
The Deducibility Problem in Propositional Dynamic Logic* 

Albert R. Meyer and Robert S. Streett 

Laboratory for Computer Science 

Massachusetts Institute of Technology 

Cambridge, Massachusetts USA 

Grazyna Mirkowska 

Institute of Mathematics 

Warsaw University 

Warsaw, Poland 

Abstract: The problem of whether an arbitrary formula of Propositional Dynamic Logic (PDL) is deducible from 
a fixed axiom scheme of PDL is fill-complete. This contrasts with the decidability of the problem when the 
axiom scheme is replaced by any single PDL formula. 

1 Introduction 

Propositional Dynamic Logic (t'DL) [1] is an extension of propositional logic in which "before-aftcr" assertions 

about the behavior of regular program schemes can be made directly. Propositional calculus and versions of 

propositional modal logic, propositional temporal logic, and Propositional Algorithmic Logic [2] are all 

embeddable in PDL, but PDL nevertheless has a validity problem decidable in (deterministic) exponential time 

[41. 

In this paper we consider the deducibitiLv problem for PDL, namely the problem of when a formula p follows 

from a set F of formulae. The problem comes in two versions: 

(1) p is implied by F if and only if A F  ~ p is valid. 

(2) p can be inferred from F if and only if p is valid in all structures for which /kF is valid. 

Note that if p is implied by F then it can be inferred from F, but the converse does not hold in general. 

For a finite set F, the question whether p is implied or inferred from F reduces to whether a formula of PDL is 

valid and so is decidable. However, axiomatizations of logical languages such as the propositional calculus or 

PDL are often given in terms of axiom schemes, namely, formulae whose variables may be replaced by arbitrary 

formulae. Thus, a single axiom scheme actually represents the infinite set of all formulae which are substitution 

instances of the scheme, Our main result is that 

the problem of whether an arbitrary PDL formula p is deducible from a single fixed axiom scheme is of 

extremely high degree of undecidability, namely FllLcomplele. 

This result appears unexpected for at least two reasons. First, the easily recognizable infinite set of substitution 

instances of a single scheme seems initially to provide little more power than a single formula. For example, the 

problem of whether a single PDL scheme is a sound axiom, i.e., whether all its substitution instances are valid, is 

equivalent to the question of whether the scheme itself regarded as a formula is valid. Hence it is dccidable 

whether a scheme is sound. 

Second, many familiar logical languages satisfy the compactness property, namely, that if p is deducible from F, 
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then in fact p is deducible from a finite subset of F. It follows directly from compactness that the deducibility 

problem from F is reeursively enumerabte relative to F and the set of valid fommlae of the language. Since the 

set F obtained from a single axiom scheme and the set of valid formulae of PDL are each decidable, compactness 

of PDL would imply that the deducibility problem was recursively enumerable, whereas illLcompleteness in fact 

implies that the deducibility problem for PDL is not even in the arithmetic hierarchy. This provides a dramatic 

illustration of the familiar fact that PDL is not compact. 

The idea of our proof is based on an observation of Salwicki and Pratt [2] that with a finite set of axiom schemes 

one can essentially define the integers up to isomorphism. This idea is extended below to define structures 

isomorphic to the five dimensional nonnegative integer grid with coordinatewise successor and predecessor 

functions and an arbitrary monadic predicate, Program schemes interpreted over these grids can compute 

arbitrary recursive functions of integer and monadic predicate variables. The validity of formulae asserting 

termination of program schemes corresponds to the validity of arithmetic formulae asserting the existence of roots 

of such recnrsive functions. Validity of such arithmetic folTnulae with predicate variables is well known to be a 

ll lLcomplete problem. 

In the next section we review the syntax and semantics of PDL and give formal definitions of the implication and 

inference problems from axiom schemes, In Section 3 we define the structures called grids and show that they 

are precisely characterized by a single axiom scheme. This easily yields the main result in Section 4 that the 

deducibility problems are I-Ill-complete for PDL schemes. The argument is then sharpened to show that l l l l -  

completeness of the inference problem holds even for restricted versions of PDL, namely, test-free PDL and 

deterministic PDL with atomic tests. Similarly, the implication problem is flxLcomplete for test-free PDL. 

Section 5 lists some open problems and related results. 

