The Complexity of Decision Problems
in Automata Theory and Logic

by
Larry J. Stockmeyer

ABSTRACT

The inherent computational complexity of a variety of decision
problems i n mathematical logic and the theory of automata is analyzed
in terms of Turing machine time and space and in terms of the complexity
of Boolean networks.

The problem of deciding whether a star-free expression (a variation
of the regular expressions of Kleene used to describe languages accepted
by finite automata) defines the empty set is shown to require time and
space exceeding any composition of functions exponential in the length
of expressions. |In particular, this decision problem is not elementary-
recursive in the sense of Kamar.

The emptiness problem can be reduced efficiently to decision
problems for truth or satisfiability of sentences in the first order
monadic theory of (N,<), the first order theory of linear orders, and
the first order theory of two successors and prefix, among others. It
follows that the decision problems for these theories are also not
elementary-recursive.

The number of Boolean operations and hence the size of logical
circuits required to decide truth in several familiar logical theories
of sentences only a few hundred characters long is shown to exceed the
number of protons required to fill the known universe.

The methods of proof are analogous to the arithmetizations and
reducibility arguments of recursive function theory.

Keywords: computational complexity, decision procedure
star-free, Turing machine

AMS (MX5) Subject Classification Scheme (1970)

primary 68A20, 02G05
secondary 68A40, 94A20

iy

Tabl e of Contents

| nt roducti on

The Mdel of Conputation
21 The Basic Mdel
22 A Technically Useful Mdel

Efficient Redugibility
3.1 Definitions
32 Applications to Conpl exity Bounds
33 Qher Applications

Regul ar - Li ke Expressi ons
41 Expressions Wth Squaring

42 Expressions Wth Conpl enentation
43 (del eted)
44 Expressions Qver a (he-Letter A phabet

Nonel enentary Logi cal Theori es

Conpl exity of Finite Problens
61 Second Order Theory of Successor
62 First Oder Integer Arithnetic

Concl usi on
Bi bl i ogr aphy
Appendix |, Notation

Appendi x II, Sone Properties of logspace

17
18
34

41
42
46
53

67
79
103

157

161

179
186
205

213

214

221

223

Figure 4.1:
Figure 6.1:

Figure 6.2:

Figure 6.3:

Figure 6.4:

List of Figures

E2 "matches' a word w
P, B, and d

[llustrating the proof .
of Lemma 6.5.2 (i)and (ii)

I and J "code" a circuit

The circuit C0

82

194

196

198

204

Chapter 1. Introduction

Ore mgjor goal of computational complexity is to achieve the
ability to characterize precisely the amount of computational resource
needed to solve given computational problems or classes of problems.
Two important kinds of computational resource are time and space,
respectively the number of basic computational steps and the amount
of memory used in solving the problem. The complexity of a particular
problem can be characterized by upper and lower bounds on computational
resources sufficient to solve the problem.

Upper bounds are usually established by exhibiting a specific
algorithm which solves the problem and whose time and/or space
complexity can be bounded from above. Muh progress has been made
on this positive side of the complexity question. May clever and
efficient algorithms have been devised for performing a wide variety

of computational tasks (cf. DE Knuth, The Art of Computer Programming).

However the progress made on the negative side of the question has
been less striking. In order to establish a lower bound on the complexity
of a particulzr problem, one must show that some minimum amount of
resource (time or space) is always required no matter which of the
infinitely many possible algorithms is used or how cleverly one writes
the algorithm to solve the problem. It is this latter side of the
complexity question which we address in thisPaper ., Although lower
bound results are negative in nature, they have the value that they

enable one to cease locking for efficient algorithms when none exist.

Also, the exhibition of specific problems or classes of problems
which are provably difficult may give insight into the "reasons" for
their difficulty, and these "reasons" and proofs of difficulty may
provide clues for reformulating the problems so that in revised form

they become tractable.

Let us now sketch a bit more precisely what we mean by " computational
problem" and "aIgorithm"T. Mawy computational problems can be viewed
as problems of function evaluation. In particular, consider functions
mapping strings of symbols to strings of symbols. As a concept of
"algorithm™ we could choose any one of a variety of universal computer
models. For definiteness we choose the well-known Turing machine
model,

A Turing machine M computes the function f if M, when started
with any string X on its tape, eventually halts with f£(x) on its tape.
The time =and space used by M on input x are respectively the number of
basic steps executed and the number of tape squares visited by M before
halting when started on input X. In general, the time and space will
vary depending on the particular input x. One simplification which is
commonly made is to measure the time and space solely as a function of
the length of the input string.

Note that some functions can be complex for a reason which sheds

little light on the question of inherent difficulty; namely, a function

can be computed no faster than the time required to print the value of

TComplete definitions appear in the main text.

-9-

the function. For example, consider the function which, for any
positive integer m, mgos the binary representation of m to the binary
representation of ™. Ary algorithm which computes this function
uses at least 2" steps on mawy inputs of length n for all n, these
steps being required to print the answer consisting of a one followed
by as mary as 2"-1 zeroes.

We avoid these cases by considering only functions whose value
is aways 0 or 1. The problem of computing such a 0-1 valued function
f can be viewed as the problem of recognizing the set of inputs which
f maps to 1. For example, we may wish to recognize the set of all
strings which code true sentences of some decidab'le logical theory.
When such a "set recognition™ or '"decision" problem is shown to
require time 2" on inputs of length n for infinitely many n, we conclude
that there is something inherently complex about the set itself; that is,
2N steps must be spent in deciding what to answer, not in printing
the answer.

Some information i s known concerning the complexity of set
recognition problems. There are known to be sets whose recognition
problems are recursive yet "arbitrarily" complex [Rab60]. Let T(n)
and S(n) be any recursive functions from positive integers to positive
integers. Waeél-known diagonalization arguments imply the existence
of a recursive set Ahard such that any algorithm recognizing Ahard
requires at least time T(n) and space S(n) on all inputs of length n

for all sufficiently large n.

~10-

It is also possible to construct arbitrarily difficult recursive
problems by considering '"bounded" versions of undecidable problems.

The "bound" implies decidability, but the problem can be made arbi-
trarily complex by making the "bound" arbitrarily large. For example,
Blum [B166] and Jeroslow [Jer72] consider a bounded version of the
halting problem, and Ehrenfeucht [Ehr72] considers a bounded version of
the first order theory of integer arithmetic.

Ore might animadvert that sets such as Ahard above are not "natural"
in the sense that they were explicitly constructed to be difficult to
recognize. Informally, by "natural™ computational problem we mean one
which has arisen previously in the mathematical literature (excluding
complexity theory); for example, decision problems drawn from logic
and automata theory, word problems in algebra, etc.

Under even this weak view of "natural', there are few examples
of natural recursive set recognition problems whose time complexity lLas
been shown to necessarily grow faster than linearly in the length of
the input. Excluding "diagonalization" and "bounded undecidable"
problems, then prior to the research described here (and related
work by Meyer [Mey73], Fischer and Rabin [FR74], and Hunt [Hun73b])
we know of no examples of natural recursive set recognition problems
whose time complexity had been shewn to necessarily grow more than
polynomially or whose space complexity had been shown to grow more than
linearly in the length of the input.

We now outline the remainder of this paper. Chapters 2 and

-ll-

3 are devoted mainly to definitions of key concepts and descriptions
of the technical machinery to be used in proving the results of
Chapters 4 and 5 Chapter 2 defines our forma modd of "algorithm™
for set recognition and function computation. This mode is a slight
variant of the well-known Turing machine. Krmoan facts concerning the
model which are relevant to the sequel are also stated.

Chapter 3 defines the concept of "efficient reducibility”. This
concept was first formally defined by Cook [Co71lal, though its
significance was emphasized earlier by Meyer and McCreight [MM71],
Speaking informally for the moment, we say that a set A is efficiently
reducible to a set B, written A Seff B, if thereis an efficiently
computable function f such that any question of the form "Is x in A?"
has the same answer as the question "Is £(x) in B?", Instead of
being precise about what is meant by f being "efficiently computable",
let us for the momat just assume that the time and space required to
compute f is very small compared to the minimum time required to
recognize A or B. Nw given an algorithm M which recognizes B, one
can construct an algorithm M' which recognizes A as follows. Given
input x, M first computes £(x) and then simulates M on input £(x).
Since x € A iff £(x) € B, M' recognizes A correctly. Moreover, the
resources used by M' are roughly the same as those used by M because
the resources used in computing f are negligible. Therefore an upper
bound on the complexity of B implies an upper bound on that of A

Contrapositively, a lower bound on the complexity of A implies a

=

lower bound on that of B.

