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ABSTRACT 

The inherent computational complexity of a va r i e ty  of decision 
problems i n  mathematical logic  and the  theory of automata i s  analyzed 
i n  terms of Turing machine time and space and i n  terms of the  complexity 
of Boolean networks. 

The problem of deciding whether a s t a r- f r ee  expression (a var ia t ion  
of the  regular expressions of Kleene used t o  describe languages accepted 
by f i n i t e  automata) defines the  empty s e t  is shown t o  require  time and 
space exceeding any composition of . funct ions  exponential i n  the length 
of expressions. I n  par t i cu la r ,  t h i s  decision problem is not elementary- 
recurs ive i n  the  sense of Kalmar. 

The emptiness problem can be,reduced e f f i c i e n t l y  t o  decision 
problems fo r  t r u th  o r  s a t i s f i a b i l i t y  of sentences i n  the  f i r s t  order 
monadic theory of (N,<), the  f i r s t  order theory of l i nea r  orders,  and 
the f i r s t  order theory of two successors and pref ix ,  among others. It 
follows tha t  the  decision problems for  these theor ies  a r e  a l so  not 
elementary-recursive. 

The number of Boolean operations and hence the  s i z e  of log ica l  
c i r c u i t s  required t o  decide t ru th  i n  several  famil iar  logical  theor ies  
of sentences only a few hundred characters  long is shown to  exceed the 
number of protons required t o  f i l l  the known universe. 

The methods of proof a r e  analogous t o  the ar i thmet izat ions  and 
r educ ib i l i t y  arguments of recurs ive function theory. 
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Chapter 1. Introduction 

One major goal of computational complexity i s  t o  achieve the 

a b i l i t y  t o  characterize precisely the amount of computational resource 

needed to  solve given computational problems o r  c lasses  of problems. 

Two important kinds of computational resource a re  time and space, 

respectively the number of basic computational s teps and the amount 

of memory used i n  solving the problem. The complexity of a par t icu lar  

problem can be characterized by upper and lower bounds on computatihal 

resources suf f ic ien t  to  solve the problem. 

Upper bounds are  usually established by exhibiting a specif ic  

algorithm which solves the problem and whose time and/or space 

complexity can be bounded from above. Much progress has been made 

on t h i s  posi t ive s ide  of the complexity question. Many clever and 

e f f i c i en t  algorithms have been devised for  performing a wide variety 

of computational tasks (cf. D.E. Knuth, --- The A r t  of Computer Programming). 

However the progress made on the negative s ide  of the question has 

been l e s s  s t r iking.  In  order t o  es tab l i sh  a lower bound or. the complexity 

of a par t iculzr  problem, one must show tha t  some mfnimum amount of 

resource (time or  space) i s  always required no matter which of the 

in f in i t e ly  many possible algorithms i s  used or how cleverly one wri tes  

the algorithm to solve the problem. It is t h i s  l a t t e r  s ide of the 

complexity question which we address i n  th i spape r  . Although lower 

bound re su i t s  a re  negative i n  nature, they have the value that  they 

enable one to  cease lookicg for  e f f i c i en t  a lgor i thm when none exis t .  



Also, the  exhibi t ion of spec i f i c  problems or  c l a s se s  of problems 

which a re  provably d i f f i c u l t  may give i n s igh t  i n t o  t he  "reasons" for  

t h e i r  d i f f i c u l t y ,  and these  "reasons" and proofs of d i f f i c u l t y  may 

provide c lues  fo r  reformulating t he  problems so t ha t  i n  revised form 

they become t ractable .  

Let us now sketch a b i t  more precise ly  what we mean by "computational 

i- 
problem" and "algorithm" . Many computational problems can be viewed 

a s  problems of function evaluation. I n  pa r t i cu l a r ,  consider functions 

mapping s t r i ngs  of symbols t o  s t r i n g s  of symbols. As a concept of 

"algorithm" we could choose any one of a va r i e ty  of universal  computer 

models. For def ini teness  we choose the  well-known Turing machine 

model. 

A Turing machine M computes the  function f i f  M, when s t a r t e d  

with any s t r i n g  x on i t s  tape, eventually h a l t s  with f (x )  on i t s  tape. 

The time ~,nd space used by M on input x a r e  respect ively  the  number of 

basic s teps  executed and the  number of tape squares v i s i t e d  by M before 

ha l t ing  when s t a r t e d  on input x. I n  general ,  the  time and space w i l l  

vary depending on t he  pa r t i cu l a r  input x. One s impl i f i ca t ion  which i s  

commonly made is  t o  measure t he  time and space so l e ly  as a function of 

the  length of the  input s t r i ng .  

Note t ha t  some functions can be complex fo r  a reason which sheds 

l i t t l e  l i g h t  on the  question of inherent  d i f f i c u l t y ;  namely, a function 

can be computed no f a s t e r  than t he  time required t o  p r i n t  t he  value of 

' ~ o m ~ l e t e  def in i t ions  appear i n  the main text .  



the function. For example, consider the function which, for  any 

posi t ive integer m, maps the binary representation of m to  the binary 

representation of 2m. Any algorithm which computes t h i s  function 

uses a t  l eas t  2" s teps on many inputs of length n for  a l l  n, these 

s teps being required to  p r in t  the answer consisting of a one followed 

by as many as 2n-l zeroes. 

We avoid these cases by considering only functions whose value 

is  always 0 or 1. The problem of computing such a 0-1 valued function 

f can be viewed as the problem of recognizing the s e t  of inputs which 

f maps t o  1. For example, we may wish to  recognize the s e t  of a l l  

s t r ings  which code t rue sentences of some decidab'le logical  theory. 

When such a "set recognition" or "decision" problem i s  shown to  

n require time 2 on inputs of length n for i n f i n i t e l y  many n, we conclude 

that  there is  something inherently complex about the s e t  i t s e l f ;  that  is,  

n 2 steps must be spent i n  deciding what t o  answer, not i n  printing 

the answer. 

Some information i s  known concerning the complexity of s e t  

recognition problems. There a re  known to  be s e t s  whose recognition 

problems are  recursive yet  "arbi t rar i ly"  complex [Rab60]. Let T(n) 

and S(n) be any recursive functions from posi t ive integers t o  posi t ive 

integers. Well-known diagonalization arguments imply the existence 

of a recursive s e t  
%ard such that  any algorithm recognizing Ah 

ard 

requires a t  l eas t  time T(n) and space S(n) on a l l  inputs of length n 

for a l l  suf f ic ien t ly  large n. 



It i s  also possible to  construct a r b i t r a r i l y  d i f f i c u l t  recursive 

problems by considering "bounded" versions of undecidable problems. 

The "bound" implies decidabili ty,  but the problem can be made arbi-  

t r a r i l y  complex by making the "bound" a r b i t r a r i l y  large. For example, 

Blum [B166] and Jeroslow [Jer72] consider a bounded version of the 

hal t ing problem, and Ehrenfeucht [Ehr72] considers a bounded version of 

the f i r s t  order theory of integer arithmetic. 

One might animadvert tha t  s e t s  such as 
%ard 

above are  not "natural" 

i n  the sense tha t  they were expl ic i t ly  constructed t o  be d i f f i c u l t  t o  

recognize. Informally, by "natural" computational problem we mean one 

which has arisen previously i n  the mathematical l i t e r a t u r e  (excluding 

complexity theory); for  example, decision problems drawn from logic  

and automata theory, word problems i n  algebra, etc. 

Under even t h i s  weak view of "natural", there a re  few examples 

of natural  recursive s e t  recognition problems whose time complexity has 

been shown to  necessarily grow fas t e r  than l inear ly  i n  the length of 

the input. Excluding "diagonalization" and "bounded undecidable" 

problems, then pr ior  to  the research described here (and related 

work by Meyer [Mey73], Fischer and Rabin [FR74], and Hunt [Hun73b]) 

we h-ow of no examples of natural  recursive s e t  recognition problems 

whose time complexity had been shown to necessarily grow more than 

polynomially or whose space complexity had been shown t o  grow more than 

l inear ly  i n  the length of the input. 

We now out l ine the remainder of t h i s  p a p e r .  Chapters 2 and 



3 are devoted mainly t o  defini t ions of key concepts and descriptions 

of the technical machinery to  be used i n  proving the resul t s  of 

Chapters 4 and 5. Chapter 2 defines our formal model of "algorithm" 

for s e t  recognition and function computation. This model i s  a s l igh t  

variant of the well-known Turing machine. Known facts  concerning the 

model which are relevant t o  the sequel are  also stated. 

Chapter 3 defines the concept of " ef f ic ient  reducibility". This 

concept was f i r s t  formally defined by Cook [Co7la], though i t s  

significance was emphasized e a r l i e r  by Meyer and McCreight [MM71]. 

Speaking informally for  the moment, we say tha t  a s e t  A i s  ef f ic ient ly  

reducible to  a s e t  B, wri t ten A S B, i f  there i s  an e f f i c i en t ly  
ef f 

computable function f such that  any question of the form "Is x i n  A?" 

has the same answer as the question "Is f(x) i n  B?". Instead of 

being precise about what is  meant by f being "eff icient ly computable", 

l e t  us for  the moment just  assume tha t  the time and space required to 

compute f i s  very small compared to  the minimum time required to  

recognize A or B. Now given an algorithm M which recognizes B, one 

can construct an algorithm M' which recognizes A as follows. Given 

input x, M' f i r s t  computes f(x) and then simulates M on input f(x). 

Since x E A i f f  f(x) E B, M' recognizes A correctly. Moreover, the 

resources used by M' are  roughly the same as those used by M because 

the resources used i n  computing f are negligible. Therefore an upper 

bound on the complexity of B implies an upper bound on that  of A. 

Contrapositively, a lower bound on the complexity of A implies a 



lower bound on tha t  of B. 

I n  Chapter 4 ,  t h i s  reducib i l i ty  technique i s  applied to  several 

specif ic  problems. This chapter deals with problems of recognizing 

equivalence of expressions similar to  the Kleene regular expressions 

of f i n t t e  automata theory [cf. Har651. For example, consider regular 

* 
expressions which may use, as well as the usual operations U, *, and , 

a new unary operation on s e t s  of words, ffsquaring'f, defined by 

2 
S = S.S. Let B denote the s e t  of a l l  pa i rs  of inequivalent such 

sq 

expressions. 

The major technical portion of most applications of the reducib i l i ty  

technique involves a proof tha t  any one of a large c l a s s  of s e t s  i s  

e f f i c i en t ly  reducible to  a part icular  set of in te res t .  We always 

choose the large c lass  to  be the c l a s s  of a l l  s e t s  whose time or 

space complexity i s  bounded above by some function o r  familiar family 

of functions such as the polynomial or nxponential functions. 

In  the case of B t h i s  c lass ,  cal led EXPSPACE, i s  the c l a s s  of a l l  
sq' 

s e t s  recognizable within space which grows a t  most exponentially i n  the 

length of the input. We show that  i f  A E EXPSPACE then A ieff Bsq. 

Now diagonalization a r g h e n t s  imply the existence of a s e t  
%ard in 

MPSPACE which requires exponential space for  recognition by any 

algorithm. Thus Anazd geff Bsq and so B a lso requires exponential 
srl 

space (and hence also requires exponential time). 

Similarly we characterize the space complexity of recognizing 

equivalence of regular expressions involving only the operations of 

* 
U, *, and . We also  consider other var iants  such as expressions with 



only U and ., and expressions over a one- letter alphabet. 

I f  the expressions are  allowed t o  use the operation of s e t  

cckplementation (-), a dras t ic  increase i n  the complexity of the 

equivalence problem resul ts .  We show tha t  the equivalence problem for  

"star-free" expressions [cf. MF711 (using only the operations U, , 
and --) is not elementary-recursive [cf. Pet671; tha t  i s ,  for  no constant 

k i s  i t s  time or space complexity bounded above by 2 for a l l  

inputs of length n and a l l  n. 

Chapter 5 gives several corol la r ies  about the complexities of 

decidable theories of formal logic. The equivalence problem for  

s tar- free expressions is  e f f i c i en t ly  reducible t o  the decision problems 

for  several decidable logical theories;  thus these decision problems 

are not elementary-recursive. Our main corollary s t a t e s  that  the f i r s t  

order theory of any i n f i n i t e  l inear  order with a s ingle monadic 

predicate is not elementary-recursive. In part icular ,  we obtain 

the ~ e s u l t  tha t  the weak nonadic second order theory of 

successor i s  not elementary-recursive kf. ~ e y 7 4  . 
For convenience, we are content i n  Chapters 4 and 5 to  give a lower 

bound on the complexity of a part icular  s e t  by proving tha t  the resources 

used by any algorithm i n  recopiz ing  the s e t  must exceed the lower bound 

on in f in i t e ly  many inputs. Section 3.3 points out tha t  a given re su l t  

can usually be strengthened to  s t a t e  tha t  the lower bound must hold 

on some input of length n for a l l  but f i n i t e l y  many n. 



Even so, one might reasonably question the significance of our 

r e su l t s  and methods on the grounds tha t  the " di f f icu l t"  inputs might 

be so large as t o  never occur i n  practice. This is  indeed an important 

issue. Closer examination of our proofs can determine the point a t  

which the lower bounds take ef fec t ,  though we do not i n  general 

elaborate such r e s u l t s  here. 

However, i n  Chapter 6 we investigate two examples i n  de ta i l .  
t 

Our methods do yield astronomical lower bounds on the complexities of 

f i n i t e  decision problems about words of only a few hundred characters. 

The notion of "algorithm" used here i s  Boolean c i r c u i t s  similar t o  

those studied i n  [Win651 and [Sav72]. For two logical  theories,  the 

number of Boolean operations required by a c i r c u i t  which recognizes the 

t rue sentences only a few hundred characters long i s  shown to  exceed 

the number of protons required t o  f i l l  the known universe. 

In  Chapters 4 and 5 we also give upper bounds on the complexities 

of recognizing . the  par t icular  s e t s  considered. In  most cases, the upper 

bound given for a s e t  is reasonably close to  the proven lower bound. 

The verif icat ions of upper bounds involve only standard techniques 

from automata theory. 

In  summary, the main contribution of t h i s  paper i s  the 

demonstration tha t  e f f i c i en t  reducib i l i ty  techniques can be used to  

t 
The major portion of Chapter 6 can be read independently of 

Chapters 2 through 5. 



prove non-trivial lower bounds on the time, space, or circuit 

complexities of certain natural recursive decision problems. The 

main technical contribution lies in the various reducibility 

constructions and "arithmetizations" of Turing machines and circuits. 

These constructions are of an essentially different character than 

those commonly found in recursion theory, due to the added condition 

that reducibilities must be efficiently computable. 





Chapter 2. The Model of Computation 

I n  order  t o  prove t h a t  c e r t a i n  problems r e q u i r e  a c e r t a i n  minimum 

amount of computational resource  no mat ter  how one w r i t e s  algori thms t o  

so lve  t h e  problems, i t  is  e s s e n t i a l  t o  have a f o r m a l . d e f i n i t i o n  of a n  

a lgor i thm o r  computer. There a r e  many formulations of the  notions of 

a lgor i thm which a r e  equivalent  i n  t h e  sense  t h a t  t h e  funct ions  computable 

w i t h i n  any of the  formulations a r e  p rec i se ly  t h e  r e c u r s i v e  funct ions  . 
We s h a l l  choose our model of  computer t o  be Turing machines [HU69], 

p a r t l y  because t h i s  model i s  well-known and has been the  s u b j e c t  of much 

previous i n v e s t i g a t i o n ,  but  more importantly because i t s  s i m p l i c i t y  w i l l  

ease t h e  t echn ica l  t a s k  of showing t h a t  t h e  model cannot so lve  c e r t a i n  

problems quickly.  It might seem t h a t  t h e  s i m p l i c i t y  o f  the  model i t s e l f  

implies i t s  i n e f f i c i e n c y  and tha't i t  would be more r e a l i s t i c  t o  choose 

a more powerful formulat ion such a s  random access  r e g i s t e r  machines o r  

i t e r a t i v e  a r rays  [Co169]. However Turing machines can  s imula te  the  more 

powerful models " e f f i c i e n t l y  enough" ( i n  a sense t o  be made p r e c i s e  

s h o r t l y )  f o r  our purposes, so  t h a t  i f  a  Turing machine cannot compute 

something "quickly" ne i the r  w i l l  e i t h e r  of  the  more powerful models. 

I n  f a c t ,  a l l  of t h e  r e s u l t s  i n  t h i s  paper giving upper o r  lower bounds 

on t h e  complexit ies  of p a r t i c u l a r  problems remain t r u e  without  

modif ica t ion  i f  t h e  Turing machine model i s  replaced by e i t h e r  of the  

more powerful models mentioned above. 



2 . 1  The Basic Model. 

F i r s t  we assume t h e  reader  i s  f a m i l i a r  wi th  the  b a s i c  concepts  of 

set theory and formal language theory. A d i scuss ion  of  the  necessary 

concepts can  be found i n  t h e  in t roduc to ry  por t ions  of most formal 

language theory t e x t s ,  f o r  example [HU69], [AU72]. 

* 
I n  p a r t i c u l a r ,  we l e t  C denote the  s e t  of  a l l  words over C, 

+ * 
inc luding t h e  empty word X; C denotes t h e  s e t  C - (XI. 

101 denotes the  l eng th  of t h e  word w; !XI = 0. 

, where k i s  a nonnegative i n t e g e r ,  denotes repeated  concatena- 

t i o n ,  t h a t  is ,  Ck = ( 0 E C* I 1 ~ 1  = k ) .  

I f  o i s  a symbol, o
k 

denotes t h e  word ooo*..o of length  k. 

Since t h i s  n o t a t i o n  i s  commonly used f o r  repeated  C a r t e s i a n  product,  

w e  l e t  C)(k = C x C X .  - X  C (k t imes) .  

This and o the r  no ta t ion  i s  c o l l e c t e d  i n  Appendix I. 

Our b a s i c  model of computation i s  inpu t lou tpu t  Turing machines 

(IOTM1 s )  . I O T M 1 s  a r e  mul t i- tape  Turing machines i n  which the  tapes  

which handle the  inpu t lou tpu t  processes a r e  separa ted  from t h e  tapes 

which se rve  a s  memory fo r  t h e  computation. Every IOTM c o n s i s t s  of  a  

f i n i t e  s t a t e  c o n t r o l  and k + 2 tapes  (where k i s  a p o s i t i v e  i n t e g e r ) :  

a n  input  tape,  k work tapes ,  and a n  output  tape .  S ing le  heads scanning 

each tape a r e  c a l l e d  respec t ive ly  the  inpu t  head (2-way, read-only) ,  t h e  

work heads (2-way, r e a d l w r i t e ) ,  and the  output  head (right-moving, 

wri te- only)  . 
We now g ive  p r e c i s e  informal d e f i n i t i o n s  of  t h e  IOTM model, i t s  



computations, t h e  t i m e  and space used by a computation, e t c .  Turing 

machines (of which IOTM1s a r e  a minor v a r i a n t )  a r e  formally defined i n  

many standard re fe rence  t e x t s  (e.g. [IIU69]). Since our r e s u l t s  a r e  

invar ian t  under t h e  var ious  d i f fe rences  i n  conventions normally used 

i n  making these  d e f i n i t i o n s ,  t h e  reader  c a n  supply h i s  own formal 

d e f i n i t i o n s  by choosing any c o n s i s t e n t  s e t  of conventions. 

One important d i s t i n c t i o n  we must make i s  t h e  d i f fe rence  between 

nondeterminist ic  and de te rmin i s t i c  machines. W e  f i r s t  de f ine  nondeter- 

m i n i s t i c  I O T M 1 s ;  de te rmin i s t i c  IOTPl's a r e  then defined a s  a r e s t r i c t e d  

form of nondeterminist ic  IOTM1s. 

A p a r t i c u l a r  nondeterminist ic  IOTM, M, i s  spec i f i ed  by f i n i t e  s e t s  

Q ( t h e  set of s t a t e s ) ,  I ( the  input  alphabet) ,  ( t h e  work tape  a lphabet ) ,  

and A ( t h e  output  a lphabet ) ;  a  t r a n s i t i o n  func t ion  6 ;  and designated 

s t a t e s  q E Q ( t h e  i n i t i a l  s t a t e )  and qa E Q ( t h e  accept  s t a t e ) .  
0 

M opera tes  i n  s t eps .  The a c t i o n  taken a t  a given s t e p  depends on t h e  

c u r r e n t  s t a t e  of t h e  con t ro l  and t h e  symbols being scanned by t h e  input  

and work tape  heads. M performs a p a r t i c u l a r  a c t i o n  by changing s t a t e ,  

p r i n t i n g  new symbols on t h e  work tapes and poss ib ly  on the output  tape ,  

and s h i f t i n g  t h e  heads. 

* 
W e  now desc r ibe  the  computations of M on inpu t  x E I . M is  

s t a r t e d  wi th  t h e  word $x$ w r i t t e n  on the  input  tape  wi th  t h e  inpu t  head 

scanning t h e  lef tmost  $. ( $ I i s  a n  endmarker. Let I '  = I U ($1.) 

The c o n t r o l  i s  placed i n  s t a t e  q and t h e  work and output  tapes  a r e  
0 ' 

i n i t i a l l y  blank. 

The t o t a l  s t a t e  of the  machine a t  some s t e p  i s  given by a n  



instantaneous d e s c r i p t i o n  ( i .d . ) .  An i.d. c o n s i s t s  of (1) t h e  s t a t e  of 

t h e  c o n t r o l ,  (2) t h e  inpu t  word x ,  (3) t h e  p o s i t i o n  of t h e  inpu t  head i n  

* 
t h e  word $x$, ( 4 )  f o r  each i = 1, 2,  , k, t h e  word wi '5 r w r i t t e n  on 

t h e  nonblank por t ion  of t h e  i
th 

work tape,  (5) f o r  each i such t h a t  

w # A, t h e  p o s i t i o n  of the  i
th 

work head i n  t h e  word and (6)  t h e  
i i ' 

word w r i t t e n  on t h e  nonblank por t ion  of t h e  output  tape.  

For example, the  i n i t i a l  i . d .  of M on input  x described above i s  

given by: (1) t h e  i n i t i a l  s t a t e ;  (2) $x$; (3) t h e  input  head i s  

scanning t h e  lef tmost  symbol $ .; (4) wi = h f o r  i = 1,2,3;*.,k; 

Xk 
I f  r is  a n  i .d . ,  then d i sp lay( r1  is (q,0,s1,s2, * . *  ,sk)  E QxI'xT , 

- .  

where q i s  t h e  c u r r e n t  s t a t e  of  t h e  con t ro l ,  and cr, sl, * * -  Sk 
a r e  t h e  

symbols being scanned by the  input  head and t h e  k  work heads respec t ive ly .  

The funct ion 6 maps each element i n  Q X I' X Fk t o  a  (poss ib ly  
+- 

empty) set of moves. A move i s  of the  form 

I f  M i s  c u r r e n t l y  i n  a  s i t u a t i o n  described by i .d .  r ,  M may execute 

any move i n  S ( d i s p l a y ( r ) ) .  M executes move p above a s  follows: the  f i n i t e  

s t a t e  c o n t r o l  e n t e r s  s t a t e  q' ; f o r  each i = 1,2, ,k ,  t h e  i
th 

work head 

p r i n t s  symbol s ' and s h i f t s  one square i n  d i r e c t i o n  m ( l e f t ,  ~ i g h t ,  o r  
i i - 

nomove); t h e  input  head s h i f t s  i n  d i r e c t i o n  m i f  p  + h,  t h e  output  - 0 ; 

head p r i n t s  p and s h i f t s  r i g h t  one square; i f  p  = h, the  output head 

does not  p r i n t  o r  s h i f t .  

If the 'execut ion of any move i n  S(d i sp lay( r ) )  causes M t o  e n t e r  



i.d. r', we say r + r f.  M 

A computation of M on input  x, c,  is  any sequence of i .d. 's 

c = i.d.l, i.d.2, * a * ,  i.d.a such t h a t  : 

(1). i.d.l is  t h e  i n i t i a l  i.d. of M on inpu t  x ,  

(2). i.d.. +M i.d. j+l f o r  a l l  j = 1,2,3,-=*,4-1,  
J 

(3) .  & ( d i ~ p l a y ( i . d . ~ ) )  = @ ; t h a t  is,  M h a l t s  on i.d.a. 

The l eng th  of t h e  computation c = i.d.l, i.d.*, . , i.d. is a. a 
The space used by t h e  computation c i s  t h e  number of work tape  

squares v i s i t e d  by heads of M during t h e  computation. It i s  

t echn ica l ly  convenient t o  make one exception t o  t h i s  d e f i n i t i o n  of 

space; namely, i f  c = i.d.l, i.d.2, . . .  , i.d.& and i f  f o r  a l l  

j = 1,2,3,..*,1, i.d. descr ibes  a s i t u a t i o n  i n  which a l l  work tapes  
j 

are e n t i r e l y  blank, then the  space used by c is  defined t o  be 0. 

The output  produced by t h e  computation c i s  t h e  word w r i t t e n  on 

t h e  nonblank por t ion  of t h e  output  t ape  i n  i.d. a. 
._ I f  c = i.d. i.d.2, ..=, i.d.a a s  above, and a l s o  1' 

d i s p l a ~ ( i . d . ~ )  E (4,) X I' X rXk, then  c i s  a n  accepting computation 

of  M on input  x. (We assume q is  a h a l t i n g  s t a t e ;  t h a t  is ,  - --  a 

6(qa,u,sl,-*,sk) = @ f o r  a l l  o C I f,  sl,-. ,s, E r.1 

Let AccContp (x) denote t h e  s e t  of a l l  accepting computations M 

of  M on input  x. Note t h a t  AccComp (x) may c o n t a i n  many computations M 

corresponding t o  t h e  d i f f e r e n t  choices of moves from 6 taken at  each 



step. AccComp (x) may also be empty if M does not enter state qa M 

regardless of what choices are made. 

If x E I* and AccCompM(x) # @, define 

Tim (x) = mini l? 1 there is 'an accepting computation % 
c E AccCompM(x) of length L ) ,  

and 
Spac%(x) = min( m 1 there is a c E AccCompM(x) 

which uses space m 1. 

We leave Tim%(x) and Spac%(x) undefined if AccComp (x) = @. M 

Nondeterministic IOTM1s are a technical construct and do not 

correspond to the notion of algorithm in which each step is uniquely 

determined. Deterministic IOTM's do correspond to this step-by-step 

notion of algorithm. 

A deterministic IOTM is a nondeterministic IOTM with the property 

that its transition function 6 maps each element in Q x I' x rxk to a 
set containing at most one move. Thus the computation of a determinis- 

tic IOTM on an input x is uniquely determined (provided that it exists). 

Deterministic IOTM's are a special case of nondeterministic IOTM1s; the 

definitions of AccCompM(x), Tim%(x), Spac%(x) given above also define 

these concepts for deterministic IOTM's. 

IOTM's serve as our model of algorithm for set recognition. 



Definition 2.1. Let M be a nondeterministic (or deterministic) IOTM 

* 
with input alphabet I, and let x E I . 

M accepts iff AccCompM(x) # @. - 
M re1 ects x iff M does not accept x. - 

Let A E I+. M accepts A iff 

+ 
Macceptsx x E A  forall x E I .  

+ 
Definition 2.2. Let M be a nondeterministic IOTM, let A E I , 
and let T and S both map N into the nonnegative rational numbers. t 

M accepts - A within time T(n) - - ( within space iff 

(1). M accepts A 
and 

(2). for all but finitely many x E A, 
TimeM(x) 5 T(lx1) 

Remark. Note that Definition 2.2 only requires the time and space 

used by M to be bounded on almost a11 inputs x E A. A stronger 

definition would require the time and space to be bounded for all 

3- 
inputs x E I . However if we show, for a certain set A and functions 

T(n) and S(n), that no IOTM accepts A within time T(n) or space S(n) 

under the given definition, certainly the same result is true under 

the stronger definition. 

t N denotes the nonnegative integers. 



I n  par t icular  we require only "for a l l  but f i n i t e l y  many x" to  

emphasize the fac t  tha t ,  with respect t o  Turing machines, the inherent 

complexity of a s e t  i s  insensi t ive to  f i n i t e l y  many exceptions. 

Lemma 2.3. Suppose a nondeterministic (deterministic) I O T M  M accepts 

A. Let X E A with X f in i t e .  Then there a r e  nondeterministic 

(deterministic) IOTM's  M' and M" which accept A such tha t :  

(1) . Tim%,(x) S Tim%(x) for a l l  x E A 
and 

Tim%'(x) 1x1 + 2  for a l l  x E X .  

(2) Spac%,,(x) s Spac%(x) for a l l  x E A 
and 

S~ac9+1(x) = 0 for  a l l  x E X. 

Proof sketch. Let Ci be a f i n i t e  s t a t e  acceptor (cf. [ ~ ~ 6 9 ] )  for X. 

(1). M' runs two procedures i n  paral le l .  The f i r s t  procedure 

runs G on the input, a t  the same time copying the input onto the f i r s t  

work tape. The second procedure simulates M on the 5nput by viewing 

the  f i r s t  work tape as  the input tape. M' accepts when e i ther  procedure 

accepts. M' a s  described requires two heads on the f i r s t  work tape. 

However Fischer, Meyer, andRosenberg [FMR72] show how to  replace 

many heads per tape by several single-headed tapes with no time loss.  

(2). M" f i r s t  runs G on the input; blanks a re  reprinted on the 

work tapes a t  each step. MI1 accepts i f  G does, or  simulates M on the 

input otherwise. 0 



Similarly our lower bound results are strengthened by using the 

nondeterministic model. If no nondeterministic IOTM can accept 

a certain set within time T(n) or space S(n), then neither can any 

deterministic IOTM. We discuss this further below. 

IOTM's also serve as our model of function computation. 

Definition 2.4. Let M be a deterministic IOTM and f be a total 

* * 
function, f:I + A  , where I, A are finite alphabets. 

M computes f within time T(n) (within space S(n)) iff - - 
* 

for all x E I 

(1). AccCompM(x) # Q and the (necessarily unique) 

c E AccComp (x) produces output f(x), 
and M 

(2) Time@) s T( 1x1) 

Our motivation in separating the input/output processes from the 

computation process is so that it makes sense to consider a set being 

accepted within space S(n) where S(n) grows more slowly than linearly 

in n. The usual convention of writing the input initially on some work 

tape requires the machine to use space 1x1 just to read the entire input 

x. Similarly, we may consider a function f being computed within space 

S (n) where If (x)l is much larger than S ( lx 1 ) . 



It is convenient to have notation for certain classes of all sets 

which can be accepted within a given resource bound. 

Definition 2.5. NTIME(T(n)) ( DTIME(T(n)) ) 

= { A 1 there is a nondeterministic (deterministic) 
IOTM which accepts A within time T(n) 1. 

NSPACE(S (n)) ( DSPACE(S (n)) ) 

= ( A I there is a nondeterministic (deterministic) 
IOTM which accepts A within space S(n) } . 

Here the sets A are also assumed to satisfy A G I+. for some 

finite alphabet I. 

In particular define : 

CSL = EPACE(n) ( = (context sensitive languages), cf. [HIT691 ); 

MPNCIME = U NTIME(C") ; EXPSPACE = U MSPACE(C") . 
c E N  c E N  



- For a par t icu la r  s e t  B, a lower bound on the  complexity of B w i l l  

be given a s  the statement t ha t  B does not belong to  some c l a s s  

hllIME(T(n)) o r  NSPACE(S(n)) for  some par t icu la r  T(n) o r  S(n). By 

Definit ions 2.2 and 2.5, such a statement implies tha t  T(n) or  S(n) i s  

an i.0. ( i n f i n i t e l y  often) lower bound on the nondeterministic time or  

space complexity of B. 

I f  B 4 MIIME(T(n)) ( B 4 NSPACE(S(n)) ) and M i s  a nondeterminis- 

t i c  IOTM which accepts B, then 

T i m q x )  > T( 1x1) 
for  i n f i n i t e l y  many x E B. 

(resp., Spac%(x) > S ( I X I )  > 
We now make more precise  our e a r l i e r  statement t h a t  the IOTM model 

i s  not r e s t r i c t i v e  and tha t  our r e s u l t s  have genuine s ignif icance 

independent of which formal notion of algorithm we adopt. I n  p a r t i c l ~ l a r ,  

consider two "more powerful" models of algorithm: random access machines 

(RAM'S) [556?J , [ ~ ~ 7 4 ,  and d-dimensional i t e r a t i v e  arrsys  

of f i n i t e  s t a t e  machines (d-IA's) [Co169]. 

The time and space of RAM and d-IA computations can reasonably be 

defined a s  folluws. The time of a RAM computation i s  the sum of the 

cos t s  of a l l  s teps ;  a s tep  which manipulates ( s tores ,  fetches,  adds) 

t 
numbers of magnitude z i s  charged cost  rlog(z+l)l ( t h i s  being the 

length of the binary representat ion of integer  z).  The space of a 

'Logarithms with no specified base a r e  taken t o  base 2. 



RAM computation i s  t h e  sum over a l l  r e g i s t e r s  of  r log(z+l) l  where z i s  

t h e  l a r g e s t  i n t e g e r  s to red  i n  the  r e g i s t e r  a t  some s t e p  during t h e  

computation. The t i m e  of a d-IA computation i s  the  number s f  s t e p s  

executed. The space of a d-IA computation i s  t h e  t o t a l  number of 

c e l l s  which do no t  remain quiescent  throughout the  e n t i r e  computation. 

The f a c t  s t a t e d  below follows by s imula t ions  of  t h e  o the r  models 

by IOTM's .  See f o r  example [CR72] f o r  t h e  s imula t ion  of RAM'S. 

Fact  2.6. Let A be  a s e t  which can be accepted by a nondeterminis t ic  

(de te rmin i s t i c )  RAM o r  d-IA w i t h i n  time T(n) and space S(n).  Then t h e r e  

i s  an i n t e g e r  k such t h a t  

A E N T I M E ( ( T ( ~ ) ) ~ )  and' A ENSPACE(S(n)) 

( A C D T I M E ( ( T ( ~ ) ) ~ )  and A E DSPACE(S (n ) )  ) . 
Moreover, we can always choose k = 2 f o r  t h e  case  of RAM'S. 

Thus any lower bound on space complexity app l i e s  equal ly  w e l l  t o  

e i t h e r  of  the  more powerful models. Lower bounds on time complexity 

may s u f f e r  a decrease wi th  r e s p e c t  t o  the  o the r  models, but  t h i s  

decrease i s  polynomial bounded which w i l l  be n e g l i g i b l e  i n  the  cases  

t o  be considered. For example, i f  we show t h a t  a s e t  B r e q u i r e s  time 

n 
c (i.0.) f o r  acceptance by any IOTM, i t  follows t h a t  B r equ i res  time 

dn (i.0.) f o r  acceptance by any RAM, where d = 6 . 
- .  

The remainder of s e c t i o n  2.1 g ives  some known f a c t s  and open 



quest ions  concerning the  c l a s s e s  NTIME, DTIME, NSPACE, DSPACE. 

A l l  t h e  p a r t i c u l a r  functions we g ive  bounding t i m e  o r  space 

complexity a r e  of a s p e c i a l  type defined next. 

Def in i t ion  2.7. A funct ion T(n) ( S(n) ) is s a i d  t o  be countable 

(const ructable)  i f f  fo r  any f i n i t e  I t h e r e  is  a d e t e r m i n i s t i c  IOTM 

M such t h a t  + 
Tim%(x) = T(lx1) f o r  a l l  x E I 

+ 
( SpaceM(x) = ~ ( 1 x 1 )  f o r  a l l  x E I ). 

The countable and cons t ruc tab le  functions a r e  r i c h  c lasses .  The 

k 
countable functions inc lude i n  p a r t i c u l a r  max( n, , n+2), max(rcn 1, n+2); 

k 
f o r  a l l  k E N+, c E Q+.' The cons t ruc tab le  funct ions  inc lude n , 

rcn 1, and (r log n l ) k  f o r  a l l  k E N+, c E Q+. Both c l a s s e s  a r e  

closed under addi t ion ,  mul t ip l i ca t ion ,  and composition [Yam62]. 

The following n o t a t i o ~  i s  use fu l  f o r  comparing t h e  growth r a t e s  

+ 
of functions.  Let F (n) and G(n) be functions from N t o  Q+U (0) . 

F(n) = O(G(n)) i f f  the re  i s  a c E Q+ such t h a t  

F(n) S c.G(n) f o r  a l l  n. 

F(n) = o(G(n)) i f f  l i m ~ ( n ) / ~ ( n )  = 0. 
n - ) =  

The next  f a c t  s t a t e s  t h a t  any computation can be "sped-up" by any 

constant  fac tor .  The proof i s  i m p l i c i t  i n  [SHL65] and [HS65], (see a l s o  

[HU69]). P a r t  (2) a l s o  uses t h e  main r e s u l t  i n  [FMR72]. 

+ ' Q denotes the  p o s i t i v e  r a t i o n a i s .  ?J+ denotes t h e  p o s i t i v e  in tegers .  



Fact 2.8. Let c E Q+ be arbitrary. 

(1). Given a deterministic IOTM M with input alphabet I which 

computes a function f, we can effectively find a deterministic IOTM M' 

which computes f such that 

* Spat%, (x) S c. Spac%(x) for all x E I . 
(2). Given a nondeterministic (deterministic) IOTM M which accepts 

a set A, we can effectively find nondeterministic (deterministic) IOTM1s 

M' and MI1 which accept A such that 

TimglI(x) 2 max( c-Time (x), 1x1 + 2 ) for all x E A 
and M 

S~ac%,l(x) coS~aceM(x) for all x E A. 

