
The Complexity of Decision Problems
in Automata Theory and Logic

by
Larry J. Stockmeyer

ABSTRACT

The inherent computational complexity of a va r i e ty of decision
problems i n mathematical logic and the theory of automata i s analyzed
i n terms of Turing machine time and space and i n terms of the complexity
of Boolean networks.

The problem of deciding whether a s t a r- f r ee expression (a var ia t ion
of the regular expressions of Kleene used t o describe languages accepted
by f i n i t e automata) defines the empty s e t is shown t o require time and
space exceeding any composition of . funct ions exponential i n the length
of expressions. I n par t i cu la r , t h i s decision problem is not elementary-
recurs ive i n the sense of Kalmar.

The emptiness problem can be,reduced e f f i c i e n t l y t o decision
problems fo r t r u th o r s a t i s f i a b i l i t y of sentences i n the f i r s t order
monadic theory of (N,<), the f i r s t order theory of l i nea r orders, and
the f i r s t order theory of two successors and pref ix , among others. It
follows tha t the decision problems for these theor ies a r e a l so not
elementary-recursive.

The number of Boolean operations and hence the s i z e of log ica l
c i r c u i t s required t o decide t ru th i n several famil iar logical theor ies
of sentences only a few hundred characters long is shown to exceed the
number of protons required t o f i l l the known universe.

The methods of proof a r e analogous t o the ar i thmet izat ions and
r educ ib i l i t y arguments of recurs ive function theory.

Keywords: computational complexity, decision procedure
s ta r- f ree , Turing machine

AM. (MOS) Subject Class i f ica t ion Scheme (1970)

primary 68A20, 02G05
secondary 68A40, 94820

Table of Contents

1. Introduction

2, The Model of Computation

2.1 The Basic Model

2.2 A Technically Useful Model

3. Efficient Reduqibility

3,1 Definitions

3.2 Applications to Complexity Bounds

3.3 Other Applications

4. Regular-Like Expressions

4.1 Expressions With Squaring

4.2 Expressions With Complementation

4.3 (deleted)

4.4 Expressions Over a One-Letter Alphabet

5. Nonelementary Logical Theories

6. Complexity of Finite Problems

6.1 Second Order Theory of Successor

6.2 First Order Integer Arithmetic

7. Conclusion

Bibliography

Appendix I, Notation

Appendix 11. Some Properties of logspace

L i s t o f Figures

Figure 4.1: E2 "matches" a word w

Figure 6.1: P, B , and d

Figure 6.2: I l lustrat ing the proof .

of Leuuna 6.5.2 (i) and (i i) 19 6

Figure 6.3: I and J "code" a c i rcu i t 19 8

Figure 6.4: The c i rcu i t Co

Chapter 1. Introduction

One major goal of computational complexity i s t o achieve the

a b i l i t y t o characterize precisely the amount of computational resource

needed to solve given computational problems o r c lasses of problems.

Two important kinds of computational resource a re time and space,

respectively the number of basic computational s teps and the amount

of memory used i n solving the problem. The complexity of a par t icu lar

problem can be characterized by upper and lower bounds on computatihal

resources suf f ic ien t to solve the problem.

Upper bounds are usually established by exhibiting a specif ic

algorithm which solves the problem and whose time and/or space

complexity can be bounded from above. Much progress has been made

on t h i s posi t ive s ide of the complexity question. Many clever and

e f f i c i en t algorithms have been devised for performing a wide variety

of computational tasks (cf. D.E. Knuth, --- The A r t of Computer Programming).

However the progress made on the negative s ide of the question has

been l e s s s t r iking. In order t o es tab l i sh a lower bound or. the complexity

of a par t iculzr problem, one must show tha t some mfnimum amount of

resource (time or space) i s always required no matter which of the

in f in i t e ly many possible algorithms i s used or how cleverly one wri tes

the algorithm to solve the problem. It is t h i s l a t t e r s ide of the

complexity question which we address i n th i spape r . Although lower

bound re su i t s a re negative i n nature, they have the value that they

enable one to cease lookicg for e f f i c i en t a lgor i thm when none exis t .

Also, the exhibi t ion of spec i f i c problems or c l a s se s of problems

which a re provably d i f f i c u l t may give i n s igh t i n t o t he "reasons" for

t h e i r d i f f i c u l t y , and these "reasons" and proofs of d i f f i c u l t y may

provide c lues fo r reformulating t he problems so t ha t i n revised form

they become t ractable .

Let us now sketch a b i t more precise ly what we mean by "computational

i-
problem" and "algorithm" . Many computational problems can be viewed

a s problems of function evaluation. I n pa r t i cu l a r , consider functions

mapping s t r i ngs of symbols t o s t r i n g s of symbols. As a concept of

"algorithm" we could choose any one of a va r i e ty of universal computer

models. For def ini teness we choose the well-known Turing machine

model.

A Turing machine M computes the function f i f M, when s t a r t e d

with any s t r i n g x on i t s tape, eventually h a l t s with f (x) on i t s tape.

The time ~,nd space used by M on input x a r e respect ively the number of

basic s teps executed and the number of tape squares v i s i t e d by M before

ha l t ing when s t a r t e d on input x. I n general , the time and space w i l l

vary depending on t he pa r t i cu l a r input x. One s impl i f i ca t ion which i s

commonly made is t o measure t he time and space so l e ly as a function of

the length of the input s t r i ng .

Note t ha t some functions can be complex fo r a reason which sheds

l i t t l e l i g h t on the question of inherent d i f f i c u l t y ; namely, a function

can be computed no f a s t e r than t he time required t o p r i n t t he value of

' ~ o m ~ l e t e def in i t ions appear i n the main text .

the function. For example, consider the function which, for any

posi t ive integer m, maps the binary representation of m to the binary

representation of 2m. Any algorithm which computes t h i s function

uses a t l eas t 2" s teps on many inputs of length n for a l l n, these

s teps being required to p r in t the answer consisting of a one followed

by as many as 2n-l zeroes.

We avoid these cases by considering only functions whose value

is always 0 or 1. The problem of computing such a 0-1 valued function

f can be viewed as the problem of recognizing the s e t of inputs which

f maps t o 1. For example, we may wish to recognize the s e t of a l l

s t r ings which code t rue sentences of some decidab'le logical theory.

When such a "set recognition" or "decision" problem i s shown to

n require time 2 on inputs of length n for i n f i n i t e l y many n, we conclude

that there is something inherently complex about the s e t i t s e l f ; that is,

n 2 steps must be spent i n deciding what t o answer, not i n printing

the answer.

Some information i s known concerning the complexity of s e t

recognition problems. There a re known to be s e t s whose recognition

problems are recursive yet "arbi t rar i ly" complex [Rab60]. Let T(n)

and S(n) be any recursive functions from posi t ive integers t o posi t ive

integers. Well-known diagonalization arguments imply the existence

of a recursive s e t
%ard such that any algorithm recognizing Ah

ard

requires a t l eas t time T(n) and space S(n) on a l l inputs of length n

for a l l suf f ic ien t ly large n.

It i s also possible to construct a r b i t r a r i l y d i f f i c u l t recursive

problems by considering "bounded" versions of undecidable problems.

The "bound" implies decidabili ty, but the problem can be made arbi-

t r a r i l y complex by making the "bound" a r b i t r a r i l y large. For example,

Blum [B166] and Jeroslow [Jer72] consider a bounded version of the

hal t ing problem, and Ehrenfeucht [Ehr72] considers a bounded version of

the f i r s t order theory of integer arithmetic.

One might animadvert tha t s e t s such as
%ard

above are not "natural"

i n the sense tha t they were expl ic i t ly constructed t o be d i f f i c u l t t o

recognize. Informally, by "natural" computational problem we mean one

which has arisen previously i n the mathematical l i t e r a t u r e (excluding

complexity theory); for example, decision problems drawn from logic

and automata theory, word problems i n algebra, etc.

Under even t h i s weak view of "natural", there a re few examples

of natural recursive s e t recognition problems whose time complexity has

been shown to necessarily grow fas t e r than l inear ly i n the length of

the input. Excluding "diagonalization" and "bounded undecidable"

problems, then pr ior to the research described here (and related

work by Meyer [Mey73], Fischer and Rabin [FR74], and Hunt [Hun73b])

we h-ow of no examples of natural recursive s e t recognition problems

whose time complexity had been shown to necessarily grow more than

polynomially or whose space complexity had been shown t o grow more than

l inear ly i n the length of the input.

We now out l ine the remainder of t h i s p a p e r . Chapters 2 and

3 are devoted mainly t o defini t ions of key concepts and descriptions

of the technical machinery to be used i n proving the resul t s of

Chapters 4 and 5. Chapter 2 defines our formal model of "algorithm"

for s e t recognition and function computation. This model i s a s l igh t

variant of the well-known Turing machine. Known facts concerning the

model which are relevant t o the sequel are also stated.

Chapter 3 defines the concept of " ef f ic ient reducibility". This

concept was f i r s t formally defined by Cook [Co7la], though i t s

significance was emphasized e a r l i e r by Meyer and McCreight [MM71].

Speaking informally for the moment, we say tha t a s e t A i s ef f ic ient ly

reducible to a s e t B, wri t ten A S B, i f there i s an e f f i c i en t ly
ef f

computable function f such that any question of the form "Is x i n A?"

has the same answer as the question "Is f(x) i n B?". Instead of

being precise about what is meant by f being "eff icient ly computable",

l e t us for the moment just assume tha t the time and space required to

compute f i s very small compared to the minimum time required to

recognize A or B. Now given an algorithm M which recognizes B, one

can construct an algorithm M' which recognizes A as follows. Given

input x, M' f i r s t computes f(x) and then simulates M on input f(x).

Since x E A i f f f(x) E B, M' recognizes A correctly. Moreover, the

resources used by M' are roughly the same as those used by M because

the resources used i n computing f are negligible. Therefore an upper

bound on the complexity of B implies an upper bound on that of A.

Contrapositively, a lower bound on the complexity of A implies a

lower bound on tha t of B.

I n Chapter 4 , t h i s reducib i l i ty technique i s applied to several

specif ic problems. This chapter deals with problems of recognizing

equivalence of expressions similar to the Kleene regular expressions

of f i n t t e automata theory [cf. Har651. For example, consider regular

*
expressions which may use, as well as the usual operations U, *, and ,

a new unary operation on s e t s of words, ffsquaring'f, defined by

2
S = S.S. Let B denote the s e t of a l l pa i rs of inequivalent such

sq

expressions.

The major technical portion of most applications of the reducib i l i ty

technique involves a proof tha t any one of a large c l a s s of s e t s i s

e f f i c i en t ly reducible to a part icular set of in te res t . We always

choose the large c lass to be the c l a s s of a l l s e t s whose time or

space complexity i s bounded above by some function o r familiar family

of functions such as the polynomial or nxponential functions.

In the case of B t h i s c lass , cal led EXPSPACE, i s the c l a s s of a l l
sq'

s e t s recognizable within space which grows a t most exponentially i n the

length of the input. We show that i f A E EXPSPACE then A ieff Bsq.

Now diagonalization a r g h e n t s imply the existence of a s e t
%ard in

MPSPACE which requires exponential space for recognition by any

algorithm. Thus Anazd geff Bsq and so B a lso requires exponential
srl

space (and hence also requires exponential time).

Similarly we characterize the space complexity of recognizing

equivalence of regular expressions involving only the operations of

*
U, *, and . We also consider other var iants such as expressions with

only U and ., and expressions over a one- letter alphabet.

I f the expressions are allowed t o use the operation of s e t

cckplementation (-), a dras t ic increase i n the complexity of the

equivalence problem resul ts . We show tha t the equivalence problem for

"star-free" expressions [cf. MF711 (using only the operations U, ,
and --) is not elementary-recursive [cf. Pet671; tha t i s , for no constant

k i s i t s time or space complexity bounded above by 2 for a l l

inputs of length n and a l l n.

Chapter 5 gives several corol la r ies about the complexities of

decidable theories of formal logic. The equivalence problem for

s tar- free expressions is e f f i c i en t ly reducible t o the decision problems

for several decidable logical theories; thus these decision problems

are not elementary-recursive. Our main corollary s t a t e s that the f i r s t

order theory of any i n f i n i t e l inear order with a s ingle monadic

predicate is not elementary-recursive. In part icular , we obtain

the ~ e s u l t tha t the weak nonadic second order theory of

successor i s not elementary-recursive kf. ~ e y 7 4 .
For convenience, we are content i n Chapters 4 and 5 to give a lower

bound on the complexity of a part icular s e t by proving tha t the resources

used by any algorithm i n recopiz ing the s e t must exceed the lower bound

on in f in i t e ly many inputs. Section 3.3 points out tha t a given re su l t

can usually be strengthened to s t a t e tha t the lower bound must hold

on some input of length n for a l l but f i n i t e l y many n.

Even so, one might reasonably question the significance of our

r e su l t s and methods on the grounds tha t the " di f f icu l t" inputs might

be so large as t o never occur i n practice. This is indeed an important

issue. Closer examination of our proofs can determine the point a t

which the lower bounds take ef fec t , though we do not i n general

elaborate such r e s u l t s here.

However, i n Chapter 6 we investigate two examples i n de ta i l .
t

Our methods do yield astronomical lower bounds on the complexities of

f i n i t e decision problems about words of only a few hundred characters.

The notion of "algorithm" used here i s Boolean c i r c u i t s similar t o

those studied i n [Win651 and [Sav72]. For two logical theories, the

number of Boolean operations required by a c i r c u i t which recognizes the

t rue sentences only a few hundred characters long i s shown to exceed

the number of protons required t o f i l l the known universe.

In Chapters 4 and 5 we also give upper bounds on the complexities

of recognizing . the par t icular s e t s considered. In most cases, the upper

bound given for a s e t is reasonably close to the proven lower bound.

The verif icat ions of upper bounds involve only standard techniques

from automata theory.

In summary, the main contribution of t h i s paper i s the

demonstration tha t e f f i c i en t reducib i l i ty techniques can be used to

t
The major portion of Chapter 6 can be read independently of

Chapters 2 through 5.

prove non-trivial lower bounds on the time, space, or circuit

complexities of certain natural recursive decision problems. The

main technical contribution lies in the various reducibility

constructions and "arithmetizations" of Turing machines and circuits.

These constructions are of an essentially different character than

those commonly found in recursion theory, due to the added condition

that reducibilities must be efficiently computable.

Chapter 2. The Model of Computation

I n order t o prove t h a t c e r t a i n problems r e q u i r e a c e r t a i n minimum

amount of computational resource no mat ter how one w r i t e s algori thms t o

so lve t h e problems, i t is e s s e n t i a l t o have a f o r m a l . d e f i n i t i o n of a n

a lgor i thm o r computer. There a r e many formulations of the notions of

a lgor i thm which a r e equivalent i n t h e sense t h a t t h e funct ions computable

w i t h i n any of the formulations a r e p rec i se ly t h e r e c u r s i v e funct ions .
We s h a l l choose our model of computer t o be Turing machines [HU69],

p a r t l y because t h i s model i s well-known and has been the s u b j e c t of much

previous i n v e s t i g a t i o n , but more importantly because i t s s i m p l i c i t y w i l l

ease t h e t echn ica l t a s k of showing t h a t t h e model cannot so lve c e r t a i n

problems quickly. It might seem t h a t t h e s i m p l i c i t y o f the model i t s e l f

implies i t s i n e f f i c i e n c y and tha't i t would be more r e a l i s t i c t o choose

a more powerful formulat ion such a s random access r e g i s t e r machines o r

i t e r a t i v e a r rays [Co169]. However Turing machines can s imula te the more

powerful models " e f f i c i e n t l y enough" (i n a sense t o be made p r e c i s e

s h o r t l y) f o r our purposes, so t h a t i f a Turing machine cannot compute

something "quickly" ne i the r w i l l e i t h e r of the more powerful models.

I n f a c t , a l l of t h e r e s u l t s i n t h i s paper giving upper o r lower bounds

on t h e complexit ies of p a r t i c u l a r problems remain t r u e without

modif ica t ion i f t h e Turing machine model i s replaced by e i t h e r of the

more powerful models mentioned above.

2 . 1 The Basic Model.

F i r s t we assume t h e reader i s f a m i l i a r wi th the b a s i c concepts of

set theory and formal language theory. A d i scuss ion of the necessary

concepts can be found i n t h e in t roduc to ry por t ions of most formal

language theory t e x t s , f o r example [HU69], [AU72].

*
I n p a r t i c u l a r , we l e t C denote the s e t of a l l words over C,

+ *
inc luding t h e empty word X; C denotes t h e s e t C - (XI.

101 denotes the l eng th of t h e word w; !XI = 0.

, where k i s a nonnegative i n t e g e r , denotes repeated concatena-

t i o n , t h a t is , Ck = (0 E C* I 1 ~ 1 = k) .

I f o i s a symbol, o
k

denotes t h e word ooo*..o of length k.

Since t h i s n o t a t i o n i s commonly used f o r repeated C a r t e s i a n product,

w e l e t C)(k = C x C X . - X C (k t imes) .

This and o the r no ta t ion i s c o l l e c t e d i n Appendix I.

Our b a s i c model of computation i s inpu t lou tpu t Turing machines

(IOTM1 s) . I O T M 1 s a r e mul t i- tape Turing machines i n which the tapes

which handle the inpu t lou tpu t processes a r e separa ted from t h e tapes

which se rve a s memory fo r t h e computation. Every IOTM c o n s i s t s of a

f i n i t e s t a t e c o n t r o l and k + 2 tapes (where k i s a p o s i t i v e i n t e g e r) :

a n input tape, k work tapes , and a n output tape . S ing le heads scanning

each tape a r e c a l l e d respec t ive ly the inpu t head (2-way, read-only) , t h e

work heads (2-way, r e a d l w r i t e) , and the output head (right-moving,

wri te- only) .
We now g ive p r e c i s e informal d e f i n i t i o n s of t h e IOTM model, i t s

computations, t h e t i m e and space used by a computation, e t c . Turing

machines (of which IOTM1s a r e a minor v a r i a n t) a r e formally defined i n

many standard re fe rence t e x t s (e.g. [IIU69]). Since our r e s u l t s a r e

invar ian t under t h e var ious d i f fe rences i n conventions normally used

i n making these d e f i n i t i o n s , t h e reader c a n supply h i s own formal

d e f i n i t i o n s by choosing any c o n s i s t e n t s e t of conventions.

One important d i s t i n c t i o n we must make i s t h e d i f fe rence between

nondeterminist ic and de te rmin i s t i c machines. W e f i r s t de f ine nondeter-

m i n i s t i c I O T M 1 s ; de te rmin i s t i c IOTPl's a r e then defined a s a r e s t r i c t e d

form of nondeterminist ic IOTM1s.

A p a r t i c u l a r nondeterminist ic IOTM, M, i s spec i f i ed by f i n i t e s e t s

Q (t h e set of s t a t e s) , I (the input alphabet) , (t h e work tape a lphabet) ,

and A (t h e output a lphabet) ; a t r a n s i t i o n func t ion 6 ; and designated

s t a t e s q E Q (t h e i n i t i a l s t a t e) and qa E Q (t h e accept s t a t e) .
0

M opera tes i n s t eps . The a c t i o n taken a t a given s t e p depends on t h e

c u r r e n t s t a t e of t h e con t ro l and t h e symbols being scanned by t h e input

and work tape heads. M performs a p a r t i c u l a r a c t i o n by changing s t a t e ,

p r i n t i n g new symbols on t h e work tapes and poss ib ly on the output tape ,

and s h i f t i n g t h e heads.

*
W e now desc r ibe the computations of M on inpu t x E I . M is

s t a r t e d wi th t h e word x w r i t t e n on the input tape wi th t h e inpu t head

scanning t h e lef tmost $. ($ I i s a n endmarker. Let I ' = I U ($1.)

The c o n t r o l i s placed i n s t a t e q and t h e work and output tapes a r e
0 '

i n i t i a l l y blank.

The t o t a l s t a t e of the machine a t some s t e p i s given by a n

instantaneous d e s c r i p t i o n (i .d .) . An i.d. c o n s i s t s of (1) t h e s t a t e of

t h e c o n t r o l , (2) t h e inpu t word x , (3) t h e p o s i t i o n of t h e inpu t head i n

*
t h e word x, (4) f o r each i = 1, 2, , k, t h e word wi '5 r w r i t t e n on

t h e nonblank por t ion of t h e i
th

work tape, (5) f o r each i such t h a t

w # A, t h e p o s i t i o n of the i
th

work head i n t h e word and (6) t h e
i i '

word w r i t t e n on t h e nonblank por t ion of t h e output tape.

For example, the i n i t i a l i . d . of M on input x described above i s

given by: (1) t h e i n i t i a l s t a t e ; (2) x; (3) t h e input head i s

scanning t h e lef tmost symbol $.; (4) wi = h f o r i = 1,2,3;*.,k;

Xk
I f r is a n i .d . , then d i sp lay(r1 is (q,0,s1,s2, * . * ,sk) E QxI'xT ,

- .

where q i s t h e c u r r e n t s t a t e of t h e con t ro l , and cr, sl, * * - Sk
a r e t h e

symbols being scanned by the input head and t h e k work heads respec t ive ly .

The funct ion 6 maps each element i n Q X I' X Fk t o a (poss ib ly
+-

empty) set of moves. A move i s of the form

I f M i s c u r r e n t l y i n a s i t u a t i o n described by i .d . r , M may execute

any move i n S (d i s p l a y (r)) . M executes move p above a s follows: the f i n i t e

s t a t e c o n t r o l e n t e r s s t a t e q' ; f o r each i = 1,2, ,k , t h e i
th

work head

p r i n t s symbol s ' and s h i f t s one square i n d i r e c t i o n m (l e f t , ~ i g h t , o r
i i -

nomove); t h e input head s h i f t s i n d i r e c t i o n m i f p + h, t h e output - 0 ;

head p r i n t s p and s h i f t s r i g h t one square; i f p = h, the output head

does not p r i n t o r s h i f t .

If the 'execut ion of any move i n S(d i sp lay(r)) causes M t o e n t e r

i.d. r', we say r + r f. M

A computation of M on input x, c, is any sequence of i .d. 's

c = i.d.l, i.d.2, * a * , i.d.a such t h a t :

(1). i.d.l is t h e i n i t i a l i.d. of M on inpu t x ,

(2). i.d.. +M i.d. j+l f o r a l l j = 1,2,3,-=*,4-1,
J

(3) . & (d i ~ p l a y (i . d . ~)) = @ ; t h a t is, M h a l t s on i.d.a.

The l eng th of t h e computation c = i.d.l, i.d.*, . , i.d. is a. a
The space used by t h e computation c i s t h e number of work tape

squares v i s i t e d by heads of M during t h e computation. It i s

t echn ica l ly convenient t o make one exception t o t h i s d e f i n i t i o n of

space; namely, i f c = i.d.l, i.d.2, . . . , i.d.& and i f f o r a l l

j = 1,2,3,..*,1, i.d. descr ibes a s i t u a t i o n i n which a l l work tapes
j

are e n t i r e l y blank, then the space used by c is defined t o be 0.

The output produced by t h e computation c i s t h e word w r i t t e n on

t h e nonblank por t ion of t h e output t ape i n i.d. a.
._ I f c = i.d. i.d.2, ..=, i.d.a a s above, and a l s o 1'

d i s p l a ~ (i . d . ~) E (4,) X I' X rXk, then c i s a n accepting computation

of M on input x. (We assume q is a h a l t i n g s t a t e ; t h a t is , - -- a

6(qa,u,sl,-*,sk) = @ f o r a l l o C I f, sl,-. ,s, E r.1

Let AccContp (x) denote t h e s e t of a l l accepting computations M

of M on input x. Note t h a t AccComp (x) may c o n t a i n many computations M

corresponding t o t h e d i f f e r e n t choices of moves from 6 taken at each

step. AccComp (x) may also be empty if M does not enter state qa M

regardless of what choices are made.

If x E I* and AccCompM(x) # @, define

Tim (x) = mini l? 1 there is 'an accepting computation %
c E AccCompM(x) of length L) ,

and
Spac%(x) = min(m 1 there is a c E AccCompM(x)

which uses space m 1.

We leave Tim%(x) and Spac%(x) undefined if AccComp (x) = @. M

Nondeterministic IOTM1s are a technical construct and do not

correspond to the notion of algorithm in which each step is uniquely

determined. Deterministic IOTM's do correspond to this step-by-step

notion of algorithm.

A deterministic IOTM is a nondeterministic IOTM with the property

that its transition function 6 maps each element in Q x I' x rxk to a
set containing at most one move. Thus the computation of a determinis-

tic IOTM on an input x is uniquely determined (provided that it exists).

Deterministic IOTM's are a special case of nondeterministic IOTM1s; the

definitions of AccCompM(x), Tim%(x), Spac%(x) given above also define

these concepts for deterministic IOTM's.

IOTM's serve as our model of algorithm for set recognition.

Definition 2.1. Let M be a nondeterministic (or deterministic) IOTM

*
with input alphabet I, and let x E I .

M accepts iff AccCompM(x) # @. -
M re1 ects x iff M does not accept x. -

Let A E I+. M accepts A iff

+
Macceptsx x E A forall x E I .

+
Definition 2.2. Let M be a nondeterministic IOTM, let A E I ,
and let T and S both map N into the nonnegative rational numbers. t

M accepts - A within time T(n) - - (within space iff

(1). M accepts A
and

(2). for all but finitely many x E A,
TimeM(x) 5 T(lx1)

Remark. Note that Definition 2.2 only requires the time and space

used by M to be bounded on almost a11 inputs x E A. A stronger

definition would require the time and space to be bounded for all

3-
inputs x E I . However if we show, for a certain set A and functions

T(n) and S(n), that no IOTM accepts A within time T(n) or space S(n)

under the given definition, certainly the same result is true under

the stronger definition.

t N denotes the nonnegative integers.

I n par t icular we require only "for a l l but f i n i t e l y many x" to

emphasize the fac t tha t , with respect t o Turing machines, the inherent

complexity of a s e t i s insensi t ive to f i n i t e l y many exceptions.

Lemma 2.3. Suppose a nondeterministic (deterministic) I O T M M accepts

A. Let X E A with X f in i t e . Then there a r e nondeterministic

(deterministic) IOTM's M' and M" which accept A such tha t :

(1) . Tim%,(x) S Tim%(x) for a l l x E A
and

Tim%'(x) 1x1 + 2 for a l l x E X .

(2) Spac%,,(x) s Spac%(x) for a l l x E A
and

S~ac9+1(x) = 0 for a l l x E X.

Proof sketch. Let Ci be a f i n i t e s t a t e acceptor (cf. [~ ~ 6 9]) for X.

(1). M' runs two procedures i n paral le l . The f i r s t procedure

runs G on the input, a t the same time copying the input onto the f i r s t

work tape. The second procedure simulates M on the 5nput by viewing

the f i r s t work tape as the input tape. M' accepts when e i ther procedure

accepts. M' a s described requires two heads on the f i r s t work tape.

However Fischer, Meyer, andRosenberg [FMR72] show how to replace

many heads per tape by several single-headed tapes with no time loss.

(2). M" f i r s t runs G on the input; blanks a re reprinted on the

work tapes a t each step. MI1 accepts i f G does, or simulates M on the

input otherwise. 0

Similarly our lower bound results are strengthened by using the

nondeterministic model. If no nondeterministic IOTM can accept

a certain set within time T(n) or space S(n), then neither can any

deterministic IOTM. We discuss this further below.

IOTM's also serve as our model of function computation.

Definition 2.4. Let M be a deterministic IOTM and f be a total

* *
function, f:I + A , where I, A are finite alphabets.

M computes f within time T(n) (within space S(n)) iff - -
*

for all x E I

(1). AccCompM(x) # Q and the (necessarily unique)

c E AccComp (x) produces output f(x),
and M

(2) Time@) s T(1x1)

Our motivation in separating the input/output processes from the

computation process is so that it makes sense to consider a set being

accepted within space S(n) where S(n) grows more slowly than linearly

in n. The usual convention of writing the input initially on some work

tape requires the machine to use space 1x1 just to read the entire input

x. Similarly, we may consider a function f being computed within space

S (n) where If (x)l is much larger than S (lx 1) .

It is convenient to have notation for certain classes of all sets

which can be accepted within a given resource bound.

Definition 2.5. NTIME(T(n)) (DTIME(T(n)))

= { A 1 there is a nondeterministic (deterministic)
IOTM which accepts A within time T(n) 1.

NSPACE(S (n)) (DSPACE(S (n)))

= (A I there is a nondeterministic (deterministic)
IOTM which accepts A within space S(n) } .

Here the sets A are also assumed to satisfy A G I+. for some

finite alphabet I.

In particular define :

CSL = EPACE(n) (= (context sensitive languages), cf. [HIT691);

MPNCIME = U NTIME(C") ; EXPSPACE = U MSPACE(C") .
c E N c E N

- For a par t icu la r s e t B, a lower bound on the complexity of B w i l l

be given a s the statement t ha t B does not belong to some c l a s s

hllIME(T(n)) o r NSPACE(S(n)) for some par t icu la r T(n) o r S(n). By

Definit ions 2.2 and 2.5, such a statement implies tha t T(n) or S(n) i s

an i.0. (i n f i n i t e l y often) lower bound on the nondeterministic time or

space complexity of B.

I f B 4 MIIME(T(n)) (B 4 NSPACE(S(n))) and M i s a nondeterminis-

t i c IOTM which accepts B, then

T i m q x) > T(1x1)
for i n f i n i t e l y many x E B.

(resp., Spac%(x) > S (I X I) >
We now make more precise our e a r l i e r statement t h a t the IOTM model

i s not r e s t r i c t i v e and tha t our r e s u l t s have genuine s ignif icance

independent of which formal notion of algorithm we adopt. I n p a r t i c l ~ l a r ,

consider two "more powerful" models of algorithm: random access machines

(RAM'S) [556?J , [~ ~ 7 4 , and d-dimensional i t e r a t i v e arrsys

of f i n i t e s t a t e machines (d-IA's) [Co169].

The time and space of RAM and d-IA computations can reasonably be

defined a s folluws. The time of a RAM computation i s the sum of the

cos t s of a l l s teps ; a s tep which manipulates (s tores , fetches, adds)

t
numbers of magnitude z i s charged cost rlog(z+l)l (t h i s being the

length of the binary representat ion of integer z). The space of a

'Logarithms with no specified base a r e taken t o base 2.

RAM computation i s t h e sum over a l l r e g i s t e r s of r log(z+l) l where z i s

t h e l a r g e s t i n t e g e r s to red i n the r e g i s t e r a t some s t e p during t h e

computation. The t i m e of a d-IA computation i s the number s f s t e p s

executed. The space of a d-IA computation i s t h e t o t a l number of

c e l l s which do no t remain quiescent throughout the e n t i r e computation.

The f a c t s t a t e d below follows by s imula t ions of t h e o the r models

by IOTM's . See f o r example [CR72] f o r t h e s imula t ion of RAM'S.

Fact 2.6. Let A be a s e t which can be accepted by a nondeterminis t ic

(de te rmin i s t i c) RAM o r d-IA w i t h i n time T(n) and space S(n). Then t h e r e

i s an i n t e g e r k such t h a t

A E N T I M E ((T (~)) ~) and' A ENSPACE(S(n))

(A C D T I M E ((T (~)) ~) and A E DSPACE(S (n))) .
Moreover, we can always choose k = 2 f o r t h e case of RAM'S.

Thus any lower bound on space complexity app l i e s equal ly w e l l t o

e i t h e r of the more powerful models. Lower bounds on time complexity

may s u f f e r a decrease wi th r e s p e c t t o the o the r models, but t h i s

decrease i s polynomial bounded which w i l l be n e g l i g i b l e i n the cases

t o be considered. For example, i f we show t h a t a s e t B r e q u i r e s time

n
c (i.0.) f o r acceptance by any IOTM, i t follows t h a t B r equ i res time

dn (i.0.) f o r acceptance by any RAM, where d = 6 .
- .

The remainder of s e c t i o n 2.1 g ives some known f a c t s and open

quest ions concerning the c l a s s e s NTIME, DTIME, NSPACE, DSPACE.

A l l t h e p a r t i c u l a r functions we g ive bounding t i m e o r space

complexity a r e of a s p e c i a l type defined next.

Def in i t ion 2.7. A funct ion T(n) (S(n)) is s a i d t o be countable

(const ructable) i f f fo r any f i n i t e I t h e r e is a d e t e r m i n i s t i c IOTM

M such t h a t +
Tim%(x) = T(lx1) f o r a l l x E I

+
(SpaceM(x) = ~ (1 x 1) f o r a l l x E I).

The countable and cons t ruc tab le functions a r e r i c h c lasses . The

k
countable functions inc lude i n p a r t i c u l a r max(n, , n+2), max(rcn 1, n+2);

k
f o r a l l k E N+, c E Q+.' The cons t ruc tab le funct ions inc lude n ,

rcn 1, and (r log n l) k f o r a l l k E N+, c E Q+. Both c l a s s e s a r e

closed under addi t ion , mul t ip l i ca t ion , and composition [Yam62].

The following n o t a t i o ~ i s use fu l f o r comparing t h e growth r a t e s

+
of functions. Let F (n) and G(n) be functions from N t o Q+U (0) .

F(n) = O(G(n)) i f f the re i s a c E Q+ such t h a t

F(n) S c.G(n) f o r a l l n.

F(n) = o(G(n)) i f f l i m ~ (n) / ~ (n) = 0.
n -) =

The next f a c t s t a t e s t h a t any computation can be "sped-up" by any

constant fac tor . The proof i s i m p l i c i t i n [SHL65] and [HS65], (see a l s o

[HU69]). P a r t (2) a l s o uses t h e main r e s u l t i n [FMR72].

+ ' Q denotes the p o s i t i v e r a t i o n a i s . ?J+ denotes t h e p o s i t i v e in tegers .

Fact 2.8. Let c E Q+ be arbitrary.

(1). Given a deterministic IOTM M with input alphabet I which

computes a function f, we can effectively find a deterministic IOTM M'

which computes f such that

* Spat%, (x) S c. Spac%(x) for all x E I .
(2). Given a nondeterministic (deterministic) IOTM M which accepts

a set A, we can effectively find nondeterministic (deterministic) IOTM1s

M' and MI1 which accept A such that

TimglI(x) 2 max(c-Time (x), 1x1 + 2) for all x E A
and M

S~ac%,l(x) coS~aceM(x) for all x E A.

(3). Assume n = o(T(n)). Then

A E NTIME(T(n)) * A , € NTIME(c*T(n))
and

A E NSPACE(S(n)) A E NSPACE(c.S(n)).

Thus the inherent complexity of a particular problem is insensitive

to constant factors and can at best be determined as an asymptotic

growth rate (exponential, quadratic, etc.). Fact 2.8 is also used

implicitly in several upper bound results. For example, we may describe

an algorithm which accepts a set B within space 17n, and then claim BECSL.

The next fact gives several known relationships among the complexity

classes.

Fact 2.9. Let T(n), S(n) be arbitrary.

A. Nondeterministic versus deterministic time.

(a). DTIME(T(n)) NTIME(T(n)).

(b) . NTIME(T(n)) U DTIFE(c T(n))
c € N

B. Nondeterministic versus deterministic space.

(a). DSPACE (S (n)) C NSPACE (S (n)) .
(b) . NSPACE (S (n)) 5 DSPACE ((S (n)) *) .