In Chapter 4, this reducibility technique is applied to several
specific problems. This chapter deals with problems of recognizing
equivalence of expressions similar to the Kleene regular expressions
of finite automata theory [cf. Har65]., For example, consider regular
expressions which mey use, as well as the usual operations U, -, and *,
a new unary operation on sets of words, '"squaring', defined by
82 = S.S. Let Bsq denote the set of all pairs of inequivalent such
expressions.

The major technical portion of most applications of the reducibility
technique involves a proof that any one of a large class of sets is
efficiently reducible to a particular set of interest. We aways
choose the large class to be the class of all sets whose time or
space complexity is bounded above by some function or familiar family
of functions such as the polynomial or nxponential functions.

In the case of Bsq, this class, called EXPFPACE, is the class of all
sets recognizable within space which grows at most exponentially in the
length of the input. We show that if A € EXFFACE then A Soff Bsq.
Now diagonalization arguments imply the existence of a set Ahard in
MPSPACE which requires exponential space for recognition by any
algorithm. Thus Ahard Seff BSq and so BSq also requires exponential
space (and hence also requires exponential time).

Similarly we characterize the space complexity of recognizing
equivalence of regular expressions involving only the operations of

*
U +, and . W also consider other variants such as expressions with

13-

only U and ¢, and expressions over a one-letter alphabet.

If the expressions are allowed to use the operation of set
cdmplementation (~), adrastic increase in the complexity of the
equivalence problem results. W show that the equivalence problem for
"star-free" expressions [cf. MP71] (using only the operations U, -,

and ~) is not elementary-recursive [cf. Pet67]; that is, for no constant

21‘1
o . 2 }k
k is its time or space complexity bounded above by 2 for all
inputs of length n and all n.

Chapter 5 gives several corollaries about the complexities of
decidable theories of formal logic. The equivalence problem for
star-free expressions is efficiently reducible to the decision problems
for several decidable logical theories; thus these decision problems
are not elementary-recursive. Our main corollary states that the first
order theory of any infinite linear order with a single monadic
predicate is not elementary-recursive. |In particular, we obtain

the result that the wesk monadic second order theory of
successor i s not elementary-recursive [cf- Mey73] .

For convenience, we are content in Chapters 4 and 5 to give a lower
bound on the complexity of a particular set by proving that the resources
used by any algorithm in recognizing the set must exceed the lower bound
on infinitely mawy inputs. Section 3.3 points out that a given result
can usually be strengthened to state that the lower bound must hold

on some input of length n for all but finitely may n.

-

Even so, one might reasonably question the significance of our
results and methods on the grounds that the "difficult™ inputs might
be so large as to never occur in practice. This is indeed an important
issue. Closer examination of our proofs can determine the point at
which the lower bounds take effect, though we do not in general
elaborate such results here.

However, in Chapter 6 we investigate two examples in detail.

Our methods do yield astronomical lower bounds on the complexities of
finite decision problems about words of only a few hundred characters.
The notion of "algorithm™ used here is Boolean circuits similar to
those studied in [Win65] and [Sav72]. For two logical theories, the
number of Boolean operations required by a circuit which recognizes the
true sentences only a few hundred characters long is shown to exceed
the number of protons required to fill the known universe.

In Chapters 4 and 5 we also give upper bounds on the complexities
of recognizing .the particular sets considered. In most cases, the upper
bound given for a set is reasonably close to the proven lower bound.
The verifications of upper bounds involve only standard techniques
from automata theory.

In summary, the main contribution of this paper is the

demonstration that efficient reducibility techniques can be used to

TThe major portion of Chapter 6 can be read independently of

Chapters 2 through 5.

w5

prove non-trivial |ower bounds on the tine, space, or circuit
conplexities of certain natural recursive decision problens. The
mai n technical contributionlies in the various reducibility
constructions and "arithnetizations" of Turing nmachines and circuits.
These constructions are of an essentially different character than

t hose ecommonly found in recursion theory, due to the added condition

that reducibilities nust be efficiently conputable

-16=

b

Chapter 2. The Model of Computation

In order to prove that certain problems require a certain minimum
amount of computational resource no matter how one writes algorithms to
solve the problems, it is essential to have a formal definition of an
algorithm or computer. There are many formulations of the notions of
algorithm which are equivalent in the sense that the functions computable
within any of the formulations are precisely the recursive functions.

We shall choose our model of computer to be Turing machines [HU69],
partly because this model is well-known and has been the subject of much
previous investigation, but more importantly because its simplicity will
ease the technical task of showing that the model cannot solve certain
problems quickly. It might seem that the simplicity of the model itself
implies its inefficiency and that it would be more realistic to choose
a more powerful formulation such as random access register machines or
iterative arrays {[Col69]. However Turing machines can simulate the more

powerful models " efficiently enough” (in a sense to be made precise
shortly) for our purposes, so that if a Turing machine cannot compute
something "quickly"™ neither will either of the more powerful models.

In fact, all of the results in this paper giving upper or lower bounds
on the complexities of particular problems remain true without

modification i f the Turing machine model is replaced by either of the

more powerful models mentioned above.

<18«

2.1 The Basic Model.

First we assume the reader is familiar with the basic concepts of
set theory and formal language theory. A discussion of the necessary
concepts can be found in the introductory portions of most formal
language theory texts, for e>;ample [HU69], [AU72].

In particular, we let £ denote the set of all words over E,
including the empty word X, E+ denotes the set Z)* = M.

|w] denotes the length of the word w; |A] = 0.

’ where K is a nonnegative integer, denotes repeated concatena-
tion, that is, ZX=({ w€Z | |ul =k .

If o is a symbol, ok denotes the word ooc-..0 of length k.

Since this notation is commonly used for repeated Cartesian product,
welet K =L X I X +"x I (k times).

This and other notation is collected i n Appendix 1.

Our basic model of computation IS input/output Turing machines
(IO0TM's). 10TM*'s are multi-tape Turing machines i n which the tapes
which handle the input/output processes are separated from the tapes
which serve as memory for the computation. Every IOTM consists of a
finite state control and k * 2 tapes (where k is a positive integer):
an input tape, k work tapes, and an output tape. Single heads scanning
each tape are called respectively the input head (2-way, read-only), the
work heads (2-way, read/write), and the output head (right-moving,
write-only).

We mow give precise informal definitions of the IOTM model, its

<10«

computations, the time and space used by a computation, etc. Turing
machines (of which IOTM's are a minor variant) are formally defined in
many standard reference texts (e.g. [HU69]). Since our results are
invariant under the various differences i n conventions normally used
in making these definitions, the reader can supply his own formal
definitions by choosing any consistent set of conventions.

One important distinction we must make is the difference between
nondeterministic and deterministic machines. We first define nondeter-
ministic IOTM's; deterministic I0TM's are then defined as a restricted
form of nondeterministic IOTM's.

A particular nondeterministic I0TM, M, is specified by finite sets

Q (the set of states), | (the input alphabet), I' (the work tape alphabet),
and A (the output alphabet); a transition function 6; and designated
states % € Q (the initial state) and 1, € Q (the accept state).

M operates i n steps. The action taken at a given step depends on the
current state of the control and the symbols being scanned by the input
and work tape heads. M performs a particular action by changing state,

printing new symbols on the work tapes and possibly on the output tape,

and shifting the heads.

We now describe the computations of M on input X € I*. Mis
started with the word x written on the input tape with the input head
scanning the leftmost $. (§ I is an endmarker. Let 1' =1 U {$}.)
The control is placed in state dy> and the work and output tapes are

initially blank.

The total state of the machine at some step is given by an

=20-

instantaneous description (i.d.). An i.d. consists of (1) the state of

the control, (2) the input word x, (3) the position of the ir;put head in
the word x, (4) for eachi = 1, 2,---, k, the word w; €T written on
the nonblank portion of the ith work tape, (5) for each i such that

wi # A, the position of the ith work head in the word wi, and (6) the
word written on the nonblank portion of the output tape.

For example, the initial i.d. of M on input X described above is

given by: (1) the initial state; (2) x; (3) the input head is

scanning the leftmost symbol $. (4) w, = h for i =1,2,3,-*-,k;
(5) 5 (6) M.

If risani.d., then display(r) is (q,c,sl,sz,---,sk) € QXI'XFXk,
where q is the current state of the control, and &, S1s ""ts S are the

symbols being scanned by the input head and the k work heads respectively.
The function 6 maps each element in QX I' X I'Xk to a (possibly

+-
empty) set of moves. A move is of the form

X (AU .

If M is currently in a situation described by i.d. r, M may execute
any move i n 8§ (display(r)). M executes move u above as follows: the finite
state control enters state q'; for each i = 1,2,...,k, the ith work head
prints symbol si' and shifts one square i n direction m, (Left, right, or
nomove); the input head shifts in direction M3 if p# h, the output
head prints p and shifts right one square; if p = A, the output head

does not print or shift.