(3). Assume n = o(T(n)). Then 

A E NTIME(T(n)) * A , €  NTIME(c*T(n)) 
and 

A E NSPACE(S(n)) A E NSPACE(c.S(n)). 

Thus the inherent complexity of a particular problem is insensitive 

to constant factors and can at best be determined as an asymptotic 

growth rate (exponential, quadratic, etc.). Fact 2.8 is also used 

implicitly in several upper bound results. For example, we may describe 

an algorithm which accepts a set B within space 17n, and then claim BECSL. 

The next fact gives several known relationships among the complexity 

classes. 

Fact 2.9. Let T(n), S(n) be arbitrary. 

A. Nondeterministic versus deterministic time. 

(a). DTIME(T(n)) NTIME(T(n)). 

(b) . NTIME(T(n)) U DTIFE(c T(n)) 
c € N  



B. Nondeterministic versus deterministic space. 

(a). DSPACE (S (n) ) C NSPACE (S (n) ) . 
(b) . NSPACE (S (n) ) 5 DSPACE ( (S (n) ) *) . 

C. Time versus space. 

(a). DTIME (T(n)) E DSPACE(T(n) ) . 
NTIME (T(n) ) C NSPACE(T (n) ) . 

(b) . NSPACE(S (n)) C U DTIME(C~(")) , provided log n = O(S (n)) . 
c € N  

The statements (a) all follow directly from definitions and constant 

factor speedup (Fact 2. 8). A. (b) follows from the fact that, 

if M is nondeterministic and accepts a set within time T(n), AccComp (x) 
M 

contains at most c T( l X l  ) computations which could conceivably accept x, 

for some c and all x. A deterministic machine can try each of these 

computations in sequence and accept the input if any such computation 

accepts. B.(b) is proved by Savitch [Sav70]. Note that B.(b) implies 

that the definitions of POLYSPACE and EXPSPACE could have been made 

equivalently in terms of DSPACE( ) C.(b) is true because a space 

S(n) bounded IOTM can enter at most c S(lxl) different' i.d. 's when 

computing on input x. A complete proof of C.(b) appears in [Co7lb]. 

The "gaps" between (a) and (b) in each of A, B, and C represent 

major open questions of complexity theory. 

Open Questions 2.10. . 

A. (i). Is there a class of functions 3 all of which grow slower than 

exponentially for which 



( i i ) .  May w e  take  9 t o  be t h e  c l a s s  of  polynomials ? 

( i i i ) .  I n  p a r t i c u l a r ,  does 63 = NP ? 

B. ( i )  . Does NSPACE(S(n)) = DSPACE(S(n)) ? 

( i i ) .  I n  p a r t i c u l a r ,  does CSL = DSPACE(n) ? 

C.. ( i ) .  Is t h e r e a c l a s s  of f u n c t i o n s 9 a s  i n A . ( i )  above f o r w h i c h  

NSPACE(S(n)) G U DTIME(F(S ( n ) ) )  ? 
F .€ 3 . . 

( i i ) .  May we take  9 t o  be the  clas's 'of polynomials ? 

( i i i ) .  I n  p a r t i c u l a r ,  is CSL C63 ? 

These open ques t ions  a r e  s t a t e d  t o  po in t  out  t h a t ,  f o r  most 

p a r t i c u l a r  problems w e  consider,  t h e  upper and Lower bounds we g ive  a r e  . 

" t ight"  i s  the  sense t h a t  any s u b s t a n t i a l  improvement of e i t h e r  bound 

would c l o s e  the  gap i m p l i c i t  i n  some open quest ion.  For example, i n  

s e c t i o n  4 . 1  we consider  a s e t  B ( t h e  set o f  a l l  r e g u l a r  expressions 

* 
over alphabet  {O, 1) which do not  desc r ibe  ( 0 , l )  ) and show B E NSPACE(n) 

but  B 6! N S P A C E ( ~ ~ )  i f  r C 1. Even though these  space bounds a r e  

t i g h t ,  they do not  t r a n s l a t e  i n t o  t i g h t  bounds on d e t e r m i n i s t i c  time 

complexity. The b e s t  we can  conclude (given present  knowledge) is 

B E D T I M E ( ~ ~ )  f o r  some d E Q+ (by Fact  2.9C (b) ) ; but  B $? DTIME (n
r

) 

i f  r < 1, which i s  a t r i v i a l  lower bound on time. However i t  w i l l  be 

n 
seen t h a t  t h i s  gap (d versus n) i s  c l o s e l y  r e l a t e d  t o  Open Question 2.10C. 

6 For example, i f  one succeeds i n  r a i s i n g  t h e  lower bound, say t o  c f o r  

some c > 1, then Open Question 2.10C(ii i)  would be s e t t l e d  i n  the  negative. 

On the  o the r  hand, i f  one shows t h a t  B E 63, then t h i s  ques t ion  would be 

s e t t l e d  i n  the  af f i rmat ive .  See Remark 4.20 f o r  f u r t h e r  d i scuss ion  of 



t h e  relevance of these  open ques t ions  t o  t h i s  work. 

F i n a l l y  we g ive  a f a c t  which s t a t e s  t h a t  the  complexity c l a s s e s  

fiTIME(T(n)), NSPACE(S(n)) descr ibe  f i n e  complexity h i e r a r c h i e s ;  t h a t  is,  

f o r  small  increases  i n  t h e  growth r a t e  of  T(n) o r  S(n), new sets can 

be accepted t h a t  could not  be accepted before. The following deep 

r e s u l t s ,  which a r e  used severa l  t i m e s  i n  t h e  sequel ,  a r e  due t o  

Se i fe ras ,  F ischer ,  and Meyer [SFM73], and a r e  refinements of  e a r l i e r  

work by I b a r r a  [Ib72] and Cook LC0731 .t 

Fact 2.11. 

(1). l e t  T2(n) be countable. There is a s e t  A E [0,1)+ such 

t h a t  A E NTIME(T2(n)) and f o r  a l l  Tl(n) 

T1(n+l) = o(T2(n)) implies A 4 NTIME(Tl(n)). 

(2). Let S2(n) be cons t ruc tab le  and s a t i s f y  log n = O(S2(n)). 

+ 
There is  a s e t  A G  [0,1) such t h a t  A ENSPACE(S2(n)) and f o r  

a l l  Sl(n) 

S1(n+l) = o(S2(n)) implies A 4 NSPACE(Sl(n)) . 
Diagonalizat ion arguments g ive  s i m i l a r  h i e r a r c h i e s  [SHL05], 

[HS65] f o r  the  de te rmin i s t i c  complexity c l a s s e s ,  although t h e  known 

t i m e  h ierarchy i s  s l i g h t l y  coarser  i n  the  de te rmin i s t i c  case. 

'Fact 2.11 i s  n o t  e s s e n t i a l  t o  our proofs,  although we s h a l l  use i t  for  

convenience. See Remark 4.21 f o r  an a l t e r n a t i v e  t o  the  use of Fact 2.11. 



2.2 A Technically Useful Model 

Having defined t h e  bas ic  model o f  algorithm, we now def ine  a 

more r e s t r i c t e d  model c a l l e d  simple Turing machines (STM's): STM1s 

serve  only a s  a t echn ica l  t o o l  w i t h i n  t h e  proofs of c e r t a i n  r e s u l t s ,  

and a r e  used only f o r  s e t  recognit ion.  STM's a r e  s i m i l a r  t o  I O T M ' s ;  

t h e  major d i f fe rences  a r e  the  following. 

An STM has one tape  and one head. The s i n g l e  t ape  i s  one-way 

i n f i n i t e  t o  the  r i g h t  and serves  a s  both input  t ape  and work tape. An 

STM is s t a r t e d  on input  x by wr i t ing  x l e f t  j u s t i f i e d  on the  otherwise 

blank tape  wi th  t h e  head scanning the  lef tmost  symbol of x. The moves 

of  STM's a r e  s i m i l a r  t o  those of I O T M 1 s ,  Any move which s h i f t s  the  head 

o f f  t h e  l e f t  end of  the  tape  causes the  STM t o  h a l t  and r e j e c t  t h e  input .  

W e  a l s o  r e q u i r e  STM's t o  have a unique accepting conf igura t ion;  t h i s  

conf igura t ion  occurs when the  con t ro l  is i n  a designated s t a t e  q t h e  a' 

e n t i r e  ta?e i s  blank, and t h e  head is scanning t h e  lef tmost  tape  

square. q m ~ s t  be a h a l t i n g  s t a t e .  Also t h e  STM cannot e n t e r  s t a t e  
a  

q when computing on a word which is  not t o  be accepted. STM's and a 

t h e i r  r e l a t e d  computational concepts a r e  now made p rec i se  by a s e r i e s  

of  d e f i n i t i o n s .  

t 
A (nondeterminist ic)  is a s ix- tup le  M = (I, r, 9, 6 ,  qo, qa) 

cons i s t ing  of a  f i n i t e  s e t  I- ( t h e  tape  a lphabet ) ,  a  s e t  I C r ( t h e  

input  a lphabet ) ,  a  f i n i t e  s e t  Q ( t h e  s e t  of  s t a t e s ) ,  a  t r a n s i t i o n  

t The a d j e c t i v e  "nondeterministic" w i l l  sometimes be omitted. 



funct ion 

and designated s t a t e s  q  E Q ( t h e  i n i t i a l  s t a t e )  and qa E Q ( t h e  accept  
0  

s t a t e ) .  6  must s a t i s f y  t h e  c o n s t r a i n t  6(qa,s) = @ f o r  a l l  s E r. 
, 

M i s  de te rmin i s t i c  i f  eard(6 (q , s ) )  S 1 for  a l l  q  E Q ,  s E T. 

* * 
An instantaneous d e s c r i p t i o n  ( i .d . )  of  M i s  any word i n  I' -Q-r . 

Informally,  i f  d i s  a n  i .d.  of  M, say 

* 
d = yqsz where y,z E r , s E I?, q E Q, 

w e  t r e a t  d  a s  descr ib ing t h e  symbols on t h e  tape  squares i n  a n  i n t e r v a l  

around t h e  head, wi th  q  being t h e  s t a t e  of t h e  con t ro l ,  and q being 

posi t ioned i n  d  immediately t o  t h e  l e f t  of t h e  symbol s being scanned. 

We a s s o c i a t e  wi th  M a  func t ion  

Nexh(d) i s  the  s e t  of i .d . ' s  t h a t  c a n  occur one s t e p  a f t e r  t h e  

s i t u a t i o n  described by i.d. d. 

W e  f i r s t  de f ine  Nex tb(d ,v ) ,  a n  empty o r  s i n g l e t o n  s e t  containing 

t h e  ~ 2 x t  - - i.d. reached from d by a  p a r t i c u l a r  move v .  

Let v = (q l , s ' ,m)  E Qx~x(-1,0,1)  and l e t  do = yqsz a s  above. 

( yq 's 'z  ) i f  m = 0 

( ys 'q 'z  ) i f  m = 1 

Next\(do,v) = ( wq' ts 'z  ) i f  m = -1 and y  = w t  fo r  * 
some w E r and t E I' 

6 i f  m = -1 an& y = X 

2' denotes the  s e t  of a l l  subsets  of the  s e t  S. 



Now 
[I NextlM(d,p) i f  d = yqsz a s  above 

NextM(d) = rJ. E 6 (q , s )  * 
(b i f  d = yq f o r  some y E I' , q E Q .  

Note t h a t  d '  E Nexk(d)  impl ies  1 d l  1 = 1 d 1 . This d i f f e r s  from t h e  

usual  d e f i n i t i o n s  of "i.d." and "next i.d." i n  t h e  l i t e r a t u r e .  

The set of i .d . ' s  occurring 1 s t e p s  a f t e r  d ,  Next (d,R), i s  
M 

def ined by induction:  

N e x b ( d , M )  = ( dl' I d" E Nexk(d1)  f o r  some 

d l  E NextM(d,A) 

on + 
D e f i n i t i o n  2.12. Let M = (I,I',Q, 6 ,qO,qa) be  LLSTM, and l e t  A G I . 
Let V denote t h e  blank t ape  symbol. 

M accep t s  A w i t h i n  tine T(n) ( w i t h i n  space S(n) ;  he re  w e  assume - - 
S(n) 2 n ) i f f :  

(1). For a l l  x E A,  t h e r e  e x i s t  A,k E Q\I wi th  4 ~ ( 1 x 1 )  

and k r  1x1 (resp. ,  wi th  1x1 k S  S ( J x 1 )  ) such t h a t  

k 
qaV E ~ e x ~ ( q ~ x k f ~ - ' ~ I ,  1 ) .  and 

(2). f o r  a l l  x E 1'- A, t h e r e  do not  e x i s t  R,k E N  and 

y , z  E fl such t h a t  

yqaz E ~ e x ~ ( q ~ x l b ~ - I ~ I ,  A). 

W e  r e q u i r e  S(n) 2 n f o r  STM1s because t h i s  amount of space is  

requi red  j u s t  t o  read the  e n t i r e  input .  The following lemma s t a t e s  

t h a t  STMfs can  s imula te  I O T M ' s  e f f i c i e n t l y  enough f o r  our purposes. 



Lemma 2-13. If A E ~ I M E ( T ( ~ ) )  where T(n) 2 ntl ( i f  A. E NSPACE(S(n))) 

then there i s  aSTM which accepts A within time (T(n)) 
2 

(resp., within space max(S(n), n t l )  ). 

Proof. The proof follows by straightforward simulation of a multi-tape 

Turing machine by a one tape Turing machine [HS65] (see a l so  [HU691). 

Note tha t  STM'S possess "constant factor speedup" similar t o  Pact 2.8. 

The simulated IOTM may not operate within the given resource 

bound T(n) or S(n) on a f i n i t e  subset of A. However the simulating 

STM can handle these f i k i t e  exceptions by table  look-up i n  i t s  f i n i t e  

s t a t e  control (cf. Lemma 2.3). 

The one tape machine can be eas i ly  modified t o  operate on a 

one-way i n f i n i t e  tape [H~69]. This modification i s  usually implemented 

by keeping a marker # on the leftmost tape square. The simulating STM 

can f u l f i l l  the acceptance convention by always keeping another marker 

#' on the rightmost tape square thus f a r  vis i ted.  I f  the simulated 

IOTM ever enters i t s  accepting s t a t e ,  the simulating STM can erase 

i t s  tape i n  a l e f t  sweep from #! t o  # and enter s t a t e  qa without moving 

a f t e r  # has been erased. Moreover, t h i s  i s  the only s i tua t ion  i n  which 

q is  entered. 
a 

The remainder of section 2.2 t r e a t s  a portion of the technical 

machinery to  be used i n  describing the computations of STMfs. We wish 

to  formalize the statemone tha t ,  given i.d.'s dl and d2 of M,,oile can 

determine i f  d2 E NextM(dl) or not by making " local checks". A 

"local check" consis ts  of comparing the ( j - l ) th ,  jth, and ( j+ l )  th 



symbols of dl and d2 f o r  some j, 2 S j s ldll- 1. W e  can  conclude 

d2 E Nexh(dl) i f  and only i f  a l l  l o c a l  checks succeed. This is  now 

formalized i n  a use fu l  t echn ica l  lemma. 

Lenuna 2.14. Let M = (I,T,Q,6 ,qO,qa) be ahSM. Assume $ 6 U Q. 

Let C = I? U Q U ($1. There i s  a func t ion  %:2 4 z3 wi th  t h e  

following proper t ies .  

(1).  Let dl be any i.d. of M, l e t  k = Idll,  and write 

= d10dlld12" *dlkdl ,k+l  
where d E C f o r  0 s j S k+l. 

l j  

Let $d2$ = d20d21d22--d d 2k 2,k+l 
where d E C  f o r  0 S j 5k4-1. 

2 j  

Then 

f o r  a l l  j, 1 s  j S k .  

(2). For a l l  o1,o2,o3,ol1 ,02' ,03' E.x, i f  01'02'031 E %(010203) 9 

then oit = $ cri = $ f o r  i = 1,2,3. ' 

Proof, Four cases a r e  involved i n  t h e  s p e c i f i c a t i o n  of  . %I 

( i ) .  %mus t  s a t i s f y  cond i t ion  (2)  of t h e  lemma. 

( i i ) .  I f  o o o B: Q, then o2 cannot change i n  going t o  some 1 2  3 

next i.d. 

( i i i ) .  I f  o E Q and o E r, then each move i n  6 (o2,o3) 2 3 

uniquely determines one word i n  %(010203). 

( i v ) .  1f o, E Q and o3 = $ then s(0102c3) = $ 0  

i s  p rec i se ly  spec i f i ed  a s  follows. For each o o o E 9, 1 2 3  



sa t i s fy  a l l  

conditions ( i )  , ( i i )  , ( i i i )  , and (iv) below ] . 
( i ) .  oi = $ i f f  oil = $ for i = 1,2,3. 

( i i i ) .  I f  o2 E Q and o3 E I? then 

where for a rb i t ra ry  o E C and p = (q l , s '  ,m) E QxTx{-~ ,O,~]  

( oq's l  ] i f  m = O  

( q'osl ) i f  m = -1 

( as'q' ] i f  m  = 1 

(iv) .  o2 C Q or  o3 Z $ *  

The proof tha t  % s a t i s f i e s  condition (1) of the lemma is  

straightforward and i s  l e f t  as  an exercise. 





Chapter 3. E f f i c i e n t  Reduc ib i l i ty  

I n  t h i s  s e c t i o n  we in t roduce a  concept which w i l l  play a  key r o l e  

i n  t h e  remainder of the  paper. This i s  t h e  concept of  e f f i c i e n t  

r e d u c i b i l i t y .  

Reduc ib i l i ty  techniques have f o r  some time been standard t o o l s  of  

r ecurs ive  funct ion theory (cf .  [Rog67]). Set  A i s  reduc ib le  t o  s e t  B 

i f  t h e  a b i l i t y  t o  answer ques t ions  about B enables one t o  answer quest ions 

about A by var ious  e f f e c t i v e  methods. Then, f o r  example, the  undecida- 

b i l i t y  of  A implies the  undec idab i l i ty  o f  B. However i n  order  t o  g e t  

more d e t a i l e d  information about computational complexity, one must a l s o  

show t h a t  the  r e d u c i b i l i t y  of  A t o  B can be done " ef f i c ien t ly" .  Then 

i f  ques t ions  about A a r e  known t o  be computationally complex, s o  must 

corresponding quest ions about B. See t h e  In t roduc t ion  f o r  a  f u r t h e r  

informal d i scuss ion  of  e f f i c i e n t  r e d u c i b i l i t y .  



3.1 Def in i t ions .  

There a r e  a v a r i e t y  of  inequivalent  t echn ice l  formulations of 

e f f i c i e n t  r e d u c i b i l i t i e s ,  d i f f e r i n g  not only i n  t h e  degree of e f f i c i e n c y  

but  a l s o  i n  t h e  methods by which ques t ions  about A a r e  reduced t o  

ques t ions  about B. Many of  these  d i s t i n c t i o n s  among e f f i c i e n t  

- r e d u c i b i l i t i e s  are analyzed i n  [ L L S ~ ~ ] .  The d i s t i n c t i o n s  a r e  analogous 

t o  t h e  d i f fe rences  among var ious  r e d u c i b i l i t i e s  of r ecurs ion  theory 

such a s  many-one, t ru th- tab le ,  Turing r e d u c i b i l i t y ,  e t c .  (cf .  [Rog67]). 

W e  s h a l l  use e s s e n t i a l l y  one kind of  e f f i c i e n t  r e d u c i b i l i t y  

corresponding t o  t h e  "strong1' r e d u c i b i l i t y  (many-one o r  one-one) of 

r ecurs ion  theory. However we do use severa l  d i f f e r e n t  bounds on the  

e f f i c iency  i n  terms of t i m e  o r  space t o  o b t a i n  four d i f f e r e n t  reduci-  

b i l i t i e s  of  t h i s  kind. 

Following a d e f i n i t i o n a l  suggest ion of Knuth [Knu74], we henceforth 

r e f e r  t o  these  p a r t i c u l a r  r e d u c i b i l i t i e s  a s  "transformations". 

Def in i t ion  3.1. 

Let [ denote t h e  c l a s s  of funct ions  

* 
( f I f : I  4 A* fo r  some f i n i t e  alphabets  I, A ,  and t h e r e  is  

a d e t e r m i n i s t i c  I O T M  which computes f  

w i t h i n  space log n 

w i t h i n  time p(n) and spece n 

w i t h i n  time p(n) i 
f o r  some polynomial p(n) 7 .  



+ + + 
Def in i t ion  3.2. Let L:N + N . A funct ion f : I  + A i s  s a id  t o  be 

+ l eng thL(n )  bounded i f f  If(x)l s ~ ( l x 1 )  fo r  a l l  x E  I .  

f is  l i n e a r  bounded i f f  the re  i s  a c E N+ such t h a t  

+ 
I f ( x ) ( s c l x l  f o r a l l  X E I .  

Def ini t ion 3.3. (E f f i c i en t  t ransformations).  

+ 
Let A E I , B E A+ fo r  some f i n i t e  alphabets I, A. 

( A S l o  B ;  A s  log- l in  B ;  A s k B ;  A < B )  -- v i a f  

+ + 
i f f  f  i s  a function,  f :  I + A , such t h a t  

+ 
x E A  i f f  f (x)  E B  f o r a l l  x E I ,  and 

( ( Slog f E logspace ; 

( s log- l in  
) f  E logspace and f  i s  l i n e a r  bounded ; 

( i p L )  
f  E po ly l in  and f  i s  l i n e a r  bounded ; 

Also, i f  e f f  E { log, log- l in ,  p$ .) then 

A B i f f  A i B and B seff A. 
e f f  e f  f  

Note: The transformations defined above do not change i f  we r equ i r e  the  

funct ion f  t o  be computed by a n  I O T M  wi th  one work tape. Thus our 

de f i n i t i ons  a r e  equivalent  t o  previous de f i n i t i ons  of i s 
log' l og- l i n  

[SM73], and SPA [W72]. 

Remark. It can be seen (by counting the  number of poss ib le  i .d . ' s )  

t ha t  a n  IOTM whichcomputeswithin space log n a l s o  computes wi th in  

polynomial time. Therefore A s  B 3 A < B ,  
log 

and A L1og-lin B A PI B. 



The next lemma i s  immediate from t h e  f a c t s  t h a t  logspace, po ly l in ,  

and poly a r e  each closed under funct ional  composition. It should be 

obvious t h a t  p o l y l i n  and poly a r e  closed under composition. Lind 

and Meyer [Dl741 prove t h a t  logspace i s  c losed under composition; t h i s  

proof is  very s i m i l a r  t o  the  proof of Lenuna 3.6 t o  follow. 

Lemma 3.4. Let Seff E ( slog, i i $ 1 .  Let A S e f f B  
log- l in '  pR' 

and B *eff C v i a  l eng th  Ll(n), L (n) bounded fly f 2  respec t ive ly  
2 

where L (n) i s  monotone nondecreasing. 2 

Then A 5 C v i a  l eng th  L (L (n))  bounded f20 f l. e f f  2 1 

The following d e f i n i t i o n  i s  of c e n t r a l  importance. 

D e f i n i t i o n  3.5. L e t 6  be a c l a s s  of sets, B be a set, and be a 

t r a n s  forma t ion .  

(1). 6 s B i f f  A 5 B f o r  a l l  A E 6. 

(2). B i s  I-complete i n  6 i f f  

( i ) .  6 s B, and 

- ( i i ) .  B E 6. 

(3 ) .  6 S B v i a  l eng th  order L(n) i f f  f o r  a l l  A E 6 t h e r e  i s  

a c E N+ such t h a t  A s B v i a  some leng th  c. L(n) bounded 

function.  

A l l  of t h e  p a r t i c u l a r  t ransformations described i n  t h e  sequel  

a r e  members of logspace. Lind and Meyer [Ill4743 give  a machine indepen- 

dent  c h a r a c t e r i z a t i o n  of logspace (which i s  s i m i l a r  i n  f l avor  t o  

i t i t c h i e f s  charac te r i za t ions  of o the r  subrecurs ive  c l a s s e s  [Rit631) 



by which one can prove rigorously that  our transformations do indeed 

belong to  logspace. However such proofs are  tedious and shed no new 

lPght on the main issues. 

For t h i s  reason, we use S 
5 o g - l i n  only i n  section 4.1 

1% 

where our transformations a re  simple enough tha t  t he i r  membership 

i n  logspace should be obvious. In some cases we sketch a 

ver i f ica t ion  tha t  a par t icular  transformation belongs to  logspace, 

omitting many of the de ta i l s  by appeal to  the reader 's  i n tu i t ion  about 

space bounded Turing machines. For convenience, Appendix I1 co l l ec t s  

those closure properties and part icular  members of logspace which are  

used e i ther  expl ic i t ly  or implici t ly  i n  these verif icat ions.  

In  other sections, we claim only that  transformations a re  of 

the types s or ; closer examination reveals that  these 
PA 

t rans formations a l so  belong to log space. 

It i s  interest ing t o  note tha t  a few of our par t icu lar  transforma- 

tions can be eas i ly  modified t o  be computable within space zero, t ha t  is,  

computable by a deterministic f i n i t e  s t a t e  transducer with 2-way input. 

Aho and Ullman [AU7O] prove tha t  the c lass  of zero-space computable 

functions i s  closed under composition, and hence tha t  

I1 
"0-space-transformable i s  a t rans i t ive  relation. 

The notion of e f f i c i en t  reducib i l i ty  was f i r s t  formally defined by 

Cook [Co7la] (as a "Turing" version of < ). Efficient  reducib i l i ty  was 

used as a proof technique e a r l i e r  i n  [MM71]. Karp [Kar72] and others 

have used as a means of re la t ing  the complexities of various 

cmbinator ia l  problems. It is noted in  ~ ~ ~ 7 3 1  a n d  [ ~ o n 7 4  



that many of the particular polynomial time reducibilities presently 

in the literature can actually be done within space log n, (although 

it would be suprising if poly = logspace in general, cf. Open 

Question 2.10.C.). 

3.2 Applications to Complexity Bounds. 

We shall use efficient transformations as a means of relating the 

computational complexities of problems. Informally, if < is a 
ef f 

transformation, and A S B via f, then one can conclude 
ef f 

"Complexity of A" 5 "Complexity of B" 3. "Complexity of f" . 
Thus the computationaI resources required to accept B are "no less than" 

the resources required to accept A provided that the resources used in 

computing f are low order compared to those used in accepting B. 

This is made precise by a lemma for the case seff = 5 
log' 

The 

technical details involved in proving such a result for the case 5 
1% 

are p r e s e n t e d  in  [ ~ ~ 7 3 ]  a n d  [~on73] . We reproduce a proof 

sketch for this lemma here because minor modifications to the proof 

are used implicitly in section 3.3. 

Lemma 3.6. Suppose A S  B via fwhere f is length L(n) bounded, 
log 

and M is a nondeterministic (deterministic) IOTM which accepts B 

within time T(n) and within space S(n) where T(n) and S(n) are monotone 

nondecreasing . 
Then there is a polynomial p(n) and nondeterministic (determinis- 

tic) IOTM's M' and M" such that: 



M' accepts A within time T1(n) = p(n)*T(L(n)) and within 

space S (n) = s (L(n) ) + log n ; 

M'I accepts A within time Tfl(n) = T(L(n)) + p(n) . 
Theref ore : 

and 

NTIME 
{DTIME} (T(") ) 

Proof. The obvious Mu, given an input x, f i r s t  computes f(x) and writes 

f(x) on some work tape. A s  was noted before, f E logspace implies tha t  

f can be computed deterministically within polynomial time. MI1 then 

simulates M on input f(x).  M is  time T(n) bounded (on accepted words) 

and i s  computing on the input f(x)  of length a t  most ~ ( 1 x 1 ) .  Recall T(n) 

i s  nondecreasing. M" c lear ly  accepts A within time Tn(n). 

This obvious approach may not work for  M f .  The d i f f i cu l ty  is  

tha t  M1 cannot wri te  f (x) on a work tape because If (x)l might be much 

larger than loglxl + S(L(lx1)); however M' must operate within space 

Sf (n). Instead, M f  with input x can simulate the computation of M on 

input f(x) by recording on i t s  work tape an instantaneous description 

of the computation of M, including the position j i n  f(x) which the input 

head of M would occupy i f  the input t o  M were actual ly f(x).  

f C logspace implies f E poly, and therefore 

j f )  5 p f ( x )  for some polynomial p l (n ) ;  

only c- loglx)  extra work tape squares a re  required t o  record j i n  

binary. To simulate another s tep  i n  the computation of M on input f(x) ,  

W' computes the th d i g i t  of f (x) within space log 1x1 and time 



p t ( I x l ) ,  and updates the i.d. of M accordingly. 

After an application of speedup (Fact 2.8), it is easy to see that 

Mf, accepts A within time Tf(n) and space Sf(n). 0 

For completeness, similar results for the other transformations 

are stated next, even though we shall not have occasion to use 

Lensaa 3.7 in its entirety. 

Lermha 3.7.  Assume T(n) and S(n) are nondecreasing. 

(1). If A S B then 
PA 

+ 
for some constant c E N and polynomial p(n). 

(2). If A < B then 

for some polynomial p(n). 

The proof of Lemma 3.7  is by the obvious approach used to 

construct M" in the proof of Lemma 3.6. 

Our next objective is to give the basic outline which the 

majority of results herein will follow. We give the outline for a 

space result; a time result is analogous. 



Outline 3.8. Let B be a particular set of interest. 

+ 4- (1). Choose a class 3 of nondecreasing functions from N to Q . 
3 will in general depend on B. Let 

6 = U NSPACE(S (n) ) . 
S(n) E 3 

For example, we may take 6 = EXPSPACE or 6 = POLYSPACE in particular cases. 

(2). Prove that 6 heff B (via length order L(n)), 

where Seff is an appropriate efficient transformation. 

In many of our examples, the proof is analogous to an 

"arithmetization" of Turing machines so that questions about Turing 

machines accepting sets i n 6  can be transformed into questions about B. 

This of course is the main portion of most of our proofs. 

( 3 ) .  (Deduce a lower bound on the complexity of B). 

Since the majority of our particular transformations are linear 

bounded, assume here that L(n) = n. , 

By Fact 2.11 (the nondeterministic hierarchy theorem), find a 

"hard" set A E (5 such that S(n) is a large lower bound on the space 

complexity of A; that is, A B NSPACE(S(n)). Also choose S(n) to be 

nondecreasing. 

Row by part (2) above, A Seff B via f, where f is length bn 

bounded for some b E N+. 

We claim that S (rnfbl) is a lower bound on the space complexity 

of B. For suppose B E NSPACE(S(~~/~~)). Lemma 3.6 or 3.7 then implies 

A E =PACE( S(n) + F(n) ) where F(n) is the space required to-compute f. 

Assuming F(n) s S(n) because f is an efficient transformation, 



A E NSPACE(2*S(n)) = NSPACE(S(n)) by Fact  2.8 (constant  f a c t o r  speedup). 

This c o n t r a d i c t s  one cond i t ion  A was  chosen t o  s a t i s f y ,  and the re fo re  

B $ N S P A C E ( S ( ~ ~ / ~ ~ ) ) .  

For example, i n  t h e  proof of Theorem 4.12 we have 

EXPSPACE slog-lin B. We can then choose A E NSPACE(~T but  

A $ NSPACE((~-e)n) i f  € > 0, and conclude 

1 /b B 6 NSPACE(C? where c = (2-€) , 
and b i s  such t h a t  A s B v i a  some leng th  bn bounded function. 

l o g- l i n  
some 

( 4 ) .  I n  1 cases ,  we a l s o  show B E 6; thus B i s  seff-complete 

i n  6. A completeness r e s u l t  i n  a sense p ins  down t h e  complexity of B. 

B E 6 implies a n  upper bound; 6 Seff B usua l ly  provides a lower bound 

a s  i n  (3). 

Remark. Step  (3) only r e q u i r e s  A Seff B f o r  t h e  p a r t i c u l a r  "hard" 

set A, r a t h e r  than 6 seff B. However t h e  la t ter  genera l  s tatement 

i s  no harder t o  prove than t h e  former p a r t i c u l a r  s tatement i n  t h e  cases  

we consider. Also, t h e  genera l  statement may have o t h e r  impl ica t ions  

fo r  B. (See f o r  example s e c t i o n  3.3.) 

A s  noted above, the  main p a r t  of t h e  proofs which follow t h e  

preceding o u t l i n e  w i l l  c o n s i s t  i n  t h e  proof of (2) .  The d e t a i l s  

involved i n  (3) w i l l  be given f o r  a few r e s u l t s  and l e f t  a s  simple 

exerc i ses  f o r  o thers .  The upper bound required  f o r  (4) w i l l  be 

v e r i f i e d  by giving an  informal d e s c r i p t i o n  of a n  a lgor i thm which 

accepts  B. 



For most examples there remain gaps between known lower and upper 

bounds on their deterministic time complexity. As was mentioned earlier, 

these gaps correspond to the gaps stated in Open Questions 2.10, 

A particular instance of this relationship is the following. 

Several workers [Edm65], [Kar72] have proposed that a problem can be 

considered computationally "tractable" only if it can be solved by a 

deterministic algorithm within polynomial time, that is, only if it 

is a member of P. The following lema can be used to relate the 

tractability of various particular problems to the open questions 

'P = NP?" and "CSL C P?". A result of this flavor was first noted 

in [~o7la]. 

Lemma 3.9. Let I; s ] . Let B be a set, eff ' ' 'logr log-lin' pi?' 

and 6 be a class of sets. If B is seff-complete i n 6  then 

B E P  6 c P .  

Proof. Immediate from definitions and Lemmas 3.6 and 3.7. 0 

Following the original work or Cook [Co7la] and Karp [Kar72], 

a large number of common combinatorial problems have been shown to 

be 4-complete in NP (see for example [Sah72], [Set73], [U1173], [GJS741) ; 

such problems are called NP-complete. By Lemma 3.9, either all or none 

of the NP-complete problems are members of P; moreover, the former case 

holds if and only if 6 = NP. 

We shall make a few additions to the list of NP-complete problems. 

In these cases, where we show that some particular B is $-complete in 



NP, it will be seen that an application of step (3) of the outline 

yields only a trivial bound on the nondeterministic time complexity 

of B. (One could show that B requires time fi in certain cases, but 

this is trivial because time n is required just to read the entire 

input.) In these cases, step (3) of the outline can simply be replaced 

by the statement that B E P iff 6 = NP. 



3.3 Other Applications. t 

Lemma 3.6 or 3.7 can be loosely interpreted as s ta t ing  that  the 

property "i.0. lower complexity bound" of s e t s  t rans la tes  through an 

e f f i c i en t  transformation. For example, a s  Outline 3.8. (3) shows, i f  

A *log-lin 
B and A possesses the i.0. lower bound S(n) on space 

complexity, then B possesses the i.o. lower bound S( rcnl) on space 

+ 
complexity for some c E Q , (provided log n = O(S'(n) ) ) . 

The f i e l d  of axiomatic complexity theory ( in i t i a t ed  by B l u m  [B167]) 

has considered many other interest ing computational properties. For 

example: (A). There a r e  known to ex i s t  s e t s  which possess no optimal 

acceptance algorithm i n  the sense tha t  any algorithm accepting the s e t  

can be effect ively sped up on in f in i t e ly  many inputs; (B). There a re  

known t o  ex i s t  s e t s  for which any acceptance algorithm consumes large 

amounts of time and space on some input of length n for  a l l  suf f ic ien t ly  

large n (rather  than jus t  i n f in i t e ly  many n). However these properties 

have previously been known to  hold only for  'sets constructed by 

diagona1izations or other esoter ic  methods. 

The purpose of t h i s  sect ion i s  to  show tha t  these two properties 

a l so  " translate  through" an e f f i c i en t  transformation and can therefore 

be shown to hold for  natural sets .  Our aim is only t o  prove part icular  

r e su l t s  indicative of the types of r e s u l t s  one can obtain rather  than 

t o  give a general treatment. We concentrate a t t en t ion  on the space 

 he material of $3.3 i s  not used d i r ec t ly  i n  the sequel. 



measure; analogous r e s u l t s  for the time measure can be obtained 

similarly . 

For the purposes of t h i s  section, assume a l l  transformations 

f mentioned sa t i s fy  If(x)l 2 1x1 for  a l l  x. 

A. Effective i.0. speedup. 

Definition 3.10. Let A 9 be a s e t  of words. A possesses 

S (n)- to-log effect ive - i. o. speedup i f f  given any deterministic IOTM 

M which accepts A one can effect ively find a deterministic IOTM M' 

which accepts A such that :  

(1).  space^, (x) S SpaceM(x) for a l l  x E A ; 
and 

(2) .  There ex i s t  i n f in i t e ly  many x E A such that  

SpaceM(x) > S(IxI) 
and 

 space^, (x) log 1x1 . 

Thus the new algorithm M I  never uses more space than the old M (on 

accepted words), but i n  general uses much l e s s  space than M on 

in f in i t e ly  many inputs. 

Remark. For deterministic M, we can extend the def in i t ion  of Spac%(x) 

i n  the obvious way to include a lso  those inputs x which M re jec ts .  

( In  92.1 SpaceM(x) is  defined only i f  M accepts x). Then one can 



rep lace  (1) of Def ini t ion 3.10 by ü space^, (x) 5 SpaceM(x) f o r  a l l  

x E E+." The main r e s u l t  (Theorem 3.13) of t h i s  s ec t i on  is  t r u e  

wi th  respec t  t o  t h i s  modified de f i n i t i on  of e f f e c t i v e  i.0. speedup, 

although the  proof requ i res  minor changes. 

