
The Reachability of Computer Programs

Reginaldo I Silva Filhoa, Ricardo L Azevedo da Rochab,∗, Camila Leite
Silvaa, Ricardo H Gracini Guiraldellic

aDepartment of Information Systems, Campus de Ponta Porã
Universidade Federal de Mato Grosso do Sul - UFMS

Rua Itibiré Vieira, s/n, BR 463, Km 4.5, 79907-414, Ponta Porã, MS, Brazil
bDepartment of Computer Engineering, Escola Politécnica, Universidade de São Paulo

Av. Luciano Gualberto, travessa 3, 380, 05508-900, Sao Paulo, SP, Brazil
cDepartment of Computer Science, Università degli Studi di Verona

Strada Le Grazie, 15, 37134, Verona, Italy

Abstract

Would it be possible to explain the emergence of new computational ideas

using the computation itself? Would it be feasible to describe the discovery

process of new algorithmic solutions using only mathematics? This study

is the first effort to analyze the nature of such inquiry from the viewpoint

of effort to find a new algorithmic solution to a given problem. We define

program reachability as a probability function whose argument is a form of

the energetic cost (algorithmic entropy) of the problem.

Keywords: Shannon Entropy, Program Reachability, Thermodynamics,

Kolmogorov Complexity.

∗Corresponding author
Email addresses: reginaldo.uspoli@gmail.com (Reginaldo I Silva Filho),

rlarocha@usp.br (Ricardo L Azevedo da Rocha), camila.leite002@gmail.com
(Camila Leite Silva), ricardo.guiraldelli@univr.it (Ricardo H Gracini
Guiraldelli)

Preprint submitted to Elsevier November 8, 2016

1. Introduction

“The Golden Egg was not as exciting as the goose that laid it.” This

phrase, uttered by Ray J. Solomonoff [28], is the motto of this paper. We want

to investigate the possibility of explaining the discovery of computational

ideas using only physics, and computation itself. The starting point of this

investigation lies in the question:

“How difficult it is for a programmer discover a new algorithmic solution

for a problem?”

It is necessary to explain in what sense the words “algorithmic solution”

and “problem” we are using here. To clarify the meaning of these terms, we

will take the Fibonacci’s series as an example. The first ten elements of it

are completely well-described by the string:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34

The program that prints the string above is an algorithmic solution for

the problem. The question “how to generate the string that represents the

first ten terms of the Fibonacci series?” represents this latter problem. Sim-

plifying the problem; we considered the string itself as the actual problem.

Thus, find an algorithmic solution is to discover a program for (to print) a

problem (string).

The aim of this paper is to analyze the phenomenon of new programs

emergence (discovery by a programmer) in the physical world. We follow

the train of thought contained in [12, 26], which argues that computers are

physical objects, computations are physical processes, and they exist in the

real-world. The fact that such appearance occurs in our material universe and

2

not in an entirely symbolic space, disassociated from any physical meaning,

is our primary postulate. We will show that the logical consequence of this

physicalist argument is that the probability of a programmer to develop a

new program obeys an underlying entropy principle, informational at first,

but also thermodynamics; thus leading us to the concept of algorithmic

reachability.

As initial motivation, we concentrate on minimum length program prob-

ability. The objective is to associate the (incomputable) minimum length

program concept with our reachability investigation. We will show that the

emergence of minimum programs (determined by the Kolmogorov complex-

ity) is a function of the energetic intrinsic cost to achieve it.

This paper is structured as follows. Section 2 describes the notations

and theoretical preliminaries; Section 3 presents the motivation of this work;

Section 4 presents the programs reachability, and Section 5 describes its

formulation. The Section 6 discusses the results presented in the previous

section and the last section presents the conclusion.

2. Background

In this section, we give several definitions and notations required for the

adequate discussion of the present article. We assume that the reader is

familiar with basics concepts of physics, calculus, and probability.