If the'execution of any move i n 8§(display(r)) causes M to enter

-2]la

i.d. r', wesay r S YA

A computation of M on input x, ¢, IS any sequence of i.d.'s

C = iodcl, iod'z, LS indc!’ SLICh that:

(1). i.dey is theinitial i.d. of M on input X,

(2). dedoy Ay iode, for all j = 1,2,3,-+,8-1,

j+1
(3). 6(disP1ay(i.d.£)) =¢ ; that is, M halts on i.d.z.

The length of the computation c iedeq, 1edey, =oey i.d.gy is 4.

The space used by the computation ¢ isS the number of work tape
squares visited by heads of M during the computation. It is
technically convenient to make one exception to this definition of
space; namely, if ¢ = i.d.q, 1edeyy ooy id., and i f for all
J = Y,2,3,904,8, i.d.j describes a situation i n which all work tapes
are entirely blank, then the space used by c is defined to be 0.

The output produced by the computation ¢ is the word written on
the nonblank portion of the output tape in i.d.z.

If c = i.d.l, i.d.2, RN i.d.z as above, and also
display(i.d.z) € {qa} X I' X I"Xk, then ¢ is an accepting computation

ef M e input x. (We assume ag is a halting state; that is,

8(q,,0,8,,°°*,8,) = & forall o €1, Sys® 5y €T,

Let AccCompN‘X) denote the set of all accepting computations
of M on input x. Note that AccCompM(X) may contain many computations

corresponding to the different choices of moves from 6 taken at each

22w

st ep. AccCoan() nay al so be enpty if Mdoes not enter state q,

regardl ess of what choi ces are nade.

If =€I1* and AccCompM(X) # ¢, define
Ti me}Q() = min{ ¢ | there is'anaccepting conputation
C € AccComp (x) of length £},
and M
Spac%(x) = min{ mM ' thereisa c € AccCompM(x)

whi ch uses space m}.
V¢ | eave TimeM(x) and spaceM(x) undefined if Acchan() = @,

Nondet ermni stic I0TM's are a technical construct and do not
correspond to the notion of al gorithmin which each step is uniquely
determned. Determnistic IOMs do correspond to this step-by-step

notion of al gorithm

A determnistic IOMis a nondetermnistic |OTMwith the property

that its transition function6 maps each elenent in Q x I' x Xk to a
set containing at nost one nove. Thus the conputation of a deternnis-
tic IOTMon an input x is uniquely determined (provided that it exists).
Determnistic IOIMs are a special case of nondeterministic IOTM's; the
definitions of AccCompM(x), TimeM(x), SPaceM(x) gi ven above al so defi ne

these concepts for determnistic [OMs.

IOTM's serve as our nodel of algorithmfor set recognition.

«23=

Definition21 Let Mbe a nondetermnistic(or determnistic) |0OM
*

with input al phabet I, and let x €1 .
Maccepts x iff AccCompM(x) # ¢,
M rejects x iff Mdoes not accept x
Let A=t M accepts A iff

+
Macceptsx © =x €A for all x € 1.

+
Definition 22 Let Mbe a nondetermnistic IOTM let A<| ,

and let T and S both map N into the nonnegative rational nunbers. t

Maccepts Awithintine T(n) (wthin space S(n)) iff

. Maccepts A
and
@. for all but finitely many x € A

TimeM(x) < T(|x])

(Spacey(x) < s(Ix])).

Remark. Note that Definition 22 only requires the tine and space
used by Mto be bounded on al nost all inputs x € A A stronger
definitionwould require the tine and space to be bounded for all
inputs x E 1T, Hovever if we show, for a certainset A and functions
T(n) and S(n), that no | OTMaccepts Awithin time T(n) or space S(n)
under the given definition, certainly the same result is true under

t he stronger definition.

TN denot es the nonnegati ve integers.

| Bl

I n particular we require only "for all but finitely may x" to
emphasize the fact that, with respect to Turing machines, the inherent

complexity of a set is insensitive to finitely many exceptions.

Lemma 2.3. Suppose a nondeterministic (deterministic) 10TM M accepts
A. Let X <A with X finite. Then there are nondeterministic

(deterministic) 10TM's M' and M" which accept A such that:

(1. Time ,(X) < Time (x) for all x € A
and RS M
TimeM,(x) < |x| +2 forall x EX.

(2). Space ., (x) < Space (x) for all x € A
and %M pacey
SPaceMn(X) =0 for all x E X.

Proof sketch. Let G be a finite state acceptor (cf. [HU69]) for X

(1). M runs two procedures in parallel. The first procedure
runs G on the input, at the same time copying the input onto the first
work tape. The second procedure simulates M on the input by viewing
the first work tape as the input tape. M' accepts when either procedure
accepts. M' as described requires two heads on the first work tape.
However Fischer, Meyer, and Rosenberg [FMR72] show how to replace
many heads per tape by several single-headed tapes with no time loss.

(2. M" first runs G on the input; blanks are reprinted on the
work tapes at each step. M" accepts if G does, or simulates M on the

input otherwise. a

25

S mlarly our |ower bound results are strengthened by using the
nondetermnistic nodel. |f no nondetermnistic | OIMcan accept
acertainset withintine T(n) or space S(n), then neither can any

determnistic IOM W discuss this further bel ow

IOTM's al so serve as our nodel of function conputation.

Definition 24 Let Mbe a determnistic |OTMand f be a total
* %

function, f:1 -4 , wherel, A are finite al phabets.

Mcomputes f withintine T(n) (wthin space S(n)) iff
*

for all x €1

. AccComp,, (x) # ¢ and the(necessarily unique)
c € AccC'dmpM() produces out put £(x),

e (2). Time (x) < T(|x|)

(Space, (x) = S(|x])).

Qur notivationin separating the input/output processes fromthe
conputation process is so that it nmakes sense to consider a set being
accepted w thi n space S(n) where S(n) grows nore slowy than linearly
inn The usual convention of witing the input initially on sone work
tape requires the nmachine to use space |x| just to read the entire input
x Smlarly, we nay consider a function f being conputed wi thin space

$n) where |f(x)| is much larger than S(/x]|).

-26=

It is convenient to have notation for certainclasses of all sets

whi ch can be accepted wi thin a given resource bound.

Definition 25 NTIME(T(n)) (DTIME(T(n)))

= { A | there is a nondetermnistic(determnnistic)

| O’TMwhi ch accepts Awithintinme T(n) }.

NSPACE(S(n)) (DSPACE(S(m)))

= (A | there is a nondetermnistic(deterninistic)
IOTM whi ch accepts A within space S(n) }.
Here the sets A are al so assuned to satisfy A < 1t for sone
finite al phabet 1.
| n particul ar define:
k k
P= U DTIME(n) ; N = U NIME(n) ;
k €N k €N
CSL = NSPACE(n) (=(context sensitive |anguages), cf. [HU69]);
POLYSPACE = U NSPACE(nk) :
k €N

EXPNTIME = | NTIME(c™) : EXPSPACE = U NSPACE(c™) .
¢ €N ¢ EN

a3Ve

For a particular set B, a lower bound on the complexity of B will
be given as the statement that B does not belong to some class
NIIME(T(n)) or NSPACE(S(n)) for some particular T(n) or S(n). By
Definitions 2.2 and 2.5, such a statement implies that T(n) or S(n) is
an i.o0. (infinitely often) lower bound on the nondeterministic time or
space complexity of B.

If B ¢ NTIME(T(n)) (B ¢ NSPACE(S(n))) and M is a nondeterminis-

tic I0TM which accepts B, then

TimeM(x) > T(]x])
for infinitely many x € B.
(resp., Spacey(x) > sCIx|))

We rov make more precise our earlier statement that the I0TM model
is not restrictive and that our results have genuine significance
independent of which formal notion of algorithm we adopt. | n particular,
consider two "more powerful'" models of algorithm: random access machines
(RAM's) [SS63] [CR?Z:\) and d-dimensional iterative arrays

of finite state machines (d-IA's) [Co169].

The time and space of RAM and d-IA computations can reasonably be
defined as folluws. The time of a RAM computation is the aum of the
costs of all steps; a step which manipulates (stores, fetches, adds)
numbers of magnitude z i s charged cost rlog(z+1)_lf(this being the

length of the binary representation of integer z). The space of a

~f.Logarithms with no specified base are taken to base 2

=28=

RAM computation is the am over all registers of rlog(z+1)_| where z is
the largest integer stored in the register at some step during the
computation. The time of a d-1A computation is the number sf steps
executed. The space of a d-IA computation is the total number of
cells which do not remain quiescent throughout the entire computation.
The fact stated below follows by simulations of the other models

by I0TM's. See for example [CR72] for the simulation of RAM's.