Within the  framework of axiomatic complexity theory, Blum [B171] 

f i r s t  proved the  exis tence  of s e t s  wi th  e f f e c t i v e  i.0. speedup. By 

combining Blum's techniques wi th  methods fo r  const ruct ing s e t s  with 
Lcf. ~ ~ 1 7 1 2  

t i g h t  upper and lower bounds on space complexity, one can prove the  
4 

following. 

Fact 3.11. Let Sl(n), S (n) be such t h a t  S (n) i s  const ructable ,  
2 2 

S1(n) 2 l o g n  , and Sl(n) = o(Sq(n)). Then t he r e  i s  a s e t  

A E DSPACE(S2(n)) such t h a t  A possesses Sl(n)-to-log e f f e c t i v e  

i.0. speedup. 

t h a t  the proof a c tua l l y  shows t h a t  A possesses "S l(n) - to-zero e f f e c t i v e  

i.0. speedup"; t h i s  notion i s  defined a s  i n  Def ini t ion 3.10, where 0 

replaces  log 1x1 . 
To complete the  proof t h a t  the  speedup property t r a n s l a t e s  through 

an e f f i c i e n t  transformation, we need an add i t iona l  " e f f i c i en t  

i n v e r t i b i l i t y"  condit ion on the  t rans  formation. 



Definition 3.12. Let f :  + A .  f is logspace-invertible iff f is 

-1 + + 
one-to-one, and the function f A + C U (u) defined by 

x if f(x) = y for some x Ee 
f-l(y) = .- . 

\u otherwise (where u g q  

is a member of logspace. 

We now show that the speedup property translates through "invertible" 

Theorem 3.13. Assume A "log-lin B via f, where f is logspace- 

invertible and If(x)l 2 Ix 1 for all x. Let S(n) be nondecreasing and 

satisfy S(n) 2 logn. If A possesses S(n)-to-log effective i.0. 

speedup, then B possesses s ( rcnl )-to-log effective i. o. speedup for some 
+ 

c E Q .  

Proof. Let A L*, and B C A+ for finite alphabets C, A .  

Let M1 be any deterministic IOTM which accepts B. Effectively find a 

deterministic IOTM M2 which accepts A such that: 

M2 operates like the procedure M f  in the proof ofLemma 3.6, after this 

procedure has Seen sped-up by a factor of 1/2 2 la Fact 2.8. 

Since A possesses S(n)-to-log effective i.0. speedup, effectively 

find M3 accepting A where: 



(2) S p a c k ( x )  s S p a c k ( x )  for  a l l  x E A  , and 

(3). There i s  an i n f i n i t e  s e t  X A  such that :  

(3.1). S p a c k ( x )  > S(lx1) for  a l l  x E  X, 
and 

(3.2). S p a c k ( x )  h log 1x1 for a l l  x E X. 

l e t  f - I  E logspace be a s  i n  Definit ion 3.12. 

We describe a deterministic IOTM M4 which accepts B. M4 runs two 

procedures M 1  and P1 i n  paral le l .  Procedure P1 i s  procedure PI' sped-up 

(Fact 2.8) by a factor  of 1/3. PI' operates as  follows. 

+ 
1 ' .  Given input y E A : - 

-1 -1 
Begin a computation of f (y). I f  f (y) = u, then ha l t .  

-1 
I f  f (y) produces an  output symbol other than u, stop 

-1 - 1 
computing f (y) and simulate M3 on input f (y) as  i n  the 

proof of Lemma 3.6(Mt). (Recall f-' E logspace). 

END PI'. -- 
Therefore: 

for  a l l  y E B. 

Given input y E A+, M4 can run M 1  and P1 i n  "parallel" i n  such a 

way tha t  M4 accepts y i f f  e i ther  MI or P1 accepts y, and 

(5). Space (y) s m i n (  S p a c e ~ ~ ( y ) ,  Spacepl(y) ) for  a l l  y E B . M4 

(Informally, M4 uses a "new" tape square i f f  both P1 and M 1  require 

another tape square). 

Nar i f  f-l(y) # u, t h m  f ~ ' ( ~ )  E A @ y E  B. Thus M4 accepts 



B correctly. 

Let b E @  be such tha t  1x1 s lf(x)l g blxl for  a l l  x €I?. 
Le t  c = l/b. 

We now verify tha t  M4 s a t i s f i e s  the conditions of Definition 3.10 

to  be a ~( rcn1)- to- log  "sped-up" version of M I .  F i r s t ,  by ( 5 ) ,  

S p a c e ~ ~ ( y )  s SpaceMl(y) for a l l  y E B . 
Let Y = f(X) = ( f(x) I x E X ). Note Y is i n f i n i t e  because f i s  

one-to-one. Also, Y B because f transforms A to  B and X C A. 

Y i s  the s e t  of inputs on which M4 uses space log n while MI requires 

space s ( fcnl) . 
- 1 

To verify th is ,  l e t  y E Y be arb i t ra ry  and l e t  x = f (y), 

% so x E X G A .  Recall c(y1 s 1x1 s lyl. F i r s t :  

SpaceM4(y) s (1/3)( Spac%(x) + logly)  + loglxl , by ( 4 )  and (51, 

* (1/3)( loglxl + loglyl 3- loglxl 1, by (3.21, 

* loglyl,  because 1x1 s lyl. 

Now suppose tha t  S p a c e ~ ~ ( y )  s ( r c l y l l ) .  Then: 

S p a c k ( x )  s (1/2) ( S( rc ly l l )  + loglxl ), by (1) and by assumption, 

s S ( l x ) ) ,  by clyl S 1x1, S is nondecreasing, and 

S(n) 2 log n .  

Since x E X, t h i s  contradicts (3.1) and therefore 

SpaceM1(y) > s ( r c l ~ l 1 ) .  

Since M 1  was arb i t ra ry ,  we a re  done. 



Corollaries like the one below follow immediately from Fact 3.11 

and Theorem 3.13. For example, Fact 3.11 implies that MPSPACE contains 

n scime set with 2 -to-log effective i.0. speedup. 

Corollary 3.14. Let B be a set such that EXPSPACE slog - lin B. 
Assume furthermore that for all A E MPSPACE, A qog-lin B via some 

lagspace-invertible function f such that If(x)l 2 1x1. 

n There is a rational c > 1 such that B.possesses c -to-log effective 

i.0. speedup. 

B. Lower bounds which hold for almost all input lengths. 

As was mentioned before, we shall be content to show that lower 

complexity bounds hold infinitely often. However, given any recursive 

S(n),  there is known to exist a set A such that any deterministic 

algorithm accepting A uses more than space ~(1x1) on - all sufficiently 

long inputs x. (Here we count space on all inputs rather than just 

those x E A). 

It would be suprising to find an uncontrived example of a- set with 

this property since the natural examples all seem to have "easy subcases" 

which occur infinitely often. For example, let TAUT denote the set of 

all Boolean formulas in disjunctive normal form which are tautologies. 

It has been conjectured [Co7la] that TAUT $? 6'. Let X c TAUT denote 

the (infinite) set of such formulas of the fcnn F V xi V xi V G, 

where F and G are formulas and x is a Boolean variable. A deterministic 
i 



algorithm M accepting TAUT can f i r s t  check within polynomial time i f  

the input x is i n  X. M accepts imedia te ly  i f  x E X,  or applies a 

resolution procedure i f  x $! X. Therefore we cannot show that  TAUT is 

d i f f i c u l t  on all suff ic ient ly  large inputs. 

However, we can show tha t  cer ta in  natural s e t s  a re  d i f f i c u l t  on 

some input of length n for  a l l  suf f ic ient ly  large n. We would then say 

the s e t  i s  d i f f i c u l t  - a.e. (almost everywhere) with respect t o  input 

lengths. This question of "frequency of d i f f i c u l t  inputs1' is important, 

and there a re  same obvious directions for  further inquiry which we have 

not had time to  pursue. For example, although we can show tha t  the 

number of d i f f i c u l t  inputs of length n gruws unboundedly with n, we 

have not been able t o  show that  a nonzero f rac t ion  of the length n 

inputs a r e  d i f f i cu l t .  

Definition 3.15. Let A be a s e t  of words. 4 requires space S(n) a.e. n 

i f f  for each deterministic IOTM which accepts A there is  a no E N 

such that  
( V n z n o  ) ( 3 x € A ) [  1x1 = n and SpaceM(x) 2 S(n) 1. 

 act 3.16 (S tearns, Hartmanis, Lewis [ S H L ~ ~ ] ) .  Let Sl(n) , S2(n) be 

such that  S2(n) i s  constructable, Sl(n) 2 log n , and Sl(n) = o(S2(n)). 

Then there is  a s e t  A E DSPACE(S2(n)) such tha t  A requires 

space S (n) a.e. n. 1 

Remark. The proof of Fact 3.17 is by a f a i r l y  straightforward diagona- 

l ization. The reader should be aware tha t  by using more subt le  techniques 

one can construct se t s  A as  i n  Fact 3.16 such tha t  any IOTM M accepting 



A s a t i s f i e s  Spac%(x) 2 S1(lx 1) for a l l  but f i n i t e l y  many x (rather 

than jus t  one x of each length). We would then say tha t  A requires 
(GS cppc:-~ to ,s .e .  n"), 

space S (n) a.e.*For arb i t ra ry  recursive Sl(n), Rabin [Rab60] f i r s t  1 

exhibited s e t s  which require space S (n) a.e. Blum [B167] shows that 1 

the complexity of these se t s  can be llcompressed", tha t  is, one can a l so  

place t igh t  upper bounds (S (n)) on the i r  complexity. Trachtenbrot 2 

[Tra7O] and Meyer and McCreight [MM~I] show tha t  the two bounds can be 

compressed as  t ight ly  as  Sl(n) = o(S2(n)). 

' 
Definition 3.17. Let B A  . B is  invariant under paddirq i f f  there 

' i s  a symbol # . € A  such tha t  y E B  y # E B ,  for  a l l  y € A .  

Theorem 3.18. Assume A 'log-lin B via f ,  where B i s  invariant under 

padding and 1 f (x) 1 2 Ix 1. Let S (n) be nondecreasing and sa t i s fy  

S(n) 2 l o g n .  I f  A requires space S(n) a.e. n, then B requires space 

~ ( r c n l )  a.e. n for some c € Q'. 

Proof. Let A S 
log- lin B v ia  f ,  where 1x1 if(x))  blxl for  

some b E @ and a l l  x. 

Let M be an arb i t ra ry  deterministic IOTM which accepts B. We 

describe an IOTM M' which accepts A. 

M', Given input x: - 
For s = 0,1,2,3,-m do : 

For j = 0,1,2,3,**-,blxl do: 

j Simulate M on input f(x)-# , 



(A t r i v i a l  modification of the proof of Lemma 3.6 shaws tha t  

t h i s  can be done within space a t  most 

spaceM(f(x).#f) + log 1x1 ; 

I f  during t h i s  simulation M r  detects  tha t  ~ ~ a c ~ ( f ( x ) * # j )  > s, 

then erase everything on the work tapes except the counters 

s and j ,  and continue ; 

I f  M accepts f(x)-#', then accept x. 

EM) - 
EM) M' . -- 

M' obviously accepts A. 

Define Reduce(x) = { f (x) .# j I 0 S j S b 1x1 ) . I n  a computation 

on input x, M' considers a l l  words i n  Reduce(x) as  inputs t o  M. 

Two fac ts  about Reduce(x) a r e  useful. The f i r s t  is  obvious. The 

second follows from 1x1 I f (x)  1 s blxl. 

(1). ( x E A  and yEReduce(x) ) ( y  E B  and lyl  s 2 b l x I  ). 

(2). For n E N+, define the in te rva l  In = ( m E I bn S m 5 bn + n 1. 
, - + 

Then for a l l  n E N , for  a l l  x E A with 1x1 = n, for  a l l  m E fl 

with m E In, there is  some y € Reduce(x) with lyl = m. 

It i s  helpful t o  picture  ( 2 )  as  s ta t ing  tha t  glJ x of length n a r e  

mapped onto the en t i r e  in te rva l  I I f  any m E In has the property that  
n ' 

M is  "efficient" on a l l  inputs y E B of length m, then M r  is  "efficient" 

on a l l  inputs x € A of length n. This i s  t rue  because ( i f  the counters 

s and j a r e  represented i n  radix notation),  



(3). Spac%,(x) s F(x) + log F(x) + k*loglxl for all x E A, 

where F(x) = min{ Spac%(y) 1 y E Reduce(x) ) , log F(x) = space 

for counter s, and k*loglxl = space for counter j and simulation 

+ overhead where k E N . 
Let c = 1/2b. 

Suppose the conclusion of the theorem is false. That is, assume 

there is a deterministic IOTM M which accepts B and an infinite set 

E E fl of "easy lengths" such that 

(4). Spac%(y) < s(rclyll) for all y E B with lyl E E. 

Let E' be the corresponding set of "easy lengths" for MI. 

E' = ( n EN+ I m E for some m E E'). 

E' is infinite because I n n  I, # @ for all n 2 b. 

We claim that 

(5). Spac%,(x)<(k+2)*S((xI) for all x E A  with 1x1 EE'. 

This, combined with constant factor speed-up (Fact 2.8), contradicts 

the fact that A requires space S(n) a.e. n. It remains only to prove (5). 
- 

'~et x E A with 1x1 E E' be arbitrary. By the definition of E', 

together with fact (2), there is some y E Reduce(x) with lyl E E. 

Also, by (I), y E B and clyJ S 1x1. Now, 

F(x) S Spac%(y), by definition of F(x), 

<s(rcly11), by assumption (4) E~cause lyl E E, 

5 s(lxl), because S is nondecreasing. 

Now by ( 3 ) ,  

 space^, (x) < (k+2) -S ( ! x 1 ) because S (n) 2 10,g n . 



Therefore (5) is proved. 

. A s  i n  part  (A) above, coro l la r ies  now follow immediately from 

Fact 3.16 and Theorem 3.18. For example, i f  EXPSPACE *log-lin B, and 

n 
B i s  invariant under padding, then B requires space c a.e. n for some 

ra t ional  c > 1. 

The par t icu lar  method of padding (Definition 3.17) was chosen mainly 

for  simplicity. It i l l u s t r a t e s  the point t ha t  more information about 

"frequency of d i f f i c u l t  inputs1' can be obtained. 

Marry natural examples already possess, even without the a r t i f i c i a l l y  

added # symbol, a s l igh t ly  weaker kind of padding property defined below. 

This weaker property i s  a l so  su f f i c i en t  t o  imply Theorem 3.18 by a very 

similar proof which we omit. 

-k 
Definition 3.19. Let B A . B is  natural ly  padded i f f  there i s  a 

symbol d $? A, a jo E N, and a function p E logspace, p:~+d* -+ A', 

such tha t  : 

* 
(1). Bad B v i a p ;  

and 1% 

(2). ~ ~ ( ~ e d ' )  1 = lyl + j ,  for  a l l  y E A+ and a l l  integers j 2 j 0' 

However, the condition tha t  B be invariant under some notion of 

"padding" i s  necessary to  reach the conclusion of Theorem 3.18. For 

any large recursive S(n) , l e t  A C (0,1)+ be a recursive s e t  which 

requires space S(n) a.e. n. Define the s e t  B by 



Clearly A $og-lin B, but it is  easy  to  design an IOTM M which 

accepts B and fo r  which Space (x) = 0 for  a l l  x such that 1x1 
M 

is  odd. 





Chapter 4. Regular-Like Expressions 

- Regular expressions a r e  a family of no ta t ions  f o r  descr ib ing sets 

of words. They were f i r s t  introduced i n  automata theory as  an a l t e r n a t i v e  

c h a r a c t e r i z a t i o n  of  t h e  languages ( s e t s  of words) accepted by f i n i t e  

s t a t e  machines [Kle 561, [CEW58], [MY60]. A t reatment of r egu la r  

expressions can be found i n  most automata theory t e x t s ,  f o r  example 

[Har65], [Sa169]. [Brz62] i s  an e a r l y  survey paper. More recen t ly ,  

r egu la r  expressions have been used t o  de f ine  the  l e x i c a l  ana lys i s  phase 

of  compilers [Gri71], and t o  spec i fy  pa t t e rns  f o r  p a t t e r n  matching 

algorithms [AHU74] and t e x t  ed i to r s .  

Given two regu la r  expressions,  one might want t o  determine i f  they 

a r e  equivalent ,  t h a t  i s ,  i f  they desc r ibe  t h e  same s e t  of  words. 

Several  workers, f o r  example [Gin67], [Brz64], have given algorithms 

which so lve  t h i s  equivalence problem. However no de te rmin i s t i c  algori thm 

has been found which runs wi th in  time bounded by a polynomial i n  the  

input  length. 

I n  t h i s  chapter ,  i n t e r  a l i a ,  we show (Theorem 4.13) t h a t  t h e  -- 
problem of recognizing equivalence of r egu la r  expressions has t h e  same 

time and space requirements as  the  problem of deciding membership of 

words i n  context  s e n s i t i v e  languages. Theorem 4.13 provides s t rong 

evidence t h a t  the re  i s  no de te rmin i s t i c  polynomial time algori thm f o r  

t h i s  equivalence problem, o r  f o r  the  r e l a t e d  problem of minimizing the  

s i z e  of nondeterminist ic  f i n i t e  s t a t e  automata [cf .  KW701. 



There i s  reason t o  be l i eve  t h a t  the  genera l  membership problem f o r  

context  s e n s i t i v e  languages cannot be solved i n  d e t e r m i n i s t i c  polynomial 

tlme. I n  p a r t i c u l a r ,  63 # NP impl ies  63 j POLYSPACE i f f  CSL - 6' # @ 

[cf .  Bo721. (See the  d iscuss ion following Lemma 3 .9  concerning the  

6' versus  NP question.) Because t h i s  ques t ion  whether CSL - a = #  @ 

i s  open, we cannot a c t u a l l y  prove t h a t  t h e  equivalence problem f o r  

r egu la r  expressions i s  no t  i n  6'. However we can prove t h a t  

CSL - 63 # @ i f f  the  equivalence problem f o r  r egu la r  expressions 

i s  no t  i n  6'; we a l s o  ob ta in  a n o n t r i v i a l  l i n e a r  lower bound on t h e  

space requi red  f o r  the  equivalence problem. 

The succinctness  of r egu la r  expressions i s  increased by allowing 

the use  of opera t ions  o the r  than U, *, and * i n  w r i t i n g  expressions.  

For example, the  add i t iona l  s e t  opera t ions  of  i n t e r s e c t i o n  (n) and 

complementation (--) r e l a t i v e  t o  Z* a r e  sometimes helpful .  Brzozowski 

[Brz64] has developed methods f o r  handling r e g u l a r  expressions extended 

by n and --; i n  p a r t i c u l a r ,  h i s  methods y i e l d  an a lgor i thm f o r  checking 

equivalence of  such extended regu la r  expressions. However a p r i o r i  

ana lys i s  of  h i s  algori thm shows t h a t  f o r  no f ixed k i s  the  running time 

bounded above by 22' on a l l  i npu t s  o f  length  n and a l l  n. I n  

s e c t i o n  4.2 we show t h a t  such conplexl ty  growth i s  inheren t  i n  t h e  

problem. The equivalence problem f o r  s t a r - f r e e  expressions [MP71] 

(which may use  only the  opera t ions  of  U, *,  and --) can be solved by 

og bnl 
no algori thm which runs wi th in  time and space 2 i f  b > 3. 



It immediately follows tha t  the equivalence problem for s ta r- f ree  

expressions i s  not elementary-recursive i n  the sense of Kalmar [cf. ~ e t 6 7 j .  

Ritchie [Rit63] has shown tha t  (the charac ter i s t ic  function of )  a s e t  i s  

elementaryrecursiveiff  the s e t  can be accepted within space 

Apart from providing a nonelementary lower bound on a simple expl ic i t  

word problem, t h i s  r e s u l t  yields  several interest ing coro l la r ies  about 

the complexity of decidable theories of formal logic. Chapter 5 i s  

devoted to  these coro l la r ies ,  each of which follows by an e f f i c i en t  

transformation from the equivalence problem for s ta r- f ree  expressions 

t o  the decision problem for  a par t icular  logical  theory. Thus these 

theories are  not elementary-recursive. 

In  section 4.1, lower bounds of exponential space and exponential 

time are  obtained for the equivalence problem i f  the unary operation 

2 
"squaring" (defined by L = L-L) may occur i n  expressions, even i f  I-I 

and -- may not occur. 

Regular-like expressions are  regular expressions generalized by 

allowing s e t s  of operations other than the usual (U,.,"). A part icular  

c lass  of regular- like expressions is  specified by a f i n i t e  s e t  C of 

alphabet symbols and a f i n i t e  s e t  of operations which may occur i n  

express ions. 

Definition 4.1. Let C be a f i n i t e  alphabet and cp be a f i n i t e  s e t  of 

symbols denoting operations on sets of words. Assume P contains only 



unary and binary operations. Assume C, q, and (A, N 
N (, 2 ) are pairwise 

d i s jo in t  s e t s  of symbols. 

We inductively define the c lass  of C-q-expressions and simulta- 

neously define the map L which maps the c lass  of C-C?-expressions to  

subsets of c*. I f  E i s  an expression, L(E) i s  the language (se t  of 

words) described by E. 

t (1). ( i ) .  $& i s  a &p-expression, and L((h)) - = (X) . 
( i i ) .  I f  o E C, rv (oL i s  a C-9-expression and L(Lo2) = {o]. 

(2). I f  El and E2 a re  Cq-expressions, then: 

(i). I f  E q~ denotes the binary operation @, 

(El) E22  is  a C-9-expression and 
CU 

L ( p l  2 E2X) = L(E1) @ L(E2)* 

( i i ) .  I f  E q~ denotes the prefix (postfix) unary operation @, 

( @El 2 (resp., E,$ 2 ) i s  a --expression and 
N N 

L 1) = @ E l  (resp., L(L E12 2 )  = L(E1)@ ) *  

(3) .  That's a l l .  

I f  E i s  a Cq-expression, I E ~  denotes the length of E viewed as 

a word i n  (C U 9 U { , , 2 ) )*. 
* 2 In  part icular ,  we consider cases where ep c ( U, n ,  , , , - 1. 

Binary operations U (union) and n ( intersect ion)  a re  familiar. 

' ~ o t e :  X i s  a formal symbol; X denotes the empty word i t s e l f .  We allow A 
N N 

as an expression merely as a technical convenience. X can be removed from 
N 

our proofs a t  the cost  of minor awkwardness. See Remark 4.23. 



Concatenation is  extended to s e t s  of words i n  the obvious way; 

Rl0R2 = ( w y  I w E R1 and y E R2 ) for R1, R2 C*. 
0 - If R G C*, define R = (A) and Rk+l = R - R ~  for a l l  k E N. 

2 
I n  part icular ,  the unary "squaring" operation i s  R = R-R. 

* 
Unary operation (Kleene s t a r )  i s  now defined as 

Unary operation denotes s e t  complementation r e l a t ive  to  z*; 

The s e t  C w i l l  always be c l ea r  from context. 

To improve readabi l i ty ,  several abbreviations a re  used i n  the t ex t  

i n  describing expressions. These a re  as follows. 

Having made c lear  the d is t inc t ion  between the formal symbol@J 

and the metanotation @ for an operation, 1'-11 i s  usually delegted. 

Similarly, we wri te  ( for L, etc.  

Parentheses a re  used sparingly; the f u l l  parenthesization 

required by Definition 4.1 i s  not used. Any ambiguity can be resolved 

by two precedence rules:  any unary operation takes precedence over any 

binary operation; concatenation takes precedence over both union and 

intersection. 

I f  some character , say C, i s  defined within the text  t o  denote a 

f i n i t e  s e t  of symbols, say C = (ol, 02, * = *  , , then C may be used to  

abbreviate the E(UJ -expression ( c1 U cr2 U * * *  U os ) which 

describes (ol, 02, * * * ,  us}. Similarly ( for  example) C - [ol) , 

\ may be used to  aSbreviate tbe regillar l t k e  expression ( o2 U * * *  U gs ,. 



Occasionally we let a word u E C* abbreviate a C-(*)-expression 

which describes (o) . 
k 

.Iterated operations such as U E are used to abbreviate 
i=l i 

El U E2 U *.* uEk' 
Two particular classes of expressions are used often enough to 

deserve special notation. 

Recall Ck = ( w Ec* I lwl = k )  for k EN. 

let F= ( o EX* ( Iwl for k E N .  

Within the context of regular-like expressions, 81 ( [ P I  ) is an 

abbreviation for the obvious 2-(U, * )  -expression of size bounded by 

7k(card(Z)), namely, 

d] abbreviates c*X*E* *E (k times) 

[ e l  abbreviates (X U h) (C U ,.8 A) . -'(C U 5) (k times). 

In most proofs involving regular-like expressions, a major concern 

is the lengths of expressions we write. ~ll'abbreviations must be 

taken into account when bounding the lengths of expressions. 

Example 4.2. This example investigates two Gays of writing a regular- 

like expression which describes (0,1)* - ( (01)~ I k 2 0 ). 
* (1). If *, , and -- are available, a simple such expression is 

E, = -((o*l)*) . 
* (2). Such an expression can also be written using U, * ,  and . 

Expression F very simply illustrates a technique to be used thoughout 
0 

Chapter 4. 
* * * 

Po = 1*(0 u 1) u (0 U 1) s o u  (0 U 1) -(0*0 u 1.1).(0 u I)*. 



* 
Fo describes the correct  language because a word w E [0,1] i s  not i n  

k 
( (01) 1 k 2 0 ] i f f  w "begins wrong" ( i .  e. begins with l ) ,  o r  

"ends wrong" (i.e. ends with 0) ,  or "moves wrong" (i.e. contains 00 

o r  11 as a subword). 

Given a predicate P on regular- like expressions, an alphabet C, and 

a s e t  of operations cp, we may be interested t o  characterize the 

complexity of deciding P r e s t r i c t ed  to  &pexpressions. The problem of 

"deciding" P i s  equivalent to  the problem of accepting the s e t  

P(C, Cp) defined next. 

Definition'4.3. Let P be an n-place predicate on regular- like expressions. 

Define P(C, q) = ( (El, E2, . , En) ( E1,E2,=** ,E are  m-express ions  
n 

and P(E1,E2,***,E ) i s  t rue ) .  n 

For simplicity,  we concentrate at tent ion on the problem of checking 

inequivalence of expressions. Define the binary predicate INEQ by 

INEQ(E1,E2) i f f  L(E1) f L(E2). 

.. - 
In  many cases we consider the special  inequivalence predicate 

NEC (~ongmpty complement) defined by 

N E C ( E ~ )  i f f  L ( E ~ )  f C* - 
where C i s  the smallest alphabet such tha t  El is  a --expression 

for some Q. 

For example, i f  Eo and Fo are  as i n  Example 4.2, then 

* 
(EO.FO) f INEQ((O,l], (",*, ,U]) and (Fo) E NEC((O,l], (U,*,*I)-  

It i s  obvious tha t  NEC i s  a special  case of INEQ i n  the sense tha t ,  



* 
if C is the language of some --expression, then an algorithm which 

accepts INEQ(C,~I) immediately yields an algorithm which accepts 

NEC GO) i formally NEC G,v) slog- lin INEQ(C,q). A lower bound on the 

complexity of NEC yields essentially the same lower bound on that of INEQ. 

Hunt iHun73a1, [Hun73c] has extended our work to many other 

interesting predicates on expressions. He gives various criteria to 

determine if the generalization applies to a given predicate. 

For example, the unary predicates I1L(E1) is cofinite", "L(E1) = R 'I 
0 

where R is any particular unbounded regular set, and "L(E1) is a 
0 

non-counting event [MP71l1' satisfy one criterion. For these predicates 

and others which satisfy the-criterion, ~@&J]-is as computationally 

difficult as NEC (x,~). \ The reader is referred 
to [Hun73a], [Hun73c], and [HI2741 for further details. 

Remark. We consider inequivalence (rather than equivalence) problems 

because such problems are more amenable to solution by nondeterministic 

algorithms; to determine that L(E1) # L(E2), a nondeterministic 

algorithm can "guesst' a word in the symmetric difference 

(L(E~)-L(E~)) U (L(E2)-L(E1)). (See for example Proposition 4.11.) 

Fane 
It is then possible in- cases to show that a particular inequivalence 

problem is complete in some nondeterministic complexity class, whereas 

it may not be immediate (or even true) that the corresponding 

equivalence problem is complete in the class because certain nondeter- 

ministic complexity classes such as NP and CSL are not known to be 



closed under complementation. 

Because deterministic time (space) classes are closed under 

cbmplement for countable (constructable) bounds, it is clear that a 

lower bound on the deterministic complexity of a particular &equivalence 

problem immediately gives a lower bound on the deterministic complexity 

of the corresponding xuivalence problem provided the time (space) bounds 

are countable (constructable). (The conditions of countability or 

constructability are required only because our definition of complexity 

bounded set acceptance (Definition 2.2) places no bounds on the 

resources used by the algorithm when computing on rejected words. Of 

course the countable or constructable conditions can be dropped if we 

adopt the cormon definition of acceptance in which the algorithm must 

halt within the resource bound on - all inputs.) See also Remarks 4.20 

and 4.21 for more discussion on the deterministic or nondeterministic 

complexity of equivalence problems. 

In the following sections we characterize the complexity of 

accepting ~ ~ c ( C , c p )  or INEQ(C,~) for various ch.oices of C and q. 

Sections 4.1 and 4. 2 consider C = (0 , l )  , which actually subsumes 
all choices of finite C with cards) 2 2. Section 4.4 contains two 

results for the case C = (0) which show that restriction to a one letter 

alphabet can affect the complexity of the irlequivalence problem. 

* 2 Section 4.1 considers several choices of cp from {U,* , , ) , and in 

particular considers regular expressions as usually defined 

(q = [U,* ,*I ) In sectim 4.2 we show that the inequivalence problem 



, *} rlogbi, 
with cp = I U ,  ,-) requires time and. space exceeding 2 

i f  b > 3. We also investigate how the depth of nesting o f N  operations 

a f fec ts  the complexity, and find tha t  each increase by one i n  ---depth 

causes an exponential jump i n  complexity. 

-- 

A s  was described i n  section 3.2, we can obtain a lower bound on 

the complexity of a par t icular  s e t  B by showing 6 Seff B 
where S 

ef f 

i s  an e f f i c i en t  transformation and 6 i s  a sui tably r i ch  c l a s s  of sets .  

There i s  one basic method used i n  section 4.1 to  show 6 5 NEc(C,~) ef f 

o r  & Seff INEQ(C,~) for various part icular  B, C, cp, and 5 ef f '  In 

section 4.2 the technical d e t a i l s  become more 

complicated but the basic method remains the same, The method u t i l i z e s  

the following formal notion of the com?utations of a STM. 

Definition 4.4. Let M = (I,r,Q,G,q ,q ) be a (nondeterministic) STM. - 0 a 

Let d be an i.d. of M. 

PartComp (d )  = [ w 1 w = $dl$d2$d3$-*$dQ$ where dl = d and 
M 

di+l E NextM(di) (and hence idi+ll = Idi 1 ) 

for a l l  i = 1,2,3,** ,a-1 ) . 
CompM(d) = PartCompM(d) n [ w I w = QP p for some 

a 

a,$ E (Q Ur U ($I)*  ).  

Recall the convention that  s t a t e  q i s  entered i f f  M i s  computing 
a 



an' an input x which i s  t o  be accepted. The next f ac t  i s  then obvious. 

Fact 4.5. Let M = (I,r,Q,G,q ,q ) be ahSTM which accepts a s e t  A 
0 a 

+ + + 
within space S (n) (S :N + ) Then for  a l l  x E I , 

x E A i f f  ~ o m p ~ ( q ~ x  Ib s ( lxI ) - IxI )  + 0 

where 16 denotes the blank tape symbol. 

The next lemma provides a useful equivalent chsracter izat ion 

Lemma 4 . 6 .  Let M = (1,r,Q,G,q ,q  ) be anSTM. Let d be an i.d. of M; 
0 a 

assume q does not  appear as a symbol i n  d. Let k = Id1 and 
a 

* 
Then for a l l  W E C , W E CompM(d) i f f  . . 

( i ) .  ( "s ta r t s  correctly") $d$ i s  a pref ix  of W ;  

and 
( i i ) .  ("moves correctly") I f  we wr i t e  w = o o o *-*a where 1 2 3  m 

o. E C for  1 5 j s m, then for  a l l  j with 2 5 j 5 m-k-2 
J 

B j+k"j+k+lDj+k+2 .N~(oj- lojuj+l)  

where NM is the function of Lemma 2.14; 
and 

( i i i )  . ("ends correctly") 

( i i i a ) .  $ i s  the l a s t  symbol of w 
and 

( i i i b ) .  q appears as  a symbol i n  W. 
a  

Proof. The "only i f "  d i rec t ion  of the proof i s  straightforward. We 

sketch the proof of the " i f"  direct ion.  

Using Lemma 2.14 the following statement can be proved by induction 



on t h e  number of $ symbols which appear i n  w: 

* 
. For a l l  E C , i f  I w l  2 k+4 and w s a t i s f i e s  condi t ions  ( i ) ,  

( i i ) ,  and ( i i i a ) ,  then w E PartCompM(d). 

Now assume s a t i s f i e s  a l l  four  condit ions.  I f  ( w  1 5 k+2 then 

qa cannot appear i n  w. I f  ( W (  = k+3 then U cannot both end wi th  $ 

and con ta in  q . Therefore I W  1 2 k-t4. Now w E PartCompM(d) by t h e  
a 

above, and q appears in  w by ( i i i b ) .  Therefore w E CompM(d) by t h e  a 

d e f i n i t i o n  of CompM(d). 

The proof of Lemma 4.8 soon t o  follow i l l u s t r a t e s  t h e  genera l  

method and i s  a prototype f o r  most r e s u l t s  of Chapter .4  which show 

6 Seff P ( ~ , P )  f o r  some 6, C, rp, s e f f '  and P E [NEC , INEQ) . 



4.1 Expressions With Squaring. 

In this section we show that NEC ((O,l] , (U, ,*, 1) is "log-lin- 

complete in EXPSPACE (Theorem 4.12) and that INEQ ((O,l] , (U, , 2] ) is 
s 
log-lin -complete in EXPNTIME (Theorem 4.18). It is then easy to 

deduce lower bounds of exponential space and exponential time respectively 

for these problems using the methods outlined in section 3.2. Also, 

NEC((O,~],{U,*,*]) is 5 -complete in CSL (Theorem 4.13) and log-lin 

INEQ({O,l] , (U, 0 )  ) is 510g-complete in NP (Theorem 4.19). 

First, ,the following fact is useful in the proofs of Lemmas 4.8 

+ and 4.15: for any k E D\I , using squaring and concatenation we can write 

an expression [Ck] of length O(1og k) which describes 9; moreover 
s q 

[$I is computable from bin(k) by a function in logspace. 
s q 

bin(k) is defined as the binary representation of k E without 

leading zeroes unless k = 0. 

Lemma 4.7. Let C be a finite alphabet. There is a constant a, = a(C) 

+ 
such that for any k E N there is a C-(U, , 2, -expression 81 such that 

sq 

and 

Moreover, there is a function fz E logspace with domain {O,l) + 

such that fz(bin(k)) = [Ck] for all k E k. 
s q 

Proof. Define [Ck] inductively as follows : 
sq 

~ l l s q  = C  ; ~~~l~~ = (dl S q )2 ; and I SS = (d7 S q )2*c dk+l 

for all k E @. 



It i s  obvious tha t  (1) and (2) hold for some constant C Y ( ~ .  

The s t ruc tura l  s imilar i ty  between bin&) and [ 9 ]  should be 
sq 

obvious from the inductive defini t ion above. We l e t  the reader 

convince himself that  a su i tab le  f E logspace exists .  (Alternatively, C 

f can be defined by 2 sided recursion of concatenation (cf. Appendix 11) 
C 

from functions which are t r i v i a l l y  members of logspace.) 0 

Notation. Note tha t  L([(c U h)kl ) = 9. 
sq 

k We use the notation els for [(C U h) ISq. 

Lermna 4.8 i s  the f i r s t  r e su l t  which shows tha t  a regular- like 

expression can "simulate" a complexity bounded Turing machine. The 

proof of this lemma was f i r s t  given i n  [MS72]. 

L m a  4.8, Let A E EXPSPACE. There is  a f i n i t e  

* 2 
alphabet C such tha t  A Slog-lin NEC(~,(U, ' ,  , ) ) -  

Proof. Let A E EXPSPACE. By Lemma 2.13 we can choose d E N such that  

some (nondeterministic) STM M = (l,T,Q,G,q ,q ) accepts A within space 
0 a 

+ 
S(n) = qdn. Let x E I be arbi t rary,  l e t  n = 1x1, and 

C = r b  Q U ($1 (where $ St r U Q) .  

We construct a C(U, ,',2) -expression E (x) such that  
M 

Therefore, (%(x)) E NEC(C,[U,* ,*,2) ) i f f  L(EM(x)) f C* 

i f f  CompM(q0xV 
2dn-n 

) f 4 i f f  x E A .  

