The Deducibility Problem in Propositional Dynamic Logic*

Albert R. Meyer and Robert S. Streett Grazyna Mirkowska

Laboratory for Computer Science Institute of Mathematics
Massachusetts Institute of Technology ~ Warsaw University
Cambridge, Massachusetts USA Warsaw, Poland

Abstract: The problem of whether an arbitrary formula of Propositional Dynamic Logic (PDL) is deducible from
a fixed axiom scheme of PDL is IT ll-compfete. This contrasts with the decidability of the problem when the
axiom scheme is replaced by any single PDL formula,

1 Introduction

Propositional Dynamic Logic (PDL) {1} is an extension of propositional logic in which "before-after” assertions
about the behavior of regular program schemes can be made directly. Propositional calculus and versions of
propositional modal logic, propositional temporal logic, and Propositional Algorithmic Logic [2] are all
embeddable in PDL, but PDL nevertheless has a validity problem decidable in (deterministic) exponential time

14k

In this paper we consider the deducibility problem for PDL, namely the problem of when a formula p follows
from a set [' of formulae. The problem comes in two versions:

(1) p is implied by T if and only if AT — p is valid.
(2} p can be inferred from T if and only if p is valid in all structures for which AT is valid.
Note that if p is implied by I' then it can be inferred from T, but the converse does not hold in general.

For a finite set I', the question whether p is implied or inferred from T reduces to whether a formula of PDL is
valid and so is decidable, However, axiomatizations of logical languages such as the propositional calculus or
PDL are often given in terms of axiom schemes, namely, formulac whose variables may be replaced by arbitrary
formulae. Thus, a single axiom scheme actually represents the infinite set of all formulae which are substitution
instances of the scheme. Our main result is that

the problem of whether an arbitrary PDL formula p is deducible from a single fixed axiom scheme is of
extremely high degree of undecidability, namely Hll—complele.

This result appears unexpecied for at least two reasons, First, the easily recognizable infinite set of substitution
instances of a single scheme seems initially to provide little more power than a single formula. For example, the
problem of whether a single PDI scheme is a sound axiom, i.e., whether all its substitution instances are valid, is
equivalent to the question of whether the scheme itself regarded as a formula is valid. Hence it is decidable
whether a scheme is sound.

Second, many familiar logical languages satisfy the compaciness property, namely, that if p is deducible from T,

239

then in fact p is deducible from a finite subset of I'. [t follows directly from compactness that the deducibility
problem from I' is recursively enumerable relative 1o I' and the set of valid formulae of the language. Since the
set I' obtained from a single axiom scheme and the set of valid formulae of PDL are each decidable, compactness
of PDL would imply that the deducibility problem was recursively enumerable, whereas Hll-compicteness in fact
implies that the deducibility problem for PDL is not even in the arithmetic hierarchy. This provides a dramatic
illustration of the familiar fact that PDL is not compact.

The idea of our proof is based on an observation of Salwicki and Pratt [2] that with a finite set of axiom schemes
one can essentially define the integers up to isomorphism. This idea is extended below to define structures
isomorphic to the five dimensional nonnegative integer grid with coordinatewise successor and predecessor
functions and an arbitrary monadic predicate. Program schemes interpreted over these grids can compute
arbitrary recursive functions of integer and monadic predicate variables. The validity of formulae asserting
termination of program schemes corresponds to the validity of arithmetic formulae asserting the existence of roots
of such recursive functions. Validity of such arithmetic formulac with predicate variables is well known to be a
Hll-completc problem.

In the next section we review the syntax and semantics of #DL and give formal definitions of the implication and
inference problems from axiom schemes. In Scction 3 we define the structurcs called grids and show that they
are precisely characterized by a single axiom scheme. This easily yields the main result in Section 4 that the
deducibility problems are Hchomplctc for PDL schemes. The argument is then sharpencd to show that Hll-
completencss of the inference problem holds even for restricted versions of PDL, namely, fest-free PDL and
deterministic PDL with atomic fests. Similarly, the implication problem is rlll—complete for test-free PDL.
Section 5 lists some open problems and related results.