Fact 2.6. Let A be a set which can be accepted by a nondeterministic
(deterministic) RAM or d-IA within time T(n) and space S(n). Then there
is an integer k such that
A € NTDE((T(n))¥) and’ A € NSPACE(S(n))
(A € DTIME((T(n))X) and A € DSPACE(S(n))).

Moreover, we can always choose k = 2 for the case of RAM's,

Thus any lower bound on space complexity applies equally well to
either of the more powerful models. Lower bounds on time complexity
may suffer a decrease with respect to the other models, but this
decrease i s polynomial bounded which will be negligible in the cases
to be considered. For example, if we show that a set B requires time
Cn (i.0.) for acceptance by any IOTM, it follows that B requires time
a" (i.0.) for acceptance by any RAM, where d = V¢

The remainder of section 2.1 gives some known facts and open

=29

questions concerning the classes NTIME, DTIME, NSPACE, DFACE
All the particular functions we give bounding time or space

complexity are of a special type defined next.

Definition 2.7. A function T(n) (S(n)) 1is said to be countable

(constructable) iff for any finite I there is a deterministic I0TM

M such that
T(|x|) for all x €1

Tim%(x)
+
s(lx]) for all xE1).

(SpaceM(x)

The countable and constructable functions are rich classes. The
. . . . k
countable functions include in particular max(n , nt+2), max(rcn _l, n+2), "
-+ + 1t . . k
for all k€N, c €Q . The constructable functions include n,
fe™ 1, and (I log n—l)k for all k EN+, c € Q+. Both classes are
closed under addition, multiplication, and composition [Yam62].
The following notation is useful for comparing the growth rates

+
of functions. Let F(n) and G(n) be functions from N o Q+U{o}.

F(n) = 0(G(n)) iff thereisa c €¢Q such that
F(n) < ¢.G(n) for all n.
F(n) = o(G(n)) iff lim F(n)/G(n) = O.

n=r®

The next fact states that any computation can be "sped-up'" by any
constant factor. The proof is implicit in [SHL65] and [HS65], (see also

[HU69]). Part (2) also uses the main result in [FMR72].

+ . . .
Q denotes the positive rationails. Nt denotes the positive integers.

=30-

Fact 28 Let ¢ ¢ Q+ be arbitrary.

(D. Gven a determnistic |OTMMw th input al phabet | which
conputes a function f, we can effectively find a determnistic | OTMM
whi ch computes f such that .

spaceM(x) < c.Spacey,(x) for all xEI .

(2. G ven a nondetermnistic(determnistic) |OIMMwhich accepts
aset A we can effectively find nondeternmnistic(determnistic) IOTM's
M' and M" whi ch accept A such that
- Timey, (x) < max(c-Time(y, x| +2) for all x €A

Spacey, (x) < c-Space (x) for all x €A
3. Assune n = o(T(n)). Then
A € NTIME(T(n)) = A € NTIME(c-T(m))
and A E NSPACE(S(n)) = A € NSPACE(c.S(m)).

Thus the inherent conplexity of a particular problemis insensitive
to constant factors and can at best be determned as an asynptotic
growt h rate(exponential, quadratic, €c). Fact 28 is also used
inplicitly in several upper bound results. For exanple, we may describe
an al gori thmwhi ch accepts a set B within space 17n, and then cl ai m BECS..

The next fact gives several known rel ationshi ps anong the conpl exity

cl asses.

Fact 29 Let T(n), S(n) be arbitrary.

A Nondetermnistic versus determnistic tine.

N

@ DTIME(T(n)) S NIIME(T(n)).

(B . NIME(T(n)) < U DTIME(cT(m)y.
c €N

«3le

B, Nondetermnistic versus determnistic space.
(a). DSPACES(n)) < NSPACES(n)).
() . NSPACES(r)) = DSPACE((4n))%).

C Time versus space.

N

N

@. DTl ME(T(n)) S DSPACE(T(n)).
NTIME(T(n)) S NSPACE(TN)).

() . NSPACE(§n) < UNDTIME(cs(n)), provided logn = @S(0) .
c €

The statenents(a) all followdirectly fromdefinitions and constant
factor speedup(Fact 2 8. A(b) follows fromthe fact that,
if Mis nondetermnistic and accepts a set within time T(n), AccComp,&IX)
T(|x])

contains at nost c conput ati ons whi ch coul d concei vabl y accept X,

for sone c and all x. A deterninistic nachine can try each of these
computations i n sequence and accept the input if any such conputation
accepts. B.(b) is proved by Savitch [Sav70]. Note that B.(b) inplies
that the definitions of PCLYSPACE and EXPSPACE coul d have been nade
equivalently in ternms of DSPACE(). C.(b) iS true because a space
S(n) bounded | OTMcan enter at mnost cS(|XI) different’ i.d.'s when
conputing on input x A conplete proof of C.(b) appears i n [Co71b].
The "gaps" between(a) and(b) in each of A, B, and C represent

naj or open questions of conplexity theory.

pen Questi ons 2 10.

A (). I's there a class of functions # all of which grow sl ower than

exponential |y for which

NTIME(T(n)) <

U DTIME(F(T(n))) ?
FEF

32«

(ii). My we take F to be the class of polynomials ?
(iii). In particular, does P = NP ?
B. (i). Does NSPACE(S(n)) = DSPACE(S(mn)) ?
(it). In particular, does C3 = DSPACE(n) ?
Cv (i). Is thereaclass of functions ¥ as in A.(i) above for which

NSPACE(S(n)) & U DTIME(F(S(n))) 2
F €F

(ii). May we take F to be the cl.éss ‘'of polynomials ?

(iii). In particular, is CSL €9 ?

These open questions are stated to point out that, for most
particular problems we consider, the upper and lower bounds we give are
"tight" is the sense that any substantial improvement of either bound
would close the gap implicit in some open question. For example, in
section 4.1 we consider a set B (the set of al I*regular expressions
over alphabet {0,1) which do not describe {0,1}) and show B € NSPACE(n)
but B ¢ NSPACE(nr) if r <1 Even though these space bounds are
tight, they do not translate into tight bounds on deterministic time
complexity. The best we can conclude (given present knowledge) is
B € DTIME(d") for some d € Q+ (by Fact 2.9C(b)); but B ¢ D'I'IME(nr)
if r<ld, which isa trivial lower bound on time. However it will be
seen that this gap (dn versus n) is closely related to Open Question 2.10C.

Vo for

For example, if one succeeds i n raising the lower bound, say to c
some ¢ > 1, then Open Question 2.10C(iii) would be settled i n the negative.
On the other hand, if one shows that B € 63 then this question would be

settled i n the affirmative. See Remark 4.20 for further discussion of

=33~

the relevance of these open questions to this work.

Finally we give a fact which states that the complexity classes
NTIME(T(n)), NSPACE(S(n)) describe fine complexity hierarchies; that is,
for small increases in the growth rate of T(n) or S(n), new sets can
be accepted that could not be accepted before. The following deep
results, which are used several times in the sequel, are due to
Seiferas, Fischer, and Meyer [SFM73], and are refinements of earlier

work by Ibarra [Ib72] and Cook [Co73].ft

Fact 2.11.
(D). let T2(n) be countable. There is a set A < {0,1]+ such
that A € NTIME(Tz(n)) and for all Tl(n)
Tl(n+1) = o(Tz(n)) implies A ¢ NTIME(Tl(n)).
(2). Let Sz(n) be constructable and satisfy logn = O(Sz(n)).
There is aset A< [0,1]+ such that A € NSPACE(Sz(n)) and for
all 8,(n)

Sl(n+1) = o(Sz(n)) implies A ¢ NSPACE(Sl(n)).

Diagonalization arguments give similar hierarchies [SHL65],
[HS65] for the deterministic complexity classes, although the known

time hierarchy is slightly coarser in the deterministic case.

TFact 2.11 isnot essential to our proofs, although we shall use it for

convenience. See Remark 4.21 for an alternative to the use of Fact 2.11.

w i

2.2 A Technically Useful Model

Having defined the basic model of algorithm, we nov define a
more restricted model called simple Turing machines (STM's). STIM's
serve only as a technical tool within the proofs of certain results,
and are used only for set recognition. STM's are similar to I0TM's;
the major differences are the following.