2.1. General definitions

Definition 1 (Lambert W function). Let R be the sets of all real num-

bers. For x ∈ R, the Lambert W function [25] is defined as the inverse of

3

the function f(x) = xex and solves :

W (x)eW (x) = x. (1)

W (x) has the following behavior:

• For x > 0, W (x) is a real positive function.

• For −1/e < x < 0, W is a multivalued application with two negative

real-valued branches: W0(x) and W−1(x) [11].

• For x = −1/e, W (x) = −1.

• For x = 0, W (x) = 0.

• For x < −1/e, W (x) is not defined in R.

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

-4

-3

-2

-1

0

1

2

Figure 1: Graph of the Lambert W Function

Definition 2 (Binary string and its length). Let the binary alphabet

B = {0, 1} and N be the sets of all natural numbers. A string ρ is any finite

4

sequence of juxtaposed elements of the alphabet B and its length l(ρ) = n is

the number n ∈ N of the elements composing ρ.

Definition 3 (Reflexive and Transitive Closure over the alphabet).

Let Bk = {s : l(s) = k} be the set of all strings with length k. The reflexive

and transitive closure over the alphabet B is defined as B∗ =
⋃∞
k=0B

k.

In a similar way, B+ =
⋃∞
k=1B

k defined as the set of all nonempty

strings over B

Definition 4 (Prefix String and Prefix free set). Let the strings r ∈ B∗.

In this context, a string v is a prefix of r (v ⊆ r) if there exists u ∈ B∗ such

that r = vu. A set F ⊆ B+ is called a prefix-free set when, ∀(v, r ∈ F),

v ⊆ r is only true for v = r, .

2.2. Kolmogorov Complexity

Definition 5 (Solution for ρ). Given a universal Turing machine U and

an input (program) in the form of a binary string ς, if ς generates the string

ρ as output, so that:

U(ς) = ρ

then, we say that ς is a solution for the problem ρ.

Definition 6 (Chaitin machine and minimal program). If a universal

Turing machine U is defined for ς but not defined for any prefix v of ς, then

this machine is called a Chaitin machine [29] and denoted by U. Any ς

accepted by U is referred to as a minimal program.

5

Definition 7 (ρ-solution set). The set Λρ = {ς1, ς2, . . . , ςn} of all minimal

programs that are solutions of the problem ρ is called a ρ-solution set. The

set Λρ is assumed to be finite.

Definition 8 (Kolmogorov complexity). [13, p. 110] Given a problem ρ

with Λρ, the Kolmogorov complexity of ρ is defined as:

K(ρ) = min{l(ςi) : U(ςi) = ρ} (2)

Thus, the Kolmogorov complexity of ρ is the ρ-solution set element with the

lowest length. ςkol now denotes this program.

2.3. Boltzmann and Shannon entropy

Definition 9 (Shannon’s Entropy). [27, p. 18] For a finite sample space

Ω, let X be a random variable taking values in Ω with probability distribution

p(x) for all x ∈ X. The Shannon entropy is defined as:

H = −
∑
x

p(x) log2 p(x) (3)

Definition 10 (Boltzmann’s Entropy). For the special case of a discrete

state space with L the counting measure defined as L(Γx) = d(Γx), that is,

the number of elements in the set Γx,

SB(x) = (k ln 2) log d(Γx) (4)

is the familiar form of the Boltzmann entropy [24].

The Gibbs entropy is defined as:

SG = k ln Γ (5)

6

Where Γ, which is the number of microstates corresponding to a given macrostate

of a thermodynamic system [17, p. 457], and k = 1.38065× 10−23J/K is the

Boltzmann constant.

2.3.1. Relationship between Gibb’s and Shannon’s Entropy

.

The relation between the Expression 3 and 5 is expressed as follow [18, 1]:

SB = Hk ln 2 (6)

Following [24, section 8.6], the previous approaches (Gibbs, or Boltz-

mann’s entropy and Shannon’s entropy concepts) “treated entropy as a prob-

abilistic notion; in particular, each microstate of a system has entropy equal

to 0. However, it is desirable to find a concept of entropy that assigns a

nonzero entropy to each microstate of the system, as a measure of its indi-

vidual disorder.” The last sentence means that Kolmogorov Complexity may

be used to define the concept of algorithmic entropy.