+ Letting 5 be the function mapping x to %(x) for a l l  x E I , 



w e  s h a l l  see  t h a t  f E logspace and fM is  l i n e a r  bounded. Thus 
M 

A <log- l in  NEC(C,{U,*,*,~))  v i a  f M ' 

By Lemma 4 . 6 ,  words i n  L ( k ( x ) )  can be character ized as  follows: 
1-1 

w E C* - compM(q0xll 2dn-n ) i f f  

. (1). ( " s t a r t s  wrong") w does not  begin with $q,xlb 
2dn-n 

$ ; 
- ~ 

(2).  ("moves wrong") w i s  of the  form m 1 0 2 ~ 3 @ ~ > ~ Y  where 

dn- 1 
c u , y E ~ * ,  B E $  , and 022; ""M(01~25) ; 

o r  
( 3 ) .  ("ends wrong") w does n o t  conta in  q o r  does not  end wi th  $. 

a 

W e  now w r i t e  expressions E 1' E2, E which formally desc r ibe  the  
3 

s e t s  of  words ( I ) ,  (2) ,  (3) above. 

I f  a E C, l e t  o denote &{a). 

( 1 )  Words may s a t i s f y  (1) f o r  th ree  reasons. 

F i r s t  Ell descr ibes  a l l  words which a r e  "too short" ,  t h a t  i s  

Recall  from Lemma 4.7 t h a t  1 [ I  I 5 1 &m] sq 1 cr log m f o r  a l l  m, 
s q 

where cu depends only on 2. Therefore, viewing I E  '1 a s  a function of n, 11 

lElll = O(n). 

Second, EI2 descr ibes  a l l  words which do no t  begin with $q x. 
0 

L e t  x = x x x  1 2 3..0Xn' 

E12 = (S U $ a ( %  U qO*(;;l U XI0 (T2 U * * .  

- * 
*;; )))...).C . U xn-20(xn-l U Xn-l n 

Viewing I El* 1 a s  a function of n ,  note  t h a t  IE121 = O(n). 

F ina l ly ,  E13 descr ibes  a l l  words longer than n+2 which do not  

begin wi th  7l3 2dn-n 
$ f o r  some -T of l sng th  114-2. 



Note lE131 = O(n) f o r  the  same reasons given f o r  I E  I . 11 

Now l e t  El = Ell U E12 U E13 . 
(2 ' ) .  Words (2) a r e  described by an expression E2. Subexpression 

1 
s9 

serves  as  a " ruler"  t o  measure t h e  d i s t ance  between p a i r s  

0 1  of words af2u3 and ala203 which a r e  incons i s t en t  i n  the  sense t h a t  

dn 
, f N M ( o 1 2 )  See a l s o  Figure 4.1 where k = 2 +1 i s  t h e  

length  of  each i.d. 

Figure 4.1: E2 "matches" a word w. 

Note 1 ~ ~ 1  = O(n). 
.- 

1 ~ ~ 1  i s  f ixed independent of n. 

For E Z* we have 

L(EM(x)) iff $! L(E1) and W $! L(E2) and w $! L ( E ~ )  

i f f  o E compM(q0xl4 2dn-, 
) by Lemma 4 . 6 .  



* 
Therefore L(EM(x)) = C - Comp (q x)( 

zdn-n 
M 0 

) as  required.  

+ 
Let fM be t h e  funct ion wi th  domain I defined by 

+ 
%(x) = (EM(x)) f o r  a l l  x E I . 

To complete t h e  proof, we must show f E logspace and f is  l i n e a r  
M M 

bounded. The l a t t e r  f a c t  i s  immediate from our observation t h a t  

1 ~ ~ 1 ,  I E ~ I ~  and ( E  I (viewed a s  funct ions  of  n) a r e  a l l  O(n). 
3 

Assuming f E logspace, M A *log-l in NEC(C, (U, ,*,']) v i a  %. 
W e  now o u t l i n e  how one might formally prove t h a t  fM E logspace, 

using a number o f  f a c t s  from Appendix 11. Those readers  f ami l i a r  wi th  

space bounded Turing machines may wish t o  s k i p  t h e  next  paragraph. 

F i r s t  by Lemma 4.7 t h e r e  i s  a funct ion fC E logspace mapping 

bin(m) t o  Flse f o r  a l l  rn. The functions mapping x t o  b in (  lx 1) and 

x t o  bin(Zd lXI)  belong t o  logspace. Now t h e  funct ions  

belong t o  logspace because add i t ion  and monus belong t o  logspace an? 

logspace i s  closed under composition. Therefore, by another app l i ca t ion  

o f  c losure  under composition,- t h e  functions mapping x t o  

2 d ' x x 1  
e tc .  belong t o  logspace. F i n a l l y  E12 i s  de f inab le  

sq'  

from x by two s ided recurs ion  of concatenation. Thus, a l l  t h e  

componenets of EM(x) can be computed by functions i n  logspace. These 

components can be combined appropr ia te ly  by concatenation (E logspace) 

to  g ive  EM(x). 0 



Lemma 4.9, Let A E CSL. There is  a f i n i t e  

alphabet C such tha t  A mc(C,(u,*,*]). 

Proof. The proof i s  essent ial ly  the same as Lemma 4.8; only the 

differences are sketched. 

Let A E CSL and l e t  M = ( 1 , Q , , q 0 , q a )  be a (nondeterministic) 

+ 
STM which accepts A within space S(n) = n+l. Let x E I , n = 1x1, 

and C = Q U U ($1 as before. 

Since x E A i f f  CompM(qox16) # @, EM(x) i s  constructed such tha t  

L ( E ~ ( x ) )  = C* - compM(qox~). 

%(x) is  constructed as i n  the proof of lemma 4.8 where 2d" is  

replaced by n+l, and [ Isq i s  replaced by [ ] (without the use of 

"squaring1'). For example, subexpression E i s  now 2 

Recall that [C"] abbreviates C*C*C. -.- *C (n times). Therefore 

I E ~  I = O(n) . Similarly one can check tha t  the lengths of El and E3 

( a f t e r  modification) are a l s o ,  O(n). 

Let be the function mapping x to  %(x) for a l l  x. Then one 

can prove fM1 E logspace just  as one proves f E logspace i n  Lemma 4.8. 
M 

A "log-lin NEC(C,(U,-,*I) v i a  f M I .  0 

In Lemmas 4.8 and, 4.9, the alphabet C depends on the s e t  A. 

However we would l i k e  to show that  (for example) NEC(C, ( U ,  ,*} ) is 

complete i n  CSL for a fixed alphabet C. The next lemma :haws that  

alphabet symbols can be coded in to  binary. Therefore Lemas 4.8 and 



/ 
4.9 a re  t rue  with C = (O,l), a3!myd For convenience, many r e s u l t s  t o  

follow a re  s ta ted  only for  the case C = ( 0 , l ) ;  these r e s u l t s  a r e  

actual ly  t rue  for  any f i n i t e  C with cards) 2 2. 

Lemma 4.10. Let C be a f i n i t e  alphabet with card(C) 2 2, and l e t  

* 2 
12.35~ , ,n1* 

(2). I f  a lso U,Q* E 9, then 
L 

P?W: (Zrl~) -log-lin NEC (( 0'1) ,c;,) 

Proof. (1). The transformation INEQ ( (0 , l )  ,Cp) Slog-lin INEQ(~,@) is 

t r i v i a l .  We only show INEQ(~,P)  <log-1in mEQ(10,l) '9)  

Let k = r l o g 2 ( c a r d ( ~ ) ) l .  Let h be any one-to-one map, 

k h :  + ( 0  1 . Extend h as a map from ?* t o  2 (o' * i n  the obvious way: 

h(h) = h;  h(W) = h(w)h(o) for  a l l  w E z*, a E C; and 

* 
h ( ~ )  = h(w) 1 w E R 1 for R C C  . 

I f  E is  a %$3-expression, l e t  h(E) be the (0 , l )  +-expression 

obtalned from E by replacing each occurrence of a symbol a E C i n  E 

by the word h(a). A simple inductive proof shows t h a t  

L(h(E)) = h(L(E)) for  a l l  w - e x p r e s s i o n s  E. 

(El,E2) E ~ E Q G , w )  iff M E l )  .h(E2)) E INEQ((O,l? ,v). 
The function mapping (E1,E2) t o  (h(El) ,h(E2)) i s  obviously 

l i nea r  bounded and a member of logspace. The conclusion follows. 

(2). A s  i n  ( I ) ,  we only show N E C ( ~ , ~ )  slog - lin NEC((0,l) 4 ) .  

Given an expression E l e t  C be the s e t  of alphabet symbols which 1' 



actuallyoccur i n E  Let C =h(z) U (X) = ( ~(cJ) I D E E )  U (A) 1' 

be the set of code words. As in part (I), for all m-expressions E, 
* * - L(~(E)) C* and L(h(E)) = C iff L(E) = E . 

Let F be the (O,l] -(U, ,*) -expression 

k * k * 
F = ((0 U 1) ) .((0,1)~ - C)*((O U 1) ) . 

Note L(F) = (0,1)* - c*. Therefore 

L((~(E~) u F)) = (0,1]* iff L(E~) = c*. 

The reduction (2) is via the function mapping El to (h(E1) U F). 

The next result gives an upper bound on the space complexity of 

INEQ(~,IU,*,*I 1. Essentially the 

same algorithm was discovered independently by Aho, Hopcroft, and 

Ullman [AHU74]. Since lower bounds are our main interest, we only 

outline the algorithm. 

Proposition 4.11. . ' Let C be a finite alphabet. 

TNEQ(c,(u,=,*)) E CSL. 

Proof. Given two C-(u,. ,*) -expressions El and E2, an IOTM M tries to 

nondeterministically "guess" a word w in L(E1) @ L(E2) 

= (L(E1) - L(E2)) U (L(E2) - L(E1)). W is guessed one symbol at a 

time. El and E will be viewed as nondeterministic finite automata 
2 

(NFA's, cf. HU69) which accept L(E1) and L(E2) respectively. M can 

simulate these NFA's as though they were receiving W as input, and 

thus determine if W belongs to L(E1) 63 L(EZ). 

An expression, say El, is viewed as  TI NFA as follows. The 



parentheses of  El se rve  a s  t h e  " s t a t e s"  o f  t h e  NFA. I f  F is  any 

subexpression of El, t h e  le f tmost  (r ightmost)  pa ren thes i s  of  F i s  

t h e  i n i t i a l  ( f i n a l )  s t a t e  o f  an NFA which accepts  L(F). I m p l i c i t l y  

t h e  following t r a n s i t i o n s  e x i s t  between " s t a t e s"  o f  El. 

0- 
( o ) where a E C. 

These t r a n s i t i o n s  need n o t  appear e x p l i c i t l y  on a work t ape  because 

given two designated parentheses pl and p2 (designated say  by being 

marked insome way), an IOTM can check whether o r  n o t  t h e r e  i s  an a r c  

from pl t o  p2 by coun t i~ ig  parentheses.  Such a check can be performed 

wi th in  t i m e  polynomial i n  / E  ( and space logar i thmic  i n  ( ~ ~ 1 .  1 

The simulat ion of t h e s e  NFA's, El and E2, on w works as  follows. 

A parenthes is  s t a t e  i n  E (or  E ) w i l l  be  marked a t  some t i m e  i f f  t h e  1 2 

por t ion  of w received up t o  t h a t  time could lead t h e  NFA El (o r  E ) 2 

t o  t h a t  s t a t e .  The following procedure update(a)  i s  used t o  update t h e  

subset  of  marked s t a t e s .  update(o)  should perform a s  follows f o r  

a E C U (A). A t  t h e  completion of  a c a l l  on update(@,  a s t a t e  p 2 

i s  marked i f f  t h e r e  is  a s t a t e  p (poss ib ly  pl = p2) such t h a t  1 

? The h- self- loops a r e  redundant, but  a r e  included f o r  purposes 

of  exposi t ion.  



( i )  there i s  an arc  labelled 0 from pl to  p2, and ( i i )  p was marked 1 

before the c a l l  on update(o). Note update(c) can be programmed to  run 

deterministically i n  polynomial time and linear space. 

M operates as follows. Given input x (with n = 1x1 ): 

(1). Note that  for any C and v, the set  of w-express ions  i s  a 

context f ree  language. Within space (log n)2 [cf. LSH651 check 

tha t  x i s  of the form (E1,E2) where El and E a re  c(u,=,*]- 
2 

expressions. Reject i f  x is  not of this  form. 

(2).  Write E and E2 on some work tape; 1 

Mark the leftmost parenthesis of El and Ep. 

( 3 ) .  Call update@) n times. 

( 4 ) .  I f  exactly one of the rightmost parentheses of E and E2 a re  1 

marked, then accept. 

(5). Nondeterministically guess a symbol o E C; 

Call update(o). 

.- 

M operates within space cn for some constant c. The conclusion 

follows by Fact 2.8 (constant factor speedup). 

Completeness r e su l t s  now follow easi ly  for the two cases 

considered thus far.  



Theorem 4.12, - 

(1). NEC ([O,11, (U, ,*,21 ) is ~log-l in-c~mplete i n  EXPSPACE. 

(2). I n  pa r t i cu l a r :  

(2 i ) .  There i s  a r a t i o n a l  c > 1 such t h a t  

* 2 
NEC({O,~ ] , (U ,* ,  , 1 )  g NSPACE(C") ; 

( 2 i i ) .  NEC ( (0 ,  I) ,  (u, ,*,2) ) E N S P A C E ( ~ ~ ) .  

Proof. F i r s t ,  f o r  a l l  A E EXPSPACE, 

* 2 * 2 
A slog-l in NEC (E, {Us , 9 1 ) Slog-lin NEC(CO,11 ,{U,., , 1 )  

f o r  some E by Lemmas 4.8 and 4.10. Therefore 

MPSPACE slog lin 
* 2 - NEC ({O, I ) ,  (U, , , ) ) by t r a n s i t i v i t y  of 5 log- l ine  

(211) is  t r u e  because an IOTM, given a (0 , l )  -(u, ,*,2) -expression 

E of  length  n,  can f i r s t  expand the  squaring operat ions;  t h a t  i s ,  

2 
rep lace  F by F*F i f  F is  some subexpression of E. This produces the  

(0 , l )  -(u,*,*)-expression E t  , where I E ' I  r 2" and L(Et) = L(E). 

The IOTM now appl ies  the  procedure of Proposit ion 4.11 t o  the  p a i r  

n 
(Et , (0 U I)*). The e n t i r e  procedure operates  wi th in  space 0(2 ) and 

( 2 i i )  then follows. 

(1) is  now immediate by the  d e f i n i t i o n  of -complete. log- l in  

The proof of (2 i )  follows s t e p  (3) of  Outl ine 3.8. That is,  

f o r  C > 0 l e t  A E N S P A C E ( ~ ~ )  - NSPACE((~-E)"), and deduce ( 2 i )  

where c S (2-C) 1 /b 
and A NEC ((0,1] ,(u,*,*,~)) v i a  some 

length bn bounded function. See Outl ine 3.8 f o r  f u r t he r  d e t a i l s .  



Theorem 4.13. 

(1). NEC((O,1) ,(u,',*) is $og-lin -complete in CSL. 

(2). If a nondeterministic IOTM accepts NEC((O,~),(U,*,*]) within 

space S(n), then there is a rational c > 0 such that 

S(n) 2 cn for infinitely many integers n. 

Proof. (1) is immediate from Lemmas 4.9 and 4.10 and Proposition 4.11. 

(2). Let B = NEC((0, I}, (U, ,*] ). Suppose a nondeterministic 
+ 

IOTM accepts B within space S (n) where for all c E Q , S (n) < cn 

for all but finitely many n. 

Let S ' (n) = max( S (m) I m S n ) . Then B E NSPACE (S ' (n) ) and 

S'(n) is nondecreasing. 

By Fact 2.11 let the set A be such that A E CSL; and for all 

S (n), S (n+l) = o(n) implies A $! NSPACE(Sl(n)). 1 1 

BY Part (1) above, A Slog-lin B via some length bn bounded function 

for some positive integer b. Therefore, by Lemma 3.6, 

A E NSPACE(S ' (bn) + log n ) . However, by definition of S ' (n) and our 

assumption on S(n), St(b(n+l)) + log(n+l) = o(n). This contradiction 

proves (2). 

Remark 4.14. 

(1). As was mentioned earlier (following the definitions of 

NEC and INEQ), we can immediately replace NEC by INEQ in Theorems 

4.12 and 4.13. [Hun73a], [Hun73c], and [HR74] give many other 

predicates which are as complex to decide as NEC. 



(2). The proofs of Lemmas 4.8 (4.9) and 4.10 actually show that 

MPSPACE (resp., CSL) is log-lin reducible to the inequivalence problem 

* for (0,l) -(U,* ,*,2) -expressions (resp., ( 0 1  - U  ) -expressions) of 

star-height one [cf. MP71 1. The expression %(x) constructed in 

L m a  4.8 (4.9) is of star-height one. Binary coding by Lema 4.10 

does not increase star-height above one. Therefore the lower bounds 

of Theorems 4.12 and 4.13 also hold for the respective NEC or INEQ 

problems restricted to expressions of star-height one. 

(3). Using padding techniques of Ruby and Fischer [RF65], one 

can show that CSL I: B implies POLYSPACE 5 B for any set B. 
1% log 

(Hunt [Hun73a] has observed this fact using 6 ii place of .) log * Thus, immediate from Theorem 4.13, NEC((O,~},(U,*, ) )  is qog-complete 

in POLYSPACE. 

We now investigate how removal of the * operation affects the 
2 

complexities of these problems. First consider INEQ(C, (U, , } ). 

Note that this is a purely finite word problem: if E is a 
.- 

c(u,- ,2) -expression then L(E) is a finite set of words. In fact, 

if I E I  = n, then a E L(E) implies IW I 5 2". This suggests that a 

C(U, , 2] -expression cannot "simulate" a space 2dn bounded STM as was 

done.in Lema 4.8 unless the expression itself is of length roughly 

pdn 2dn; a STN which operates within space '2dn may run for time 2 and 

2dn thus may admit computations of length 2 . 
However, a E[U, , 2} -expression can "simulate" a time 2 dn 

bounded STM. The computations (in the sense of CompM( ) ) of a 



dn 2 = 22dn t i m e  2dn bounded STM a r e  of length  roughly (2 ) . 
The nex t  r e s u l t ,  presented by us previously i n  [SM73], was 

st imulated by a remark of  Brzozowski t h a t  our use  of * i n  Lemmas 

4.8 and 4.9 was very r e s t r i c t e d  and might the re fo re  be removable. 

Lemma 4.15, 

=IME s~logg-~in I ' N E Q ( ( O , ~ I  y ( ~ , * , 2 ~ ) *  

Proof. The proof i s  very s i m i l a r  t o  t h a t  of Lemma 4.8. We need only 

* 
f ind  a s u b s t i t u t e  fo r  a l l  occurrences of C i n  t h e  expression EM(x) 

const ructed  t o  prove Lemma 4.8. 

+ 
Let A E MPNTIME. Choose d E N such t h a t  a (nondeterminist ic)  

STM M = (1,rYQ,6,qO,qa) accepts  A wi th in  time zdn (and thus M accepts  

dn + 
A wi th in  space 2 ) Let x E I , ,  n = 1x1, and C = r U Q U ($) a s  before. 

We cons t ruc t  a s ( U ,  , 2] -expression %(x) such t h a t  

(n) zdn-n) 
L(EM(x) ) = c - cOm~M(~oxla 

where b(n) i s  spec i f i ed  below. 

Note t h a t  w E compM(qOx)I 
2dn dn dn 

-") implies l w l  5 2 (2 +1) + (2dn+l) 

22dn+2 
9 

because each i.d. i n  w is  of length  ~ ~ ~ + l  and t h e r e  a r e  a t  most 2 dn 

such i.d..'s because M i s  t i m e  2dn bounded; t h e  markers $ account f o r  

dn 
a t  most 2 +1 more symbols. 

Define a(n)  = 2 
2dn-!-2 . 

* 
The r o l e  of C i n  Lenuna 4.8 i s  played by t h e  expression [y a(n> Isq* 

Construct  El and E2 exac t ly  a s  i n  t h e  proof of Lemma 4.8, except 

r ep lace  -1.1 occurrences of C* 3y [Pa(" )  
Is** 



Following the proof of Lemma 4.8, i t  can be checked tha t  

L( el U E2 U E3 ) contains a l l  words i n  e a ( " )  except those i n  

zdn-n 
C O ~ M ( ~ o x p  ) L( El U E2 U E3 ) contains other words longer than 

a(n) ;  however no such word i s  longer than 

(These longest words a r e  i n  L(E ).) 2 

Therefore, we add a l l  words w such tha t  a(n) < I w l  b(n). 

and therefore (EM(x), [ f l ( n ) ] s q )  E INEQ(C,(U,- ,']) i f f  x E A. 

Let 5 be the function mapping x t o  (EM(x) , p ( n )  ] ) for  a l l  
s q + 

x E I . Following the proof of Lemma 4.8, the reader can check t h a t  

4 E logspace and f i s  l i nea r  bounded. Finally the binary coding 
M 

lemma (4.10) implies the conclusion. 0 

Again we see  tha t  removal of the operation causes an exponential 

drop i n  complexity. The following lemma was discovered independently 

by Hunt [Run73a] (with 4 i n  place of S ) using another proof. 
log 

Lemma 4.16, 

N P s  ~EQ((O,1}y(U, ' ] )*  
1% 

Proof. Lemma 4.16 i s  analogous t o  4.15 i n  the same way tha t  Lemma 4.9 



is analogous to 4.8. 

Given an STM M which accepts A E NP within polynomial time p(n), 

and given input x with n = 1x1, %(x) is constructed as in Lemma 4.15 

to describe p(n)-n) for some suitable polynomial 
2 

b(n). C* is replaced by the expression [y(p(n)+l) ] in this case, 

and the "ruler" in E is [cP(~)"]. Recall that [PI is written as 2 

C*C*C* * * *  *C (m times). By Fact AII.3 (Appendix 11), if q(n) is a 

(.lxl) polynomial there are functions in logspace mapping x to [C4 . 1 and 

to 8q('xl)]. Further details are left to the reader. 0 

An upper bound on the time complexity of INEQ(C, (U,.} ) follows 

by a minor modification to the procedure of Proposition 4.11. 

Proposition 4.17. Let C be a ffnite alphabet. 

INEQ(~,(U,-)) E NP. 

Proof. The set of C-{U,*]-expressions is a context free language. 

Given input x of length n, an I O T M  can check deterministically within 

3 time-O(n ) [cf. You671 that x is of the form (E1,E2) where El and E2 

are C-(U, 0 )  -expressions. 

Note that if E is a z(U, * )  -expression, 

W E L(E) implies 1~ 1 I E I .  Therefore 

L(E1) # L(E2) iff (am) [ w L(E1) 8 L(E2) and 101 n 1. 

The procedure of Proposition 4.11 (with step (1) modified as above) 

therefore accepts INEQ(C,(U,~]) within nondeterministic polynomial 

time. 



Theorem 4.18. 

INEQ((0,l) ,(U,=,~I) is "log-lin -complete in EXPNTIME. 

(2). Therefore there are rational c,d > 1 such that 

(21). INEQ((O,~),(U,*,~)) 4 NTIME(cn) 

(2ii). INEQ((O,I.) ,(u,*,~)) E NTIME(~") . 
Proof. (2ii) follows by eliminating the squaring operations as in 

the proof of Theorem 4.12, and then applying the procedure of 

Proposition 4.11 and 4.17. (1) now follows by Lemma 4.15. 

The proof of (2i) is exactly as in Theorem 4.12(2i) where 

NTIME replaces NSPACE. 

Theorem 4.19. 

INEQ ((0,l) , {U, * )  ) is s, __-complete in NP. 

Proof. The proof is immediate from Lema 4.16 and Proposition 4.17. 

This section concludes with several remarks on the material of 

section 4.1. 

Remark 4.20. (Deterministic time complexities of these and related 

problems. ) 

Given present knowledge, Theorems 4.13 and 4.19 provide no 

interesting lower bounds on the deterministic time complexities of 

NEC((O,~) ,(U,*,q ) or INEQ((0,l) ,(U,=]). These results imply only 

exponential upper bounds. Theorem 4.13 implies 

NEC((0,l) ,(u,*,")) E DTIME(~;) for some constant dl by Fact 2.9C(b). 



A deterministic simulation of the procedure of Proposition 4.17 

yields INEQ((O,l),(U,*)) E DTIME(~~") for some constant d2. 

The exponential difference between the upper and lower bounds 

on deterministic time is closely related to two important open problems 

of complexity theory, namely 'a3 = NP?" and "CSL E 63?". 

Corollary 4.20.1. 

* (1). NEC((O,l),(U,*, ) )  € 63 iff CSL E P  iff C S L S ~ .  

(2). INEQ((O,l), (U,.) ) E 63 iff 63 = NP. 

Proof. The equivalence CSL 63 iff CSL 2 63 follows by the result 

of Book [Bo72] that CSL # 63. (1) is now immediate from Lemma 3 .9 .  

(2) is by Lemma 3 .9  and 63 NP. 0 

More generally, if a set B is S -complete in CSL, e.g. log-lin 
* 

B = NEC ((0,l) , (U, , ) ) , then upper and lower bounds on the determi- 
nistic time complexity of B are related to bounds for CSL by: 

k 
BEDTIME(T(n)) implies CSLG U DTIME(T(cn) 4-n ) 

and c,k € N 

CSL C DTIME(T(~)) implies B E DTIME(T(n)) , 

the first implication following from Lemma 3.6. 

Corollary 4.20.1(1) provides evidence that the problem of 

checking equivalence of regular expressions (cf. [Gin67], [Brz64]) 

is computationally intractable. (By "regular expression" we mean a 

C(U, ,*) -expression. Following [Edm65], [Kar72], we call a problem 

I'intractable" if there is no deterministic algorithm which solves the 

problm-within polynomial tine.) If CSL - 63 # @, then the equivalence 



problem for  regular expressions i s  intractable ,  as a re  the problems 

of checking equivalence of nondeterministic f i n i t e  s t a t e  automata 

(NFA's, [cf. HU691) and minimizing NFA's [cf. KW701. Assuming 

CSL - bJ # #, the equivalence problem for NFA's i s  in t rac tab le  since 

there a re  well-known deterministic polynomial time procedures for  

converting any regular expression to  an equivalent NFA (e.g. [Har65], 

[Sa169 1). 

To see that  the minimization problem i s  intractable ,  suppose we 

have a deterministic polynomial time procedure G which, when given an 

NFA F, finds a smallest ( in  terms of number of s t a t e s )  NFA which 

accepts the same language as I?. Let A E CSL and 'consider the following 

procedure for accepting A. Given input x, construct EM(x) as i n  

* 
Lenana 4.9 such tha t  L(EM(x)) # C i f f  x E A. Convert %(x) t o  an 

equivalent NFA and minimize t h i s  NFA using 6. Since i t  i s  t r i v i a l  t o  

* 
check i f  a minimized NFA accepts C ( i t  can have only one s t a t e ) ,  the 

en t i r e  procedure accepts A within deterministic polynomial time. 

I f  CSL - 6' j @, then such an G cannot exis t .  

There a re  also "gaps" i n  the known deterministic time complexities 

of the problems with squaring. For example, Theorem 4.12 innnediately 

gives a lower bound of DTIME(c") for NEC((O,l} ,(U,*,*,2}) , but an 

dn 
upper bound of DTIFE (d ) for some c ,  d > 1. A s  i n  the cases above, 

any improvement i n  t h i s  gap would supply new information about 

n 
Open Question 2.10C for  the case S(n) E ( c I c > 1 }, and vice versa. 

Also, the deterministic space complexity of NEC((0,l) ,(u,*,*) ) i s  



related to the "lba problem". 

* Corollary 4.20.2. NEC([O,~},(U,*, ) )  E DSPACE(n) iff CSL=DSPACE(~). 

Proof. Imediate from Theorem 4.13 and Lemma 3.6. 

Remark 4.21. (An alternative to the nondeterministic hierarchy 

theorems.) 

If one desires lower bounds on only the deterministic time or 

space complexity of problems,the deterministic hierarchy theorems, 

[SHL65] and [HS65], can be used in place of Fact 2.11 to assert, for 

example, the existence of a 8et A E DTIME(~~) - DTIME((2- €)"). 

The deterministic hierarchy theorems follow by fairly straightforward 

diagonalizatims, while the known proof of Fact 2.11 requires additional 

deeper "translational" arguments. For this reason, it seems worth 

pointing out that the deeper results of Fact 2.11 are not always needed 

to deduce lower bounds on nondeterministic complexity. In particular 

we consider nondeterministic time complexity. 

If A is a set of words and C is the smallest alphabet such that 

A Cf let denote the set C+ - A. 
The first lemma was brought to my attention by Paul Young. 

Lemma 4.21.1 (Young). Let T(n) be countable and satisfy T(n) 2 n. 

There is a set A E (0,1)+ such that 
- 

AENTIME(n*T(n)) and A fNTI'ME(T(n)) . 



Proof. Let ( M(y) I y E (0,l)' ) be an e f f i c i en t  effect ive 

enumeration of the nondeterministic I O T M ' s  such tha t  each IOTM i n  

the l ist  has two work tapes and has input alphabet (0 , l ) .  By 

"eff icient  effect ive enumeration" we mean tha t  there is  a universal 

+ 
IOTM U and a constant c such tha t  for a l l  x,y E (0 , l )  , 

( I ) .  U accepts x#y i f f  M(y) accepts x, 
and 

( i i ) .  ~fm%($~)  * c I Y  l T i m e ~ ( ~ )  (x) 

The standard methods of enumerating Turing machines (e.g. l ists  of 

quintuples .[Min67]) are  sui tably ef f ic ient .  

Now l e t  

+ 
A = ( y E (O,l} I M(y) accepts y and T i m  

=M(Y > (Y) T(lyl) 1. 

Since T(n) is countable, and (M(y)) is an e f f i c i en t  enumeration i n  

the above sense, i t  follows tha t  A E NTIME(n*T(n)). 
- 

Now suppose A E NTIME(T(n)). F i r s t ,  implicit  i n  [BGW70] is the 

r e su l t  tha t  i f  B E NTIME(T(n)) then some IOTM with two work tapes 

accepts B within time T(n). Therefore, for  some y M(yO) has two 0 ' 
work tapes and M(yO) accepts within time T(n) . Now 

yo E 7i i f f  M(yO) accepts yo and (Y 1 T ( I Y ~ I )  
Tim%(yo) 0 

(by defini t ion of M(yO)) 

i f f  y o E A  (by defini t ion of A). 
- 

This contradiction proves A B NTIME(T(n)). 

Lennna 4.21.2. Let geff I; <), l e t  A and B be s e t s  
('log-lin' log9 pa9 

4- 
of words with A * and B A , and l e t  A seff B v ia  f ,  where 

f(*) D G A +  for sane s e t  D .  Then X h e f f  D - B v ia  f. 



Proof. The proof i s  immediate from the  d e f i n i t i o n  of transformation 

(Definit ion 3.3). 

n 

Define the  predicate  EQUIV as  EQUIV(E1,E2) i f f  L(E1) = L(E2). 

We i l l u s t r a t e  t he  use of Lemmas 4.21.1 and 4.21.2 by proving an exponen- 

t i a l  lower bound on t he  nondeterministic time complexity of 

Corollary 4.21.3. There is  a r a t i ona l  c > 1 such t h a t  

EQUIV((O,~) , ( u , - , ~ ) )  B NTIME(C"). 

Proof. By Lennna 4.21.1 l e t  the  s e t  A (0,1)+ s a t i s f y  

A E NTIME(~~") but  4 NTIME(~~) .  Let 

D = ( (E ,E ) I El and E a r e  (0,l)-(U, ~ ,2 ) -express ions  ) . 1 2  2 

Since A E EXPNTIME, the proof of Lemma 4.15 (with Lema 4.10) 

gives  a function f such t h a t  
A 'log-lin I N E Q ( ( o , ~ I , ( u , - , ~ I )  v i a  f, 

f is  length  bn bounded fo r  some b E @, and f((0,l)') C D .  

By Lemma 4.21.2, 
- 

.- A ' l og- ~in  D - I H E Q ( ( O , ~ )  ,(u, *,*I)  = EQUIV((O,~) , ( u , * , ~ } )  v i a  f.  

Now l e t  c ' 21'b and conclude as  usual ( v i a  Lema 3.6) t h a t  
- 

EQuIv ( (O ,~ ) , (U ,* ,~ ) )  E NTIME(c") implies A E NTIME(~") contrary  

t o  assumption. 0 

Corollary 4.21.3 i s  of value i t s e l f  because Theorem 4.18 does not  

imply Corollary 4.21.3 given present knowledge. MPNTIME is not  

known t o  be closed under complementation. 



Remark 4.22. (Effective i.o. speedup and a.e. n lower bounds.) 

It can be checked tha t  the transformations described i n  section 

4.1 a re  logspace-invertible (cf. Definition 3.12). I n  a l l  cases, the 

expression %(x) i s  syntact ical ly  simple enough tha t  an IOTM can 

determine within space logly]  that  y = EM(x) for  scme x. The word 

x can then be "read off" subexpression El of EM(x). From the r e su l t s  

of section 3.3A and Theorems 4.12 and 4.13 we immediately obtain: 

Corollary 4.22.1. There i s  a ra t iona l  c > 1 such that  

n 
NEC((0, I ) ,  (u, ,*,2] ) possesses c -to-log ef fec t ive  i.0. speedup. 

Corollary 4.22.2. For a l l  ra t iona l  r < 1, N E C ( ( O , ~ }  ,(u,*,*} ) 

r possesses n -to-log ef fec t ive  i.0. speedup. 

None of the s e t s  NEC (z,cp) or INEQ(C,V) described above possess a 

nont r iv ia l  lower bound on a.e. n complexity because our syntact ic  

conventions imply that  the length of any well-formed m-express ion  

is  d iv is ib le  by 3. However, C4p-expressions can be "naturally 

padded" (cf. Definition 3.19) to  any length d iv i s ib l e  by 3. For 

example,.using methods of section 3.3B we can prove the following: 

Corollary 4.22.3. Let B = NEC((0,l) ,(us. ,* ,2}) .  There is  a ra t iona l  

c > 1 such that  given any deterministic IOTM M which accepts B 

there i s  an integer n such tha t  
0 

n 
(Vn 2 no such tha t  3 divides n) (Zx € B) [ 1x1 = n and Spac%(x) > c 1. 



Remark 4.23. (& is  not needed.) 

The a b i l i t y  t o  wri te  as a regular- like expression is not 

essent ia l  t o  our proofs. For example, for  any k E &, an expression 

+ 
[ z ~ ] ~ ,  which describes ( w E C I l w l  i m ) can be constructed 

p+s2k1 by the rules:  
-Kk 2 

sq 
= Isq1 U C  

[ e l  can be used i n  place of 61 i n  the expressions 
sq sq 

%(x) constructed to  prove Lemmas 4.8 and 4.15. Further minor 

modifications to  the expressions a re  required; the reader can eas i ly  

supply these. 

Remark .  One can of course investigate the complexity of NEC(Z,(P) 

o r  I N E Q ( ~ , ( ~ )  f o r  se ts  of operations (P other than those discussed here. 

F o r  example, .  ~ u n t  b u n 7 3 q  ( s e e  alsd L H U ? ~ ,  Chapter 11 ) considers  

regular  expressions extended by intersection and proves that 

Jn l log  n 
NEC( {o, 3 , {u, , ", fi) ) 4 NSPACE( c ) for some c 7 l .  

Hunt and Hopcroft (personal  communication) have a l so  observed that 

* 
NEC( @, 13,  (u, . , ,n] ) E EXPSPACE. The above lower bound can be 

improved slightly for  the inequivalence problem; 

INEQ( {o,l] . {u, , '9 fl]) 4 NSPACE( c n, f o r  some c > 1. 
W e  hJ,=re ihd a 

A proof can be found in [st074 A combination of the techniques in 
A 

fti50 
C ~ u n 7 3 4  and [st074 s h ~ u l d ~ y i e l d  the same lower bound 

NSPACE( c "/log ) aAx+ on the NEC problem. 



4.2 Expressions With Complementation. 

To simplify notat ion i n  t h i s  sect ion (and l a t e r )  l e t  g(k, r )  be the  

function 2 
2 1 fo r  k E and r e a l  r. That is,  g(0, r )  = r and 

g(k+l,r) = 2 g(k,r) f o r  a l l  k E PI. 

This sect ion considers regular- l ike  expressions with  the operation 

of s e t  complementation. I n  pa r t i cu l a r  t h i s  includes the c l a s s  of 

"star-free" expressions containing only the operations U, * ,  and -. 
The languages describable by s t a r- f r ee  expressions have been extensively 

studied as  an in te res t ing  subset of the regular languages [cf. MP711. 

For example, i t  is known tha t  s ta r- f ree  expressions cannot describe a l l  

* 
regular languages; i n  pa r t i cu l a r  (00) i s  the language of no 

Our i n t e r e s t  i n  such expressions is t o  charac te r ize  the complexity 

of t h e i r  equivalence problem. As was mentioned e a r l i e r ,  Brzozowski 

[Brz64] gives an algorithm which checks equivalence of regular  expressions 

extended by other Boolean operations including --. 
Even though s t a r- f r ee  expressions cannot describe a l l  regular 

languages, we s h a l l  show tha t  they can describe c e r t a i n  regular  

languages much more succinct ly  than can regular- l ike  expressions 

which use only U, ., and *. I n  par t i cu la r ,  a s t a r- f r ee  expression of 

length O(n) can describe the  computations of any given STM which uses 

space g(rlogbnl ,0) on any given input of length n. It follows tha t  the  

inequivalence problem for  s t a r- f r ee  expressions is enormously d i f f i c u l t  



t o  decide; NEC((0,l) ,{U,* ,--} ) is  accepted by no IOTM which operates 

within space g (rlogbnl, 0) for  b > 3 (Theorem 4.27.). 