An SIM has one tape and one head. The single tape is one-way
infinite to the right and serves as both input tape and work tape. An
SM is started on input X by writing X left justified on the otherwise
blank tape with the head scanning the leftmost symbol of x. The moves
of STM's are similar to those of I0TM's. Any move which shifts the head
off the left end of the tape causes the STM to halt and reject the input.
We also require STM's to have a unique accepting configuration; this
configuration occurs when the control is in a designated state gy the
entire tape is blank, and the head is scanning the leftmost tape
square. q, must be a halting state. Also the SIM cannot enter state
ay when computing on a word which is not to be accepted. STM's and
their related computational concepts are now made precise by a series

of definitions.

A (nondeterministic)T STM is a six-tuple M=(l, [, qQ, 6, dg> qa)
consisting of a finite set I' (the tape alphabet), a set | €I (the

input alphabet), a finite set Q (the set of states), a transition

t The adjective "nondeterministic'" will sometimes be omitted.

function +
I'x({-1,0,1
5 . Qxl" - 2Qx [3 b },

and designated states A € Q (the initial state) and q, € Q (the accept
state). 6 must satisfy the constraint s(qa,s) =¢ for all s€T,

M is deterministic if eard(6(q,s)) <1 for all q EQ s¢€T.,

* *
An instantaneous description (i.d.) of M isany word in T -Q-I" .

Informally, if 4 is an i.d. of M, say .
d=vyqgqsz where y,z €T , s€T, q€0Q,

we treat d as describing the symbols on the tape squares in an interval
around the head, with g being the state of the control, and q being
positioned in d immediately to the left of the symbol s being scanned.

W associate with M a function

* * I‘*.Q.I‘*
NextM : T eQ.T' a2

NextM(d) is the set of i.d.'s that can occur one step after the
situation described by i.d. d.

We first define Next]M(d,u), an empty or singleton set containing

the rext i.d. reached from d by a particular move .

Let p=(q',s',m) € QxI'x{-1,0,1} and let d0 = yQgsz as above.

{yq'sz } if m=0

(ysqz } if m=1

Rl (gen) = (wqg'ts'z) if m=-1 ang y=wt for

somew ET and t €T
0] if m=-1 and y =X\

T ZS denotes the set of all subsets of the set S.

=36=

Now
U Nextl (d,u) if d =ygsz as above
NextM(d) = u € 8(q,s) *
¢ if d=yg forsomey €T , q EQ.
Note that d' E NextM(d) implies [d'| = |d|]. This differs from the

usual definitions of "i.d." and "next i.d." in the literature.
The set of i.d.'s occurring £ steps after d, NextM(d,J?,), is
defined by induction:
NextM(d,O) = (d},
Next, (d,#+1) = { " | ar e Next(d') for some
d' € Next,(d,8))}

" +
Definition 2.12. Let M = (I,I",Q,6,qo,qa) beoaa\STM, and let A S .

Let ¥ denote the blank tape symbol.

M accepts A within tine T(n) (within space S(n); here we assume

S(n) = n) iff:
(1). For all x € A, there exist Ak € N with £ < T(lx|)
and k = |x| (resp., with |[x] < k =< S(|x|)) such that

K -
q ¥ € I\IextM(qoxlék x|

s £)y and
(2). for all x € I+- A, there do not exist 4,k EN and
v,z € 1"* such that

k=~ |x|
b

yq,2 € NextM(qoxB A).

We require S(m) 2 n for STM's because this amount of space is
required just to read the entire input. The following lemma states

that STM's can simulate I0TM's efficiently enough for our purposes.

S

Lemma 2.13. TIf A € NTIME(T(n)) where T(n) = nm+l (if A € NSPACE(S(n)))
then there is anSTM which accepts A within time (T(n))2

(resp., within space max(S(n), ml)).

Proof. The proof follows by straightforward simulation of a multi-tape
Turing machine by a one tape Turing Machine [HS65] (see also [HU69]).
Note that STM's possess "constant factor speedup" similar to Pact 2.8.

The simulated I0TM mey not operate within the given resource
bound T(n) or S(n) on a finite subset of A. However the simulating
STM can handle these finite exceptions by table look-up in its finite
state control (cf. Lemma 2,3).

The one tape machine can be easily modified to operate on a
one-way infinite tape [HU69]. This modification is usually implemented
by keeping a marker # on the leftmost tape square. The simulating STM
can fulfill the acceptance convention by always keeping another marker
#' on the rightmost tape square thus far visited. |f the simulated
IOTM ever enters its accepting state, the simulating STM can erase
its tape in a |eft sweep from #' to # and enter State q, without moving

after # has been erased. wMoreover, this is the only situation in which

a, i s entered. O

The remainder of section 22 treats a portion of the technical
machinery to be used in describing the computations of STM's. We wish

to formalize the statement that, given i.d.'s dq and d, of M, one can

determine if d2 € NeXtM(dl) or not by making "local checks". A

"local check" consists of comparing the (j-l)th, jth and (j+1)th

b

«38

symbols of 4, and d, for some j, 2< j < ldll- 1 We can conclude
d2 € NeXtM(dl) if and only if all local checks succeed. This is row

formalized i n a useful technical lemma.

Lerma 2.14. Let M = (I,T,Q,8,q,,9,) be anSTM. Assume $ ¢T UAQ.
Let T=TUQU (8. Thereis a function NMZ3 523 with the
following properties.
(1). Let dl be any i.d. of M, let Kk = ldll, and write
$d 8 = d10d11d12°”d1kd1,k+1 where dlj €2 for 0<j < k+l,
Let $d2$ = d20d21d22"'d2kd2,k+1 where d2j €2 for 0 < j < ktl,
Then
d2 € NextM(d iff d d

v 2,3-192, 392 541 € Me(dy 5.191, 59, 540)

for all j, 1=<j <k,

(2). For all 0'1,0'2,0'3,0'1',0'2 ,0'3' €X, if 0'1'02'03' € NM(01020'3),

then cri' =$ @ oy = $ for 1 =1,2,3.

Proof, Four cases are involved in the specification of Ny.
(i). N, must satisfy condition (2) of the lemma.
(ii). If 01505504 ¢ Q, then g, cannot change in going to some
next i.d.
(iii). If oy € Q and o3 € T', then each move in 6(02,03)
uniquely determines one word in NM(010‘203).

(iv). 1If 0'2 €Q and Oy = $ then }IM(01020'3) = @.

Ny is precisely specified as follows. For each 0,093 E 273,

=30

NM(610203) = f 01'02'03' “ Z?] 01,02,03,01',02',63 satisfy all

conditions (i),(ii),(iii), and (iv) below }.

(i). o; = $ iff ci' =$ for i =1,2,3.
(ii). 1If T1505504 ¢ Q then o, =02'.
(iii). If O'ZGQ and 0361" then

0'1'0'2'0'3' € U N]-M(o'lsl-l) ’
TS 6(02,03)

where for arbitrary c € Z and p = (q',s8',m) € QxI'x{-1,0,1}

, { oq's'} if m=0
N (o) = ((q'os’) if m=-1
{as'q" } if m=1

(iv). o, gQ or g # 8.
The proof that Ny satisfies condition (1) of the lemma is

straightforward and is left as an exercise. O

i

.

Chapter 3. Efficient Reducibility

In this section we introduce a concept which will play a key role
i n the remainder of the paper. This is the concept of efficient
reducibility.

Reducibility techniques have for some time been standard tools of
recursive function theory (cf. [Rog67]). Set A is reducible to set B
if the ability to answer questions about B enables one to answer questions
about A by various effective methods. Then, for example, the undecida-
bility of A implies the undecidability of B. However i n order to get
more detailed information about computational complexity, one must al so
show that the reducibility of A to B can be done " efficiently”. Then
i f questions about A are known to be computationally complex, so must
corresponding questions about B. See the Introduction for a further

informal discussion of efficient reducibility.

wls B

3.1 Definitions.

There are a variety of inequivalent technicel formulations of
efficient reducibilities, differing not only in the degree of efficiency
but also i n the methods by which questions about A are reduced to
questions about B. Mawy of these distinctions among efficient
reducibilities are analyzed in [LLS74]. The distinctions are analogous
to the differences among various reducibilities of recursion theory
such as many-one, truth-table, Turing reducibility, etc. (cf. [Rog671]).

We shall use essentially one kind of efficient reducibility
corresponding to the "strong'" reducibility (many-one or one-one) of
recursion theory. However we do use several different bounds on the
efficiency in terms of time or space to obtain four different reduci=-
bilities of this kind.

Following a definitional suggestion of Knuth [Knu74], we henceforth

refer to these particular reducibilities as "transformations'.

Definition 3.1. logspace

Let polylin denote the class of functions
poly
{ £ I f:1 = A for some finite alphabets I, A, and there is

a deterministic I0TM which computes f

within space log n
within time p(n) and spece n

within time p(n)

forA some polynomial p(n) }.

il

+ +
Definition 3.2. Let L:N —»N+. A function f:I - A is said to be

length L(n) bounded iff [£(x)] < L(|x]) for all x € |+

f is linear bounded iff thereisa c € N+ such that

[£(x)| < c|x| for all x € I+.