2 Propositional Dynamic Logic

We are given a set of atomic programs I, and a set of atomic propositions ;. Capital letters 4, B, C, ... from
the beginning of the alphabet will be used to denote elements of I, and capital letters P, O, R, .. . from the
middle of the alphabet will be used to denote elements of &

Definition. The set of programs, I1, and the set of formulac, @, of propositional dynamic logic (PDLY are defined
inductively as follows (note the use of letters o, b ¢ . . . to denote elements of TT and p, 4 7 . . . to denote
clements of @)

I MO, CMadd €Il

(2) If o b € 11 then gb, aUb a* € T
By Ifp€ @ then p €N

®: e, Co
(2) If p ¢ € & then ™p pAg € &
() If e € 11 and p € ® then <dp € @

Definition: A PDL struciure is a tiple § = (U, k=g <> where

240

(1) U is a non-empty set, the universe of states.

() k= is a satisfiability rclation on the atomic propositions, ic. a predicate
on U x I

(3) <>5 maps cach atomic program 4 to a binary relation <4rg on states,
ie, {drg C U x U

Definition: For any structure S, the relation b=¢ and map <>¢ can be extended to arbitrary formulae and
programs as follows:

(D) w =g 7p iff not u =g p

() u F=g pAg Iff u k=g p and u =g g

() u =g <dp iff v, wargr & v =g p.

4y usreyv for no u v

(5) wiabrgy iff Iw. wlargw and wib v

6) ukalbr v iff ulabgv or ulbd oy

() wda*> gy iff ulad*v, where {abg* is the reflexive transitive closure of {arg
@) uphe iff w = v and u F=g p.

The standard semantics for PDL given above fix the mcaning of the program ¢ as the empty program. If g and
b are two programs, then a,b is the program in which a is followed by b 'The program olUb permits the
nondeterministic choice of either a or b The program a* permits a nondeterministic choice of some number
{possibly zero) of repetitions of a. If p is a formula, then p? is a test or guard program which acts as the identity
program if p is true and acts as the cmpty program & otherwise.

Notation: If T s a set of formulae, then we write ¥ =g T if and only if u F=g p for every p €T

Definition: If p is a formula and § = <U, k=g, <>> is a structure, then p is valid in § if and only if u k=g p for
all u € U, If T is a set of formulae, then I' is valid in S if and only if every formula in T is valid in S. We say
that T implies p if and only if for all structures S and states u, if u =g T then u =g p. We say that T infers g if
and only if g is valid in every structure in which I' is valid.

Remark: 1f T' implies p then T infers p, but the converse does not hold in general,

Definition: If p and g are formulac and @ is a primitive proposition, then pQ‘? is the formula obtained by
substituting ¢ ~'multaneously for every occurrence of ¢ in p. If L is a set of formulae, then pQL is the set of
formulac obtanable by substituting an arbitrary formula of L for Q in p, ie, pQL = {qu | ¢ € L}

Definition: The scheme implication problem for a set of formulae L is to determine, for given formulac p and ¢
and primitive proposition 0, whether pQL implies q. The scheme inference problem for L is to determine whether
pQL infers ¢

It is technically convenient, given a structure, to identify or collapse states which arc indistinguishable by

formulae.

Definition: If § = U, k=g, {>¢> is a structure and L is a set of formulae, then the L-collapse of S is the
structure T = <V, =y, <>, where the clements of V' are equivalence classes of U modulo L, where u is

241

equivalent to v modulo L if and only if v and v satisfy cxactly the same formulae of L. For atomic propositions
P and-equivalence classes Ju} € V. we define the satisfaction relation = by the condition [u] k=, P iff 3v € [u].
v k=g P. For atomic,programs 4 and equivalence classes [u], [] € ¥, we define the map <>, by the condition
[ulA> o] iff 3w € [} 3z €] widrgz

Lemma 2.1: If T is the PDL-collapse of a structure S, then for all PDL formula¢ p and states u of S, u k=g p iff
[] '=T b

Proof Straightforward, by structural induction on formulae, 1

It will be convenient to consider structures in which there is a designated initial state u, and the entire universe is
accessible from u by programs using a given set of primitives.