2 P r o p o s i t i o n a l  D y n a m i c  Log ic  

We are given a set of atomic programs 1] o and a set of atomic propositions q~0" Capital letters A, B, C , . ,  o from 

the beginning of the alphabet will be used to denote elements of H o, and capital letters P, Q, R . . . .  from the 

middle of the alphabet will be used to denote elements of q~0" 

Definition: The set of programs, H, and the set of formulae, q~, of propositional dynamic logic (PDL) are defined 

inductiveb' as follows (note the use of letters a, b, c, . . . to denote elements of H and p, q, r , . . .  to denote 

elements of ~):  

H: (t)  I10 C 11 and 0 £ II 

(2) If  a, b E II then a;b, aUb, a* £ 17 

(3) If  p E q~ then p? E I'I 

¢:  (1) • o C_ 
(2) If  p, q £ • then "-np, pAq E • 

(3) If  a E I I  and p E • then <a>p E dp 

Definition: A PDL structure is a triple S = <U, ~ s ,  Os>  where 
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(1) U is a non-empty set, the universe of states, 

(2) I= S is a satisfiability relation on the atomic propositions, i.e, a predicate 

on U x 1I 0. 

(3) <:'S maps each atomic program A to a binary relation <A> S on states, 

i,e., <A> S C U x U. 

Definition: For any structure S, the relation 1=: S and map <>s can be extended to arbitrary fomtulae and 

programs as follows: 

(1) u I= S ~ p  iff not u ~ s  P' 

(2) u ~ s  pAq iff u I= S p and u I= S q. 

(3) u ~ s  <a>p iff 3v. u<a~'sV & v ~ s  P" 
(4) u<O>sv for no u, v. 

(5) u<a;b>sv iff 3w. u<a>sw and w<b>sv. 
(6) u<aOb>sv iff u<a>sv or u~b~,sV. 
(7) u<a*)'sV iff u<a>s*V, where <a>s* is the reflexive transitive closure of  <a> S. 
(8) u<p?)'sV iff u = v and u I== s p. 

The standard semantics for PDL given above fix the meaning of  the program 0 as the empty program. If a and 

b are two programs, then a;b is the program in which a is followed by b. The program aUb pcnnits the 

nondeterministic choice of either a or b. The program a* permits a nondeterministic choice of some number 

(possibly zero) of repetitions of  a. I f p  is a formula, then p? is a test or guard program which acts as the identity 

program if p is true and acts as the empty program 0 otherwise. 

Notation: If F is a set of formulae, then we write u I= S F if and only if u I= S p for every p £ F. 

Definition: I f p  is a formula and S = <U, I= S, Os>  is a structure, then p is valid in S if and only if u ~ S  P for 

all u £ U. If F is a set of formulae, then F is valid in S if and only if every formula in F is valid in S. We say 

that F implies p if and only if for all structures S and states u, if u I= S F then u I= S p. We say that F infers q if 

and only if q is valid in every stJ'ucture in which F is valid. 

Remark: I f  F implies p then F infers p, but the converse does not hold in general. 

Definition: If p and q are formulae and Q is a primitive proposition, then pQq is the formula obtained by 

substituting q ,~:multaneously for every occurrence of  Q in p. If L is a set of  formulae, then pQL is the set of  

formulae obtainable by substituting an arbitrary formula of L for Q in p, i,e., pQZ = {pQq [ q £ L}. 

Definition: The scheme implication problem for a set of formulae L is to determine, for given formulae p and q 

and primitive proposition Q, whether p(2 L implies q. The scheme #ference problem for L is to determine whether 

&2 L infers q. 

It is technically convenient, given a structure, to identify or collapse states which are indistinguishable by 

formulae. 

Definilion: If S = <U, I= S, '¢>s > is a structure and L is a set of formulae, then the L.collapse of S is the 

structure T = <II, I=1~ <~'1>, where the elements of V are equivalence classes of U modulo L, where u is 
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equivalent to v modulo L if and only if u and v satisfy exactly the same formulae of L For atomic propositions 

P and-equivalence classes [u] E V, we define the satisfaction relation I= T by the condition [u] ~ T  P iff :Iv E [u]. 

v ~ S  P" For atomic,programs/t and equivalence classes [u], [v]E V, we define the map '~:'T by the condition 

[ul<A>~[,,I iff 3w E [ul. ] z  E [vl. w<A>sa 

Lemma 2.1: If T is the PDL-collapse of  a structure S, then for all PDL formulae p and states u of  S, u I= s p iff 

[ul ~ r P .  