It immediately follows tha t  other decision problems concerning 

s tar- free expressions a re  also th i s  complex. For example, the problem 

of finding a shortest  s ta r- f ree  expression equivalent t o  a given 

s tar- free expression also requires space g(r log n1,0), (cf. Remark 4.20). 
b 

See also [Hun73a], [Hun73c], and [HR74] for  other predicates which are  

as d i f f i c u l t  t o  decide as NEC. 

By examining a straightforward algorithm for  deciding 

NEC({O,l.j,{U,.,--I), we see why such multiple exponential complexity 

might arise.  Given a {O,l) -(U, ,--I -expression E, we might f i r s t  

construct a nondeterministic f i n i t e  automaton (NFA) which accepts L(E) 

and then check tha t  t h i s  NFA does not accept {0,1]*. This NFA can be 

constructed inductively on the s t ructure of E by well-known methods 

[cf. RS591. However, given a NFA F with q s t a t e s  which accepts L(E1), 

t o  construct a NFA F' which accepts L(-El), w e  may f i r s t  have to  

transform F to  an equivalent deterministic f i n i t e  automaton (DFA) F", 

say by the Rabic-Scott "subset construction" [RS59]. F", and thus F' ,  

might have as many as Zq states .  F' might then be incorporated in to  a 

larger NFA which l a t e r  must be made deterministic, resul t ing i n  a DFA 

2q 
with 2 s t a t e s ,  and so on. This suggests tha t  the number of exponen- 

t i a l  functions which must be composed to  yield a complexity bound i s  

closely related to  the depth of nesting of -- operations i n  the expressions 

being checked for equivalence. 



The re la t ion  between "--depthu and complexity i s  characterized 

by another r e s u l t  (Theor- 4.28) which s t a t e s  that ,  for  any fixed integer 

k, there is  a c E Q+ such that  the inequivalence Problem for 

( 0,l)  - ( U, ,-, *) -expressions of maximum --depth k cannot be solved by 

an algorithm which uses l e s s  than space g(k,cn); however t h i s  problem 

can be solved by an algorithm which uses space g(k,dn) for some other 

constant d. I f  * i s  not allowed, we show (Theorem 4.29') that  the 

inequivalence problem for  (0,l)-(U;,-)-expressions of maximum--depth 

k requires space g(k-3,cfi) for some constant c. 

Definition 4.24. Let E be azq -express ion  and define depth(E) 

inductively as follows: 

depth((o)) = 0 for  a E C U (&) ; 

depth((E1 Q EZ)) = max(depth(E1), depth(E2)) 
and i f  Q E cp - (-1 ; 

depth((EIQ)) = depth((QE1)) = depth(E1) 

I f  k E N, l e t  P(C,y,depth S k> denote the s e t  ~(z,cp) r e s t r i c t ed  t o  

regular- like expressions of depth not exceeding k. That is, i f  P 

is  an n-place predicate, 

~ ( C . ~ . d e p t h  S- k) = P ( ~ , v )  n ( (E1,E2,*-,E ) I depth(Ei) 5 k n 

for  1 i S n  1. 

We f i r s t  obtain some rough upper bounds on the complexity of 

inequivalence problems with complementation. The algorithms u t i l i z e  

the "subset-construction" together with scme ideas used i n  the 



algorithm of Proposition 4.11. 

Proposition 4.25. 

(2). For a l l  k EN', INEQ((O,~),(U,*,-,*),depth a k) E NSPACE(g(k,2n)). 
t 

Proof sketch. Given (0 , l )  -(U,. ,--,*) -expressions El and E2, construct  

NFA's which accept L(E1) and L(E2). Note t ha t  i f  L(E.') is  accepted 
1 

by an NFA with qi s t a t e s  for  i = 1,2, then: 

( i ) .  L((Elf U E2')) and L((El1-E2')) a r e  each accepted by an 

NFA with q1-?-q2+2 s t a t e s ;  

* 
( i i ) .  L((E1' )) i s  accepted by an NFA with ql+2 s t a t e s ;  

9 1  
( i i i ) .  L ( E l l ) )  i s  accepted by an NFA with 2 s ta tes .  

See for  example [RS59] or  [HU69]. 

It is now easy t o  show by induction t h a t  i f  E i s  a (0 , l )  -[U, ,-,*I 
-expression and n = 1 ~ 1 ,  then L(E) i s  accepted by an NFA with 

g(n-1,O) s ta tes .  I f  a l so  depth(E) S- k, then L(E) i s  accepted by 

an NFA with S g(k,n) s ta tes .  A description of an NFA with q s t a t e s  can 

2 
be coded onto an STM tape within space O(q ) i n  a straightforward way: 

2 2 
Note (g(k,n)) a g(k,2n) and (g(n-1,O)) g(n,O) for  a l l  k,n 2 1. 

Also, given two NFA's with ql and q s t a t e s ,  by using the method 2 

of Proposition 4.11, a nondeterministic IOTM can determine within 

'By [Sav70], the d i s t i c t i o n  between NSPACE(S (n)) and DSPACE(S (n)) is  

2" essen t ia l ly  negl igible  for  S(n) 2 2 . For example, 

d 

2" 2"+l 
NSPACE(2 ) DSPACE(2 ) We consider WSPACE here  for  definateness. 



space ql+q2 whether or not they accept different languages. 

The conclusions follow. 

The next lemma contains all the technical details required to 

obtain the lower bounds. The proof of the lemma shows how expressions 

using - can very succinctly "simulate" the computations of STM' s. 
L m a  4.26. Let M be a (nondeterministic) STM which accepts a set 

A I+ within space S(n). Assume # (Z I.  here are deterministic 

IOTMfs 9R and 93' which compute functions f and f' respectively, there 

is a constant a E Q+ and a polynomial p (all depending on M) with the 

following properties. 

+ For all x E I and all m,z E fl such that ~(1x1) h g(m,z): 

(1). f(d0~#0') = E (= EM(x,m,z)) where 

(li). E is a {0,1] -(U,*,-) -expression ; 

m 2 2  
(lii). I E I  s a (3mz + 1x1) ; 

(liii).  depth(^) 5 m + 3 ; 
* 

(liv). L(E) # (0,1] iff x E A  ; 

lL m (lv) . Tirn%(x~O #oZ) s p( I E  1 ) and ~~ac%(x#0~#0~) - I E 1 . 
(2). f' (&om#oZ) = E ' (= EM

t (x,m, z)) where 

(2i). E' is a (0,1] -[u, ,-, *] -expression ; 
m 2 2 ( 2 )  IE'I 5 a(3 m z + m 1x1) ; 

(2iii). depth(E1) = m ; 

(2iv). L(EI) s (0,1~* iff x E A ; 

ml~ (2v). Tim%! (X#O TO ) s p ( I E ' I ) and Spac %f (x#0~#0~) s I E ' I . 



Before proving t h i s  lemma, we prove the main re su l t s  which 

i l l u s t r a t e  i t s  use. The f i r s t  r e su l t  concerns the case of 

unlimited ---depth. 

Theorem 4.27. For a l l  ra t ional  b > 3: 

(1). N S P A C E ( ~ ( ~ ~ ~ ~ ~ ~ ~ , O ) )  s NEC({O,l],[U,*,--)) ; 
and PA 

(2). mC([O,l) ,[U,.,")) N S P A C E ( ~ ( ~ I O ~ ~ ~ ~ , O ) ) .  

Proof. (1). Given b > 3, l e t  A E NSPACE(~( riogbnl ,o))  and l e t  M 

be an STM which accepts A within space S(n) = g(r1ogbc1'nl , l )  for 

some constant c" chosen so tha t  ( in  part icular)  S(n) 2 n+l. 

We describe a deterministic algorithm which computes a transformation 

f" such tha t  A S NEC([O,l) ,[Us ,-I) v i a  f". Given x with n = 1x1 , 
f i r s t  compute . m = r1ogbc"nl; note tha t  t h i s  can be done i n  time 

polynomial i n  n and space l inear  i n  n. L e t n b e  the IOTM of Lemma 4.26. 

Simulate 'IR on input x#om#O, obtaining ' a  (0 , l )  -[U,' ,-) -expression E. 

Finally produce E as output. 

Since S(n) = g(m,l), E s a t i s f i e s  the conditions (1) of Lenma 4.26. 

m 2 
F i r s t  I E  I s a(3 m + n) c 'n  for  some constant c '  which depends on 

a, by and c", but not on n. Thus f" i s  l inear  bounded. Also, !Ul 

operates within time p(c In) and space c 'n  on input x#0~#0, where 
* 

p is  a polynomial. Therefore f" E polylin. Since L(E) '+ (0, 1) 

i f f  x E A, f" i s  the required transformation. 

( 2 ) .  Assume NEC ([O,l), [U, ,") ) E NSPACE(g(rlogbnl ,0)) for some 

b > 3. Choose rat ional  bl,b" with 3 < b' < b" < b. 



By Fact 2.11, there is  a s e t  A such tha t  

A E NSPACE(g(rlogb,nl ,O)) - N S P A C E ( ~ ( ~ ~ ~ ~ ~ , , ~ ~  ,0)).  

By par t  (1) above, by Lemma 3.7 ,  and by assumption, i t  follows tha t  

A E NSPACE(~ ( rlogbcnl, 0) ) for  some c E N'. 

However, rlogbcnl 4 rlogb,,nl for  a l l  but f i n i t e l y  many n. 

Therefore A E NSPACE (g( rlogb,,nl ,0) ) , and t h i s  contradiction 

implies the conclusion. 

Recall tha t  Proposition 4.25 gives an upper bound of space g(n,O) 

for  t h i s  problem versus the lower bound of g( rlogbnl ,0) ju s t  proven. 

Whether t h i s  gap can be decreased i s  an open question on which we w i l l  

comment a t  the end of t h i s  section. 

We obtain a t igh ter  complexity characterization for  the case 

* 
{U,.,-, ] by holding --deptEi fixed a t  some k while allowing the 

lengths of expressions to  grow. 

Theorem 4.28. For a l l  integers k 2 1: 

(1). NEC((O,l] , [ U , *  ,-,*I ,depth k) i s   PA-^^^^^^ 

(2). I n  par t icular ,  

(21). There i s  a c E Q+ such tha t  

FEC ([0,1], [U, ,-,*} ,depth k) 4 NSPACE(g(k,cn)) , 

Proof. F i r s t ,  the upper bound ( 2 i i )  required for  completeness (1) 

i s  given by Proposition 4.25. 



To prove t he  other  ha l f  of  completeness, l e t  A E  NSPACE(g(k,dn)) 

f o r  some k,d E @, and l e t  the  STM M accept A within  space S(n) = g(k,dn). 

- We show how t o  compute f" such t h a t  

* A S NEC((0,l) ,(U,*,--, ) ,depth 5 k) v i a  f". Given x wi th  n = 1x1, 
PA 

s e t  m = k and z = dn, then simulate the  IOTM D' of Lemma 4.26 m 

input  x#om#oZ, and produce t he  r e su l t i ng  expression E' a s  output. 

s i nce  S(n) = g(m,z), E' s a t i s f i e s  the  condit ions (2) of Lemma 4.26. 

m 2 2 
I n  pa r t i cu l a r ,  depth(E1) = k and ( E ' I  5 a(3 m z 4- m n)  c 'n  

f o r  a constant  c '  which is  independent of n. A s  i n  the  preceding 

proof, it  is easy t o  see  t h a t  f" E poly l in  and t h a t  f" transforms 

A cor rec t ly .  

The lower bound (2 i )  follows from (1) i n  the  usual  way. 0 

Theorem 4.29. For a l l  i n t ege r s  k 2 4 :  

(1). U NSPACE(g(k-3,dfi)) s ~EC( (0 , l ' j  ,(U,*,-) ,depth 5 k) ; 
d E N  pa 

(2). There i s  a c E  Q+ such t h a t  

NEC((0,l) ,(U,*,--} ,depth 5 k) $2 NSPACE(g(k-3,cfi)). 

Proof. Proceed a s  i n  the  proof of Theorem 4.28 except s e t  m = k-3. 

and z = r d ~ ~ r l ,  and use !Dl i n  place of Dl. 0 

We now tu rn  t o  the  proof of Lemma 4.26. The proof of course can 

be s impl i f ied  i f  one i s  content  t o  show only t h a t  space g(k,n) i s  no t  

* suff ic i -ent  f o r  my f ixed k, o r  operation i s  allowed, o r  one is  

content  wi th  weaker bounds on the  length  and depth of  %(x,m,z) and 

EM1(x,m,z). A vers ion of our proof s impl i f ied  i n  these  ways i s  



sketched i n  Chapter 11 of [AHU74]. 

The proof of Lemma 4.26 i s  s imilar  i n  s p i r i t  t o  the proof in [ ~ . e ~ 7 d  

t ha t  the emptiness problem for  "y-expressions" i s  not elementary- 

recursive, It i s  ins t ruc t ive  to  review one essent ia l  idea of [Mey73] 

which i s  also used here: how regular- like expressions using 

and y (y is  defined below) can very succinctly describe the computa- 

tions of STM1s. 

Let M be an STM and l e t  d be an i.d. of M with Id 1 = k. Recall 

from the proofs of section 4.1 tha t ,  given a regular- like expression E 

which describes Ck ( tha t  is, E i s  a "ruler" which measures distance 

k) , by using E as a subexpression and using operations U, , and *, one 

can wr i te  an expression %(d) which describes C* - CompM(d) for  

some alphabet C. I f  operation can also be used, -%(d) describes 

COmPM(d) 

Now l e t  Ci be a par t icu lar  deterministic "counting" STM. When 

k s ta r ted  on an i.d. of the form & q O O  &, G successively adds 1 to 

k the binary representation on i t s  tape u n t i l  1 i s  obtained. G 

k 
then hal ts .  Note tha t  the unique computation of on input &q 0 & 0 

k k i s  longer than 2 . Therefore, -I+.( &qOO &) describes a s ingle  word 

k 
of length exceeding 2 . Now suppose an operation y i s  available 

* 
where y(w) = ( w E C I lrol = I w l  ) for  W E c*. The expression 

k k E1 = y(%( &qOO &)) thus describes Ck' for  some k' > 2 . Also, i f  

E is an expression such tha t  L(E) = I?(, it  is not hard t o  see 

(cf. Lennnas 4.8 and 4.9) that  IE'I 2 C ~ E I  for some constant c 



independent of k. In  summary, given an expression E ( a  "ruler") which 

describes $, one can wri te  an expression E f  (an exponentially longer 

k 
"ruler") which describes Ckf where kf > 2 . Moreover, I E' I 5 c 1 E 1 . 
for  some constant c. 

Now s tar t ing  with the "ruler1' for some Z, and applying the above 

* 
construction m times, we obtain a %[U,*, ,-,y]-expression E which 

describes 9 for some 4 > g (m, z) . Moreover, I E 1 0 (c
m

z) . A s  i n  

section 4.1, E can now be used as a ru ler  to  wri te  an expression of 

length O(cmz) which simulates the computations of a given STM M, 

even i f  M uses space g(m,z). This i s  a very succinct representation 

of the computations of M, since cmz grows much slower than g(m, z) as 

a function of m. In  part icular ,  it  follows tha t  

Jx NEC(C,(U,', ,--,y] ) 9 NSPACE(g(k,n)) for a l l  k C N. 
k 

However, i f  y carmot be used, d i f f i c u l t i e s  ar ise .  -k(&qOO &) 

k i s  a s ingle word of length exceeding 2 . However, t o  continue the 

construction, we need a "ruler1' consisting of & words of some large 

length. The solution to  th i s  dilemma, described i n  d e t a i l  shortly,  is  

t o  wri te  an expression which describes a l l  cycles of a computation. 

This s e t  of cycles can then serve as a "ruler'l. 

A preliminary lemma is  useful. In  the  proof of Lemma 4 . 2 6 ,  i t  

is convenient to  represent i.d.'s i n  a s l igh t ly  redundant form. 

The th symbol o£ the redundant form of an i.d. d contains the 

information i n  the ( j - l ) th ,  jth, and (j+l)th symbols of d. 



Definition 4.30. Let M = (1,r,Q,6,qO,qa) be an STM. Assme 

$ (Z r U Q. Define the map p:(r U Q)++ ((r U Q U as follows. 

. If dl,d2,***,\ E I' U Q, p(dld2dge-0%) = d11d2'dg1---dkl where 

-1 
Note p is one-to-one so p is a function.on range(p). 

- 1 
r is a redundant i.d. (r.i.d.) of M iff p (r) is defined and 

is an i.d. of M. 

The function Nexk is extended to r.i.dO1s in the obvious way: 

If rlYr2 are r.i.d.'s of My 

' 2 E NextM(rl) iff p-'(r2) E ~ex~(p-l(r~)). 

The technical convenience gained by using r.i.d.'s is the following. 

If r r are r.i.d.'s, a "local check" (cf. L m a  2.14) consists 1' 2 

of comparing the single jth symbols of rl and r2 for some j. 

X3 + Furthermore, given an arbitrary word r in ((T U Q U [ $ I )  ) , one 2 
+ can check if r2 E p((r U Q) ) or not by checking each adjacent pair 

of symbols in r for consistency. This is formalized in the following 2 

Lemrna 4.31 which is the analogue for r.5.d.'~ of i m a  2.14. 

Lemma 4.31. Let M = (1,r,Q,b,q0,qa) be an STM. Let $ be the special 

endmarker as in Definition 4.30 above. 



There a re  functions %:C + ?, J ~ : C  -t 9 with the following property. 

Let r1 = rllr12r13. - o r l k  be an r.i.d. of M, 

- . and l e t  r2 - * o r  be a rb i t ra ry ,  - r21r22r23 2k 

where rlj,r E C  for 1 s  j S k .  
2 j  

Then r2 E Nex%(rl) i f f  

(1). r2j E %(rlj) for  a l l  j, 1 j a k, 
and 

Proof. JM((01,02,03)) contains a l l  t r i p l e s  i n  C which could 

+ 
consistently follow ( D ~ , O ~ , D ~ )  i n  my  word i n  p ( ( r  U Q) ) . 
For a l l  ( ~ r ~ , 0 ~ , 0 ~ )  E C, 

J M 2 3  = ( ( ~ ~ , 0 3 , 0 )  E C I 0 E r U Q U ($1 1 

% i s  defined i n  the obvious way from the function N of Lema 2.14: 
M 

The simple ver i f ica t ion  tha t  JM and % have the required property 

is l e f t  as an exercise. 

 he t r i p l e  ($,$,$) never appears i n  a word i n  rmge(p).  A technical 

condition within the proof of Lemma 4.26 requires tha t  ($ , $, $) be 

expl ic i t ly  removed f r o m  C. 



Proof of Lemma 4.26. P a r t  (1) i s  done f i r s t  i n  d e t a i l .  (2) then follows 

by some minor modificat ions t o  (1). 

(1). Let M = ( I  r Q 6 ,q ,q ) be t h e  given STM which accepts  
M' M' M' M 0 a 

4- a set A with in  space S(n) .  Let x E and i n t e g e r s  m,z E N with  

S( (x1)  5 g(m,z) be given. Let n = 1x1. 

The major por t ion  of  t h e  proof descr ibes  t h e  cons t ruc t ion  of a 
J. 

%{U, ,--)-expression E such t h a t  L(Emtl) # En i f f  x E A, where 
mF-1 

C is  a l a r g e  alphabet  defined below. The {O,l) -(U, ,--) -expression 

%(x,m,z) i s  then obtained from E by appropr ia te ly  coding t h e  mt l  

symbols C i n t o  binary. We show t h a t  %(x,m,z) s a t i s f i e s  condi t ions  

( l i )  - ( l i v )  of Lemma 4.26. It w i l l  be c l e a r  f r &  t h e  desc r ip t ion  of 

t h e  cons t ruc t ion  t h a t  t h e r e  i s  an 10~'M!lRwhich computes EM(x,m,z) from 

x#om#oZ wi th in  time polynomial i n  and space l i n e a r  i n  I%(x,rn, z) 1 , 

s o  t h a t  ( l v )  i s  a l s o  s a t i s f i e d .  

A p a r t i c u l a r  de te rmin i s t i c  l 'countingfl STM G used he re  d i f f e r s  i n  

an important way from t h e  one described e a r l i e r  i n  t h e  o u t l i n e  of t h e  

proof f o r  y-expressions. Namely, t h e  h a l t i n g  s t a t e  is  never entered. 

a 
When s t a r t e d  i n  an i.d. & q  0 &, G cyc les  forever through t h e  2 

a 
0 

a 
i .d . ' s  { &uq0& I LI E ( 0 , l )  ) (with severa l  s t e p s  taken between 

a 
occurrences of these  i .d . ' s  t o  perform t h e  add i t ion  modulo 2 ). 

Also, l e t t i n g  D be t h e  set of i .d. 's which occur i n  a computation of 

a 
s t a r t e d  i n  & q  0 &, G i s  programmed s o  t h a t  t h e  p a r t i c u l a r  word Beq 0 0 

appears a s  a subword of  p rec i se ly  one i.d. i n  D. I n  t h e  const ruct ion 

a 
o f  EnrF1, & q  i s  used t o  uniquely i d e n t i f y  t h e  i n i t i a l  i.d. &qOO &. 

0 



Definition of the "counting1' machine 6. 

0 = (1,r,Q,6,q0,q2) where I = I' = (O,l,&? 9 = [qO,q1,q2? 

6:QXr + 2 Qxrx(-l'o"l i s  given by the following table. q1 i s  a 

left-moving s ta te  which performs the addition. qo i s  a right-moving 

s ta te  which returns to & after  the addition i s  completed. 

Table 4.2.1. Transition tablz for "counting" machine G. 

+ 
Also for R E bJ define: 

D ( k 1  = u NextC;(init(R), j). 
j = 0 

The next fact, which can be verified by inspection, s ta tes  those 
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properties of G t o  be used. 

Fact 4.26.1. For a l l  1 E N+: 

(1). loop(1) E and loop($) 2 2' + 4 ; 

(2). Assume U E D(1). Then ($,&,qO) appears as a symbol i n  o 

iff o = in i t ($) .  Moreover, ($,&,qO) is  the f i r s t  symbol of 

init(A), and linit(fi)l  = &3. 

Now for k = 1,2,3,*..,m9 l e t  G(k) = (I ,r Q 6 
k k9 k9 k 'qk~9qk2) 

be a G ;  that is, Ik = rk = [ok,1k9%) 9 Qk = (qk0,qk19qk2) 9 

and 6k is  given by Table 4.2.1 d e r e  a l l  s t a t e s  and tape symbols are  

subscripted with k. 

Also, l e t  i n i t k ( l )  = P ( &kqkOoi $ ) 

The alphabet symbols used i n  writing Emtl a re  the following. 

= (QM U rM U ($)lx3 - (($,$,$)) 

c,, = (#I 

Note: For k = 1,2,3,*-*,m, p maps (Qk U rk)+ in to  .x + and 
k '  

Assume symbols are  chosen so tha t  El, z2, x3, * * .  =Ink2 are 

pairwise dis joint .  
&2 

The en t i r e  alphabet is  C = U xi . 
i=l 



Also denote 

and 

Let s = card@). 

For the remainder of the proof, the "0-notation" has the following 

meaning. Let f (n,m,z,s,k) be a function of the indicated parameters 1 

(not necessarily depending on all the parameters). Then O(fl) denotes 

an unspecified function f with the property that 2 

f (n,m,z,s,k) c.fl(n,m,z,s,k) for all n,'m,z,s,k E d' 
2 

+ 
where c E N can be chosen independently of all parameters M,x,n,m,z,s,k. 

Certain subexpressions occur often within E m-?-1; special notation 

* is now given for ,these. Even though cannot be used explicitly, it 

* 
is possible to write a &[U,*,-]-expression which describes O where 

@ C. First let 

[ z *  1 = ( + u # ) .  
* 

By convention, -- denotes complementation relative to C in this 

context. Therefore L([ C* 1) = c*. Also note that 

* * 
([C ] I  = O(1) and depth([C I )  = 1. 

If @ $-C, let 

r o* 1 = -([ c* ].(Z - @)a[ c* 1) 

where "Z - O" as usual abbreviates an expression equal to the union of 

* * * 
the symbols in C - O. Note that L([ O I) = O , I [ @  1 1  =o(s), 

* 
and depth([ O 1) = 2. 



I n  using these  expressions wi th in  t h e  const ruct ion of  E dl* t h e  

brackets  [ and ] a r e  dele ted  t o  improve r e a d a b i l i t y .  However we must 

* 
keep i n  mind the  length  and depth of  t h e  expression which @ abbreviates.  

A s  i n  t h e  o u t l i n e  f o r  y-expressions, we cons t ruc t  longer and 

longer " rulers"  i n  stages.  The expression const ructed  a t  t h e  k 
t h  

s t a g e  descr ibes  a "ruler" which "measures" d i s tance  d (k, 2). The 

numbers d(k,z)  a r e  defined as  follows. 

d(1,z) = loop(z)  

d(k+l,z) = loop(d(k,z)  - 4) f o r  k ~ e .  

Lemma 4.26.2. For a l l  k E @, d(k,z)  2 g(k,z) + 4 .  

Proof. By induction on k, using Fact  4.26.1(1). 

The s e t s  of words which serve  a s  " rulers"  i n  t h i s  const ruct ion a r e  

more complicated than those used i n  s e c t i o n  4.1. For t h i s  reason, 

i t  is  use fu l  t o  have semantic desc r ip t ions  of t h e  r u l e r s  as  w e l l  as  

r egu la r- l ike  expressions f o r  them. 

* 
W e  now def ine  c e r t a i n  words i n  C which a r e  used i n  these  

semantic descr ip t ions .  The words cki f o r  1 5  k 5 m and i E 

a r e  defined inductively.  Informally, one should th ink of  c a s  t h e  k i  

f th r.i.d. of  G(k) s t a r t e d  on in i tk(d(k-1 ,z)  - 4) (although cki 

fo r  k > 1 is  s l i g h t l y  more complicated than t h i s ) .  

Def in i t ion  of t h e  words c 
k i  ' 

For i E N ,  c l i i s  the  unique word i n  NexL ( i n i t l ( z ) ,  1 ) .  
~ ( 1 )  



For 1 k 5 - 1  and i E N, 

c a. c a. c a. c . . .  c k+l,i = 'k0 11 kl 12 k2 13 k3 k,d(k,~)-2~i,d(k,z)-l~k,d(k,z)-l 

where crij E xk+l for 1 s j 5 d(k,z)-1 

and a = a  a a ..* a i il i2 i3 i,d(k,z)-1 is the unique word in 

 next^ (k+l) (inftk+l(d(k.z) - 4 Y 5) 

The next fact gives those properties of the {c ) to be used. 
ki 

The fact follows from the definitions of d(k,z) and c and Fact 4.26.1. ki ' 

Fact 4.26.3. (1). For. all k, 1 5 k 5 m-1, write 

C - 0 . .  c 
k+l , i - ck~ailcklai2ck2~i3ck3 k,d(k,z)-2ai,d(k,z)-1Ck,d(k,z)-l 

and a = a a. a * * *  a 
i il 12 i3 i,d(k,z)-1 as above. 

Then ai+l E N e ~ t ~ ( ~ + ~ )  (ai) for all i E N. 

Also, for all k, 1 5 k 5 m: 

* 
(2). cki E (C*) for all i E N ; ' 

(3). For alli,j E N ,  c k i = c  iff i I  j (modd(k,z)) ; 
k j 

(4). ($,%,qkO) appears as a symbol in c iff cki = ckO. ki 

We are now in a position to give semantic descriptions of the 

sets of words which serve as "rulers". Actually, two related sets of 

words SE and SF are required at a given stage k, for 1 s  k 5 m. k k 



Semantic description of the "rulers" SE and SFk. k 

For l s k s m :  

SEk i s  the s e t  of words of the form 

. . . 
5j lCkj f'j '+lCk, j f+lrj '+2'k, j 1+25j '+3'k, j f+35j '+4 5 j w C k j  115 j I I + ~  

where j " >  j f  and j1 '+ l=  jl(mod d(k,z)),  and where xi %k+l 

is  arb i t ra ry  for j1 S i s j1l+1 ; 

SFk = SEk " U I 
. 'k0 appears exactly once as a subword of U ) . 

Again i f  we informally describe c as the i
th r.i.d. of G(k), 

k i  

then SEk i s  the s e t  of a l l  computations of G(k) which s t a r t  on an 

a rb i t ra ry  c 
k j  " run for  an arb i t ra ry  ( 2 1 ) number of cycles, and 

stop on c such that  ( i f  the computation were continued one more 
kj" 

s tep  to  c = c kYj1'+l) Ck,j"+l k j f *  Arbitrary s ingle  symbols from 

% k + l ~ ~ ~ ~ r  between adjacent r.i.d.'s c a n d c  
k i  k, i+l 

i n  these computations, 

as well as a t  the beginning and end of these computations. SF i s  the 
k 

s e t  of words i n  SE which are  computations ( in  the above sense)'which 
.- k 

. - run for  exactly one cycle; t ha t  is,  these words contain c exactly kO 

once as a subword. 

The major technical portion of the proof now follows. 

C(UYo,-]-expressions Ek and Fk for  1 2 k s m a re  constructed 

inductively such that  L(-Ek) = SE and L(-Fk) = SFk. Finally,  
k 

usingWF as a t1 ru le r " ,  weconstruct  E such tha t  m mtl 

L(E&,) z z* i f f  ~ o m p ~ ( q ~ x 1 4  
d(m, 2)-n-2 

) # @ i f f  M accepts x. 



The reader should r e c a l l  that  the alphabets El, x2, E3, ..*, xmt2 
are  pairwise dis joint .  This fac t  is  used implici t ly  several times 

i n  the constructions below. Also note tha t  many of the basic ideas 

used i n  the case k = 1 are also used i n  the induction step. 

Base k = 1. 

El should describe precisely those words which are not i n  SE1. 

El i s  wri t ten as a union of "mistakes" which could cause a word t o  be 

excluded from SE1; 5 

For each i, the length and depth of eli wd a semantic description of 

L(eli) are  given as comments. 

F i r s t  r eca l l  SE1 is  the s e t  of words w of the form (*) shown 

below, where also wi, = c10 for  some i' with 1 5 i' S A, and 

Wi+l E Nextql) (wi) for a l l  i with 1 S i 5 A-1 ,  and wl E Next (w ). 
G(l) a 

w = t w t w t w , t  *.* t A - l w a t a  
0 1 1 2 2 , 3  

where A 2 2, t. ECz2 for  0 S i S A, 
1 

24-3 
and wi E El for 1 S i s A. 

Construct ion 'of e 11' 

* 
ell i s  constructed so tha t ,  for  a l l  w E C , LJ $? L(ell) i f f  

w is a word of 'the form (*). 



The f i r s t  term of ell describes a l l  words which are  "too short", 

i.e. shorter  than z+6, The l a s t  four tenus together  describe a language 

which includes a l l  words longer than 2+5 which are  not i n  

lellJ = O(zs). (Recall "2' abbreviates expression of length 

s, and thus F3 = O(zs).) 

depth(ell) = 1. (Recall "z*" abbreviates an expression of depth 1.) 

For the remainder of the construction of E assume W $! L(ell) 1' 

and therefore tha t  w d k o t e s  a word of the form (*). 

Construction of e, ,. 
e12 is constructed so tha t  U B L(e12) i f f  w = i n i t l ( z )  = c10 

i ' 
for  some i', 1 S i' S R. 

Let Y1Y2Y3"*Yz+3 = C10 where y E El for  1 S j z+3. 
j. 

Note yl = ($,&l,qlO) i s  the special  symbol which appears i n  cli i f f  

Cli = C1o' Let 7. denote (C - [yj) ). 
J 

L(e12) i s  completely described as the union of three mistakes: 

( i ) .  y1 does not appear i n  w; these words a re  described by 

( i i ) .  Some occurrence of yl i s  immediately preceded by some 0 E El; 

that  is, yl appears i n  the wrong place; 



or 
(iii). Some yl is not immediately followed by y2y3y4-*yZ+3; 

these words are described by 

e12 
is now the union of the three expressions above. 

1 e121 = O(zs) ; depth(e12) = 2. (Recall "(z - (yl))*" abbreviates 

an expression of depth 2.) 

Construction of eI3. 

e13 is constructed so that w f L(e13) iff w contains no pair 

of adjacent triples o1 o E El which are inconsistent in the sense 2 

=2 (=I)* 

Construction of e 14' 

. s Assuming also that W $! L(e13), e is constructed so that 14 

w $! L(e ) iff W "moves correctly", that is, w ~ + ~  E Next (w ) 
14 G(l) i 

for all i, 1 5 i S 1-1, such that w is an x.i.d. of G(1). 
i 

By Lemna 4.31, e14 can be written as 



Construction of e15. 

Assuming again tha t  w $! L(elg) and also that  w i s  an r.i.d. R 

of G(1), e15 i s  constructed so tha t  w $! L(e15) i f f  w "loops back 

correctly", tha t  is,  wl E Next (w ). Again by Lermna 4.31, 
G(l) 4 

2 
1 e15 1 = O(z s ) ;  depth(e15) = 1. 

5 
Now El = ( U eli 10 

i=l 

Comparing t h i s  construction with the def in i t ion  of SE1 i n  terms 

of the form (*) , i t  should now be apparent tha t  L(-El) = SE1. 

To construct Fly note tha t  a word w i s  _not i n  SF i f f  e i the r  1 

$! SE1 or  '. contains two (or more) occurrences of clO. Recall 

tha t  ($,$,qlO) appears in c iff c l i  = C l O *  F can thus be written 
li 1 

as follows. 

. I  

Clearly L(-Fl) = SF1. 

To summarize the length and depth of El and F1: 

2 
( la )  lEll < IF , I  = G(z 8) 

( ld)  depth(E1) = depth(Fl) = 2. 



Induction step k+l (k < m). 

Assume we have the expressions E and Fk such that L(-Ek) = SEk k 

and L(-Fk) = SFk. 

is constructed first. The construction is similar to the 

base case; the details are slightly more involved. Again, 

5 

is written as a union of "mistakes". 

Recall ($,Zck,qkO) is the special symbol which appears in cki 

iff i E  0 (mod d(k,z)) iff cki = ckO. let = ($,$,qk0)* 

Construction of O. 9 

* 

We claim that w B L(ek+l,O) iff w can be written in the form 

(**) below. (The portion of (*) preceding ";" denotes a 

single word.fonned by concatenating the rows in order.) 
( **I 

where 1 2 1, and ti,rij E z2k+l for 0 s i s A, 1 s j s d(k,z)-1 . 



Assume w $? L(%+l,O). F i r s t ,  W E L(-Ek) and therefore W E SEk. 

Therefore ( in  part icular)  ulckj,u2 i s  a pref ix of w for some j '  and 

some u1,u2 E sk+l. The second term of %+1 , 0 ensures tha t  

- * 
C k j '  - 'k0' by Fact 4.26.3(4), and because cki E (xa) for a l l  i, 

and C.& and qk+l are  dis joint .  

1 %1,0 1 = IEkJ + O(s) ; depth(%+l 7 0) = max(depth(Ek) ,2). 

Until fur ther  notice,  we assume w $ !  L ( P ~ + ~ , ~ )  and therefore 

tha t  denotes a word of the form (*), 

Construction of ek+l 
t 

is  constructed SO tha t  LII $! L(%+l,l)' i f f  A 2 2, and 

ti ' '2k+2 for  0 5 i 5 a, and rij E %+1 for  a l l  i , j ,  

1 s i 5 A, 1 j 5 d(k,z)-1. 

The mistake "a < 2" occurs i f f  w contains only one occurrence of c 
k0 ' 

* * 
(C - {u,) *u*(' - {u)) . 

The mistake "t. E xk+l" occurs i f f ,  for sane u E 'k+l, e i ther  
. - 1 

',.I 
u immediately precedes an occurrence of c o r  u i s  the l a s t  

kO 

symbol of W: 

The mistake "r E x2k+2" occurs i f f  some symbol i n  C i j 2k+2 

innnediately precedes % for some j # 0: 



Then kl,l is  the union of the th ree  expressions above, 

lek+l,Jl = O(s); d e ~ t h ( % + ~ , J )  = 2. 

For the remainder of the  construction of Ewl, assume 

6.1 $ L(%+l,O U %+1,1) and therefore  t ha t  w denotes a word of the  

form (**) below. 

and r = r i il r i2  r i 3  
... I: for  1 S i S A  ; 

i ,d(k,z)-1 

where A 2 2, ti E 3k+2, and r . .  
I, =k+1 

for  O S i S A ,  

1 S j S d(k,z)-1 , 

Construction of ek+l 2. 
9 

%+I, 2 i s  constructed t o  ensure t ha t  w contains a copy of the  

i n i t i a l  r.i.d. of G(k+l) s t a r t ed  with d(k,z)-4 zeroes, That is,  

$ L(%+l,2) i f f  rit = i n i t  (d(k,z)-4) for  some i t ,  1 S i t  S A,  
k+l 

The c o n s t r u c t i h  i s  analogous t o  t ha t  of e given above, 12 



* 
so that initk+l(d (kY 2)-4)  Y1Y2Y3Y4Y5Y6* 

For 1 L j 1 6, l e t  7. denote - (y j ) ) ,  J 

L(%ly2) i s  described as the union of four mistakes: 

(i) . y1 does not appear: 

( t i ) .  Some yl i s  immediately preceded by c for  some j # 0, 
k j 

that  is,  yl appears i n  the wrong place: 

( i i i ) ,  I f  r = y  for some i , j ,  then 
i j  1 

* 
r ... 
i, j+l

r
iy j+2 i , d ( k , ~ ) - 4 ~ i , d ( k , z ) - 3  f Y2Y3Y4 : 

( iv) .  I f  r = y  for some i , j ,  then r 
ij 1 i , d ( k , ~ ) - 2 ~ i , d ( k , z ) - l  f Y5Y6: 

Note that  i n  ( i i i )  and ( iv) ,  with W i n  form (**), i f  yl matches 

Jx 
r for  some i, j , then sk+2 must match ti. Also, each (x ) can 
i j  % 

only match c for some j ' . k j  ' 



%+I, 2 
i s  the union of the four expressions above. 