Considering that any measure of an individual microstate of a particular

system has nonzero entropy and supposing that this system in equilibrium

is described by the encoding x of the approximated macroscopic parameters,

one can estimate the entropy of the macrostate encapsulating the microstate.

The algorithmic entropy of the macrostate of a system is given by K(x)+Hx,

where K(x) is the prefix complexity of x, and Hx = SB(x)
(k ln 2)

. Here SB(x) is the

Boltzmann entropy of the system constrained by macroscopic parameters x,

and k is Boltzmann’s constant. The physical version of algorithmic entropy

is defined as SA(x) = (k ln 2)(K(x) +Hx).

Gibbs entropy is essentially the average algorithmic entropy. Let Hµ(x) =

7

K(x) + O(1). Thus, the algorithmic entropy Hµ is a generalization of the

prefix complexity K [24]. The connection between Gibbs entropy and Hµ is

given by the equation below [24]:

SA(w) = (k ln 2)Hµ(w), SAn(w) = (k ln 2)Hn
µ (w) (7)

2.4. Probability and physical work

Definition 11 (Conditional Probability). [19, p. 22] Let Ω = (e1, e2, . . . , em)

be a countable set of disjoint an exhaustive events, where each ei is associated

with a probability P (ei) such that
∑

i P (ei) = 1 and P (ei) 6= 0. Given y as

any event with P (y) > 0, for all i:

P (ei|y) =
P (y|ei)P (ei)

P (y)
(8)

The relationship physical work and Shannon entropy variation.

In a thermodynamic process [30, p. 375] with a transition taking a system

from an initial state 1 to some final state 2, the work ∆W extracted in the

course of the transition can be expressed regarding thermodynamic entropy

as follow [33]:

∆W = T∆E (9)

Where T is the temperature in Kelvin scale on Equation 9 which is valid

for a process with a transition sufficiently slowly to be thermodynamically

reversible and with the internal energy of the system considered as constant.

The variation ∆E is the difference between the entropy of the final and initial

state[6]:

∆E = S2 − S1 (10)

8

By Expression 6, we have:

∆W = kT ln 2∆H (11)

3. Motivation

In computer science, new programs are often designed. Some of them

solve problems for which there was already a solution found. Some algorithms

exist for centuries, some others are very recent, turning them part of the

solution cluster for a determined class of computable problems. Others, on

the other hand, provide more efficient solutions from the asymptotic analysis

point of view, that is, on the amount of time or memory needed to get an

output.

Regardless of the asymptotic complexity class, each computable problem

has an algorithmic solution whose length in bits, prefix-free, is minimum, and

that value is the Kolmogorov complexity equation 2 itself. The concept

of Kolmogorov complexity relates to the principle of Occam’s Razor [24,

p. 260]. We can interpret such principle as a method for selecting solutions,

where the simplest case, among other explanations for the phenomenon un-

der study, has to be chosen. Such principle presupposes the existence of a

simplicity criterion in nature and Kolmogorov complexity appears as an ob-

jective measure to treat such simplicity. Unfortunately, for all string ρ, it is

not possible to calculate K(ρ), due to its incomputability.

However, nothing prevents us from investigating the occurrence prob-

ability of ςkol, i.e. the probability that a programmer develops exactly the

minimum program, the element of ρ-solution set Λρ with the smallest length

9

in bits, whose length value is precisely the Kolmogorov Complexity K(ρ).

3.1. Postulated Effects

In the introduction, we said that our main postulate is the fact that

the discovery of new programs happens in the real-world. Although it is a

postulate, we need to analyze most strictly the influence of this statement in

our investigation of the minimum length program occurrence probability.