Proof. Straightforward, by structural induction on formulae, I 

It will be convenient to consider structures in which there is a designated initial state u, and the entire universe is 

accessible from u by programs using a given set of  primitives. 

Definition: If S = <U, 1= S, <}s ), u 0 £ U, and a is a set of  atomic programs, then the a-cut of  S from u 0 is the 

structure T = <V, I=I~ O12,, where V = {u E U t u0'~(A 1 O " • • LJ An)*>sU for some A 1 . . . . .  A, £ a}. We 

let u I= T P iff u 1~ S P and we let u<A>TV iff A E a and u<A>SV. 

Lemma 2.2: Suppose that T is the a-cut from the state u of some structure S and that a contains all the atomic 

programs appearing in some PDL formula p. Then for all states v of T, v I= T p if and only if v ~ s  P' 

Proof. Straightforward, by structural induction on formulae. I 

Corollary 2.3: If a contains all the atomic programs appearing in a PDL formula p, then for all structures S, p is 

valid in S if and only if p is valid in all the a-cuts o f  S. 

Proof. Follows immediately from Lemma 2.2. ] 

3 Characterizing the Integer Grid by an Axiom Scheme 

Notation: We define the following familiar and convenient abbreviations: 

[a]q ='dr "n<a)~q 
h =dr 0* 

pVq =dr ("ap)A(~q)  

P-*q =dr ( ~ p ) V q  

P'~'q =af Or"~q)A(q~p) 
true "=df P ~ P  
false =dr "-true 

a° =dr h 
an =dr a; • • • ;a (n a's, for n > 0) 

if  p then a else b =dr (p?;a)U('-,/~?;b) 

while p do a --dr (p?;a)*;--,fl 

For the remainder of this paper let a = {A t, A 2, .4 3, A 4, A 5, B 1, B 2, B3, B4, Bs} be a fixed set of atomic 
programs and let Q and R be fixed atomic propositions. For 1 < i < 5, let zero~ be an abbreviation for [B.Jfalse 
and let zero be an abbreviation for A I < i <  5 zeros. 
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Notation: N 5 is the set of quintuples of natural numbers. We will use variables x, y , . . .  to denote vectors <x 1, 

x2, x3, x4, xs>, <Yl' Y2, Yy Y4' Y5 >, " " " • The five successor functions a 1, cr 2, ~3' a4' a5 are defined by y = a~(x) 
if and only if Yi = x i+l  and yj = xj for j ~: i. 

A canonical grid is a structure S = <N 5, ~ s '  <~'s > such that A i acts like a~, B t acts like the inverse of a i (so that 

zero i =df[Bilfa[se is true only at vectors whose i th coordinate is zero), and R depends only on the first coordinate 

of vectors. A grid is any structure isomorphic to a canonical grid; we give a formal definition below. 

Definition: A grid is a structure S = <U, I:= S, <>s ) with a bijection ¢p: U ~ N 5 such that: 

(1) For all u, v C U, u<Ai>s v if and only if ¢p(v) = o~(ep(u)). 

(2) For all u, v £ U, u<Bi}sV if and only if ¢p(u) = ~r(~(v)). 

(3) For all u C U, if u ~ S  R then v - ~ s  R for all v such that of(v) 1 = q)(U)l. 

Definition: Let grid-scheme be an abbreviation for the conjunction of the following furmulae: 

zero-axiom: <BI*;B2*;B3*;B4*;Bs*)zero 
identity-axiom: A I < i <  5 <AiXBi>true 

AB-axiom: /k l<i f : j<5 (<Ai)<Bj>true ~ <Bj)<A~lrue) 

BB-axiom: A I < Q <  5 (<Bi)<B~true *-~ (lllMBi)true) 

R-axiom: R ~ A 2 < i <  5 ([Ai]R /k [B/]R)) 

determinism-scheme: A 1 < i _ 5  (<Ai)Q ~ [Ai]Q) 

identity-scheme: A t _ i  5 (Q ~ [Ai;Bi]Q) 

AA-scheme: A1 /,j< 5 (<Ai;Aj>Q -~ [Aj;Ai]Q) 

AB-scheme: AI<i:g:j<5 (<Ai;Bj)Q ~ [Bj;Ai]Q) 

BB-scheme: A I < i j _  5 (<Bi;Bj)Q ~ [Bj;Bi]Q) 

The proof of the following proposition is straightforward, but quite lengthy; the reader may wish to proceed 

directly to section 4. 