C. Time versus space.

(a). DTIME (T(n)) E DSPACE(T(n)) .
NTIME (T(n)) C NSPACE(T (n)) .

(b) . NSPACE(S (n)) C U DTIME(C~(")) , provided log n = O(S (n)) .
c € N

The statements (a) all follow directly from definitions and constant

factor speedup (Fact 2. 8). A. (b) follows from the fact that,

if M is nondeterministic and accepts a set within time T(n), AccComp (x)
M

contains at most c T(l X l) computations which could conceivably accept x,

for some c and all x. A deterministic machine can try each of these

computations in sequence and accept the input if any such computation

accepts. B.(b) is proved by Savitch [Sav70]. Note that B.(b) implies

that the definitions of POLYSPACE and EXPSPACE could have been made

equivalently in terms of DSPACE() C.(b) is true because a space

S(n) bounded IOTM can enter at most c S(lxl) different' i.d. 's when

computing on input x. A complete proof of C.(b) appears in [Co7lb].

The "gaps" between (a) and (b) in each of A, B, and C represent

major open questions of complexity theory.

Open Questions 2.10. .

A. (i). Is there a class of functions 3 all of which grow slower than

exponentially for which

(i i) . May w e take 9 t o be t h e c l a s s of polynomials ?

(i i i) . I n p a r t i c u l a r , does 63 = NP ?

B. (i) . Does NSPACE(S(n)) = DSPACE(S(n)) ?

(i i) . I n p a r t i c u l a r , does CSL = DSPACE(n) ?

C.. (i) . Is t h e r e a c l a s s of f u n c t i o n s 9 a s i n A . (i) above f o r w h i c h

NSPACE(S(n)) G U DTIME(F(S (n))) ?
F .€ 3 . .

(i i) . May we take 9 t o be the clas's 'of polynomials ?

(i i i) . I n p a r t i c u l a r , is CSL C63 ?

These open ques t ions a r e s t a t e d t o po in t out t h a t , f o r most

p a r t i c u l a r problems w e consider, t h e upper and Lower bounds we g ive a r e .

" t ight" i s the sense t h a t any s u b s t a n t i a l improvement of e i t h e r bound

would c l o s e the gap i m p l i c i t i n some open quest ion. For example, i n

s e c t i o n 4 . 1 we consider a s e t B (t h e set o f a l l r e g u l a r expressions

*
over alphabet {O, 1) which do not desc r ibe (0 , l)) and show B E NSPACE(n)

but B 6! N S P A C E (~ ~) i f r C 1. Even though these space bounds a r e

t i g h t , they do not t r a n s l a t e i n t o t i g h t bounds on d e t e r m i n i s t i c time

complexity. The b e s t we can conclude (given present knowledge) is

B E D T I M E (~ ~) f o r some d E Q+ (by Fact 2.9C (b)) ; but B $? DTIME (n
r

)

i f r < 1, which i s a t r i v i a l lower bound on time. However i t w i l l be

n
seen t h a t t h i s gap (d versus n) i s c l o s e l y r e l a t e d t o Open Question 2.10C.

6 For example, i f one succeeds i n r a i s i n g t h e lower bound, say t o c f o r

some c > 1, then Open Question 2.10C(ii i) would be s e t t l e d i n the negative.

On the o the r hand, i f one shows t h a t B E 63, then t h i s ques t ion would be

s e t t l e d i n the af f i rmat ive . See Remark 4.20 f o r f u r t h e r d i scuss ion of

t h e relevance of these open ques t ions t o t h i s work.

F i n a l l y we g ive a f a c t which s t a t e s t h a t the complexity c l a s s e s

fiTIME(T(n)), NSPACE(S(n)) descr ibe f i n e complexity h i e r a r c h i e s ; t h a t is,

f o r small increases i n t h e growth r a t e of T(n) o r S(n), new sets can

be accepted t h a t could not be accepted before. The following deep

r e s u l t s , which a r e used severa l t i m e s i n t h e sequel , a r e due t o

Se i fe ras , F ischer , and Meyer [SFM73], and a r e refinements of e a r l i e r

work by I b a r r a [Ib72] and Cook LC0731 .t

Fact 2.11.

(1). l e t T2(n) be countable. There is a s e t A E [0,1)+ such

t h a t A E NTIME(T2(n)) and f o r a l l Tl(n)

T1(n+l) = o(T2(n)) implies A 4 NTIME(Tl(n)).

(2). Let S2(n) be cons t ruc tab le and s a t i s f y log n = O(S2(n)).

+
There is a s e t A G [0,1) such t h a t A ENSPACE(S2(n)) and f o r

a l l Sl(n)

S1(n+l) = o(S2(n)) implies A 4 NSPACE(Sl(n)) .
Diagonalizat ion arguments g ive s i m i l a r h i e r a r c h i e s [SHL05],

[HS65] f o r the de te rmin i s t i c complexity c l a s s e s , although t h e known

t i m e h ierarchy i s s l i g h t l y coarser i n the de te rmin i s t i c case.

'Fact 2.11 i s n o t e s s e n t i a l t o our proofs, although we s h a l l use i t for

convenience. See Remark 4.21 f o r an a l t e r n a t i v e t o the use of Fact 2.11.

2.2 A Technically Useful Model

Having defined t h e bas ic model o f algorithm, we now def ine a

more r e s t r i c t e d model c a l l e d simple Turing machines (STM's): STM1s

serve only a s a t echn ica l t o o l w i t h i n t h e proofs of c e r t a i n r e s u l t s ,

and a r e used only f o r s e t recognit ion. STM's a r e s i m i l a r t o I O T M ' s ;

t h e major d i f fe rences a r e the following.

An STM has one tape and one head. The s i n g l e t ape i s one-way

i n f i n i t e t o the r i g h t and serves a s both input t ape and work tape. An

STM is s t a r t e d on input x by wr i t ing x l e f t j u s t i f i e d on the otherwise

blank tape wi th t h e head scanning the lef tmost symbol of x. The moves

of STM's a r e s i m i l a r t o those of I O T M 1 s , Any move which s h i f t s the head

o f f t h e l e f t end of the tape causes the STM t o h a l t and r e j e c t t h e input .

W e a l s o r e q u i r e STM's t o have a unique accepting conf igura t ion; t h i s

conf igura t ion occurs when the con t ro l is i n a designated s t a t e q t h e a'

e n t i r e ta?e i s blank, and t h e head is scanning t h e lef tmost tape

square. q m ~ s t be a h a l t i n g s t a t e . Also t h e STM cannot e n t e r s t a t e
a

q when computing on a word which is not t o be accepted. STM's and a

t h e i r r e l a t e d computational concepts a r e now made p rec i se by a s e r i e s

of d e f i n i t i o n s .

t
A (nondeterminist ic) is a s ix- tup le M = (I, r, 9, 6 , qo, qa)

cons i s t ing of a f i n i t e s e t I- (t h e tape a lphabet) , a s e t I C r (t h e

input a lphabet) , a f i n i t e s e t Q (t h e s e t of s t a t e s) , a t r a n s i t i o n

t The a d j e c t i v e "nondeterministic" w i l l sometimes be omitted.

funct ion

and designated s t a t e s q E Q (t h e i n i t i a l s t a t e) and qa E Q (t h e accept
0

s t a t e) . 6 must s a t i s f y t h e c o n s t r a i n t 6(qa,s) = @ f o r a l l s E r.
,

M i s de te rmin i s t i c i f eard(6 (q , s)) S 1 for a l l q E Q , s E T.

* *
An instantaneous d e s c r i p t i o n (i .d .) of M i s any word i n I' -Q-r .

Informally, i f d i s a n i .d. of M, say

*
d = yqsz where y,z E r , s E I?, q E Q,

w e t r e a t d a s descr ib ing t h e symbols on t h e tape squares i n a n i n t e r v a l

around t h e head, wi th q being t h e s t a t e of t h e con t ro l , and q being

posi t ioned i n d immediately t o t h e l e f t of t h e symbol s being scanned.

We a s s o c i a t e wi th M a func t ion

Nexh(d) i s the s e t of i .d . ' s t h a t c a n occur one s t e p a f t e r t h e

s i t u a t i o n described by i.d. d.

W e f i r s t de f ine Nex tb(d ,v) , a n empty o r s i n g l e t o n s e t containing

t h e ~ 2 x t - - i.d. reached from d by a p a r t i c u l a r move v .

Let v = (q l , s ' ,m) E Qx~x(-1,0,1) and l e t do = yqsz a s above.

(yq 's 'z) i f m = 0

(ys 'q 'z) i f m = 1

Next\(do,v) = (wq' ts 'z) i f m = -1 and y = w t fo r *
some w E r and t E I'

6 i f m = -1 an& y = X

2' denotes the s e t of a l l subsets of the s e t S.

Now
[I NextlM(d,p) i f d = yqsz a s above

NextM(d) = rJ. E 6 (q , s) *
(b i f d = yq f o r some y E I' , q E Q .

Note t h a t d ' E Nexk(d) impl ies 1 d l 1 = 1 d 1 . This d i f f e r s from t h e

usual d e f i n i t i o n s of "i.d." and "next i.d." i n t h e l i t e r a t u r e .

The set of i .d . ' s occurring 1 s t e p s a f t e r d , Next (d,R), i s
M

def ined by induction:

N e x b (d , M) = (dl' I d" E Nexk(d1) f o r some

d l E NextM(d,A)

on +
D e f i n i t i o n 2.12. Let M = (I,I',Q, 6 ,qO,qa) be LLSTM, and l e t A G I .
Let V denote t h e blank t ape symbol.

M accep t s A w i t h i n tine T(n) (w i t h i n space S(n) ; he re w e assume - -
S(n) 2 n) i f f :

(1). For a l l x E A, t h e r e e x i s t A,k E Q\I wi th 4 ~ (1 x 1)

and k r 1x1 (resp. , wi th 1x1 k S S (J x 1)) such t h a t

k
qaV E ~ e x ~ (q ~ x k f ~ - ' ~ I , 1) . and

(2). f o r a l l x E 1'- A, t h e r e do not e x i s t R,k E N and

y , z E fl such t h a t

yqaz E ~ e x ~ (q ~ x l b ~ - I ~ I , A).

W e r e q u i r e S(n) 2 n f o r STM1s because t h i s amount of space is

requi red j u s t t o read the e n t i r e input . The following lemma s t a t e s

t h a t STMfs can s imula te I O T M ' s e f f i c i e n t l y enough f o r our purposes.

Lemma 2-13. If A E ~ I M E (T (~)) where T(n) 2 ntl (i f A. E NSPACE(S(n)))

then there i s aSTM which accepts A within time (T(n))
2

(resp., within space max(S(n), n t l)).

Proof. The proof follows by straightforward simulation of a multi-tape

Turing machine by a one tape Turing machine [HS65] (see a l so [HU691).

Note tha t STM'S possess "constant factor speedup" similar t o Pact 2.8.

The simulated IOTM may not operate within the given resource

bound T(n) or S(n) on a f i n i t e subset of A. However the simulating

STM can handle these f i k i t e exceptions by table look-up i n i t s f i n i t e

s t a t e control (cf. Lemma 2.3).

The one tape machine can be eas i ly modified t o operate on a

one-way i n f i n i t e tape [H~69]. This modification i s usually implemented

by keeping a marker # on the leftmost tape square. The simulating STM

can f u l f i l l the acceptance convention by always keeping another marker

#' on the rightmost tape square thus f a r vis i ted. I f the simulated

IOTM ever enters i t s accepting s t a t e , the simulating STM can erase

i t s tape i n a l e f t sweep from #! t o # and enter s t a t e qa without moving

a f t e r # has been erased. Moreover, t h i s i s the only s i tua t ion i n which

q is entered.
a

The remainder of section 2.2 t r e a t s a portion of the technical

machinery to be used i n describing the computations of STMfs. We wish

to formalize the statemone tha t , given i.d.'s dl and d2 of M,,oile can

determine i f d2 E NextM(dl) or not by making " local checks". A

"local check" consis ts of comparing the (j - l) th , jth, and (j+ l) th

symbols of dl and d2 f o r some j, 2 S j s ldll- 1. W e can conclude

d2 E Nexh(dl) i f and only i f a l l l o c a l checks succeed. This is now

formalized i n a use fu l t echn ica l lemma.

Lenuna 2.14. Let M = (I,T,Q,6 ,qO,qa) be ahSM. Assume $ 6 U Q.

Let C = I? U Q U ($1. There i s a func t ion %:2 4 z3 wi th t h e

following proper t ies .

(1). Let dl be any i.d. of M, l e t k = Idll, and write

= d10dlld12" *dlkdl ,k+l
where d E C f o r 0 s j S k+l.

l j

Let $d2$ = d20d21d22--d d 2k 2,k+l
where d E C f o r 0 S j 5k4-1.

2 j

Then

f o r a l l j, 1 s j S k .

(2). For a l l o1,o2,o3,ol1 ,02' ,03' E.x, i f 01'02'031 E %(010203) 9

then oit = $ cri = $ f o r i = 1,2,3. '

Proof, Four cases a r e involved i n t h e s p e c i f i c a t i o n of . %I

(i) . %mus t s a t i s f y cond i t ion (2) of t h e lemma.

(i i) . I f o o o B: Q, then o2 cannot change i n going t o some 1 2 3

next i.d.

(i i i) . I f o E Q and o E r, then each move i n 6 (o2,o3) 2 3

uniquely determines one word i n %(010203).

(i v) . 1f o, E Q and o3 = $ then s(0102c3) = $ 0

i s p rec i se ly spec i f i ed a s follows. For each o o o E 9, 1 2 3

sa t i s fy a l l

conditions (i) , (i i) , (i i i) , and (iv) below] .
(i) . oi = $ i f f oil = $ for i = 1,2,3.

(i i i) . I f o2 E Q and o3 E I? then

where for a rb i t ra ry o E C and p = (q l , s ' ,m) E QxTx{-~ ,O,~]

(oq's l] i f m = O

(q'osl) i f m = -1

(as'q'] i f m = 1

(iv) . o2 C Q or o3 Z $ *

The proof tha t % s a t i s f i e s condition (1) of the lemma is

straightforward and i s l e f t as an exercise.

Chapter 3. E f f i c i e n t Reduc ib i l i ty

I n t h i s s e c t i o n we in t roduce a concept which w i l l play a key r o l e

i n t h e remainder of the paper. This i s t h e concept of e f f i c i e n t

r e d u c i b i l i t y .

Reduc ib i l i ty techniques have f o r some time been standard t o o l s of

r ecurs ive funct ion theory (cf . [Rog67]). Set A i s reduc ib le t o s e t B

i f t h e a b i l i t y t o answer ques t ions about B enables one t o answer quest ions

about A by var ious e f f e c t i v e methods. Then, f o r example, the undecida-

b i l i t y of A implies the undec idab i l i ty o f B. However i n order t o g e t

more d e t a i l e d information about computational complexity, one must a l s o

show t h a t the r e d u c i b i l i t y of A t o B can be done " ef f i c ien t ly" . Then

i f ques t ions about A a r e known t o be computationally complex, s o must

corresponding quest ions about B. See t h e In t roduc t ion f o r a f u r t h e r

informal d i scuss ion of e f f i c i e n t r e d u c i b i l i t y .

3.1 Def in i t ions .

There a r e a v a r i e t y of inequivalent t echn ice l formulations of

e f f i c i e n t r e d u c i b i l i t i e s , d i f f e r i n g not only i n t h e degree of e f f i c i e n c y

but a l s o i n t h e methods by which ques t ions about A a r e reduced t o

ques t ions about B. Many of these d i s t i n c t i o n s among e f f i c i e n t

- r e d u c i b i l i t i e s are analyzed i n [L L S ~ ~] . The d i s t i n c t i o n s a r e analogous

t o t h e d i f fe rences among var ious r e d u c i b i l i t i e s of r ecurs ion theory

such a s many-one, t ru th- tab le , Turing r e d u c i b i l i t y , e t c . (cf . [Rog67]).

W e s h a l l use e s s e n t i a l l y one kind of e f f i c i e n t r e d u c i b i l i t y

corresponding t o t h e "strong1' r e d u c i b i l i t y (many-one o r one-one) of

r ecurs ion theory. However we do use severa l d i f f e r e n t bounds on the

e f f i c iency i n terms of t i m e o r space t o o b t a i n four d i f f e r e n t reduci-

b i l i t i e s of t h i s kind.

Following a d e f i n i t i o n a l suggest ion of Knuth [Knu74], we henceforth

r e f e r t o these p a r t i c u l a r r e d u c i b i l i t i e s a s "transformations".

Def in i t ion 3.1.

Let [denote t h e c l a s s of funct ions

*
(f I f : I 4 A* fo r some f i n i t e alphabets I, A , and t h e r e is

a d e t e r m i n i s t i c I O T M which computes f

w i t h i n space log n

w i t h i n time p(n) and spece n

w i t h i n time p(n) i
f o r some polynomial p(n) 7 .

+ + +
Def in i t ion 3.2. Let L:N + N . A funct ion f : I + A i s s a id t o be

+ l eng thL(n) bounded i f f If(x)l s ~ (l x 1) fo r a l l x E I .

f is l i n e a r bounded i f f the re i s a c E N+ such t h a t

+
I f (x) (s c l x l f o r a l l X E I .

Def ini t ion 3.3. (E f f i c i en t t ransformations).

+
Let A E I , B E A+ fo r some f i n i t e alphabets I, A.

(A S l o B ; A s log- l in B ; A s k B ; A < B) -- v i a f

+ +
i f f f i s a function, f : I + A , such t h a t

+
x E A i f f f (x) E B f o r a l l x E I , and

((Slog f E logspace ;

(s log- l in
) f E logspace and f i s l i n e a r bounded ;

(i p L)
f E po ly l in and f i s l i n e a r bounded ;

Also, i f e f f E { log, log- l in , p$.) then

A B i f f A i B and B seff A.
e f f e f f

Note: The transformations defined above do not change i f we r equ i r e the

funct ion f t o be computed by a n I O T M wi th one work tape. Thus our

de f i n i t i ons a r e equivalent t o previous de f i n i t i ons of i s
log' l og- l i n

[SM73], and SPA [W72].

Remark. It can be seen (by counting the number of poss ib le i .d . ' s)

t ha t a n IOTM whichcomputeswithin space log n a l s o computes wi th in

polynomial time. Therefore A s B 3 A < B ,
log

and A L1og-lin B A PI B.

The next lemma i s immediate from t h e f a c t s t h a t logspace, po ly l in ,

and poly a r e each closed under funct ional composition. It should be

obvious t h a t p o l y l i n and poly a r e closed under composition. Lind

and Meyer [Dl741 prove t h a t logspace i s c losed under composition; t h i s

proof is very s i m i l a r t o the proof of Lenuna 3.6 t o follow.

Lemma 3.4. Let Seff E (slog, i i $ 1 . Let A S e f f B
log- l in ' pR'

and B *eff C v i a l eng th Ll(n), L (n) bounded fly f 2 respec t ive ly
2

where L (n) i s monotone nondecreasing. 2

Then A 5 C v i a l eng th L (L (n)) bounded f20 f l. e f f 2 1

The following d e f i n i t i o n i s of c e n t r a l importance.

D e f i n i t i o n 3.5. L e t 6 be a c l a s s of sets, B be a set, and be a

t r a n s forma t ion .

(1). 6 s B i f f A 5 B f o r a l l A E 6.

(2). B i s I-complete i n 6 i f f

(i) . 6 s B, and

- (i i) . B E 6.

(3) . 6 S B v i a l eng th order L(n) i f f f o r a l l A E 6 t h e r e i s

a c E N+ such t h a t A s B v i a some leng th c. L(n) bounded

function.

A l l of t h e p a r t i c u l a r t ransformations described i n t h e sequel

a r e members of logspace. Lind and Meyer [Ill4743 give a machine indepen-

dent c h a r a c t e r i z a t i o n of logspace (which i s s i m i l a r i n f l avor t o

i t i t c h i e f s charac te r i za t ions of o the r subrecurs ive c l a s s e s [Rit631)

by which one can prove rigorously that our transformations do indeed

belong to logspace. However such proofs are tedious and shed no new

lPght on the main issues.

For t h i s reason, we use S
5 o g - l i n only i n section 4.1

1%

where our transformations a re simple enough tha t t he i r membership

i n logspace should be obvious. In some cases we sketch a

ver i f ica t ion tha t a par t icular transformation belongs to logspace,

omitting many of the de ta i l s by appeal to the reader 's i n tu i t ion about

space bounded Turing machines. For convenience, Appendix I1 co l l ec t s

those closure properties and part icular members of logspace which are

used e i ther expl ic i t ly or implici t ly i n these verif icat ions.

In other sections, we claim only that transformations a re of

the types s or ; closer examination reveals that these
PA

t rans formations a l so belong to log space.

It i s interest ing t o note tha t a few of our par t icu lar transforma-

tions can be eas i ly modified t o be computable within space zero, t ha t is,

computable by a deterministic f i n i t e s t a t e transducer with 2-way input.

Aho and Ullman [AU7O] prove tha t the c lass of zero-space computable

functions i s closed under composition, and hence tha t

I1
"0-space-transformable i s a t rans i t ive relation.

The notion of e f f i c i en t reducib i l i ty was f i r s t formally defined by

Cook [Co7la] (as a "Turing" version of <). Efficient reducib i l i ty was

used as a proof technique e a r l i e r i n [MM71]. Karp [Kar72] and others

have used as a means of re la t ing the complexities of various

cmbinator ia l problems. It is noted in ~ ~ ~ 7 3 1 a n d [~ o n 7 4

that many of the particular polynomial time reducibilities presently

in the literature can actually be done within space log n, (although

it would be suprising if poly = logspace in general, cf. Open

Question 2.10.C.).

3.2 Applications to Complexity Bounds.

We shall use efficient transformations as a means of relating the

computational complexities of problems. Informally, if < is a
ef f

transformation, and A S B via f, then one can conclude
ef f

"Complexity of A" 5 "Complexity of B" 3. "Complexity of f" .
Thus the computationaI resources required to accept B are "no less than"

the resources required to accept A provided that the resources used in

computing f are low order compared to those used in accepting B.

This is made precise by a lemma for the case seff = 5
log'

The

technical details involved in proving such a result for the case 5
1%

are p r e s e n t e d in [~ ~ 7 3] a n d [~on73] . We reproduce a proof

sketch for this lemma here because minor modifications to the proof

are used implicitly in section 3.3.

Lemma 3.6. Suppose A S B via fwhere f is length L(n) bounded,
log

and M is a nondeterministic (deterministic) IOTM which accepts B

within time T(n) and within space S(n) where T(n) and S(n) are monotone

nondecreasing .
Then there is a polynomial p(n) and nondeterministic (determinis-

tic) IOTM's M' and M" such that:

M' accepts A within time T1(n) = p(n)*T(L(n)) and within

space S (n) = s (L(n)) + log n ;

M'I accepts A within time Tfl(n) = T(L(n)) + p(n) .
Theref ore :

and

NTIME
{DTIME} (T("))

Proof. The obvious Mu, given an input x, f i r s t computes f(x) and writes

f(x) on some work tape. A s was noted before, f E logspace implies tha t

f can be computed deterministically within polynomial time. MI1 then

simulates M on input f(x). M is time T(n) bounded (on accepted words)

and i s computing on the input f(x) of length a t most ~ (1 x 1) . Recall T(n)

i s nondecreasing. M" c lear ly accepts A within time Tn(n).

This obvious approach may not work for M f . The d i f f i cu l ty is

tha t M1 cannot wri te f (x) on a work tape because If (x)l might be much

larger than loglxl + S(L(lx1)); however M' must operate within space

Sf (n). Instead, M f with input x can simulate the computation of M on

input f(x) by recording on i t s work tape an instantaneous description

of the computation of M, including the position j i n f(x) which the input

head of M would occupy i f the input t o M were actual ly f(x).

f C logspace implies f E poly, and therefore

j f) 5 p f (x) for some polynomial p l (n) ;

only c- loglx) extra work tape squares a re required t o record j i n

binary. To simulate another s tep i n the computation of M on input f(x) ,

W' computes the th d i g i t of f (x) within space log 1x1 and time

p t (I x l) , and updates the i.d. of M accordingly.

After an application of speedup (Fact 2.8), it is easy to see that

Mf, accepts A within time Tf(n) and space Sf(n). 0

For completeness, similar results for the other transformations

are stated next, even though we shall not have occasion to use

Lensaa 3.7 in its entirety.

Lermha 3.7. Assume T(n) and S(n) are nondecreasing.

(1). If A S B then
PA

+
for some constant c E N and polynomial p(n).

(2). If A < B then

for some polynomial p(n).

The proof of Lemma 3.7 is by the obvious approach used to

construct M" in the proof of Lemma 3.6.

Our next objective is to give the basic outline which the

majority of results herein will follow. We give the outline for a

space result; a time result is analogous.

Outline 3.8. Let B be a particular set of interest.

+ 4- (1). Choose a class 3 of nondecreasing functions from N to Q .
3 will in general depend on B. Let

6 = U NSPACE(S (n)) .
S(n) E 3

For example, we may take 6 = EXPSPACE or 6 = POLYSPACE in particular cases.

(2). Prove that 6 heff B (via length order L(n)),

where Seff is an appropriate efficient transformation.

In many of our examples, the proof is analogous to an

"arithmetization" of Turing machines so that questions about Turing

machines accepting sets i n 6 can be transformed into questions about B.

This of course is the main portion of most of our proofs.

(3) . (Deduce a lower bound on the complexity of B).

Since the majority of our particular transformations are linear

bounded, assume here that L(n) = n. ,

By Fact 2.11 (the nondeterministic hierarchy theorem), find a

"hard" set A E (5 such that S(n) is a large lower bound on the space

complexity of A; that is, A B NSPACE(S(n)). Also choose S(n) to be

nondecreasing.

Row by part (2) above, A Seff B via f, where f is length bn

bounded for some b E N+.

We claim that S (rnfbl) is a lower bound on the space complexity

of B. For suppose B E NSPACE(S(~~/~~)). Lemma 3.6 or 3.7 then implies

A E =PACE(S(n) + F(n)) where F(n) is the space required to-compute f.

Assuming F(n) s S(n) because f is an efficient transformation,

A E NSPACE(2*S(n)) = NSPACE(S(n)) by Fact 2.8 (constant f a c t o r speedup).

This c o n t r a d i c t s one cond i t ion A was chosen t o s a t i s f y , and the re fo re

B $ N S P A C E (S (~ ~ / ~ ~)) .

For example, i n t h e proof of Theorem 4.12 we have

EXPSPACE slog-lin B. We can then choose A E NSPACE(~T but

A $ NSPACE((~-e)n) i f € > 0, and conclude

1 /b B 6 NSPACE(C? where c = (2-€) ,
and b i s such t h a t A s B v i a some leng th bn bounded function.

l o g- l i n
some

(4) . I n 1 cases , we a l s o show B E 6; thus B i s seff-complete

i n 6. A completeness r e s u l t i n a sense p ins down t h e complexity of B.

B E 6 implies a n upper bound; 6 Seff B usua l ly provides a lower bound

a s i n (3).

Remark. Step (3) only r e q u i r e s A Seff B f o r t h e p a r t i c u l a r "hard"

set A, r a t h e r than 6 seff B. However t h e la t ter genera l s tatement

i s no harder t o prove than t h e former p a r t i c u l a r s tatement i n t h e cases

we consider. Also, t h e genera l statement may have o t h e r impl ica t ions

fo r B. (See f o r example s e c t i o n 3.3.)

A s noted above, the main p a r t of t h e proofs which follow t h e

preceding o u t l i n e w i l l c o n s i s t i n t h e proof of (2) . The d e t a i l s

involved i n (3) w i l l be given f o r a few r e s u l t s and l e f t a s simple

exerc i ses f o r o thers . The upper bound required f o r (4) w i l l be

v e r i f i e d by giving an informal d e s c r i p t i o n of a n a lgor i thm which

accepts B.

For most examples there remain gaps between known lower and upper

bounds on their deterministic time complexity. As was mentioned earlier,

these gaps correspond to the gaps stated in Open Questions 2.10,

A particular instance of this relationship is the following.

Several workers [Edm65], [Kar72] have proposed that a problem can be

considered computationally "tractable" only if it can be solved by a

deterministic algorithm within polynomial time, that is, only if it

is a member of P. The following lema can be used to relate the

tractability of various particular problems to the open questions

'P = NP?" and "CSL C P?". A result of this flavor was first noted

in [~o7la].

Lemma 3.9. Let I; s] . Let B be a set, eff ' ' 'logr log-lin' pi?'

and 6 be a class of sets. If B is seff-complete i n 6 then

B E P 6 c P .

Proof. Immediate from definitions and Lemmas 3.6 and 3.7. 0

Following the original work or Cook [Co7la] and Karp [Kar72],

a large number of common combinatorial problems have been shown to

be 4-complete in NP (see for example [Sah72], [Set73], [U1173], [GJS741) ;

such problems are called NP-complete. By Lemma 3.9, either all or none

of the NP-complete problems are members of P; moreover, the former case

holds if and only if 6 = NP.

We shall make a few additions to the list of NP-complete problems.

In these cases, where we show that some particular B is $-complete in

NP, it will be seen that an application of step (3) of the outline

yields only a trivial bound on the nondeterministic time complexity

of B. (One could show that B requires time fi in certain cases, but

this is trivial because time n is required just to read the entire

input.) In these cases, step (3) of the outline can simply be replaced

by the statement that B E P iff 6 = NP.

3.3 Other Applications. t

Lemma 3.6 or 3.7 can be loosely interpreted as s ta t ing that the

property "i.0. lower complexity bound" of s e t s t rans la tes through an

e f f i c i en t transformation. For example, a s Outline 3.8. (3) shows, i f

A *log-lin
B and A possesses the i.0. lower bound S(n) on space

complexity, then B possesses the i.o. lower bound S(rcnl) on space

+
complexity for some c E Q , (provided log n = O(S'(n))) .

The f i e l d of axiomatic complexity theory (in i t i a t ed by B l u m [B167])

has considered many other interest ing computational properties. For

example: (A). There a r e known to ex i s t s e t s which possess no optimal

acceptance algorithm i n the sense tha t any algorithm accepting the s e t

can be effect ively sped up on in f in i t e ly many inputs; (B). There a re

known t o ex i s t s e t s for which any acceptance algorithm consumes large

amounts of time and space on some input of length n for a l l suf f ic ien t ly

large n (rather than jus t i n f in i t e ly many n). However these properties

have previously been known to hold only for 'sets constructed by

diagona1izations or other esoter ic methods.

The purpose of t h i s sect ion i s to show tha t these two properties

a l so " translate through" an e f f i c i en t transformation and can therefore

be shown to hold for natural sets . Our aim is only t o prove part icular

r e su l t s indicative of the types of r e s u l t s one can obtain rather than

t o give a general treatment. We concentrate a t t en t ion on the space

 he material of $3.3 i s not used d i r ec t ly i n the sequel.

measure; analogous r e s u l t s for the time measure can be obtained

similarly .

For the purposes of t h i s section, assume a l l transformations

f mentioned sa t i s fy If(x)l 2 1x1 for a l l x.

A. Effective i.0. speedup.

Definition 3.10. Let A 9 be a s e t of words. A possesses

S (n)- to-log effect ive - i. o. speedup i f f given any deterministic IOTM

M which accepts A one can effect ively find a deterministic IOTM M'

which accepts A such that :

(1). space^, (x) S SpaceM(x) for a l l x E A ;
and

(2) . There ex i s t i n f in i t e ly many x E A such that

SpaceM(x) > S(IxI)
and

 space^, (x) log 1x1 .

Thus the new algorithm M I never uses more space than the old M (on

accepted words), but i n general uses much l e s s space than M on

in f in i t e ly many inputs.

Remark. For deterministic M, we can extend the def in i t ion of Spac%(x)

i n the obvious way to include a lso those inputs x which M re jec ts .

(In 92.1 SpaceM(x) is defined only i f M accepts x). Then one can

rep lace (1) of Def ini t ion 3.10 by ü space^, (x) 5 SpaceM(x) f o r a l l

x E E+." The main r e s u l t (Theorem 3.13) of t h i s s ec t i on is t r u e

wi th respec t t o t h i s modified de f i n i t i on of e f f e c t i v e i.0. speedup,

although the proof requ i res minor changes.

Within the framework of axiomatic complexity theory, Blum [B171]

f i r s t proved the exis tence of s e t s wi th e f f e c t i v e i.0. speedup. By

combining Blum's techniques wi th methods fo r const ruct ing s e t s with
Lcf. ~ ~ 1 7 1 2

t i g h t upper and lower bounds on space complexity, one can prove the
4

following.

Fact 3.11. Let Sl(n), S (n) be such t h a t S (n) i s const ructable ,
2 2

S1(n) 2 l o g n , and Sl(n) = o(Sq(n)). Then t he r e i s a s e t

A E DSPACE(S2(n)) such t h a t A possesses Sl(n)-to-log e f f e c t i v e

i.0. speedup.

t h a t the proof a c tua l l y shows t h a t A possesses "S l(n) - to-zero e f f e c t i v e

i.0. speedup"; t h i s notion i s defined a s i n Def ini t ion 3.10, where 0

replaces log 1x1 .
To complete the proof t h a t the speedup property t r a n s l a t e s through

an e f f i c i e n t transformation, we need an add i t iona l " e f f i c i en t

i n v e r t i b i l i t y" condit ion on the t rans formation.

Definition 3.12. Let f : + A . f is logspace-invertible iff f is

-1 + +
one-to-one, and the function f A + C U (u) defined by

x if f(x) = y for some x Ee
f-l(y) = .- .

\u otherwise (where u g q

is a member of logspace.

We now show that the speedup property translates through "invertible"

Theorem 3.13. Assume A "log-lin B via f, where f is logspace-

invertible and If(x)l 2 Ix 1 for all x. Let S(n) be nondecreasing and

satisfy S(n) 2 logn. If A possesses S(n)-to-log effective i.0.

speedup, then B possesses s (rcnl)-to-log effective i. o. speedup for some
+

c E Q .

Proof. Let A L*, and B C A+ for finite alphabets C, A .

Let M1 be any deterministic IOTM which accepts B. Effectively find a

deterministic IOTM M2 which accepts A such that:

M2 operates like the procedure M f in the proof ofLemma 3.6, after this

procedure has Seen sped-up by a factor of 1/2 2 la Fact 2.8.

Since A possesses S(n)-to-log effective i.0. speedup, effectively

find M3 accepting A where:

(2) S p a c k (x) s S p a c k (x) for a l l x E A , and

(3). There i s an i n f i n i t e s e t X A such that :

(3.1). S p a c k (x) > S(lx1) for a l l x E X,
and

(3.2). S p a c k (x) h log 1x1 for a l l x E X.

l e t f - I E logspace be a s i n Definit ion 3.12.

We describe a deterministic IOTM M4 which accepts B. M4 runs two

procedures M 1 and P1 i n paral le l . Procedure P1 i s procedure PI' sped-up

(Fact 2.8) by a factor of 1/3. PI' operates as follows.

+
1 ' . Given input y E A : -

-1 -1
Begin a computation of f (y). I f f (y) = u, then ha l t .

-1
I f f (y) produces an output symbol other than u, stop

-1 - 1
computing f (y) and simulate M3 on input f (y) as i n the

proof of Lemma 3.6(Mt). (Recall f-' E logspace).

END PI'. --
Therefore:

for a l l y E B.