The expression of such probability involves the ρ-solution set Λρ and the

derivation of Bayes’ conditional rule (Expression 8):

P (ςkol) =
P (ςkol|ρ) · P (ρ)

P (ρ|ςkol)
(12)

The postulated effects of the Expression 12 are given below:

Postulated Effect 1. : the term P (ρ|ςkol) is the occurrence probability

of ρ given the occurrence of ςkol. However it is necessary to put this term

in a complete context: P (ρ|ςkol) is the probability of a Chaitin machine U,

whose input is ςkol, generates the string ρ as output. The program ςkol is the

minimum length program that generates ρ. It generates ρ and no other. It

does not run forever, because ςkol is an element of Λρ and not an arbitrary

program. Thus, for U(ςkol) = ρ, P (ρ|ςkol) = 1. In this manner, Expression

12 takes the form :

P (ςkol) = P (ςkol|ρ) · P (ρ) (13)

Postulated Effect 2. : the term P (ςkol|ρ) is the occurrence probability of

ςkol given the occurrence of ρ. At the same time, U(ςi) = ρ (for every ςi ∈

10

Λρ), which means that p(ςkol|ρ) represents the probability that the Chaitin

machine U have generated the string ρ from the occurrence of the input ςkol.

The construction (or reification) of a program comes from after a problem

attestation by a witness. The fact that problem ρ can be described as a binary

string is a consequence of it being noticed and somehow recorded by a group

of witnesses that agree among themselves about its existence, and also how

to represent it. Therefore, we can only talk about the situations where there

is absolute certainty of the occurrence of ρ, that is, the situation where this

occurrence is a prerequisite, where we have:

P (ςkol|ρ) = P (ςkol) (14)

P (ςkol|¬ρ) = 0 (15)

P (ρ) = 1 (16)

Thus, we have that the occurrence probability of ςkol is always an a pos-

teriori probability, conditioned by the problem of generating ρ as an output

of U by ςkol input.

4. The reachability of a program

However, what does to calculate the probability of a programmer to de-

velop the program ςkol mean, in a semantic sense? Programs are not balls in

a ballot box. They are not cards of a deck, dice faces or α-particles shocking

against a photographic plate. The Kolmogorov’s complexity study about ρ

randomness nature is independent of the way ςkol can be obtained [23]. A

raffle, a toss of a coin, or occurrence frequency calculus does not give the

11

presence or absence of ςkol, and it neither appears spontaneously in the input

tape of the Chaitin machine U.

The objective of a program is to solve a problem. There is a pragmatical

necessity that the developed program generates a string ρ. Thus, the exis-

tence of ςkol already implies (by its definition) the occurrence of a nontrivial

phenomenon of compression that led to its description from ρ. To ςkol be

the input of U there exist a sequence of events involved in the conception of

the program and its constructive generation. This situation shows to us that

the probability of a programmer developing a new algorithmic solution to a

given problem correlates with the necessity notion, in an Aristotelian sense.

Necessary is that which can not be otherwise [15, p. 468]. The necessity

is what makes it impossible for something to be other than it is [16, p. 120].

Necessity is the reverse of the impossibility. To illustrate the concept of im-

possibility, take the following illustration: a man can return to his childhood

home and remodel it so that it looks, as much as possible, like what he has

in mind, but he still cannot go back in the past. Hence, going backward to

relive his past consists in an impossibility.

The path followed by the programmer to find a new algorithmic solution

lies under necessity constraints. In this sense, the Occam’s razor is necessity

principle, as well Shannon’s entropy H is a measure of the average impossi-

bility [2, p. 141]. Thus, there is a necessary way for a programmer to develop

a new program and, at this moment, we need a clear connection between

occurrence probability and necessity concept, to get the fact and showing

how much it is necessary, what needs to happen and cannot be otherwise.

This connection element is the P (ςkol) probability 14. We will not associate

12

its meaning with a raffle phenomenon, but we will see it as a measure of the

program reachability.

5. The program reachability calculus

In this way, we define the program reachability of ςi ∈ Λρ as the quan-

tifiable relative necessity of an input ςi for a Chaitin machine U when ςi

generates ρ as its output. Such relative necessity is represented by P (ςkol).