Definition 3.3. (Efficient transformations).

+

Let A<l , Bc A+ for some finite alphabets I, A

(A< B;, A

lo Squ—IinB; A =4 B3 A<PH) viaf

. . . + +
iff f is a function, f:1 = A , such that

+
x €A iff £f(x) €B forall x€1I, and

(< Slog) f € logspace ;

(S og-tin) f € logspace and f is linear bounded ;
f € polylin and f is linear bounded ;

(sz)

(<) f € poly Vs

Also, if eff € { log, log-lin, p¢.} then

A B iff A<
_err e

of f B and BSe A.

ff ff

Note: The transformations defined above do not change if we require the

function f to be computed by an IOTM with one work tape. Thus our

definitions are equivalent to previous definitions of Slog' Slog—lin
<

[sM73], and ol [MS72].

Remark. 1t can be seen (by counting the number of possible i.d.'s)
that an I0OTM which computes within space log n also computes within

polynomial time. Therefore A Slog B = A<SB,

<
amd A=y eulin B A Pt B,

-

The next lemma is immediate from the facts that logspace, polylin,
and poly are each closed under functional composition. 1t should be
obvious that polylin and poly are closed under composition. Lind
and Meyer [IM74] prove that logspace is closed under composition; this

proof is very similar to the proof of Lemma 3.6 to follow.

Lemma 3.4. Let € { <

b

< : < L A< B
log-lin' “p4’ J Let eff

< - _
and B =_.. C via length L,(n), L,(n) bounded £,, £, respectively

Seff log

where L2(n) i S monotone nondecreasing.

Then A Soff C via length LZ(Ll(n)) bounded f2°f1'
The following definition is of central importance.

Definition 3.5. L et6 be a class of sets, B be a set, and < be a

transformation.

(1). €<B iff A<B for all A EG.

(2. Bisl-completeing iff

(i). & < B, and
(ii). B € 6.

(3). ©€=<B via length order L(n) iff for all A E® thereis

a c ¢ N+ such that A S B via some length c.L(n) bounded

function.

All of the particular transformations described in the sequel
are members of logspace. Lind and Meyer [IM74] give a machine indepen-
dent characterization of logspace (which is similar in flavor to

Ritchie's characterizations of other subrecursive classes [Rit63])

il B

by which one can prove rigorously that our transformations do indeed
belong to logspace. However such proofs are tedious and shed no new
light on the main issues.
For this reason, we use Slog and Slog-lin only in section 4.1

where our transformations are simple enough that their membership

in logspace should be obvious. In some cases we sketch a

verification that a particular transformation belongs to logspace,
omitting many of the details by appeal to the reader's intuition about
space bounded Turing machines. For convenience, Appendix IT collects
those closure properties and particular membes of logspace which are
used either explicitly or implicitly in these verifications.

In other sections, we claim only that transformations are of
the types sz or < ; closer examination reveals that these
transformations also belong to logspace.

It is interesting to note that a few of our particular transforma-
tions can be easily modified to be computable within space zero, that is,
computable by a deterministic finite state transducer with 2-way input.
Aho and Ullman [AU70] prove that the class of zero-space computable
functions is closed under composition, and hence that

"O—Space—transformable”i s a transitive relation.

The notion of efficient reducibility was first formally defined by
Cook [Co71la] (as a "Turing" version of <), Efficient reducibility was
used as a proof technique earlier in [MM71]., Karp [Kar72] and others
have used < as a means of relating the complexities of various

combinatorial problems. It is noted in [SM73] and [Ton73]

sl

that many of the particular polynomal time reducibilities presently
inthe literature can actual |y be done within space |og n, (although
it would be suprising if poly = logspace i n general, cf. Qpen

Question 210C).

3.2 Applications to Conpl exi ty Bounds.

We shal | use efficient transfornations as a means of relating the

conput ati onal conplexities of problens. Informally, if <off is a

transformation, and A < B via f, then one can concl ude

ef f
"Conpl exity of A" <" Conplexity of B" + "Conplexity of £" .

Thus the computational resources required to accept B are "no |ess than"
the resources required to accept A provided that the resources used in
conputing f are | oworder conpared to those used in accepting B

This is nmade precise by a lemma for the case =, The

£f ~ SIog'

technical details involved in proving such a result for the case slog

are presented in [SM73] and [Jon73] . Ve reproduce a proof

sketch for this lemma here because mnor nodifications to the proof

are used inplicitly insection 33

Lemma 36 Suppose A S

and Mis a nondetermnistic(determnistic) I0T™ which accepts B

" B viafwhere f is length 1.(n) bounded,

withintine T(n) and w thin space S(n) where T(n) and S(n) are nonot one
nondecr easi ng.
Then there is a pol ynomal p(n) and nondetermnistic (determnis-

tic) IOTM's M' and M" such that:

M' accepts A within time T'(n) = p(n)-T(L(n)) and within

space S'(n) = S(L(n)) + logn;

M" accepts A within time T"(n) = T(L(n)) + p(n).

Therefore:

B € {gﬁﬁ (T(n)) = A € {gﬁﬁ}(TR + glEy)
d

an
NSPACE
DSPACE

NSPACE

B DSPACE

(S(n)) = AE€ (S(L(n)) + logn).

Proof. The obvious M", given an input x, first computes f(x) and writes
f(x) on some work tape. As was noted before, f € logspace implies that
f can be computed deterministically within polynomial time. M'" then
simulates M on input £(x). M is time T(n) bounded (on accepted words)
and is computing on the input £(x) of length at most L(|x|). Recall T(n)
is nondecreasing. M'" clearly accepts A within time T"(n).

This obvious approach mey not work for M-. The difficulty is
that M' cannot write f(x) on a work tape because 1£(x)| might be much
larger than 1log|x] + S(L([x])); however M' must operate within space
S (n). Instead, M- with input x can simulate the computation of M on
input £(x) by recording on its work tape an instantaneous description
of the computation of M, including the position j in £(x) which the input
head of M would occupy if the input to M were actually f(x).
f € logspace implies f € poly, and therefore

j < {f®)] = p (x) for some polynomial p'(n);

only c-log|x| extra work tape squares are required to record j in
binary. To simulate another step in the computation of M on input £(x),

M' computes the jtb digit of f(x) within space logl|x} and time

ym

p'(lIxl), and updates the i.d. of Maccordingly.
After an application of speedup(Fact 2;8), it is easy to see that

M' accepts Awithintime T(n) and space Sn).]

For conpl eteness, simlar results for the other transfornations
are stated next, even though we shall not have occasion to use

Lemma 3.7 inits entirety.

Lemma 3.7. Assume T(nm) and S(n) are nondecreasi ng.

. | f AspLB t hen
BE {NTTENIMm) = A€ {ﬁ%ﬁ(p(n) + T(em))
NSPACE NSPACE
B DSPACE}(S(n)) S {DSPACE‘(T ¢

+ .
for sonme constant ¢ € N and pol ynomal p(n).

2. If A<B then

B € {f;ﬁﬁ (T(m) = A€ {g’;ﬁfé}c p(n) + T(p(n))

ok {32{3285 (s(m) = A€ {;’ziﬁgg}c p(n) + S(p(m))

.

for sone pol ynomal p(n).

The proof of Lemma 3.7 is by the obvi ous approach used to
construct M" in the proof of Lemma 36

Qur next objective is to give the basic outline which the
majority of results hereinwll follow W give the outline for a

space result; a tineresult is anal ogous.

b9

Qutline 38 Let B be a particular set of interest.
: : +
(D. Choose a class # of nondecreasi ng functions fromN to Q+.
Fwll ingeneral depend on B Let

s = U NSPACE(SN)).
S(n) € %

For exanple, we nay take © = EXPSPACE or © = PCLYSPACE i n particul ar cases.
2. Prove that & <o.ff B (via length order L(n)),

wher e <o is an appropriate efficient transformation.

£f

I n nany of our exanples, the proof is anal ogous to an
"arithmetization' of Turing nachines so that questions about Turing
machi nes accepting sets in © can be transforned i nto questions about B
This of course is the nmain portion of most of our proofs.

(3). (Deduce a lower bound on the conplexity of B

Since the najority of our particular transformations are |inear
bounded, assune here that 1(n) = n

By Fact 211 (the nondeternnistic hierarchy theorem, find a
"hard" set A< S suchthat S(n) is alarge | ower bound on the space
conplexity of A; that is, A ¢ NSPACE(S(n)). A so choose S(n) to be
nondecr easi ng.