Given input y E A+, M4 can run M 1 and P1 i n "parallel" i n such a

way tha t M4 accepts y i f f e i ther MI or P1 accepts y, and

(5). Space (y) s m i n (S p a c e ~ ~ (y) , Spacepl(y)) for a l l y E B . M4

(Informally, M4 uses a "new" tape square i f f both P1 and M 1 require

another tape square).

Nar i f f-l(y) # u, t h m f ~ ' (~) E A @ y E B. Thus M4 accepts

B correctly.

Let b E @ be such tha t 1x1 s lf(x)l g blxl for a l l x €I?.
Le t c = l/b.

We now verify tha t M4 s a t i s f i e s the conditions of Definition 3.10

to be a ~(rcn1)- to- log "sped-up" version of M I . F i r s t , by (5) ,

S p a c e ~ ~ (y) s SpaceMl(y) for a l l y E B .
Let Y = f(X) = (f(x) I x E X). Note Y is i n f i n i t e because f i s

one-to-one. Also, Y B because f transforms A to B and X C A.

Y i s the s e t of inputs on which M4 uses space log n while MI requires

space s (fcnl) .
- 1

To verify th is , l e t y E Y be arb i t ra ry and l e t x = f (y),

% so x E X G A . Recall c(y1 s 1x1 s lyl. F i r s t :

SpaceM4(y) s (1/3)(Spac%(x) + logly) + loglxl , by (4) and (51,

* (1/3)(loglxl + loglyl 3- loglxl 1, by (3.21,

* loglyl, because 1x1 s lyl.

Now suppose tha t S p a c e ~ ~ (y) s (r c l y l l) . Then:

S p a c k (x) s (1/2) (S(rc ly l l) + loglxl), by (1) and by assumption,

s S (l x)) , by clyl S 1x1, S is nondecreasing, and

S(n) 2 log n .

Since x E X, t h i s contradicts (3.1) and therefore

SpaceM1(y) > s (r c l ~ l 1) .

Since M 1 was arb i t ra ry , we a re done.

Corollaries like the one below follow immediately from Fact 3.11

and Theorem 3.13. For example, Fact 3.11 implies that MPSPACE contains

n scime set with 2 -to-log effective i.0. speedup.

Corollary 3.14. Let B be a set such that EXPSPACE slog - lin B.
Assume furthermore that for all A E MPSPACE, A qog-lin B via some

lagspace-invertible function f such that If(x)l 2 1x1.

n There is a rational c > 1 such that B.possesses c -to-log effective

i.0. speedup.

B. Lower bounds which hold for almost all input lengths.

As was mentioned before, we shall be content to show that lower

complexity bounds hold infinitely often. However, given any recursive

S(n), there is known to exist a set A such that any deterministic

algorithm accepting A uses more than space ~(1x1) on - all sufficiently

long inputs x. (Here we count space on all inputs rather than just

those x E A).

It would be suprising to find an uncontrived example of a- set with

this property since the natural examples all seem to have "easy subcases"

which occur infinitely often. For example, let TAUT denote the set of

all Boolean formulas in disjunctive normal form which are tautologies.

It has been conjectured [Co7la] that TAUT $? 6'. Let X c TAUT denote

the (infinite) set of such formulas of the fcnn F V xi V xi V G,

where F and G are formulas and x is a Boolean variable. A deterministic
i

algorithm M accepting TAUT can f i r s t check within polynomial time i f

the input x is i n X. M accepts imedia te ly i f x E X, or applies a

resolution procedure i f x $! X. Therefore we cannot show that TAUT is

d i f f i c u l t on all suff ic ient ly large inputs.

However, we can show tha t cer ta in natural s e t s a re d i f f i c u l t on

some input of length n for a l l suf f ic ient ly large n. We would then say

the s e t i s d i f f i c u l t - a.e. (almost everywhere) with respect t o input

lengths. This question of "frequency of d i f f i c u l t inputs1' is important,

and there a re same obvious directions for further inquiry which we have

not had time to pursue. For example, although we can show tha t the

number of d i f f i c u l t inputs of length n gruws unboundedly with n, we

have not been able t o show that a nonzero f rac t ion of the length n

inputs a r e d i f f i cu l t .

Definition 3.15. Let A be a s e t of words. 4 requires space S(n) a.e. n

i f f for each deterministic IOTM which accepts A there is a no E N

such that
(V n z n o) (3 x € A) [1x1 = n and SpaceM(x) 2 S(n) 1.

 act 3.16 (S tearns, Hartmanis, Lewis [S H L ~ ~]) . Let Sl(n) , S2(n) be

such that S2(n) i s constructable, Sl(n) 2 log n , and Sl(n) = o(S2(n)).

Then there is a s e t A E DSPACE(S2(n)) such tha t A requires

space S (n) a.e. n. 1

Remark. The proof of Fact 3.17 is by a f a i r l y straightforward diagona-

l ization. The reader should be aware tha t by using more subt le techniques

one can construct se t s A as i n Fact 3.16 such tha t any IOTM M accepting

A s a t i s f i e s Spac%(x) 2 S1(lx 1) for a l l but f i n i t e l y many x (rather

than jus t one x of each length). We would then say tha t A requires
(GS cppc:-~ to ,s .e . n"),

space S (n) a.e.*For arb i t ra ry recursive Sl(n), Rabin [Rab60] f i r s t 1

exhibited s e t s which require space S (n) a.e. Blum [B167] shows that 1

the complexity of these se t s can be llcompressed", tha t is, one can a l so

place t igh t upper bounds (S (n)) on the i r complexity. Trachtenbrot 2

[Tra7O] and Meyer and McCreight [MM~I] show tha t the two bounds can be

compressed as t ight ly as Sl(n) = o(S2(n)).

'
Definition 3.17. Let B A . B is invariant under paddirq i f f there

' i s a symbol # . € A such tha t y E B y # E B , for a l l y € A .

Theorem 3.18. Assume A 'log-lin B via f , where B i s invariant under

padding and 1 f (x) 1 2 Ix 1. Let S (n) be nondecreasing and sa t i s fy

S(n) 2 l o g n . I f A requires space S(n) a.e. n, then B requires space

~ (r c n l) a.e. n for some c € Q'.

Proof. Let A S
log- lin B v ia f , where 1x1 if(x)) blxl for

some b E @ and a l l x.

Let M be an arb i t ra ry deterministic IOTM which accepts B. We

describe an IOTM M' which accepts A.

M', Given input x: -
For s = 0,1,2,3,-m do :

For j = 0,1,2,3,**-,blxl do:

j Simulate M on input f(x)-# ,

(A t r i v i a l modification of the proof of Lemma 3.6 shaws tha t

t h i s can be done within space a t most

spaceM(f(x).#f) + log 1x1 ;

I f during t h i s simulation M r detects tha t ~ ~ a c ~ (f (x) * # j) > s,

then erase everything on the work tapes except the counters

s and j , and continue ;

I f M accepts f(x)-#', then accept x.

EM) -
EM) M' . --

M' obviously accepts A.

Define Reduce(x) = { f (x) .# j I 0 S j S b 1x1) . I n a computation

on input x, M' considers a l l words i n Reduce(x) as inputs t o M.

Two fac ts about Reduce(x) a r e useful. The f i r s t is obvious. The

second follows from 1x1 I f (x) 1 s blxl.

(1). (x E A and yEReduce(x)) (y E B and lyl s 2 b l x I).

(2). For n E N+, define the in te rva l In = (m E I bn S m 5 bn + n 1.
, - +

Then for a l l n E N , for a l l x E A with 1x1 = n, for a l l m E fl

with m E In, there is some y € Reduce(x) with lyl = m.

It i s helpful t o picture (2) as s ta t ing tha t glJ x of length n a r e

mapped onto the en t i r e in te rva l I I f any m E In has the property that
n '

M is "efficient" on a l l inputs y E B of length m, then M r is "efficient"

on a l l inputs x € A of length n. This i s t rue because (i f the counters

s and j a r e represented i n radix notation),

(3). Spac%,(x) s F(x) + log F(x) + k*loglxl for all x E A,

where F(x) = min{ Spac%(y) 1 y E Reduce(x)) , log F(x) = space

for counter s, and k*loglxl = space for counter j and simulation

+ overhead where k E N .
Let c = 1/2b.

Suppose the conclusion of the theorem is false. That is, assume

there is a deterministic IOTM M which accepts B and an infinite set

E E fl of "easy lengths" such that

(4). Spac%(y) < s(rclyll) for all y E B with lyl E E.

Let E' be the corresponding set of "easy lengths" for MI.

E' = (n EN+ I m E for some m E E').

E' is infinite because I n n I, # @ for all n 2 b.

We claim that

(5). Spac%,(x)<(k+2)*S((xI) for all x E A with 1x1 EE'.

This, combined with constant factor speed-up (Fact 2.8), contradicts

the fact that A requires space S(n) a.e. n. It remains only to prove (5).
-

'~et x E A with 1x1 E E' be arbitrary. By the definition of E',

together with fact (2), there is some y E Reduce(x) with lyl E E.

Also, by (I), y E B and clyJ S 1x1. Now,

F(x) S Spac%(y), by definition of F(x),

<s(rcly11), by assumption (4) E~cause lyl E E,

5 s(lxl), because S is nondecreasing.

Now by (3) ,

 space^, (x) < (k+2) -S (! x 1) because S (n) 2 10,g n .

Therefore (5) is proved.

. A s i n part (A) above, coro l la r ies now follow immediately from

Fact 3.16 and Theorem 3.18. For example, i f EXPSPACE *log-lin B, and

n
B i s invariant under padding, then B requires space c a.e. n for some

ra t ional c > 1.

The par t icu lar method of padding (Definition 3.17) was chosen mainly

for simplicity. It i l l u s t r a t e s the point t ha t more information about

"frequency of d i f f i c u l t inputs1' can be obtained.

Marry natural examples already possess, even without the a r t i f i c i a l l y

added # symbol, a s l igh t ly weaker kind of padding property defined below.

This weaker property i s a l so su f f i c i en t t o imply Theorem 3.18 by a very

similar proof which we omit.

-k
Definition 3.19. Let B A . B is natural ly padded i f f there i s a

symbol d $? A, a jo E N, and a function p E logspace, p:~+d* -+ A',

such tha t :

*
(1). Bad B v i a p ;

and 1%

(2). ~ ~ (~ e d ') 1 = lyl + j , for a l l y E A+ and a l l integers j 2 j 0'

However, the condition tha t B be invariant under some notion of

"padding" i s necessary to reach the conclusion of Theorem 3.18. For

any large recursive S(n) , l e t A C (0,1)+ be a recursive s e t which

requires space S(n) a.e. n. Define the s e t B by

Clearly A $og-lin B, but it is easy to design an IOTM M which

accepts B and fo r which Space (x) = 0 for a l l x such that 1x1
M

is odd.

Chapter 4. Regular-Like Expressions

- Regular expressions a r e a family of no ta t ions f o r descr ib ing sets

of words. They were f i r s t introduced i n automata theory as an a l t e r n a t i v e

c h a r a c t e r i z a t i o n of t h e languages (s e t s of words) accepted by f i n i t e

s t a t e machines [Kle 561, [CEW58], [MY60]. A t reatment of r egu la r

expressions can be found i n most automata theory t e x t s , f o r example

[Har65], [Sa169]. [Brz62] i s an e a r l y survey paper. More recen t ly ,

r egu la r expressions have been used t o de f ine the l e x i c a l ana lys i s phase

of compilers [Gri71], and t o spec i fy pa t t e rns f o r p a t t e r n matching

algorithms [AHU74] and t e x t ed i to r s .

Given two regu la r expressions, one might want t o determine i f they

a r e equivalent , t h a t i s , i f they desc r ibe t h e same s e t of words.

Several workers, f o r example [Gin67], [Brz64], have given algorithms

which so lve t h i s equivalence problem. However no de te rmin i s t i c algori thm

has been found which runs wi th in time bounded by a polynomial i n the

input length.

I n t h i s chapter , i n t e r a l i a , we show (Theorem 4.13) t h a t t h e --
problem of recognizing equivalence of r egu la r expressions has t h e same

time and space requirements as the problem of deciding membership of

words i n context s e n s i t i v e languages. Theorem 4.13 provides s t rong

evidence t h a t the re i s no de te rmin i s t i c polynomial time algori thm f o r

t h i s equivalence problem, o r f o r the r e l a t e d problem of minimizing the

s i z e of nondeterminist ic f i n i t e s t a t e automata [cf . KW701.

There i s reason t o be l i eve t h a t the genera l membership problem f o r

context s e n s i t i v e languages cannot be solved i n d e t e r m i n i s t i c polynomial

tlme. I n p a r t i c u l a r , 63 # NP impl ies 63 j POLYSPACE i f f CSL - 6' # @

[cf . Bo721. (See the d iscuss ion following Lemma 3 .9 concerning the

6' versus NP question.) Because t h i s ques t ion whether CSL - a = # @

i s open, we cannot a c t u a l l y prove t h a t t h e equivalence problem f o r

r egu la r expressions i s no t i n 6'. However we can prove t h a t

CSL - 63 # @ i f f the equivalence problem f o r r egu la r expressions

i s no t i n 6'; we a l s o ob ta in a n o n t r i v i a l l i n e a r lower bound on t h e

space requi red f o r the equivalence problem.

The succinctness of r egu la r expressions i s increased by allowing

the use of opera t ions o the r than U, *, and * i n w r i t i n g expressions.

For example, the add i t iona l s e t opera t ions of i n t e r s e c t i o n (n) and

complementation (--) r e l a t i v e t o Z* a r e sometimes helpful . Brzozowski

[Brz64] has developed methods f o r handling r e g u l a r expressions extended

by n and --; i n p a r t i c u l a r , h i s methods y i e l d an a lgor i thm f o r checking

equivalence of such extended regu la r expressions. However a p r i o r i

ana lys i s of h i s algori thm shows t h a t f o r no f ixed k i s the running time

bounded above by 22' on a l l i npu t s o f length n and a l l n. I n

s e c t i o n 4.2 we show t h a t such conplexl ty growth i s inheren t i n t h e

problem. The equivalence problem f o r s t a r - f r e e expressions [MP71]

(which may use only the opera t ions of U, *, and --) can be solved by

og bnl
no algori thm which runs wi th in time and space 2 i f b > 3.

It immediately follows tha t the equivalence problem for s ta r- f ree

expressions i s not elementary-recursive i n the sense of Kalmar [cf. ~ e t 6 7 j .

Ritchie [Rit63] has shown tha t (the charac ter i s t ic function of) a s e t i s

elementaryrecursiveiff the s e t can be accepted within space

Apart from providing a nonelementary lower bound on a simple expl ic i t

word problem, t h i s r e s u l t yields several interest ing coro l la r ies about

the complexity of decidable theories of formal logic. Chapter 5 i s

devoted to these coro l la r ies , each of which follows by an e f f i c i en t

transformation from the equivalence problem for s ta r- f ree expressions

t o the decision problem for a par t icular logical theory. Thus these

theories are not elementary-recursive.

In section 4.1, lower bounds of exponential space and exponential

time are obtained for the equivalence problem i f the unary operation

2
"squaring" (defined by L = L-L) may occur i n expressions, even i f I-I

and -- may not occur.

Regular-like expressions are regular expressions generalized by

allowing s e t s of operations other than the usual (U,.,"). A part icular

c lass of regular- like expressions is specified by a f i n i t e s e t C of

alphabet symbols and a f i n i t e s e t of operations which may occur i n

express ions.

Definition 4.1. Let C be a f i n i t e alphabet and cp be a f i n i t e s e t of

symbols denoting operations on sets of words. Assume P contains only

unary and binary operations. Assume C, q, and (A, N
N (, 2) are pairwise

d i s jo in t s e t s of symbols.

We inductively define the c lass of C-q-expressions and simulta-

neously define the map L which maps the c lass of C-C?-expressions to

subsets of c*. I f E i s an expression, L(E) i s the language (se t of

words) described by E.

t (1). (i) . $& i s a &p-expression, and L((h)) - = (X) .
(i i) . I f o E C, rv (oL i s a C-9-expression and L(Lo2) = {o].

(2). I f El and E2 a re Cq-expressions, then:

(i). I f E q~ denotes the binary operation @,

(El) E22 is a C-9-expression and
CU

L (p l 2 E2X) = L(E1) @ L(E2)*

(i i) . I f E q~ denotes the prefix (postfix) unary operation @,

(@El 2 (resp., E,$ 2) i s a --expression and
N N

L 1) = @ E l (resp., L(L E12 2) = L(E1)@) *

(3) . That's a l l .

I f E i s a Cq-expression, I E ~ denotes the length of E viewed as

a word i n (C U 9 U { , , 2))*.
* 2 In part icular , we consider cases where ep c (U, n , , , , - 1.

Binary operations U (union) and n (intersect ion) a re familiar.

' ~ o t e : X i s a formal symbol; X denotes the empty word i t s e l f . We allow A
N N

as an expression merely as a technical convenience. X can be removed from
N

our proofs a t the cost of minor awkwardness. See Remark 4.23.

Concatenation is extended to s e t s of words i n the obvious way;

Rl0R2 = (w y I w E R1 and y E R2) for R1, R2 C*.
0 - If R G C*, define R = (A) and Rk+l = R - R ~ for a l l k E N.

2
I n part icular , the unary "squaring" operation i s R = R-R.

*
Unary operation (Kleene s t a r) i s now defined as

Unary operation denotes s e t complementation r e l a t ive to z*;

The s e t C w i l l always be c l ea r from context.

To improve readabi l i ty , several abbreviations a re used i n the t ex t

i n describing expressions. These a re as follows.

Having made c lear the d is t inc t ion between the formal symbol@J

and the metanotation @ for an operation, 1'-11 i s usually delegted.

Similarly, we wri te (for L, etc.

Parentheses a re used sparingly; the f u l l parenthesization

required by Definition 4.1 i s not used. Any ambiguity can be resolved

by two precedence rules: any unary operation takes precedence over any

binary operation; concatenation takes precedence over both union and

intersection.

I f some character , say C, i s defined within the text t o denote a

f i n i t e s e t of symbols, say C = (ol, 02, * = * , , then C may be used to

abbreviate the E(UJ -expression (c1 U cr2 U * * * U os) which

describes (ol, 02, * * * , us}. Similarly (for example) C - [ol) ,

\ may be used to aSbreviate tbe regillar l t k e expression (o2 U * * * U gs ,.

Occasionally we let a word u E C* abbreviate a C-(*)-expression

which describes (o) .
k

.Iterated operations such as U E are used to abbreviate
i=l i

El U E2 U *.* uEk'
Two particular classes of expressions are used often enough to

deserve special notation.

Recall Ck = (w Ec* I lwl = k) for k EN.

let F= (o EX* (Iwl for k E N .

Within the context of regular-like expressions, 81 ([P I) is an

abbreviation for the obvious 2-(U, *) -expression of size bounded by

7k(card(Z)), namely,

d] abbreviates c*X*E* *E (k times)

[e l abbreviates (X U h) (C U ,.8 A) . -'(C U 5) (k times).

In most proofs involving regular-like expressions, a major concern

is the lengths of expressions we write. ~ll'abbreviations must be

taken into account when bounding the lengths of expressions.

Example 4.2. This example investigates two Gays of writing a regular-

like expression which describes (0,1)* - ((01)~ I k 2 0).
* (1). If *, , and -- are available, a simple such expression is

E, = -((o*l)*) .
* (2). Such an expression can also be written using U, * , and .

Expression F very simply illustrates a technique to be used thoughout
0

Chapter 4.
* * *

Po = 1*(0 u 1) u (0 U 1) s o u (0 U 1) -(0*0 u 1.1).(0 u I)*.

*
Fo describes the correct language because a word w E [0,1] i s not i n

k
((01) 1 k 2 0] i f f w "begins wrong" (i . e. begins with l) , o r

"ends wrong" (i.e. ends with 0) , or "moves wrong" (i.e. contains 00

o r 11 as a subword).

Given a predicate P on regular- like expressions, an alphabet C, and

a s e t of operations cp, we may be interested t o characterize the

complexity of deciding P r e s t r i c t ed to &pexpressions. The problem of

"deciding" P i s equivalent to the problem of accepting the s e t

P(C, Cp) defined next.

Definition'4.3. Let P be an n-place predicate on regular- like expressions.

Define P(C, q) = ((El, E2, . , En) (E1,E2,=** ,E are m-express ions
n

and P(E1,E2,***,E) i s t rue) . n

For simplicity, we concentrate at tent ion on the problem of checking

inequivalence of expressions. Define the binary predicate INEQ by

INEQ(E1,E2) i f f L(E1) f L(E2).

.. -
In many cases we consider the special inequivalence predicate

NEC (~ongmpty complement) defined by

N E C (E ~) i f f L (E ~) f C* -
where C i s the smallest alphabet such tha t El is a --expression

for some Q.

For example, i f Eo and Fo are as i n Example 4.2, then

*
(EO.FO) f INEQ((O,l], (",*, ,U]) and (Fo) E NEC((O,l], (U,*,*I)-

It i s obvious tha t NEC i s a special case of INEQ i n the sense tha t ,

*
if C is the language of some --expression, then an algorithm which

accepts INEQ(C,~I) immediately yields an algorithm which accepts

NEC GO) i formally NEC G,v) slog- lin INEQ(C,q). A lower bound on the

complexity of NEC yields essentially the same lower bound on that of INEQ.

Hunt iHun73a1, [Hun73c] has extended our work to many other

interesting predicates on expressions. He gives various criteria to

determine if the generalization applies to a given predicate.

For example, the unary predicates I1L(E1) is cofinite", "L(E1) = R 'I
0

where R is any particular unbounded regular set, and "L(E1) is a
0

non-counting event [MP71l1' satisfy one criterion. For these predicates

and others which satisfy the-criterion, ~@&J]-is as computationally

difficult as NEC (x,~). \ The reader is referred
to [Hun73a], [Hun73c], and [HI2741 for further details.

Remark. We consider inequivalence (rather than equivalence) problems

because such problems are more amenable to solution by nondeterministic

algorithms; to determine that L(E1) # L(E2), a nondeterministic

algorithm can "guesst' a word in the symmetric difference

(L(E~)-L(E~)) U (L(E2)-L(E1)). (See for example Proposition 4.11.)

Fane
It is then possible in- cases to show that a particular inequivalence

problem is complete in some nondeterministic complexity class, whereas

it may not be immediate (or even true) that the corresponding

equivalence problem is complete in the class because certain nondeter-

ministic complexity classes such as NP and CSL are not known to be

closed under complementation.

Because deterministic time (space) classes are closed under

cbmplement for countable (constructable) bounds, it is clear that a

lower bound on the deterministic complexity of a particular &equivalence

problem immediately gives a lower bound on the deterministic complexity

of the corresponding xuivalence problem provided the time (space) bounds

are countable (constructable). (The conditions of countability or

constructability are required only because our definition of complexity

bounded set acceptance (Definition 2.2) places no bounds on the

resources used by the algorithm when computing on rejected words. Of

course the countable or constructable conditions can be dropped if we

adopt the cormon definition of acceptance in which the algorithm must

halt within the resource bound on - all inputs.) See also Remarks 4.20

and 4.21 for more discussion on the deterministic or nondeterministic

complexity of equivalence problems.

In the following sections we characterize the complexity of

accepting ~ ~ c (C , c p) or INEQ(C,~) for various ch.oices of C and q.

Sections 4.1 and 4. 2 consider C = (0 , l) , which actually subsumes
all choices of finite C with cards) 2 2. Section 4.4 contains two

results for the case C = (0) which show that restriction to a one letter

alphabet can affect the complexity of the irlequivalence problem.

* 2 Section 4.1 considers several choices of cp from {U,* , ,) , and in

particular considers regular expressions as usually defined

(q = [U,* ,*I) In sectim 4.2 we show that the inequivalence problem

, *} rlogbi,
with cp = I U , ,-) requires time and. space exceeding 2

i f b > 3. We also investigate how the depth of nesting o f N operations

a f fec ts the complexity, and find tha t each increase by one i n ---depth

causes an exponential jump i n complexity.

--

A s was described i n section 3.2, we can obtain a lower bound on

the complexity of a par t icular s e t B by showing 6 Seff B
where S

ef f

i s an e f f i c i en t transformation and 6 i s a sui tably r i ch c l a s s of sets .

There i s one basic method used i n section 4.1 to show 6 5 NEc(C,~) ef f

o r & Seff INEQ(C,~) for various part icular B, C, cp, and 5 ef f ' In

section 4.2 the technical d e t a i l s become more

complicated but the basic method remains the same, The method u t i l i z e s

the following formal notion of the com?utations of a STM.

Definition 4.4. Let M = (I,r,Q,G,q ,q) be a (nondeterministic) STM. - 0 a

Let d be an i.d. of M.

PartComp (d) = [w 1 w = dld2$d3$-*dQ where dl = d and
M

di+l E NextM(di) (and hence idi+ll = Idi 1)

for a l l i = 1,2,3,** ,a-1) .
CompM(d) = PartCompM(d) n [w I w = QP p for some

a

a,$ E (Q Ur U ($I)*).

Recall the convention that s t a t e q i s entered i f f M i s computing
a

an' an input x which i s t o be accepted. The next f ac t i s then obvious.

Fact 4.5. Let M = (I,r,Q,G,q ,q) be ahSTM which accepts a s e t A
0 a

+ + +
within space S (n) (S :N +) Then for a l l x E I ,

x E A i f f ~ o m p ~ (q ~ x Ib s (lxI) - IxI) + 0

where 16 denotes the blank tape symbol.

The next lemma provides a useful equivalent chsracter izat ion

Lemma 4 . 6 . Let M = (1,r,Q,G,q ,q) be anSTM. Let d be an i.d. of M;
0 a

assume q does not appear as a symbol i n d. Let k = Id1 and
a

*
Then for a l l W E C , W E CompM(d) i f f . .

(i) . ("s ta r t s correctly") d i s a pref ix of W ;

and
(i i) . ("moves correctly") I f we wr i t e w = o o o *-*a where 1 2 3 m

o. E C for 1 5 j s m, then for a l l j with 2 5 j 5 m-k-2
J

B j+k"j+k+lDj+k+2 .N~(oj- lojuj+l)

where NM is the function of Lemma 2.14;
and

(i i i) . ("ends correctly")

(i i i a) . $ i s the l a s t symbol of w
and

(i i i b) . q appears as a symbol i n W.
a

Proof. The "only i f " d i rec t ion of the proof i s straightforward. We

sketch the proof of the " i f" direct ion.

Using Lemma 2.14 the following statement can be proved by induction

on t h e number of $ symbols which appear i n w:

*
. For a l l E C , i f I w l 2 k+4 and w s a t i s f i e s condi t ions (i) ,

(i i) , and (i i i a) , then w E PartCompM(d).

Now assume s a t i s f i e s a l l four condit ions. I f (w 1 5 k+2 then

qa cannot appear i n w. I f (W (= k+3 then U cannot both end wi th $

and con ta in q . Therefore I W 1 2 k-t4. Now w E PartCompM(d) by t h e
a

above, and q appears in w by (i i i b) . Therefore w E CompM(d) by t h e a

d e f i n i t i o n of CompM(d).

The proof of Lemma 4.8 soon t o follow i l l u s t r a t e s t h e genera l

method and i s a prototype f o r most r e s u l t s of Chapter .4 which show

6 Seff P (~ , P) f o r some 6, C, rp, s e f f ' and P E [NEC , INEQ) .

4.1 Expressions With Squaring.

In this section we show that NEC ((O,l] , (U, ,*, 1) is "log-lin-

complete in EXPSPACE (Theorem 4.12) and that INEQ ((O,l] , (U, , 2]) is
s
log-lin -complete in EXPNTIME (Theorem 4.18). It is then easy to

deduce lower bounds of exponential space and exponential time respectively

for these problems using the methods outlined in section 3.2. Also,

NEC((O,~],{U,*,*]) is 5 -complete in CSL (Theorem 4.13) and log-lin

INEQ({O,l] , (U, 0)) is 510g-complete in NP (Theorem 4.19).

First, ,the following fact is useful in the proofs of Lemmas 4.8

+ and 4.15: for any k E D\I , using squaring and concatenation we can write

an expression [Ck] of length O(1og k) which describes 9; moreover
s q

[$I is computable from bin(k) by a function in logspace.
s q

bin(k) is defined as the binary representation of k E without

leading zeroes unless k = 0.

Lemma 4.7. Let C be a finite alphabet. There is a constant a, = a(C)

+
such that for any k E N there is a C-(U, , 2, -expression 81 such that

sq

and

Moreover, there is a function fz E logspace with domain {O,l) +

such that fz(bin(k)) = [Ck] for all k E k.
s q

Proof. Define [Ck] inductively as follows :
sq

~ l l s q = C ; ~~~l~~ = (dl S q)2 ; and I SS = (d7 S q)2*c dk+l

for all k E @.

It i s obvious tha t (1) and (2) hold for some constant C Y (~ .

The s t ruc tura l s imilar i ty between bin&) and [9] should be
sq

obvious from the inductive defini t ion above. We l e t the reader

convince himself that a su i tab le f E logspace exists . (Alternatively, C

f can be defined by 2 sided recursion of concatenation (cf. Appendix 11)
C

from functions which are t r i v i a l l y members of logspace.) 0

Notation. Note tha t L([(c U h)kl) = 9.
sq

k We use the notation els for [(C U h) ISq.

Lermna 4.8 i s the f i r s t r e su l t which shows tha t a regular- like

expression can "simulate" a complexity bounded Turing machine. The

proof of this lemma was f i r s t given i n [MS72].

L m a 4.8, Let A E EXPSPACE. There is a f i n i t e

* 2
alphabet C such tha t A Slog-lin NEC(~,(U, ' , ,)) -

Proof. Let A E EXPSPACE. By Lemma 2.13 we can choose d E N such that

some (nondeterministic) STM M = (l,T,Q,G,q ,q) accepts A within space
0 a

+
S(n) = qdn. Let x E I be arbi t rary, l e t n = 1x1, and

C = r b Q U ($1 (where $ St r U Q) .

We construct a C(U, ,',2) -expression E (x) such that
M

Therefore, (%(x)) E NEC(C,[U,* ,*,2)) i f f L(EM(x)) f C*

i f f CompM(q0xV
2dn-n

) f 4 i f f x E A .

+ Letting 5 be the function mapping x to %(x) for a l l x E I ,

w e s h a l l see t h a t f E logspace and fM is l i n e a r bounded. Thus
M

A <log- l in NEC(C,{U,*,*,~)) v i a f M '

By Lemma 4 . 6 , words i n L (k (x)) can be character ized as follows:
1-1

w E C* - compM(q0xll 2dn-n) i f f

. (1). (" s t a r t s wrong") w does not begin with $q,xlb
2dn-n

$;
- ~

(2). ("moves wrong") w i s of the form m 1 0 2 ~ 3 @ ~ > ~ Y where

dn- 1
c u , y E ~ * , B E $, and 022; ""M(01~25) ;

o r
(3) . ("ends wrong") w does n o t conta in q o r does not end wi th $.

a

W e now w r i t e expressions E 1' E2, E which formally desc r ibe the
3

s e t s of words (I) , (2) , (3) above.

I f a E C, l e t o denote &{a).

(1) Words may s a t i s f y (1) f o r th ree reasons.

F i r s t Ell descr ibes a l l words which a r e "too short" , t h a t i s

Recall from Lemma 4.7 t h a t 1 [I I 5 1 &m] sq 1 cr log m f o r a l l m,
s q

where cu depends only on 2. Therefore, viewing I E '1 a s a function of n, 11

lElll = O(n).

Second, EI2 descr ibes a l l words which do no t begin with $q x.
0

L e t x = x x x 1 2 3..0Xn'

E12 = (S U $ a (% U qO*(;;l U XI0 (T2 U * * .

- *
*;;)))...).C . U xn-20(xn-l U Xn-l n

Viewing I El* 1 a s a function of n , note t h a t IE121 = O(n).

F ina l ly , E13 descr ibes a l l words longer than n+2 which do not

begin wi th 7l3 2dn-n
$ f o r some -T of l sng th 114-2.

Note lE131 = O(n) f o r the same reasons given f o r I E I . 11

Now l e t El = Ell U E12 U E13 .
(2 ') . Words (2) a r e described by an expression E2. Subexpression

1
s9

serves as a " ruler" t o measure t h e d i s t ance between p a i r s

0 1 of words af2u3 and ala203 which a r e incons i s t en t i n the sense t h a t

dn
, f N M (o 1 2) See a l s o Figure 4.1 where k = 2 +1 i s t h e

length of each i.d.

Figure 4.1: E2 "matches" a word w.

Note 1 ~ ~ 1 = O(n).
.-

1 ~ ~ 1 i s f ixed independent of n.

For E Z* we have

L(EM(x)) iff $! L(E1) and W $! L(E2) and w $! L (E ~)

i f f o E compM(q0xl4 2dn-,
) by Lemma 4 . 6 .

*
Therefore L(EM(x)) = C - Comp (q x)(

zdn-n
M 0

) as required.

+
Let fM be t h e funct ion wi th domain I defined by

+
%(x) = (EM(x)) f o r a l l x E I .

To complete t h e proof, we must show f E logspace and f is l i n e a r
M M

bounded. The l a t t e r f a c t i s immediate from our observation t h a t

1 ~ ~ 1 , I E ~ I ~ and (E I (viewed a s funct ions of n) a r e a l l O(n).
3

Assuming f E logspace, M A *log-l in NEC(C, (U, ,*,']) v i a %.
W e now o u t l i n e how one might formally prove t h a t fM E logspace,

using a number o f f a c t s from Appendix 11. Those readers f ami l i a r wi th

space bounded Turing machines may wish t o s k i p t h e next paragraph.

F i r s t by Lemma 4.7 t h e r e i s a funct ion fC E logspace mapping

bin(m) t o Flse f o r a l l rn. The functions mapping x t o b in (lx 1) and

x t o bin(Zd lXI) belong t o logspace. Now t h e funct ions

belong t o logspace because add i t ion and monus belong t o logspace an?

logspace i s closed under composition. Therefore, by another app l i ca t ion

o f c losure under composition,- t h e functions mapping x t o

2 d ' x x 1
e tc . belong t o logspace. F i n a l l y E12 i s de f inab le

sq'

from x by two s ided recurs ion of concatenation. Thus, a l l t h e

componenets of EM(x) can be computed by functions i n logspace. These

components can be combined appropr ia te ly by concatenation (E logspace)

to g ive EM(x). 0

Lemma 4.9, Let A E CSL. There is a f i n i t e

alphabet C such tha t A mc(C,(u,*,*]).

Proof. The proof i s essent ial ly the same as Lemma 4.8; only the

differences are sketched.

Let A E CSL and l e t M = (1 , Q , , q 0 , q a) be a (nondeterministic)

+
STM which accepts A within space S(n) = n+l. Let x E I , n = 1x1,

and C = Q U U ($1 as before.

Since x E A i f f CompM(qox16) # @, EM(x) i s constructed such tha t

L (E ~ (x)) = C* - compM(qox~).

%(x) is constructed as i n the proof of lemma 4.8 where 2d" is

replaced by n+l, and [Isq i s replaced by [] (without the use of

"squaring1'). For example, subexpression E i s now 2

Recall that [C"] abbreviates C*C*C. -.- *C (n times). Therefore

I E ~ I = O(n) . Similarly one can check tha t the lengths of El and E3

(a f t e r modification) are a l s o , O(n).