Proposition 3.1: The grids are precisely (up to isomorphism) the a-cuts of PDL-coIiapses of structures S in which 

grid-schemeQ t"DL is valid. 

Proof. It is straightforward to verify that grid-schemeQ pDL is valid in every grid and that every grid is (isomorphic 

to) the a-cut of the PDL-collapse of a grid. 

For the converse, suppose that T = <V, I:= T, <}7> is the a-cut from an equivalence class [Ustart] of the PDL- 
collapse of a structure S = <U, 1= S, <~'s > in which grid-schemeQ I'DL is valid. We shall show that T is a grid. 

Lemmas 3.2 through 3.13 will establish the existence of a bijection ¢p: V ~ 516 which makes T a grid. 

Lemma 3.2: There is an equivalence class [Uzero] ( V such that [Uze,.o] ~ T  zero. 

Proof" Since grid-schemea PDL is valid in S, zero-axiom is valid in S, hence Ustar t ~::=S <BI*;B2*;B3*;B4*;Bs *)zer°" 

Hence there is a state ttzero E U such that "start'"l ~' I~ *'B2 ,*'B3 ,*'B4*'B, 5 *~'Suzero and Uzero ~ S zero. Then [Uzero ] I=: T 
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zero, since T is the a-cut from [Uslart] of the PDL-collapse of S. i 

Definition: An AB-program is any program of  the form al; . ~ . ;are where each aj is h or an A i or a B i. An A- 

program is simply an A&prorgram without any B;s. A canonical A-program is an A-program of  the form 

AtXl;A2X2;A3X3;A4X4;A5 x5 for some xl, x2, x3, x 4, x 5 > 0. We abbreviate AlXl;A2X2;A3X3;A4X4;A5 x5 by prog(x). 

Lemma 3.3: If [u] £ V and a is an A-program, then there is at least one [v] such that [u]<a}l[v ]. 

Proof" We first prove this lemma for the case where a is A~ for some i. By identity-axiom, u ~ S  <A)(B)true, so 

that there is at least one v E U such that u,(Ai)'sV. Thcn [u]<Aikl[v ], since T is an a-cut of the PDL-collapse of  

5'. The lemma can now be proved for arbitrary A-programs by an easy induction on the length of programs. | 

Lemma 3.4: If [u] E V and a is an A-program, then there is at most one [v] such that [ul,(a;,i[v ]. 

Proof: We first prove this temma for the case where a is A/for some i. Suppose that [u]{Ai;'7[v ] and [u]{Ai}.l[w ]. 
Then u(di}sV and u<Ai}sW. Let q be any formula such that v I:= S q, so that u ~ s  <Ai)q" By determinism- 
scheme, u 1= s (A~>q ~ [AJq. Since u I= s <A~q, u ~ S  [Ai]q' so w 1= S q. Hence v and w agree, in S, on all 

formulae, so [v] = [w]. Therefore there is at most one [v] such that [u]~Ai~,.l[V ]. T h e / e m m a  can now be proved 

for arbitrary A-programs by an easy induction on the length of programs. | 

Lemma 3.5: If a is an A-program and b is any program and [u]<a}I[v ] and [u]<a;b}7[w 1, then [v]<b~,7[w ]. 

Proof." If [u]<a;N'l[w ] then there is a [z] such that [u]<a}i[z ] and [z]<b>i[w ]. By Lonma 3.4, it follows from 

[u]'~a)'1[v ] and [u]'~a~'l[z ] that [v] = [z]. So [v]~b~'~w]. II 

Definition: Given two programs a and b, we say that a and b are T-equivalent if and only if <a} T = <b~" r i.e., 

for all states u and v, Ma}rv iff u'~b}TV. 

Lemma 3.6: The program di;B i is T-equivalent to the identity program ~.. 