However, a probability that cannot be expressed has no purpose. Thus, it

is necessary to describe a way to obtain the program reachability expression

regarding necessity or impossibility. The Shannon entropy, defined in 9 will

provide us this way. For this, let us take the random variable X constituted

by the enumeration elements of Λρ. The image space of X is expressed by:

IX = {1, 2, . . . , i, . . . ,m} (17)

For such random variable, with respective probabilities p(1), p(2), . . . , p(m),

we have the Shannon entropy associated, given by the expression 3:

H = −[p(1) log2 p(1) + · · ·+ p(i) log2 p(i) + · · ·+ p(m) log2 p(m)] (18)

Now, let us isolate the sum component concerning to x = i:

H + [p(1) log2 p(1) + · · ·+ p(m) log2 p(m)] = −p(i) log2 p(i) (19)

At this point, it is important to note that the component

13

[p(1) log2 p(1)+· · ·+p(i−1) log2 p(i−1)+p(i+1) log2 p(i+1)+· · ·+p(m) log2 p(m)]

(20)

The right side of equation 19 refers to the entropy of a random variable

X ′, which represents the enumeration of Aρ, without its ith element. The

X ′ space image description may be expressed as:

IX′ = IX − {i} (21)

Such variable also has its own Shannon entropy, and the expression of

this entropy is the component [p(1) log2 p(1) + · · · + p(m) log2 p(m)], which

will call H ′. Thus, replacing the expression 19, we have:

p(i) log2 p(i) = −(H −H ′) (22)

Another way to envision equation 22 is to consider it as describing the

energy fluctuations by means of the difference on the entropy of the function

that describes the program ςi, such that p(i) log2 p(i) = −∆(Hςi).

Equation 22 is non-linear. To determine p(i) is necessary to deal with this

non-linearity. Lambert W function, described in Definition 1, is an important

mathematical tool which allows the analytic solutions for a broad range of

mathematical problems [3], including the solution of equation x loga x = b

(for x, a, b ∈ R), which is [10]:

x loga x = b⇐⇒ x = eW (a ln b) (23)

14

Moreover, this is exactly the form of Equation 22. To simplify the anal-

ysis, we will denominate the expression (H − H ′), the entropy variation,

as H (ςi). Notwithstanding, p(i) represents the occurrence probability of the

event ςi. Thus, with proper algebraic manipulation, for all ςi ∈ Λρ (including

the program ςkol) we have:

P (ςi) = expW (−H (ςi) ln 2) (24)

As the entropy is positive, the domain of the function will be negative,

which will yield a negative number for the W function. Hence taking the

W−1 branch we’ll rewrite it as:

P (ςi) = exp−‖W−1(−H (ςi) ln 2)‖ (25)

Nevertheless we have an equation for P (ςi) that maps a semi-measure

for the probability distribution over the finite event set, and it yields values

ranging from 0 < P ≤ 1. Moreover, we can normalize it to become an

actual measure for the probability stating: P (ςi) = exp−‖W−1(−H (ςi) ln 2)‖∑
i P (ςi)

. In

this case we actually have a probability distribution measure for the events,

and
∑

i P (ςi) ≤ 1.

6. Results discussion

6.1. Bounds on reachability function domain

We need to analyze the behavior of P (ςi), impose no restrictions other

than those typical of the analyzed function. Because the characteristics of

Lambert W function described in 1, the following domain restrictions for

function P (ςi) are needed:

15

−1

e
≤ −H (ςi) ln 2 ≤ 0 (26)

which implies:

0 ≤H (ςi) ≤
1

e ln 2
(27)

Since 1
e ln 2
≈ 0.5307, we may rewrite Inequality 27 as

0 ≤H (ςi) / 0.5307

i
)

0 0.1 0.2 0.3 0.4 0.5 0.6
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Graph of the function P (ςi). In x-axis, we have the values of H (ςi)

Consider equations (22) and (25) regarding a learning process for the

algorithm reachability. We can apply equation (25) to reach a better program

16

in a similar way the gradient descent algorithm is applied to machine learning

algorithms. There is an algorithmic entropy associated with the process of

learning [24, 7, 21].

