation
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Abstract. Random Decision Forest-based approaches have previously
shown promising performance in the domain of brain tumor segmenta-
tion. We extend this idea by using an ExtraTree-classifier. Several fea-
tures are calculated based on normalized T1, T2, T1 with contrast agent
and T2 Flair MR-images. With these features an ExtraTree-classifier is
trained and used to predict different tissue classes on voxel level. The re-
sults are compared to other state-of-the-art approaches by participating
at the BraTS 2013 challenge.

1 Introduction

The segmentation of brain tumors is an important prerequisite in different sce-
narios related to treatment controlling, radiotherapy planning and longitudinal
studies. Manual segmentation is not only time-consuming and prone to errors,
but additionally complicated by the fact that the necessary information is dis-
tributed over different MR-contrasts. Therefore a lot of research has been done to
improve the segmentation process and create automatic segmentation methods
based on multimodal MR images.

A promising approach is the use of Random Decision Forests like as done in
the works of Reza et al. [1], Tustison et al. [1] and Zikic et al. [2], which learn
the appearance of tumorous and healthy tissue using this method.

While the proposed solution is similar to those mentioned before it differs
mainly in the used classifier. Instead of Random Decision Forests [4] we use
Extremely randomized Trees (ExtraTrees) [3] which are similar to Random De-
cision Forests but introduce more randomness during the training phase. It has
previously been shown that this often improves the variance / bias trade-off and
gives slightly better results than Random Decision Forests do [3].

2 Method

2.1 Preprocessing

The preprocessing pipeline for our experiments consisted of two steps. First the
N4 bias field correction algorithm [5] was used to correct nonuniformity within
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each MR-file. In a second step the histogram was normalized. This is especially
challenging in the case of brain tumor MR images. In addition to the usual MR-
artefacts which cause bright areas in parts of the image, the large variability
of brain tumors has a massive influence on the histogram. Figure 1 shows some
exemplary non-normalized histograms. It can be clearly seen that they differ not
only in range of values but also in shape. Normalizing these histograms to match
a template histogram as it is done by the pice-wise linear normalization [6] can
lead to a wrong result if the shapes are too different.

Fig. 1. Exemplary histograms of 3 non-normalized MR-Flair-images out of the BraTS-
dataset. The histogram is over the complete non-zero image.

To overcome these problems a simple normalization to the image mode, e.g.
the gray-value of the highest histogram bin, was used. This was done by subtract-
ing the mode from each gray-value and then normalizing the standard derivation
to 1.

2.2 Features

54 features were calculated for each voxel and each modality. The features of all
modalities were then combined into the final feature vector.

Gray Value: The gray value of each voxel was used as a feature. The images
were also filtered with gaussian filters with a sigma of 3 and 7 voxel-lengths and
the corresponding gray values were used as features.

Local Histogram: A local histogram was calculated within a radius of 5 voxels;
each of the 11 bins were used as features.

First order statistics: Within a radius of 3 voxels the mean, variance, skew-
ness, kurtosis, minimum and maximum of all gray values were added as features.
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Second order statistics: A co-occurrence matrix [7] filled with all values
within a radius of 3 was used to calculate the second order statistics for the
three main directions. The features extracted from the co-occurrence matrix were
energy, entropy, correlation, inertia, clustershade, clusterprominence, harralick
feature, and the difference of moments.

Histogram based segmentations: The output segmentation of some widely
used parameter-less automatic threshold methods implemented in ITK [8] were
used as features, namely Huang, Intermode, Isodata, Kittler, Li, Entropy, Mo-
ments and Otsu. For all except the Otsu-threshold a two-class problem is as-
sumed. For the Otsu, a two-, a three- and a four-class problem were assumed.

2.3 Classifier

An Extremely Randomized Trees (ExtraTrees) [3] classifier was used. This clas-
sifier is similar to Random Decision Forests but differs in how the randomness is
introduced during the training. To train an ExtraTrees-classifier multiple trees
are trained, each tree is trained on all training data. Similar to the Random
Decision Forest the best split at a node is found by analyzing a subset of all
available features. Instead of searching for the best threshold for each feature a
single threshold for each feature is selected at random. From these random splits
the one that leads to the highest increase in the used score is then selected. The
higher grade of randomness during the training yields more independent trees
and thus further decreases the variance [3]. Due to that ExtraTrees tend to give
slightly better results than Random Decision Forests.

For the training of the classifier 5% of the training data were randomly
sampled to reduce the training time. The classifier is then trained combining
the features described above to a 208-dimensional feature vector.

2.4 Experiments

The results were evaluated by participating in the BraTS 2013 challenge. A clas-
sifier is trained on the 20 training datasets using all available modalities, namely
T2 Flair, T1, T1 with contrast agent and T2. With the so-trained classifier the 10
high-grade glioma evaluation datasets are labeled and the results are evaluated
by the provided online tool.

For the evaluation the overlap with 3 labels is measured using the DICE-
score. The first label, the complete tumor, includes necrosis, edema and both
enhancing and non-enhancing tumor. The second label, tumor core, is the same
as the complete tumor but without edema. Finally, the label enhancing tumor
is evaluated.

3 Results

Table 1 provides the DICE-scores for the test cases. Figure 2 and Figure 3 depict
exemplary slices of the original images and the retrieved segmentations.
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T2 Flair Normalized Flair Segmentation
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Fig. 2. Example slices from patients HG0301 to HG0306. The first column shows the
original Flair image, the second the Flair image normalized with N4-Bias-Field cor-
rection and Mode-normalization. The last column shows the ally received results. The
color coding is: green: ’edema’, yellow: ’active tumor’, red: ’necrosis’
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Table 1. DICE score for the single test data sets.