Let be the function mapping x to %(x) for a l l x. Then one

can prove fM1 E logspace just as one proves f E logspace i n Lemma 4.8.
M

A "log-lin NEC(C,(U,-,*I) v i a f M I . 0

In Lemmas 4.8 and, 4.9, the alphabet C depends on the s e t A.

However we would l i k e to show that (for example) NEC(C, (U , ,*}) is

complete i n CSL for a fixed alphabet C. The next lemma :haws that

alphabet symbols can be coded in to binary. Therefore Lemas 4.8 and

/
4.9 a re t rue with C = (O,l), a3!myd For convenience, many r e s u l t s t o

follow a re s ta ted only for the case C = (0 , l) ; these r e s u l t s a r e

actual ly t rue for any f i n i t e C with cards) 2 2.

Lemma 4.10. Let C be a f i n i t e alphabet with card(C) 2 2, and l e t

* 2
12.35~ , ,n1*

(2). I f a lso U,Q* E 9, then
L

P?W: (Zrl~) -log-lin NEC ((0'1) ,c;,)

Proof. (1). The transformation INEQ ((0 , l) ,Cp) Slog-lin INEQ(~,@) is

t r i v i a l . We only show INEQ(~,P) <log-1in mEQ(10,l) '9)

Let k = r l o g 2 (c a r d (~)) l . Let h be any one-to-one map,

k h : + (0 1 . Extend h as a map from ?* t o 2 (o' * i n the obvious way:

h(h) = h; h(W) = h(w)h(o) for a l l w E z*, a E C; and

*
h (~) = h(w) 1 w E R 1 for R C C .

I f E is a %$3-expression, l e t h(E) be the (0 , l) +-expression

obtalned from E by replacing each occurrence of a symbol a E C i n E

by the word h(a). A simple inductive proof shows t h a t

L(h(E)) = h(L(E)) for a l l w - e x p r e s s i o n s E.

(El,E2) E ~ E Q G , w) iff M E l) .h(E2)) E INEQ((O,l? ,v).
The function mapping (E1,E2) t o (h(El) ,h(E2)) i s obviously

l i nea r bounded and a member of logspace. The conclusion follows.

(2). A s i n (I) , we only show N E C (~ , ~) slog - lin NEC((0,l) 4) .

Given an expression E l e t C be the s e t of alphabet symbols which 1'

actuallyoccur i n E Let C =h(z) U (X) = (~(cJ) I D E E) U (A) 1'

be the set of code words. As in part (I), for all m-expressions E,
* * - L(~(E)) C* and L(h(E)) = C iff L(E) = E .

Let F be the (O,l] -(U, ,*) -expression

k * k *
F = ((0 U 1)) .((0,1)~ - C)*((O U 1)) .

Note L(F) = (0,1)* - c*. Therefore

L((~(E~) u F)) = (0,1]* iff L(E~) = c*.

The reduction (2) is via the function mapping El to (h(E1) U F).

The next result gives an upper bound on the space complexity of

INEQ(~,IU,*,*I 1. Essentially the

same algorithm was discovered independently by Aho, Hopcroft, and

Ullman [AHU74]. Since lower bounds are our main interest, we only

outline the algorithm.

Proposition 4.11. . ' Let C be a finite alphabet.

TNEQ(c,(u,=,*)) E CSL.

Proof. Given two C-(u,. ,*) -expressions El and E2, an IOTM M tries to

nondeterministically "guess" a word w in L(E1) @ L(E2)

= (L(E1) - L(E2)) U (L(E2) - L(E1)). W is guessed one symbol at a

time. El and E will be viewed as nondeterministic finite automata
2

(NFA's, cf. HU69) which accept L(E1) and L(E2) respectively. M can

simulate these NFA's as though they were receiving W as input, and

thus determine if W belongs to L(E1) 63 L(EZ).

An expression, say El, is viewed as TI NFA as follows. The

parentheses of El se rve a s t h e " s t a t e s" o f t h e NFA. I f F is any

subexpression of El, t h e le f tmost (r ightmost) pa ren thes i s of F i s

t h e i n i t i a l (f i n a l) s t a t e o f an NFA which accepts L(F). I m p l i c i t l y

t h e following t r a n s i t i o n s e x i s t between " s t a t e s" o f El.

0-
(o) where a E C.

These t r a n s i t i o n s need n o t appear e x p l i c i t l y on a work t ape because

given two designated parentheses pl and p2 (designated say by being

marked insome way), an IOTM can check whether o r n o t t h e r e i s an a r c

from pl t o p2 by coun t i~ ig parentheses. Such a check can be performed

wi th in t i m e polynomial i n / E (and space logar i thmic i n (~ ~ 1 . 1

The simulat ion of t h e s e NFA's, El and E2, on w works as follows.

A parenthes is s t a t e i n E (or E) w i l l be marked a t some t i m e i f f t h e 1 2

por t ion of w received up t o t h a t time could lead t h e NFA El (o r E) 2

t o t h a t s t a t e . The following procedure update(a) i s used t o update t h e

subset of marked s t a t e s . update(o) should perform a s follows f o r

a E C U (A). A t t h e completion of a c a l l on update(@, a s t a t e p 2

i s marked i f f t h e r e is a s t a t e p (poss ib ly pl = p2) such t h a t 1

? The h- self- loops a r e redundant, but a r e included f o r purposes

of exposi t ion.

(i) there i s an arc labelled 0 from pl to p2, and (i i) p was marked 1

before the c a l l on update(o). Note update(c) can be programmed to run

deterministically i n polynomial time and linear space.

M operates as follows. Given input x (with n = 1x1):

(1). Note that for any C and v, the set of w-express ions i s a

context f ree language. Within space (log n)2 [cf. LSH651 check

tha t x i s of the form (E1,E2) where El and E a re c(u,=,*]-
2

expressions. Reject i f x is not of this form.

(2). Write E and E2 on some work tape; 1

Mark the leftmost parenthesis of El and Ep.

(3) . Call update@) n times.

(4) . I f exactly one of the rightmost parentheses of E and E2 a re 1

marked, then accept.

(5). Nondeterministically guess a symbol o E C;

Call update(o).

.-

M operates within space cn for some constant c. The conclusion

follows by Fact 2.8 (constant factor speedup).

Completeness r e su l t s now follow easi ly for the two cases

considered thus far.

Theorem 4.12, -

(1). NEC ([O,11, (U, ,*,21) is ~log-l in-c~mplete i n EXPSPACE.

(2). I n pa r t i cu l a r :

(2 i) . There i s a r a t i o n a l c > 1 such t h a t

* 2
NEC({O,~] , (U ,* , , 1) g NSPACE(C") ;

(2 i i) . NEC ((0 , I) , (u, ,*,2)) E N S P A C E (~ ~) .

Proof. F i r s t , f o r a l l A E EXPSPACE,

* 2 * 2
A slog-l in NEC (E, {Us , 9 1) Slog-lin NEC(CO,11 ,{U,., , 1)

f o r some E by Lemmas 4.8 and 4.10. Therefore

MPSPACE slog lin
* 2 - NEC ({O, I) , (U, , ,)) by t r a n s i t i v i t y of 5 log- l ine

(211) is t r u e because an IOTM, given a (0 , l) -(u, ,*,2) -expression

E of length n, can f i r s t expand the squaring operat ions; t h a t i s ,

2
rep lace F by F*F i f F is some subexpression of E. This produces the

(0 , l) -(u,*,*)-expression E t , where I E ' I r 2" and L(Et) = L(E).

The IOTM now appl ies the procedure of Proposit ion 4.11 t o the p a i r

n
(Et , (0 U I)*). The e n t i r e procedure operates wi th in space 0(2) and

(2 i i) then follows.

(1) is now immediate by the d e f i n i t i o n of -complete. log- l in

The proof of (2 i) follows s t e p (3) of Outl ine 3.8. That is,

f o r C > 0 l e t A E N S P A C E (~ ~) - NSPACE((~-E)"), and deduce (2 i)

where c S (2-C) 1 /b
and A NEC ((0,1] ,(u,*,*,~)) v i a some

length bn bounded function. See Outl ine 3.8 f o r f u r t he r d e t a i l s .

Theorem 4.13.

(1). NEC((O,1) ,(u,',*) is $og-lin -complete in CSL.

(2). If a nondeterministic IOTM accepts NEC((O,~),(U,*,*]) within

space S(n), then there is a rational c > 0 such that

S(n) 2 cn for infinitely many integers n.

Proof. (1) is immediate from Lemmas 4.9 and 4.10 and Proposition 4.11.

(2). Let B = NEC((0, I}, (U, ,*]). Suppose a nondeterministic
+

IOTM accepts B within space S (n) where for all c E Q , S (n) < cn

for all but finitely many n.

Let S ' (n) = max(S (m) I m S n) . Then B E NSPACE (S ' (n)) and

S'(n) is nondecreasing.

By Fact 2.11 let the set A be such that A E CSL; and for all

S (n), S (n+l) = o(n) implies A $! NSPACE(Sl(n)). 1 1

BY Part (1) above, A Slog-lin B via some length bn bounded function

for some positive integer b. Therefore, by Lemma 3.6,

A E NSPACE(S ' (bn) + log n) . However, by definition of S ' (n) and our

assumption on S(n), St(b(n+l)) + log(n+l) = o(n). This contradiction

proves (2).

Remark 4.14.

(1). As was mentioned earlier (following the definitions of

NEC and INEQ), we can immediately replace NEC by INEQ in Theorems

4.12 and 4.13. [Hun73a], [Hun73c], and [HR74] give many other

predicates which are as complex to decide as NEC.

(2). The proofs of Lemmas 4.8 (4.9) and 4.10 actually show that

MPSPACE (resp., CSL) is log-lin reducible to the inequivalence problem

* for (0,l) -(U,* ,*,2) -expressions (resp., (0 1 - U) -expressions) of

star-height one [cf. MP71 1. The expression %(x) constructed in

L m a 4.8 (4.9) is of star-height one. Binary coding by Lema 4.10

does not increase star-height above one. Therefore the lower bounds

of Theorems 4.12 and 4.13 also hold for the respective NEC or INEQ

problems restricted to expressions of star-height one.

(3). Using padding techniques of Ruby and Fischer [RF65], one

can show that CSL I: B implies POLYSPACE 5 B for any set B.
1% log

(Hunt [Hun73a] has observed this fact using 6 ii place of .) log * Thus, immediate from Theorem 4.13, NEC((O,~},(U,*,)) is qog-complete

in POLYSPACE.

We now investigate how removal of the * operation affects the
2

complexities of these problems. First consider INEQ(C, (U, , }).

Note that this is a purely finite word problem: if E is a
.-

c(u,- ,2) -expression then L(E) is a finite set of words. In fact,

if I E I = n, then a E L(E) implies IW I 5 2". This suggests that a

C(U, , 2] -expression cannot "simulate" a space 2dn bounded STM as was

done.in Lema 4.8 unless the expression itself is of length roughly

pdn 2dn; a STN which operates within space '2dn may run for time 2 and

2dn thus may admit computations of length 2 .
However, a E[U, , 2} -expression can "simulate" a time 2 dn

bounded STM. The computations (in the sense of CompM()) of a

dn 2 = 22dn t i m e 2dn bounded STM a r e of length roughly (2) .
The nex t r e s u l t , presented by us previously i n [SM73], was

st imulated by a remark of Brzozowski t h a t our use of * i n Lemmas

4.8 and 4.9 was very r e s t r i c t e d and might the re fo re be removable.

Lemma 4.15,

=IME s~logg-~in I ' N E Q ((O , ~ I y (~ , * , 2 ~) *

Proof. The proof i s very s i m i l a r t o t h a t of Lemma 4.8. We need only

*
f ind a s u b s t i t u t e fo r a l l occurrences of C i n t h e expression EM(x)

const ructed t o prove Lemma 4.8.

+
Let A E MPNTIME. Choose d E N such t h a t a (nondeterminist ic)

STM M = (1,rYQ,6,qO,qa) accepts A wi th in time zdn (and thus M accepts

dn +
A wi th in space 2) Let x E I , , n = 1x1, and C = r U Q U ($) a s before.

We cons t ruc t a s (U , , 2] -expression %(x) such t h a t

(n) zdn-n)
L(EM(x)) = c - cOm~M(~oxla

where b(n) i s spec i f i ed below.

Note t h a t w E compM(qOx)I
2dn dn dn

-") implies l w l 5 2 (2 +1) + (2dn+l)

22dn+2
9

because each i.d. i n w is of length ~ ~ ~ + l and t h e r e a r e a t most 2 dn

such i.d..'s because M i s t i m e 2dn bounded; t h e markers $ account f o r

dn
a t most 2 +1 more symbols.

Define a(n) = 2
2dn-!-2 .

*
The r o l e of C i n Lenuna 4.8 i s played by t h e expression [y a(n> Isq*

Construct El and E2 exac t ly a s i n t h e proof of Lemma 4.8, except

r ep lace -1.1 occurrences of C* 3y [Pa(")
Is**

Following the proof of Lemma 4.8, i t can be checked tha t

L(el U E2 U E3) contains a l l words i n e a (") except those i n

zdn-n
C O ~ M (~ o x p) L(El U E2 U E3) contains other words longer than

a(n) ; however no such word i s longer than

(These longest words a r e i n L(E).) 2

Therefore, we add a l l words w such tha t a(n) < I w l b(n).

and therefore (EM(x), [f l (n)] s q) E INEQ(C,(U,- ,']) i f f x E A.

Let 5 be the function mapping x t o (EM(x) , p (n)]) for a l l
s q +

x E I . Following the proof of Lemma 4.8, the reader can check t h a t

4 E logspace and f i s l i nea r bounded. Finally the binary coding
M

lemma (4.10) implies the conclusion. 0

Again we see tha t removal of the operation causes an exponential

drop i n complexity. The following lemma was discovered independently

by Hunt [Run73a] (with 4 i n place of S) using another proof.
log

Lemma 4.16,

N P s ~EQ((O,1}y(U, '])*
1%

Proof. Lemma 4.16 i s analogous t o 4.15 i n the same way tha t Lemma 4.9

is analogous to 4.8.

Given an STM M which accepts A E NP within polynomial time p(n),

and given input x with n = 1x1, %(x) is constructed as in Lemma 4.15

to describe p(n)-n) for some suitable polynomial
2

b(n). C* is replaced by the expression [y(p(n)+l)] in this case,

and the "ruler" in E is [cP(~)"]. Recall that [PI is written as 2

C*C*C* * * * *C (m times). By Fact AII.3 (Appendix 11), if q(n) is a

(.lxl) polynomial there are functions in logspace mapping x to [C4 . 1 and

to 8q('xl)]. Further details are left to the reader. 0

An upper bound on the time complexity of INEQ(C, (U,.}) follows

by a minor modification to the procedure of Proposition 4.11.

Proposition 4.17. Let C be a ffnite alphabet.

INEQ(~,(U,-)) E NP.

Proof. The set of C-{U,*]-expressions is a context free language.

Given input x of length n, an I O T M can check deterministically within

3 time-O(n) [cf. You671 that x is of the form (E1,E2) where El and E2

are C-(U, 0) -expressions.

Note that if E is a z(U, *) -expression,

W E L(E) implies 1~ 1 I E I . Therefore

L(E1) # L(E2) iff (am) [w L(E1) 8 L(E2) and 101 n 1.

The procedure of Proposition 4.11 (with step (1) modified as above)

therefore accepts INEQ(C,(U,~]) within nondeterministic polynomial

time.

Theorem 4.18.

INEQ((0,l) ,(U,=,~I) is "log-lin -complete in EXPNTIME.

(2). Therefore there are rational c,d > 1 such that

(21). INEQ((O,~),(U,*,~)) 4 NTIME(cn)

(2ii). INEQ((O,I.) ,(u,*,~)) E NTIME(~") .
Proof. (2ii) follows by eliminating the squaring operations as in

the proof of Theorem 4.12, and then applying the procedure of

Proposition 4.11 and 4.17. (1) now follows by Lemma 4.15.

The proof of (2i) is exactly as in Theorem 4.12(2i) where

NTIME replaces NSPACE.

Theorem 4.19.

INEQ ((0,l) , {U, *)) is s, __-complete in NP.

Proof. The proof is immediate from Lema 4.16 and Proposition 4.17.

This section concludes with several remarks on the material of

section 4.1.

Remark 4.20. (Deterministic time complexities of these and related

problems.)

Given present knowledge, Theorems 4.13 and 4.19 provide no

interesting lower bounds on the deterministic time complexities of

NEC((O,~) ,(U,*,q) or INEQ((0,l) ,(U,=]). These results imply only

exponential upper bounds. Theorem 4.13 implies

NEC((0,l) ,(u,*,")) E DTIME(~;) for some constant dl by Fact 2.9C(b).

A deterministic simulation of the procedure of Proposition 4.17

yields INEQ((O,l),(U,*)) E DTIME(~~") for some constant d2.

The exponential difference between the upper and lower bounds

on deterministic time is closely related to two important open problems

of complexity theory, namely 'a3 = NP?" and "CSL E 63?".

Corollary 4.20.1.

* (1). NEC((O,l),(U,*,)) € 63 iff CSL E P iff C S L S ~ .

(2). INEQ((O,l), (U,.)) E 63 iff 63 = NP.

Proof. The equivalence CSL 63 iff CSL 2 63 follows by the result

of Book [Bo72] that CSL # 63. (1) is now immediate from Lemma 3 .9 .

(2) is by Lemma 3 .9 and 63 NP. 0

More generally, if a set B is S -complete in CSL, e.g. log-lin
*

B = NEC ((0,l) , (U, ,)) , then upper and lower bounds on the determi-
nistic time complexity of B are related to bounds for CSL by:

k
BEDTIME(T(n)) implies CSLG U DTIME(T(cn) 4-n)

and c,k € N

CSL C DTIME(T(~)) implies B E DTIME(T(n)) ,

the first implication following from Lemma 3.6.

Corollary 4.20.1(1) provides evidence that the problem of

checking equivalence of regular expressions (cf. [Gin67], [Brz64])

is computationally intractable. (By "regular expression" we mean a

C(U, ,*) -expression. Following [Edm65], [Kar72], we call a problem

I'intractable" if there is no deterministic algorithm which solves the

problm-within polynomial tine.) If CSL - 63 # @, then the equivalence

problem for regular expressions i s intractable , as a re the problems

of checking equivalence of nondeterministic f i n i t e s t a t e automata

(NFA's, [cf. HU691) and minimizing NFA's [cf. KW701. Assuming

CSL - bJ # #, the equivalence problem for NFA's i s in t rac tab le since

there a re well-known deterministic polynomial time procedures for

converting any regular expression to an equivalent NFA (e.g. [Har65],

[Sa169 1).

To see that the minimization problem i s intractable , suppose we

have a deterministic polynomial time procedure G which, when given an

NFA F, finds a smallest (in terms of number of s t a t e s) NFA which

accepts the same language as I?. Let A E CSL and 'consider the following

procedure for accepting A. Given input x, construct EM(x) as i n

*
Lenana 4.9 such tha t L(EM(x)) # C i f f x E A. Convert %(x) t o an

equivalent NFA and minimize t h i s NFA using 6. Since i t i s t r i v i a l t o

*
check i f a minimized NFA accepts C (i t can have only one s t a t e) , the

en t i r e procedure accepts A within deterministic polynomial time.

I f CSL - 6' j @, then such an G cannot exis t .

There a re also "gaps" i n the known deterministic time complexities

of the problems with squaring. For example, Theorem 4.12 innnediately

gives a lower bound of DTIME(c") for NEC((O,l} ,(U,*,*,2}) , but an

dn
upper bound of DTIFE (d) for some c , d > 1. A s i n the cases above,

any improvement i n t h i s gap would supply new information about

n
Open Question 2.10C for the case S(n) E (c I c > 1 }, and vice versa.

Also, the deterministic space complexity of NEC((0,l) ,(u,*,*)) i s

related to the "lba problem".

* Corollary 4.20.2. NEC([O,~},(U,*,)) E DSPACE(n) iff CSL=DSPACE(~).

Proof. Imediate from Theorem 4.13 and Lemma 3.6.

Remark 4.21. (An alternative to the nondeterministic hierarchy

theorems.)

If one desires lower bounds on only the deterministic time or

space complexity of problems,the deterministic hierarchy theorems,

[SHL65] and [HS65], can be used in place of Fact 2.11 to assert, for

example, the existence of a 8et A E DTIME(~~) - DTIME((2- €)").

The deterministic hierarchy theorems follow by fairly straightforward

diagonalizatims, while the known proof of Fact 2.11 requires additional

deeper "translational" arguments. For this reason, it seems worth

pointing out that the deeper results of Fact 2.11 are not always needed

to deduce lower bounds on nondeterministic complexity. In particular

we consider nondeterministic time complexity.

If A is a set of words and C is the smallest alphabet such that

A Cf let denote the set C+ - A.
The first lemma was brought to my attention by Paul Young.

Lemma 4.21.1 (Young). Let T(n) be countable and satisfy T(n) 2 n.

There is a set A E (0,1)+ such that
-

AENTIME(n*T(n)) and A fNTI'ME(T(n)) .

Proof. Let (M(y) I y E (0,l)') be an e f f i c i en t effect ive

enumeration of the nondeterministic I O T M ' s such tha t each IOTM i n

the l ist has two work tapes and has input alphabet (0 , l) . By

"eff icient effect ive enumeration" we mean tha t there is a universal

+
IOTM U and a constant c such tha t for a l l x,y E (0 , l) ,

(I) . U accepts x#y i f f M(y) accepts x,
and

(i i) . ~fm%($~) * c I Y l T i m e ~ (~) (x)

The standard methods of enumerating Turing machines (e.g. l ists of

quintuples .[Min67]) are sui tably ef f ic ient .

Now l e t

+
A = (y E (O,l} I M(y) accepts y and T i m

=M(Y > (Y) T(lyl) 1.

Since T(n) is countable, and (M(y)) is an e f f i c i en t enumeration i n

the above sense, i t follows tha t A E NTIME(n*T(n)).
-

Now suppose A E NTIME(T(n)). F i r s t , implicit i n [BGW70] is the

r e su l t tha t i f B E NTIME(T(n)) then some IOTM with two work tapes

accepts B within time T(n). Therefore, for some y M(yO) has two 0 '
work tapes and M(yO) accepts within time T(n) . Now

yo E 7i i f f M(yO) accepts yo and (Y 1 T (I Y ~ I)
Tim%(yo) 0

(by defini t ion of M(yO))

i f f y o E A (by defini t ion of A).
-

This contradiction proves A B NTIME(T(n)).

Lennna 4.21.2. Let geff I; <), l e t A and B be s e t s
('log-lin' log9 pa9

4-
of words with A * and B A , and l e t A seff B v ia f , where

f(*) D G A + for sane s e t D . Then X h e f f D - B v ia f.

Proof. The proof i s immediate from the d e f i n i t i o n of transformation

(Definit ion 3.3).

n

Define the predicate EQUIV as EQUIV(E1,E2) i f f L(E1) = L(E2).

We i l l u s t r a t e t he use of Lemmas 4.21.1 and 4.21.2 by proving an exponen-

t i a l lower bound on t he nondeterministic time complexity of

Corollary 4.21.3. There is a r a t i ona l c > 1 such t h a t

EQUIV((O,~) , (u , - , ~)) B NTIME(C").

Proof. By Lennna 4.21.1 l e t the s e t A (0,1)+ s a t i s f y

A E NTIME(~~") but 4 NTIME(~~) . Let

D = ((E ,E) I El and E a r e (0,l)-(U, ~ ,2) -express ions) . 1 2 2

Since A E EXPNTIME, the proof of Lemma 4.15 (with Lema 4.10)

gives a function f such t h a t
A 'log-lin I N E Q ((o , ~ I , (u , - , ~ I) v i a f,

f is length bn bounded fo r some b E @, and f((0,l)') C D .

By Lemma 4.21.2,
-

.- A ' l og- ~in D - I H E Q ((O , ~) ,(u, *,*I) = EQUIV((O,~) , (u , * , ~ }) v i a f.

Now l e t c ' 21'b and conclude as usual (v i a Lema 3.6) t h a t
-

EQuIv ((O ,~) , (U ,* ,~)) E NTIME(c") implies A E NTIME(~") contrary

t o assumption. 0

Corollary 4.21.3 i s of value i t s e l f because Theorem 4.18 does not

imply Corollary 4.21.3 given present knowledge. MPNTIME is not

known t o be closed under complementation.

Remark 4.22. (Effective i.o. speedup and a.e. n lower bounds.)

It can be checked tha t the transformations described i n section

4.1 a re logspace-invertible (cf. Definition 3.12). I n a l l cases, the

expression %(x) i s syntact ical ly simple enough tha t an IOTM can

determine within space logly] that y = EM(x) for scme x. The word

x can then be "read off" subexpression El of EM(x). From the r e su l t s

of section 3.3A and Theorems 4.12 and 4.13 we immediately obtain:

Corollary 4.22.1. There i s a ra t iona l c > 1 such that

n
NEC((0, I) , (u, ,*,2]) possesses c -to-log ef fec t ive i.0. speedup.

Corollary 4.22.2. For a l l ra t iona l r < 1, N E C ((O , ~ } ,(u,*,*})

r possesses n -to-log ef fec t ive i.0. speedup.

None of the s e t s NEC (z,cp) or INEQ(C,V) described above possess a

nont r iv ia l lower bound on a.e. n complexity because our syntact ic

conventions imply that the length of any well-formed m-express ion

is d iv is ib le by 3. However, C4p-expressions can be "naturally

padded" (cf. Definition 3.19) to any length d iv i s ib l e by 3. For

example,.using methods of section 3.3B we can prove the following:

Corollary 4.22.3. Let B = NEC((0,l) ,(us. ,* ,2}) . There is a ra t iona l

c > 1 such that given any deterministic IOTM M which accepts B

there i s an integer n such tha t
0

n
(Vn 2 no such tha t 3 divides n) (Zx € B) [1x1 = n and Spac%(x) > c 1.

Remark 4.23. (& is not needed.)

The a b i l i t y t o wri te as a regular- like expression is not

essent ia l t o our proofs. For example, for any k E &, an expression

+
[z ~] ~ , which describes (w E C I l w l i m) can be constructed

p+s2k1 by the rules:
-Kk 2

sq
= Isq1 U C

[e l can be used i n place of 61 i n the expressions
sq sq

%(x) constructed to prove Lemmas 4.8 and 4.15. Further minor

modifications to the expressions a re required; the reader can eas i ly

supply these.

Remark . One can of course investigate the complexity of NEC(Z,(P)

o r I N E Q (~ , (~) f o r se ts of operations (P other than those discussed here.

F o r example, . ~ u n t b u n 7 3 q (s e e alsd L H U ? ~ , Chapter 11) considers

regular expressions extended by intersection and proves that

Jn l log n
NEC({o, 3 , {u, , ", fi)) 4 NSPACE(c) for some c 7 l .

Hunt and Hopcroft (personal communication) have a l so observed that

*
NEC(@, 13, (u, . , ,n]) E EXPSPACE. The above lower bound can be

improved slightly for the inequivalence problem;

INEQ({o,l] . {u, , '9 fl]) 4 NSPACE(c n, f o r some c > 1.
W e hJ,=re ihd a

A proof can be found in [st074 A combination of the techniques in
A

fti50
C ~ u n 7 3 4 and [st074 s h ~ u l d ~ y i e l d the same lower bound

NSPACE(c "/log) aAx+ on the NEC problem.

4.2 Expressions With Complementation.

To simplify notat ion i n t h i s sect ion (and l a t e r) l e t g(k, r) be the

function 2
2 1 fo r k E and r e a l r. That is, g(0, r) = r and

g(k+l,r) = 2 g(k,r) f o r a l l k E PI.

This sect ion considers regular- l ike expressions with the operation

of s e t complementation. I n pa r t i cu l a r t h i s includes the c l a s s of

"star-free" expressions containing only the operations U, * , and -.
The languages describable by s t a r- f r ee expressions have been extensively

studied as an in te res t ing subset of the regular languages [cf. MP711.

For example, i t is known tha t s ta r- f ree expressions cannot describe a l l

*
regular languages; i n pa r t i cu l a r (00) i s the language of no

Our i n t e r e s t i n such expressions is t o charac te r ize the complexity

of t h e i r equivalence problem. As was mentioned e a r l i e r , Brzozowski

[Brz64] gives an algorithm which checks equivalence of regular expressions

extended by other Boolean operations including --.
Even though s t a r- f r ee expressions cannot describe a l l regular

languages, we s h a l l show tha t they can describe c e r t a i n regular

languages much more succinct ly than can regular- l ike expressions

which use only U, ., and *. I n par t i cu la r , a s t a r- f r ee expression of

length O(n) can describe the computations of any given STM which uses

space g(rlogbnl ,0) on any given input of length n. It follows tha t the

inequivalence problem for s t a r- f r ee expressions is enormously d i f f i c u l t

t o decide; NEC((0,l) ,{U,* ,--}) is accepted by no IOTM which operates

within space g (rlogbnl, 0) for b > 3 (Theorem 4.27.).

It immediately follows tha t other decision problems concerning

s tar- free expressions a re also th i s complex. For example, the problem

of finding a shortest s ta r- f ree expression equivalent t o a given

s tar- free expression also requires space g(r log n1,0), (cf. Remark 4.20).
b

See also [Hun73a], [Hun73c], and [HR74] for other predicates which are

as d i f f i c u l t t o decide as NEC.

By examining a straightforward algorithm for deciding

NEC({O,l.j,{U,.,--I), we see why such multiple exponential complexity

might arise. Given a {O,l) -(U, ,--I -expression E, we might f i r s t

construct a nondeterministic f i n i t e automaton (NFA) which accepts L(E)

and then check tha t t h i s NFA does not accept {0,1]*. This NFA can be

constructed inductively on the s t ructure of E by well-known methods

[cf. RS591. However, given a NFA F with q s t a t e s which accepts L(E1),

t o construct a NFA F' which accepts L(-El), w e may f i r s t have to

transform F to an equivalent deterministic f i n i t e automaton (DFA) F",

say by the Rabic-Scott "subset construction" [RS59]. F", and thus F' ,

might have as many as Zq states . F' might then be incorporated in to a

larger NFA which l a t e r must be made deterministic, resul t ing i n a DFA

2q
with 2 s t a t e s , and so on. This suggests tha t the number of exponen-

t i a l functions which must be composed to yield a complexity bound i s

closely related to the depth of nesting of -- operations i n the expressions

being checked for equivalence.

The re la t ion between "--depthu and complexity i s characterized

by another r e s u l t (Theor- 4.28) which s t a t e s that , for any fixed integer

k, there is a c E Q+ such that the inequivalence Problem for

(0,l) - (U, ,-, *) -expressions of maximum --depth k cannot be solved by

an algorithm which uses l e s s than space g(k,cn); however t h i s problem

can be solved by an algorithm which uses space g(k,dn) for some other

constant d. I f * i s not allowed, we show (Theorem 4.29') that the

inequivalence problem for (0,l)-(U;,-)-expressions of maximum--depth

k requires space g(k-3,cfi) for some constant c.

Definition 4.24. Let E be azq -express ion and define depth(E)

inductively as follows:

depth((o)) = 0 for a E C U (&) ;

depth((E1 Q EZ)) = max(depth(E1), depth(E2))
and i f Q E cp - (-1 ;

depth((EIQ)) = depth((QE1)) = depth(E1)

I f k E N, l e t P(C,y,depth S k> denote the s e t ~(z,cp) r e s t r i c t ed t o

regular- like expressions of depth not exceeding k. That is, i f P

is an n-place predicate,

~ (C . ~ . d e p t h S- k) = P (~ , v) n ((E1,E2,*-,E) I depth(Ei) 5 k n

for 1 i S n 1.

We f i r s t obtain some rough upper bounds on the complexity of

inequivalence problems with complementation. The algorithms u t i l i z e

the "subset-construction" together with scme ideas used i n the

algorithm of Proposition 4.11.

Proposition 4.25.

(2). For a l l k EN', INEQ((O,~),(U,*,-,*),depth a k) E NSPACE(g(k,2n)).
t

Proof sketch. Given (0 , l) -(U,. ,--,*) -expressions El and E2, construct

NFA's which accept L(E1) and L(E2). Note t ha t i f L(E.') is accepted
1

by an NFA with qi s t a t e s for i = 1,2, then:

(i) . L((Elf U E2')) and L((El1-E2')) a r e each accepted by an

NFA with q1-?-q2+2 s t a t e s ;

*
(i i) . L((E1')) i s accepted by an NFA with ql+2 s t a t e s ;

9 1
(i i i) . L (E l l)) i s accepted by an NFA with 2 s ta tes .

See for example [RS59] or [HU69].

It is now easy t o show by induction t h a t i f E i s a (0 , l) -[U, ,-,*I
-expression and n = 1 ~ 1 , then L(E) i s accepted by an NFA with

g(n-1,O) s ta tes . I f a l so depth(E) S- k, then L(E) i s accepted by

an NFA with S g(k,n) s ta tes . A description of an NFA with q s t a t e s can

2
be coded onto an STM tape within space O(q) i n a straightforward way:

2 2
Note (g(k,n)) a g(k,2n) and (g(n-1,O)) g(n,O) for a l l k,n 2 1.

Also, given two NFA's with ql and q s t a t e s , by using the method 2

of Proposition 4.11, a nondeterministic IOTM can determine within

'By [Sav70], the d i s t i c t i o n between NSPACE(S (n)) and DSPACE(S (n)) is

2" essen t ia l ly negl igible for S(n) 2 2 . For example,

d

2" 2"+l
NSPACE(2) DSPACE(2) We consider WSPACE here for definateness.

space ql+q2 whether or not they accept different languages.

The conclusions follow.

The next lemma contains all the technical details required to

obtain the lower bounds. The proof of the lemma shows how expressions

using - can very succinctly "simulate" the computations of STM' s.
L m a 4.26. Let M be a (nondeterministic) STM which accepts a set

A I+ within space S(n). Assume # (Z I. here are deterministic

IOTMfs 9R and 93' which compute functions f and f' respectively, there

is a constant a E Q+ and a polynomial p (all depending on M) with the

following properties.

+ For all x E I and all m,z E fl such that ~(1x1) h g(m,z):

(1). f(d0~#0') = E (= EM(x,m,z)) where

(li). E is a {0,1] -(U,*,-) -expression ;

m 2 2
(lii). I E I s a (3mz + 1x1) ;

(liii). depth(^) 5 m + 3 ;
*

(liv). L(E) # (0,1] iff x E A ;

lL m (lv) . Tirn%(x~O #oZ) s p(I E 1) and ~~ac%(x#0~#0~) - I E 1 .
(2). f' (&om#oZ) = E ' (= EM

t (x,m, z)) where

(2i). E' is a (0,1] -[u, ,-, *] -expression ;
m 2 2 (2) IE'I 5 a(3 m z + m 1x1) ;

(2iii). depth(E1) = m ;

(2iv). L(EI) s (0,1~* iff x E A ;

ml~ (2v). Tim%! (X#O TO) s p (I E ' I) and Spac %f (x#0~#0~) s I E ' I .

Before proving t h i s lemma, we prove the main re su l t s which

i l l u s t r a t e i t s use. The f i r s t r e su l t concerns the case of

unlimited ---depth.

Theorem 4.27. For a l l ra t ional b > 3:

(1). N S P A C E (~ (~ ~ ~ ~ ~ ~ ~ , O)) s NEC({O,l],[U,*,--)) ;
and PA

(2). mC([O,l) ,[U,.,")) N S P A C E (~ (~ I O ~ ~ ~ ~ , O)) .