Now by part (2) above, A< ¢ B viaf, where f is length bn
bounded for sone b e N,

Ve claimthat S¢m/bl) is a lower bound on the space conplexity
of B For suppose B ¢ NSPACE(S(/n/bl)). Lemma 36 or 3.7 theninplies
A € NSPACE(S(n) T F(n)) where F(n) is the space required toconpute f.

Assuming F(n) = S(n) because f is an efficient transfornation,

=50-

A € NSPACE(2.S(n)) = NSPACE(S(m)) by Fact 2.8 (constant factor speedup).
This contradicts one condition A was chosen to satisfy, and therefore
B ¢ NSPACE(S([n/bl)).
For example, in the proof of Theorem 4,12 we have
EXPPACE < .. B. We can then choose A € NSPACE(Zn) but
log-1lin
A ¢ NSPACE((2-¢)™ if e>0, and conclude
B ¢ NSPACE(c™ where c = (2-6)1/b,
and b is such that A % . B via some length bn bounded function.
og-lin

somée .
(4). In === cases, we also show B ¢ S; thus B is se -complete

£f
in®, A completeness result in a sense pins down the complexity of B.
B €8 implies an upper bound; 6 Seff B usually provides a lower bound

as in (3).

Remark. Step (3) only requires A Seff B for the particular "hard"

set A, rather than & Seff B. However the latter general statement
is no harder to prove than the former particular statement in the cases
we consider. Also, the general statement may have other implications
for B. (See for example section 3.3.)

As noted above, the main part of the proofs which follow the
preceding outline will consist in the proof of (2). The details
involved in (3) will be given for a few results and |left as simple
exercises for others. The upper bound required for (4) will be

verified by giving an informal description of an algorithm which

accepts B.

™

For nmost exanpl es there remai n gaps between known | ower and upper
bounds on their determnistic tinme conplexity. As was nentioned earlier,
these gaps correspond to the gaps stated i n Qpen Questions 2 10,

A particular instance of this relationshipis the follow ng.
Several workers [Edm65}, [Rar72] have proposed that a probl emcan be
consi dered conputational |y "tractable" only if it can be solved by a
determnistic al gorithmwi thin polynomal tine, that is, only if it
is a nenber of ¥, The follow ng lemma can be used to rel ate the
tractability of various particular problens to the open questions
' = Np?" and "CSL < ®?". Avresult of this flavor was first noted

i n [Co71la]l.

Lenma 39 Let Seff € { slog S1og-1:i.n’ pd’

and @ be aclass of sets. If Bis <,

}= Let B be a set,

b

gg-complete in & then

BEP o SEcp .

Proof. |Immediate fromdefinitions and Lemmas 3.6 and 37 0

Fol low ng the original work or Cook [Co71la] and Karp [Kar72],
a | arge nunber of common conbi natorial probl ens have been shown to
be 4-conplete in NP (see for exanpl e [Sah72], [Set73]1, [U1173], [GJS74]);
such problens are called NP-conplete. By Lemma 3.9, either all or none
of the NP-conpl ete probl ens are nenbers of #; nmoreover, the forner case
holds if and only if ® = wvp,

W shal | nake a fewadditions to the Iist of NP-conplete problens.

I n these cases, where we show that sone particular Bis $-conplete in

«52=

NP it will be seen that an applicationof step(3 of the outline
yields only a trivial bound on the nondetermnistic time conplexity

of 3, (he could showthat B requires time va in certain cases, but
this is trivial because tine nis required just to read the entire
input.) I n these cases, step(3 of the outline can sinply be repl aced

by the statenent that B <€ iff © =N

«53=

3.3 Other Applications. T

Lemma 3.6 or 3.7 can be loosely interpreted as stating that the
property "i,o. lower complexity bound” of sets translates through an
efficient transformation. For example, as Outline 3.8. (3) shows, if
A slog-lin B and A possesses the i.o. lower bound S(n) on space
complexity, then B possesses the i,o0. lower bound S(lenl) on space
complexity for some c € Q+, (provided logn = 0(S(n))).

The field of axiomatic complexity theory (initiated by Blum [B167])
has considered many other interesting computational properties. For
example: (A). There are known to exist sets which possess no optimal
acceptance algorithm in the sense that any algorithm accepting the set
can be effectively sped up on infinitely mawy inputs; (B). There are
known to exist sets for which any acceptance algorithm consumes large
amounts of time and space on some input of length n for all sufficiently
large n (rather than just infinitely mawy n). However these properties
have previously been known to hold only for 'sets constructed by
diagonalizations or other esoteric methods.

The purpose of this section is to show that these two properties
also "translate through™ an efficient transformation and can therefore
be shown to hold for natural sets. Our am is only to prove particular

results indicative of the types of results one can obtain rather than

to give a general treatment. W concentrate attention on the space

1‘The material of §3.3 is not used directly i n the sequel.

B

measure; analogous results for the time measure can be obtained

similarly.

For the purposes of this section, assume all transformations

f mentioned satisfy |f(x)| = |x| for all x.

A. Effective 1.0. speedup.

Definition 3.10. Let A< E+ be a set of words. A possesses

S(n)-to-log effective ia_ speedup iff given any deterministic I0TM

M which accepts A one can effectively find a deterministic I0TM M'

which accepts A such that:

(D). SpaceM, x) < SpaceM(x) for all x € A ;
and (2). There exist infinitely may x € A such that
SpaceM(x) > s(lx])

and
SpaceM,(X) loglx|

Thus the nev algorithm M' never uses more space than the old M (on
accepted words), but in general uses much |ess space than M on

infinitely may inputs.

Remak. For deterministic M, we can extend the definition of SpaceM(x)
i n the obvious way to include also those inputs x which M rejects.

(In §2.1 SpaceM(x) is defined only if M accepts x). Then one can

=55«

replace (1) of Definition 3.10 by "SpaceM, x) = SpaceM(x) for all
x € 2+." The main result (Theorem 3.13) of this section is true
with respect to this modified definition of effective i.o. speedup,

although the proof requires minor changes.

Within the framework of axiomatic complexity theory, Blum [B171]
first proved the existence of sets with effective i,0, speedup. By
combining Blum's techniques with methods for constructing sets with
tight upper and lower bounds on space complexit;i,d'ohe can prove the

following.

Fact 3.11. Let Sl(n), Sz(n) be such that Sz(n) is constructable,
Sl(n) 2 logn, and Sl(n) = o(Sz(n)). Then there is a set
A€ DSPACE(SZ(n)) such that A possesses Sl(n)-to-log effective

i.0. speedup.

T¥~'Am§&biiéhed-#;9£—;ﬁ— éaet 3:11 is due to A.R. Meyer, We-remark
that the proof actually shows that A possesses "Sl(n)'to-zero effective
i,0. speedup’; this notion is defined as in Definition 3.10, where 0
replaces loglx| .

To complete the proof that the speedup property translates through
an efficient transformation, we need an additional " efficient

invertibility™ condition on the transformation.

«56=

Definition 312 Let f :-=>A. f is logspace-invertible iff f is

N .
one-to-one, and the function f 1A +Z U(u defined by

-1 [x if f£(x) =y for some x € &
£ () =
\u otherwise (where u ¢ I)

is a nenber of |ogspace.

W& now show t hat the speedup property translates through "invertible"

Slog-lin'

Theorem313 Assune A < g viaf, where f is logspace-
log=-1lin

invertible and |£(x)] = |x| for all x Let sS(n) be nondecreasi ng and

satisfy S(m) 2 logn. If A possesses S(n)-to-log effective i.o.

speedup, then B possesses S(fenl)-to-log effectivei. a speedup for sone

c € Q+.

Proof. Let A£2+, and B cat for finite al phabets Z, A.
Let M1 be any determnistic | OTMwhi ch accepts B Effectively find a

determnistic | OTM¥2 whi ch accepts A such that:
(1). SpaceMz(x) < (12t SpaceMl(f(x)) + loglx|) for all x € A.

M2 operates |ike the procedure ' in the proof of Lemma 3.6, after this
procedur e has been sped-up by a factor of 1/2 a la Fact 28

Since A possesses S(n)-to-log effective i.o. speedup, effectively

find M3 accepting A where:

B

(2). Spacey,(x) < Spacey, (x) for all x €A , and

(3). Thereis an infinite set X €A such that:
(3.1). Spacey,(x) > s(lxly for all x € X,

and
(3.2). Spacey,(x) < loglx] for all x € X.

Let £1¢€ logspace be as in Definition 3.12.
We describe a deterministic I0TM M4 which accepts B. M4 runs two
procedures M1 and Pl in parallel. Procedure Pl is procedure P1' sped-up

(Fact 2.8) by a factor of 1/3. P1l' operates as follows.