Dataset Complete tumor Tumor core Enhancing tumor

HG0301 0.85 0.87 0.79
HG0302 0.83 0.74 0.85
HG0303 0.86 0.78 0.74
HG0304 0.75 0.63 0.53
HG0305 0.88 0.73 0.69
HG0306 0.82 0.58 0.63
HG0307 0.81 0.47 0.48
HG0308 0.89 0.89 0.66
HG0309 0.75 0.50 0.68
HG0310 0.88 0.86 0.80

mean: 0.83±0.048 0.71±0.144 0.68±0.113

4 Discussion

We present a new approach for multi-modal brain tumor segmentation using Ex-
traTrees instead of Random Decision Forests and tested it using the BraTS 2013
test data. The performance of the approach is comparable to the quality of other
state-of-the-art algorithms which had been tested against the same dataset. This
shows that ExtraTrees are well suited for the classification of tumorous brain tis-
sue. In the future, it will be interesting to find out whether other approaches
can be improved by simply replacing Random Decision Forest classifiers with
ExtraTrees.
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Fig. 3. Example slices from patients HG0307 to HG0310. The first column shows the
original Flair image, the second the Flair image normalized with N4-Bias-Field cor-
rection and Mode-normalization. The last column shows the ally received results. The
color coding is: green: ’edema’, yellow: ’active tumor’, red: ’necrosis’
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ilastik for Multi-modal Brain Tumor
Segmentation
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Abstract. We present the application of ilastik, the open source inter-
active learning and segmentation toolkit, for brain tumor segmentation
in multi-modal magnetic resonance images. Even without utilizing the
interactive nature of the toolkit, we are able to achieve Dice scores com-
parable to human inter-rater variability and are ranked in the top-5
results for the BraTS 2013 challenge data set, where no ground truth is
publicly available. As careful intensity calibration is crucial for discrim-
inative models, we propose a cerebrospinal fluid (CSF) normalization
technique for pre-processing, which appears to be robust and effective.
Further, we evaluate different post-processing methods for the random
forest (RF) predictions obtained with ilastik.

Keywords: Multi-modal MRI, Brain tumor segmentation, BraTS chal-
lenge

1 Introduction

Segmenting brain tumors from multi-modal imaging data is a very challenging
medical image analysis task due to the fact that magnetic resonance imaging
(MRI) is usually not quantitative and lesion areas are mostly defined through
intensity changes relative to surrounding normal tissue. Furthermore, the task
is complicated by partial volume effects and various artifacts, e.g. due to the
inhomogeneities of the magnetic field or motion of the patient during the exam-
ination. Hence, it is not surprising that even manual segmentations by experts
exhibit significant intra- and inter-rater variability, which is estimated to be up
to 20 % and 28 %, respectively [8].

The state-of-the-art brain tumor segmentation methods can roughly be di-
vided in discriminative and generative approaches. For a comprehensive recent
overview please see Menze et al. [9]. In general, the task of a discriminative
method is to perform a tissue classification of unseen data, based on the raw
data and voxel-wise or regionally extracted features. For training, supervised
approaches usually rely on labels that were assigned by human expert raters
and are considered to resemble ground truth. In the current study, we mostly
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follow this canonical approach, but introduce important variations during pre-
and post-processing (see Sec. 2). The core of the proposed segmentation pipeline
is ilastik4 that allows predictions in close to real time [10]. The generic frame-
work of ilastik has been used successfully in different domains, e.g [6, 7]. Instead
of exploiting the intended usage of ilastik, i.e. interactive machine learning via
a convenient graphical user interface, we non-interactively generate project files
with random labels drawn from the annotated training data and then use the
pixel classification workflow in batch prediction mode for training and prediction.
The pixel classification workflow is based on a random forest (RF) classifier [3].
Although possible, user interaction beyond pre-recorded groundtruth- and CSF-
labeling (see below) is not required. The proposed pipeline achieves accuracies
comparable to human raters and, at the time of writing, is ranked in the top-5
of all submitted results for the BraTS 2013 challenge data set.

In this workshop paper we elucidate the proposed method in detail (Sec. 2),
report (Sec. 3) and discuss (Sec. 4) the results achieved for the BraTS 2013 train-
ing and challenge data set [9].

2 Materials and Methods

2.1 Data

We use the BraTS 2013 training and challenge data set provided via the Virtual
Skeleton Database (VSD) [5]. The synthetic data was excluded, because it i)
was not evaluated in the 2013 challenge and ii) the synthetic data sets “are less
variable in intensity and less artifact-loaded than real images” [9].

The data stems from MR scanners of different vendors and with different field
strengths. It comprises co-registered native and contrast enhanced T1-weighted
images, as well as T2-weighted and T2-FLAIR images. The images contain low
grade (LG) and high grade (HG) tumors. For a detailed description please see
Menze et al. [9].

2.2 Pre-processing

The pre-processing comprises two steps. First we employ histogram normal-
ization as implemented by the HistogramMatching routine of 3D-Slicer5. As
reference images we used the four different modalities of an arbitrary data
set (HG0001). To exclude the background during matching, all voxels whose
grayscale values were smaller than the mean grayscale value were excluded. Next,
we normalized each individual modality with the mean value of the CSF. To ob-
tain these values we interactively trained ilastik with ten randomly chosen data
sets from the training set. This two class classification (CSF vs. rest) is a fairly
easy task, because CSF exhibits an unambiguous combination of intensity values
in the multi-modal images (dark in T1, T1c and FLAIR but bright in T2). The
effect of this proposed two-step normalization technique can be seen in Fig. 1.

4 https://github.com/ilastik
5 http://www.slicer.org
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Fig. 1. Effect of the proposed two-step normalization technique. On the left side his-
tograms of the raw intensity values of the BraTS 2013 training set (LG and HG,
N = 30) are plotted separately for each modality. The right side shows the histograms
after normalization with CSF.

After normalization we augmented the four base sequences by subtracting
each modality from every other. In combination with the original four images this
yields a stack of ten volumes that consecutively are used for voxel-wise feature
computation. For each channel we calculated the Laplacian of Gaussian (scale
1.0), the structure tensor eigenvalues (scale 1.6) and the Hessian of Gaussian
eigenvalues (scale 1.6), as implemented in the ilastik feature selection applet.

2.3 Pixel Classification

The ilastik project consists of three core software libraries: volumina, lazyflow
and ilastik. Lazyflow provides threading utilities for distributing concurrent work-
loads across multiple cores. To achieve close to real time computations in inter-
active mode, this library ensures, that only computations are preformed that are
strictly required to produce an output for the actually displayed data. Visual-
ization of the multi-dimensional data, that possibly can be larger than RAM,
is realized with volumina. These two frameworks are then orchestrated to an
integrated software tool via the ilastik library.

Pixel classification is one of the available workflows. It relies on ten random
forests with 10 trees each that are trained in parallel and eventually are merged
into a single forest. Gini impurity is used as a split criterion and the number of
randomly chosen features at each split is proportional to the square root of the
total number of features.

To use ilastik in an automatic fashion, we created project files off-line. For
each of the four tumor classes (edema, enhancing, non-enhancing and necrosis)
up to 200 training samples, i.e. multi-dimensional feature vectors, were randomly
chosen from the provided ground truth labels of every training data set. Another
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4 ilastik for Multi-modal Brain Tumor Segmentation

1000 random samples were taken from the normal tissue of each training data set.
Further, we introduced ’air’ as an additional class that was granted an additional
20 labels. Different classifiers were trained for LG and HG tumors.