The fac t  tha t  w i s  i n  form (**) ver i f i e s  tha t  

L(%+1y2 ) i f f  r i t  ' Y ~ Y ~ Y ~ Y ~ Y ~ Y ~  some 

i f f  ri, = initk+l(d(k,z)-4) for  some i f .  

Construction of e,+l 3. 
9 

%+I, 3 prevents inconsistent t r ip les .  That is, w $? L(ek+1,3) 

i f f  w contains no "adjacent" t r i p l e s  r r which are  i j '  iY j+ l9  

inconsistent in  the sense r i, j+l  ' J ~ ( k + l )  ( r .  LJ .). 

* 
With w i n  form (*mi), (x ) can only match some ckj. 

Therefore, w 4 L(ek+l,3 ) i f f  r ( r . )  for  a l l  i , j ,  
i , j + l  J ~ ( k + l )  1j 

with 1: i S 4 and 1 S j S d(k,z)-2. 

Construction of e 
, k+1,4' 

%+1 4 ensures tha t  the moves of G(k+l) a re  described correct ly  

by successive r ' s  i n  w. 
i 

F i r s t  we need the following fac t :  I f  w i s  i n  form (**) and 

w = agy for some cr,p,y E c*, then p E SFk i f f  e i the r  

* 
p = r  ijTri+l, or p = t T t  

i i+l for  some i , j  E N and some 7 E C . 
This can be seen by inspection of form (*) and the semantic 



description of SFk, that  is, SFk i s  one complete cycle of the ( c  ) k j 

s t a r t ing  arb i t ra r i ly .  

- We wish t o  wri te  such that C L(ek+l,4 ) i f f  

r ( r  . for a l l  i, j . We use the preceding fac t  about i + l , j  %(k+l) 

w = af3y t o  locate and constrain "adjacent" symbols r . .  and ri+l,j. 
1 J 

The constraints forced by the expression below w i l l  not apply to  

ti+l since t ti+l E sk+2 while r j r +  j ' 'k+l0 

Since L(-Fk) = SF by induction, e 
k k+1,4 

could be wri t ten as: 

where G = ( U o-c*~ (C - R ~ ( ~ + ~ )  (0)) ). 

= %+I 
By De Morgan's law, e' i s  equivalent t o  

Now note the following two facts .  

( i ) .  Using only the defini t ions of the operations on words and 

the fac t  tha t  l$-.(k+l) maps %+1 into  9, the following expression 

can be shown to describe L(-G). 

( i i ) .  h U C c L(Fk). 

Therefore e" can be written equivalently as 



Assuming a l so  t ha t  w $! L(e 
k+1,3 ), by Lemma 4.31 we have t h a t  

a ' "(ek+l,4 ) i f f  ri+l E N ~ X E ( ~ + ~ )  (r i)  for  a l l  i, 1 s i 5 a-I, 

such t h a t  r is an r.i.d. of G(k3.1). (Recall t h a t  U 4 L(e 
i k+1,2 ) 

ensures t h a t  ri, ip an r.i.d. of G(k+l) fo r  some i', 1 S i' s i . )  

Construction of e 
k+l,SO 

%+I, 5 ensures t h a t  w "loops back correctly" ,  t h a t  is, 

t h a t  r 1 E N e ~ t ~ ( ~ + ~ )  (ri).  

F i r s t  note  another obvious f ac t :  I f  w =  tOaflyt for  a 
* 

some a ,y  E , then fl E SEk i f f  e i t h e r  p = r l j T r  or  

* J j 

P = t T t  1 a-1 fo r  some j E N and some 7 E C . This follows from the  

semantic descr ipt ion of SE together wi th  the  f a c t s  t h a t  
k ' 

tl'ti-l '2k+2 and '&+I "2k+2 = @. 
We'wish t o  w r i t e  e 

k+1,5 such t h a t  w rf L ( P , ~ ~ , ~  ) i f f  

( r  .) for  a l l  j ,  1 4 j S d(k,z)-1. Thus s ince  r l j  %(k+l) 13 

L(-Ek) = SEk, e k+1,5 
could be wr i t t en  as: 

A s  i n  the  construction of 
4 

above, t h i i  expression can be 

wr i t t en  equivalently as : 



Assuming a l so  t h a t  u $? L(% ) and t h a t  rA is  an r.i.d. of +1,3 

G(~+I ) ,  4 UeHlS5) i f f  rl E Nexk (k+l) ( r  a ). 

Final ly ,  

* 
To summarize the  construction of E 

k+l ' assume CJI E C i s  

now arb i t ra ry .  u f L(Ek+l) i f f  

W is  a word i n  form (**), 

and r = i n i \  (d(k,z)-4) for some i f ,  1 5 if 2 1, 
i ' +l 

and r i+l E N e ~ k ( ~ + ~ ) ( r ~ )  fo r  a l l  i, 1 S i S A- 1, 

and rl ( r  Next~(k+l) 1 

But (ignoring the  (t.] ), thh rows of (%**) a r e  therefore  j u s t  
1 

C C 0 . .  

k+l, j " k+l, j '+12 'k+l, j '+2' , c + ~ , ~ ,  for  some j ', j" with 

c k+l, jV+l = 'k+l, j t  (i.e. jl'+l j '  (mod d(k+l,z))  ). 

It should now be apparent t h a t  L ( 3 + l )  = 

-The construction of F is  analogous t o  t h a t  of F1. 
k+l 

Clearly L(-FH1) = SF 
k+l 

The length and depth of EWl and Fwl a re  given by: 



The r e l a t i o n s  (lR), ( I d ) ,  ( 2 4 ,  (2d) imply: 

k 2 IEkl  ' I F k l  = 0(3 ''1 
and 

depth(Ek) = depth(Fk) = k + 1 

f o r  1 5 k 9 m. 

F ina l  s t a g e  el. 

E,tl i s  now const ructed  such t h a t  

L(E&) + C* i f f  CompM(qoxV 
d (m, z) -n-2 # @ .  

Recal l  t h a t  M accepts  A wi th in  space S(n),  and S( lx1)  s g(m,z) 

by assumption. Also, g(m,z) S d(m,z)-4 by Lemma 4.26.2. 

Therefore L(Edl) # C* i f f  x E A. 

W e  write Eel = ( u e m+l, i 1 i=o 

Construct  e mC1.0 and &I, 1 exac t ly  l i k e  %+I, 0 and %+I, 1 

where k = m. Then L(em+l,o " emCl, 1 ) i f f  w is  a word of  t h e  

form (**) where k = m. 

For . the  remainder, of  t h e  cons t ruc t ion  of E dl' Sume 

w $! I(emtl,O U edl,l) and the re fo re  t h a t  i s  a word of the  form 

(***)wherek=m.  A l s o l e t r l , r 2 , r 3 , * ~ .  b e a s  i n  (*). 
y r 1  

e mt l ,  2 i s  constructed s o  t h a t  

d(m,z)-n-2 
0 $z L(emtl 2 ) i f f  rl = p(qOxP 1 



The construction i s  s imilar  t o  and somewhat simpler than the 

construction of e k+l,2 

Let x = x x x  3 - * = ~ n .  Let y1,y2,y3,-*,ynG E xdl be such tha t  

That is, Y l  = ($,90.x1), Y2 = (q0,~1,x2),  yi = ( x ~ - ~ , x ~ - ~ , x ~ )  for  3gi<n, 

- 
+ - x n l x n  Y Yn+2 = x n  Yn+3 = V )  Yn+4 = (V,V,$) 

For 1 j 5 n+4, l e t  denote (Eel - (yj)  ). 
j 

The argument t ha t  w $? L(e,F1,2 *- 
iff r1 E Y1Y2Y3" .Yn+2Yn+3Yn+4 

i s  analogous to  the one given above for e 
k+1,2* 

To bound the length of emt1,2, r e c a l l  t ha t  

* * "(x )*" abbreviates --( C . ( L l ) - z  ), 
Sm 

11 
* * 

(zSdl) *" abbreviates -( C ( L 2 )  *C ) , 

'E*" abbreviates (4 U #) , and Cmt2 = (#I. 

Let s '  = card(swl). 

Then le,cl,21 = O(sln) ; d e ~ t h ( e * ~ , ~ )  = 2. 

Also note t ha t  only alphabet symbols from hl appear within 

e mt1,2' This f ac t  i s  used below to  obtain an improved bound on the 

length of ed1,2 a f t e r  the alphabet symbols have been coded i n t o  



binary. I n  par t icular ,  we wish to  bound the length of the coded 

version of e &1,2 
by cn, where c depends on M but not on x, m, o r  z .  

Construct e &1,3 and em+1,4 exactly l i k e  ek+1,3 and above, 

where k = m and JM (%) replaces JG(k+l) (RG(k+l)). By the discussion 

concerning ek +1,4' i t  then follows tha t  w $! L(ewl U ) i f f  
9 

r E NextM(ri) for a l l  i, 1 S i S bl, such tha t  ri is  an r.i.d. i+l 

of M. O f  course, since w B L(eel,Z ) ensures tha t  rl is  an r.i.d. 

of M, we conclude tha t  r E NextM(ri) for a l l  i, 1 i S 4-1. i+l 

Finally w $! L(eel ) i f f  LI contains the symbol ($,qa,l). 
9 

(Recall the acceptance convention for  STM's.) 

Let 

* 
Assume w EC i s  now arbitrary.  Now 

w $! L(Ewl) i f f  w is of the form (*&) where k = m 
and d(m,z)-n-2 

r, = p(q,xlb 1 
and V 

r E Nexk(ri)  for  1 5 i 5 4-1 
and 

i+l 

, ,  appears i n  



i f f  M accepts x within space d(m,z)-2 

i f f  x E A .  

Thirefore L(E&l) # C* i f f  x E A. 

The next Lemma 4.26.4 describes a coding of many alphabet 

symbols in to  binary i n  the case where -- appears i n  expressions. 

There are  of course several a l ternat ive methods of coding, some of 

which are simpler t o  prove correct than the one given here. This 

part icular  method of coding i s  chosen to obtain a be t te r  bound on the 

length of the coded edl,2 as described above, and thus a be t te r  bound 

on the length of EM(x,m,z). 

Lemma 4.26.4. There is  a constant c > 0 such tha t  the following holds. 

Let C = { c ~ ~ , a ~ , c ~ ~ ,  * * . , D ~ )  be a f i n i t e  alphabet. Let q be 

one of the se t s  [U, . ,-) or  {U, . ,-,*I . 
+ 

Define the map h :C + { 0, l)  by 

h(a,) = 10 for l s i ~ s .  
A 

Extend h, h: ZC*, 2(0 '~]* ,  i n  the obvious way (cf. proof of Lemma 4.10). 

Let G be the {O,l} -{U, ,-} -expression 

G = ( 0 * ( 4  U 0) U ( 4  U 0 ) * 1  ). 

I f  E i s  a --expression, define the (0, l] +-expression P(E) 

inductively by the rules:  

B((E1 @ E2)) = ($(El) @ P(E2)) 
where @ # 

P( (El@)) = ( P(E1)@) 



i 
Let C  = ( 10 1 1 r i S s ) be the s e t  of code words. 

Let E be an arb i t ra ry  --expression. (All occurrences of - 
* 

i n  E denote complementation r e l a t ive  to  C .) 

men: (1). L ( ~ ( E ) )  n C* = ~ ( L ( E ) )  ; 

(2). depth(p(E)) depth(E) + 1 ; 

(3). IB(E)I ' c ~ I E I *  

Proof. (3) should be obvious by inspection. (2 )  i s  eas i ly  proved by 

induction on depth(E). 

* 
To prove ( I ) ,  l e t  LO = L(-G) = (A) U 1.(0,1) -0  . Note tha t  

* 
C  C Lo and tha t  C i s  a uniquely decipherable code, that  is,  h i s  

* * 
one-to-one as a map f romz  to  ( 0 , l )  . 

Now by induction on the length of E, one can show tha t  

( i ) .  L(B(E)) Lo 
and 

( i i )  . L( p ( ~ ) )  n c* = ~ ( L ( E ) ) .  

We prove the induction s tep  for one case. Assume ( i )  and ( i i )  

hold for an expression E Let E = (-El) so p(E) = ( -(p(E1) U G) ). 1' * 
Assume w E (0 , l )  . 

* * 
i f f  W E C  - L(p(E1)) because C  c Lo 

* 
i f f  w E C  - h(L(E1)) by induction 

* 
i f f  W € h(L(E)) because h i s  one-to-one on C , 

* 
and h(R) E c *  for R S C .  



* 
The remaining cases,  E = El U E2, E = E1.E2, and E = El , a l l  

follow i n  a s t ra ight forward way from t h e  f a c t s  t h a t  C is  uniquely 

decipherable,  and t h a t  i f  u1,u2 E Lo and w ~ = w ~  E C* then u1,u2 E c*. 

Returning t o  t h e  proof of t h e  main Lemma 4.26, l e t  h and C 

be as i n  Lemma 4.26.4 f o r  t h e  alphabet C used t o  cons t ruc t  Edl. 

* 
By Lemma4.26.4(1), L(E,C1) # C  i f f  L(P(Ed1)) n C* # c*. 

Let 
H = 0 * ( 4  U 0)  U ( 4  U 0).1 U ( 4  U O ) - ( O ~ + '  U l l ) . ( 4  U 0) ,  

* 
w d  n o t e  L(H) = ( 0 , l )  - C* . 

Therefore 

L( p(Edl) U H ) $ (0,1)* i f f  L(Edl) # C* i f f  x E A. 

Let %(x,m,z) = P(Eel) U H 

W e  must now bound t h e  depth and length  of %(x,m,z). 

depth(Edl) = max(depth(Em),depth(Fm) + 1,2) = m + 2, 

-depth(p(EmC1)) idepth(Emtl)  + l = m + 3  by Lermna4.26.4(2). 

and thus depth(%(x,m,z)) < m + 3 . 

To bound the  length  of  %(x,m,z), note .  t h a t :  

( i ) .  I%(x,m,z)l = I P ( E ~ ~ ) I  + IHI + 0 ( 1 )  ; 

( i i ) .  I H I  = O(s) ; 
5 

( i i i ) .  I P(Ed1)1 = C I > I  + O(1) ; 
i = O  

( 5 ~ ) .  le,l,i I "  IF,^ + O(s) f o r  i # 2. 



m 2 
Now ( iv) ,  Lemma 4.26.4(3), and the bound  IF,^ = O(3 z S) 

derived above gives 

m 2 2  
(v)- I $(emFl,i ) I  = O(3 z s ) for  i f 2. 

It remains only to  bound the length of j3(emtlY2). To achieve 

the desired bound, assume C i s  enumerated so tha t  

L1 = (cl. O2 Y c3 , .* , 0 ] , where s ' = card (xwl) depends only 

on M (not on x, my or z). Therefore 0 € E l  implies 1 h(o)l S sl+l. 

By our remarks above tha t  1 e&ly 2 1 = O(stn) and tha t  e 
&1,2 

contains only alphabet symbols i n  2 i t  is c l ea r  tha t  w19 

(That is,  the application of $ to  e 
el, 2 

"expands" each alphabet 

symbol by a t  most a factor of O(sf ) ,  and "expands" each operation 

symbol by a t  most the fixed factor IGJ, cf .  Lemma 4.26.4.) 

Combining ( i ) ,  ( i i ) ,  ( i i i ) ,  (v), and (vi)  gives 

Finally,  note tha t  s = s1 + O(m) because the alphabets 

C 1 ~  3 9  * * = ,  C m are  each of fixed size.  

We conclude tha t  there i s  a constant a (depending only on M) 

such tha t  
m 2 2  

I%(x,m,z)l 5 a(3 z m + 1x1) for a l l  x, my and z. 

We l e t  the reader supply h i s  own argument tha t  %(x,m,z) can be 

computed uniformly from x, m, and z,  within time polynomial i n  and 

space l inear  i n  %(x,m,z) . The basic argument i s  by induction on k, 

noting tha t ,  given p(Ek) and p(Fk), p(Ek+l) and p ( ~ ~ + ~ )  can be 



constructed within time polynomial i n  and space l inear  i n  the i r  lengths. 

This completes part  (1) of the proof. 

(2). Operation * is  now available. We describe modifications 

to  the construction just  given. For a l l  k, construct Ekl and Fk
l 

exactly l i k e  Ek and F except: 
k 

* 
where O = (Q1,Q2, - * , Q j ) .  Now O i s  an expression of depth 0. 

(M2). In  the construction of E ~ ' ,  wr i te  subexpression e15' as: 

Jc 

e15 
= c.c;. ( u (C1 - (a)) . ~ 2 + ~ .  (c"*)*.(5 ) .c;.c . 

a E C, 

Note tha t  le15 ' 1  = O(zs); depth(e15') = 0. 

~ + 3  a 
We claim tha t  i f  w E (z22*C1 ) *CiZ for some 4 2 2 ( tha t  is, 

if w is  of the form (*), cf. the construction of ell), then 

w E ~ ( e ~ ~ ~ )  i f f  w E L(e15). 

To see th is ,  assume ~JI i s  of the form (*) and wri te  

w =  t w w w  t w t w t . * *  thl WL1WL2WL3* *'Wa, z+3 tl? 0 11 12 13'*'Wl,z+3 1 2 2 3 3 

where ti E % 2  for O g  i h l?, wi E q + 3  for 2 h i i 4-1, 

and wlj,wAj E C1 for I r j s z+3. 

In  part icular ,  note that  t1,t4-l E zZ2 and r eca l l  zZ2 il C1 = 8 .  

It is now easy to  see tha t  

w e L(e15') i f f  wlj E % ( 1 ) ( ~ 4 j )  for 1 s j s ~ + 3  iff w a - -(eltj) 



Clear ly  modificat ion (Ml) does no t  a l t e r  t h e  language described 

by an expression. I n  p a r t i c u l a r ,  s i n c e  W $! L(ellt) i f f  W $! L(ell) 

i f f  W is of t h e  form (*), i t  follows t h a t  L ( y )  = L(-El). 

I n  genera l ,  it then follbws t h a t  L(-Ekt) = L(%) f o r  a l l  k. 

One f u r t h e r  modificat ion concerns t h e  method of coding 

expressions over alphabet  C t o  expressions over alphabet  {0,1]. 

* 
Let h:C + {0,1} and C be a s  i n  Lemma 4.26.4. I f  E is  a 

%(U,* ,-,*I - expression, d e f i n e  t h e  [0,1} -{U; ,-,*} -expression p '  (E) 

by t h e  r u l e s  given fo r  p(E) i n  Lemma 4.26.4 where P '  replaces .  p and 

G '  r ep laces  G,  where 
G '  = ( 0*(0  U I)* U (0 U 1)*.1 ). 

Since L(G) = L(Gf),  t h e  proof of Lemma 4.26.4 shows t h a t  

1 .  L ( ~ ' ( E ) )  n c* = ~ ( L ( E ) )  f o r  a l l  E. 

Since depth(G1) = 0,  we a l s o  have 

( 2 ) .  depth(pf (E)) = depth(E) f o r  a l l  E. 

Now l e t  %'(x,m,z) =  EL^) U H. 
1 

By t h e  argument above t h a t  L(E,tl) = L(E,C1) and by (1 ' )  w e  conclude 

t h a t  L(EMt(x,m,z)) = L(EM(x,m,z)). 

The new bounds on t h e  depth and length  of %'(x,m,z) a r e  a s  follows. 

From (MI) and (2 ' ) : 
depth(EIf)  = depth(Flf)  = 0 ; 

d e p t h ( ~ i + l )  = d e p t h ( ~ k l )  = max(depth(Ekf),depth(F<)) + 1 = k 

f o r  l S k S m ;  

and depth(%'(x,m,z)) =  depth(^' el) = m (provided m 2 1). 



Modification (M2) gives  IE1'I 4 I F  ' 1  = O(sz). The r e l a t i o n  1 

(2R) derived e a r l i e r  remains t h e  same, and the re fo re  

It can now be checked t h a t  l E L l l  = 0 ( 3 ~ s z  + sn) and the re fo re  

I E  '(x,m,z)j = 0 ( s ( 3 ~ s z  + sn))  m 
m 2 2 

a(3 m z + m 1x1) 

for some constant  a depending only on M. 

This completes t h e  proof of Lemma 4.26. 





Section 4 .2  closes with two open questions cmcerning the complexity 

of inequivalence problems with The f i r s t  concerns the gap between 

known lower and upper bounds for  NEC (( 0, I} , ( U, ,--I ) . 
Open Question 4 . 3 3 .  Precisely where between g(r1ogbnl ,0) and g(n,O) 

does the space requirement for NEC ((O,l} , (U, ,--I ) l i e ?  

In part icular ,  i s  NSPACE(g(n,O)) NEC({O,1}, (U, ,--I ) ? 

In the proof of Lema 4.26 we essent ial ly  use three occurrences 

of expressions for  the g(k,O) "ruler" t c  construct ex-,ressions for  the 



g(k+l,O) "ruler". Thus the s i ze  of the expression for  the g(k,O) 

"ruler" grows exponentially i n  k and we obtain only a g(1og n,O) b 

lower bound on the complexity of NEC([0,1] ,[U,',--1). The lower 

bound could be raised t o  g(cn,O) for  some constant c ,  thereby 

se t t l i ng  Open Question 4.33, i f  one could construct an appropriate 

g(k+l,O) "ruler" using only one copy of a g(k,O) "ruler". Some of 

the logical  theories mentioned i n  Chapter 5 contain enough notational 

power that  only one occurrence of the formula corresponding to  a 

g(k,O) ru le r  is  required t o  obtain a g(k+l,O) ru l e r  and so one can 

obtain g(cn,O) lower bounds on the i r  complexity. However, for  the 

case of regular- like expressions using U, *, and --, or even allowing 

* 
as well, we are  unable to  s e t t l e  Open Question 4.33. 

For technical completeness, we would l i k e  to  show that  no two 

out of three of the operations U;,- yield a nonelementary 

inequivalence problem. We know by Theorem 4.27 tha t  

INEQ([O, 1) , [U, ,--I ) i s  nonelementary. The complexity of 

INEQ(Z, [U, - )  ) (where card@) 2 2) i s  characterized by Theorem 4.19 

as being precisely NP which i s  cer ta in ly  elementary. Also, i t  i s  

easy to  see that  INEQ(C, [U,-] ) E 6'. If E is  a E[U,-) -expression 

then e i ther  L(E) = O or L(E) = C* - O for some O C. Moreover, 
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such a description of L(E) can be obtained deterministically within 

t ime polynomial in the length of E. The case  {. ,N] is  open. 

Open Question. Characterize the complexity of I N E Q ( ~ ,  {. ,N>) 

2 for ca rd (1 )  1 2. In part icular ,  i s  it elementary- recursive. 



4.4 Expressions Over a One-Letter Alphabet. 

We have seen in previous sections that the complexity of INEQ(C,~) 

or NEC-(C,~) for a particular 9 does not depend significantly on C 

provided card(C) 2 2 (cf. Lemma 4.10). This section shows that the 

complexity of a problem can be affected, sometimes drastically, by the 

restriction to a one-letter alphabet. 

This is best illustrated by the case cF, = (U,*,-). The results 

of section 4.2 show that INEQ(C, [U, ,-) ) is not elementary-recursive 

if C = [0,1) . However, this problem becomes relatively trivial 

i f C  = [O). 

Theorem 4.37. 

Proof. The proof rests on the fact that a (0)-{UYs,-} -expression 

E describes either a finite or cofinite set of words, and moreover 
* 

that all words w € [O} of length exceeding IE 1 are either 

all not in are all in L(E). That is: 

Lennna 4.37.1. Let E be a (0)-(U,*,--) -expression. Then either 

* 
(i). (finite) ForallcdE(0) ,wEL(E) Iwl I E ~ ,  

or * 
(ii). (cofinite) For all U E [O) , cd $! L(E) Iwl S I E  1. 

Proof. By induction on the length of E. 

If E = (0) or E = (A) ,  the lemma is certainly true. 

Suppose the lemma is true of expressions El and E2. 



If E =  ("El), then E L(E) i f f  $! L(E1), 1 ~ ~ 1  < I E ~ ,  
and thus t he  lemma is t rue  of E. 

Suppose E = (E1.E2). F i r s t  suppose L(E1) and L(E2) a r e  both 

f i n i t e .  Then L(E) i s  f i n i t e ,  and w E L(E) implies w = w1W2 for  some 

W I E  L(E1) and m2 E L(E2). Since Iwl)  ( ~ ~ 1  and lw21 S- IE21 

by induction, 1 ~ 1  S lEll + lE2 1 < I E  1 .  Now suppose L(E1) i s  c o f i n i t e  

and L(E2) is  f in i t e .  I f  L(E2) = @, then L(E) = @ and the lemma i s  

k t r u e  of E. I f  L(E2) # 8, then 0 E L(E2) fo r  some k h I E ~  1 by 

induction. Also by induction, z > lEll implies 0" E L(E1) 

for  a l l  in tegers  z .  Therefore z > (E l ]  + k implies 

o Z E  L(E1).L(E2) = L(E). But lEll  + k s  1 ~ ~ 1  + iE2l  < [ E l ,  and thus 

the  lemma is t rue  of E. The case i n  which both L(E1) and L(E2) a r e  

c o f i n i t e  i s  handled similarly.  

The reader can check the case E = (El U E2) i n  a s imilar  fashion. 

This completes the proof of Lemma 4.37.1. 0 

Thus i f  E i s  a (03 -{U,* ,-I -expression, L(E) has a f i n i t e  

representation of the  form [F, t ] ,  where F C N, F i s  f i n i t e ,  t E {O,l], 

C ( 0 ' 1  z E F )  i f  t = O  
[F, t ]  represents 

( 0 ~ 1  z B . F ) i f  t = l ,  

and e i the r  max(F) S I E 1 o r  F = @. 
Also i t  i s  no t  hard t o  see  tha t ,  given f i n i t e  representations for  

L(E1) and L(E2), a determinis t ic  algorithm can find a f i n i t e  represen- 

t a t ion  for  L(E1 U E2), L(E1*E2), o r  L(-El) within time bounded by 



a fixed polynomial in ( ~ ~ 1  + I E ~ ~  . Therefore, using this algorithm 

recursively, the time required to find a finite representation of 

LfE) is bounded above by T( I E I ) where 

T(n) = max( T(nl) + T(n2) 1 nl,n2 > 0 and nl+n2 < n ) + p(n) 
where p(n) is a polynomial. 

Therefore T(n) = O(n-p(n)) assuming (without loss of generality) 

that p(nl)fp(n2) 5 p(n) for all nl,n2 > 0 with nl% < n. 

Also, a deterministic algorithm can check that two finite 

representations describe different sets of words within polynomial time. 

The first step of the main algorithm, checking that x is of the 

form (E1,E2) where El and E2 are (0)-{U,*,-)-expressions, can be 

3 
done deterministically within time 0(IxI ) [cf, You671. 

The various pieces can be put together to give a deterministic 

polynomial time acceptance algorithm for INEQ((0),(U,o,--)). 0 

For another cp, NEC((0) ,q) is complete in z class which may lie 

strictly above P. The inequivalence problem for regular expressions 

(cp = [UYo,* ] )  over a one-letter alphabet is (-complete in NP. 

(Recall that in the two-letter case, NEC((O, I), (u,* ,*) ) is 

S -c&lete in POLYSPACE (cf. Remark 4.14(3)). ) 
log 

Theorem 4.38. NEC (10) ,{u,*,*)) is $-complete in NP. 

We omit the proof of Theorem 4.38. A proof can be found in [S~73]. 





Chapter 5. Nonelementary Logical Theories 

By using e f f i c i en t  reducibi l i ty  techniques, several workers 

[Mey73], [EX741 , [Rob731 have obtained lower bounds on the complexities 

of decision problems for  cer ta in  decidable logical theories. In  fact ,  

the f i r s t  example of a provably d i f f i c u l t  natural  decision problem 

was provided by Meyer [Mey73] who showed tha t  the decision problem for  

the weak monadic second order theory of successor (WSlS) i s  not 

elementary-recursive. Subsequently, Robertson [Rob731 showed that  the 

s a t i s f i a b i l i t y  problem for sentences i n  the f i r s t  order language of the 

nonnegative integers with < and a s ingle  uninterpreted monadic 

predicate is  not elementary-recursive. The purpose of t h i s  chapter 

i s  to  show tha t  these two re su l t s  and others follow as simple coro l la r ies  

of the r e s u l t  tha t  the emptiness problem for  s ta r- f ree  expressions 

is  not elementary-recursive (cf. $4.2). 

To simplify notation i n  th i s  chapter: 

A s ta r- f ree  expression i s  a (0, l )  -(U, ,-I -expression; 

NE(star-free) = ( E I E i s  a s ta r- f ree  expression 

and L(E) # @ ) 

Note tha t  E E NEC((0,l) ,(U,*,-1) i f f  (-E) E NE(star-free). 

The next fac t  i s  now inunediate from Theorem 4.27. 



Fact 5.1. For a l l  ra t ional  b > 3, NE(star-free) N S P A C E ( ~ ( ~ I O ~ ~ ~ ~  , O ) ) .  

In part icular ,  NE(star-free) i s  not elementary-recursive. 

In t h i s  chapter we consider several decision problems concerning 

res t r ic ted  forms of symbolic logic such as the two mentioned i n  the 

opening p~ragraph. In  each case we show tha t  NE(star-free) i s  

e f f ic ient ly  ( in  part icular  ) reducible to  the part icular  decision 
PJ 

problem, and thus tha t  these decision problems are not elementary- 

recursive. 

The main advantage of obtaining such resu l t s  as corol lar ies  of 

Fact 5.1 (rather than by a d i rec t  arithmetization of Turing machines) 

is  simplicity. In the cases we consider, there i s  a simple, eas i ly  

described trans formation from NE (s  tar- free) to  the part icular  decision 

problem, and so we may avoid repeating for each decision problem the 

arithmetization of Turing machines which we have already carried out 

i n  terms of s tar- free expressions. 

WSlS can also play the ro le  of NE(star-free) as a s ta r t ing  point 

for  further reductions. However, for several part icular  theories T, 

we know of no d i rec t  transformation from WSlS to  the decision problem 

1' 
for  T , even though there is  a simple transformation from NE(star-free) 

t o  T. Intui t ively,  NE(star-free) succeeds where WSlS f a i l s  because 

WSlS is a considerably r icher  language than the language of s ta r- f ree  

t 
In cer tain cases, the only known e f f i c i en t  transformation from WSlS to  

T involves f i r s t  taking a decision procedure (Turing machine) M for 

WSlS and then arithmetizing M i n  the language of T. 



expressions;  i n  t h e  language of s t a r - f r e e  expressions t h e r e  i s  no 

d i r e c t  analogue of l o g i c a l  q u a n t i f i e r s  o r  var iables .  

A disadvantage of obta in ing such r e s u l t s  a s  c o r o l l a r i e s  of t h e  

s t a r - f r e e  r e s u l t  i s  t h a t  ( i n  t h e e a s e s  we consider)  t h e  implied lower 

complexity bound is somewhat weaker than t h e  bound which can be 

obtained by a d i r e c t  ar i thmet iza t ion.  Since space g(rlogbnl,O) i s  

t h e  b e s t  known lower bound on the  complexity of NE(star-free) ,  

space g(rlogbnl ,0) i s  the  b e s t  lower bound one can ob ta in  on a s e t  B 

by a transformation f from NE(star-free) t o  B, assuming lf(x)l  2 1x1 

f o r  a l l  x. However, a s  was f i r s t  pointed ou t  by Rabint f o r  WSlS, 

and then by Meyer f o r  t h e  s a t i s f i a b i l i t y  problem fo r  sentences i n  the  

f i r s t  order  theory of l i n e a r  order ,  one can show t h a t  these  problems 

r e q u i r e  space g(rcn1,O) fo r  some c > 0. This lower bound i s  c l o s e r  

t o  known upper bounds of g (  rdn1,O) f o r  some constant  d, [Buc60a], 

[Elg61], [Rab69]. Of course, i f  one wants only t o  show t h a t  a c e r t a i n  

decis ion problem i s  n o t  elementary- recursive, then an e f f i c i e n t  t rans-  

formation from NE(star-free) t o  t h e  problem i s  s u f f i c i e n t .  

W e  a s s m e  ' the reader  i s  fami l i a r  wi th  t h e  b a s i c  not ions  of t h e  

p red ica te  ca lculus ,  ( see  f o r  example [Sho67]). 

Let L(<,P) be  the  s e t  of formulas w r i t t e n  i n  f i r s t  order p red ica te  

ca lculus  using only t h e  binary r e l a t i o n a l  symbol < and t h e  monadic 

p red ica te  symbol 2, together wi th  t h e  usual  l o g i c a l  connectives 

A, V, -, s, etc. ,  q u a n t i f i e r s  3 and Y, var iab les ,  and parentheses. 

t 
Personal  comunicat ion.  
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We sha l l  use other re la t iona l  symbols such as s and = i n  writ ing 

formulas since these can be expressed i n  terms of < by formulas of 

fixed s ize ;  for  example (x = y) i f f  ~ ( ( x  < y) V (y < x)) .  

Lower case Roman l e t t e r s  a re  used to  denote f i r s t  order variables.  

(Variables may i n  general be subscripted by a binary number, although 

the part icular  formulas we sha l l  wri te  require only a fixed (approxi- 

mately 8) number of variables.) 

A formula F i s  a sentence i f  F contains no f ree  variables. 

Let S be a s e t  and l e t < S  be a l inear  (i.e. t o t a l )  order on S. 

Let cp be a sentence i n  L(<,l?). cp is sa t i s f i ab le  with respect t o  

t 
( S , d )  i f f  there is  an interpretat ion P:S + (0, l )  of g such tha t  

cp i s  t rue under the interpretat ion (S,CS,P). Let SAT(S,<S) be the 

s e t  of a l l  such sa t i s f i ab le  sentences. 

The main r e s u l t  i s  that  i f  S i s  an i n f i n i t e  s e t  with l inear  order 

C then NE(star-free) 5 SAT(S,CS) and hence SAT(S,$) i s  not 
S ' PA 

elementary-recursive. 

Remark: The f i r s t  order theories of (N,<) , (Q ,<) , and vario-xs 

other orders without a predicate P are  a l l  elementary-recursive 

[cf. Fer741. 

Before proving the general r e su l t ,  i t  i s  ins t ruc t ive  to  prove a 

somewhat simpler special  case, namely S = N ( the nonnegative integers) 

and < = < (the usual re la t ion  " less than" on integers).  Decidability S 

of SAT(N,<) follows from [Buc60b]. The r e s u l t  than SAT(N,<) i s  not 

t 
View 1 as "true" and 0 as ''false". 



elementary-recursive was obtained independently by Robertson [Rob731 

using a direct arithmetization. 

Theorem 5.2. 

(1). NE(star-free) S SAT(P\J,<). 
PI 

(2). Therefore SAT(M,<) is not elementary-recursive, and in fact 

SAT(N,~ $! ~s~Ac~(g(rlo~~n1,O)) for all b > 3. 

Proof, (1). Given a star-free expression E, we construct a formula 

with two free variables F (x,y) C L(<,P) such that: E 

(*) If P:N {0,1) and i, j E N, then F (i, j) is true under 
E 

the interpretation (N,<,P) iff 

(i). i j and P(i)P(i+l)P(i+2)**.P(j-1) E L(E) 
or 

(ii). i =  j and XEL(E). 

F (x,y) is constructed inductively on the structure of E: E 

.- F(o) (x,y) is (("y = x + 1") A -g(x) ) ; 

where ("y = x + 1") abbreviates ( (x < y) A --(32) (x < z < y) ). 

Inductively, if E and E' are star-free expressions then: 



By renamingvariables appropriately, note tha t  F (x,y) can be 
E 

wri t ten u s b g  exactly three variables. It i s  a lso easy to  prove by 

induction tha t  FE(x,y) has the property (*) above for  a l l  s tar- free 

expressions E. 

Now l e t  YE be the sentence 

Then clear ly  E E NE(star-free) i f f  CpE E SAT(N,<). 

Let f be the function mapping E t o  ei, for a l l  E. Clearly f can 
E 

be computed within polynomial time and l inear  space, and f i s  l inear  

bounded. (To be completely precise, f(x) must also be defined i f  x 

is not a well-formed star- free expression. However an IOTM computing 

f can f i r s t  check within space log n that  x is  well-formed, and output 

some ill-formed- or f a l se  sentence i f  not.) 

(2). This is  now immediate by Fact 5.1 and Lemma 3.7. 

A transformation similar to  that  of Theorem 5.2 can be used t o  

embed NE (s tar- free)  i n  the language of cer ta in  weak monadic second 

order theories o f  N. For exmple, l e t  WSlS be the s e t  of t rue 

sentences written i n  weak monadic second order logic using only the 

predicates y = x-tl (y i s  the successor of x) and x E X. [M~Y 7 3 1 

show tha t  WSlS is  not elementary-recursive. This also follows 

eas i ly  from Fact 5.1. 