Proof. (1). Given b > 3, l e t A E NSPACE(~(riogbnl ,o)) and l e t M

be an STM which accepts A within space S(n) = g(r1ogbc1'nl , l) for

some constant c" chosen so tha t (in part icular) S(n) 2 n+l.

We describe a deterministic algorithm which computes a transformation

f" such tha t A S NEC([O,l) ,[Us ,-I) v i a f". Given x with n = 1x1 ,
f i r s t compute . m = r1ogbc"nl; note tha t t h i s can be done i n time

polynomial i n n and space l inear i n n. L e t n b e the IOTM of Lemma 4.26.

Simulate 'IR on input x#om#O, obtaining ' a (0 , l) -[U,' ,-) -expression E.

Finally produce E as output.

Since S(n) = g(m,l), E s a t i s f i e s the conditions (1) of Lenma 4.26.

m 2
F i r s t I E I s a(3 m + n) c 'n for some constant c ' which depends on

a, by and c", but not on n. Thus f" i s l inear bounded. Also, !Ul

operates within time p(c In) and space c 'n on input x#0~#0, where
*

p is a polynomial. Therefore f" E polylin. Since L(E) '+ (0, 1)

i f f x E A, f" i s the required transformation.

(2) . Assume NEC ([O,l), [U, ,")) E NSPACE(g(rlogbnl ,0)) for some

b > 3. Choose rat ional bl,b" with 3 < b' < b" < b.

By Fact 2.11, there is a s e t A such tha t

A E NSPACE(g(rlogb,nl ,O)) - N S P A C E (~ (~ ~ ~ ~ ~ , , ~ ~ ,0)).

By par t (1) above, by Lemma 3.7 , and by assumption, i t follows tha t

A E NSPACE(~ (rlogbcnl, 0)) for some c E N'.

However, rlogbcnl 4 rlogb,,nl for a l l but f i n i t e l y many n.

Therefore A E NSPACE (g(rlogb,,nl ,0)) , and t h i s contradiction

implies the conclusion.

Recall tha t Proposition 4.25 gives an upper bound of space g(n,O)

for t h i s problem versus the lower bound of g(rlogbnl ,0) ju s t proven.

Whether t h i s gap can be decreased i s an open question on which we w i l l

comment a t the end of t h i s section.

We obtain a t igh ter complexity characterization for the case

*
{U,.,-,] by holding --deptEi fixed a t some k while allowing the

lengths of expressions to grow.

Theorem 4.28. For a l l integers k 2 1:

(1). NEC((O,l] , [U , * ,-,*I ,depth k) i s PA-^^^^^^

(2). I n par t icular ,

(21). There i s a c E Q+ such tha t

FEC ([0,1], [U, ,-,*} ,depth k) 4 NSPACE(g(k,cn)) ,

Proof. F i r s t , the upper bound (2 i i) required for completeness (1)

i s given by Proposition 4.25.

To prove t he other ha l f of completeness, l e t A E NSPACE(g(k,dn))

f o r some k,d E @, and l e t the STM M accept A within space S(n) = g(k,dn).

- We show how t o compute f" such t h a t

* A S NEC((0,l) ,(U,*,--,) ,depth 5 k) v i a f". Given x wi th n = 1x1,
PA

s e t m = k and z = dn, then simulate the IOTM D' of Lemma 4.26 m

input x#om#oZ, and produce t he r e su l t i ng expression E' a s output.

s i nce S(n) = g(m,z), E' s a t i s f i e s the condit ions (2) of Lemma 4.26.

m 2 2
I n pa r t i cu l a r , depth(E1) = k and (E ' I 5 a(3 m z 4- m n) c 'n

f o r a constant c ' which is independent of n. A s i n the preceding

proof, it is easy t o see t h a t f" E poly l in and t h a t f" transforms

A cor rec t ly .

The lower bound (2 i) follows from (1) i n the usual way. 0

Theorem 4.29. For a l l i n t ege r s k 2 4 :

(1). U NSPACE(g(k-3,dfi)) s ~EC((0 , l ' j ,(U,*,-) ,depth 5 k) ;
d E N pa

(2). There i s a c E Q+ such t h a t

NEC((0,l) ,(U,*,--} ,depth 5 k) $2 NSPACE(g(k-3,cfi)).

Proof. Proceed a s i n the proof of Theorem 4.28 except s e t m = k-3.

and z = r d ~ ~ r l , and use !Dl i n place of Dl. 0

We now tu rn t o the proof of Lemma 4.26. The proof of course can

be s impl i f ied i f one i s content t o show only t h a t space g(k,n) i s no t

* suff ic i -ent f o r my f ixed k, o r operation i s allowed, o r one is

content wi th weaker bounds on the length and depth of %(x,m,z) and

EM1(x,m,z). A vers ion of our proof s impl i f ied i n these ways i s

sketched i n Chapter 11 of [AHU74].

The proof of Lemma 4.26 i s s imilar i n s p i r i t t o the proof in [~ . e ~ 7 d

t ha t the emptiness problem for "y-expressions" i s not elementary-

recursive, It i s ins t ruc t ive to review one essent ia l idea of [Mey73]

which i s also used here: how regular- like expressions using

and y (y is defined below) can very succinctly describe the computa-

tions of STM1s.

Let M be an STM and l e t d be an i.d. of M with Id 1 = k. Recall

from the proofs of section 4.1 tha t , given a regular- like expression E

which describes Ck (tha t is, E i s a "ruler" which measures distance

k) , by using E as a subexpression and using operations U, , and *, one

can wr i te an expression %(d) which describes C* - CompM(d) for

some alphabet C. I f operation can also be used, -%(d) describes

COmPM(d)

Now l e t Ci be a par t icu lar deterministic "counting" STM. When

k s ta r ted on an i.d. of the form & q O O &, G successively adds 1 to

k the binary representation on i t s tape u n t i l 1 i s obtained. G

k
then hal ts . Note tha t the unique computation of on input &q 0 & 0

k k i s longer than 2 . Therefore, -I+.(&qOO &) describes a s ingle word

k
of length exceeding 2 . Now suppose an operation y i s available

*
where y(w) = (w E C I lrol = I w l) for W E c*. The expression

k k E1 = y(%(&qOO &)) thus describes Ck' for some k' > 2 . Also, i f

E is an expression such tha t L(E) = I?(, it is not hard t o see

(cf. Lennnas 4.8 and 4.9) that IE'I 2 C ~ E I for some constant c

independent of k. In summary, given an expression E (a "ruler") which

describes $, one can wri te an expression E f (an exponentially longer

k
"ruler") which describes Ckf where kf > 2 . Moreover, I E' I 5 c 1 E 1 .
for some constant c.

Now s tar t ing with the "ruler1' for some Z, and applying the above

*
construction m times, we obtain a %[U,*, ,-,y]-expression E which

describes 9 for some 4 > g (m, z) . Moreover, I E 1 0 (c
m

z) . A s i n

section 4.1, E can now be used as a ru ler to wri te an expression of

length O(cmz) which simulates the computations of a given STM M,

even i f M uses space g(m,z). This i s a very succinct representation

of the computations of M, since cmz grows much slower than g(m, z) as

a function of m. In part icular , it follows tha t

Jx NEC(C,(U,', ,--,y]) 9 NSPACE(g(k,n)) for a l l k C N.
k

However, i f y carmot be used, d i f f i c u l t i e s ar ise . -k(&qOO &)

k i s a s ingle word of length exceeding 2 . However, t o continue the

construction, we need a "ruler1' consisting of & words of some large

length. The solution to th i s dilemma, described i n d e t a i l shortly, is

t o wri te an expression which describes a l l cycles of a computation.

This s e t of cycles can then serve as a "ruler'l.

A preliminary lemma is useful. In the proof of Lemma 4 . 2 6 , i t

is convenient to represent i.d.'s i n a s l igh t ly redundant form.

The th symbol o£ the redundant form of an i.d. d contains the

information i n the (j - l) th , jth, and (j+l)th symbols of d.

Definition 4.30. Let M = (1,r,Q,6,qO,qa) be an STM. Assme

$ (Z r U Q. Define the map p:(r U Q)++ ((r U Q U as follows.

. If dl,d2,***,\ E I' U Q, p(dld2dge-0%) = d11d2'dg1---dkl where

-1
Note p is one-to-one so p is a function.on range(p).

- 1
r is a redundant i.d. (r.i.d.) of M iff p (r) is defined and

is an i.d. of M.

The function Nexk is extended to r.i.dO1s in the obvious way:

If rlYr2 are r.i.d.'s of My

' 2 E NextM(rl) iff p-'(r2) E ~ex~(p-l(r~)).

The technical convenience gained by using r.i.d.'s is the following.

If r r are r.i.d.'s, a "local check" (cf. L m a 2.14) consists 1' 2

of comparing the single jth symbols of rl and r2 for some j.

X3 + Furthermore, given an arbitrary word r in ((T U Q U [$ I)) , one 2
+ can check if r2 E p((r U Q)) or not by checking each adjacent pair

of symbols in r for consistency. This is formalized in the following 2

Lemrna 4.31 which is the analogue for r.5.d.'~ of i m a 2.14.

Lemma 4.31. Let M = (1,r,Q,b,q0,qa) be an STM. Let $ be the special

endmarker as in Definition 4.30 above.

There a re functions %:C + ?, J ~ : C -t 9 with the following property.

Let r1 = rllr12r13. - o r l k be an r.i.d. of M,

- . and l e t r2 - * o r be a rb i t ra ry , - r21r22r23 2k

where rlj,r E C for 1 s j S k .
2 j

Then r2 E Nex%(rl) i f f

(1). r2j E %(rlj) for a l l j, 1 j a k,
and

Proof. JM((01,02,03)) contains a l l t r i p l e s i n C which could

+
consistently follow (D ~ , O ~ , D ~) i n my word i n p ((r U Q)) .
For a l l (~ r ~ , 0 ~ , 0 ~) E C,

J M 2 3 = ((~ ~ , 0 3 , 0) E C I 0 E r U Q U ($1 1

% i s defined i n the obvious way from the function N of Lema 2.14:
M

The simple ver i f ica t ion tha t JM and % have the required property

is l e f t as an exercise.

 he t r i p l e ($,$,$) never appears i n a word i n rmge(p). A technical

condition within the proof of Lemma 4.26 requires tha t ($, $, $) be

expl ic i t ly removed f r o m C.

Proof of Lemma 4.26. P a r t (1) i s done f i r s t i n d e t a i l . (2) then follows

by some minor modificat ions t o (1).

(1). Let M = (I r Q 6 ,q ,q) be t h e given STM which accepts
M' M' M' M 0 a

4- a set A with in space S(n) . Let x E and i n t e g e r s m,z E N with

S((x1) 5 g(m,z) be given. Let n = 1x1.

The major por t ion of t h e proof descr ibes t h e cons t ruc t ion of a
J.

%{U, ,--)-expression E such t h a t L(Emtl) # En i f f x E A, where
mF-1

C is a l a r g e alphabet defined below. The {O,l) -(U, ,--) -expression

%(x,m,z) i s then obtained from E by appropr ia te ly coding t h e mt l

symbols C i n t o binary. We show t h a t %(x,m,z) s a t i s f i e s condi t ions

(l i) - (l i v) of Lemma 4.26. It w i l l be c l e a r f r & t h e desc r ip t ion of

t h e cons t ruc t ion t h a t t h e r e i s an 10~'M!lRwhich computes EM(x,m,z) from

x#om#oZ wi th in time polynomial i n and space l i n e a r i n I%(x,rn, z) 1 ,

s o t h a t (l v) i s a l s o s a t i s f i e d .

A p a r t i c u l a r de te rmin i s t i c l 'countingfl STM G used he re d i f f e r s i n

an important way from t h e one described e a r l i e r i n t h e o u t l i n e of t h e

proof f o r y-expressions. Namely, t h e h a l t i n g s t a t e is never entered.

a
When s t a r t e d i n an i.d. & q 0 &, G cyc les forever through t h e 2

a
0

a
i .d . ' s { &uq0& I LI E (0 , l)) (with severa l s t e p s taken between

a
occurrences of these i .d . ' s t o perform t h e add i t ion modulo 2).

Also, l e t t i n g D be t h e set of i .d. 's which occur i n a computation of

a
s t a r t e d i n & q 0 &, G i s programmed s o t h a t t h e p a r t i c u l a r word Beq 0 0

appears a s a subword of p rec i se ly one i.d. i n D. I n t h e const ruct ion

a
o f EnrF1, & q i s used t o uniquely i d e n t i f y t h e i n i t i a l i.d. &qOO &.

0

Definition of the "counting1' machine 6.

0 = (1,r,Q,6,q0,q2) where I = I' = (O,l,&? 9 = [qO,q1,q2?

6:QXr + 2 Qxrx(-l'o"l i s given by the following table. q1 i s a

left-moving s ta te which performs the addition. qo i s a right-moving

s ta te which returns to & after the addition i s completed.

Table 4.2.1. Transition tablz for "counting" machine G.

+
Also for R E bJ define:

D (k 1 = u NextC;(init(R), j).
j = 0

The next fact, which can be verified by inspection, s ta tes those

-117-

properties of G t o be used.

Fact 4.26.1. For a l l 1 E N+:

(1). loop(1) E and loop($) 2 2' + 4 ;

(2). Assume U E D(1). Then ($,&,qO) appears as a symbol i n o

iff o = in i t ($) . Moreover, ($,&,qO) is the f i r s t symbol of

init(A), and linit(fi)l = &3.

Now for k = 1,2,3,*..,m9 l e t G(k) = (I ,r Q 6
k k9 k9 k 'qk~9qk2)

be a G ; that is, Ik = rk = [ok,1k9%) 9 Qk = (qk0,qk19qk2) 9

and 6k is given by Table 4.2.1 d e r e a l l s t a t e s and tape symbols are

subscripted with k.

Also, l e t i n i t k (l) = P (&kqkOoi $)

The alphabet symbols used i n writing Emtl a re the following.

= (QM U rM U ($)lx3 - (($,$,$))

c,, = (#I

Note: For k = 1,2,3,*-*,m, p maps (Qk U rk)+ in to .x + and
k '

Assume symbols are chosen so tha t El, z2, x3, * * . =Ink2 are

pairwise dis joint .
&2

The en t i r e alphabet is C = U xi .
i=l

Also denote

and

Let s = card@).

For the remainder of the proof, the "0-notation" has the following

meaning. Let f (n,m,z,s,k) be a function of the indicated parameters 1

(not necessarily depending on all the parameters). Then O(fl) denotes

an unspecified function f with the property that 2

f (n,m,z,s,k) c.fl(n,m,z,s,k) for all n,'m,z,s,k E d'
2

+
where c E N can be chosen independently of all parameters M,x,n,m,z,s,k.

Certain subexpressions occur often within E m-?-1; special notation

* is now given for ,these. Even though cannot be used explicitly, it

*
is possible to write a &[U,*,-]-expression which describes O where

@ C. First let

[z * 1 = (+ u #) .
*

By convention, -- denotes complementation relative to C in this

context. Therefore L([C* 1) = c*. Also note that

* *
([C] I = O(1) and depth([C I) = 1.

If @ $-C, let

r o* 1 = -([c*].(Z - @)a[c* 1)

where "Z - O" as usual abbreviates an expression equal to the union of

* * *
the symbols in C - O. Note that L([O I) = O , I [@ 1 1 =o(s),

*
and depth([O 1) = 2.

I n using these expressions wi th in t h e const ruct ion of E dl* t h e

brackets [and] a r e dele ted t o improve r e a d a b i l i t y . However we must

*
keep i n mind the length and depth of t h e expression which @ abbreviates.

A s i n t h e o u t l i n e f o r y-expressions, we cons t ruc t longer and

longer " rulers" i n stages. The expression const ructed a t t h e k
t h

s t a g e descr ibes a "ruler" which "measures" d i s tance d (k, 2). The

numbers d(k,z) a r e defined as follows.

d(1,z) = loop(z)

d(k+l,z) = loop(d(k,z) - 4) f o r k ~ e .

Lemma 4.26.2. For a l l k E @, d(k,z) 2 g(k,z) + 4 .

Proof. By induction on k, using Fact 4.26.1(1).

The s e t s of words which serve a s " rulers" i n t h i s const ruct ion a r e

more complicated than those used i n s e c t i o n 4.1. For t h i s reason,

i t is use fu l t o have semantic desc r ip t ions of t h e r u l e r s as w e l l as

r egu la r- l ike expressions f o r them.

*
W e now def ine c e r t a i n words i n C which a r e used i n these

semantic descr ip t ions . The words cki f o r 1 5 k 5 m and i E

a r e defined inductively. Informally, one should th ink of c a s t h e k i

f th r.i.d. of G(k) s t a r t e d on in i tk(d(k-1 ,z) - 4) (although cki

fo r k > 1 is s l i g h t l y more complicated than t h i s) .

Def in i t ion of t h e words c
k i '

For i E N , c l i i s the unique word i n NexL (i n i t l (z) , 1) .
~ (1)

For 1 k 5 - 1 and i E N,

c a. c a. c a. c . . . c k+l,i = 'k0 11 kl 12 k2 13 k3 k,d(k,~)-2~i,d(k,z)-l~k,d(k,z)-l

where crij E xk+l for 1 s j 5 d(k,z)-1

and a = a a a ..* a i il i2 i3 i,d(k,z)-1 is the unique word in

 next^ (k+l) (inftk+l(d(k.z) - 4 Y 5)

The next fact gives those properties of the {c) to be used.
ki

The fact follows from the definitions of d(k,z) and c and Fact 4.26.1. ki '

Fact 4.26.3. (1). For. all k, 1 5 k 5 m-1, write

C - 0 . . c
k+l , i - ck~ailcklai2ck2~i3ck3 k,d(k,z)-2ai,d(k,z)-1Ck,d(k,z)-l

and a = a a. a * * * a
i il 12 i3 i,d(k,z)-1 as above.

Then ai+l E N e ~ t ~ (~ + ~) (ai) for all i E N.

Also, for all k, 1 5 k 5 m:

*
(2). cki E (C*) for all i E N ; '

(3). For alli,j E N , c k i = c iff i I j (modd(k,z)) ;
k j

(4). ($,%,qkO) appears as a symbol in c iff cki = ckO. ki

We are now in a position to give semantic descriptions of the

sets of words which serve as "rulers". Actually, two related sets of

words SE and SF are required at a given stage k, for 1 s k 5 m. k k

Semantic description of the "rulers" SE and SFk. k

For l s k s m :

SEk i s the s e t of words of the form

. . .
5j lCkj f'j '+lCk, j f+lrj '+2'k, j 1+25j '+3'k, j f+35j '+4 5 j w C k j 115 j I I + ~

where j " > j f and j1 '+ l= jl(mod d(k,z)), and where xi %k+l

is arb i t ra ry for j1 S i s j1l+1 ;

SFk = SEk " U I
. 'k0 appears exactly once as a subword of U) .

Again i f we informally describe c as the i
th r.i.d. of G(k),

k i

then SEk i s the s e t of a l l computations of G(k) which s t a r t on an

a rb i t ra ry c
k j " run for an arb i t ra ry (2 1) number of cycles, and

stop on c such that (i f the computation were continued one more
kj"

s tep to c = c kYj1'+l) Ck,j"+l k j f * Arbitrary s ingle symbols from

% k + l ~ ~ ~ ~ r between adjacent r.i.d.'s c a n d c
k i k, i+l

i n these computations,

as well as a t the beginning and end of these computations. SF i s the
k

s e t of words i n SE which are computations (in the above sense)'which
.- k

. - run for exactly one cycle; t ha t is, these words contain c exactly kO

once as a subword.

The major technical portion of the proof now follows.

C(UYo,-]-expressions Ek and Fk for 1 2 k s m a re constructed

inductively such that L(-Ek) = SE and L(-Fk) = SFk. Finally,
k

usingWF as a t1 ru le r " , weconstruct E such tha t m mtl

L(E&,) z z* i f f ~ o m p ~ (q ~ x 1 4
d(m, 2)-n-2

) # @ i f f M accepts x.

The reader should r e c a l l that the alphabets El, x2, E3, ..*, xmt2
are pairwise dis joint . This fac t is used implici t ly several times

i n the constructions below. Also note tha t many of the basic ideas

used i n the case k = 1 are also used i n the induction step.

Base k = 1.

El should describe precisely those words which are not i n SE1.

El i s wri t ten as a union of "mistakes" which could cause a word t o be

excluded from SE1; 5

For each i, the length and depth of eli wd a semantic description of

L(eli) are given as comments.

F i r s t r eca l l SE1 is the s e t of words w of the form (*) shown

below, where also wi, = c10 for some i' with 1 5 i' S A, and

Wi+l E Nextql) (wi) for a l l i with 1 S i 5 A-1 , and wl E Next (w).
G(l) a

w = t w t w t w , t *.* t A - l w a t a
0 1 1 2 2 , 3

where A 2 2, t. ECz2 for 0 S i S A,
1

24-3
and wi E El for 1 S i s A.

Construct ion 'of e 11'

*
ell i s constructed so tha t , for a l l w E C , LJ $? L(ell) i f f

w is a word of 'the form (*).

The f i r s t term of ell describes a l l words which are "too short",

i.e. shorter than z+6, The l a s t four tenus together describe a language

which includes a l l words longer than 2+5 which are not i n

lellJ = O(zs). (Recall "2' abbreviates expression of length

s, and thus F3 = O(zs).)

depth(ell) = 1. (Recall "z*" abbreviates an expression of depth 1.)

For the remainder of the construction of E assume W $! L(ell) 1'

and therefore tha t w d k o t e s a word of the form (*).

Construction of e, ,.
e12 is constructed so tha t U B L(e12) i f f w = i n i t l (z) = c10

i '
for some i', 1 S i' S R.

Let Y1Y2Y3"*Yz+3 = C10 where y E El for 1 S j z+3.
j.

Note yl = ($,&l,qlO) i s the special symbol which appears i n cli i f f

Cli = C1o' Let 7. denote (C - [yj)).
J

L(e12) i s completely described as the union of three mistakes:

(i) . y1 does not appear i n w; these words a re described by

(i i) . Some occurrence of yl i s immediately preceded by some 0 E El;

that is, yl appears i n the wrong place;

or
(iii). Some yl is not immediately followed by y2y3y4-*yZ+3;

these words are described by

e12
is now the union of the three expressions above.

1 e121 = O(zs) ; depth(e12) = 2. (Recall "(z - (yl))*" abbreviates

an expression of depth 2.)

Construction of eI3.

e13 is constructed so that w f L(e13) iff w contains no pair

of adjacent triples o1 o E El which are inconsistent in the sense 2

=2 (=I)*

Construction of e 14'

. s Assuming also that W $! L(e13), e is constructed so that 14

w $! L(e) iff W "moves correctly", that is, w ~ + ~ E Next (w)
14 G(l) i

for all i, 1 5 i S 1-1, such that w is an x.i.d. of G(1).
i

By Lemna 4.31, e14 can be written as

Construction of e15.

Assuming again tha t w $! L(elg) and also that w i s an r.i.d. R

of G(1), e15 i s constructed so tha t w $! L(e15) i f f w "loops back

correctly", tha t is, wl E Next (w). Again by Lermna 4.31,
G(l) 4

2
1 e15 1 = O(z s) ; depth(e15) = 1.

5
Now El = (U eli 10

i=l

Comparing t h i s construction with the def in i t ion of SE1 i n terms

of the form (*) , i t should now be apparent tha t L(-El) = SE1.

To construct Fly note tha t a word w i s _not i n SF i f f e i the r 1

$! SE1 or '. contains two (or more) occurrences of clO. Recall

tha t ($,$,qlO) appears in c iff c l i = C l O * F can thus be written
li 1

as follows.

. I

Clearly L(-Fl) = SF1.

To summarize the length and depth of El and F1:

2
(la) lEll < IF , I = G(z 8)

(ld) depth(E1) = depth(Fl) = 2.

Induction step k+l (k < m).

Assume we have the expressions E and Fk such that L(-Ek) = SEk k

and L(-Fk) = SFk.

is constructed first. The construction is similar to the

base case; the details are slightly more involved. Again,

5

is written as a union of "mistakes".

Recall ($,Zck,qkO) is the special symbol which appears in cki

iff i E 0 (mod d(k,z)) iff cki = ckO. let = ($,$,qk0)*

Construction of O. 9

*

We claim that w B L(ek+l,O) iff w can be written in the form

(**) below. (The portion of (*) preceding ";" denotes a

single word.fonned by concatenating the rows in order.)
(**I

where 1 2 1, and ti,rij E z2k+l for 0 s i s A, 1 s j s d(k,z)-1 .

Assume w $? L(%+l,O). F i r s t , W E L(-Ek) and therefore W E SEk.

Therefore (in part icular) ulckj,u2 i s a pref ix of w for some j ' and

some u1,u2 E sk+l. The second term of %+1 , 0 ensures tha t

- *
C k j ' - 'k0' by Fact 4.26.3(4), and because cki E (xa) for a l l i,

and C.& and qk+l are dis joint .

1 %1,0 1 = IEkJ + O(s) ; depth(%+l 7 0) = max(depth(Ek) ,2).

Until fur ther notice, we assume w $! L (P ~ + ~ , ~) and therefore

tha t denotes a word of the form (*),

Construction of ek+l
t

is constructed SO tha t LII $! L(%+l,l)' i f f A 2 2, and

ti ' '2k+2 for 0 5 i 5 a, and rij E %+1 for a l l i , j ,

1 s i 5 A, 1 j 5 d(k,z)-1.

The mistake "a < 2" occurs i f f w contains only one occurrence of c
k0 '

* *
(C - {u,) *u*(' - {u)) .

The mistake "t. E xk+l" occurs i f f , for sane u E 'k+l, e i ther
. - 1

',.I
u immediately precedes an occurrence of c o r u i s the l a s t

kO

symbol of W:

The mistake "r E x2k+2" occurs i f f some symbol i n C i j 2k+2

innnediately precedes % for some j # 0:

Then kl,l is the union of the th ree expressions above,

lek+l,Jl = O(s); d e ~ t h (% + ~ , J) = 2.

For the remainder of the construction of Ewl, assume

6.1 $ L(%+l,O U %+1,1) and therefore t ha t w denotes a word of the

form (**) below.

and r = r i il r i2 r i 3
... I: for 1 S i S A ;

i ,d(k,z)-1

where A 2 2, ti E 3k+2, and r . .
I, =k+1

for O S i S A ,

1 S j S d(k,z)-1 ,

Construction of ek+l 2.
9

%+I, 2 i s constructed t o ensure t ha t w contains a copy of the

i n i t i a l r.i.d. of G(k+l) s t a r t ed with d(k,z)-4 zeroes, That is,

$ L(%+l,2) i f f rit = i n i t (d(k,z)-4) for some i t , 1 S i t S A,
k+l

The c o n s t r u c t i h i s analogous t o t ha t of e given above, 12

*
so that initk+l(d (kY 2)-4) Y1Y2Y3Y4Y5Y6*

For 1 L j 1 6, l e t 7. denote - (y j)) , J

L(%ly2) i s described as the union of four mistakes:

(i) . y1 does not appear:

(t i) . Some yl i s immediately preceded by c for some j # 0,
k j

that is, yl appears i n the wrong place:

(i i i) , I f r = y for some i , j , then
i j 1

*
r ...
i, j+l

r
iy j+2 i , d (k , ~) - 4 ~ i , d (k , z) - 3 f Y2Y3Y4 :

(iv) . I f r = y for some i , j , then r
ij 1 i , d (k , ~) - 2 ~ i , d (k , z) - l f Y5Y6:

Note that i n (i i i) and (iv) , with W i n form (**), i f yl matches

Jx
r for some i, j , then sk+2 must match ti. Also, each (x) can
i j %

only match c for some j ' . k j '

%+I, 2
i s the union of the four expressions above.

The fac t tha t w i s i n form (**) ver i f i e s tha t

L(%+1y2) i f f r i t ' Y ~ Y ~ Y ~ Y ~ Y ~ Y ~ some

i f f ri, = initk+l(d(k,z)-4) for some i f .

Construction of e,+l 3.
9

%+I, 3 prevents inconsistent t r ip les . That is, w $? L(ek+1,3)

i f f w contains no "adjacent" t r i p l e s r r which are i j ' iY j+ l9

inconsistent in the sense r i, j+l ' J ~ (k + l) (r . LJ .).

*
With w i n form (*mi), (x) can only match some ckj.

Therefore, w 4 L(ek+l,3) i f f r (r .) for a l l i , j ,
i , j + l J ~ (k + l) 1j

with 1: i S 4 and 1 S j S d(k,z)-2.

Construction of e
, k+1,4'

%+1 4 ensures tha t the moves of G(k+l) a re described correct ly

by successive r ' s i n w.
i

F i r s t we need the following fac t : I f w i s i n form (**) and

w = agy for some cr,p,y E c*, then p E SFk i f f e i the r

*
p = r ijTri+l, or p = t T t

i i+l for some i , j E N and some 7 E C .
This can be seen by inspection of form (*) and the semantic

description of SFk, that is, SFk i s one complete cycle of the (c) k j

s t a r t ing arb i t ra r i ly .

- We wish t o wri te such that C L(ek+l,4) i f f

r (r . for a l l i, j . We use the preceding fac t about i + l , j %(k+l)

w = af3y t o locate and constrain "adjacent" symbols r . . and ri+l,j.
1 J

The constraints forced by the expression below w i l l not apply to

ti+l since t ti+l E sk+2 while r j r + j ' 'k+l0

Since L(-Fk) = SF by induction, e
k k+1,4

could be wri t ten as:

where G = (U o-c*~ (C - R ~ (~ + ~) (0))).

= %+I
By De Morgan's law, e' i s equivalent t o

Now note the following two facts .

(i) . Using only the defini t ions of the operations on words and

the fac t tha t l$-.(k+l) maps %+1 into 9, the following expression

can be shown to describe L(-G).

(i i) . h U C c L(Fk).

Therefore e" can be written equivalently as

Assuming a l so t ha t w $! L(e
k+1,3), by Lemma 4.31 we have t h a t

a ' "(ek+l,4) i f f ri+l E N ~ X E (~ + ~) (r i) for a l l i, 1 s i 5 a-I,

such t h a t r is an r.i.d. of G(k3.1). (Recall t h a t U 4 L(e
i k+1,2)

ensures t h a t ri, ip an r.i.d. of G(k+l) fo r some i', 1 S i' s i .)

Construction of e
k+l,SO

%+I, 5 ensures t h a t w "loops back correctly" , t h a t is,

t h a t r 1 E N e ~ t ~ (~ + ~) (ri).

F i r s t note another obvious f ac t : I f w = tOaflyt for a
*

some a ,y E , then fl E SEk i f f e i t h e r p = r l j T r or

* J j

P = t T t 1 a-1 fo r some j E N and some 7 E C . This follows from the

semantic descr ipt ion of SE together wi th the f a c t s t h a t
k '

tl'ti-l '2k+2 and '&+I "2k+2 = @.
We'wish t o w r i t e e

k+1,5 such t h a t w rf L (P , ~ ~ , ~) i f f

(r .) for a l l j , 1 4 j S d(k,z)-1. Thus s ince r l j %(k+l) 13

L(-Ek) = SEk, e k+1,5
could be wr i t t en as:

A s i n the construction of
4

above, t h i i expression can be

wr i t t en equivalently as :

Assuming a l so t h a t u $? L(%) and t h a t rA is an r.i.d. of +1,3

G(~+I) , 4 UeHlS5) i f f rl E Nexk (k+l) (r a).

Final ly ,

*
To summarize the construction of E

k+l ' assume CJI E C i s

now arb i t ra ry . u f L(Ek+l) i f f

W is a word i n form (**),

and r = i n i \ (d(k,z)-4) for some i f , 1 5 if 2 1,
i ' +l

and r i+l E N e ~ k (~ + ~) (r ~) fo r a l l i, 1 S i S A- 1,

and rl (r Next~(k+l) 1

But (ignoring the (t.]), thh rows of (%**) a r e therefore j u s t
1

C C 0 . .

k+l, j " k+l, j '+12 'k+l, j '+2' , c + ~ , ~ , for some j ', j" with

c k+l, jV+l = 'k+l, j t (i.e. jl'+l j ' (mod d(k+l,z))).

It should now be apparent t h a t L (3 + l) =

-The construction of F is analogous t o t h a t of F1.
k+l

Clearly L(-FH1) = SF
k+l

The length and depth of EWl and Fwl a re given by:

The r e l a t i o n s (lR), (I d) , (2 4 , (2d) imply:

k 2 IEkl ' I F k l = 0(3 ''1
and

depth(Ek) = depth(Fk) = k + 1

f o r 1 5 k 9 m.

F ina l s t a g e el.

E,tl i s now const ructed such t h a t

L(E&) + C* i f f CompM(qoxV
d (m, z) -n-2 # @ .

Recal l t h a t M accepts A wi th in space S(n), and S(lx1) s g(m,z)

by assumption. Also, g(m,z) S d(m,z)-4 by Lemma 4.26.2.

Therefore L(Edl) # C* i f f x E A.

W e write Eel = (u e m+l, i 1 i=o

Construct e mC1.0 and &I, 1 exac t ly l i k e %+I, 0 and %+I, 1

where k = m. Then L(em+l,o " emCl, 1) i f f w is a word of t h e

form (**) where k = m.

For . the remainder, of t h e cons t ruc t ion of E dl' Sume

w $! I(emtl,O U edl,l) and the re fo re t h a t i s a word of the form

(***)wherek=m. A l s o l e t r l , r 2 , r 3 , * ~ . b e a s i n (*).
y r 1

e mt l , 2 i s constructed s o t h a t

d(m,z)-n-2
0 $z L(emtl 2) i f f rl = p(qOxP 1

The construction i s s imilar t o and somewhat simpler than the

construction of e k+l,2

Let x = x x x 3 - * = ~ n . Let y1,y2,y3,-*,ynG E xdl be such tha t

That is, Y l = ($,90.x1), Y2 = (q0,~1,x2), yi = (x ~ - ~ , x ~ - ~ , x ~) for 3gi<n,

-
+ - x n l x n Y Yn+2 = x n Yn+3 = V) Yn+4 = (V,V,$)

For 1 j 5 n+4, l e t denote (Eel - (yj)).
j

The argument t ha t w $? L(e,F1,2 *-
iff r1 E Y1Y2Y3" .Yn+2Yn+3Yn+4

i s analogous to the one given above for e
k+1,2*

To bound the length of emt1,2, r e c a l l t ha t

* * "(x)*" abbreviates --(C . (L l) - z),
Sm

11
* *

(zSdl) *" abbreviates -(C (L 2) *C) ,

'E*" abbreviates (4 U #) , and Cmt2 = (#I.

Let s ' = card(swl).

Then le,cl,21 = O(sln) ; d e ~ t h (e * ~ , ~) = 2.

Also note t ha t only alphabet symbols from hl appear within

e mt1,2' This f ac t i s used below to obtain an improved bound on the

length of ed1,2 a f t e r the alphabet symbols have been coded i n t o

binary. I n par t icular , we wish to bound the length of the coded

version of e &1,2
by cn, where c depends on M but not on x, m, o r z .