2.4 Post-processing

For post-processing we evaluated different strategies with increasing computa-
tional costs. In the simplest case we use simple Gaussian smoothing to clean-up
the RF predictions. A more sophisticated approach relies on a guided filter as
proposed by He et al. [4]. This is an edge-preserving filter that does not suf-
fer from gradient reversal artifacts as for instance a bilateral filter and it can
be computed in linear time. We also employ graph-cut optimization via the α-
expansion algorithm [2] to adjust the labels. For this purpose we transformed
the pseudo-probabilities P of the RF into unary potentials:

U(x) = − log(P (x)) . (1)

If the labels of two variables differ we assign a cost of c = 0.4. The computations
are realized with the OpenGM library [1].

A common downstream processing of the labels consists of identifying con-
nected components (CC) and discarding all those that are < 3000 voxels. This
is realized with the VIGRA library6.

2.5 Evaluation of the Results

For comparison of the predicted segmentations we computed different standard
measures, with an emphasize on the Dice coefficient as suggested in Menze et
al. [9]. This metric characterizes the voxel-wise overlap of two segmented re-
gions, by normalizing the number of true positives with the average size of the
two regions. To evaluate the performance on the BraTS 2013 training data we
performed leave-one-out cross-validation (LOO-CV) and used the Comparison
and Validation of Image Computing (COVALIC) toolkit7 to obtain the com-
parison metrics. This toolkit is also used by the challenge organizers for the
evaluation. The challenge data, for which no ground truth is publicly available,
was evaluated through the challenge website8.

3 Results

Results for the LOO-CV of the training data are summarized in Tab. 1, for
the challenge data in Tab. 2. For a description of the different post-processing
methods please see Sec. 2.4.

6 https://github.com/ukoethe/vigra
7 https://github.com/InsightSoftwareConsortium/covalic
8 http://www.virtualskeleton.ch

MICCAI 2014 - BraTS Challenge 015



ilastik for Multi-modal Brain Tumor Segmentation 5

Table 1. Dice scores for BratTS 2013 training data with LOO-CV

whole core active
Method LG/HG LG/HG

Human Rater [9] 85 84/88 75 67/93 74

ilastik 75 73/76 60 58/61 65
ilastik + CC 80 78/81 64 60/66 69
ilastik + Gaussian Smoothing + CC 84 82/84 68 61/71 72
ilastik + Guided Filter + CC 83 81/84 68 61/72 71
ilastik + OpenGM + CC 83 81/84 67 61/70 72

Table 2. Dice scores for BratTS 2013 challenge data (only HG)

Method whole core active

Best 2013 87 78 74
Current Best 92 79 76
ilastik + OpenGM + CC 87 76 74

4 Discussion

Our results (Tab. 2) on the 2013 challenge data set are comparable to the inter-
rater variability reported for the BraTS data [9]. At the time of writing they are
ranked in the top-5 of all submitted results. On the training data we perform
slightly worse (rank 7). This might be explained by the fact that we omitted
the synthetic data, for which higher Dice scores were reached as for similar real
data [9].

In contrast to most methods reported in Menze et al. [9], we do not perform
a bias field correction with N4ITK [11] during pre-processing, because it did
not improve our result on the training data. Instead, we propose to perform
intensity normalization with the mean CSF value, which proved to be a robust
and effective technique (Fig. 1).

The evaluation of the different post-processing methods on the training set
with LOO-CV (Tab. 2) shows the added value of “cleaning-up” the RF predic-
tions. The three different methods used, exhibit a similar performance but come
at different computational costs. Especially, simple Gaussian smoothing is a fast
and effective method.

Looking at our segmentations in detail, we noticed the presence of ’holes’,
which –according to our predictions– correspond to islands of healthy neuronal
tissue. From a neuro-oncological point of view this is plausible and can not be
ruled out per se. However, due to the labeling instructions for the experts [9], it is
not very likely that those kind of islands occur in the ground truth data. Primar-
ily aiming at an interactive clinical workflow, we decided not to fill these holes
with a computational method, which supposedly would improve our challenge
results further.
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Future work aims at integrating the insights obtained during the challenge
into an ilastik workflow that can be easily deployed in clinical routine and for
clinical trials.
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Abstract. In this paper, we summarize our approach to the brain tu-
mor segmentation challenge (BRATS). Our method, called GLISTR, is
a joint segmentation and registration method for brain tumors. Using
this method, we simultaneously segment brain scans and register these
scans to a normal atlas. We grow tumors from tumor seed points using a
tumor growth model and modify a normal atlas into on with tumors and
edema. We then estimate the mapping between the modified atlas and
the scans, posteriors for each tissue labels, and the tumor growth model
parameters via an EM framework. We apply GLISTR to the BRATS
2013 data set to evaluate segmentation performances.

1 Introduction

Segmenting brain tumors is a challenging problem due to the complex shapes
of the pathology and their heterogenous textures. Also, multifocal masses of
such tumor make this problem even more difficult. We solve this problem by
our GLioma Image SegmenTation and Registration method (GLISTR), firstly
introduced in [1] and later conceptually improved in [3]. Using GLISTR, we could
segment multifocal tumors using multiple tumor growths and estimate complex
appearances of tumors using tumor shape priors. As we label the entire brain
region using registered tissue priors, the segmentation of pathological regions is
complemented by that of healthy regions.

2 Methods

Our method generates a patient-specific atlas by embedding tumors on a normal
atlas using a tumor growth model [2]. For multifocal tumors, we use multiple
tumor seeds and grow a tumor on each seed, and then combine grown tumors
into the single tumor probability map. The normal atlas is modified into on with
tumors and edema using this tumor probability map. We also generate a tumor
shape prior using the random walk with restart which uses multiple tumor seeds
as initial labels. We incorporate the tumor shape prior into an EM framework via
empirical Bayes model. Using this framework, we simultaneously estimate the
mapping between the patient-specific atlas and input scans, posteriors for each
tissue labels, and the tumor growth model parameters. More detailed procedures
are described in [3].
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Table 1. BRATS 2013 Results.