Proof: By identity-axiom, u ~ S  <A)<Bi)true" Hence there is a state w £ U such that u<Ai}sW and w ~ s  

<Bi>true. Hence there is a v such that w~Bi}sV and u<di;Bi}sV. Now let v be any state in U such that 

u<Ai;Bi}sV. Let q be any formula such that u ~ S  q' By identity-scheme, u ~ s  q ~ [Ai;Bi]q" Since u ~ s  q, u 

~ s  [Ai;Bi]q, so v I=: S q. Hence u and v agree, in S, on all formulae, so [u] = Iv]. Therefore, di;B I is the 

identity program in the PDL-collapse of S, hence also in T. I 

Lemma 3.7: If a and b are A-programs and a is a peIxnutation of  b, then a and b are T-equivalent. 

Proof." By an induction on the length of  a and b, using AA-scheme. | 

Lemma 3.8: If a is an AB-program not containing A s, then a;B i and Bi;a are T-equivalent. 

Proof: By an induction on the length of a, using AB-axiom, BB-axiom, AB-scheme, and BB-scheme. | 

Lemma 3.9: If a is an AB program not containing A t or B 1 and if [u]<a~'l[v], then [u] I= T R if and only if 

Ptvof" By an induction on the length of  a, using R-axiom. I 
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Definition: An AB program a is nonnegative if and only if every prefix of a contains at least as many A/s as Bi's, 
for 1 < i < 5 .  

Lemma 3.10: Every nonnegative AB-program is T-equivalent to an A-program. ! 

Proof'. If a is a nonnegative AB-program, then a is T-equivalent to b;Ai;c;Bi;d where b and c are (possibly trivial) 

A-programs, c contains no Ai's, and dis  an AB-program. By Lemma 3.8, a is T-equivalent to b;Ai;Bi;c;d, and by 

Lemma 3.6, a is T-equivalent to b;c;d, which is nonnegative and contains one less B i than a. The lemma follows 

b y  an easy induction on the rtumber of  Bjs in a; | 

Lemma 3.11: If the AB-program a is not nonnegative, then there is no [u] such that [Uzero]'(a~'l[u]. 

Proof." If a is not nonnegative, then a is equivalent to b;Bi;c where b and c are AB-programs such that b contains 

no A/s. By Lemma 3.8, a is T-equivalent to Bi;b;c. Since Uzero [==S zero, there can be no u such that 

Uzero<Bi~'sU, hence no u such that Uzero<a)'SU, since a is T-equivalent to Bi;b;c. Hence there is no [u] such that 

[Uzero]<a~ i[u]. | 

For the rest of the proof of Proposition 3.1, we will use u, v, w , . . .  to denote elements of  V, since we no longer 

need to make use of  the fact that elements of V are equivalence classes of  elements of  U. Let Uzero be that 

element of  V such that Uzero ~ T  zero. 

Lemma 3.12: For all u £ V, there is at most one x such that Uzero'~prog(x)~TU. 

Proof." Suppose x ~ y, but Uzero<prog(x)~'Ttu and Uzero<prog(y)~'lu. Without loss of generality we can suppose that 
¢ 

X 
xl > YI" pr°g(y);B1 xl is not nonnegative, so by Lemma 3.11, there is no v such that U zero'(prog(y);B1 U'TV, hence 

no v such that u<BlXl~T v. Therefore u ~1" [B1 xllfalse" pr°g(x);B1 xl is, by Lemmas 3.8 and 3.6, T-equivalent to 

prog(z) for some z. By Lemma 3.3, there is a w such that Uzero'~prog(z))'TW and hence such that 
X X 

u<B 1 l>TW. u UzerJ, prog(x);B 1 l>TW. By Lemma 3.5, Hence ~ T  <B1 xl>true" a contradiction. So x ~ y is not 

possible. I 

We now prove that the relation between a state u E V and a vector x defined by Uzero<prog(x)>TU is the desired 

bijection. 

Lemma 3.13: There is a bijection (p: V ~ N 5 such that rp(u) = x if and only if Uzero<prog(x)~'TU. 