One important feature of this approach on the Principle of Least Cogni-

tive Action [21] is that gradient descent algorithm can be derived from the

principle.

In this sense, we envision the exponential of the Lambert W function as

a matching loss for the learning algorithm [20], but it is not convex, besides

being continuous, for the domain [5, Proposition 5].

Since Lambert W function is not convex, but continuous for the do-

main x < 0; our proposal for the probability semi-measure is P (ςi) =

exp−‖W−1(−H (ςi) ln 2)‖, which is bounded by the negative exponential of the

Lambert’s W function. Proposition 7 from [5] deals with it:

Lemma 1. exp−W (x) is convex. (This is proposition 7 from [5])

Proof. See proof of proposition 7 on [5]

Hence we have:

Theorem 1. Let ` be a loss function as ` = exp−W (x), then ` is a matching

loss.

Proof. From Property (P1) of [20] we have this strong claim: `(ŷ, y) : R ×

R → [0,∞) is continuous and bounded. And from Theorem 5.1 of [20] if a

loss function follows the property then it is a matching loss.

To prove the theorem we make:

y = f(z) = exp−W (z)

17

z = f−1(y) = W−1(1

exp−y−1) = W−1(1
ln(y)

)

`(ŷ, y) = `(f(ẑ), f(z)) = expW (ẑ)− expW (z)−f ′(z)(ẑ − z)

which is convex in ẑ by Lemma 1 (Proposition 7 of [5]). Hence, by Theorem

5.1 of [20], ` is a matching loss function.

With these equations, our approach yields a theoretically sound method

for the reachability calculus for a program. Nonetheless, Lambert W function

is not entirely computable, for instance, W (1) = Ω, Chaitin’s incomputable

constant.

The simpler algorithm to reach a program builds all programs of the same

size and checks them all; afterward, switches them to an immediately smaller

size. On a subsequent step, the algorithm produces the smallest program

only when there is no transformation left to reduce the size unless there is

an informed hypotheses search-space. This process produces a meaningful

result that is: the smallest program is not necessarily the most accessible

one.

Consider now that one method that defines an algorithm which is guided

by the least energy cost given by Equation 25, applying a gradient descent.

From this method we may argue its connection with the well-known Levin-

Search algorithm [4, 24] since we also provide a search method (reachability),

but for a program.

6.2. The Demiurge

The connection between the concepts of probability and necessity does

not eliminate the question of spontaneous generation of programs: after all,

18

who is responsible for creating new programs, since their creation does not

originate from throwing dices or tossing coins? Thus, beyond the concept of

reachability, we need a constructive cause, a responsible agent, a being that

we call Demiurge . Consider this being as a version of Maxwell’s demon.

We can also understand the following digression from the arguments and

measures exposed in [14].

The philosopher Plato (in his dialog Timaeus) [32, p. 120] described the

Demiurge (which in Greek means “craftsman”) as a world-generation entity,

sometimes represented as endowed with only limited abilities. The Demiurge

shapes the cosmos via imposing pre-existing form on matter, according to

some ideal and perfect model [8]. However, although it has such capacity,

the Demiurge is not omnipotent, omnipresent and omniscient.

The use of Demiurge in this paper has no intention of inserting any super-

natural element in this discussion. The use of this term allows us to establish

a cause for the generation of programs without the need of discussing the na-

ture of this cause (for instance, whether the Demiurge is a machine or not),

only its functions. In principle, the Demiurge is a physical system.

Thus, our Demiurge (represented by symbol D) has the ability of “to

bring” new algorithmic solutions for a problem ρ. However, the Demiurge

action as the “discoverer” of a new solution for the problem ρ involves an

effort to carry out its function. There must be an energy consumption; which

means that it needs to realize work to discover a new program ςi.