Dice PPV Sensitivity

Data Set whole core active whole core active whole core active

Leaderboard 0.86 0.79 0.59 0.88 0.84 0.60 0.86 0.81 0.63

Challenge 0.88 0.83 0.72 0.92 0.90 0.74 0.84 0.78 0.72

3 Results

Our method requires minimal user initializations including seed points and ra-
dius for each tumor and one sample point for each tissue class. Users could use the
visual interface of GLISTR to easily mark each point. For preprocessing, we co-
registered all four modalities (T1, T1-CE, T2, and FLAIR), corrected MR field
inhomogeneity, and scaled intensities to fit [0, 255]. We tested our method to the
BRATS 2013 data set via the BRATS online tools [4]. The leaderboard data set
consists of 21 high-grade and 4 low-grade glioma subjects and the challenge data
set consists of 10 high-grade glioma subjects. The results are shown in Table 1.
The performance measures include Dice scores, positive predictive value (PPV),
and sensitivity for three interest regions: whole(complete abnormal regions in-
cluding tumor and edema), core (tumor regions), and active (enhancing regions
of tumor). Our method showed the top performances among participants and
especially performed well on estimating tumor core regions. The average run-
ning time of our method was 85 min on an Intel Core i7 3.4 GHz machine with
Windows operating system.
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Abstract. The proposed method for fully-automatic brain tumor seg-
mentation builds upon the combined information from image appearance
and image context. We employ a variety of different feature types to cap-
ture this information. Based on these features, a decision forest performs
voxel-wise tissue classification followed by a spatial regularization via a
conditional random field. Our method was evaluated on two data sets of
the BRATS 2013 challenge achieving high performance within a reason-
able average computation time of 5 minutes per subject.

1 Introduction

Current clinical guidelines (e.g. RANO/AVAGlio [3]) rely on manual, bidimen-
sional measures for response assessment of malignant gliomas. In a recent pub-
lication [12], it was shown that such measurements are highly sensitive to MRI
head placement. As a more reliable alternative 3D tumor volumetry was pro-
posed. Manual tumor segmentation is time-consuming and subject to observer
bias [5]. Hence, fully-automatic brain tumor segmentation methods are desired,
reducing these issues.

A majority of the current best performing methods rely on techniques from
machine learning [1, 4]. A major insight we obtained through our participation
in previous segmentation challenges is that the representation of the input data,
generally referred to as features, plays a crucial role in machine learning-based
segmentation models. Thus, our present approach is driven by an extensive set
of different features capturing different aspects of the input data.

2 Preliminaries

Structural MRI. Our approach relies on four different MRI sequences that are
routinely used in clinical acquisiton protocols, namely T1-, T1c- (post-contrast),
T2-, FLAIR-weighted images. We regard the entire four MR sequences as a
multi-sequence image Ω.

Classification. We pose the problem of brain tumor segmentation as a voxel-
wise classification problem. Thus, we seek a hypothesis h that relates a voxel,
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represented by its feature vector x, to a corresponding tissue (class) label y (i.e.
h(x) : x → y). We consider seven possible tissue classes: three unaffected (gray
matter, white matter, csf) and four tumor tissues (necrosis, edema, enhancing
and non-enhancing tumor). Based on a given fully-labeled training set S ={(

x(i), y(i)
)

: i = 1, ..., |S|
}

we estimate h (supervised learning).

3 Methods

The present method builds on the insights and developments of two previously
published approaches [2, 8]. In [2] the original formulation of the algorithm that
is still valid was proposed. In [8] it was extended to a generative-discriminative
hybrid model. The present method abandons the generative part and instead
relies on an enhanced feature set leading to an increased performance with re-
duced computation time (compared to [8]). The pipeline is depicted in figure 1.
After preprocessing (smoothing, intensity normalization, bias-field correction) of
an image Ω(j), we extract appearance- and context-sensitive features. A classifi-
cation forest is employed to provide a voxel-wise tissue classification (ỹ) that is
subsequently refined by a spatial regularization.

Classification 

(Decision Forest) 
Feature extraction 

Multiparametric image Regularization (CRF) 

Segmentation 

Fig. 1: Segmentation pipeline. After the multi-sequence image has been prepro-
cessed, voxel-wise features are extracted, followed by classification and subse-
quent spatial regularization.

3.1 Appearance-sensitive features

Appearance-sensitive features try to capture contrast information. These fea-
tures profit directly from the usage of multiple different MR sequences and en-
compass the voxel-wise intensity values, first-order texture features and gradient
features. The first-order texture information is contained in the histogram of an
image (or image region). We extract them over box-shaped Moore neighborhoods
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varying in size (containing either 33, 53 or 73 voxels). In addition, we generate
gradient magnitude images of each respective MR sequence image and extract
local mean and variance over the same neighborhoods.

Furthermore, we investigated the use of second-order texture features (ex-
tracted from intensity-based co-occurence matrix). Since their usage did not
lead to any improvement, we discarded them from the final feature set. At this
point, one could argue to also include features that characterize the shape of a
tumor. However, given the enormous variability (especially when considering the
tumoral subcompartments) of this aspect, we decided to not include any notion
of shape as a feature.

3.2 Context-sensitive features

Gliomas can occur everywhere in the brain. Nevertheless, it is unlikely that they
arise in the cerebellum or brainstem, i.e. the infratentorial part of the brain. We
target to capture this cue with the help of an atlas image. We register the T1c-
weighted patient image to the atlas image employing an affine transformation.
Prior to this step, all other MR sequences have been rigidly registered to the T1c-
weighted image. After registration of the patient image to the atlas, we obtain
for every voxel i in the patient image its corresponding (physical) coordinates in
the atlas image {xi, yi, zi}, which we refer to as atlas-normalized coordinates. We
use the term “normalized” since all training and testing images are transformed
into the same atlas coordinate system. Since we are only interested in a rough
estimate of the respective location in the atlas (e.g. is the position of the voxel
supra- or infratentorial?), we smooth the final atlas-normalized coordinates using
a Gaussian kernel (σ = 1.5).

The spatial arrangement of different tumor subcompartments in case of
gliomas (especially Glioblastomas) is characterized through a more or less well-
defined order of layers (at least if we are working with the present definition
of four tumor subcompartments). If we consider the T1- and FLAIR-weighted
images in figure 2, we can recognize that in the T1 certain parts (e.g. necrotic
core) are hypointense, whereas in the FLAIR they appear hyperintense. Thus,
the dynamic range of intensity values given both modalities is in general larger
than for healthy tissue. Our basic idea is to capture this information with the
following procedure:

1. For a voxel i send out four (in-plane) rays of length d with an angle α, where
d ∈ {10, 20} (in voxels) and α ∈ {0◦, 90◦, 180◦, 270◦}.