Proof." Let u E V. Since T is an a-cut, there is an AB-program a such that Uzero<a~TU. By Lemma 3.11, a must 

he nonnegative. By Lemma 3.10, a is T-equivalent to some A-program b, which, by Lemma 3.7, is T-equivalent 

to prog(x) for some x. By Lemma 3.12, x is unique, so we may define ~o(u) = x. To show that rp is an 

injection, suppose that ~,(u) = ~p(v) = x. By the definition of  ~p, Uzerogprog(x)~'TU and Uzero'~prog(x)~'TV. By 

Lemma 3.4, u = v. To show that ~ is a surjection, let x £ N 5. By Lemma 3.3, there is a u such that 

Uzero<prog(x)LlU, so ~(u) = x. II 

Finally, we will show that ~ makes T a grid, by proving that the three defining properties of grids hold of T and 

~p. 

(1) Suppose u<Ai)'TV. Then Uzero~prog{rp(u)))'lu and uzero<prog(cp(u));Ai)'T v. By Lemma 3.7, 
Uzero'(prog(trl(rp(U)))>TV. By Lemma 3.13, cg(v) = a,(~p(u)). 
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Conversely, suppose ~0(v) = ol(~p(u) ). Then Uzero<pro~,(rp(u))}.iu and Uzero<progOrz(e~(u)))}TV. By Lemma 3.L 
Uzero<prog(~(u));Ai}TV. By Lemma 3.5, u<Ai>TV. 

(2) Without toss of generality let i = 1. Suppose ugBt}TV where ~p(u) = x and ~(v) = y. Then 

Uzero<prog(x);B1}TV. By Lemma 3.8, uo<AtXl;B1;A2X2;A3X3;A4X4;AsXS>T v. By axiom3 Uzero ~ [BlbraIse, so x 1 > 

0. By Lemma 3.6, Uzero<AlXI'I;A2X2;A3X3;AaX4;AsXS}T v. therefore x = c0(u) = trl(cP(v)) = a l ~  )- 

Conversely, suppose cp(u) = ol0p(v)) = al(x). ]hen Uzero<prog(al(x))>~ and Uzero<prog(x)>TV. By Lemma 

3.6, Uzero<AlXl+I;B1;A2X2;A3X3;A4x4;AsXS>T v. By Lemma 3.8, Uzero<prog(~rl(x));B1}TV. By Lemma 3.5, 
U~Bl>TV. 

(3) Suppose u != T R and rp(u) 1 = ¢p(v) 1. Let cp(u) = x, rp(v) = y. 

Uzem<AlXl;A~2;A3Y3;A/4;A/5>Tv. By Lemmas 

Uzero < prog(x); B2x2; B3X3; B 4X4; BsXS: A/2; A3Y3; A /4: AsYS } T v . By 

u<B2X2;B3X3;B4X4;BsXS;A2Y2:A3Y3;A4Y4;A5Y5} T v. By Lenlma 3.9, v ~ T R. 
3.1. I 

Then Uzero<prog(x)~lu and 

3.6 and 3.8, 

Lemma 3.5, 

This completes the proof of Proposition 

Corollary 3.14: If ~ contains all primitive programs appearing in a fotTnula p, then p is valid in all grids if and 

only if grid-schemef2eDL infers p. 

Proof. By definition, grid-schemeQ PDL infers p }f and only i f p  is valid in all structures in which grid-schemeQ eDL 
is valid. By Lemma ZI, the latter is true if and only i fp  is valid in all PDL-cotlapscs of structures in which grid- 
schemeQ PDL is valid. By Corollary Z3, this is so if and only if p is valid in all a-cuts of PDL-collapses of 

structures in which grid-schemeQ PDL is valid. By Proposition 3.L this is so if and only if p is valid in all grids. II 

Notation: Let a* abbreviate (A 1 U A 2 U A 3 U A 4 U A 5 U B 1 U B 2 U B 3 U B 4 U BS)*. 

Corollary 3.15: l f p  is a formula all of whose atomic programs are in a, then p is valid in all grids if and only if 

([a*]grid-scheme)ofDL implies p. 

Proof. Left to the reader, I 

4 r t l l - comple t enes s  ' Qf the  Deduc ib i l i t y  P r o b l e m  for  P D L  

Lemma 4.1: Let f. 2 N x N 3 ~ N be a partial rccursive function of one set variable and three integer variables. 