Definition. If § = <U, k=g, <>od, 4y € U, and a is a sct of atomic programs, then the a-cuf of S from uy is the
structure T = (¥, b=y <30, where Vo= {u € U ypd(4; U -~ U A > uforsome 4, ..., 4, € a}. We
et u b=y P iff u k=g P and we et udA>yy iff 4 € a and wlddgn

Lemma 2.2: Suppose that T is the a-cut from the state u of some structure S and that a contains all the atomic
programs appearing in some PDL formula p. Then for all states v of T, v =4 p if and only if v F=¢ p.

Proof: Straightforward, by structural induction on formulae. 0

Corollary 2.3: If a contains all the atomic programs appearing in a PDL formula p, then for all structures 8, p is
valid in § if and only if p is valid in alt the a-cuts of S.

Proof. Follows immediately from Lemwna 2.2, B

3 Characterizing the Integer Grid by an Axiom Scheme

Notation: We define the following familiar and convenient abbreviations:

fdg =4 —<og

A =g O*

Vg =4 (DAY

g =4 (OpVg

perg =4 (AN g—p)

trug =g4 PP

Salse =4 Titrue

P =y A

@ =g4a 0 ja{nds for n>0)
if p then a ese b =, (pha)U(—phd)
while p do a =, (pha)*—p?

For the remainder of this paper let a = {4, 4,, Ay A As, By, By, By, B, B} be a fixed sct of atomic
programs and let ¢ and R be fixed atomic propositions, For1 < i <5, let zerp; be an abbreviation for [B]false
and let zero be an abbreviation for f\1<£<5 zero,

242

Notation: N° is the set of quintuples of natural numbers. We will use variables x, y, . . . to denote vectors <x;,
Xy X3 X4 Xg2, V1 ¥y V3 Vg ¥s2, ** 7 The five successor functions oy, 0,, 03, 04, o5 are defined by y = ¢{x)
if and only if y, = x;+1 and y=x for j # I

A canonical grid is a structure § = <N, &= s $>¢> such that 4, acts like o, B, acts like the inverse of o, (so that
zero; = df[]?ilfalse is true only at vectors whose i coordinate is zero), and R depends only on the first coordinate
of vectors. A grid is any structure isomorphic to a canonical grid, we give a formal definition below.

Definition: A grid is a structure § = <U, t=S, O with a bijection ¢: U — N5 such that:

(1) For all u, v € U, wddpgv if and only if @(») o {p(u).

1t

() For all , v € U, wdBpr¢ if and only if p(u) o {p(»).

(3) For all u € U, if u F=¢ R then » =g R for all v such that @(v); = @(u).
Definition: lct grid-scheme be an abbreviation for the conjunction of the following formulae:

zero-axiom. <Bl*;32*383*;34*;35*”""0

identity-axiom: N ¢ics <APLBpUrue

AB-axiom: AlSi¢j35 ((AP(BP!rue > (BjXAI)lrue)
BB-axiom: AleJS5 ((Bl)(I?j)lme « (Bj><Bi>lrue)
Reaxiom: R — N,eizs (4R N 1BIR))

determinism-scheme:. N\, g5 K490 — [4]0)
identity-scheme: A1<i<-5- FQ - [4;B]Q)

Ad-scheme: A ¢;ics KAz4D0 — [4;4]0)
AB-scheme: AlS#jSS ((AI.;BPQ - [Bj;Ai]Q)
BB-scheme: Algijgs ((BI.;BJ>Q - [Bj;Bi]Q)

The proof of the following proposition is straightforward, but quite lengthy; the reader may wish to proceed
directly to section 4.

Proposition 3.1: The grids are precisely (up to isomorphism) the a-cuts of PDL-collapses of structures .S in which
grid—schemeQP DL is valid.