2. For every ray construct the histogram H using intensity values from T1 and
FLAIR images.

3. Compute the range of the histogram: r = Hmax − Hmin, where Hmax and
Hmin are the maximum and minimum (occupied) intensity bins of the his-
togram.

4. Compute the mean range r̄ of the four rays.

The mean range r̄ is then used as final feature which we simply call ray feature.
By working with histograms our features are invariant against small shifts. The
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reason why we restricted ourselves to rays casted in-plane and not out-of-plane
is that the slice thickness can vary greatly. In initial experiments, we observed
that especially the classification of the necrotic core improves when proposed ray
features are used. This makes sense since the necrotic part of the tumor appears
hypointense in T1-weighted images and is typically surrounded by active tumor
which is hyperintense in FLAIR images.

Finally, we employ symmetric intensity differences which capture asymme-
tries across the brain hemispheres induced by the tumor. The axis of symmetry is
defined as the midsagittal plane of the previously registered atlas. For increasing
the robustness of the symmetric features, we smooth the images with a Gaussian
kernel (σ = 3.0) before extracting them.

Multimodal histogram 

Fig. 2: Ray feature (left) and symmetry feature (right).

Besides the previously described features, we investigated the use of two other
feature types: Context-rich features [6] and Local Binary Patterns [10]. However,
we did not observe a statistically significant improvement when employing these
features. Consequently, we discarded them from our final feature set. In the end,
we obtain a 237-dimensional feature vector x.

3.3 Classification Forest

For classification, we employ a decision forest (which we used extensively in other
work [2, 8, 9]). The classification forest is trained on the fully-labeled training
set S. Important to notice is that we rely on axis-aligned weak learners as split
functions and simple class-histograms as prediction models (stored in leafs). The
predicted class label is defined according to the MAP-rule: ỹ = arg maxy p(y|x)
(which corresponds to h), where the probability is generated via the class-
histograms stored in the respective leaf of the decision trees.

3.4 Spatial Regularization

The spatial regularization is identical to our hierarchical approach from [2], where
it is formulated as an energy minimization problem of a conditional random field
(CRF) defined on a grid-graph that corresponds to the image volume. For more
details, we refer the reader to [2].
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4 Results

We evaluated our method on two datasets. First, the BRATS2013 training set
which encompasses 30 patient images (including both high-grade and low-grade
gliomas). Second, the BRATS2013 challenge data set which consists of 10 patient
images bearing high-grade gliomas. Prior to the evaluation, the sequence images
were rigidly registered to the T1c-image and skullstripped. The model is trained
either on high- or low-grade cases only. Consequently, we performed a 5-fold
cross validation for the high-grade cases and a leave-one-out cross validation for
the low-grade gliomas of the training set. We trained on the 20 high-grade cases
of the training set to segment the challenge set. Quantitative evaluation of the
segmentation results was conducted online on the Virtual Skeleton Database
(VSD)3 and is listed in table 1. The decision forest was implemented using the
Sherwood library [13]. The average computation time per patient image is around
5 minutes.

Region Dice Jaccard PPV Sensitivity

Complete tumor (HGG) 0.84 ± 0.03 0.72 ± 0.04 0.8 ± 0.06 0.89 ± 0.07
Tumor core (HGG) 0.73 ± 0.14 0.59 ± 0.15 0.8 ± 0.12 0.7 ± 0.19
Enhancing tumor (HGG) 0.68 ± 0.11 0.53 ± 0.12 0.72 ± 0.11 0.7 ± 0.19

Complete tumor (HGG&LGG) 0.83 ± 0.1 0.72 ± 0.14 0.85 ± 0.09 0.83 ± 0.15
Tumor core (HGG&LGG) 0.66 ± 0.24 0.59 ± 0.24 0.74 ± 0.25 0.66 ± 0.27
Enhancing tumor (HGG&LGG) 0.58 ± 0.34 0.47 ± 0.3 0.66 ± 0.36 0.54 ± 0.35

Table 1: Results of online evaluation for cases of BRATS2013 challenge (top)
and training (bottom) data set. Performance measures are given as mean values
± standard deviation.

Fig. 3: Segmentation result for case HG0011. From left to right: T1-, T1c-, T2-
, FLAIR-weighted image, overlayed ground truth on T1c image (necrotic =
red, enhancing tumor = yellow, non-enhancing tumor = blue, edema = green),
overlayed segmentation result of our method.

3 https://www.virtualskeleton.ch/
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5 Discussion and Conclusion

We propose a fully-automatic, machine learning-based method that builds upon
the combined information from image appearance as well as context. This method
is an integral part of the BraTumIA software suite, which is a clinically validated
[11] tool for radiologists to perform brain tumor image analysis4. Clearly, the
use of different features improves the performance of our method. However, we
experienced that the introduction of a new type of feature does not necessarily
lead to an improvement (this applies especially in the situation when the num-
ber of features is already large and their nature diverse). We think that further
improvements can be obtained by a more effective use of the available training
data (as e.g. proposed in [7]) rather than more advanced features.
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Abstract 

In this work, we obtain improved automatic brain tumor segmentation (BTS) performance based on our 

prior methods [1] [2]. We also statistically validate the efficacy of our improved tumor tissue 

segmentation methods. Despite excellent ranking of our BTS methods in BRATS-2013 challenge [4], few 

misclassifications in the tumor core region appeared to have compromised the overall performance. In 

order to lower these misclassifications, this work develops morphological filtering for post-processing of 

segmented tissues. Preliminary results from both BRATS-2013 and BRATS-2014 training dataset suggest 

that further BTS improvement may be achieved with the additional morphological filter. We further plan 

to obtain cross validated results using BRATS-2014 data for the final submission.  

Keywords: Tumor Segmentation, Texture feature, Morphological filter, BRATS, MR. 

Methods  

The proposed segmentation method is an improvement over our BTS prior works [1] [2]. The 

improvement is obtained by carefully devising a morphological post processing technique. The overall 

flow diagram of the proposed method is shown in Fig. 1. 
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Figure 1: Simplified flow diagram of the proposed method 
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The detail description of first three steps in Fig. 1 can be found in [1] [2]. Here is a brief overview of the 

complete steps: 

i. Pre-processing to include bias correction [5] and MR intensity inhomogeneity correction [6].

ii. Feature extraction to include two types of features:

a. Global: MR intensities and intensity differences among the modalities.

b. Texture features: fractal PTPSA [7], mBm[8] , textons [9].

iii. Pixel level classification and prediction using Random Forest [10] classifier.

iv. Generating 2D segmented images from the predicted labels and then 3D volume image.

v. Post processing using two stage binary morphological filter:

a. Stage-1: Based on the connected component, the filter keeps only the larger objects and

removes the smaller objects from the 3D volume. Example of some small objects is

shown with green circle in Figure-2 (b).

b. Stage-2: Holes in the tumor core region is detected. Based on the neighbor intensities,

labels are assigned in the holes region.

vi. Evaluation using final output MR volume.