Theorem 5.3. - NE(star-free) WSlS. 
PJ 

Therefore WSlS is  not elementary-recursive. 



Proof. A formula F (x,y,g) i s  constructed t o  sa t i s fy  property (*) E 

of Theorem 5.2, where g i s  now viewed as a f i n i t e  s e t  variable. 

F (E u E ' ) ,  F ( ~ . ~ ' ) s  and F (--E) a re  wri t ten as i n  Theorem 5.2 where 

"(x y)" i s  expressed by the formula 

(m) ( (x E A) A --(el E A) A (vz) (z+l E A =) z E A) ) . 
A s  before, FE(x,y,g) c w  be wri t ten using a fixed number of 

variables. 

Finally, i f  = ( 3 ~ ) ( 3 ~ ) ( 3 y ) ( ~ ~ ( x , y , D )  then 
. E 

E E NE(star-free) i f f  YE E WS1S. 

k z k ~  
Remark. If depth(E) = k , ~  then Cp of Theorem 5.3 is transformable within 

E 

polynomial time to a sentence ep' i n  prenex normal form with k-1 
E 

alternations of se t  quant i f iers .  Also, from Theorem 4.29 i t  follows that ,  

for  my k 2 1, NSPXE(g(k,n)) < NE(star-free) n ( E I depth(E) S kS4 1. 

Therefore, for k 2 1, NSPACE(g(k,n)) i s  transformable within 

polynomial time to  WSlS r e s t r i c t ed  t o  prenex sentences with a t  most 

k+3 alternations of s e t  quantifiers.  By a d i r ec t  proof, Robertson 

[Rob731 has obtained the stronger r e su l t  tha t ,  for k 2 2, NSPACE(g(k,n)) 

is  transformable within polynomial time t o  prenex sentences with a t  most 

k-1 alternations of s e t  quantifiers.  



Similarly i n  Theorem 5.2 one can r e l a t e  the complexity of deciding 

SAT(N,<) t o  the number of a l ternat ions of f i r s t  order quantifiers.  

W e  now turn to  the main r e s u l t  of t h i s  section, t ha t  NE(star-free) 

is  e f f i c i en t ly  reducible to  SAT(S,<) for an arb i t ra ry  i n f i n i t e  s e t  S 

with l inear  order <. Of course SAT(S,<) may not be decidable for  cer ta in  

choices of S and <. However, whatever the upper complexity bound, 

SAT(S,<) is  never elementary-recursive. 

It should f i r s t  be pointed out tha t  the  simple transformation of 

Theorem 5.2 does not work for  general S. This i s  i l l u s t r a t e d  by 

* 
choosing (S,<) = (Z ,<*) where - Z* = Q x Z and 

(ql,zl) <a (q2,z2) i f f  e i ther  (ql < q2) o r  (ql = q2 and zl < z2) 

Now l e t  E be a par t icu lar  s ta r- f ree  expression which describes the 

s e t  of words which " s ta r t  with 0" and "end with 1" and "do not contain 

01  as a subword". That is  . 
E = -( -(O* (4 U 0)) U -((+I U O)*1) U ( 4  U 0 ) - 0 1 - ( 4  U 0) ) . 
- * 

(Recall L ( ( 4  U 0)) = (0 , l )  .) 

Certainly L(E) = @ and therefore E g NE(star-free) . However 

l e t t i n g  FE(x,y) and O = (3x)(3y)(FE(x,y)) be as i n  Theorem 5.2, we E 
J; 

claim tha t  VE E SAT(Z ,<*). To see th i s ,  choose ( for  example) 

0 i f  q g O  
P(q,z) = for  a l l  q E Q ,  z E Z. 

1 i f  q > o  

TQ denotes the ra t iona l  numbers. i denoces the integers.  



It i s  now straightforward t o  ve r i fy  t h a t  F ((0,0),(1,0))  i s  t rue  E * * 
under the in te rpre ta t ion  (Z ,<*,P) and therefore  CpE € SAT(Z ,<*). 

(Informally, the i n f i n i t e  word P(O,O)P(O,l)P(O,2).- -* -~ (1 , -1 )P (1 ,0 )  

= 000..- -**111 correc t ly  s t a r t s  with 0 and ends with 1 and y e t  

doesnJ:t contain 01 as a subword.) 

The proof t ha t  L(E) # Q i f f  CpE E SAT(N,C) impl ic i t ly  uses the 

property of t h a t  for  a l l  i , j  E N there  a r e  a t  most f i n i t e l y  many 

k E N such tha t  i < k < j. This property does not  hold for  other  s e t s  

* 
such as  Z causing the d i f f i c u l t y  i l l u s t r a t e d  above. However t h i s  

d i f f i c u l t y  can be overcome by a modification t o  the  transformation 

of Theorem 5.2. 

Fix a par t icu la r  i n f i n i t e  s e t  S with l i nea r  order <. The f i r s t  

s t ep  u t i l i z e s  the predicate - P t o  pick out a s e t  of d i sc re t e  "points" 

from the (possibly dense) s e t  S. The formula point(x) is  s a t i s f i e d  

by an in te rpre ta t ion  of x and P i f f  g i s  iden t i ca l ly  f a l s e  on some op2n 

in t e rva l  below x and i s  iden t ica l ly  t rue  on some in t e rva l  above x. 

The t ru th  value of g(x) under the in te rpre ta t ion  is  not constrained 

by point (x) . 
point(x) i s  (3s) (3 t )  (Vw) ( ( s  < x < t )  A ( ( s  < w < x) a -g(w)) 

A ( ( x < w <  t )  =g (w) )  ). 

Let nextpt(x,y) be the following formula which is  s a t i s f i e d  by 

an in te rpre ta t ion  of x, y, and g i f f  x and y a r e  "points" and y is  

the next point a f t e r  x. 



nextpt(x,y)  i s  ( point (x)  A point (y)  

A (Vz) ( ( x  < z <= y) * --point(z)) ). 

Let P:S + ( 0 , l )  be a given i n t e r p r e t a t i o n  o f  - P. 

Define Points(P) = ( x E S 1 po in t (x )  ) . 
I f  p1,p2 E Points(P) ,  we say t h a t  pl and p2 a r e  f i n i t e l y  f a r  

a p a r t  i f f  card{ w I pl < w < p2 and w E Points(P) ) i s  f i n i t e .  

I f  x,y E Points(P) ,  x < y,  and x and y a r e  f i n i t e l y  f a r  apa r t ,  

de f ine  

where x = x, nextpt(xe,y) ,  and n e x t p t ( x  ,x ) f o r  1 S i S A. 0  i-1 i 

Define word,(x,x) = X f o r  a l l  x .E Points(P)  . 

Lemma 5.4. For any s t a r - f r e e  expression E t h e r e  is  a formula FE(x,y,u,v) 

i n  L(<,Z) wi th  t h e  following p roper t i e s .  

Let  ?:S + {0,1] be any i n t e r p r e t a t i o n  o f  Z. 

( i ) .  For a l l  s1,s2,s3,s4 E S, F E ( s  1 2  ,s ,s 3 ' 4  s ) i s  t r u e  (under t h e  

i n t e r p r e t a t i o n  (S,<,P)) only  i f  sl;s2,s3,s4 E Points(P) 

and sl S s2 5 s3 S s4. 

(Ti) If P1,P2,P3,P4 E Points(P) ,  Pl s P2 s P3 s P4, P l  and P* a r e  

f i n i t e l y  f a r  apa r t ,  and pg and p4 a r e  f i n i t e l y  f a r  a p a r t ,  then 

F ~ ( P ~ . P ~ , P ~ , P ~ )  i s  t r u e  i f f  =word P (P 3 9 ~ 4 )  E L(E). 



( iv ) .  Moreover there  is  a l i nea r  bounded function f E polyl in  

such t h a t  f (E) = FE fo r  a l l  s t a r- f r ee  expressions E. 

Proof. F i s  defined inductively. 
E 

L e t  point (x,y,u,v) = (point  (x) A point  (y) A point  (u) A point (v))  

F (x,y,u,v) i s  ( point(x,y,u,v) A (x = y) A (u = v) A ( x s  u) ); 
(A) 

F (x,y,u,v) i s  s imi la r  t o  F (x,y,u,v); 
(1) (0) 

The asser t ions  ( i ) ,  ( i i ) ,  and ( i i i )  a l l  follow by straightforward 

inductive proofs . 
For example, one pa r t  of the inductive s t e p  for  ( i i i )  i s  a s  follows. 

Assume ( i i i )  i s  t rue  for  expressions E and E l .  

Assume p1,p2,p4 E Points(P) and pl s p2 5 p4. Then 



F(E.Ef) (p1,p2,p29p4) iff ( (") (FE(~ l , z , z , z )  A FE? ( z , ~ 2 , ~ 2 ' ~ 4 ) )  

(") ( F E ( ~ 1 , ~ 2 , ~ 2 , z )  A FE! ( Z , P ~ , P ~ . P ~ ) )  

iff ("1 ( F ~ ( P ~ , Z , ' , Z )  A FE? ( ' , P ~ , P ~ , P ~ ) )  

by induc t ion  

i f f  ( (3z)(FE(p1,',',') A F E r ( z , ~ 4 , ~ 4 ' ~ 4 ) )  

@ z ) ( F E ( ~ l , ~ 4 , ~ 4 ' z )  A F E ? ( z , ? 4 , ~ 4 , ~ 4 ) )  

(because by p a r t  ( i ) ,  t h e  second d i s j u n c t  

imp l i e s  t h e  f i r s t )  

iff F(E.Et) ( P ~ , P ~ , P ~ ' P ~ )  by d e f i n i t i o n .  

The remaining c a s e s  are e a s i e r  and a r e  l e f t  to  t h e  reader .  

Le t  P:S + [0 ,1 ) ,  l e t  E b e  a s t a r - f r e e  express ion ,  and l e t  

1 1  
P1,P2,P1,P2 E Poin ts (P)  w i t h  P1 " P2 and p; 5 P; . 

is  t r u e  f o r  a l l  u,v E S. 

Note t h a t  i s  an equiva lence  r e l a t i o n  on 
P,E 

h 

Let  index(= ) be t h e  index  (number o f  equiva lence  c l a s s e s )  
P,E 

o f  = 
P,E' 

Lemma 5.5. For a l l  P:S + [0,1)  and a l l  s t a r - f r e e  exp res s ions  E, 

index(= ) i s  f i n i t e ,  
P, E 

Proof. F ix  some P:S + [ 0,1] , and a b b r e v i a t e  as We prove 
P,E 

by induc t ion  t h a t  i ~ d e x ( r  ) is f i n i t e .  The proof is  s i m i l a r  t o  E 



Brzozowskils proof t h a t  any extended regular  expression has a f i n i t e  

number of types of der ivat ives  [Brz64]. 

I f  E = (1) or  (0) o r  (1) i t  is t r i v i a l  t o  check t h a t  index(=E) 

i s  f i n i t e .  

Let E and E l  be s ta r- f ree  expressions with index(SE) = n and 

index(CEl) = nl .  From the inductive de f in i t i on  of ~ ~ ( x , y , u , v )  we have 

fo r  a l l  (p1,p2), (P;,P;) E 3: 
- 1 1  

If (p1,p2) 3E (P;,P;) then (p1,p2) =-E (p19p2)* 

Therefore index(= ) s n. --E 

- 
(2). If (p1,p2) =E (P~,P;)  and ( P ~ ~ P ~ )  (P~ ,P ; ) ,  

- I 
then (p1,p2) = E U E 1  (P~,P;) .  . 

Therefore index(= E u E ~ )  5 nnl-  

(3). Let Cl,C2,C3,*-• ,Cn, 8 be the  equivalence c lasses  of ' E'  

I f  (x,y) E 3 define 

Classes(x,y) = ( i I (32) [ x s z 5 y and F (x,z,z,z) E 

and ( 2 , ~ )  E Ci I ) 

1 t Now i f  (p1,p2) 'E (P;,P;) and C1asses(pl,p2) = Classes(pl,pp), 

I I 
I 

then (p1,p2) EEoE1 (p1,p2). Therefore  index(^^.^,) s n2" . 

( I ) ,  (2), and (3) a r e  easy t o  ver i fy  from the de f in i t i on  of F E ' 

We sketch the  ve r i f i ca t i on  of (3). Let u,v E S. 

FEOEf ( P ~ , P ~ , U , V )  is true i f f  ( (3z) ( F ~ ( P ~ , ~ , ~ , ~ )  A FEl ( z , ~ 2 , u , v ) )  

(32) ( F E ( ~ l , ~ 2 , ~ , z )  A FEt (z,v,v,v)) 1 
I I 

But F E ( ~ 1 , ~ 2 ,  u,z) i s  t rue  i f f  ~ ~ ( p ~ , p ~ , u , z )  i s  t rue  because 

(p1,p2) EE ( P ~ ~ P ; ) .  



Also, (3.) ( F E ( ~ 1 9 ~ y ~ y ~ )  A FEt ( Z , P ~ , U ~ V ) )  i s  t rue  

iff ("1 ( F ~ ( P ; ~ ~ ~ ~ ~ ~ )  A ( ' , P ; , ~ , ~ ) )  is true 

? ? 
because Classes (pl,p2) = Classes (pl,p2). 

It follows tha t  F E ~ E f ( p 1 , p 2 y ~ y ~ )  i s  t r ue  

i f f  F E ~ E f ( P ~ , P ~ r ~ y ~ )  i s  true. 0 

Theorem 5.6. Let S be an i n f i n i t e  s e t  with l i n e a r  order <. 

NE(star-free) S SAT(S,<) . 
Therefore SAT(S,.<) i s  not  elementary-recursive, and i n  f a c t  

SAT(S,<) 6! NSPACE(~( rlogbnl ,0)) fo r  a l l  b  > 3. 

Proof. Let ep  be the  sentence E 

V, = (3x1 ( 3 ~ )  ( 

A (Vz) (vz') ((x 5 z 4 z f  b y) ~ F E ( x y ~ , z f , y ) )  ). 

We claim tha t  E E NE(star-free) i f f  qE E SAT(S,q . 
(only i f ) .  Let E L(E) be a  shor tes t  word i n  L(E); t ha t  i s ,  

* 
fo r  a l l  w'  E (0 , l )  , l w f l  < 1 ~ 1  implies w' @ L(E). 

- 
Since S i s  i n f i n i t e ,  we can choose P:S + (0 , l )  and x,y E Points(P) 

such t h a t  x and y a r e  f i n i t e l y  f a r  apar t  and wordp(x,y) = w. Therefore 

F (x,y,y,y) i s  t rue  by Lemma 5.4( i i ) .  
E 

Choose any z ,zf  E Points(P) with x  I; z < z f  % y. Since z  < z f ,  

lword (x,z)*word (z t ,y ) l  < lwordp(x,y)l = I w l .  Again by Lemma 5 .4( i i ) ,  
P P  

and s ince w i s  a  sho r t e s t  word i n  L(E), we  have t h a t  F (x ,z ,z t ,y)  i s  E 

fa lse .  By Lemma 5.4(i) ,  FE(x,z,zt ,y) i s  a l so  f a l s e  i f  z  f Points(P) 

o r  z '  $! Points(P). 



Thus cp i s  t r u e  under the  in te rpre ta t ion  (S,<,P). 
E 

( i f ) .  Let P:S -t (0,l) be such t h a t  cpE is  t r u e  under (S,<,P) . 
Therefore there a r e  points x and y such tha t  F (x,y,y,y) and E 

Suppose x  and y a r e  not  f i n i t e l y  f a r  apart. Then s ince index(EPsE) 

is  f i n i t e ,  there must be z ,z l  E Points(P) such t h a t  x 2 z < z '  s y 

and (x, z) (x, 2'). Now 
P,E 

FE(x,z,zl,y) is  t rue  

i f f  FE(x,z ' ,zl ,y) is  t r u e  (by def in i t ion  of 
P,E) 

i f f  FE(x,y,y,y) is  t r u e  (by Lemma 5 .4( i i i ) ) .  

Therefore F (x,z,zl ,y) i s  t rue  contrary to,sssumption. 
E 

It follows t h a t  x and y a r e  f i n i t e l y  f a r  apar t  and thus 

wordp(x,y) E L(E) . 0 

* 
For example, SAT (Z ,<) , SAT (Q ,<) , and SAT (Z ,<,) a re  not 

elementary-recursive. 

A re la ted  decision problem i s  the s a t i s f i a b i l i t g  problem f o r  

sentences i n  the  f i r s t  order theory of l i nea r  order. Let L(<) be the 

s e t  of formulas wr i t ten  i n  f i r s t  order predicate calculus using only 

the binary r e l a t i ona l  symbol <. Let SAT< be the s e t  of s a t i s f i a b l e  

sentences i n  L(<); tha t  is,  i f  9 E I,(<) i s  a  sentence, then 

CiY E SAX i f f  there  i s  a  s e t  S and a  l i nea r  order Cs on S such tha t  

cp is  t r u e  under the  in te rpre ta t ion  (S,< ). S 

By a d i r e c t  ari thmetization,  Meyer has shown tha t  

SAN $! NSPACE(g(rcn1 ,O)) for  some constant c  > 0. 



Also, SAT< E ~ s p ~ c E ( ~ ( r d n 1 ~ 0 ) )  for  some d > 0 by [Rab69]. 

A nonelementary lower bound on SAT< also follows by a transformation 

very s imilar  t o  the one jus t  given. 

Theorem 5.7. 

Thus SAT< is  not elementary-recursive. 

Proof. Given a s ta r- f ree  expression E, a sentence q i n  L(<) i s  
E 

constructed such tha t  E E NE(star-free) i f f  rpE E SAT<. The 

construction i s  very similar t o  that  of Theorem 5.6 and Lemma 5.4. 

The main difference is  tha t  the l inear  order i s  used to  pick out a s e t  

of d iscre te  "points" and also to  "simulate1' the monadic predicate g. 

I f  S i s  a s e t  with l inear  order <, x E S is  a "point" i f f  

x is  isolated below. "P(x) - is  true" i f f  x i s  also isolated above 

(so "l?(x) i s  false1' i f  x i s  isolated below but not above). 

Construct F (x,y,u,v) and cp exactly as i n  Lemna 5.4 and Theorem E E 

5.6 except: 

( i ) .  Write point(x) as 

( i i ) .  Replace each occurrence of P(x) by 

Exactly as i n  the proofs of Lemmas 5.4 and 5.5 and Theorem 5.6, 

i t  follows tha t  E E NE(star-free) i f f  rpE E SAT<. 0 



A s  a f i n a l  example, we consider the  f i r s t  order theory of two 

successors and prefix.  Formulas i n  the  language of t h i s  theory 

* 
contain f i r s t  order var iables  in terpreted a s  ranging over [0,1) , 

a t o d c  predicates  So(x,y) and Sl(x,y) in terpreted a s  y = x.0 and 

y = x.1 respect ively ,  and the  atomic predicate  x Q y in te rpre ted  

* 
as  (3w E [0,1) ) [  x-w = y I .  

This theory, with the  addi t ional  predicate  of equal length, 

E(x,y) in terpreted as  1x1 = l y l ,  i s  t o  WSlS [ER66], which implies 
P 

a f o r t i o r i  an upper bound of space g(dn,O) for  the  theory without - 
the  equal length predicate. The following theorem implies a lower 

bound of space g(rlogbnl ,0) fo r  b > 3. 

Theorem 5.8. NE(star-free) S The f i r s t  order theory of two 
PA 

successors and prefix.  

Proof. Given a s t a r- f r ee  expression E, we construct  a formula with two 

* 
f r e e  var iables  GE(x,y) such tha t  fo r  a l l  a ,b E {0,1) 

.- GE(a,b) i f f  (3w E L(E)) [ a=w = b 1. 

G (x,y) i s  constructed inductively on the  s t ruc tu re  of E: E 

Gfi) (x,Y) is  (x = Y) ; 

G (0) (x,Y) is  S0(x,y) ; G(l ) (x , '~ )  i s  S1(x,y) ; 

G ( ) i s  (3z)(  GE(x,z) A G E t ( z , ~ )  ) ; (E-El) X'Y 

G (E UEt) (x,Y) i s  ( GE(x,y) V GET (x,Y) ) ; 

(x,Y) is ( (X ' Y) A ^GE(x ,~)  ) *  (-El 

The remainder of the  proof i s  e s sen t i a l l y  the  same as  f o r  Theorem 5.2. 5 



Remark. (Length of proofs) . 
I n  the  study of log ica l  theor ies ,  i t  i s  na tura l  t o  consider the 

length of proofs of t r ue  sentences, as  well  as  the time and space 

required by procedures which recognize the  t r u e  sentences. Of course, 

given any complete consis tent  system of axioms AX for  a theory T, an 

upper bound on the  length of proofs from the axioms AX implies a 

corresponding upper bound on the  space required t o  decide T, assuming 

t h a t  membership of words i n  AX can be decided e f f i c i e n t l y  (say, within 

polynomial time). I n  pa r t i cu l a r ,  fo r  the  decision problems considered 

i n  t h i s  chapter there  i s  no upper bound on the length of proofs 

elementary-recursive i n  the  length of sentences, provided the axioms 

a r e  "e f f ic ien t ly  recognizable" as above. See [FR74] for  fu r ther  

discussion on the  r e l a t i o n  between length of proofs and computational 

complexity. 



Chapter 6. Complexity of F i n i t e  Problems 

The previous two chapters  have shown t h a t  e f f i c i e n t  r e d u c i b i l i t y  

techniques can y i e l d  non- t r iv ia l  lower bounds on t h e  complexit ies  of 

c e r t a i n  dec i s ion  problems. For reasons of t echn ica l  s impl ic i ty ,  lower 

bounds have been s t a t e d  i n  a 5orm which implies t h a t ,  no matter  which 

algori thm i s  used t o  solve  t h e  p a r t i c u l a r  problem, t h e  time o r  space 

used by the  algori thm must exceed t h e  lower bound on some input  of 

length n f o r  i n f i n i t e l y  many n. The f a c t  t h a t  any algori thm must use 

excessively l a r g e  amounts of t i m e  o r  space i n f i n i t e l y  o f t en  might be 

viewed a s  p l a u s i b l e  evidence t h a t  any algorithm w i l l  a l s o  perform badly 

on inputs  of reasonable s i z e  which a c t u a l l y  a r i s e  i n  p rac t i ce .  

Indeed, i n  order  t o  draw meaningful conclusions about computational 

complexity, i t  is  e s s e n t i a l  t o  know a t  what f i n i t e  point  t h e  asymptotic 

lower bouyds w e  have derived begin t o  take e f f e c t .  Such information i s  

i m p l i c i t  i n  our e a r l i e r  proofs (cf .  $ 3 . 3 ~ ) .  

Our purpose i n  t h i s  chapter  is  t o  demonstrate t h a t  our methods 

y i e l d  astronomical lower bounds ( i n  the  most l i t e r a l  sense, c f .  

Theorem 6.1 below) on the  complexity of dec i s ion  problems f o r  expressions 

wi th  only a few hundred characters .  

We f i r s t  consider the  dec i s ion  problem f o r  t h e  weak monadic 

second order theory of the  n a t u r a l  numbers and successor. Let WSlS be 

the  s e t  of t r u e  sentences w r i t t e n  i n  weak monadic second order log ic  

using only the  r e l a t i o n s  y = x+l and x E A; t h a t  i s ,  t h e  second order 

sentences which a r e  t r u e  under t h e  standard i n t e r p r e t a t i o n  (N,successor) 



with s e t  variables ranging over f i n i t e  subsets of N. ~ C c h i  [BucGOa] 

and Elgot [Elg61] have shown tha t  WSlS i s  decidable. 
t 

For the purposes of th i s  chapter, logical  formulas a re  wri t ten i n  

t t a language enriched by cer ta in  notational abbreviations. I n  

par t icular  we may use decimal constants within formulas, writ ing 

5 for O+l+l+l+l+l, x+4 for  x+l+l+l+l, etc. Also, the binary 

re la t iona l  symbols s,  <, =, f, >, 2 on integers may be used. 

Let EWSlS be the s e t  of t rue sentences i n  C. Note tha t  the 

additional predicates of EWSlS are  a l l  expressible i n  WSlS, so EWSlS 

has no more expressive power than WSlS, and EWSlS i s  a lso  decidable. 

Let C be the alphabet of C. For fixed integers n, we seek lower bounds 

on the complexity of recognizing the f i n i t e  s e t  EWSlS fl p. tit 

Turing machine time and space are  not su f f i c i en t  t o  measure the 

complexity of f i n i t e  sets .  Any f i n i t e  s e t  i s  accepted by a f i n i t e  

s t a t e  automaton within r ea l  time (time T(n) = n) and within space 

zero. This i s  accomplished by coding a f i n i t e  tab le  of the elements of 

a s e t  in to  the s t a t e s  of the automaton. 

Thus, for assessing the complexity of f i n i t e  se t s ,  account must be 

t 
On the other hand, see [Mey73] or Theorem 5.3 of t h i s  paper  for a 

lower bound on the i.0. time and space complexity of WSlS. 

t t ~  is  defined ~ r e c i s e l y  below. 

tttWe sha l l  include a blank symbol i n  C, so tha t  EWSls n zn essent ia l ly  

contains the true sentences of length less  than or  equal to  n. 



taken of t he  s i z e  o r  complexity of the  device performing an algori thm a s  

we l l  a s  t he  time and space required by t he  algorithm. One q u i t e  general  

way t o  do t h i s  i s  t o  measure the  number of bas ic  operations on b i t s  o r  

t he  amount of l og i ca l  c i r c u i t r y  required t o  decide membership i n  f i n i t e  

se t s .  We assume the  bas ic  operations on b i t s  a r e  binary operations 

performed by "gatest t  wi th  two inputs  and one output  which may i t s e l f  

be fanned out  t o  serve  a s  input  t o  o ther  ga tes  i n  a c i r c u i t .  This 

c i r c u i t  model y i e ld s  a bas ic  measure of complexity f o r  Boolean functions 

as wel l  a s  f i n i t e  s e t s  (v ia  appropr ia te  encoding i n t o  Boolean vec to rs )  

c a l l ed  combinational complexity [cf.  Sav721. Prec i se  de f i n i t i ons  

appear below. 

It w i l l  t u rn  out  t h a t  t h e  alphabet C used fo r  EWSlS conta ins  63 

characters ,  each of which can therefore  be coded i n t o  s i x  binary d ig i t s .  

I n  pa r t i cu l a r ,  sentences of length  616 correspond t o  binary words o r  

Boolean vectors  of  6.616 = 3696 b i t s  and t h i s  w i l l  be the  number of 

inputs  t o  a c i r c u i t  which "accepts" the  t r u e  sentences. The c i r c u i t  

i s  t o  have a s i ng l e  output l i n e  which gives  t he  value  one i f  and only 

i f  t he  input  vector  i s  the  code of a t r ue  sentence of length 616. 

One main r e s u l t  can now be informally s ta ted .  

Theorem 6.1. I f  C i s  a Boolean c i r c u i t  which accepts WSIS n z6l6, 
12 3 t h e n C  c o n t a i n s m o r e t h a n 1 0  gates .  

Thus i f  a c i r c u i t  C accepts EWSlS r e s t r i c t e d  t o  sentences of 

length  no t  exceeding 616, and i f  each ga t e  is the  s i z e  of a proton, 



then t o  accommodate C the en t i r e  known universe would be packed with 

gates. 
t 

The f i r s t  lower bound on the combinational complexity of sentences 

of logic was obtained by Ehrenfeucht [Ehr72; or iginal ly  wri t ten i n  19671 

who showed tha t  the s ize  of c i r c u i t s  which accept t rue  sentences of 

length n about integer arithmetic with a l l  quant i f iers  bounded by 

2 
constants described using exponential notation (e.g., 3 ) must 

n 
exceed c for some c > 1 and a l l  suf f ic ien t ly  large n. More generally, 

Meyer [Mey74] has observed tha t  i f  MPSPACE 5 A for  some language 
pa 

A, then the combinational complexity of A must grow exponentially. This 

observation implies Ehrenfeucht's or iginal  r e s u l t  (indeed SPACE(g(€n,O)) 

is  to  Ehrenfeucht ' s formulation of bounded arithmetic),  and also 
pa 

implies tha t  the combinational complexity of most of the decision 

problems studied i n  th i s  thesis  grows exponentially. 
- - - - - --- - - -- 

4 However, 

i n  order to  obtain s ignif icant  lower bounds for as small sentences as 

possible, it seems be t te r  t o  carry out a more d i r ec t  arithmetization 

based on this e f f i c i en t  transformation r e s u l t  instead of appealing 

expl ic i t ly  to  the resul t .  

We now define more precisely the notion of combinational complexity. 

9 'We take 10-l~ cm. to  be the radius of a proton, and 11 X 10 l i g h t  years 

FJ cm. to  be the radius of the universe. 



A c i r c u i t  i s  best  defined as a  s t ra igh t- l ine  algorithm. S t ra igh t- l ine  

algorithms a re  defined i n  [Sav72] for  general domains and functional 

bases. We repeat the def in i t ion ,  r e s t r i c t i n g  i t  t o  the Boolean case. 

Definit ion 6.2. Let 46 = { g I g:{0,1)2 + (0 , l )  ) be the  s e t  of 

Boolean functions of two arguments. 

. Let n c C$,, m E @, and t E N. An c-s t ra igh t - l ine  algorithm 

or  c -c i rcu i t  of s i z e  t with m inputs is a  sequence 

c = Bm, pel, Pe2, . . . p ~ t - l  

such tha t  for  m 5 k S nttt-1, pk = ( i ,  j ,g) where i and j  a re  integers  

with O S i , j < k  and g E Q .  

With each s t ep  Pk for  k  2 m we ident i fy  an associated function 

k ( ~ l m  + 0 ,  by induction. F i r s t ,  i f  o 5 A c m-1, define sA 

t o  be the  ath projection,  

SA(boblb2-*bm - = bA for  a l l  boblb2***bm-I E ( 0 , 1 ) ~ .  

I f  m s k s m-f-t-1 and Pk = ( i , j , g )  then define 

Sk(x) = g(Si(x),5. (x)) for  x E { 0 , 1 ) ~ .  
J 

I f  f  i s  a  function, f:{O,l)m + {O,l]P fo r  pos i t ive  integers  m and 

p, then the c i r c u i t  C computes f  i f f  C has m inputs and there  a r e  

integers  0  5 il,i2,-*,ip 5 mCt-1 such tha t  

f (x)  = 5 .  (x)S. (x)*-*Si (x) for  a l l  X E  { 0 , 1 ) ~ .  
=1 l 2  P 

The combinational complexity - of 2 function f : { 0 , 1 ) ~  + (0 , l )  

i s  the smallest t such tha t  there  i s  a  Q16-circuit of s i z e  t which 



computes f. 
t 

Let S be a finite alphabet. A n  encoding for S is a one-to-one 

£Action h:S + {0,1]' where s = r1og(card(s))1. 
t t 

* 
Let $:~*+{0,1] be the extensionof h. 

Let A E sn for some n E @. 
Define f~,h: 

(o,llsn+{O,ll by 

fA,h(~) = 1 iff w E { k x )  ) x E A ). 

The combinational complexity of the finite set A is the minimum 

over all encodings h of the combinational complexity of f A,hO 
+ If L G S , then the combinational complexity of L is a function 

C,(L) :@ + N such that for each n, 

C_(L) (n) = the combinational complexity of L fI sn. 

(Note: The subscript denotes unbounded fan-out [cf. Sav741.) 

Remark 6.3. The notion of combinational complexity is in a sense 

incomparable with time or space complexity on Turing machines. 

For example, define LA (0,1)+ by x E LA iff 1x1 E A 

where A is some non-recursive set of integers. Then L is non-recursive A 

t 
Of course there is no loss of generality in not allowing basic functions 

of one argument. For example, an inversion gate -b can be computed as 

gNA(b,b) where gNA(v1,v2) = "(v~ A ~ 2 )  

tt Logarithms with no specified base are taken to the base 2. 

By considering only block encodings, the exposition is somewhat 

simplified and there is essentially no loss of generality. 



and its time and space complexity are not even defined. But C,(L)(n) = 1 

for all n because, for each fixed n, L n [O,lln is either 0 or (0,1]". 

Thus, non-recursive and arbitrarily complex recursive sets can have 

a trivially small combinational complexity. 

Another contrast is that time or space complexity of recursive 

languages can be as large as any recursive function, whereas any 

language L has combinational complexity C,(L)(n) 5 cn for some c > 1 

[cf. Lup501. Moreover, there are elementary-recursive languages, 

in fact languages in EXPSPACE, whose combinational complexity is maximum 

for all values of n (over any given alphabet S), so that relatively 

"easy" recursive languages can have maximally large combinational 

complexity. 

However, there is a basic relation in one direction between these 

two notions of computational complexity. Combinational complexity 

in effect always provides a lower bound on time complexity. 

M. Fischer and N. Pippenger [FP74] have shown that 

L E DTIME(T(n)) implies C,(L)(n) O(T(n).log T(n) ). 

So in particular, an exponential lower bound on C,(L)(n) implies an 

exponential lower bound on time complexity. 



6.1 Second Order Theory of Successor. 

Since our numerical results depend on the language 2 used to 

write sentences, we give a BNF grammar for C. 



Let be the alphabet of C, tha t  is,  the s e t  of terminal symbols 

above. Note tha t  card(z) = 6 3 .  

* 
I f  @ E g, then I @ )  denotes the length of H. viewed as a word i n  . 
I n  the absence of parentheses, the precedence order for logical  

connectives i s  --, A, V, q, @ (decreasing). Binding of quant if iers  to  

formulas takes precedence over a l l  logical  connectives. To improve 

readabi l i ty ,  redundant parentheses a re  sometimes used i n  the t ex t  i n  

writ ing formulas; these a re  underlined, I and 1, and are  not counted 

i n  the length of formulas. 

Cp E i s  a sentence i f  cp contains no f ree  variables.  Let 

EWSlS be the s e t  of sentences i n  C which are  t rue  under the standard 

interpretat ion of the integers,with s e t  variables ranging over f i n i t e  

subsets of N. (Leading zeroes a re  ignored i n  interpret ing 

constants.) The symbol V denotes a blank "padding" character which 

is ignored i n  determining the t ru th  value of a sentence. Since 

sentences can be padded with blanks, C,(EWSlS)(n) serves t o  measure 

the combinational complexity of deciding sentences of length n. 



Theorem 6.4. Let k, m, and n be posi t ive integers such that :  

k 
( 1 )  2m > zk+l.log(2 + m), and 

(2).  k - 24 2 3 log m ,  and 

(3) .  n 2 466 + L(log102) mJ + 1.1 LloglOmJ . 
Then c,(EWSlS) (n) > 2 k - 4 . 

Theorem 6.4 is  proved below. For a fixed numerical value of n, a 

lower bound on C,(EWSlS) (n) i s  obtained by choosing k and m to  sa t i s fy  

the above constraints. For example, we can now obtain the precise 

formulation of 

Theorem 6.1. c,(EWS~S) (616) > 

Proof. Choose k = 414, m = 424, n = 616, and note tha t  2 410 > lo123, 0 

The proof of Theorem 6.4 i s  similar t o  the proofs of Chapter 4 

which u t i l i z e  e f f i c i en t  transformations between s e t s  t o  obtain lower 

complexity bounds. The basic argument i s  as follows. We f i r s t  prove 

Lemma 6.5 which s t a t e s  that  i f  k, m, and n sa t i s fy  ce r t a in  constraints  

then there i s  a function f o : { ~ , l ) m  -+ (0, l )  of "large" ( > zko3 ) 

combinational complexity such tha t  questions about the value of f 
0 

on words of length m can be transformed t o  questions about membership 

of sentences of length n i n  EWSlS; moreover, the combinational 

complexity of the transformation 7 i s  re la t ive ly  "small". It then 

follows that  the combinational complexity of EWSlS must be almost as  

large as that  of fo. For assume that  the combinational complexity of 



EWSlS is small. Then by placing a c i r c u i t  which computes 7 i n  se r i e s  

with a c i r c u i t  which accepts EWSlS, we obtain a "small" c i r c u i t  which 

computes f contrary to  assumption. 
0 

One preliminary i s  required before proving Lemma 6.5. We sha l l  

use a special  case of an "abbreviation trick" due t o  M. Fischer and 

A. Meyer [FM74]. I f  @ i s  a logical  formula involving several occurrences 

of a subformula, the t r i c k  allows one to  wr i te  @ equivalently as a 

formula involving only one occurrence of the subformula. 

I n  the proof of Lemma 6.5, we sha l l  always apply the t r i c k  t o  

formulas I of the form 

where Q1, - . 
Qm 

are  quant if iers ,  u l y o o * , u  denote var iables  which occur 
n 

f r ee  i n  I, and z l , o o e  'm denote variables. A denotes a formula (with 

f r ee  variables ul, * -  ,un, zl, - , zm) of the form 

where G(vl,*..,v ) denotes a formula of p f r ee  variables V ~ , ~ - . , V ~ ,  and 
P 

t h  
for  1 i i S Q the i occurrence, G(vil,*- ,vip) , of G i n  A denotes 

a subst i tut ion instance of G(vl, , v  ) with vl replaced by v 
P i19 v2 

r e p l a c e d b y v  and soon .  i2 '  Each vi j, 1 S i A, 1 s j p, denotes 

e i ther  a variable or a constant. In  the cases we consider, each v 
i j 

which i s  a variable i s  e i ther  f ree  i n  Q o r  i s  bound by one of the 

quant if iers  Q1,Q2, . 2 Qm. 