Construct e &1,3 and em+1,4 exactly l i k e ek+1,3 and above,

where k = m and JM (%) replaces JG(k+l) (RG(k+l)). By the discussion

concerning ek +1,4' i t then follows tha t w $! L(ewl U) i f f
9

r E NextM(ri) for a l l i, 1 S i S bl, such tha t ri is an r.i.d. i+l

of M. O f course, since w B L(eel,Z) ensures tha t rl is an r.i.d.

of M, we conclude tha t r E NextM(ri) for a l l i, 1 i S 4-1. i+l

Finally w $! L(eel) i f f LI contains the symbol ($,qa,l).
9

(Recall the acceptance convention for STM's.)

Let

*
Assume w EC i s now arbitrary. Now

w $! L(Ewl) i f f w is of the form (*&) where k = m
and d(m,z)-n-2

r, = p(q,xlb 1
and V

r E Nexk(ri) for 1 5 i 5 4-1
and

i+l

, , appears i n

i f f M accepts x within space d(m,z)-2

i f f x E A .

Thirefore L(E&l) # C* i f f x E A.

The next Lemma 4.26.4 describes a coding of many alphabet

symbols in to binary i n the case where -- appears i n expressions.

There are of course several a l ternat ive methods of coding, some of

which are simpler t o prove correct than the one given here. This

part icular method of coding i s chosen to obtain a be t te r bound on the

length of the coded edl,2 as described above, and thus a be t te r bound

on the length of EM(x,m,z).

Lemma 4.26.4. There is a constant c > 0 such tha t the following holds.

Let C = { c ~ ~ , a ~ , c ~ ~ , * * . , D ~) be a f i n i t e alphabet. Let q be

one of the se t s [U, . ,-) or {U, . ,-,*I .
+

Define the map h :C + { 0, l) by

h(a,) = 10 for l s i ~ s .
A

Extend h, h: ZC*, 2(0 '~]* , i n the obvious way (cf. proof of Lemma 4.10).

Let G be the {O,l} -{U, ,-} -expression

G = (0 * (4 U 0) U (4 U 0) * 1).

I f E i s a --expression, define the (0, l] +-expression P(E)

inductively by the rules:

B((E1 @ E2)) = ($(El) @ P(E2))
where @ #

P((El@)) = (P(E1)@)

i
Let C = (10 1 1 r i S s) be the s e t of code words.

Let E be an arb i t ra ry --expression. (All occurrences of -
*

i n E denote complementation r e l a t ive to C .)

men: (1). L (~ (E)) n C* = ~ (L (E)) ;

(2). depth(p(E)) depth(E) + 1 ;

(3). IB(E)I ' c ~ I E I *

Proof. (3) should be obvious by inspection. (2) i s eas i ly proved by

induction on depth(E).

*
To prove (I) , l e t LO = L(-G) = (A) U 1.(0,1) -0 . Note tha t

*
C C Lo and tha t C i s a uniquely decipherable code, that is, h i s

* *
one-to-one as a map f romz to (0 , l) .

Now by induction on the length of E, one can show tha t

(i) . L(B(E)) Lo
and

(i i) . L(p (~)) n c* = ~ (L (E)) .

We prove the induction s tep for one case. Assume (i) and (i i)

hold for an expression E Let E = (-El) so p(E) = (-(p(E1) U G)). 1' *
Assume w E (0 , l) .

* *
i f f W E C - L(p(E1)) because C c Lo

*
i f f w E C - h(L(E1)) by induction

*
i f f W € h(L(E)) because h i s one-to-one on C ,

*
and h(R) E c * for R S C .

*
The remaining cases, E = El U E2, E = E1.E2, and E = El , a l l

follow i n a s t ra ight forward way from t h e f a c t s t h a t C is uniquely

decipherable, and t h a t i f u1,u2 E Lo and w ~ = w ~ E C* then u1,u2 E c*.

Returning t o t h e proof of t h e main Lemma 4.26, l e t h and C

be as i n Lemma 4.26.4 f o r t h e alphabet C used t o cons t ruc t Edl.

*
By Lemma4.26.4(1), L(E,C1) # C i f f L(P(Ed1)) n C* # c*.

Let
H = 0 * (4 U 0) U (4 U 0).1 U (4 U O) - (O ~ + ' U l l) . (4 U 0) ,

*
w d n o t e L(H) = (0 , l) - C* .

Therefore

L(p(Edl) U H) $ (0,1)* i f f L(Edl) # C* i f f x E A.

Let %(x,m,z) = P(Eel) U H

W e must now bound t h e depth and length of %(x,m,z).

depth(Edl) = max(depth(Em),depth(Fm) + 1,2) = m + 2,

-depth(p(EmC1)) idepth(Emtl) + l = m + 3 by Lermna4.26.4(2).

and thus depth(%(x,m,z)) < m + 3 .

To bound the length of %(x,m,z), note . t h a t :

(i) . I%(x,m,z)l = I P (E ~ ~) I + IHI + 0 (1) ;

(i i) . I H I = O(s) ;
5

(i i i) . I P(Ed1)1 = C I > I + O(1) ;
i = O

(5 ~) . le,l,i I " IF,^ + O(s) f o r i # 2.

m 2
Now (iv) , Lemma 4.26.4(3), and the bound IF,^ = O(3 z S)

derived above gives

m 2 2
(v)- I $(emFl,i) I = O(3 z s) for i f 2.

It remains only to bound the length of j3(emtlY2). To achieve

the desired bound, assume C i s enumerated so tha t

L1 = (cl. O2 Y c3 , .* , 0] , where s ' = card (xwl) depends only

on M (not on x, my or z). Therefore 0 € E l implies 1 h(o)l S sl+l.

By our remarks above tha t 1 e&ly 2 1 = O(stn) and tha t e
&1,2

contains only alphabet symbols i n 2 i t is c l ea r tha t w19

(That is, the application of $ to e
el, 2

"expands" each alphabet

symbol by a t most a factor of O(sf) , and "expands" each operation

symbol by a t most the fixed factor IGJ, cf . Lemma 4.26.4.)

Combining (i) , (i i) , (i i i) , (v), and (vi) gives

Finally, note tha t s = s1 + O(m) because the alphabets

C 1 ~ 3 9 * * = , C m are each of fixed size.

We conclude tha t there i s a constant a (depending only on M)

such tha t
m 2 2

I%(x,m,z)l 5 a(3 z m + 1x1) for a l l x, my and z.

We l e t the reader supply h i s own argument tha t %(x,m,z) can be

computed uniformly from x, m, and z, within time polynomial i n and

space l inear i n %(x,m,z) . The basic argument i s by induction on k,

noting tha t , given p(Ek) and p(Fk), p(Ek+l) and p (~ ~ + ~) can be

constructed within time polynomial i n and space l inear i n the i r lengths.

This completes part (1) of the proof.

(2). Operation * is now available. We describe modifications

to the construction just given. For a l l k, construct Ekl and Fk
l

exactly l i k e Ek and F except:
k

*
where O = (Q1,Q2, - * , Q j) . Now O i s an expression of depth 0.

(M2). In the construction of E ~ ' , wr i te subexpression e15' as:

Jc

e15
= c.c;. (u (C1 - (a)) . ~ 2 + ~ . (c"*)*.(5) .c;.c .

a E C,

Note tha t le15 ' 1 = O(zs); depth(e15') = 0.

~ + 3 a
We claim tha t i f w E (z22*C1) *CiZ for some 4 2 2 (tha t is,

if w is of the form (*), cf. the construction of ell), then

w E ~ (e ~ ~ ~) i f f w E L(e15).

To see th is , assume ~JI i s of the form (*) and wri te

w = t w w w t w t w t . * * thl WL1WL2WL3* *'Wa, z+3 tl? 0 11 12 13'*'Wl,z+3 1 2 2 3 3

where ti E % 2 for O g i h l?, wi E q + 3 for 2 h i i 4-1,

and wlj,wAj E C1 for I r j s z+3.

In part icular , note that t1,t4-l E zZ2 and r eca l l zZ2 il C1 = 8 .

It is now easy to see tha t

w e L(e15') i f f wlj E % (1) (~ 4 j) for 1 s j s ~ + 3 iff w a - -(eltj)

Clear ly modificat ion (Ml) does no t a l t e r t h e language described

by an expression. I n p a r t i c u l a r , s i n c e W $! L(ellt) i f f W $! L(ell)

i f f W is of t h e form (*), i t follows t h a t L (y) = L(-El).

I n genera l , it then follbws t h a t L(-Ekt) = L(%) f o r a l l k.

One f u r t h e r modificat ion concerns t h e method of coding

expressions over alphabet C t o expressions over alphabet {0,1].

*
Let h:C + {0,1} and C be a s i n Lemma 4.26.4. I f E is a

%(U,* ,-,*I - expression, d e f i n e t h e [0,1} -{U; ,-,*} -expression p ' (E)

by t h e r u l e s given fo r p(E) i n Lemma 4.26.4 where P ' replaces . p and

G ' r ep laces G, where
G ' = (0*(0 U I)* U (0 U 1)*.1).

Since L(G) = L(Gf), t h e proof of Lemma 4.26.4 shows t h a t

1 . L (~ ' (E)) n c* = ~ (L (E)) f o r a l l E.

Since depth(G1) = 0, we a l s o have

(2) . depth(pf (E)) = depth(E) f o r a l l E.

Now l e t %'(x,m,z) = EL^) U H.
1

By t h e argument above t h a t L(E,tl) = L(E,C1) and by (1 ') w e conclude

t h a t L(EMt(x,m,z)) = L(EM(x,m,z)).

The new bounds on t h e depth and length of %'(x,m,z) a r e a s follows.

From (MI) and (2 ') :
depth(EIf) = depth(Flf) = 0 ;

d e p t h (~ i + l) = d e p t h (~ k l) = max(depth(Ekf),depth(F<)) + 1 = k

f o r l S k S m ;

and depth(%'(x,m,z)) = depth(^' el) = m (provided m 2 1).

Modification (M2) gives IE1'I 4 I F ' 1 = O(sz). The r e l a t i o n 1

(2R) derived e a r l i e r remains t h e same, and the re fo re

It can now be checked t h a t l E L l l = 0 (3 ~ s z + sn) and the re fo re

I E '(x,m,z)j = 0 (s (3 ~ s z + sn)) m
m 2 2

a(3 m z + m 1x1)

for some constant a depending only on M.

This completes t h e proof of Lemma 4.26.

Section 4 .2 closes with two open questions cmcerning the complexity

of inequivalence problems with The f i r s t concerns the gap between

known lower and upper bounds for NEC ((0, I} , (U, ,--I) .
Open Question 4 . 3 3 . Precisely where between g(r1ogbnl ,0) and g(n,O)

does the space requirement for NEC ((O,l} , (U, ,--I) l i e ?

In part icular , i s NSPACE(g(n,O)) NEC({O,1}, (U, ,--I) ?

In the proof of Lema 4.26 we essent ial ly use three occurrences

of expressions for the g(k,O) "ruler" t c construct ex-,ressions for the

g(k+l,O) "ruler". Thus the s i ze of the expression for the g(k,O)

"ruler" grows exponentially i n k and we obtain only a g(1og n,O) b

lower bound on the complexity of NEC([0,1] ,[U,',--1). The lower

bound could be raised t o g(cn,O) for some constant c , thereby

se t t l i ng Open Question 4.33, i f one could construct an appropriate

g(k+l,O) "ruler" using only one copy of a g(k,O) "ruler". Some of

the logical theories mentioned i n Chapter 5 contain enough notational

power that only one occurrence of the formula corresponding to a

g(k,O) ru le r is required t o obtain a g(k+l,O) ru l e r and so one can

obtain g(cn,O) lower bounds on the i r complexity. However, for the

case of regular- like expressions using U, *, and --, or even allowing

*
as well, we are unable to s e t t l e Open Question 4.33.

For technical completeness, we would l i k e to show that no two

out of three of the operations U;,- yield a nonelementary

inequivalence problem. We know by Theorem 4.27 tha t

INEQ([O, 1) , [U, ,--I) i s nonelementary. The complexity of

INEQ(Z, [U, -)) (where card@) 2 2) i s characterized by Theorem 4.19

as being precisely NP which i s cer ta in ly elementary. Also, i t i s

easy to see that INEQ(C, [U,-]) E 6'. If E is a E[U,-) -expression

then e i ther L(E) = O or L(E) = C* - O for some O C. Moreover,

-147- (Note: - pp. 148 to 156 a r e deleted)

such a description of L(E) can be obtained deterministically within

t ime polynomial in the length of E. The case {. ,N] is open.

Open Question. Characterize the complexity of I N E Q (~ , {. ,N>)

2 for ca rd (1) 1 2. In part icular , i s it elementary- recursive.

4.4 Expressions Over a One-Letter Alphabet.

We have seen in previous sections that the complexity of INEQ(C,~)

or NEC-(C,~) for a particular 9 does not depend significantly on C

provided card(C) 2 2 (cf. Lemma 4.10). This section shows that the

complexity of a problem can be affected, sometimes drastically, by the

restriction to a one-letter alphabet.

This is best illustrated by the case cF, = (U,*,-). The results

of section 4.2 show that INEQ(C, [U, ,-)) is not elementary-recursive

if C = [0,1) . However, this problem becomes relatively trivial

i f C = [O).

Theorem 4.37.

Proof. The proof rests on the fact that a (0)-{UYs,-} -expression

E describes either a finite or cofinite set of words, and moreover
*

that all words w € [O} of length exceeding IE 1 are either

all not in are all in L(E). That is:

Lennna 4.37.1. Let E be a (0)-(U,*,--) -expression. Then either

*
(i). (finite) ForallcdE(0) ,wEL(E) Iwl I E ~ ,

or *
(ii). (cofinite) For all U E [O) , cd $! L(E) Iwl S I E 1.

Proof. By induction on the length of E.

If E = (0) or E = (A) , the lemma is certainly true.

Suppose the lemma is true of expressions El and E2.

If E = ("El), then E L(E) i f f $! L(E1), 1 ~ ~ 1 < I E ~ ,
and thus t he lemma is t rue of E.

Suppose E = (E1.E2). F i r s t suppose L(E1) and L(E2) a r e both

f i n i t e . Then L(E) i s f i n i t e , and w E L(E) implies w = w1W2 for some

W I E L(E1) and m2 E L(E2). Since Iwl) (~ ~ 1 and lw21 S- IE21

by induction, 1 ~ 1 S lEll + lE2 1 < I E 1 . Now suppose L(E1) i s c o f i n i t e

and L(E2) is f in i t e . I f L(E2) = @, then L(E) = @ and the lemma i s

k t r u e of E. I f L(E2) # 8, then 0 E L(E2) fo r some k h I E ~ 1 by

induction. Also by induction, z > lEll implies 0" E L(E1)

for a l l in tegers z . Therefore z > (E l] + k implies

o Z E L(E1).L(E2) = L(E). But lEll + k s 1 ~ ~ 1 + iE2l < [E l , and thus

the lemma is t rue of E. The case i n which both L(E1) and L(E2) a r e

c o f i n i t e i s handled similarly.

The reader can check the case E = (El U E2) i n a s imilar fashion.

This completes the proof of Lemma 4.37.1. 0

Thus i f E i s a (03 -{U,* ,-I -expression, L(E) has a f i n i t e

representation of the form [F, t] , where F C N, F i s f i n i t e , t E {O,l],

C (0 ' 1 z E F) i f t = O
[F, t] represents

(0 ~ 1 z B . F) i f t = l ,

and e i the r max(F) S I E 1 o r F = @.
Also i t i s no t hard t o see tha t , given f i n i t e representations for

L(E1) and L(E2), a determinis t ic algorithm can find a f i n i t e represen-

t a t ion for L(E1 U E2), L(E1*E2), o r L(-El) within time bounded by

a fixed polynomial in (~ ~ 1 + I E ~ ~ . Therefore, using this algorithm

recursively, the time required to find a finite representation of

LfE) is bounded above by T(I E I) where

T(n) = max(T(nl) + T(n2) 1 nl,n2 > 0 and nl+n2 < n) + p(n)
where p(n) is a polynomial.

Therefore T(n) = O(n-p(n)) assuming (without loss of generality)

that p(nl)fp(n2) 5 p(n) for all nl,n2 > 0 with nl% < n.

Also, a deterministic algorithm can check that two finite

representations describe different sets of words within polynomial time.

The first step of the main algorithm, checking that x is of the

form (E1,E2) where El and E2 are (0)-{U,*,-)-expressions, can be

3
done deterministically within time 0(IxI) [cf, You671.

The various pieces can be put together to give a deterministic

polynomial time acceptance algorithm for INEQ((0),(U,o,--)). 0

For another cp, NEC((0) ,q) is complete in z class which may lie

strictly above P. The inequivalence problem for regular expressions

(cp = [UYo,*]) over a one-letter alphabet is (-complete in NP.

(Recall that in the two-letter case, NEC((O, I), (u,* ,*)) is

S -c&lete in POLYSPACE (cf. Remark 4.14(3)).)
log

Theorem 4.38. NEC (10) ,{u,*,*)) is $-complete in NP.

We omit the proof of Theorem 4.38. A proof can be found in [S~73].

Chapter 5. Nonelementary Logical Theories

By using e f f i c i en t reducibi l i ty techniques, several workers

[Mey73], [EX741 , [Rob731 have obtained lower bounds on the complexities

of decision problems for cer ta in decidable logical theories. In fact ,

the f i r s t example of a provably d i f f i c u l t natural decision problem

was provided by Meyer [Mey73] who showed tha t the decision problem for

the weak monadic second order theory of successor (WSlS) i s not

elementary-recursive. Subsequently, Robertson [Rob731 showed that the

s a t i s f i a b i l i t y problem for sentences i n the f i r s t order language of the

nonnegative integers with < and a s ingle uninterpreted monadic

predicate is not elementary-recursive. The purpose of t h i s chapter

i s to show tha t these two re su l t s and others follow as simple coro l la r ies

of the r e s u l t tha t the emptiness problem for s ta r- f ree expressions

is not elementary-recursive (cf. $4.2).

To simplify notation i n th i s chapter:

A s ta r- f ree expression i s a (0, l) -(U, ,-I -expression;

NE(star-free) = (E I E i s a s ta r- f ree expression

and L(E) # @)

Note tha t E E NEC((0,l) ,(U,*,-1) i f f (-E) E NE(star-free).

The next fac t i s now inunediate from Theorem 4.27.

Fact 5.1. For a l l ra t ional b > 3, NE(star-free) N S P A C E (~ (~ I O ~ ~ ~ ~ , O)) .

In part icular , NE(star-free) i s not elementary-recursive.

In t h i s chapter we consider several decision problems concerning

res t r ic ted forms of symbolic logic such as the two mentioned i n the

opening p~ragraph. In each case we show tha t NE(star-free) i s

e f f ic ient ly (in part icular) reducible to the part icular decision
PJ

problem, and thus tha t these decision problems are not elementary-

recursive.

The main advantage of obtaining such resu l t s as corol lar ies of

Fact 5.1 (rather than by a d i rec t arithmetization of Turing machines)

is simplicity. In the cases we consider, there i s a simple, eas i ly

described trans formation from NE (s tar- free) to the part icular decision

problem, and so we may avoid repeating for each decision problem the

arithmetization of Turing machines which we have already carried out

i n terms of s tar- free expressions.

WSlS can also play the ro le of NE(star-free) as a s ta r t ing point

for further reductions. However, for several part icular theories T,

we know of no d i rec t transformation from WSlS to the decision problem

1'
for T , even though there is a simple transformation from NE(star-free)

t o T. Intui t ively, NE(star-free) succeeds where WSlS f a i l s because

WSlS is a considerably r icher language than the language of s ta r- f ree

t
In cer tain cases, the only known e f f i c i en t transformation from WSlS to

T involves f i r s t taking a decision procedure (Turing machine) M for

WSlS and then arithmetizing M i n the language of T.

expressions; i n t h e language of s t a r - f r e e expressions t h e r e i s no

d i r e c t analogue of l o g i c a l q u a n t i f i e r s o r var iables .

A disadvantage of obta in ing such r e s u l t s a s c o r o l l a r i e s of t h e

s t a r - f r e e r e s u l t i s t h a t (i n t h e e a s e s we consider) t h e implied lower

complexity bound is somewhat weaker than t h e bound which can be

obtained by a d i r e c t ar i thmet iza t ion. Since space g(rlogbnl,O) i s

t h e b e s t known lower bound on the complexity of NE(star-free) ,

space g(rlogbnl ,0) i s the b e s t lower bound one can ob ta in on a s e t B

by a transformation f from NE(star-free) t o B, assuming lf(x)l 2 1x1

f o r a l l x. However, a s was f i r s t pointed ou t by Rabint f o r WSlS,

and then by Meyer f o r t h e s a t i s f i a b i l i t y problem fo r sentences i n the

f i r s t order theory of l i n e a r order , one can show t h a t these problems

r e q u i r e space g(rcn1,O) fo r some c > 0. This lower bound i s c l o s e r

t o known upper bounds of g (rdn1,O) f o r some constant d, [Buc60a],

[Elg61], [Rab69]. Of course, i f one wants only t o show t h a t a c e r t a i n

decis ion problem i s n o t elementary- recursive, then an e f f i c i e n t t rans-

formation from NE(star-free) t o t h e problem i s s u f f i c i e n t .

W e a s s m e ' the reader i s fami l i a r wi th t h e b a s i c not ions of t h e

p red ica te ca lculus , (see f o r example [Sho67]).

Let L(<,P) be the s e t of formulas w r i t t e n i n f i r s t order p red ica te

ca lculus using only t h e binary r e l a t i o n a l symbol < and t h e monadic

p red ica te symbol 2, together wi th t h e usual l o g i c a l connectives

A, V, -, s, etc. , q u a n t i f i e r s 3 and Y, var iab les , and parentheses.

t
Personal comunicat ion.

-164-

We sha l l use other re la t iona l symbols such as s and = i n writ ing

formulas since these can be expressed i n terms of < by formulas of

fixed s ize ; for example (x = y) i f f ~ ((x < y) V (y < x)) .

Lower case Roman l e t t e r s a re used to denote f i r s t order variables.

(Variables may i n general be subscripted by a binary number, although

the part icular formulas we sha l l wri te require only a fixed (approxi-

mately 8) number of variables.)

A formula F i s a sentence i f F contains no f ree variables.

Let S be a s e t and l e t < S be a l inear (i.e. t o t a l) order on S.

Let cp be a sentence i n L(<,l?). cp is sa t i s f i ab le with respect t o

t
(S , d) i f f there is an interpretat ion P:S + (0, l) of g such tha t

cp i s t rue under the interpretat ion (S,CS,P). Let SAT(S,<S) be the

s e t of a l l such sa t i s f i ab le sentences.

The main r e s u l t i s that i f S i s an i n f i n i t e s e t with l inear order

C then NE(star-free) 5 SAT(S,CS) and hence SAT(S,$) i s not
S ' PA

elementary-recursive.

Remark: The f i r s t order theories of (N,<) , (Q ,<) , and vario-xs

other orders without a predicate P are a l l elementary-recursive

[cf. Fer741.

Before proving the general r e su l t , i t i s ins t ruc t ive to prove a

somewhat simpler special case, namely S = N (the nonnegative integers)

and < = < (the usual re la t ion " less than" on integers). Decidability S

of SAT(N,<) follows from [Buc60b]. The r e s u l t than SAT(N,<) i s not

t
View 1 as "true" and 0 as ''false".

elementary-recursive was obtained independently by Robertson [Rob731

using a direct arithmetization.

Theorem 5.2.

(1). NE(star-free) S SAT(P\J,<).
PI

(2). Therefore SAT(M,<) is not elementary-recursive, and in fact

SAT(N,~ $! ~s~Ac~(g(rlo~~n1,O)) for all b > 3.

Proof, (1). Given a star-free expression E, we construct a formula

with two free variables F (x,y) C L(<,P) such that: E

(*) If P:N {0,1) and i, j E N, then F (i, j) is true under
E

the interpretation (N,<,P) iff

(i). i j and P(i)P(i+l)P(i+2)**.P(j-1) E L(E)
or

(ii). i = j and XEL(E).

F (x,y) is constructed inductively on the structure of E: E

.- F(o) (x,y) is (("y = x + 1") A -g(x)) ;

where ("y = x + 1") abbreviates ((x < y) A --(32) (x < z < y)).

Inductively, if E and E' are star-free expressions then:

By renamingvariables appropriately, note tha t F (x,y) can be
E

wri t ten u s b g exactly three variables. It i s a lso easy to prove by

induction tha t FE(x,y) has the property (*) above for a l l s tar- free

expressions E.

Now l e t YE be the sentence

Then clear ly E E NE(star-free) i f f CpE E SAT(N,<).

Let f be the function mapping E t o ei, for a l l E. Clearly f can
E

be computed within polynomial time and l inear space, and f i s l inear

bounded. (To be completely precise, f(x) must also be defined i f x

is not a well-formed star- free expression. However an IOTM computing

f can f i r s t check within space log n that x is well-formed, and output

some ill-formed- or f a l se sentence i f not.)

(2). This is now immediate by Fact 5.1 and Lemma 3.7.

A transformation similar to that of Theorem 5.2 can be used t o

embed NE (s tar- free) i n the language of cer ta in weak monadic second

order theories o f N. For exmple, l e t WSlS be the s e t of t rue

sentences written i n weak monadic second order logic using only the

predicates y = x-tl (y i s the successor of x) and x E X. [M~Y 7 3 1

show tha t WSlS is not elementary-recursive. This also follows

eas i ly from Fact 5.1.

Theorem 5.3. - NE(star-free) WSlS.
PJ

Therefore WSlS is not elementary-recursive.

Proof. A formula F (x,y,g) i s constructed t o sa t i s fy property (*) E

of Theorem 5.2, where g i s now viewed as a f i n i t e s e t variable.

F (E u E ') , F (~ . ~ ') s and F (--E) a re wri t ten as i n Theorem 5.2 where

"(x y)" i s expressed by the formula

(m) ((x E A) A --(el E A) A (vz) (z+l E A =) z E A)) .
A s before, FE(x,y,g) c w be wri t ten using a fixed number of

variables.

Finally, i f = (3 ~) (3 ~) (3 y) (~ ~ (x , y , D) then
. E

E E NE(star-free) i f f YE E WS1S.

k z k ~
Remark. If depth(E) = k , ~ then Cp of Theorem 5.3 is transformable within

E

polynomial time to a sentence ep' i n prenex normal form with k-1
E

alternations of se t quant i f iers . Also, from Theorem 4.29 i t follows that ,

for my k 2 1, NSPXE(g(k,n)) < NE(star-free) n (E I depth(E) S kS4 1.

Therefore, for k 2 1, NSPACE(g(k,n)) i s transformable within

polynomial time to WSlS r e s t r i c t ed t o prenex sentences with a t most

k+3 alternations of s e t quantifiers. By a d i r ec t proof, Robertson

[Rob731 has obtained the stronger r e su l t tha t , for k 2 2, NSPACE(g(k,n))

is transformable within polynomial time t o prenex sentences with a t most

k-1 alternations of s e t quantifiers.

Similarly i n Theorem 5.2 one can r e l a t e the complexity of deciding

SAT(N,<) t o the number of a l ternat ions of f i r s t order quantifiers.

W e now turn to the main r e s u l t of t h i s section, t ha t NE(star-free)

is e f f i c i en t ly reducible to SAT(S,<) for an arb i t ra ry i n f i n i t e s e t S

with l inear order <. Of course SAT(S,<) may not be decidable for cer ta in

choices of S and <. However, whatever the upper complexity bound,

SAT(S,<) is never elementary-recursive.

It should f i r s t be pointed out tha t the simple transformation of

Theorem 5.2 does not work for general S. This i s i l l u s t r a t e d by

*
choosing (S,<) = (Z ,<*) where - Z* = Q x Z and

(ql,zl) <a (q2,z2) i f f e i ther (ql < q2) o r (ql = q2 and zl < z2)

Now l e t E be a par t icu lar s ta r- f ree expression which describes the

s e t of words which " s ta r t with 0" and "end with 1" and "do not contain

01 as a subword". That is .
E = -(-(O* (4 U 0)) U -((+I U O)*1) U (4 U 0) - 0 1 - (4 U 0)) .
- *

(Recall L ((4 U 0)) = (0 , l) .)

Certainly L(E) = @ and therefore E g NE(star-free) . However

l e t t i n g FE(x,y) and O = (3x)(3y)(FE(x,y)) be as i n Theorem 5.2, we E
J;

claim tha t VE E SAT(Z ,<*). To see th i s , choose (for example)

0 i f q g O
P(q,z) = for a l l q E Q , z E Z.

1 i f q > o

TQ denotes the ra t iona l numbers. i denoces the integers.

It i s now straightforward t o ve r i fy t h a t F ((0,0),(1,0)) i s t rue E * *
under the in te rpre ta t ion (Z ,<*,P) and therefore CpE € SAT(Z ,<*).

(Informally, the i n f i n i t e word P(O,O)P(O,l)P(O,2).- -* -~ (1 , -1)P (1 ,0)

= 000..- -**111 correc t ly s t a r t s with 0 and ends with 1 and y e t

doesnJ:t contain 01 as a subword.)

The proof t ha t L(E) # Q i f f CpE E SAT(N,C) impl ic i t ly uses the

property of t h a t for a l l i , j E N there a r e a t most f i n i t e l y many

k E N such tha t i < k < j. This property does not hold for other s e t s

*
such as Z causing the d i f f i c u l t y i l l u s t r a t e d above. However t h i s

d i f f i c u l t y can be overcome by a modification t o the transformation

of Theorem 5.2.

Fix a par t icu la r i n f i n i t e s e t S with l i nea r order <. The f i r s t

s t ep u t i l i z e s the predicate - P t o pick out a s e t of d i sc re t e "points"

from the (possibly dense) s e t S. The formula point(x) is s a t i s f i e d

by an in te rpre ta t ion of x and P i f f g i s iden t i ca l ly f a l s e on some op2n

in t e rva l below x and i s iden t ica l ly t rue on some in t e rva l above x.

The t ru th value of g(x) under the in te rpre ta t ion is not constrained

by point (x) .
point(x) i s (3s) (3 t) (Vw) ((s < x < t) A ((s < w < x) a -g(w))

A ((x < w < t) =g (w))).

Let nextpt(x,y) be the following formula which is s a t i s f i e d by

an in te rpre ta t ion of x, y, and g i f f x and y a r e "points" and y is

the next point a f t e r x.

nextpt(x,y) i s (point (x) A point (y)

A (Vz) ((x < z <= y) * --point(z))).

Let P:S + (0 , l) be a given i n t e r p r e t a t i o n o f - P.

Define Points(P) = (x E S 1 po in t (x)) .
I f p1,p2 E Points(P) , we say t h a t pl and p2 a r e f i n i t e l y f a r

a p a r t i f f card{ w I pl < w < p2 and w E Points(P)) i s f i n i t e .

I f x,y E Points(P) , x < y, and x and y a r e f i n i t e l y f a r apa r t ,

de f ine

where x = x, nextpt(xe,y) , and n e x t p t (x ,x) f o r 1 S i S A. 0 i-1 i

Define word,(x,x) = X f o r a l l x .E Points(P) .

Lemma 5.4. For any s t a r - f r e e expression E t h e r e is a formula FE(x,y,u,v)

i n L(<,Z) wi th t h e following p roper t i e s .

Let ?:S + {0,1] be any i n t e r p r e t a t i o n o f Z.

(i) . For a l l s1,s2,s3,s4 E S, F E (s 1 2 ,s ,s 3 ' 4 s) i s t r u e (under t h e

i n t e r p r e t a t i o n (S,<,P)) only i f sl;s2,s3,s4 E Points(P)

and sl S s2 5 s3 S s4.

(Ti) If P1,P2,P3,P4 E Points(P) , Pl s P2 s P3 s P4, P l and P* a r e

f i n i t e l y f a r apa r t , and pg and p4 a r e f i n i t e l y f a r a p a r t , then

F ~ (P ~ . P ~ , P ~ , P ~) i s t r u e i f f =word P (P 3 9 ~ 4) E L(E).

(iv) . Moreover there is a l i nea r bounded function f E polyl in

such t h a t f (E) = FE fo r a l l s t a r- f r ee expressions E.

Proof. F i s defined inductively.
E

L e t point (x,y,u,v) = (point (x) A point (y) A point (u) A point (v))

F (x,y,u,v) i s (point(x,y,u,v) A (x = y) A (u = v) A (x s u));
(A)

F (x,y,u,v) i s s imi la r t o F (x,y,u,v);
(1) (0)

The asser t ions (i) , (i i) , and (i i i) a l l follow by straightforward

inductive proofs .
For example, one pa r t of the inductive s t e p for (i i i) i s a s follows.

Assume (i i i) i s t rue for expressions E and E l .

Assume p1,p2,p4 E Points(P) and pl s p2 5 p4. Then

F(E.Ef) (p1,p2,p29p4) iff ((") (FE(~ l , z , z , z) A FE? (z , ~ 2 , ~ 2 ' ~ 4))

(") (F E (~ 1 , ~ 2 , ~ 2 , z) A FE! (Z , P ~ , P ~ . P ~))

iff ("1 (F ~ (P ~ , Z , ' , Z) A FE? (' , P ~ , P ~ , P ~))

by induc t ion

i f f ((3z)(FE(p1,',',') A F E r (z , ~ 4 , ~ 4 ' ~ 4))

@ z) (F E (~ l , ~ 4 , ~ 4 ' z) A F E ? (z , ? 4 , ~ 4 , ~ 4))

(because by p a r t (i) , t h e second d i s j u n c t

imp l i e s t h e f i r s t)

iff F(E.Et) (P ~ , P ~ , P ~ ' P ~) by d e f i n i t i o n .

The remaining c a s e s are e a s i e r and a r e l e f t to t h e reader .

Le t P:S + [0 ,1) , l e t E b e a s t a r - f r e e express ion , and l e t

1 1
P1,P2,P1,P2 E Poin ts (P) w i t h P1 " P2 and p; 5 P; .

is t r u e f o r a l l u,v E S.

Note t h a t i s an equiva lence r e l a t i o n on
P,E

h

Let index(=) be t h e index (number o f equiva lence c l a s s e s)
P,E

o f =
P,E'

Lemma 5.5. For a l l P:S + [0,1) and a l l s t a r - f r e e exp res s ions E,

index(=) i s f i n i t e ,
P, E

Proof. F ix some P:S + [0,1] , and a b b r e v i a t e as We prove
P,E

by induc t ion t h a t i ~ d e x (r) is f i n i t e . The proof is s i m i l a r t o E

Brzozowskils proof t h a t any extended regular expression has a f i n i t e

number of types of der ivat ives [Brz64].

I f E = (1) or (0) o r (1) i t is t r i v i a l t o check t h a t index(=E)

i s f i n i t e .

Let E and E l be s ta r- f ree expressions with index(SE) = n and

index(CEl) = nl . From the inductive de f in i t i on of ~ ~ (x , y , u , v) we have

fo r a l l (p1,p2), (P;,P;) E 3:
- 1 1

If (p1,p2) 3E (P;,P;) then (p1,p2) =-E (p19p2)*

Therefore index(=) s n. --E

-
(2). If (p1,p2) =E (P~,P;) and (P ~ ~ P ~) (P~ ,P ;) ,

- I
then (p1,p2) = E U E 1 (P~,P;) . .

Therefore index(= E u E ~) 5 nnl-

(3). Let Cl,C2,C3,*-• ,Cn, 8 be the equivalence c lasses of ' E'

I f (x,y) E 3 define

Classes(x,y) = (i I (32) [x s z 5 y and F (x,z,z,z) E

and (2 , ~) E Ci I)

1 t Now i f (p1,p2) 'E (P;,P;) and C1asses(pl,p2) = Classes(pl,pp),

I I
I

then (p1,p2) EEoE1 (p1,p2). Therefore index(^^.^,) s n2" .