PD.

Proof: 1t is straightforward to verify that grid-schemeQ L is valid in every grid and that every grid is (isomorphic

to) the a-cut of the PDL-collapse of a grid.

For the converse, suppose that 7 = <V, =5, > is the a-cut from an equivalence class [umm] of the PDL-
collapse of a structure § = <U, k=g, <> in which grid—schemeQP DL s valid. We shall show that 7 is a grid.
Lemmas 3.2 through 3.13 will establish the existence of a bijection ¢: V — N® which makes T a grid.

Lemma 3.2: There is an equivalence class [u,,] € V such that [u

zZert

o oy zero.

zer

Proof* Since grid-scheme ,FPL is valid in S, zero-axiom is valid in S, hence Uoor B 5 <B*By* By*, B, By zero.

Hence there is a state u,,, € U such that u < By* By* By* By* B*>qu, . and u =g zero. Then [u =7

zero start zero zero zero]

243

zero, since T I8 the a-cut from [umﬁ} of the PD[l-collapse of S. ¥

Definition: An AB-program is any program of the form a;; . . . ia,, where each a; isAoran 4 ora B, An 4
program is simply an AB-prorgram without any B/s. A canonical A-program is an A-program of the form
Alxl;A2x2;A3x3;A4x4;A5x5 for some x), x5, X3, x, x5 > 0. We abbreviate Alxl;AZXZ;A3x3;A4X4;A5x5 by prog(x).

Lemma 3.3: If [u] € V and a is an A-program, then there is at least one [v] such that [ul<a>v].

Proof: We first prove this lemma for the case where a is 4, for some & By identity-axiom, u F=g <A i)(Bptrue, SO
that there is at least one v € U such that u¢ 4> ¢v. Then [u]<A4»,[v], since T is an a-cut of the PDL-collapse of
S. The lemma can now be proved for arbitrary 4-programs by an easy induction on the length of programs. ¥

Lemma 3.4: If [u] € V and o is an A-program, then there is at most ene [v] such that [ul<a> [yl

Proof: We first prove this lemma for the case where a is A4, for some i Suppose that [u]<4>,[v] and [u<4>,fn].
Then udApgv and u<Apow. Let g be any formula such that v = g, so that u k=g <Apq. By determinism-
scheme, u =g <Apq —> [A)q. Since u =g {A>q u k=g [4]g so wk=g g Hence v and w agree, in S, on all
formulae, so [} = [w}. Thercfore there is at most one [v] such that [u{ A ,[v]. The lemma can now be proved
for arbitrary A-programs by an easy induction on the length of programs. ¥

Lemma 3.5: If a is an A-program and b is any program and [u]<a>,[v] and [u][<a;b>;[w}, then [v][w].

Proof: If [ul{a;b> ,{w] then there is a {z] such that [ul<a>,[2] and [Z[Iw]. By Lemma 34, it follows from
[iar I and [ulab, o] that] = [So [vké>,{v] 1

Definition: Given two programs a and b, we say that ¢ and b are T-cquivalent if and only if <a>;¢F = ? ie.,
for all states u and v, wlarp iff udbrpw.

Lemma 3.6: The program Al.;Bi is ‘T-equivalent to the identity program A.

Prooft By identity-axiom, u =g <Ap<XBptrue. Hence there is a state w € U such that wdpow and w g
<Bl>true. Hence there is a v such that w{ BI>SV and u<Ai;Bi>Sv. Now let v be any state in U such that
ul Az B> ov. Let g be any formula such that u &=¢ g By identity-scheme, u =g q — {4;Blq. Since u'l=gq, u
F=g [4;Blg so v k=g g. Hence u and v agree, in S, on all formutae, so [u} = [vl Therefore, 4;8, is the
identity program in the PDI-collapse of S, hence also in T. ¥

Lemma 3.7: If a and b are A-programs and ¢ is a permutation of 5, then a and b are T-equivalent.
Proof: By an induction on the length of 4 and b, using AA-scheme. %

Lemma 3.8: If a is an AB-program not containing A, then @B, and Bja are T-equivalent.