Dataset 

Two dataset of glioma tumors have been used 

 BRATS-2013 training dataset. 20 High grade (HG) and 10 Low grade (LG)

 BRATS-2014 training dataset. 190 HG, 26 LG

Results and Discussions 

From the predicted labels of each pixel, we obtain the 2D segmented images. These 2D segmented images 

are used for post processing using morphological filtering to obtain better pixel wise labeling. Finally, the 

refined images are stacked to generate the 3D volume images. Example tissue segment and improvement 

using the morphological filtering are shown in Figure-2. 

 

Quantitative evaluation of segmented results: 

(a) (b) (c) (d) 

Figure 2: Segmented tissues with corresponding input and ground-truth images. (a) Corresponding 

T1c, (b) previous result /without filtering (c) current result with filtering, red circle shows the region of 

improvement (d) ground-truth. Labels in the ground-truth: 1-necrosis, 2- edema, 3-non-enhancing 

tumor, 4- enhancing tumor, 0-everything else.
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All our segmented results are evaluated according to the three different categories set up by BRATS-

2013. The details on these three categories are as follows: Complete Tumor: (1-necrosis, 2-Edema, 3-non-

enhancing tumor, 4-enhance tumor); Tumor Core: (3-non-enhance tumor, 4-enhance tumor); and Enhance 

tumor: (4-enhacne tumor). We perform 3-fold cross validation on 30 training patients of BRATS-2013, 

and the results are also reported in our previous submission [1]. The average scores of the 3-fold cross 

validated results are in Table 1. In summary, Dice overlap metric of our segmentation rate varies between 

88% to 92% for enhanced tumor, tumor core, and complete tumor respectively. 

The patient-wise cross validation results using our algorithm in Table 1 suggest that one may obtain 

reasonably good results for any representative patient dataset. In order to measure the robustness of the 

method, we use the trained RF classifier with BRATS-2013 data and test on BRATS-2014 dataset. 

Furthermore, we obtain significant improvement using the proposed morphological post processing. 

Quantitative scores of 216 training patients of BRATS-2014 with the basic algorithm [1] and the 

proposed method (Fig. 1) are shown in Table 2 and Table 3 respectively.  

Results in Table 2 and 3 show that the Dice score varies from 67% to 76% using the method [1], and from 

71% to 81% using the proposed method respectively. From the patient-wise results we notice that the 

propose algorithm usually performs better on High grade (HG) tumors than Low grade (LG). Therefore, 

we observe that the MRI containing HG tumor surface may contain higher randomness in texture. 

Furthermore, the morphological filter is especially developed to reduce the misclassification of necrosis 

tissues in the core region. As the necrosis tissues are commonly found in HG tumors, the morphological 

filter improves the segmentation results of HG.    

Table 1: Average results of 3-fold cross validation [1] on 30 patients of BRATS-2013. 

Table 2: Average results of 216 patients of BRATS-2014 using the method [1]. RF classifier is 

trained with 20 HG patients of BRATS-2013.  

Table 3: Average results of 216 patients of BRATS-2014 using the proposed method. RF classifier is 

trained with 20 HG patients of BRATS-2013.  
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Conclusion 

In this work, we have investigated the efficacy of our proposed method, which is our basic automatic 

segmentation method [1] followed by a post-processing morphological filter. Preliminary results of 246 

glioma patients confirm the efficacy of the proposed method (Fig. 1). However, generalization of such 

morphological filter is challenging and need more investigation. Preliminary results from both BRATS-

2013 and BRATS-2014 training dataset suggest that further BTS improvement may be achieved with the 

additional morphological filter. We further plan to obtain cross validated results using BRATS-2014 data 

for the final submission.   
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Abstract. We present the application of 3D-Convolutional Neural Net-
works for brain tumor segmentation in multi-modal magnetic resonance
images. We are able to achieve Dice scores comparable to human inter-
rater variability and are ranked among the top-scoring submission for
the BraTS 2013 challenge data, where no ground truth is publicly avail-
able. As careful intensity calibration is crucial for discriminative models,
we rely on a cerebrospinal fluid (CSF) normalization technique for pre-
processing.

Keywords: Multi-modal MRI, Brain tumor segmentation, BraTS chal-
lenge, Convolutional Neural Network

1 Introduction

The majority (≈ 70 %) of primary cerebral malignancies originate from glial cells.
Amongst those, the most frequent malignant primary brain tumor in humans,
glioblastoma multiforme (GBM), is accompanied by rapid infiltrative growth
and a very poor prognosis. This is reflected by an average survival time of about
one year after diagnosis [8]. The overall survival rate of patients suffering from
GBM is affected by a combination of extensive treatment strategies such as
concomitant radio- and chemotherapy and/or surgical resection [8]. The gold
standard to account for tumor growth in daily clinical routine is guided by the
Response Assessment in Neuro-Oncology (RANO) criteria [9]. These guidelines
only comprise surrogate measures (e.g. maximal 2D diameter of the contrast
enhancing portion of the lesion) to estimate the development of the malignancy.
For diagnosis, treatment planing and monitoring it is thus desirable and very
important to have reliable and reproducible segmentation methods available that
are able to quantify not only the whole tumor volume but also the volume of
sub-regions of the mass, like non-enhancing portions and edema.

As human experts compare the texture and intensities of different MRI chan-
nels in order to rate the signal alterations, we trained a 3D-Convolutional Neural
Network (CNN) to mimic this procedure. Using The CNN, we achieve accuracies
comparable to human raters for the whole tumor and active core sub-regions.
At the time of writing, our method is ranked second of all previously submitted
results for the BraTS 2013 challenge data set.
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2 Materials and Methods

2.1 Data

We use the BraTS 2013 training and challenge data set provided via the Virtual
Skeleton Database (VSD) [4]. The synthetic data was excluded, because it is less
variable in intensity and contains fewer artifacts than real data. Furthermore,
higher Dice scores were reported for the synthetic data sets [7].

The data stems from MR scanners of different vendors and with different field
strengths. It comprises co-registered native and contrast enhanced T1-weighted
images, as well as T2-weighted and T2-FLAIR images. The images contain low
grade (LG) and high grade (HG) tumors. For a detailed description please refer
to Menze et al. [7].