There is a PDL program aysuch that, in every grid S, u<a~sv if and only if [w(v)] x = ~ x ~  ~p(u) v ~(u) z, cp(u)3 ), 
where X S = {~p(W)l t w I~ S R}. 

Proof. An oracle counter m~chine is a computing device possessing registers capable of holding arbitrary 

nonnegative integers and a processor capable of  incrementing and decrementing (when the result is nonnegative) 

the contents of a specified register, testing whether the contents of a specified register is zero or not, and testing 

the contents of  the first register for membership in a fixed but arbitrary set called the "oracle". 011e formal 

definition is analogous to that of oracle Turing machines [5, 6] and is omitted.) A 5-counter machine is capable 

of  computing any partial recursive function of one set variable and three integer variables, where we assume that 

the three inputs are initially stored in the first three registers (the extra two registers are for temporary results and 

may initially contain arbitrary values) and that the single integer output is stored, at the end, in the first register. 

A program alto compute such a function f c a n  be written as a regular program using the primitives (where 1 < i 
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5): A i to increment register i, B i to decrement register i, zerot? and ~zeroi? to test register i for zero, and R? 

and "~R? to test whether the contents of register 1 is in the oracle set X S. In a grid S the standard PDL 

semantics interprets af as a program which computes f i.e. that u<a~sv if and only if ~(v) 1 = j IX s, ~p(u) 1, cp(u) 2, 

,p(u)3). I 

For the remainder of this paper let Y be a fixed ri1LcompIete set of natural numbers, so that there is a fixed 

recursive function fiX, x, 3; z) of one set variable and three integer variables such that Y = {x I VX C N. 3y. 

V z. J(X, x, y, z) = 0}. 

Corollary 4.2: There is a PDL formula pl~ such that for all natural numbers m, the formula zero 1 -~ <Alm>pg is 

valid in all grids if and only if m E K 

Proof. By the preceding lemma, for all grids S and states u, u ~ s  (aj)zerol if and only ifJ(J(  2 g~(u) 1, cp(u) 2, 

ep(u)3) = 0. The program Bi*;Ai* is capable of arbitrarily altering the contents of the i th register. Hence u ~ s  

[B3*;A3*]<a~zero 1 if and only if Vz C N. f i x  S, q)(u) t, ~o(u)l, z) = 0. Similarly, u 1:= S 

<B2*;A2*>[B3*;A3*]<a~zero 1 if and only if 3y C N. Vz £ N, f iX s, cp(u)t, 3,, z) = 0. Let p~. be 

<B2*;Al*>[B3*;A3*]<as~zero 1. If u ~ S zerol' then u ~ S <Alm>py if and only if 3y £ N. Vz £ N. fl~(2 m, y, z) 

=0. As S ranges over all grids, X s ranges over all sets of nonncgative integers. Therefore, zero 1 ~ <Alm>pr is 

valid in all grids if and only i f g X C  N. qy C IV. Vz C N. fiX, re, y, z) = 0, i.e. i f a n d o n l y  i f m  E Y. II 

Proposition 4.3: The scheme inference (respectively, implication) problem for PDL is HiLcomplete. 

Proof. By Corollaries 3.14 (3.15) and 4.L there is a PDL fommla py such that m C Y if and only if grid- 

schemeQ PDL (respectively, ([a*]grid-scheme)Q PBL) infers (implies) zero 1 ~ <Alrn>pF This proves that I]11 is 

many-one reducible to the scheme inference (implication) problem for PDL. It is not hard to show that either 

problem is in Hil; we omit the proof. ! 

We now define some sublanguages of PDL and show that the scheme implication and inference problems are 

rill-complete for some of these sublanguages. 

Definition: The fbrmulae of test-free propositional dynamic logic are those in which no tests appear. 

Theorem 4.4: If L is a subset of PDL which contains test-free-PDL, then the scheme inference (respectively, 

implication) problem for L is Hll-complete. 

Proof. The tests o f p y  are of the form zeroi?. ~zeroi?, R?, and -nR?. Choose new atomic programs C 1 . . . . .  C12. 