Proof: By an induction on the length of 4, using AB-axiom, BB-axiom, AB-scheme, and BB-scheme. B

Lemma 3.9: If ¢ is an AB program not containing 4, or B; and if [ul<a>,[V], then] . R if and only if
bl =7 R

Proof: By an induction on the length of 4 using R-axiom. 1

244

Definition: An AB program a is nonnegative if and only if every prefix of a contains at least as many 4s as B;s,
for 1 €< i <5

Lemma 3.10: Every nonnegative AB-program is T-equivalent to an A-program. N

Proof: If a is a nonnegative AB-program, then ¢ is T-equivalent to b;4;¢,B;d where b and ¢ are (possibly trivial)
A-programs, ¢ contains no A;s, and d is an AB-program. By Lemma 3.8, a is T-equivalent to b4 B;c;d, and by
Lemma 3.6, a is T-equivalent to b;c;d, which is nonnegative and contains one less B, than a. The lemma follows
by an easy induction on the rfumber of Bj’s in a &

Lemma 3.11: If the AB-program a is not nonncgative, then there is no [u] such that [u,, J<a>{u]

Proof: If a is not nonncgative, then a is equivalentto b B;c where b and ¢ are AB-programs such that b contains

no A;js. By Lemma 3.8, a is T-equivalent to Bbic. Since u, F=¢ zero, there can be no u such that

U,eo$ B stt, hence no u such that u,, <a>gqu, since a is T-cquivalent to B;b;c. Hence there is no [u) such that

[t gl @l

zero

For the rest of the proof of Proposition 3.1, we will use u, v, w, . . . to denote elements of V, since we no longer
need to make use of the fact that elements of V are cquivalence classes of clements of U. let u,, be that
element of V such that u, F= zero.

Lemma 3.12: For all u € V, there is at most one x such that w, <prog(x)>u

Proof: Suppose x # y, but u,, <prog(x)> ;u and u,, <prog(y)>;u. Without loss of generality we can suppose that
f

zero
x>0 prog(y);lel is not nonnegative, so by Lemma 3.11, there is no v such that uzero<prog(y);le1>Tv, hence

no v such that u(le1>Tv. Therefore u =, [lellﬁzlse. prog(x);le1 is, by Lemmas 3.8 and 3.6, T-equivalent to

zero

prog(z) for some z. By Lemma 3.3, there is a w such that u,, <prog(z)>;w and hence such that

zero
u,<prog(x);B, V> w. By Lemma 3.5, uB,"1>.,w. Hence u k= <B,"Dtrue, a contradiction. So x # y is not
zero 1T 1T T™"1

possible. &

We now prove that the relation between a state ¥ € ¥ and a vector x defined by u
bijection.

<prog(x)> qu is the desired

zerg

Lemma 3.13: There is a bijection ¢: V — N® such that o) = x if and only if w,, <prog(x)>

Proof: Let u € V. Since T is an a-cut, there is an AB-program a such that u
be nonnegative. By Lemma 3.10, a is T-equivalent to some A-program b, which, by Lemma 3.7, is T-cquivalent
to prog(x) for some x. By Lemma 3.12, x is unique, so we may define @(u) = x. To show that ¢ is an
injection, suppose that @(u) = (¥} = x. By the definition of @, u,, {prog(x)? 4 and u,, <prog(x)>y». By
Lemma 3.4, u = v. To show that ¢ is a surjection, let x € N5. By Lemma 3.3, there is a u such that
Uy iprog(x)>yu, so () = x. B

<a>Tu. By Lemma 3.11, a must

Finally, we will show that @ makes T a grid, by proving that the three defining propertics of grids hold of T and
P.

(1) Suppose uldp Then u,, <proglep(w)>,u and U, < Prog(ep(u)); A 7. By Lemmna 3.7,
Uy iprog(o fp))> v, By Lemma 3.13, ¢(v) = o (@()).