(I) , (2), and (3) a r e easy t o ver i fy from the de f in i t i on of F E '

We sketch the ve r i f i ca t i on of (3). Let u,v E S.

FEOEf (P ~ , P ~ , U , V) is true i f f ((3z) (F ~ (P ~ , ~ , ~ , ~) A FEl (z , ~ 2 , u , v))

(32) (F E (~ l , ~ 2 , ~ , z) A FEt (z,v,v,v)) 1
I I

But F E (~ 1 , ~ 2 , u,z) i s t rue i f f ~ ~ (p ~ , p ~ , u , z) i s t rue because

(p1,p2) EE (P ~ ~ P ;) .

Also, (3.) (F E (~ 1 9 ~ y ~ y ~) A FEt (Z , P ~ , U ~ V)) i s t rue

iff ("1 (F ~ (P ; ~ ~ ~ ~ ~ ~) A (' , P ; , ~ , ~)) is true

? ?
because Classes (pl,p2) = Classes (pl,p2).

It follows tha t F E ~ E f (p 1 , p 2 y ~ y ~) i s t r ue

i f f F E ~ E f (P ~ , P ~ r ~ y ~) i s true. 0

Theorem 5.6. Let S be an i n f i n i t e s e t with l i n e a r order <.

NE(star-free) S SAT(S,<) .
Therefore SAT(S,.<) i s not elementary-recursive, and i n f a c t

SAT(S,<) 6! NSPACE(~(rlogbnl ,0)) fo r a l l b > 3.

Proof. Let ep be the sentence E

V, = (3x1 (3 ~) (

A (Vz) (vz') ((x 5 z 4 z f b y) ~ F E (x y ~ , z f , y))).

We claim tha t E E NE(star-free) i f f qE E SAT(S,q .
(only i f) . Let E L(E) be a shor tes t word i n L(E); t ha t i s ,

*
fo r a l l w' E (0 , l) , l w f l < 1 ~ 1 implies w' @ L(E).

-
Since S i s i n f i n i t e , we can choose P:S + (0 , l) and x,y E Points(P)

such t h a t x and y a r e f i n i t e l y f a r apar t and wordp(x,y) = w. Therefore

F (x,y,y,y) i s t rue by Lemma 5.4(i i) .
E

Choose any z ,zf E Points(P) with x I; z < z f % y. Since z < z f ,

lword (x,z)*word (z t ,y) l < lwordp(x,y)l = I w l . Again by Lemma 5 .4(i i) ,
P P

and s ince w i s a sho r t e s t word i n L(E), we have t h a t F (x ,z ,z t ,y) i s E

fa lse . By Lemma 5.4(i) , FE(x,z,zt ,y) i s a l so f a l s e i f z f Points(P)

o r z ' $! Points(P).

Thus cp i s t r u e under the in te rpre ta t ion (S,<,P).
E

(i f) . Let P:S -t (0,l) be such t h a t cpE is t r u e under (S,<,P) .
Therefore there a r e points x and y such tha t F (x,y,y,y) and E

Suppose x and y a r e not f i n i t e l y f a r apart. Then s ince index(EPsE)

is f i n i t e , there must be z ,z l E Points(P) such t h a t x 2 z < z ' s y

and (x, z) (x, 2'). Now
P,E

FE(x,z,zl,y) is t rue

i f f FE(x,z ' ,zl ,y) is t r u e (by def in i t ion of
P,E)

i f f FE(x,y,y,y) is t r u e (by Lemma 5 .4(i i i)) .

Therefore F (x,z,zl ,y) i s t rue contrary to,sssumption.
E

It follows t h a t x and y a r e f i n i t e l y f a r apar t and thus

wordp(x,y) E L(E) . 0

*
For example, SAT (Z ,<) , SAT (Q ,<) , and SAT (Z ,<,) a re not

elementary-recursive.

A re la ted decision problem i s the s a t i s f i a b i l i t g problem f o r

sentences i n the f i r s t order theory of l i nea r order. Let L(<) be the

s e t of formulas wr i t ten i n f i r s t order predicate calculus using only

the binary r e l a t i ona l symbol <. Let SAT< be the s e t of s a t i s f i a b l e

sentences i n L(<); tha t is, i f 9 E I,(<) i s a sentence, then

CiY E SAX i f f there i s a s e t S and a l i nea r order Cs on S such tha t

cp is t r u e under the in te rpre ta t ion (S,<). S

By a d i r e c t ari thmetization, Meyer has shown tha t

SAN $! NSPACE(g(rcn1 ,O)) for some constant c > 0.

Also, SAT< E ~ s p ~ c E (~ (r d n 1 ~ 0)) for some d > 0 by [Rab69].

A nonelementary lower bound on SAT< also follows by a transformation

very s imilar t o the one jus t given.

Theorem 5.7.

Thus SAT< is not elementary-recursive.

Proof. Given a s ta r- f ree expression E, a sentence q i n L(<) i s
E

constructed such tha t E E NE(star-free) i f f rpE E SAT<. The

construction i s very similar t o that of Theorem 5.6 and Lemma 5.4.

The main difference is tha t the l inear order i s used to pick out a s e t

of d iscre te "points" and also to "simulate1' the monadic predicate g.

I f S i s a s e t with l inear order <, x E S is a "point" i f f

x is isolated below. "P(x) - is true" i f f x i s also isolated above

(so "l?(x) i s false1' i f x i s isolated below but not above).

Construct F (x,y,u,v) and cp exactly as i n Lemna 5.4 and Theorem E E

5.6 except:

(i) . Write point(x) as

(i i) . Replace each occurrence of P(x) by

Exactly as i n the proofs of Lemmas 5.4 and 5.5 and Theorem 5.6,

i t follows tha t E E NE(star-free) i f f rpE E SAT<. 0

A s a f i n a l example, we consider the f i r s t order theory of two

successors and prefix. Formulas i n the language of t h i s theory

*
contain f i r s t order var iables in terpreted a s ranging over [0,1) ,

a t o d c predicates So(x,y) and Sl(x,y) in terpreted a s y = x.0 and

y = x.1 respect ively , and the atomic predicate x Q y in te rpre ted

*
as (3w E [0,1)) [x-w = y I .

This theory, with the addi t ional predicate of equal length,

E(x,y) in terpreted as 1x1 = l y l , i s t o WSlS [ER66], which implies
P

a f o r t i o r i an upper bound of space g(dn,O) for the theory without -
the equal length predicate. The following theorem implies a lower

bound of space g(rlogbnl ,0) fo r b > 3.

Theorem 5.8. NE(star-free) S The f i r s t order theory of two
PA

successors and prefix.

Proof. Given a s t a r- f r ee expression E, we construct a formula with two

*
f r e e var iables GE(x,y) such tha t fo r a l l a ,b E {0,1)

.- GE(a,b) i f f (3w E L(E)) [a=w = b 1.

G (x,y) i s constructed inductively on the s t ruc tu re of E: E

Gfi) (x,Y) is (x = Y) ;

G (0) (x,Y) is S0(x,y) ; G(l) (x , '~) i s S1(x,y) ;

G () i s (3z)(GE(x,z) A G E t (z , ~)) ; (E-El) X'Y

G (E UEt) (x,Y) i s (GE(x,y) V GET (x,Y)) ;

(x,Y) is ((X ' Y) A ^GE(x ,~)) * (-El

The remainder of the proof i s e s sen t i a l l y the same as f o r Theorem 5.2. 5

Remark. (Length of proofs) .
I n the study of log ica l theor ies , i t i s na tura l t o consider the

length of proofs of t r ue sentences, as well as the time and space

required by procedures which recognize the t r u e sentences. Of course,

given any complete consis tent system of axioms AX for a theory T, an

upper bound on the length of proofs from the axioms AX implies a

corresponding upper bound on the space required t o decide T, assuming

t h a t membership of words i n AX can be decided e f f i c i e n t l y (say, within

polynomial time). I n pa r t i cu l a r , fo r the decision problems considered

i n t h i s chapter there i s no upper bound on the length of proofs

elementary-recursive i n the length of sentences, provided the axioms

a r e "e f f ic ien t ly recognizable" as above. See [FR74] for fu r ther

discussion on the r e l a t i o n between length of proofs and computational

complexity.

Chapter 6. Complexity of F i n i t e Problems

The previous two chapters have shown t h a t e f f i c i e n t r e d u c i b i l i t y

techniques can y i e l d non- t r iv ia l lower bounds on t h e complexit ies of

c e r t a i n dec i s ion problems. For reasons of t echn ica l s impl ic i ty , lower

bounds have been s t a t e d i n a 5orm which implies t h a t , no matter which

algori thm i s used t o solve t h e p a r t i c u l a r problem, t h e time o r space

used by the algori thm must exceed t h e lower bound on some input of

length n f o r i n f i n i t e l y many n. The f a c t t h a t any algori thm must use

excessively l a r g e amounts of t i m e o r space i n f i n i t e l y o f t en might be

viewed a s p l a u s i b l e evidence t h a t any algorithm w i l l a l s o perform badly

on inputs of reasonable s i z e which a c t u a l l y a r i s e i n p rac t i ce .

Indeed, i n order t o draw meaningful conclusions about computational

complexity, i t is e s s e n t i a l t o know a t what f i n i t e point t h e asymptotic

lower bouyds w e have derived begin t o take e f f e c t . Such information i s

i m p l i c i t i n our e a r l i e r proofs (cf . $ 3 . 3 ~) .

Our purpose i n t h i s chapter is t o demonstrate t h a t our methods

y i e l d astronomical lower bounds (i n the most l i t e r a l sense, c f .

Theorem 6.1 below) on the complexity of dec i s ion problems f o r expressions

wi th only a few hundred characters .

We f i r s t consider the dec i s ion problem f o r t h e weak monadic

second order theory of the n a t u r a l numbers and successor. Let WSlS be

the s e t of t r u e sentences w r i t t e n i n weak monadic second order log ic

using only the r e l a t i o n s y = x+l and x E A; t h a t i s , t h e second order

sentences which a r e t r u e under t h e standard i n t e r p r e t a t i o n (N,successor)

with s e t variables ranging over f i n i t e subsets of N. ~ C c h i [BucGOa]

and Elgot [Elg61] have shown tha t WSlS i s decidable.
t

For the purposes of th i s chapter, logical formulas a re wri t ten i n

t t a language enriched by cer ta in notational abbreviations. I n

par t icular we may use decimal constants within formulas, writ ing

5 for O+l+l+l+l+l, x+4 for x+l+l+l+l, etc. Also, the binary

re la t iona l symbols s, <, =, f, >, 2 on integers may be used.

Let EWSlS be the s e t of t rue sentences i n C. Note tha t the

additional predicates of EWSlS are a l l expressible i n WSlS, so EWSlS

has no more expressive power than WSlS, and EWSlS i s a lso decidable.

Let C be the alphabet of C. For fixed integers n, we seek lower bounds

on the complexity of recognizing the f i n i t e s e t EWSlS fl p. tit

Turing machine time and space are not su f f i c i en t t o measure the

complexity of f i n i t e sets . Any f i n i t e s e t i s accepted by a f i n i t e

s t a t e automaton within r ea l time (time T(n) = n) and within space

zero. This i s accomplished by coding a f i n i t e tab le of the elements of

a s e t in to the s t a t e s of the automaton.

Thus, for assessing the complexity of f i n i t e se t s , account must be

t
On the other hand, see [Mey73] or Theorem 5.3 of t h i s paper for a

lower bound on the i.0. time and space complexity of WSlS.

t t ~ is defined ~ r e c i s e l y below.

tttWe sha l l include a blank symbol i n C, so tha t EWSls n zn essent ia l ly

contains the true sentences of length less than or equal to n.

taken of t he s i z e o r complexity of the device performing an algori thm a s

we l l a s t he time and space required by t he algorithm. One q u i t e general

way t o do t h i s i s t o measure the number of bas ic operations on b i t s o r

t he amount of l og i ca l c i r c u i t r y required t o decide membership i n f i n i t e

se t s . We assume the bas ic operations on b i t s a r e binary operations

performed by "gatest t wi th two inputs and one output which may i t s e l f

be fanned out t o serve a s input t o o ther ga tes i n a c i r c u i t . This

c i r c u i t model y i e ld s a bas ic measure of complexity f o r Boolean functions

as wel l a s f i n i t e s e t s (v ia appropr ia te encoding i n t o Boolean vec to rs)

c a l l ed combinational complexity [cf. Sav721. Prec i se de f i n i t i ons

appear below.

It w i l l t u rn out t h a t t h e alphabet C used fo r EWSlS conta ins 63

characters , each of which can therefore be coded i n t o s i x binary d ig i t s .

I n pa r t i cu l a r , sentences of length 616 correspond t o binary words o r

Boolean vectors of 6.616 = 3696 b i t s and t h i s w i l l be the number of

inputs t o a c i r c u i t which "accepts" the t r u e sentences. The c i r c u i t

i s t o have a s i ng l e output l i n e which gives t he value one i f and only

i f t he input vector i s the code of a t r ue sentence of length 616.

One main r e s u l t can now be informally s ta ted .

Theorem 6.1. I f C i s a Boolean c i r c u i t which accepts WSIS n z6l6,
12 3 t h e n C c o n t a i n s m o r e t h a n 1 0 gates .

Thus i f a c i r c u i t C accepts EWSlS r e s t r i c t e d t o sentences of

length no t exceeding 616, and i f each ga t e is the s i z e of a proton,

then t o accommodate C the en t i r e known universe would be packed with

gates.
t

The f i r s t lower bound on the combinational complexity of sentences

of logic was obtained by Ehrenfeucht [Ehr72; or iginal ly wri t ten i n 19671

who showed tha t the s ize of c i r c u i t s which accept t rue sentences of

length n about integer arithmetic with a l l quant i f iers bounded by

2
constants described using exponential notation (e.g., 3) must

n
exceed c for some c > 1 and a l l suf f ic ien t ly large n. More generally,

Meyer [Mey74] has observed tha t i f MPSPACE 5 A for some language
pa

A, then the combinational complexity of A must grow exponentially. This

observation implies Ehrenfeucht's or iginal r e s u l t (indeed SPACE(g(€n,O))

is to Ehrenfeucht ' s formulation of bounded arithmetic), and also
pa

implies tha t the combinational complexity of most of the decision

problems studied i n th i s thesis grows exponentially.
- - - - - --- - - --

4 However,

i n order to obtain s ignif icant lower bounds for as small sentences as

possible, it seems be t te r t o carry out a more d i r ec t arithmetization

based on this e f f i c i en t transformation r e s u l t instead of appealing

expl ic i t ly to the resul t .

We now define more precisely the notion of combinational complexity.

9 'We take 10-l~ cm. to be the radius of a proton, and 11 X 10 l i g h t years

FJ cm. to be the radius of the universe.

A c i r c u i t i s best defined as a s t ra igh t- l ine algorithm. S t ra igh t- l ine

algorithms a re defined i n [Sav72] for general domains and functional

bases. We repeat the def in i t ion , r e s t r i c t i n g i t t o the Boolean case.

Definit ion 6.2. Let 46 = { g I g:{0,1)2 + (0 , l)) be the s e t of

Boolean functions of two arguments.

. Let n c C$,, m E @, and t E N. An c-s t ra igh t - l ine algorithm

or c -c i rcu i t of s i z e t with m inputs is a sequence

c = Bm, pel, Pe2, . . . p ~ t - l

such tha t for m 5 k S nttt-1, pk = (i , j ,g) where i and j a re integers

with O S i , j < k and g E Q .

With each s t ep Pk for k 2 m we ident i fy an associated function

k (~ l m + 0 , by induction. F i r s t , i f o 5 A c m-1, define sA

t o be the ath projection,

SA(boblb2-*bm - = bA for a l l boblb2***bm-I E (0 , 1) ~ .

I f m s k s m-f-t-1 and Pk = (i , j , g) then define

Sk(x) = g(Si(x),5. (x)) for x E { 0 , 1) ~ .
J

I f f i s a function, f:{O,l)m + {O,l]P fo r pos i t ive integers m and

p, then the c i r c u i t C computes f i f f C has m inputs and there a r e

integers 0 5 il,i2,-*,ip 5 mCt-1 such tha t

f (x) = 5 . (x)S. (x)*-*Si (x) for a l l X E { 0 , 1) ~ .
=1 l 2 P

The combinational complexity - of 2 function f : { 0 , 1) ~ + (0 , l)

i s the smallest t such tha t there i s a Q16-circuit of s i z e t which

computes f.
t

Let S be a finite alphabet. A n encoding for S is a one-to-one

£Action h:S + {0,1]' where s = r1og(card(s))1.
t t

*
Let $:~*+{0,1] be the extensionof h.

Let A E sn for some n E @.
Define f~,h:

(o,llsn+{O,ll by

fA,h(~) = 1 iff w E { k x)) x E A).

The combinational complexity of the finite set A is the minimum

over all encodings h of the combinational complexity of f A,hO
+ If L G S , then the combinational complexity of L is a function

C,(L) :@ + N such that for each n,

C_(L) (n) = the combinational complexity of L fI sn.

(Note: The subscript denotes unbounded fan-out [cf. Sav741.)

Remark 6.3. The notion of combinational complexity is in a sense

incomparable with time or space complexity on Turing machines.

For example, define LA (0,1)+ by x E LA iff 1x1 E A

where A is some non-recursive set of integers. Then L is non-recursive A

t
Of course there is no loss of generality in not allowing basic functions

of one argument. For example, an inversion gate -b can be computed as

gNA(b,b) where gNA(v1,v2) = "(v~ A ~ 2)

tt Logarithms with no specified base are taken to the base 2.

By considering only block encodings, the exposition is somewhat

simplified and there is essentially no loss of generality.

and its time and space complexity are not even defined. But C,(L)(n) = 1

for all n because, for each fixed n, L n [O,lln is either 0 or (0,1]".

Thus, non-recursive and arbitrarily complex recursive sets can have

a trivially small combinational complexity.

Another contrast is that time or space complexity of recursive

languages can be as large as any recursive function, whereas any

language L has combinational complexity C,(L)(n) 5 cn for some c > 1

[cf. Lup501. Moreover, there are elementary-recursive languages,

in fact languages in EXPSPACE, whose combinational complexity is maximum

for all values of n (over any given alphabet S), so that relatively

"easy" recursive languages can have maximally large combinational

complexity.

However, there is a basic relation in one direction between these

two notions of computational complexity. Combinational complexity

in effect always provides a lower bound on time complexity.

M. Fischer and N. Pippenger [FP74] have shown that

L E DTIME(T(n)) implies C,(L)(n) O(T(n).log T(n)).

So in particular, an exponential lower bound on C,(L)(n) implies an

exponential lower bound on time complexity.

6.1 Second Order Theory of Successor.

Since our numerical results depend on the language 2 used to

write sentences, we give a BNF grammar for C.

Let be the alphabet of C, tha t is, the s e t of terminal symbols

above. Note tha t card(z) = 6 3 .

*
I f @ E g, then I @) denotes the length of H. viewed as a word i n .
I n the absence of parentheses, the precedence order for logical

connectives i s --, A, V, q, @ (decreasing). Binding of quant if iers to

formulas takes precedence over a l l logical connectives. To improve

readabi l i ty , redundant parentheses a re sometimes used i n the t ex t i n

writ ing formulas; these a re underlined, I and 1, and are not counted

i n the length of formulas.

Cp E i s a sentence i f cp contains no f ree variables. Let

EWSlS be the s e t of sentences i n C which are t rue under the standard

interpretat ion of the integers,with s e t variables ranging over f i n i t e

subsets of N. (Leading zeroes a re ignored i n interpret ing

constants.) The symbol V denotes a blank "padding" character which

is ignored i n determining the t ru th value of a sentence. Since

sentences can be padded with blanks, C,(EWSlS)(n) serves t o measure

the combinational complexity of deciding sentences of length n.

Theorem 6.4. Let k, m, and n be posi t ive integers such that :

k
(1) 2m > zk+l.log(2 + m), and

(2). k - 24 2 3 log m , and

(3) . n 2 466 + L(log102) mJ + 1.1 LloglOmJ .
Then c,(EWSlS) (n) > 2 k - 4 .

Theorem 6.4 is proved below. For a fixed numerical value of n, a

lower bound on C,(EWSlS) (n) i s obtained by choosing k and m to sa t i s fy

the above constraints. For example, we can now obtain the precise

formulation of

Theorem 6.1. c,(EWS~S) (616) >

Proof. Choose k = 414, m = 424, n = 616, and note tha t 2 410 > lo123, 0

The proof of Theorem 6.4 i s similar t o the proofs of Chapter 4

which u t i l i z e e f f i c i en t transformations between s e t s t o obtain lower

complexity bounds. The basic argument i s as follows. We f i r s t prove

Lemma 6.5 which s t a t e s that i f k, m, and n sa t i s fy ce r t a in constraints

then there i s a function f o : { ~ , l) m -+ (0, l) of "large" (> zko3)

combinational complexity such tha t questions about the value of f
0

on words of length m can be transformed t o questions about membership

of sentences of length n i n EWSlS; moreover, the combinational

complexity of the transformation 7 i s re la t ive ly "small". It then

follows that the combinational complexity of EWSlS must be almost as

large as that of fo. For assume that the combinational complexity of

EWSlS is small. Then by placing a c i r c u i t which computes 7 i n se r i e s

with a c i r c u i t which accepts EWSlS, we obtain a "small" c i r c u i t which

computes f contrary to assumption.
0

One preliminary i s required before proving Lemma 6.5. We sha l l

use a special case of an "abbreviation trick" due t o M. Fischer and

A. Meyer [FM74]. I f @ i s a logical formula involving several occurrences

of a subformula, the t r i c k allows one to wr i te @ equivalently as a

formula involving only one occurrence of the subformula.

I n the proof of Lemma 6.5, we sha l l always apply the t r i c k t o

formulas I of the form

where Q1, - .
Qm

are quant if iers , u l y o o * , u denote var iables which occur
n

f r ee i n I, and z l , o o e 'm denote variables. A denotes a formula (with

f r ee variables ul, * - ,un, zl, - , zm) of the form

where G(vl,*..,v) denotes a formula of p f r ee variables V ~ , ~ - . , V ~ , and
P

t h
for 1 i i S Q the i occurrence, G(vil,*- ,vip) , of G i n A denotes

a subst i tut ion instance of G(vl, , v) with vl replaced by v
P i19 v2

r e p l a c e d b y v and soon . i2 ' Each vi j, 1 S i A, 1 s j p, denotes

e i ther a variable or a constant. In the cases we consider, each v
i j

which i s a variable i s e i ther f ree i n Q o r i s bound by one of the

quant if iers Q1,Q2, . 2 Qm.

Under these conditions, I can be wri t ten equivalently as a

formula @' involving one occurrence of G as follows. F i r s t l e t A'

be the formula obtained from A by replacing the i
th occurrence,

G(vi1,*** 'vip), of G by the atomic formula y = 1 for i '= 1,2,3,*-*,A,
i

Where Y1,YZ,*",YR denote new variables. Now we use "drrmmy variables"

y,dl,-*,dp, and wri te a separate formula to ensure tha t i f y = y
i

and d = v. . for some i and a l l j = 1,2,3,***,p, then y = 1 i f f
j 1~

G(dl,-*,d) is true. That is:
P

In the cases we consider, i uses suf f ic ien t ly few variables tha t

the additional variables yl,.*.,yR,y,dl,***,d c u l each be wri t ten as
P

a s ingle l e t t e r . Also, each of the v . . i s e i ther a s ingle l e t t e r , o r a
1 J

single d ig i t .

Under these conditions, the length of Q' is related to the lengths

of I and G by:

Length re la t ion for the abbreviation trick:

In par t icular , the symbols Qlzl-*Qmzm plus those synbols i n A'

cantr ibute (I @] + 3R - RIG)) to I @ '] .

L m a 6.5. Let k, m, and n be pos i t ive in tegers which s a t i s f y (1) and

(3) of Theorem 6.4. Then there is a function f o : (~ , l) m + (0 , l)

such tha t :

k-3 .
(i). The combinational complexity of f, i s grea te r than 2

and
V

(i i) . For each x E (O,l)m there i s a sentence Cpx E C such t h a t

1 1 = n, and 9 E EWSlS i f f fo(x) = 1.
X

Moreover, i f h:C -t (0,1}6 is any encoding, and i f 7 i s the function

which maps x t o fo r a l l x E (0 , l)m, then the combinational

20 3
complexity of 7 i s l e s s than 2 m .
Proof. Let k, m, and n be fixed in tegers which s a t i s f y cons t ra in t s

(1) and (3) of Theorem 6.4.

We f i r s t describe the formula Easyt(F) (of one f r e e s e t var iable)

which is used within Cpx. Easyt(F) i s constructed i n Lemma 6.5.1 which

comprises the major technical portion of t h e p r o o f of Lemma 6.5. Some

definit iorls a r e required t o s t a t e t h i s sublemma.

Let NAND be the singleton s e t consis t ing of the Boolean function

& 1 ~ of two argments defined by gNA(v1,v2) = N(vl A v2) •

m
I f x E (0 , l) , %(x) is the nonnegative integer z such t h a t x i s a

reverse binary representat ion (possibly with following zeroes) of z.

For example, int(111000) = 7 and int(101100) = 13 (i f m = 6).

Let F CN. f c t (F) i s the function mapping (0 , 1) ~ t o (0,1}

defined by fc t (F)(x) = 1 i f f m(int(x) + 1) E F.

fc t (F) i s the means by which functions from (0 ~ 1) ~ t o (0 , l) a r e

represented as s e t s of in tegers i n our ar i thmet izat ion of c i r c u i t s .

Lemma 6.5.1. Let k and m sa t i s fy (1) of Theorem 6.4. There is a

formula Easy' (F) i n C such that :

(i). For a l l f i n i t e F c N, Easyt(F) i s t rue i f f there is a

k
NAND-circuit of s i ze 2 with m inputs which computes fct(F) ;

and
(i i) . (~ a s y ' (F) I = 380 + 10 L loglOm] .

Proof. We f i r s t wri te a formula Easy(F) involving several occurrences

of a subformula, and then obtain Easyt(F) from Easy(F) v ia the

abbreviation t r i ck described above.

Some notation is helpful. I f S c N, l e t seq(S) denote the

(inf in i te) binary sequence b b b b * * - , where b. = 1 i f i E S 0 1 2 3 .I

and bi = 0 i f i S . Let m-word(S,j) denote the f i n i t e binary word

Let dec(m) denote the decimal representation of m. Let dec(k)

be a decimal representation of k with leading zeroes i f necessary to

make (dec (k) 1 = Idec(m)) . (Constraint (1) implies k < m.)

Easy(F) is a conjunction of f ive terms. The f i r s t four terms

V1, f2, q3, $ place constraints on the variables B, P, d, and q. 4

The l a s t term Q 5 expresses the fac t tha t fct(F) i s computable by a

k
NAND-circuit of s i z e 2 (which is the same as being computable by

k
a NAND-circuit of s i ze exactly 2).

(gl). Qa(Jr l(~,d,a)) i s true i f f d E B and '5 = B where
0

B O = (z I r n S z S d and z r O (modm)).

($2). Assuming B = B and d E B y then v a (t 2 (~ , ~ , d , a)) i s t r u e i f f
0

f o r a l l i n t e g e r s i wi th 0 m i d, m-word(P,mi) i s a reverse binary

represen ta t ion of t h e in teger z where z (i-l)(mod 2m) and 0 z < 2m.

That is,

and where, i f seq(P) = p p p - * * , then t h i s p a t t e r n continues a t l e a s t 0 1 2

t o b i t PdSm-l of seq(P). The b i t s of seq(P) beyond t h e (d + u ~ - l) ~ ~ a r e

n o t constrained by $ (The formula $ i s s i m i l a r t o one used by 2' 2

Robertson [Rob73].)

($3). Assuming t h a t B = B d E B y and t h a t seq (P) i s a s above, then
0 '

Va(tg(P,d,a)) is t r u e i f f d 0 (mod d m) .

t3 s t a t e s simply t h a t m-word(P,d) = lm.

Recal l d E B and 0 4 B b y -($ I) , and thus d > 0. Now t h e t r u t h of

Va($.) f o r i = 1,2 ,3 together imply t h a t seq(P) cyc les a t l e a s t once
1

through t h e 2m binary words of length m. (See Figure 6.1. Upward

arrows po in t t o those pos i t ions of seq(P) which belong t o B.)

m m m m m m
--\I- \-

' 1 1 1 ~ ~ ~ 1 1 0 0 0 ~ ~ ~ 0 0 1 0 0 * ~ ~ 0 0 0 1 0 ~ ~ ~ 0 0 0 . . 011*-*11111-**11 don ' t c a r e ...
t t t t t

d

Figure 6.1. P, B, and d.

($4). I f B and P a r e a s i n Figure 6.1, then v a ($ 4 (~ , ~ , q , a)) is t r u e

k ' i f f q E B and q s m 2 .

To suncnarize ($1) through ($4), i f

Va($l(B.d,a) A t2(B,P,d,a) A q3(P,d,a) A P4(B,PYq,a)) i s t r u e then:

\ (1). B = (z 1 m g z d and z . 0 (mod m)),

1 (2). seq(P) i s a s i n Figure 6.1,

(*I \ (3). d E 0 (mod 1 n 2 ~) and d > 0,

k
/ (4) . ~ E B and q s m 2 .

($ 5) . W e f i r s t desc r ibe t h e formula Match which i s used a s a

sub formula wi th in t5.

Match(Xl,wl,X2 ,w2) i s

The following lemma descr ibes c e r t a i n p r o p e r t i e s of Match.

Lama 6.5.2. Assume B, P, d, and q a r e a s i n (*). Let S,S1,S2 c N.

(i) . Let z1,z2 E B U (0). Match(Sl,zl,S2,z2) i s t r u e i f f

=1< 22 and m-word(S z) = m-word(S2,z2). 1' 1

(i i) . Let a 'C B. Match(P,i,S,a) is t r u e i f f i < a and

e i t h e r (i E B and m-word(P,i) = m-word(S,a))

i m- i
o r (0 S i < m and m-word(S, a) = 0 1 >

(i i i) . Let a E B wi th a s q. Then t h e r e is a t most one i E N
--

such t h a t Match(P,i,S,a) i s t rue .

Proof. (i) and (i i) a r e l e f t a s exercises. See Figure 6.2 which shows

how K can be chosen i n two p a r t i c u l a r cases. I n Figure 6.2, m = 6 and

words a r e divided i n t o blocks of length s i x f o r r e a d a b i l i t y .

To v e r i f y (i i i) , l e t a E B wi th a S q be fixed. Const ra in t (1)

o f Theorem 6.4 implies k 2 m - 1. Now a r q r dk 5 m2 m- 1
implies

t h a t f o r a l l il,i2 E B with i ,i < a:
1 . 2

Figure 6.2. I l l u s t r a t i n g the proof of Lemma 6.5.2 (5) and (i i) .

.

(*) m-word(P,il) = m-word(P,i) i f f il = i2 ; and 2

(**) m-word(P,il) = b b b ***brnm20 f o r some bo,bl,-o
0 1 2 ,b,-, E v -) 9 1 1

Now suppose t h a t Match(P,il,S,a) and Match(P,i2,S,a) a r e both t rue .

P a r t (i i) of t h e lemma implies il,i2 < a and one of four cases:

F i r s t , i f ilyi2 E B then pa r t (i) of the lemma together wi th

(*) implies il= i2 ;

Second, i f il,i2 < m then p a r t (i i) of t he l a m a implies

i m- i i1 = i2 = i where m-word(S,a) = 0 1 9

The other two cases, namely where one of ilyit belongs t o B and

t h e other i s l e s s than m, cannot occur because of (WA) together wi th

p a r t s (i) and (i i) . For example, i f il E B and i2 < m, then

m-word(P,il) = m-word(S,a) because Match(P,il,S,a) is t r u e

i2 m-i2
= O 1 because Match(P, i2,S, a) is true.

However t h i s now con t rad ic t s (**) which s t a t e s t h a t m-word(P,il)

must end wi th 0. 0

We now descr ibe how s e t s of in tegers a r e viewed a s represent ing

c i r c u i t s and "computations" of c i r cu i t s .

Let B, P, d, q be a s i n (J f) , and l e t I,J c N. Then q - c i r c u i t (1 , ~)

i s defined and q-c i rcu i t (1 , J) i s the NAND-circuit C of s i z e t =, q/m

with m inputs where C = pm, ... i f f 'iI+l* pmt2, pm+t-1

f o r each a E B wi th m S a S q t he r e e x i s t i , j such t h a t

(i) . Match(P,i,I,a) and Match(P, j, J,a) a r e both t rue , and

(i i) .
$a(a)

= (a (i) , a (j) , h) , where cr is given by

It i s important t o no te by Lemma 6.5.2(iii) t h a t q -c i rcu i t (1 , J)

i s uniquely defined when i t i s defined.

Figure 6.3 i l l u s t r a t e s how a pa r t i cu l a r p a i r I, J c bJ codes a

c i r c u i t i n t he case q = 20, m = 5, (so t = 4). I n Figure 6.3: seq(P)

is shown f o r reference; X is a "don't care" symbol; words a r e divided

i n t o blocks of length f i v e f o r readab i l i ty .

seq(P) = 11111 00000 10000 01000 11000 0.0

seq(1) = XXXXX 11111 00011 00111 00000 0 . 0

seq(J) = XXXXX 01111 00001 10000 01000

seq(D) = 11101 OXXXX ~xXXX OXXXX lXXXX

Figure 6.3. I and J "code" a circuit.

For arbitrary IyJ C N, if C = q-circuit(1,J) = Bm, $dl, . . . $&t-1

is a circuit as on the preceding page, if x E (~,l]*, and D c Ny then

D represents - the computation of C on x iff for all a with

a E (z l O S Z < ~) U (z ~ ~ l m s z ~ q]

a E D iff (x) = 1

where the (Ii) are the associated functions of C (cf. Definition 6.2).

Note in particular that if D represents the computation of C

on' x, then m-word(D,O) = x.

Figure 6.3 also shows a set D which represents the computation of

q-circuit (I, J) on input 11101.

We note one fact and then write Jr Fact 6.5.3 is immediate from 5'

the definition of int(x) and fct(F), and the fact that P is constrained

as in Figure 6.1.

Fact 6.5.3. Let x E (0,1)~, F c N, and e = m(int(x) +I). Then

m-word(P,e) = x, and e E F iff fct(F)(x) = 1.

Now assuming that B, P, d, and q are as in (*) above,

k $ (F,B,P,q) is true iff there is a NAND-circuit of size q/m (2) 5

which computes fct(F).

t5 is 31 3J Te 3B Va Ii 3j ti, where is

Informally, q expresses the following.
5

There ex i s t s a c i r c u i t , q -c i rcu i t (I , J) , of s i ze t = q/m such tha t :

(5.1) For a l l inputs x € { 0 , 1] ~ (where e = m(int(x) 4-1)), there

ex is t s a computation D such that :

(5.2) m-word(D,O) = m-word(P,e) = x by Lemma 6.5.2(i)

and Fact6.5.3; and

(5.3) for a l l gates P
Q'(a)

with a E B there ex i s t i and j

such tha t the output 5 (x) of $a(a)
Q'(a)

is computed

correct ly as "(5,(,) (x) A 5Ly(j) (XI ; and

(5.4) gate P
a(q>

produces output 1 i f f e E F (i f f fc t(F)(x) = 1,

cf. Fact 6.5.3).