Under these conditions, I can be wri t ten equivalently as a 



formula @' involving one occurrence of G as follows. F i r s t  l e t  A' 

be the formula obtained from A by replacing the i
th occurrence, 

G(vi1,*** 'vip ), of G by the atomic formula y = 1 for i '=  1,2,3,*-*,A, 
i 

Where Y1,YZ,*",YR denote new variables. Now we use "drrmmy variables" 

y,dl,-*,dp, and wri te  a separate formula to  ensure tha t  i f  y = y 
i 

and d = v. .  for  some i and a l l  j = 1,2,3,***,p,  then y = 1 i f f  
j 1~ 

G(dl,-*,d ) is true. That is: 
P 

In  the cases we consider, i uses suf f ic ien t ly  few variables tha t  

the additional variables yl,.*.,yR,y,dl,***,d c u l  each be wri t ten as 
P 

a s ingle  l e t t e r .  Also, each of the v . .  i s  e i ther  a s ingle  l e t t e r , o r  a 
1 J  

single  d ig i t .  

Under these conditions, the length of Q' is  related to  the lengths 

of I and G by: 

Length re la t ion  for  the abbreviation trick: 

In  par t icular ,  the symbols Qlzl-*Qmzm plus those synbols i n  A' 

cantr ibute  ( I @ ]  + 3R - RIG)) to  I @ ' ] .  



L m a  6.5. Let k, m, and n be pos i t ive  in tegers  which s a t i s f y  (1) and 

(3) of Theorem 6.4. Then there  is  a function f o : ( ~ , l ) m  + (0 , l )  

such tha t :  

k-3 . 
(i). The combinational complexity of f, i s  grea te r  than 2 

and 
V 

( i i ) .  For each x E (O,l)m there  i s  a sentence Cpx E C such t h a t  

1 1  = n, and 9 E EWSlS i f f  fo(x)  = 1. 
X 

Moreover, i f  h:C -t (0,1}6 is  any encoding, and i f  7 i s  the  function 

which maps x t o  fo r  a l l  x E (0 ,  l)m, then the  combinational 

20 3 
complexity of 7 i s  l e s s  than 2 m . 
Proof. Let k, m, and n be fixed in tegers  which s a t i s f y  cons t ra in t s  

(1) and (3) of Theorem 6.4. 

We f i r s t  describe the  formula Easyt(F) (of one f r e e  s e t  var iable)  

which is  used within Cpx. Easyt(F) i s  constructed i n  Lemma 6.5.1 which 

comprises the  major technical  portion of t h e p r o o f  of Lemma 6.5. Some 

definit iorls  a r e  required t o  s t a t e  t h i s  sublemma. 

Let NAND be the  singleton s e t  consis t ing of the  Boolean function 

& 1 ~  of two argments  defined by gNA(v1,v2) = N(vl A v2) • 

m 
I f  x E (0 , l )  , %(x) is  the  nonnegative integer  z such t h a t  x i s  a 

reverse binary representat ion (possibly with following zeroes) of z. 

For example, int(111000) = 7 and int(101100) = 13 ( i f  m = 6). 

Let F CN. f c t (F )  i s  the  function mapping ( 0 , 1 ) ~  t o  (0,1} 

defined by fc t (F)(x)  = 1 i f f  m(int(x) + 1)  E F. 

fc t (F)  i s  the means by which functions from ( 0 ~ 1 ) ~  t o  (0 , l )  a r e  

represented as  s e t s  of in tegers  i n  our ar i thmet izat ion of c i r c u i t s .  



Lemma 6.5.1. Let k and m sa t i s fy  (1) of Theorem 6.4. There is  a 

formula Easy' (F) i n  C such that :  

(i). For a l l  f i n i t e  F c N, Easyt(F) i s  t rue  i f f  there is  a 

k 
NAND-circuit of s i ze  2 with m inputs which computes fct(F) ; 

and 
( i i )  . ( ~ a s y  ' (F) I = 380 + 10 L loglOm] . 

Proof. We f i r s t  wri te  a formula Easy(F) involving several occurrences 

of a subformula, and then obtain Easyt(F) from Easy(F) v ia  the 

abbreviation t r i ck  described above. 

Some notation is helpful. I f  S c N, l e t  seq(S) denote the 

( inf in i te )  binary sequence b b b b * * - ,  where b. = 1 i f  i E S 0 1 2 3  .I 

and bi = 0 i f  i S .  Let m-word(S,j) denote the f i n i t e  binary word 

Let dec(m) denote the decimal representation of m. Let dec(k) 

be a decimal representation of k with leading zeroes i f  necessary to  

make (dec (k) 1 = Idec(m)) . (Constraint (1) implies k < m.) 

Easy(F) is a conjunction of f ive terms. The f i r s t  four terms 

V1, f2, q3, $ place constraints on the variables B, P,  d, and q. 4 

The l a s t  term Q 5  expresses the fac t  tha t  fct(F) i s  computable by a 

k 
NAND-circuit of s i z e  2 (which is the same as being computable by 

k 
a NAND-circuit of s i ze  exactly 2 ). 

(gl).  Qa(Jr l(~,d,a))  i s  true i f f  d E B and '5 = B where 
0 

B O = (  z I r n S z S d  and z r O  (modm)).  



($2). Assuming B = B and d E B y  then v a ( t 2 ( ~ , ~ , d , a ) )  i s  t r u e  i f f  
0 

f o r  a l l  i n t e g e r s  i wi th  0 m i  d, m-word(P,mi) i s  a reverse  binary 

represen ta t ion  of t h e  in teger  z where z (i-l)(mod 2m) and 0 z < 2m. 

That is, 

and where, i f  seq(P) = p p p - * * ,  then t h i s  p a t t e r n  continues a t  l e a s t  0 1 2  

t o  b i t  PdSm-l of seq(P). The b i t s  of seq(P) beyond t h e  ( d + u ~ - l ) ~ ~  a r e  

n o t  constrained by $ (The formula $ i s  s i m i l a r  t o  one used by 2' 2 

Robertson [Rob73]. ) 

($3). Assuming t h a t  B = B d E B y  and t h a t  seq (P) i s  a s  above, then 
0 ' 

Va(tg(P,d,a)) is  t r u e  i f f  d 0 (mod d m ) .  

t3 s t a t e s  simply t h a t  m-word(P,d) = lm. 



Recal l  d E B and 0 4 B b y -( $ I ) ,  and thus d > 0. Now t h e  t r u t h  of  

Va($.) f o r  i = 1,2 ,3  together imply t h a t  seq(P) cyc les  a t  l e a s t  once 
1 

through t h e  2m binary  words of  length  m. (See Figure 6.1. Upward 

arrows po in t  t o  those pos i t ions  of seq(P) which belong t o  B.) 

m m m m m m 
--\I- \- 

' 1 1 1 ~ ~ ~ 1 1 0 0 0 ~ ~ ~ 0 0 1 0 0 * ~ ~ 0 0 0 1 0 ~ ~ ~ 0 0  0 . .  011*-*11111-**11 don ' t  c a r e  ... 
t t t t t 

d 

Figure 6.1. P, B, and d. 

($4). I f  B and P a r e  a s  i n  Figure 6.1, then v a ( $ 4 ( ~ , ~ , q ,  a ) )  is t r u e  

k ' i f f  q E B  and q s m 2  . 

To suncnarize ($1) through ($4), i f  

Va($l(B.d,a) A t2(B,P,d,a) A q3(P,d,a) A P4(B,PYq,a)) i s  t r u e  then: 

\ (1). B = ( z 1 m g  z d and z .  0 (mod m) ), 

1 (2). seq(P) i s  a s  i n  Figure 6.1, 

(*I \ (3). d E  0 (mod 1 n 2 ~ )  and d >  0, 

k 
/ ( 4 ) .  ~ E B  and q s m 2  . 



( $ 5 ) .  W e  f i r s t  desc r ibe  t h e  formula Match which i s  used a s  a 

sub formula wi th in  t5. 

Match(Xl,wl,X2 ,w2) i s  

The following lemma descr ibes  c e r t a i n  p r o p e r t i e s  of  Match. 

Lama 6.5.2. Assume B, P, d, and q a r e  a s  i n  (*). Let S,S1,S2 c N. 

( i ) .  Let z1,z2 E B U (0). Match(Sl,zl,S2,z2) i s  t r u e  i f f  

=1< 22 and m-word(S z ) = m-word(S2,z2). 1' 1 

( i i ) .  Let a 'C B. Match(P,i,S,a) is  t r u e  i f f  i < a and 

e i t h e r  ( i E B and m-word(P,i) = m-word(S,a) ) 

i m- i  
o r  ( 0 S i < m and m-word(S, a)  = 0 1 > 

( i i i ) .  Let a E B wi th  a s q. Then t h e r e  is  a t  most one i E N  
-- 

such t h a t  Match(P,i,S,a) i s  t rue .  

Proof. ( i )  and ( i i )  a r e  l e f t  a s  exercises.  See Figure  6.2 which shows 

how K can be chosen i n  two p a r t i c u l a r  cases. I n  Figure 6.2, m = 6 and 

words a r e  divided i n t o  blocks of length  s i x  f o r  r e a d a b i l i t y .  

To v e r i f y  ( i i i ) ,  l e t  a E B wi th  a S q be fixed. Const ra in t  (1) 

o f  Theorem 6.4 implies k 2 m -  1. Now a r q r dk 5 m2 m- 1 
implies 

t h a t  f o r  a l l  il,i2 E B with  i ,i < a: 
1 . 2  



Figure 6.2. I l l u s t r a t i n g  the  proof of Lemma 6.5.2 (5) and ( i i ) .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(*) m-word(P,il) = m-word(P,i ) i f f  il = i2 ; and 2 

(**) m-word(P,il) = b b b ***brnm20 f o r  some bo,bl,-o 
0 1 2  ,b,-, E v - ) 9 1 1  

Now suppose t h a t  Match(P,il,S,a) and Match(P,i2,S,a) a r e  both t rue .  

P a r t  ( i i )  of t h e  lemma implies il,i2 < a and one of  four cases:  

F i r s t ,  i f  ilyi2 E B then pa r t  ( i )  of the  lemma together wi th  

(*) implies il= i2 ; 

Second, i f  il,i2 < m then p a r t ( i i )  of  t he  l a m a  implies 

i m- i  i1 = i2 = i where m-word(S,a) = 0 1 9 

The other  two cases,  namely where one of ilyit belongs t o  B and 

t h e  other  i s  l e s s  than m, cannot occur because of (WA) together wi th  

p a r t s  ( i )  and ( i i ) .  For example, i f  il E B and i2 < m, then 



m-word(P,il) = m-word(S,a) because Match(P,il,S,a) is  t r u e  

i2 m-i2 
= O  1 because Match(P, i2,S, a)  is  true.  

However t h i s  now con t rad ic t s  (**) which s t a t e s  t h a t  m-word(P,il) 

must end wi th  0. 0 

We now descr ibe  how s e t s  of in tegers  a r e  viewed a s  represent ing 

c i r c u i t s  and "computations" of c i r cu i t s .  

Let B, P, d, q be a s  i n  ( J f ) ,  and l e t  I,J c N. Then q - c i r c u i t ( 1 , ~ )  

i s  defined and q-c i rcu i t (1 , J )  i s  the  NAND-circuit C of s i z e  t =, q/m 

with  m inputs  where C = pm, ... i f f  'iI+l* pmt2, pm+t-1 

f o r  each a E B wi th  m S a S q t he r e  e x i s t  i , j  such t h a t  

( i ) .  Match(P,i,I,a) and Match(P, j, J,a) a r e  both t rue ,  and 

( i i )  . 
$a(a) 

= ( a ( i ) , a ( j ) , h ) ,  where cr is  given by 

It i s  important t o  no te  by Lemma 6.5.2(iii) t h a t  q -c i rcu i t (1 , J )  

i s  uniquely defined when i t  i s  defined. 

Figure 6.3 i l l u s t r a t e s  how a pa r t i cu l a r  p a i r  I, J c bJ codes a 

c i r c u i t  i n  t he  case  q = 20, m = 5, (so t = 4). I n  Figure 6.3: seq(P) 

is  shown f o r  reference;  X is a "don't care" symbol; words a r e  divided 

i n t o  blocks of length  f i v e  f o r  readab i l i ty .  



seq(P) = 11111 00000 10000 01000 11000 0.0  

seq(1) = XXXXX 11111 00011 00111 00000 0 . 0  

seq(J) = XXXXX 01111 00001 10000 01000 

seq(D) = 11101 OXXXX ~xXXX OXXXX lXXXX 

Figure 6.3. I and J "code" a circuit. 

For arbitrary IyJ C N, if C = q-circuit(1,J) = Bm, $dl, . . . $&t-1 

is a circuit as on the preceding page, if x E (~,l]*, and D c Ny then 

D represents - the computation of C on x iff for all a with 

a E ( z l  O S Z < ~ ) U (  z ~ ~ l m s z ~ q ]  

a E D iff (x) = 1 



where the (Ii) are the associated functions of C (cf. Definition 6.2). 

Note in particular that if D represents the computation of C 

on' x, then m-word(D,O) = x. 

Figure 6.3 also shows a set D which represents the computation of 

q-circuit (I, J) on input 11101. 

We note one fact and then write Jr Fact 6.5.3 is immediate from 5' 

the definition of int(x) and fct(F), and the fact that P is constrained 

as in Figure 6.1. 

Fact 6.5.3. Let x E (0,1)~, F c N, and e = m(int(x) +I). Then 

m-word(P,e) = x, and e E F iff fct(F)(x) = 1. 

Now assuming that B, P, d, and q are as in (*) above, 

k $ (F,B,P,q) is true iff there is a NAND-circuit of size q/m ( 2 ) 5 

which computes fct(F). 

t5 is 31 3J Te 3B Va Ii 3j ti, where is 



Informally, q expresses the following. 
5 

There ex i s t s  a c i r c u i t ,  q -c i rcu i t ( I , J ) ,  of s i ze  t = q/m such tha t :  

(5.1) For a l l  inputs x € { 0 , 1 ] ~  (where e = m(int(x) 4-1) ), there 

ex is t s  a computation D such that :  

(5.2) m-word(D,O) = m-word(P,e) = x by Lemma 6.5.2(i) 

and Fact6.5.3; and 

(5.3) for a l l  gates P 
Q'( a) 

with a E B there ex i s t  i and j 

such tha t  the output 5 (x) of $a(a) 
Q'( a) 

is  computed 

correct ly  as "(5,(,) (x) A 5Ly(j) (XI ; and 

(5.4) gate P 
a(q> 

produces output 1 i f f  e E F ( i f f  fc t(F)(x)  = 1, 

cf.  Fact 6.5.3). 

Finally l e t  Easy(F) be 

3~ BP, 3d 3q 31 33 Ve ID Va Ii 3 j  ( ql  A q 2  A q3 A t4 A $; ) 

so tha t  by standard manipulation of quant if iers  Easy(F) i s  equivalent 

We l e t  the reader supply any additional argument required t o  
- - 

convince himself tha t  Easy(F) is t rue  i f f  there i s  a NAND-circuit of 

k 
s i ze  2 which computes fct(F).  ( In the " if"  direct ion,  always choose 

k p = dm, q = m2 , and choose 1,J such tha t  (gate $ 

q-circui t (1,J)  computes fct(F)  and moreover tha t  

BiZj(Match(P,i,I,a) A Match(P, j , J ,a ) )  i s  t rue also for  those a E B 

with a > q.) 

We now count the length of Easy@). 

Let p = LloglOm]+ 1. Yote that  Idec(k)l = Idec(m)l = p. 



First, (~atchl = 72 + 3p. 
1 

The lengths of tl, t2, t3, t4, ( 5  are respectively 40 + 3p, 

61 + 2p, 14 + p, 18 + p, and 41 + 3  l~atchl. The length of Easy is the 
sum of these plus 28 additional symbols, so 

(Easy) = 202 + 7p + 3 (~atchl . 
Using the Fischer-Meyer abbreviation trick with R = 3  and p = 4  to 

reduce the three occurrences of Match to one, Easy can be written 

equivalently as Easy' where 

[Easyll = (~asy) - 2IMatchI + 96 
= 380 + 10 1 1ogl0mJ . 

Note that the additional variables dl,d2,d3,d4,y1,y2,y3,y used in 

the abbreviation trick can be named E,c,L, f,g,h, R,o respectively. 

This completes the proof of Lemma 6.5.1. 

We now return to the proof of Lemma 6.5 and the construction 

of vx. Let vl' be the following sentence, where ~ ( x )  and less than(^,^) 
X 

are. defined below. 

The formula Lessthan(G,F) is 

Lessthan(G,F) is easily seen to define a linear order on finite 

subsets of N. 



w(x) is  a decimal representation of m(int(x) + I ) ;  leading 

zeroes a re  appended so tha t  

(Note tha t  x E (0,l)" implies in t (x)  5 2m- 1. It follows tha t  the 

decimal representation of m( in t (x )+ l )  need never be longer than 

Lloglo(dm) J + 1 5 L(log102) mJ + LloglOmJ + 2.) 

2k+l 
It i s  easy t o  see tha t  there a re  a t  most (2k + m) NAND-circuits 

k 
of s i z e  2 with m inputs. (That is ,  each of the t o t a l  2k+1 possible 

k ,  
inputs t o  gates i s  f i l l e d  with a number between 0 and 2 + m  - 1.) 

2" 
However there a re  2 functions from (0, to  (0, l} . Constraint (1) 

k 
2k+l 

of Theorem 6.4 ensures 22m > (2 + m) and therefore tha t  there i s  

a f i n i t e  F c hJ such tha t  Easy' (F) i s  false.  

Since Lessthan defines a l inear  order, there i s  exactly one f i n i t e  

Fo c N such tha t  VG( -Easy1 (Fo) A (Less than(G,Fo) 3 Easy' (G)) ) i s  true. 

We t.ike fo  = fct(Fo). 

Since any Boolean function of two arguments can be synthesized 

using a t  most f ive  l'NAND-gatesll [cf. Har651, and since Easy1(F0) i s  

fa l se ,  i t  follows tha t  the combinational complexity of fo = fct(Fo) 

inust exceed ( 1 / 5 ) 0 2 ~  > 2k-3. 

Also by the defini t ion of fct(F) ,  w(x) E Fo i f f  fo(x) = 1, 

1 9  
so qx i s  t rue i f f  fo(x) = 1. 



The abbreviation t r i c k  with A = 2 and p = 1 applied t o  cpi and Easy1 

gives cp' equivalent t o  cpl1 and 
X X 

c p  = c p  - I ~ a s ~ ' l  + 41 

= 466 + L(logl02) mJ + 11 LloglomJ . 
The additional variables dl,y1,y2,y can be named M,k,m,n respectively. 

By constraint  (3) of Theorem 6.4, j 2 0 can be chosen so tha t  

cpx=<v '  and lcpXl = n .  

Cp and f s a t i s fy  the requirements of Lemma 6.5. 
X 0 

It remains only t o  bound the combinational complexity of the trans- 

A A 
formation 7 mapping x to  h(cpx). For fixed k, m, and n, h(w(x)) i s  the . 

only part  of $(qx) which depends on x. (Recall tha t  the length of 

o(x) i s  independent of x. ) Thus a l l  b i t s  of nh(vx) excluding 7h(~(x))  

can be computed using exactly two gates, namely the two gates with 

20 3 
constant output. Now 2 m is  a gross upper bound on the combinational 

h 
complexity of the transformation mapping x to  h ( ~ ( x ) ) ,  using 

straightforward c l a s s i ca l  algorithms for binary addition, binary 

multiplication, and binary-to-decimal conversion [cf. Knu691. 

This completes the proof of Lermna 6.5. 0 

Proof of Theorem 6.4. Let k, m, and n s a t i s f y  the constraints  ( I ) ,  (2), 

and (3) of the theorem. Assume the conclusion i s  f a l se ,  t ha t  i s  

k-4 
C,(EwSlS)(n) 2 . 

6 Therefore there i s  an encoding h:C -+ (0 , l )  and a n16-circuit C of 

s i r e  2k-4 with 6n inputs which computes a function f where i n  



par t icu lar  for a l l  sentences 9, E 5 fl En, 

f&(q)) = 1 i f f  cp E E W S ~ S .  

Let f and 7 be as i n  L m a  6.5 for  t h i s  k, m, n, and encoding h. 
0 

20 3 
Let T be an n16-circuit of s i z e  < 2 m which computes T. 

Now l e t  C be the c i r c u i t  shown i n  Figure 6.4. 
t 

0 

Figure 6.4. The c i r c u i t  C 
0 

Since f(nh(vx)) = 1 i f f  Ox E EWSlS i f f  f0(x) = lr C computes f 
0 0' 

But "size of C0" = "size of TI1 + "size of C" 

20 3 < 2 m + 2k-4 5 2k-3r 

because constraint (2 )  implies 220m3 S 2k-4. This contradicts the 

k-3 fac t  tha t  the combinational complexity of f i s  greater  than 2 . 0 
k-4 Therefore wemust have C,(EWSlS)(n) > 2 . 

- 

is  c lear  how to  define C from C and T within the formalism 0 

of s t ra ight- l ine  algorithms. 



6.2 First Order Integer Arithmetic. 

. In this section we obtain even stronger lower bounds on the 

combinational complexity of a logical decision problem. Consider 

the first order theory of the nonnegative integers with primitives 

addition, multiplication, and exponentiation to the base 2. Sentences 

are again written in a language C'. allowing decimal constants and the 

relations 5,  <, =, #, >, 2. Terms are any arithmetic expressions 

involving constants, variables, addition; multiplication; and base 2 

exponentiation. For example, x+300.y and 2.2 (i+l) are terms, 

and x*u+ 6 < 2' is an atomic formula. 

2' is defined by the following BNF grammar, where <formula>, 

<order relation> , and <constant> are defined as in the grammar 

given for 2 in 96.1. 

t <term) denotes 2 and the latter natation is used 

in the text in writing formulas. The precedence order for arithmetic 



opera t ions  i s  t ,  -, 4- (decreasing). A s  before,  redundant parentheses,  

I and 1, a r e  sometimes used. Let C' be t h e  alphabet  of C' ; n o t e  t h a t  

c&d(Cf) = 55. 

Let be t h e  set o f  sentences i n  I' which a r e  t r u e  under t h e  

standard i n t e r p r e t a t i o n  f o r  +, , t , etc. wi th  v a r i a b l e s  ranging over M. 

Theorem 6.6. Let k, my and n be p o s i t i v e  i n t e g e r s  such t h a t :  

(1) 
2m-2 /m > 2k(2k-m+l ) ,  and 

20 3 (2). 2 k - 7 ~ k  2 2 m , and 

(3). n 2 242 + L(log102) mJ + 6 LloglOm] . 

For example, wi th  k = 426, m = 447, and n = 388: 

Corol lary  6.6.1. C,(FIA) (388) > 2410 > 

I f  we seek a more modest bound, say a t r i l l i o n  ga tes ,  then 

choosing k = 53, m = 69, and n = 268 gives:  

12 Corollary 6.6.2. C,(FIA) (268) > 240 > 10 . 
Note: I n  Coro l l a r i e s  6.6.1 and 6.6.2, t h e  lengths  of sentences i n  

" bits"  a r e  respec t ive ly  6.388 = 2328 and 6.268 = 1608. 

Proof of Theorem 6.6. There a r e  a number of  s i m i l a r i t i e s  between t h i s  

proof and t h a t  of Theorem 6.4 and L e m  6.5. We sketch  only t h e  e s s e n t i a l  

d e t a i l s .  

F ix  k, m, and n t o  s a t i s f y  the  c o n s t r a i n t s  ( I ) ,  (2) ,  and (3). 



Let n ( z )  denote t h e  number of prime p o s i t i v e  i n t e g e r s  t h a t  do 

n o t  exceed z. 

Fact  6.6.1 [cf.  NZ661. For z 2 2, 

For d, i E N, E ( d , i )  i s  t r u e  i f f  t h e  c o e f f i c i e n t  of 2' i n  t h e  

b inary  expansion of  d is 1. 

+ 
For u , i  E bJ and a E bJ , =(u,a , i )  i s  t r u e  i f f  u % i (mod a )  

and i < a. 

. W e  now desc r ibe  how i n t e g e r s  a r e  viewed as represent ing functions,  

c i r c u i t s ,  and computations of c i r c u i t s .  A s  i n  96.1, l e t  *(x) be the  

in teger  i such t h a t  x i s  a reverse  binary represen ta t ion  of  i. 

I f  z E N, fct(z) i s  t h e  funct ion mapping { 0 , 1 } ~  t o  ( 0 , l )  

defined by f c t ( z ) ( x )  = 1 i f f  i n t ( x )  d iv ides  z. 

Of course the re  a r e  functions from {0, l lm t o  '{o, I} which do no t  equal 

f c t ( z )  f o r  a l l  z. However t h e  following i s  t rue .  

Lemma 6.6.2. Let F = ( f 1 f : ( 0 , 1 } ~  -t {O,l) and (3z) [ f  = f c t ( z ) ]  ).  

2m-2 
Then card(F) > 2 /m . 

Proof. Let X = { x E {O,llm I i n t ( x )  i s  prime 1. 

Given any choices of bx E ( 0 , l )  f o r  x E X, t h e r e  i s  a z 

such t h a t  f c t ( z )  (x)  = b f o r  a l l  x E X. Namely z = -rr i n t ( x ) .  
X b =1 

card (X) 
X 

Therefore card(F) 2 2 . . 
m- 2 But card(X) = ~ r ( 2 ~ -  1 )  = 7 ~ ( 2 ~ )  > 2 /m ( s i ~ c e  (1) implies m 2 2). 

17 



L e t  u,v E N and t E NC. Then t-circuit(u,v) i s  the NAND-circuit 

of s i ze  t - m  with m inputs, B,, 'dlr Pd2* . . . 9 pt-l' where for  each 

a with m S a S t-1, 

Pa = ( i ,  j ,%) where Res (u, a, i )  and Res (v, a, j )  . 
Not a l l  c i r c u i t s  can be represented exactly i n  t h i s  way because 

the residues of u and v (mod a) cannot be chosen independently for 

a = rn,mf-l,mt-2,~-~. However: 

Lemma 6.6.3. Let C be a NAND-circuit of s i ze  t with m inputs, and 

assume t S ( t  -1 )  - ( - 1 )  for some t t .  

Then there are  u,v E N such that  t ' -c ircui t (u,v)  computes the 

same function as C. 

Proof. Consider A = { a I m s  a s  t ' - 1  and a is  prime } .  

For each a E A, l e t  i and j  with 0 5 ia, ja C a be arbitrary. 
a a 

By the Chinese Remainder Theorem [cf. NZ661 there are  u,v E N such 

tha t  Res (u, a, i ) and Res (v, a, j  a) for a l l  a E A. , 

a 

-- card(A) = n ( t l  - 1) - IT(m - 1) 2 t. 

Therefore, ia and ja for a E A can be chosen so tha t  the steps 

p for a E A of t l -c i rcui t (u ,v)  mimic the c i r c u i t  C. The steps p 
a k 

with k B A and k 2 m are irrelevant.  -0 

I f  C i s  a c i r c u i t  of s i ze  t- m  with m inputs, i f  x E { 0 , 1 ] ~ ,  

and d E N, then d represents the computation of C on x i f f  

Bit(d, i )  = Si(x) for  0 s i S t-1 

where the {St} are the associated functions of C (cf. Definition 6.2). 



In part icular ,  note that  the binary representation of d must begin 

with the reverse of x; thus d = in t (x)  + b 0 2 ~  for  some b E N. 

B i t  and Res can be expressed i n  FIA as: 

(To see that  Bi t(d, i )  is correct,  note tha t  i t s  negation 

i 3r 3b ( r < 2i A d = 2-b*2 + r ) i s  t rue  i f f  the coeff ic ient  

i of 2 i n  the binary expansion of d i s  0.) 

Easy(z) is  xu Zv Be Ed Va 3i 3 j  ( 

(El) 1 < 2dec(m) 1 ' 
(E2) I B b I  d = e + b.2 dec (m) 

1 

033) A ( dec(m) s a A a s 2dec(k) 1 ' 
I Res (u, a, i )  A Res (n, a, j )  

A (Bit(d,a) @ -(Bit(d,i)  A Bit(d, j ) ) )  1 ) 

A ( Bit(d,2 dec(k)) 3bL z = b*e 1 ) 1 ). 

Informally, Easy(z) expresses the following. 

k 
There ex is t s  a c i r cu i t ,  ( 2  + l ) -c i rcu i t (u ,v) ,  such that :  

(El) for a l l  inputs x E [ 0 , 1 ] ~  (where e = in t (x)  ) there ex i s t s  a 

computation d such that:  

(E2) the binary representation of d begins with e = in t (x)  ; and 

k 
(E3) for  a l l  gates p m a s 2 , the output ha(x) of pa i s  a' 

computed correct ly  as -( Si(x) A 5 .  (x) ) ; and 
3 



(E4) t he  output of fl 5 (x), is  1 i f f  e  divides z  
2k' 2k 

( i f f  f c t ( z ) (x )  - 1 ). 

The next  lemma describes p roper t i es  of Easy(z). 

Lemma 6.6.4. Let z  E N. 

( i )  . Easy(z) i s  t r ue  i f f  the re  e x i s t  u,v E such t h a t  

k  
(2 + l ) - c i r cu i t (u ,v )  computes f c t ( z ) .  

k  
( i i ) .  I f  Easy(z) is  t rue ,  the re  i s  a NAND-circuit of s i z e  2 - m + l  

which computes f c  t (2). 

k-3 
( i i i ) .  I f  Easy(z) is f a l s e ,  the re  is  no NAND-circuit of s i z e  2  /k 

which computes f c t  (2). 

Proof. We l e t  t he  reader check ( i )  by following the  informal 

descr ipt ion of Easy(z) above. ( i i )  is  immediate from ( i ) .  

To prove ( i i i ) ,  assume Easy(z) i s  f a l s e  and suppose C i s  a  

NAND-circuit of s i z e  t = 2k-3/k which computes f c t ( z )  . 
k 

Let t' = 2 +l. Now 

.- k-3/k 2k-2 
t = 2  /k - 9m/log m (because (2) of Theorem 6.6 

implies 2k-3/k 2 9mllog m) 

( t  - 1) - ( m -  1 )  (by Fact  6.6.1). 

k  
Therefore by Lemma 6.6.3, the re  a r e  u,v E such t h a t  (2  4-1)-circuit(u,v) 

computes f c t ( z ) .  Pa r t  ( i )  of  t h i s  lemma now cont rad ic t s  the  f a c t  t ha t  

Easy(z) i s  fa l se .  0 

After replacing the  occurrences of B i t  and Res by t h e i r  de f in i t i ons ,  

we f ind 
I ~ a s y l  = 179 + 6 LloglOmJ . 



(Note: Using the abbreviation t r i c k  to  eliminate multiple occurrences of 

B i t  o r  Res does not yield a shorter formula In t h i s  case.) 

- Let c p i  be the sentence 

w(x) is a decimal representation of in t (x ) ,  with leading 

zeroes appended i f  necessary t o  make the length of w(x) be 

exactly L(log102) mJ + 1. 

k 2(2k - m + l )  
There a re  a t  most (2 ) NAND-circuits of s i ze  

2k - m +l with m inputs. 
*m- 2 

Constraint (1) of Theorem 6.6 implies 2 
k 2(2k - m + l )  lrn > (2 ) . 

Then Lemma 6.6.2 and Lemma 6.6.4(ii) together imply tha t  there i s  some 

z E hf such tha t  Easy(z) is  false.  

Thus there i s  precisely one z E N such tha t  0 

vy ( -Easy(zo) A ( y < zo 3 Easy (y) ) ) is  true. 

Let fo = fct(zo) .  

By Lemma 6.6.4(iii) and by our remarks i n  $6.1 concerning the 

synthesis of %6-circuits by NAND-circuits, i t  follows that  the 

k- 3 combinational complexity of f exceeds (1/5) 02 /k > 2k-6/k. 
0 

Also, c p i  i s  t rue  i f f  w(x) divides z i f f  fo(x) = 1. 
0 

Using the abbreviation t r i ck  to  replace the two occurrences of 

Easy by one, we find 9' equivalent t o  p" and 
X X 



Now OX is 9; padded with blanks i f  necessary t o  be of length 

exactly n. 

h 
A s  before, i f  7 i s  the transformation mapping x t o  h(9 ) for 

X 

an encoding h of C', then the combinational complexity of 7 is  

20 3 
certainly bounded above by 2 m . 

k- 7 /k 
The reader can now complete the proof tha t  C,(FIA)(n) > 2 

by following the proof of Theorem 6.4. The necessary fac ts  are: 

( i ) .  the combinational complexity of f exceeds 2k-6/k ; 0 

( i i ) .  f0(x) = 1 i f f  px E FIA ; and ( i i i ) .  by constraint (2) of 

k- 7 
the theorem, the combinational complexity of 7 i s  s 2 /k. 



Chapter 7. Conclusion 

We have demonstrated tha t  e f f i c i en t  reducibi l i ty  techniques can 

yield interest ing lower bounds on the inherent computational complexity 

of a variety of decision problems from automata theory and logic. 

For several of these problems, such as the equivalence problem for  

s tar- free expressions (cf. 94.2) and the decision problems for the 

various logical theories discussed i n  Chapter 5, our resul t s  imply 

that  any attempt t o  find an eff icient ,a lgori thm for  the problem 

is  foredoomed . 
Recent studies by coworkers (cf. fFer741, [FR741, [Mey73], 

[Rac74], [Rob73]) of decision procedures for  logical theories show 

tha t  these reducibi l i ty  methods are applicable t o  nearly a l l  the 

c lass ica l  decidable theories. Moreover d. wlth the exception of 

the propositional calculus and cer ta in  theories resembling the f i r s t  

order theory of equality, a l l  these decidable theories can be proved 

t o  require exponential or greater time. 
- 
Hopefully, both the general method of e f f i c i en t  reducibi l i ty  and 

some of the part icular  techniques of e f f i c i en t ly  arithmetizing Turing 

machines w i l l  extend t o  algebra, topology, number theory, and other 

areas where decision procedures a r i se ,  and w i l l  c u r t a i l  wasted e f fo r t  

i n  searching for e f f i c i en t  procedures when none exist .  The exhibition 

of provably d i f f i c u l t  problems i n  these areas is  one direction for 

further research. 
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Appendix I. Notation. 

8 The empty set .  

A - B  ( x I x E A and x 4 B )  ( s e t  difference). 

A CT3 B (A - B) U (B - A) (synnnetric difference). 

# The s e t  of a l l  subsets of the s e t  A. 

card (A) The card ina l i ty  of the s e t  A. 

A X A X  A X X A (k times). 

X The empty word. 

14 The length of the word w. 

~7 or WW.T Concatenation of words w and 7 .  

Z* The s e t  of a l l  words over the alphabet C including h. 

c+ c* - [A). 

ck * 
( w E C I ~ w I  = k ) ,  for posi t ive integer k. 

fl ( u Ec* I i w l  s k ). 

k u The word aarr..*s of length k: 

bin(k) The binary representation of posi t ive integer k. 

N The nonnegative integers. 

N+ The posi t ive integers. 



log r 

The integers. 

The rational numbers. 

The positive rational numbers. 

The-integer part of real r. 

The least  integer z such that z 2 r. 



Appendix 11. Some Properties of logspace. 

. An IOTM M computes a function f :  (c*)'" + A* of n variables i f  

* 
M computes a function f :  # )  + A *  where # $? C and 

f t ( x  h h # * = o h n )  = ~ ( x ~ , x ~ , x ~ , ~ ~ ~ , x ~ )  for a l l  x1,x2,*** 1. 2 3 xn 
E C*. 

Definition. A function f : (C * ) '(*') + A* of dl variables i s  defined 

from functions g:(z*lXn + A* and hl,h2:(C * ) x(~I -2 )  A *  by 

two sided recursion of concatenation i f  f s a t i s f i e s  -- - 
Y = gGn) 

and 
fGn, YO) = hl(~n,~,~)*f(r;n,~)*h2(;rn,~,~) 

* Xn * 
for a l l  Zn E (C ) , y E C , a E C. 

Fact A I I . 1  [Lin73],[LM74]. logspace i s  closed under expl ic i t  

transformation (substi tuting constants and renaming or identifying 
- 

variables),  composition, and two sided recursion of concatenation. 

Fact AII.2 [Lin73],[LM74]. 

(1).   he concatenation function belongs to  logspace. 

(2). For any alphabet C, f E logspace where 

f(x) = bin(lx1) ( the binary representation of 1x1) 
* 

for  a l l  x E C . 
(3). Binary addition, monus, and mult ipl icat ion belong to 

logspace. That is,  there a r e  functions f+, f;, f x  E logspace 

such tha t  f@(bin(ml) ,bin(m2)) = bin(ml @ 9 )  

for 3 E (+, L, x )  and a l l  m1,in2 E N. 



- {ml ; m2 i f  m 2 m2 
Monus i s  defined a s  ml ' m2 - 1 

otherwise . 

Lemma AII.3. Let p(n) be a polynomial wi th  in teger  c o e f f i c i e n t s ,  

l e t  C be a f i n i t e  alphabet ,  and l e t  $ be a symbol, 

Then f E logspace where 

* 
f ( x )  = $ p( IXI)  " f o r  a l l  ~ E C .  

The reader  may v e r i f y  Lennna A I I . 3 .  Fact  AII.2 (2) and (3)  m y  

be useful .  