245

Conversely, suppose (v} = of@(u). Then wu,, <prog(ep(i))>u and u,, <prog(o (e(u))>yv. By Lemma 3.7,
Uy, Aprog(ep(w); AP pv. By Lemuma 3.5, ulAp v

(2) Without loss of generality let i/ = 1 Suppose u<B;>,v where @(u) = x and (¥} = ». Then
Uy $prog(x); B> v By Lemma 3.8, ugd 4\ By, A% 473 4,54 AFSy v, By axiomy, u,,, &= B false, so x, >
0. By Lemma 3.6, u,, 4V A 254554744555 v, Therefore x = () = oy(p(0) = a,0).
Conversely, suppose @(u) = o{p(¥)) = 6,(x). Then uze,(,(prog{al(x)))ﬁ and u,, {prog(x)>ov. By Lemma
3.6, uzm<AlxlH;BI;A2x2;A3X3;A4X4;A5x5)Tv. By Lemma 3.8, u,, <proglo(x));B>v. By Lemma 3.5,
u{ B> .

(3) Suppose u k=4 R and @(u); = ¢(v)y. Let o) = x @(v) = y. Then Uyoro
Uy Alxl;Azy 2;A3'V 3;A4y 4;A5y 3>, By Lemmas 36 and 3.8,
Uy $PPOB(X): By % B3 B, 4, B, 4,72,4.73, 4,74 A5y 1. By Lemma 3.5,
wl BZXZ;B3’[3;B4X4;BSJ‘5;Azyz;Aij;A 4y4;A5y5>Tv. By Lemma 3.9, v =4 R. This completes the proof of Proposition
RV AN |

<prog(x}>u and

Corollary 3.14: If a contains all primitive programs appearing in a formula p, then p is valid in all grids if and
only if grid-schemeQP DL infers 2

Proof: By definition, grz’d-scbemeQP DL infers p if and only if pis valid in all structures in which grid—schemegf’ DL

is valid. By Lemma 2.1, the latter is true if and only if p is valid in all PDL-collapses of structures in which grid-

PDL

sckemeQ is valid. By Corollary 2.3, this is so if and only if p is valid in all a-cuts of PDL-collapses of

structures in which grid~sckemeQP DL

is valid. By Proposition 3.1, this is so if and only if p is valid in all grids, §
Nouwtion: Let a* abbreviate (4 U 4, U 4 U 4, U 4 U B U B, U B, U B, U B)*

Corollary 3.15: If p is a formula ali of whose atomic programs are in e, then p is valid in all grids if and only if
([a*]grid—scheme)QP DL implies p.

Proof. Left to the reader. 0

4 1, '-completeness of the Deducibility Problem for PDL

Lemma 4.1: Let £ 2V x N* = N be a partial recursive function of one set variable and three integer variables,
There is a PDL program afsuch that, in every grid S, “<a/>s" if and only if {p(M}; = AXg @(u), P(u), p(u)y),
where Xg = {gp(w); | w k=g R}

Proof. An oracle counter machine is a computing device possessing registers capable of holding arbitrary
nonnegative integers and a processor capable of incrementing and decrementing (when the result is nonnegative)
the contents of a specified register, testing whether the contents of a specified register is zero or not, and testing
the contents of the first regiéter for membership in a fixed but arbitrary st called the “oracle”. (The formal
definition is analogous to that of oracle Turing machines [S, 6] and is omitted) A S-counter machine is capable
of computing any partial recursive function of one set variable and three integer variables, where we assume that
the three inputs are initially stored in the first three registers (the extra two registers are for temporary results and
may initially contain arbitrary values) and that the single integer output is stored, at the end, in the first register.
A program a,to compute such a function fcan be written as a regular program using the primitives (where 1 < ¢