Such fact has its effects on Expression 24, which states that the reacha-

bility of a program is a function of the entropy variation (represented by ∆H

in Expression 11 and, since Expression 24, represented by H (ςi)). However,

19

we know (by Definitions 9 and 11) that is possible to describe an entropy

variation in function of extracted work.

H (ςi) =
∆W

kT ln 2
(28)

Similarly to what was made with the definition of H (ςi), we will describe

the variation of the work in terms of ςi as follows:

∆W = E (ςi) (29)

As the Demiurge D is the responsible for this work and the variation

of entropy is associated to the program reachability ςi as well, the entropy

variation of Expression 24 we may substitute it by the right side of Expression

28.This results in:

P (ςi|D) = eW (−E (ςi)/kT) (30)

The new version presented above makes the connection between the pro-

gram reachability and the process of discovering new programs by the Demi-

urge D. Through this; we can observe that each solution to ρ is associated

with a determined quantity of energy expended to generate it. For the Ex-

pression 30, the options for the energy values have their boundaries well

determined (by Expression 27). Inside these limits, depending on the quan-

tity of work available (and the amount of work realized by the Demiurge),

we may have a bigger or smaller probability of reaching a new solution.

20

7. Conclusion

As stated in the introduction of this paper our goal was to set an abstrac-

tion for algorithmic discovery bounded by its reachability and its size. The

idea behind the proposal is to view different programs simply as modified

versions of the same basic program, this way any transformation between

programs of the same size will not demand more energy to occur. However,

to generate programs in a smaller size, it is necessary to apply work of the or-

der kT ln 2 as stated on expression 28. This result agrees with the Landauer’s

principle [14].

The simpler algorithm is then to build all programs of the same size

and check them all, afterward switch them to an immediately smaller size.

The next step of the algorithm produces the smallest program only when

there is no transformation left to reduce the size unless there is an informed

hypotheses search-space. This result means that generically speaking the

smallest program not necessarily is the most accessible one.

At this point the Demiurge cuts the knot by applying the work difference

to the problem as an entropy result, thus producing an informed search on

a non-informed hypotheses search-space. In fact using a gradient descent by

Equation 25. We can envision this idea as applying a Kolmogorov complexity

measure, using the Lambert W function, at each transformation step of a

program, seeking a path around the lower complexity programs.

7.1. Future Investigation

The presented results of this work span a series of connections to some

areas that deserve further investigation. There are associations between tem-

21

perature and entropy of a system in [9, Section 2.1.11] through the thermo-

dynamics’s concept of microstates, and there is a study of these thermody-

namics’s concepts to algorithmic context [7], but it is yet to be connected to

this work.

Still, in the line of states, the correlation between the current work and

the minimum amount of states of a Turing machine must also be drawn.

Such study is of interest not only because of the Kolmogorov complexity, one

of the central arguments of this research, but also to define the theoretical

lower-bound of Turing-machine states for any given program specification;

this kind of information is useful, for instance, to study certain properties of

specific algorithms such as the Busy Beaver [31].

Last but not the least, study ways to explore the Demiurge’s informed

search to develop programs with smaller sizes for a given output; although

ambitious, it conceptually intersects with the works of Levin [4, 24], and on

minimum message length [9] and minimum description length [22].

References

[1] Atlan H.; Fessard A. L’organisation biologique et la théorie de

l’information, volume 1351. Hermann Paris, (1972).

[2] Ben-Naim A. A Farewell to Entropy: Statistical Thermodynamics Based

on Information. World Scientific, (2008).

[3] Brito P.; Fabiao F.; Staubyn A. Euler, Lambert, and the Lambert W-

function today. Mathematical Scientist, vol. 33, (2008).

22

[4] Levin L. A. Universal sequential search problems. Problemy Peredachi

Informatsii, 9(3):115–116, 1973.

[5] Borwein J. M. ; Lindstrom S. B. Meetings with Lambert W and other

special functions in Optimization and Analysis. Pure and Applied Func-

tional Analysis, 1(3):361–396, 2016.

[6] Lavenda B. A new perspective on thermodynamics. Springer New York,

(2010).