Finally l e t Easy(F) be

3~ BP, 3d 3q 31 33 Ve ID Va Ii 3 j (ql A q 2 A q3 A t4 A $;)

so tha t by standard manipulation of quant if iers Easy(F) i s equivalent

We l e t the reader supply any additional argument required t o
- -

convince himself tha t Easy(F) is t rue i f f there i s a NAND-circuit of

k
s i ze 2 which computes fct(F). (In the " if" direct ion, always choose

k p = dm, q = m2 , and choose 1,J such tha t (gate $

q-circui t (1,J) computes fct(F) and moreover tha t

BiZj(Match(P,i,I,a) A Match(P, j , J ,a)) i s t rue also for those a E B

with a > q.)

We now count the length of Easy@).

Let p = LloglOm]+ 1. Yote that Idec(k)l = Idec(m)l = p.

First, (~atchl = 72 + 3p.
1

The lengths of tl, t2, t3, t4, (5 are respectively 40 + 3p,

61 + 2p, 14 + p, 18 + p, and 41 + 3 l~atchl. The length of Easy is the
sum of these plus 28 additional symbols, so

(Easy) = 202 + 7p + 3 (~atchl .
Using the Fischer-Meyer abbreviation trick with R = 3 and p = 4 to

reduce the three occurrences of Match to one, Easy can be written

equivalently as Easy' where

[Easyll = (~asy) - 2IMatchI + 96
= 380 + 10 1 1ogl0mJ .

Note that the additional variables dl,d2,d3,d4,y1,y2,y3,y used in

the abbreviation trick can be named E,c,L, f,g,h, R,o respectively.

This completes the proof of Lemma 6.5.1.

We now return to the proof of Lemma 6.5 and the construction

of vx. Let vl' be the following sentence, where ~ (x) and less than(^,^)
X

are. defined below.

The formula Lessthan(G,F) is

Lessthan(G,F) is easily seen to define a linear order on finite

subsets of N.

w(x) is a decimal representation of m(int(x) + I) ; leading

zeroes a re appended so tha t

(Note tha t x E (0,l)" implies in t (x) 5 2m- 1. It follows tha t the

decimal representation of m(in t (x)+ l) need never be longer than

Lloglo(dm) J + 1 5 L(log102) mJ + LloglOmJ + 2.)

2k+l
It i s easy t o see tha t there a re a t most (2k + m) NAND-circuits

k
of s i z e 2 with m inputs. (That is , each of the t o t a l 2k+1 possible

k ,
inputs t o gates i s f i l l e d with a number between 0 and 2 + m - 1.)

2"
However there a re 2 functions from (0, to (0, l} . Constraint (1)

k
2k+l

of Theorem 6.4 ensures 22m > (2 + m) and therefore tha t there i s

a f i n i t e F c hJ such tha t Easy' (F) i s false.

Since Lessthan defines a l inear order, there i s exactly one f i n i t e

Fo c N such tha t VG(-Easy1 (Fo) A (Less than(G,Fo) 3 Easy' (G))) i s true.

We t.ike fo = fct(Fo).

Since any Boolean function of two arguments can be synthesized

using a t most f ive l'NAND-gatesll [cf. Har651, and since Easy1(F0) i s

fa l se , i t follows tha t the combinational complexity of fo = fct(Fo)

inust exceed (1 / 5) 0 2 ~ > 2k-3.

Also by the defini t ion of fct(F) , w(x) E Fo i f f fo(x) = 1,

1 9
so qx i s t rue i f f fo(x) = 1.

The abbreviation t r i c k with A = 2 and p = 1 applied t o cpi and Easy1

gives cp' equivalent t o cpl1 and
X X

c p = c p - I ~ a s ~ ' l + 41

= 466 + L(logl02) mJ + 11 LloglomJ .
The additional variables dl,y1,y2,y can be named M,k,m,n respectively.

By constraint (3) of Theorem 6.4, j 2 0 can be chosen so tha t

cpx=<v ' and lcpXl = n .

Cp and f s a t i s fy the requirements of Lemma 6.5.
X 0

It remains only t o bound the combinational complexity of the trans-

A A
formation 7 mapping x to h(cpx). For fixed k, m, and n, h(w(x)) i s the .

only part of $(qx) which depends on x. (Recall tha t the length of

o(x) i s independent of x.) Thus a l l b i t s of nh(vx) excluding 7h(~(x))

can be computed using exactly two gates, namely the two gates with

20 3
constant output. Now 2 m is a gross upper bound on the combinational

h
complexity of the transformation mapping x to h (~ (x)) , using

straightforward c l a s s i ca l algorithms for binary addition, binary

multiplication, and binary-to-decimal conversion [cf. Knu691.

This completes the proof of Lermna 6.5. 0

Proof of Theorem 6.4. Let k, m, and n s a t i s f y the constraints (I) , (2),

and (3) of the theorem. Assume the conclusion i s f a l se , t ha t i s

k-4
C,(EwSlS)(n) 2 .

6 Therefore there i s an encoding h:C -+ (0 , l) and a n16-circuit C of

s i r e 2k-4 with 6n inputs which computes a function f where i n

par t icu lar for a l l sentences 9, E 5 fl En,

f&(q)) = 1 i f f cp E E W S ~ S .

Let f and 7 be as i n L m a 6.5 for t h i s k, m, n, and encoding h.
0

20 3
Let T be an n16-circuit of s i z e < 2 m which computes T.

Now l e t C be the c i r c u i t shown i n Figure 6.4.
t

0

Figure 6.4. The c i r c u i t C
0

Since f(nh(vx)) = 1 i f f Ox E EWSlS i f f f0(x) = lr C computes f
0 0'

But "size of C0" = "size of TI1 + "size of C"

20 3 < 2 m + 2k-4 5 2k-3r

because constraint (2) implies 220m3 S 2k-4. This contradicts the

k-3 fac t tha t the combinational complexity of f i s greater than 2 . 0
k-4 Therefore wemust have C,(EWSlS)(n) > 2 .

-

is c lear how to define C from C and T within the formalism 0

of s t ra ight- l ine algorithms.

6.2 First Order Integer Arithmetic.

. In this section we obtain even stronger lower bounds on the

combinational complexity of a logical decision problem. Consider

the first order theory of the nonnegative integers with primitives

addition, multiplication, and exponentiation to the base 2. Sentences

are again written in a language C'. allowing decimal constants and the

relations 5, <, =, #, >, 2. Terms are any arithmetic expressions

involving constants, variables, addition; multiplication; and base 2

exponentiation. For example, x+300.y and 2.2 (i+l) are terms,

and x*u+ 6 < 2' is an atomic formula.

2' is defined by the following BNF grammar, where <formula>,

<order relation> , and <constant> are defined as in the grammar

given for 2 in 96.1.

t <term) denotes 2 and the latter natation is used

in the text in writing formulas. The precedence order for arithmetic

opera t ions i s t , -, 4- (decreasing). A s before, redundant parentheses,

I and 1, a r e sometimes used. Let C' be t h e alphabet of C' ; n o t e t h a t

c&d(Cf) = 55.

Let be t h e set o f sentences i n I' which a r e t r u e under t h e

standard i n t e r p r e t a t i o n f o r +, , t , etc. wi th v a r i a b l e s ranging over M.

Theorem 6.6. Let k, my and n be p o s i t i v e i n t e g e r s such t h a t :

(1)
2m-2 /m > 2k(2k-m+l) , and

20 3 (2). 2 k - 7 ~ k 2 2 m , and

(3). n 2 242 + L(log102) mJ + 6 LloglOm] .

For example, wi th k = 426, m = 447, and n = 388:

Corol lary 6.6.1. C,(FIA) (388) > 2410 >

I f we seek a more modest bound, say a t r i l l i o n ga tes , then

choosing k = 53, m = 69, and n = 268 gives:

12 Corollary 6.6.2. C,(FIA) (268) > 240 > 10 .
Note: I n Coro l l a r i e s 6.6.1 and 6.6.2, t h e lengths of sentences i n

" bits" a r e respec t ive ly 6.388 = 2328 and 6.268 = 1608.

Proof of Theorem 6.6. There a r e a number of s i m i l a r i t i e s between t h i s

proof and t h a t of Theorem 6.4 and L e m 6.5. We sketch only t h e e s s e n t i a l

d e t a i l s .

F ix k, m, and n t o s a t i s f y the c o n s t r a i n t s (I) , (2) , and (3).

Let n (z) denote t h e number of prime p o s i t i v e i n t e g e r s t h a t do

n o t exceed z.

Fact 6.6.1 [cf. NZ661. For z 2 2,

For d, i E N, E (d , i) i s t r u e i f f t h e c o e f f i c i e n t of 2' i n t h e

b inary expansion of d is 1.

+
For u , i E bJ and a E bJ , =(u,a , i) i s t r u e i f f u % i (mod a)

and i < a.

. W e now desc r ibe how i n t e g e r s a r e viewed as represent ing functions,

c i r c u i t s , and computations of c i r c u i t s . A s i n 96.1, l e t *(x) be the

in teger i such t h a t x i s a reverse binary represen ta t ion of i.

I f z E N, fct(z) i s t h e funct ion mapping { 0 , 1 } ~ t o (0 , l)

defined by f c t (z) (x) = 1 i f f i n t (x) d iv ides z.

Of course the re a r e functions from {0, l lm t o '{o, I} which do no t equal

f c t (z) f o r a l l z. However t h e following i s t rue .

Lemma 6.6.2. Let F = (f 1 f : (0 , 1 } ~ -t {O,l) and (3z) [f = f c t (z)]).

2m-2
Then card(F) > 2 /m .

Proof. Let X = { x E {O,llm I i n t (x) i s prime 1.

Given any choices of bx E (0 , l) f o r x E X, t h e r e i s a z

such t h a t f c t (z) (x) = b f o r a l l x E X. Namely z = -rr i n t (x) .
X b =1

card (X)
X

Therefore card(F) 2 2 . .
m- 2 But card(X) = ~ r (2 ~ - 1) = 7 ~ (2 ~) > 2 /m (s i ~ c e (1) implies m 2 2).

17

L e t u,v E N and t E NC. Then t-circuit(u,v) i s the NAND-circuit

of s i ze t - m with m inputs, B,, 'dlr Pd2* . . . 9 pt-l' where for each

a with m S a S t-1,

Pa = (i , j ,%) where Res (u, a, i) and Res (v, a, j) .
Not a l l c i r c u i t s can be represented exactly i n t h i s way because

the residues of u and v (mod a) cannot be chosen independently for

a = rn,mf-l,mt-2,~-~. However:

Lemma 6.6.3. Let C be a NAND-circuit of s i ze t with m inputs, and

assume t S (t -1) - (- 1) for some t t .

Then there are u,v E N such that t ' -c ircui t (u,v) computes the

same function as C.

Proof. Consider A = { a I m s a s t ' - 1 and a is prime } .

For each a E A, l e t i and j with 0 5 ia, ja C a be arbitrary.
a a

By the Chinese Remainder Theorem [cf. NZ661 there are u,v E N such

tha t Res (u, a, i) and Res (v, a, j a) for a l l a E A. ,

a

-- card(A) = n (t l - 1) - IT(m - 1) 2 t.

Therefore, ia and ja for a E A can be chosen so tha t the steps

p for a E A of t l -c i rcui t (u ,v) mimic the c i r c u i t C. The steps p
a k

with k B A and k 2 m are irrelevant. -0

I f C i s a c i r c u i t of s i ze t- m with m inputs, i f x E { 0 , 1] ~ ,

and d E N, then d represents the computation of C on x i f f

Bit(d, i) = Si(x) for 0 s i S t-1

where the {St} are the associated functions of C (cf. Definition 6.2).

In part icular , note that the binary representation of d must begin

with the reverse of x; thus d = in t (x) + b 0 2 ~ for some b E N.

B i t and Res can be expressed i n FIA as:

(To see that Bi t(d, i) is correct, note tha t i t s negation

i 3r 3b (r < 2i A d = 2-b*2 + r) i s t rue i f f the coeff ic ient

i of 2 i n the binary expansion of d i s 0.)

Easy(z) is xu Zv Be Ed Va 3i 3 j (

(El) 1 < 2dec(m) 1 '
(E2) I B b I d = e + b.2 dec (m)

1

033) A (dec(m) s a A a s 2dec(k) 1 '
I Res (u, a, i) A Res (n, a, j)

A (Bit(d,a) @ -(Bit(d,i) A Bit(d, j))) 1)

A (Bit(d,2 dec(k)) 3bL z = b*e 1) 1).

Informally, Easy(z) expresses the following.

k
There ex is t s a c i r cu i t , (2 + l) -c i rcu i t (u ,v) , such that :

(El) for a l l inputs x E [0 , 1] ~ (where e = in t (x)) there ex i s t s a

computation d such that:

(E2) the binary representation of d begins with e = in t (x) ; and

k
(E3) for a l l gates p m a s 2 , the output ha(x) of pa i s a'

computed correct ly as -(Si(x) A 5 . (x)) ; and
3

(E4) t he output of fl 5 (x), is 1 i f f e divides z
2k' 2k

(i f f f c t (z) (x) - 1).

The next lemma describes p roper t i es of Easy(z).

Lemma 6.6.4. Let z E N.

(i) . Easy(z) i s t r ue i f f the re e x i s t u,v E such t h a t

k
(2 + l) - c i r cu i t (u ,v) computes f c t (z) .

k
(i i) . I f Easy(z) is t rue , the re i s a NAND-circuit of s i z e 2 - m + l

which computes f c t (2).

k-3
(i i i) . I f Easy(z) is f a l s e , the re is no NAND-circuit of s i z e 2 /k

which computes f c t (2).

Proof. We l e t t he reader check (i) by following the informal

descr ipt ion of Easy(z) above. (i i) is immediate from (i) .

To prove (i i i) , assume Easy(z) i s f a l s e and suppose C i s a

NAND-circuit of s i z e t = 2k-3/k which computes f c t (z) .
k

Let t' = 2 +l. Now

.- k-3/k 2k-2
t = 2 /k - 9m/log m (because (2) of Theorem 6.6

implies 2k-3/k 2 9mllog m)

(t - 1) - (m - 1) (by Fact 6.6.1).

k
Therefore by Lemma 6.6.3, the re a r e u,v E such t h a t (2 4-1)-circuit(u,v)

computes f c t (z) . Pa r t (i) of t h i s lemma now cont rad ic t s the f a c t t ha t

Easy(z) i s fa l se . 0

After replacing the occurrences of B i t and Res by t h e i r de f in i t i ons ,

we f ind
I ~ a s y l = 179 + 6 LloglOmJ .

(Note: Using the abbreviation t r i c k to eliminate multiple occurrences of

B i t o r Res does not yield a shorter formula In t h i s case.)

- Let c p i be the sentence

w(x) is a decimal representation of in t (x) , with leading

zeroes appended i f necessary t o make the length of w(x) be

exactly L(log102) mJ + 1.

k 2(2k - m + l)
There a re a t most (2) NAND-circuits of s i ze

2k - m +l with m inputs.
*m- 2

Constraint (1) of Theorem 6.6 implies 2
k 2(2k - m + l) lrn > (2) .

Then Lemma 6.6.2 and Lemma 6.6.4(ii) together imply tha t there i s some

z E hf such tha t Easy(z) is false.

Thus there i s precisely one z E N such tha t 0

vy (-Easy(zo) A (y < zo 3 Easy (y))) is true.

Let fo = fct(zo) .

By Lemma 6.6.4(iii) and by our remarks i n $6.1 concerning the

synthesis of %6-circuits by NAND-circuits, i t follows that the

k- 3 combinational complexity of f exceeds (1/5) 02 /k > 2k-6/k.
0

Also, c p i i s t rue i f f w(x) divides z i f f fo(x) = 1.
0

Using the abbreviation t r i ck to replace the two occurrences of

Easy by one, we find 9' equivalent t o p" and
X X

Now OX is 9; padded with blanks i f necessary t o be of length

exactly n.

h
A s before, i f 7 i s the transformation mapping x t o h(9) for

X

an encoding h of C', then the combinational complexity of 7 is

20 3
certainly bounded above by 2 m .

k- 7 /k
The reader can now complete the proof tha t C,(FIA)(n) > 2

by following the proof of Theorem 6.4. The necessary fac ts are:

(i) . the combinational complexity of f exceeds 2k-6/k ; 0

(i i) . f0(x) = 1 i f f px E FIA ; and (i i i) . by constraint (2) of

k- 7
the theorem, the combinational complexity of 7 i s s 2 /k.

Chapter 7. Conclusion

We have demonstrated tha t e f f i c i en t reducibi l i ty techniques can

yield interest ing lower bounds on the inherent computational complexity

of a variety of decision problems from automata theory and logic.

For several of these problems, such as the equivalence problem for

s tar- free expressions (cf. 94.2) and the decision problems for the

various logical theories discussed i n Chapter 5, our resul t s imply

that any attempt t o find an eff icient ,a lgori thm for the problem

is foredoomed .
Recent studies by coworkers (cf. fFer741, [FR741, [Mey73],

[Rac74], [Rob73]) of decision procedures for logical theories show

tha t these reducibi l i ty methods are applicable t o nearly a l l the

c lass ica l decidable theories. Moreover d. wlth the exception of

the propositional calculus and cer ta in theories resembling the f i r s t

order theory of equality, a l l these decidable theories can be proved

t o require exponential or greater time.
-
Hopefully, both the general method of e f f i c i en t reducibi l i ty and

some of the part icular techniques of e f f i c i en t ly arithmetizing Turing

machines w i l l extend t o algebra, topology, number theory, and other

areas where decision procedures a r i se , and w i l l c u r t a i l wasted e f fo r t

i n searching for e f f i c i en t procedures when none exist . The exhibition

of provably d i f f i c u l t problems i n these areas is one direction for

further research.

Acknowledgement. Michael J. F ischer contributed to severa l

discussions concerning this work, and his interest i s

appreciated.

-214-

Bibliography

[AHU74] Aho, A.V., Hopcroft, J.E., and Ullman, J.D., The Design and
Analysis of Computer Algorithms, to appear.

[AU70] Aho, A.V., and Ullman, J.D., "A characterization of two-way
deterministic classes of languages," J. Comput. Syst. s. 5,
6 (Dec 1970), 523-538.

[AU72] Aho, A.V., and Ullman J.D., The Theory of Parsing,Translation,
and Compiling, TJol. I: Parsing, Prentice-Hall, Englewood -
Cliffs, New Jersey, 1972.

[B166] Blum, M., "Recursive function theory and speed of computation,"
Canadian Math. Bull. 9 (1966), 745-750.

[B167] Blum, M., "A machine-independent theory of the complexity of
recursive functions," J. ACM 14, 2 (April 19671, 322-336.

[B171] Blum, M., "On effective procedures for speeding up algorithms,"
J. ACM 18, 2 (April 1971), 290-305. - --

[Bo72] Book, R.V., "On languages accepted in polynomial time,"
SIAM J. Comput. 1, 4 (Dec 1972), 281-287. -

[Brz62] Brzozowski, J.A., "A survey of regular expressions and their
applications," IRE Trans. EC-11 (June 1962), 324-335.

[Brz64] Brzozowski, J.A., "Derivatives of regular expressions,"
J. ACM 11, 4 (Oct 1964), 481-494. - --

[Buc60a] . ~&hi, J.R., 'Weak second order arithmetic and finite automata, I'
Zeit. f. Math. Log. and Grund. der Math. 6 (1960), 66-92. -

[Buc60b] ~Gchi, J.R., "On a decision method in restricted second order
arithmetic," Proc. Internat. Congr. Logic, Method. and Philos. -
Sci. (1960), Stanford Univ. Press, Stanford, Cal., 1962, 1-11. -

[BGW7O] Book, R.V., Greibach, S.A., and Wegbreit, B., "Time and tape
bounded Turing acceptors and AFL's," J. Comput. Syst. Sci. 4
(1970), 606-621.

[Co169] Cole, S.N., "Real-time computation by n-dimensional iterative
arrays of finite state machines," IEEE Trans. C-18 (April 1969),
349-365.

[Co7la] Cook, S.A., "The complexity of theorem proving procedures,"
Proc. 3rd ACM S w . on Theory of Computing (1971), 151-158. -

[Co7lb] Cook, S.A., "Characterizations of pushdown machines in terms of
time-bounded computers," J. ACM 18, 1 (Jan. 1971), 4-18.

[Co73] Cook, S.A., "A hierarchy for nondeterministic time complexity,"
J. Comput. Syst. Sci. 1, 4 (Aug. 1973), 343-353. -

[CEW58] Copi, I.M., Elgot, C.C., and Wright, J.B., "Realization of
events by logical nets," J. ACM 5 (April 1958), 181-196.

[CR72] Cook, S.A., and Reckhow, R.A., "Time-bounded random access
machines," Proc. 4th ACM Symp. on Theory of Computinq
(1972), 73-80.

[Edm65] Edmonds, J., "Paths, trees and flowers," Canadian Jour.
Math. 17. (1965), 449-467. - -

[Ehr72] Ehrenfeucht, A., "Practical decidability," Report CU-CS-008-72,
Dept. of Computer Science, Univ. of Colorado (Dec. 1972).

[Elg61] Elgot, C.C., "Decision problems of finite automata design and
related arithmetics," Trans. AMS 98 (1961), 21-51.

[ER66] Elgot, C.C., and Rabin, M.O., "Decidability and undecidability
of extensions of second (first) order theory of (generalized)
successor," Jour. Symb. Logic 31, 2 (June 1966), 169-181.

[~er74] Ferrante, J., "Some upper and lower bounds on decision
procedures in logic," Doctoral Thesis, Dept. of Mathematics,
M.I.T., to appear 1974.

[FM74] Fischer, M.J., and Meyer, A.R., personal communication.

[FMR72] Fischer, P.C., Meyer, A.R., and Rosenberg, A.L., "Real-time
simulation of multi-head tape units," - J. -- ACM 19, 4 (Oct. 1972),
590-607.

[FP74] Fischer, M.J., and Pippenger, N., to appear.

[F'R74] Fischer, M.J., and Rabin, M.O., "Super-exponential complexity
of Presburger arithmetic," Proc. AMS Symp. on Complexity of
Real Computational Processes (1974), to appear; also, MAC Tech. -
Memo. 43, M.I.T., Project MAC, Cambridge, Mass. (Feb. 1974). -

[Gin671 Ginzburg, A., "A procedure for checking equality of regular
expressions," J. ACM 14, 2 (April 1967), 355-362.

[Gri71] Gries, D., Compiler Construction for Digital Computers,
Wiley, New York, 1971.

[GJS~~] Garey, M.R., Johnson, D.S., and Stockmeyer, L. J., "Some
simplified NP-complete problems," Proc. 6th ACM Symp. on
Theory of Computing (1974), 47-63.

[Har65] Harrison, M.A., Introduction Switchhg and Automata Theory,
McGraw-Hill, New York, 1965.

[Hun73a] Hunt, H.B. 111, "On the time and tape complexity of languages I,"
Tech. Report TR73-156, Dept. of Computer Science, Cornell -
University, (Jan. 1973).

[Hun73b] Hunt, H.B. 111, "The equivalence problem for regular
expressions with intersection is not polynomial in tape,"
Tech. Report TR73-161, Dept. of Computer Science, Cornell -
University, (March 1973).

[Hun73c] Hunt, H.B. 111, "On the time and tape complexity of languages I,"
Proc. 5th ACM Symp. on Theory of Computing (1973), 10-19. -

[Hi3741 Hunt, H.B. 111, and Rosenkrantz, D.J., "Computational parallels
between the regular and context-free languages ," Proc. 6th ACM
Symp. on Theory of Computing (1974), 64-74.

[HS65] Hartnlanis, J., and Stearns, R.E., "On the computational
complexity of algorithms, I' Trans. AMS 117 (1965), 285-306.

[HU69] Hopcroft, J.E., and Ullman, J.D., Formal Languages and Their
Relation - to Automata, Addison-Wesley, Reading, Mass., 1969.

[Ib72] Ibarra, O.H., "A note concerning nondeterministic tape
complexities," J. ACM 19, 4 (Oct. 1972), 608-612.

[Jer72] Jeroslaw, R.C., "On the stopping problem for computing
machines with a time bound," SIGACT News, No. 15
(April 1972), 9-11.

[Jon731 Jones, N.D., "Reducibility among combinatorial problems in
log n space," Proc. 7th Annual Princeton Conf. on Information
Sciences Systems (1973), 547-551.

[Kar72] Karp, R.M. , l'Reducibility among combinatorial problems, " in
Complexity of Computer Computations, R.E. Miller and
J.W. Thatcher, ed., Plenum Press, New York, 1972, 85-104.

[Kle56] Kleene, S.C., '%epresentation of events in nerve nets and
finite automata," in Automata Studies, Princeton Univ. Press,
Princeton, New Jersey, 1956, 3-41.

[mu691 Knuth, D.E.', The Art of Computer Programming, w. 2:
Seminumerical Algorithms, Addison-Wesley , Reading, Mass. , 1969.

[Knu74] Knuth, D.E., "Postscript about NP-hard problems," SIGACT News 6,
2 (April 1974), 15-16.

[KW70] Kameda, T., and Weiner, P., "On the state minimization of
nondeterministic finite automata," IEEE Trans. C-19,
7 (July 1970), 617-527.

[Lin73] Lind, J., "Computing in logarithmic space," Bachelor's Thesis,
Dept. of Electrical Engineering, M.I.T., 1973.

[Lup50] Lupanov, O.B., "On the synthesis of contact networks,"
Dokl. Akad. Nauk SSSR 70 (1950), 421-423. - - ---

[LLS74] Ladner, R., Lynch, N., and Selman, A., "Comparison of
polynomial-time reducibilities," Proc. 6th ACM Symp.
Theory of Computing (1974), 110-121.

[Dl741 Lind, J., and Meyer, A.R., "A characterization of log-space
computable functions," to appear as a Project MAC Technical
Report, 1974.

[LSH65] Lewis, P.M. 11, Stearns, R.E., andHartmanis, J., "Memory
bounds f o r recogni t ion of context- free and context- sensi t ive
languages," 6 th IEEE Symp. on Switching C i r cu i t Theory and
Logical Design (1965), 191-202.

[Mey73] Meyer, A.R., 'Weak monadic second order theory of successor
i s no t elementary-recursive," Boston Univ. Logic Colloquium
Proc 9 t o appear 1974; a l so -- MAC Tech. -- Memo 38, M.I.T.,
P ro jec t MAC, (1973).

4
[Mey74] Meyer, A.R., 9 6.853 Lecture Notes,

Dept. of E l e c t r i c a l Engineering, M.I.T., (1974).

[Min67] Minsky, M.L., Computation: F in i t e , & I n f i n i t e Machines,
Prentice-Hall, Englewood C l i f f s , New Jersey, 1967.

[MM71] Meyer, A.R., and McCreight, E.M., "Computationally complex and
pseudo-random zero-one valued functions,"in Theory of Machines
and Computations, Academic Press, New York, 1971, 19-42. -

[MP71] McNaughton, R., and Papert , S., Counter-Free Automata,
M.I.T. Press, Cambridge, Mass. 1971.

[MS72] Meyer, A.R., and Stockmeyer, L.J., "The equivalence problem
f o r regu la r expressions wi th squaring requ i res exponential
space," Proc. 13th IEEE Symp. on Switching and Automata
Theory (1973), 125-129.

[MY601 McNaughton, R., and Yamada, H., "Regular expressions and s t a t e
graphs f o r automata," IRE Trans. EC-9 (March 1960), 39-47.

[NZ66] Niven, I., and ~uckerman, H.S., 4 Introduction. -- t o the ~ h e o r y
of Numbers, Wiley, New York, 1966. -

[Pet671 ~ g t e r , R., Recursive Functions, Academic Press , New ~ o r k , 1967.

Bab601 Rabin, M.O., "Degree of d i f f i c t i l t y of computing a function and
a p a r t i a l ordering of recurs ive s e t s ," Tech. Report 2,
Hebrew Univ., Jerusalem, I s r a e l , (1960).

[Rab69] Rabin, M. 0. , "Decidabil i ty of second-order theor ies and
automata on i n f i n i t e t r ees , " Trans. LUIS 141 (1969), 1-35.

[Rac74] Rackoff, C., "Complexity o f some l o g i c a l t h e o r i e s , " Doctora l
Thes is , Dept. o f E l e c t r i c a l Engineering, M. I. T., t o appear 1974.

[Rit63] R i t c h i e , R.W., "Classes o f p r e d i c t a b l y computable func t ions , "
Trans. AMS 106 (1963), 139-173. - --

[Rob731 Robertson, E.L., "S t ruc tu re of complexi ty i n t h e weakmonadic
second-order t h e o r i e s o f t h e n a t u r a l numbers," Research
Report CS-73-31, Dept. o f Applied Analys is and Computer
Science, k i v . o f Waterloo, (Dec. 1973) ; a l s o Proc. 6 t h ACM
Symp. on Theory o f Computing (1974), 161-171.

[Rog67] Rogers, H. Jr., Theory of Recur s ive .Func t ions & E f f e c t i v e
Computabi l i ty , McGraw-Hill, New York, 1967.

[RF65] Ruby, S., and F i s c h e r , P.C., "Trans l a t iona l methods and
computat ional complexity, " 6 t h IEEE Symp. on Switch ing
C i r c u i t Theory and Logica l Design (1965,), 173-178. -

[RS59] Rabin, M.O., a n d S c o t t , D., " F i n i t e a u t o m a t a a n d t h e i r
d e c i s i o n problems, IBM J. Research Development 3
(1959), 115-125; a l s o i n Sequen t i a l Machines: Se l ec t ed Papers ,
E.F. Moore, ed., Addison-Wesley, Reading, Mass., 1964, 63-91.

[Sah72] Sahni, S., "Some r e l a t e d problems from network flows, game
theory , and i n t e g e r programming," Proc. 1 3 t h IEEE Symp. on
Switch ing and Automata Theory (1972), 130-138. -

[Sa169] Salomaa, A., Theory o f Automata, Pergamon P r e s s , New York, 1969.

[Sav7O] Savi tch , W. J., "Rela t ionships between n o n d e t e r m i n i s t i c and
d e t e r m i n i s t i c t a p e complexi t ies ," J. Comput. Sys t . Sc i . 4,
2 (Apr i l 1970), 177-192.

[Sav72] Savage, J. E., "Computational work and t ime on f i n i t e machines, "

J. ACM 19, 4 (Oct. 1972), 660-674. - --
[Sav74] Savage, J.E., "The complexity o f computing," JPL Tech. Report ,

d r a f t , June, 1974, Chapter 2.

[Set731 S e t h i , R., "Complete r e g i s t e r a l l o c a t i o n Proc.
5 t h ACM Symp. on Theory o f Computing (1973), 182-195. --

[Sho67] Shoenfield, J.R., Mathematical Jhgic, Addison-Wesley,
Reading, Mass., 1967.

[SFM73] Seiferas, J.I., Fischer, M.J., and Meyer, A.R., "Refinements
of the nondeterministic time and space hierarchies," Proc.
14th IEEE Symp. Switching and Automata Theory (1973), 130-137. --

[SHL65] Stearns, R.E., Hartmanis, J., and Lewis, P.M. 11, "Hierarchies
of memory limited computations,'~ 6th IEEE Symp. Switching
Circuit Theory and Logical Design (1965), 179-190.

ISM731 Stockmeyer, L.J., and Meyer, A.R., 'Word problems requiring
exponential time: preliminary report," Proc. 5th ACM Symp.
on Theory of Computing (1973), 1-9. -

[SS63] Shepherdson, J.C., and Sturgis, H. E., "Computability of
recursive functions," J. ACM 10, 2 (April 1963), 217-255.

[Tra70] Trachtenbrot, B.A., "On aut~reducibility,~~ Soviet ~ath.
Dokl. 11, 3 (1970), 814-817. - -

[U1173] Ullman, J.D., "Polynomial complete scheduling problems,"
4th Symp. on Operatin& System Principles (1973), 96-101. -

[Win651 Winograd, S., "On the time required to perform addition,"
J. ACM 12, 2 (April 1965), 277-285. - --

[Yam621 Yamada, H., "Real-time computation and recursive functions
not real-time c~mputable,~~ IRE Trans. EC-11 (1962), 753-760. --

[YOU~~] Younger, D.H., ''Recognition and parsing of context-free
languages in time nJ:*3," Information - and Control 10 (1967),
189-208.

[st074 Stockmeyer , L. J. , he complexity of decis ion prob lems in
I I automata theory and logic, Doctoral Thes i s , Dept. of

E l e c t r i c a l Engineering, M. I. T. (June , 1974).

Appendix I. Notation.

8 The empty set .

A - B (x I x E A and x 4 B) (s e t difference).

A CT3 B (A - B) U (B - A) (synnnetric difference).

The s e t of a l l subsets of the s e t A.

card (A) The card ina l i ty of the s e t A.

A X A X A X X A (k times).

X The empty word.

14 The length of the word w.

~7 or WW.T Concatenation of words w and 7 .

Z* The s e t of a l l words over the alphabet C including h.

c+ c* - [A).

ck *
(w E C I ~ w I = k) , for posi t ive integer k.

fl (u Ec* I i w l s k).

k u The word aarr..*s of length k:

bin(k) The binary representation of posi t ive integer k.

N The nonnegative integers.

N+ The posi t ive integers.

log r

The integers.

The rational numbers.

The positive rational numbers.

The-integer part of real r.

The least integer z such that z 2 r.

Appendix 11. Some Properties of logspace.

. An IOTM M computes a function f : (c*)'" + A* of n variables i f

*
M computes a function f : #) + A * where # $? C and

f t (x h h # * = o h n) = ~ (x ~ , x ~ , x ~ , ~ ~ ~ , x ~) for a l l x1,x2,*** 1. 2 3 xn
E C*.

Definition. A function f : (C *) '(*') + A* of dl variables i s defined

from functions g:(z*lXn + A* and hl,h2:(C *) x(~I -2) A * by

two sided recursion of concatenation i f f s a t i s f i e s -- -
Y = gGn)

and
fGn, YO) = hl(~n,~,~)*f(r;n,~)*h2(;rn,~,~)

* Xn *
for a l l Zn E (C) , y E C , a E C.

Fact A I I . 1 [Lin73],[LM74]. logspace i s closed under expl ic i t

transformation (substi tuting constants and renaming or identifying
-

variables), composition, and two sided recursion of concatenation.

Fact AII.2 [Lin73],[LM74].

(1). he concatenation function belongs to logspace.

(2). For any alphabet C, f E logspace where

f(x) = bin(lx1) (the binary representation of 1x1)
*

for a l l x E C .
(3). Binary addition, monus, and mult ipl icat ion belong to

logspace. That is, there a r e functions f+, f;, f x E logspace

such tha t f@(bin(ml) ,bin(m2)) = bin(ml @ 9)

for 3 E (+, L, x) and a l l m1,in2 E N.

- {ml ; m2 i f m 2 m2
Monus i s defined a s ml ' m2 - 1

otherwise .

Lemma AII.3. Let p(n) be a polynomial wi th in teger c o e f f i c i e n t s ,

l e t C be a f i n i t e alphabet , and l e t $ be a symbol,

Then f E logspace where

*
f (x) = $ p(IXI) " f o r a l l ~ E C .

The reader may v e r i f y Lennna A I I . 3 . Fact AII.2 (2) and (3) m y

be useful .