246

< 5) A, to increment register | B, to decrement register £ zero! and ™zero]} to test register / for zero, and R?
and —1R? to test whether the contents of register 1 is in the oracle set X¢. In a grid § the standard PDL
semantics interprets apas a program which computes £, i.e. that u(a/> gv if and only if @(v); = AX, @), @{u),
‘P(“);)-]

For the remainder of this paper let ¥ be a fixed 11 f~c0mp¥ete set of natural numbers, so that there is a fixed
recursive function AX, x, » 2z) of one set variable and three integer variables such that ¥ = {x | VX C N 3y
Yz. AX, x, » zy = 0}

Corollary 4.2: There is a PDL formula py such that for all natural numbers m, the formula zero; = <4,"p is
valid in all grids if and only if m € Y.

Proof. By the preceding lemma, for all grids S and states 4, v =g <aj>zeroI if and only if Xy @(u), @)y,
@(u);) = 0. The program B*.4* is capable of arbitrarily altering the contents of the i register. Hence u b= s
[133*;Az’“]<aj>zem1 if and only if Vz € N AXy o), oWy, 2 = 0 Similarly, u k=g
<1)‘2*;A2"‘>[B3"‘;/13"‘}<aj>zerol if and only if 3y € N. Yz € N AXy @), » 2 = 0. Let py be
(Bz*;A2*>[B3*;A3*]<aj>zeml. If u =g zero), then u b= <A4,"™>py if and only if 3y € N. V2 € N. AXg m, 3, 2)
=0. As § ranges over all grids, X ¢ ranges over all sets of nonncgative integers. Therefore, zero; — <A1"'>pY is
valid in all grids if and only if VXY C N. Ay E N. Vz €N AX, m y, 2) = 0, ic. ifandonly if m€ Y. ¥

Proposition 4.3 The scheme infercnce (respectively, implication) problem for PDL is Hll-comp!e[e.

Proof: By Corollaries 3.14 (3.15) and 4.2, there is a PDL formula py such that m € Y if and only if grid-
schemeQP BL (respectively, ([a*}grid—sckeme)g‘p DLy infers (implies) zero; ~» <A,">py. This proves that Hll is
many-one reducible to the scheme inference (implication} problem for PDL. It is not hard to show that cither
problem is in Th%: we omit the proof. |

We now define some sublanguages of PD/. and show that the scheme implication and inference problems are
Hll-complete for some of these sublanguages.

Definition: The formulae of tesi-free propositional dynamic logic are those in which no tests appear.

Theorem 4.4: If L is a subset of PDL which contains fesi-free-PDL, then the scheme inference (respectively,
implication) problem for L is IIll-complete.

Proof: The tests of p,, are of the form zerol, izerol, R?, and R1. Choose new atomic programs C, . . ., (.
Let gy be the result of substituting € for zero), ..., C; for RYin py. Let free-scheme be grid-scheme A
A<y @ = [CID) A zero) <> {Cptrue AL A TR e LCpptrue). We leave it to the reader to show

that the problem of deciding, for a given m, whether or not ﬁee—sckemegl’ (respectively, ({a*}ﬁee—scheme)QL)
infers (implies) zero, — <Alm)qY is Hll-complete. I

Definition: The set of programs, T1, and the set of formulae, @, of deterministic propositional dynamic logic
(DPDL) are defined inductively as follows.

1 () M, C T, and 6, A € I,

247

() If g b€ Hyand p € @, then (ab), (if p then a else b),
(while p do a) € Tl

(H & C @,
@ ¥ p g€ &, then 7p, pkq € O,
() If a € Il, and p € &, then <p € @,

Definition: The formulae of atomic-test-DPDL arc those formulae of DPDL in which the constructions if p then a
else b and while p do a appear only when p is an atomic proposition.

Theorem 4.5; If L is a subset of PDL which contains atomic-test-DPDL, then the scheme inference problem for L
is Hll-complete.