[7] Mike Baez, John ; Stay. Algorithmic thermodynamics. Computabil-

ity of the Physical, Mathematical Structures in Computer Science,

22:(2012),771–787, October (2010).

[8] O’Brien C. The Demiurge in Ancient Thought: Secondary Gods and

Divine Mediators. Cambridge University Press, (2015).

[9] Wallace C. Statistical and Inductive Inference by Minimum Message

Length. Springer-Verlag, (2005).

[10] Corless R.; Gonnet G.; Hare D.; Jeffrey D. Lambert’s W function in

maple. The Maple Technical Newsletter, vol. 9:12–22, (1993).

[11] Corless R.; Gonnet G.; Hare D.; Jeffrey D.; Knuth D. On the Lambert W

function. Advances in Computational mathematics, 5:329–359, (1996).

[12] Deutsch D. Quantum theory, the church-turing principle and the uni-

versal quantum computer. Proceedings of the Royal Society of London.

Series A, Mathematical and Physical Sciences, 400:97–117, (1985).

23

[13] Downey R.; Hirschfeldt D. Algorithmic Randomness and Complexity.

Springer Science & Business Media, (2010).

[14] Bérut A.; Arakelyan A.; Petrosyan A.; Ciliberto S.; Dillenschneider

R.; Lutz E. Experimental verification of Landauer’s principle linking

information and thermodynamics. Nature, 483:187–189, (2012).

[15] Halper E. One and Many in Aristotle’s Metaphysics, Books Alpha-Delta.

Parmenides Pub., (2008).

[16] Aristotle; Lawson-Tancred H. The Metaphysics. Classics Series. Penguin

Books Limited, (1998).

[17] Kondepudi D.; Prigogine I. Modern thermodynamics: from heat engines

to dissipative structures. John Wiley & Sons, (2014).

[18] Cover T.; Thomas J. Elements of information theory. John Wiley &

Sons, (2012).

[19] Stark H.; Woods J. Probability and Random Processes with Applications

to Signal Processing. Prentice Hall, (2002).

[20] Auer P. ; Herbster M. ; Warmuth M. K. et al. Exponentially many local

minima for single neurons. Advances in Neural Information Processing

Systems, (8):316 – 322, 1995.

[21] Betti A. ; Gori M. The principle of least cognitive action. Theoretical

Computer Science, 633:83 – 99, 2016. Biologically Inspired Processes in

Neural Computation.

24

[22] Grünwald P. The minimum description length principle. MIT press,

(2007).

[23] Grunwald P.; Vitányi P. Shannon information and Kolmogorov com-

plexity. ArXiv Preprint cs/0410002, (2004).

[24] Li M.; Vitányi P. An introduction to Kolmogorov complexity and its

applications. Springer Science & Business Media, (2013).

[25] Borwein J. M. ; Corless R. Emerging tools for experimental mathemat-

ics. The American mathematical monthly, vol. 106:pp. 889–909, (1999).

[26] Deutsch D.; Ekert A.; Lupacchini R. Machines, logic and quantum

physics. Bulletin of Symbolic Logic, vol. 6(03):pp. 265–283, (2000).

[27] Gray R. Entropy and Information. Springer, (1990).

[28] Solomonoff R. Algorithmic probability–its discovery–its properties and

application to strong AI. Randomness Through Computation: Some

Answers, More Questions, pages 149–157, (2011).

[29] Solovay R. A version of Omega for which ZFC cannot predict a single

bit. Springer, (2000).

[30] Sonntag R.; Borgnakke C.; Van Wylen G.; Van Wyk S. Fundamentals

of thermodynamics, volume 6. Wiley New York, (1998).

[31] Yedidia A.; Aaronson S. A relatively small Turing machine whose be-

havior is independent of set theory. CoRR, (2016).

[32] Ross W. Plato’s theory of ideas. Clarendon Press, (1951).

25

[33] Zurek W. Algorithmic randomness and physical entropy. Physical Re-

view A, 40:4731, (1989).

26