We employ the same two-step pre-processing as described in [5], which com-
prises a normalization with the mean CSF value. However, in contrast to the
other approach, we do not ”augment” the data set with the differences between
the channels, and thus only use the four canonical MRI channels as input for
the CNN.

2.2 The Voxel-wise Classifier

We tackle the segmentation problem by applying a voxel-wise classifier on the
data. Predictions are based on local information provided by small 3D patches,
one for each input channel. These cubes of voxels are fed into the classifier, which
then predicts the voxel(s) in the center of the cube. As we employ a Convolu-
tional Neural Network (e.g. [6]) for this task, we can easily control the number of
input voxels that are used for predicting the class of one voxel by changing the
number of layers or the sizes of the convolutional filters of the network. Our Con-
volutional network uses 3D spatial convolutions instead of the usual 2D layout
used in image classification. The data has three spatial dimensions (x,y,z) and
one dimension for the channels. Thus, we effectively analyze 4D data (x,y,z,c)
during the convolution operation.

The Network is a stack of multiple layers, each convolving their input with
a set of filters. The filters are optimized on the training data using stochastic
gradient descent; their initial values are drawn from a Gaussian distribution with
zero mean. Following the convolution operation, we apply a nonlinear voxel-wise
squashing function, the hyperbolic tangent function. The convolution operation
reduces the 4D block of the preceding layer to filtered 3D blocks. All filtered
3D blocks are then combined to serve as 4D input for the next layer. The final
convolution layer has as many filters as there are different classes to be predicted,
in our case six (edema, enhancing tumor, non-enhancing tumor, necrosis, air,
other/normal tissue). A final soft-max operation ensures that the values of the
output layer sum to one, and thus can be interpreted as probabilities.

We achieve a speedup of several orders of magnitude by interpreting fully-
connected layers (the final layer of the network) as convolutional layers with
filters of size 13. Using this trick we can predict multiple neighboring voxels in
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one pass and benefit from a highly reduced computational overhead, as compared
to making predictions for voxels independently. This idea has been described by
Giusti et al. [2]. During training we predict 93 voxels per gradient optimization
pass. This effectively enables one to train Convolutional Networks for segmen-
tation on a single CPU-thread in reasonable time (in our case ≈ 30 − 40 h). We
also evaluated a GPU implementation that offers a further speedup, allowing to
train the network in less than half a day. Generating predictions for an entire
volume takes about one minute. The network is implemented using the Theano
library [1].

We train different classifiers for LG and HG tumors, as they might have a
different local structure, but can be distinguished globally. The data-flow of an
exemplary 3D-CNN is shown in Fig. 1.

Fig. 1. Visualisation of the memory and operations of an exemplary Convolutional
Network. The input is a 3D image with four channels/modalities. Each filter has three
spatial dimensions, with a typical size of 53 voxels in our experiments, as well as an
additional fourth dimension in order to take all input channels into account (e.g. the
first 8 filters are of size 5x5x5x4). The depth of a hidden layer is equal to the number
of filters of the preceding layer. After the convolution the nonlinear activation function
tanh is applied independently to all voxels in all channels (not shown). The employed
convolution only emits a value at points where the filter fully overlaps with the data,
thus the number of voxels per channel decreases after each convolution when filters
larger than 13 are used.

We trained one network with four layers, the first three layers all have filters
with a size of 53 (plus one dimension that corresponds to the depth of the channel
of the input to the layer, e.g. the first layer’s filters have a shape of (5,5,5,4) to
account for the four input channels). We used 15 filters in the first layer, 25 for
the next two and six filters in the last layer (one for each of the six different
classes), respectively. We trained a second network that is identical to the first
one, except that an extra layer containing 40 filters of size 53 was added in front
of the last layer.
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2.3 Post-processing

We identified connected components (CC) of the thresholded class predictions
and discarded all those that contain less than 3000 voxels. This procedure re-
moves disconnected and likely false-positive segmentations. CC removal was re-
alized with the VIGRA4 library.

2.4 Evaluation of the Results

We evaluate the challenge data, for which no ground truth is publicly available,
through the challenge website5.

3 Results

We present results (Tab. 1) for the challenge data for an average of the voxel-wise
predicted probabilities of two Convolutional Networks, that slightly vary in their
architecture (cf. 2.2).

Table 1. Dice scores for BratTS 2013 challenge data

Method whole core active

Human Rater [7] 88 93 74
Best 2013 87 78 74
Current Best 88 83 72
Averaged Network 87 77 73

4 Discussion

We demonstrated the successful application of deep learning for segmenting tu-
morous regions of MR scans, yielding results among the top-scoring submissions
for the BratTS 2013 challenge (ranked second at the time of writing). A clear
advantage of this approach is that it does not rely on hand-crafted features.

The other approach that we submitted for this years challenge employs a
random forest for predicting the segmentations [5]. For both methods we noticed
the occurrence of ’holes’ (healthy neuronal tissue) within tumorous tissue. Again,
we chose not to fill those in, as they are biologically plausible. Besides using
pre-processing that normalizes each channel with its mean CSF-value we also
experimented using the provided raw data directly as an input for the CNN.
This resulted in a weaker performance, emphasizing the importance of a suitable
intensity calibration.

4 https://github.com/ukoethe/vigra
5 http://www.virtualskeleton.ch
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Further improvements might be expected from using larger Networks or using
dropout [3], a method that helps to prevent over-fitting. However, the errors of
the predictions are already close to the range of inter-rater variability and it is
therefore not likely to yield large improvements when training the network with
a single ground truth labeling only.

As future work we plan to introduce two additional neurons in the output
layer, coding for low and high grade, respectively. This will allow to generate
pseudo-probability maps that indicate areas of different malignancies and thus
might help to characterize tumor sub-regions.

Acknowledgments. This work was supported by a postdoctoral fellowship from
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2. Giusti, A., Cireşan, D.C., Masci, J., Gambardella, L.M., Schmidhuber, J.: Fast im-
age scanning with deep max-pooling convolutional neural networks. arXiv preprint
arXiv:1302.1700 (2013)

3. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Im-
proving neural networks by preventing co-adaptation of feature detectors. CoRR
abs/1207.0580 (2012)

4. Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton
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Abstract In this work, we investigate the possibility to directly apply
convolutional neural networks (CNN) to segmentation of brain tumor
tissues. As input to the network, we use multi-channel intensity informa-
tion from a small patch around each point to be labeled. Only standard
intensity pre-processing is applied to the input data to account for scan-
ner differences. No post-processing is applied to the output of the CNN.
We report promising preliminary results on the high-grade training data
from the BraTS 2013 challenge. Work for the final submission will in-
clude architecture modifications, parameter tuning and training on the
BraTS 2014 training corpus.