Proof. First, note that a, of Lemma 4.1 can casily be written as a program in IT . Second, note that for all
programs a and formulae p, <a*>p is cquivalent to <while =3p do a>true. Hence, there is a formula ry in 11,
which is equivalent to py = df<82*;A2*>[Bj*; 3*}<aﬁzerol. Finally, note that cvery conjunct of grid-scheme is in
11, except for zero-axiom = df<Bl*;Bz*;B3*:34*;Bs*>zero. There is a formula in IT; which is equivalent to zero-
axiom in all structures; let det-scheme be grid-scheme with zero-axiom replaced by this formula. Let the non-
atomic tests of det-scheme and ry be rl?, e, rn?. A maximal occurrence of a test r} in a formula ¢ is an
occurrence which is not itself contained in an occurrence of another test rj? occurring in g. Choose new atomic
propositions 73, . . ., Ty Let new-scheme and sy be the result of substituting, for 1 < i < & 77 for cach
maximal occurrence of 7 in det-scheme and ry, and for 1 < i < k, let ¢, be the result of substituting, for j # 4
Tj? for each maximal occurrence of rj? in r. Let equiv-scheme be new-scheme N\ (/\1_<_ i<k T, «> 1) We leave it
to the reader to show that the problem of deciding, for a given m, whether or not eqaiv-schemegl‘ infers <4,">sy
is Hll-complete. [|

5 Conclusions_and Open Problems

Because of its many decidable properties, PDL appears to be a reasonably tractable extension of propositional
logic. However, we have revealed a dramatic contrast between PDL and ordinary propositional logic in the case
of the scheme deducibility problem, which is ﬂll-complete for PDL, but decidable for propositional logic.

An important hint at the power of PDL axiom schemes was provided by the observation of Salwicki and Pratt
[2], who showed that the nonnegative integers could be characterized (as cuts of PDL-collapsed structures) by a
finite set of axiom schemes. Hence this set of axiom schemes does not satisfy the finite model property, namely
these schemes have a model but no finite model. Since all the previously known decidability results for PDI,
ultimately rest on the finite model property of PDL formulae, the Salwicki-Pratt observation helps clarify the
contrast between schemes and finite sets of axioms.

However, violation of the finite model property should not be taken as prima facie evidence of undecidability.
For example, Mirkowska has observed that the nonnegative integers can also be uniquely characterized by a
single formula of PDL cxtended with a looping predicate and the converse operation on programs [3].
Nevertheless, Streett has shown that this extension of PDL is still decidable (in fact, elementary recursive) [7].

The degrees of undecidability (or decidability) of several restricted deducibility problems remain open questions.

248

Open Problem: Is the schemc implication problem for DPDL or atomic-test-DPDL ﬂll-complcte?

Open Problem: How hard are the scheme deducibility problems for propositional temporal and modal logics?

Acknowledgement: We arc grateful to A. Salwicki for pointing out the possibility of characterizing the integers by
PDL axiom schemes, and for scveral uscful discussions about these results. David Harel is partially responsible
for the proof of Theorem 4.4.

References

1. Fischer, M. J. and R. E. Ladner, "Propositional Dynamic Logic of Regular Programs”, JCSS, 78, 194-211,
1979,

2. Mirkowska, G., "Complete Axiomatization of Algorithmic Properties of Program Schemes with Bounded
Nondeterministic Interpretations”, Proceedings of the 12th ACM Symposium on Theory of Computing, 14-21,
1980,

3. Mirkowska, G., personal communication, Warsaw, July, 1980.

4, Prag, V. R, "Models of Program Logics”, JCOSS, 20, 231-254, 1980.

S. Rogers, H., Theory of Recursive Functions and Effective Computability, McGraw-Hill Book Company, 1967.
6. Shoenficld, J. R., Mathematical Logic, Addison-Wesley Publishing Company, 1967

7. Streett, R. S., "Propositional Dynamic Logic of Looping and Converse”, Proceedings of the 13th ACM
Symposium on Theory of Computing, 1981

*This research was supported in part by the National Science Foundation, grant nos. MCS 7719754, MCS
8010707, and MCS 7910261, and by a grant to the MIT Laboratory for Computer Science by the IBM
Corporation.