Let qze be the result of  substituting C t for zerol? . . . . .  C12 for ~ R ?  in py. Let freescheme be grid-scheme A 
( A l < i < 1 2  Q ~ [Ct]Q) A zero 1 *--> <Ci)lme A . . . A -nR ~ <C12>true). We leave it to the reader to show 

that t--he problem of deciding, for a given m, whether or not free-sehemeQ n (respectively, ([a*~reescheme):) 

infers (implies) zero 1 ~ <Alra>q r is Hll-complete. I 

Definition: The set of programs, H a, and the set of formulae, ~a, of detemtinistic propositional dynamic logic 

(DPDL) are defined inductively as follows. 

rld: (1) FI 0 C ri d and O, X £ IId 
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(2) If a, b E Fl d and p C ~a' then (a;b), ( i f p  then a else b), 

(whi[e p do a) C IId 

ca: (1) '~0 c_ ~a 

(2) If p, q E Cd "hen ~p, p&q £ Cd 

(3) If a C IId and p C Cd then <a)p C Cd 

Definition: The fo~vnulae of atomic-test-DPDL are those formulae of DPDL in which the constructions ifp then a 

else b and while p do a appear only when p is an atomic proposition. 

Theorem 4.5: If L is a subset of PDL which contains atomic-test-DPDL, then the scheme inference problem for L 

is lqll-complete. 

Proof. First, note that af of Lemma 4.1 can easily bc written as a program ill H d, Second, note that for all 

programs a and formulae p, <a*>p is equivalent to <while ~p  do a>tme. Hence, there is a formula ry in H a 

which is equivalent to py =df<B2*;A2*>[B3*;A3*]<aj)zeml. Finally, note that every conjunct of grid-scheme is in 

I1 d except for zero-axiom =df<Bl*;B2*;B3*:B4*;Bs*>zero. There is a formula in H a which is equivalent to zero- 
axiom in all structures; let det-scheme be grid-scheme with zero-axiom replaced by this formula. Let the non- 

atomic tests of det-scheme and ry be rl?, . . . , rn?. A maximal occurrence of a test ri? in a formula q is an 

occurrence which is not itself contained in an occurrence of another test rj? occurring in q. Choose new atomic 

propositions T 1, . . . .  T k. Let new-scheme and Sy be the result of substituting, for 1 < i < k, T~ for each 

maximal occurrence of r/? in det-scheme and rg, and for 1 < i < k, let t i be the result of  substituting, for j ~: i, 

Tj? for each maximal occurrence of ~2 in r r Let equiv-scheme be new-scheme A (AI<i<_ k T / ~  ti). We leave it 

to the reader to show that the problem of deciding, for a given m, whether or not equiv-schemeQ L infers (Alm>Sy 

is 1-ItLcomplete. II 

5 Conclusions and Open Problems 

Because of its many decidable properties, PDL appears to be a reasonably tractable extension of propositional 

logic. However, we have revealed a dramatic contrast between PDL and ordinary propositional logic in the case 

of the scheme deducibility problem, which is H1Lcomplete for PDL, hut decidable for propositional logic. 

An important hint at the power of PDL axiom schemes was provided by the observation of Salwicki and Pratt 

[2], who showed that the nonnegative integers could be characterized (as cuts of PDL-collapsed structures) by a 

finite set of  axiom schemes. Hence this set of  axiom schemes does not satisfy the finite model property, namely 

these schemes have a model but no finite model. Since all the previously known decidability results for PDL 

ultimately rest on the finite model property of  PDL formulae, the Salwicki-Pratt observation helps clarify the 

contrast between schemes and finite sets of axioms. 

However, violation of the finite model property should not be taken as prima facie evidence of undecidability. 

For example, Mirkowska has observed that the nonnegative integers can also be uniquely characterized by a 

single formula of PDL extended with a looping predicate and the converse operation on programs [3]. 

Nevertheless, Streett has shown that this extension of  PDL is still decidable (in fact, elementary recursive) [7]. 

The degrees of undecidability (or decidability) of several restricted deducibility problems remain open questions. 
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Open l'roblem: Is the scheme implication problem for DPDL or atomic-tesl-DPDL FItLcomplete? 

Open Problem: How hard are the scheme deducibility problems for propositional temporal and modal logics? 

Acknowledgement: We are grateful to A, Salwicki for pointing out the possibility of characterizing the integers by 

PDL axiom schemes, and for several useful discussions about these rcsults. David Harel is partially responsible 

for the proof of Theorem 4.4. 
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