1 Introduction

In this work, we apply convolutional neural networks (CNNs) to the problem
of brain tumor segmentation. The work is motivated by the recent success of
CNNs for object recognitionion 2D images [1], and the availability of efficient
off-the-shelf implementations such as Caffe [2].

CNNs are currently primarily used for object recognition, i.e. if an image
contains an object, the complete image is assigned the corresponding label. Two
exceptions are [3,4], where CNNs are used inside more complex frameworks in
order to perform the segmentation. In the domain of medical image analysis,
CNNs have been very successfully applied for mitosis detection in 2D histology
images [5]. The intermediate step of [5] can be seen as a binary segmentation of
mitotic cells, and the use of CNNs in that work as a per-pixel classifier is similar
to the one we use here.

In this work, we explore the possibility of applying CNNs to segmentation of
brain tumors directly. The CNNs operate on standardly pre-processed intensity
information, and we apply no further post-processing to their output.

2 Method

For the segmentation task, we use a standard CNN implementation based on
multi-channel 2D convolutions, and adapt it such that it operates on multi-
channel 3D data usually available for the brain tumor segmentation task.
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We apply the CNN in a sliding-window fashion in the 3D space, for each
point inside the brain masks. At each point x, the CNN takes as input a multi-
channel 3D patch around this point P (x). Given P (x), the CNN is trained to
make a class prediction for the central patch point x.

2.1 Input Data Representation

For each case in the BraTS database, the multi-channel 3D data consists of 4 dif-
ferent 3D MR contrast images: contrast enhanced T1 (T1c), T1, T2 and FLAIR.
While T1c usually has an isotropic resolution, the other channels originally have
a slice distance which is larger than the in-slice element spacing. In the BraTS
challenge, all data is resampled to fit the T1c resolution. For each point x to
be labeled, we extract a multi-channel patch P (x) around it, which has spa-
tial dimensions d1, d2, d3. Here, d1 and d2 are taken to be in-slice dimensions
corresponding to high resolution, and d3 is the lower-resolution axial direction.

Having 4 channels in our task, each 4-channel 3D patch P (x) of size (d1×d2×
d3×4) can also be interpreted as a (4·d3)-channel 2D patch of size (d1×d2×4d3),
where the 2D space d1-d2 corresponds to original MR-slices, in which the original
data generally has the highest resolution. We use this interpretation to apply a
standard 2D-CNN convolutional architecture to our 3D problem. Thusly, in the
first convolutional layer, we use convolutional filters of size 5 × 5 × 4d3, and
perform a 2D convolution with this filter along the dimensions d1 and d2 within
each patch P (x) of size 19 × 19 × 4d3.

This approach is taken for two reasons. First, we can use existing efficient
off-the-shelf CNN implementations for 2D convolutions without large modifica-
tions. Second, performing 2D instead of 3D convolution is computationally more
efficient. The justification for this step is that due to lower resolution in d3 di-
mensions, we expect that omitting the convolution in this direction will have a
minor impact on accuracy.

2.1.1 Pre-processing As additional pre-processing for the BraTS data, we
perform inhomogeneity correction in each channel by [6], set the median of each
channel to a fixed value of 0, and downsample the images by a factor of two
with nearest-neighbor interpolation. Testing is also performed on down-sampled
images, and the results are correspondingly upsampled before quantitative eval-
uation.

2.2 CNN Architecture and Optimization

We use a standard CNN framework following [1], with the following per layer
characteristics of the architecture:

– layer 0: input patch of size 19 × 19 × 4,
(i.e. we currently only use a single slice from each of the 4 channels)

– layer 1: 64 filters of size 5 × 5 × 4,
(resulting in 15 × 15 × 64 nodes)
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– layer 2: max-pooling with kernel size 3 and stride of 3,
(resulting in 5 × 5 × 64 nodes)

– layer 3: 64 filters of size 3×3×64,
(resulting in 3 × 3 × 64 nodes)

– layer 4: fully connected with 512 nodes
– layer 5: soft-max (fully-connected) with 5 output nodes (for the 5 classes)

All inner nodes in the network use a rectified linear unit (ReLU) as a non-
linearity term.

We use log-loss as the energy function for training, and optimization is per-
formed with a stochastic gradient descent with momentum.

3 Preliminary Evaluation

Since we did not have access to the BraTS evaluation platform at the time of this
submission, we perform the preliminary evaluation on the training data set from
the BraTS 2013 challenge. We focus on the 20 high-grade cases from training
set. To provide some context, we relate to results of our previous method from
[7], which is based on randomized forests (RF).

We perform the evaluation of the CNN approach with a 2-fold validation
where, based on the ascending ordering of the test cases IDs, the first fold con-
tains the odd cases, and the second fold contains the even ones. Thus each
fold contains 10 cases. Results for each fold are computed by a CNN which was
trained on the other fold. For training, we use all samples available for the tumor
classes, and we randomly subsample the number of background/brain samples
to correspond to the total of the tumor samples for each case.

The results for the RF approach are computed in a leave-1-out manner, where
for each case, the RF method was trained on the remaining 19 high-grade cases.
For RF training, the background is randomly subsampled by a factor of 0.1 which
is very similar to the ones used for the CNN training. Thus, the RF approach
has access to almost double the amount of training data compared to the CNN
approach, which seems like an advantage.

The results are summarized in Table 1 and Figure 1, and show a promising
performance of the CNN-based approach.

4 Discussion and Future Work

The preliminary results indicate that the unoptimized CNN architecture is al-
ready capable of achieving acceptable results. Our work for the final submission
will include training on the large BraTS 2014 training corpus, improvements of
the network architecture, and parameter tuning.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Systems
25. (2012)

MICCAI 2014 - BraTS Challenge 038



4 Darko Zikic, Yani Ioannou, Matthew Brown, Antonio Criminisi

Method
Training HG (BraTS 2013)

complete core enhancing

RF 76.3±12.4 70.9±22.5 67.4±21.7

CNN 83.7±9.4 73.6±25.6 69.0±24.9

Table 1: Quantitative summary of results on the high-grade training data from
the BraTS 2013 challenge (10 cases). The results for CNN are obtained by a
2-fold data split for training and testing. The results for RF are obtained with
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