Pl', Given input y € at.
. . e -1
Begin a computation of £ “(y). If f “(y) = u, then halt.
| f f_l(y) produces an output symbol other than u, stop
computing f_l(y) and simulate MB on input f-l(y) as in the
proof of Lemma 3.6(M'). (Recall il logspace).
END R1L,

Therefore:

=3 -1
(4). Spacen(y) S (1/3)(Space (£ (v)) + logly| + loglf™ "(»)|)
for all y € B.
Given input y € A+, M4 can run M1 and Pl in "parallel” in such a

way that M4 acceptsy iff either Ml or Pl accepts y, and
(5). SpaceMA(y) < min(SpaceMl(y), SpacePl(y)) forall y&B.

(Informally, M4 uses a "new" tape square iff both P1 and M1 require
another tape square).

Now if f-l(y) # u, then f'l(y) €A e y €B. Thus M4 accepts

-58-

B correctly.

Let b €N besuch that |x]| =< |£(x)] =< blx] for all x € 4
Let c = 1/b.

We now verify that M4 satisfies the conditions of Definition 3.10
to be a S(lenl)-to-log "sped-up" version of M1, First, by (5),

Spacey, (y) = Space, (¥) for all y € B .

Let Y = £(X) = (£(x) l X € X}. NoteY isinfinite because f is
one-to-one. Also, Y £ B because f transforms A to B and X < A.
Y is the set of inputs on which M4 uses space logn while M1 requires
space S(lenl).

To verify this, let y €Y be arbitrary and let x = f-l(y),

so x €X €A, Recal cl|y| < x| =< |y]. First:

SpaceMA(y) < (1/3)(SpaceMB(x) + log|y| + loglx| , by (4) and (5),
< (1/3)(loglx| + log|y| + loglx|), by (3.2),

s loglyl, because x| = |y].
Now suppose that — Spacey;(y) < s(fely|Ty. Then:

Spacey, (x) < (1/2)(s(le|y|Ty + 10g|x]), by (1) and by assumption,
< s(]x]), by <|y] = |x]|, § is nondecreasing, and

S(n) 2 logn.

Since x € X, this contradicts (3.1) and therefore
space,, (v) > s(lely|D.

Since M1 was arbitrary, we are done. O

=59«

Corol laries like the one bel owfol | ow immediately fromFact 311
and Theorem313 For exanple, Fact 3.11 inplies that MPSPACE contai ns

some set with 2M-to-| og effective i.o. speedup.

Corol lary 3.14. Let B be a set such that EXPSPACE <

log~lin B
Assune furthernore that for all A € EXPSPACE, A < ._ B via sone
log=1lin
| agspace-invertible functionf such that [£(x)| =z |x].
There is a rational ¢ > 1 such that B possesses c'-to-I og effective

i.o. speedup.

B Lower bounds which hold for alnost all input |engths.

As was nentioned before, we shall be content to show that | ower
conpl exity bounds hold infinitely often. However, given any recursive
S(n), there is known to exist a set A such that any determnistic
al gorithmaccepting A uses nore than space s(|x]) on alLlL sufficiently
long inputs x. (Here we count space on all inputs rather than just
those x € A

It woul d be suprising to find an uncontrived exanpl e of a set with
this property since the natural exanples all seemto have "easy subcases"
whi ch occur infinitely often. For exanple, |et TAUT denote the set of
al | Bool ean fornul as i n di sjunctive normal formwhi ch are tautol ogi es.
It has been conjectured [Co7la] that TAUT ¢ #, Let X € TAUT denote
the(infinite) set of such formulas of the ferm F Vv x, V=, VG,

where F and G are formil as and xi is a Booleanvariable. A determnistic

«60=

algorithm M accepting TAUT can first check within polynomial time if
the input X isin X. M accepts immediately if X € X, or applies a
resolution procedure i f x € X. Therefore we cannot show that TAUT is
difficult on all sufficiently large inputs.

However, we can show that certain natural sets are difficult on
some input of length n for all sufficiently large n. W would then say
the set is difficult a.e. (almost everywhere) with respect to input
lengths. This question of "frequency of difficult inputs” is important,
and there are some obvious directions for further inquiry which we have
not had time to pursue. For example, although we can show that the
number of difficult inputs of length n grows unboundedly with n, we
have not been able to show that a nonzero fraction of the length n

inputs are difficult.

Definition 3.15. Let A be a set of words. A requires space S(n) a.e. n

iff for each deterministic I0TM which accepts A there is a n, €N

such that
(Vn2mn))(8x €A)[x| =n and Spacey(x) = S(n) I.
Fact 316 (Stearns, Hartmanis, Lewis [SHL65]). Let S,(n), S,(n) be
such that Sz(n) i s constructable, Sl(n) 2 logn, and Sl(n) = o(Sz(n)).
Then there is a set A € DSPACE(SZ(n)) such that A requires

space Sl(n) a,e. n.

Remark. The proof of Fact 3.17 is by a fairly straightforward diagona-
lization. The reader should be aware that by using more subtle techniques

one can construct sets A as in Fact 3.16 such that any I0TM M accepting

o

A satisfies spaceM(x) = Sl(|x|) for all but finitely may x (rather
than just one X [of each Iength).n We would then say that A requires
space Sl(n) a.e." _f‘br érbitréry“r)e‘cursive Sl(n), Rabin [Rab60] first
exhibited sets which require space Sl(n) a,e, Blumn [B167] shows that
the complexity of these sets can be "compressed", that is, one can also
place tight upper bounds (Sz(n)) on their complexity. Trachtenbrot
[Tra70] and Meyer and McCreight [MM71] show that the two bounds can be

compressed as tightly as Sl(n) = o(Sz(n)).

Definition 3.17. Let B & A+. B is invariant under padding iff there

isasymbol # €A such that y €B y# €B for all y€A+,

Theorem 3.18. Agme A < g Vviaf, where B is invariant under
log~1lin

padding and [f(x)| = |x|. Let S(n) be nondecreasing and satisfy

S(n) 2 logn. |If A requires space S(n) a.e. n, then B requires space

S(lenl) a.e. n for some ¢ € Q

Proof. Let A Slog—lin B viaf, where |x]| = [f(x)| < blx| for
ome b €N and all x.
Let M be an arbitrary deterministic I0TM which accepts B. W

describe an I0TM M' which accepts A.

M'. Given input Xx:
For s=0,1,2,3,*** do:
For j =0,1,2,3,.-¢,b|x| do:

Simulate M on input f(x)-#j,

2

A trivial modification of the proof of Lemma 3.6 shows that
this can be done within space at most
space, (£(x)-#) + log|x|) ;
If during this simulation M' detects that SpaceM(f(x)'#j) > s,
then erase everything on the work tapes except the counters
s and j, and continue ;
I f M accepts f(x)-#j, then accept x.
EM)
EM M.

M' obviously accepts A.

Define Reduce(x) = { f(x).#j | 0<j=<blx]}. Inacomputation
on input X, M' considers all words i n Reduce(x) as inputs to M.

Two facts about Reduce(x) are useful. The first is obvious. The

second follows from |x]| < [£(x)| < blx].
(1). (x€A and y € Reduce(x)) (y EB and |y] < 2b|x]|).

(2). Forn EN+, define the interval I_={ m EN| bnsms<bntnj.

Then for all n€N+, for all x EA with |x| = n, for all m € N

with m € Is there is some Yy € Reduce(x) with |y} = m.

It is helpful to picture (2) as stating that all x of length n are
mapped onto the entire interval I, If any mE I has the property that
M is "efficient" on all inputsy € B of length m, then M' is "efficient"
on all inputs X € A of length n. This is true because (if the counters

s and j are represented in radix notation),

=63=

3. SpaceM, (x) < F(x) T |og F(x) + k-log|x| for all x €A
where F(x) = min{ SpaceMw) | y € Reduce(x) }, log F(x) = space
for counter s, and kelog|x| = space for counter j and simulation

over head where k ¢ N+.

Let ¢ = 1/2b.

Suppose the concl usi on of the theoremis false. That is, assune
there is a determnistic I0TM M which accepts B and an infinite set
EcN of "easy | engt hs" such that
(4. spacey(y) <s(le|y|ly for all y €B with |y|] €E

Let E' be the correspondi ng set of "easy lemgths" for M',

E':{nEIN'FImEIn for sone mée E).

E' is infinite because Inﬂ,l #¢ for all n=z=h
W cl ai mt hat
G} SpaceM,(x) < (k+2).S(|x]) for all x €A wth |x] EE.

Thi's, conbined with constant factor speed-up(Fact 2.8), contradicts
the fact that A requires space S(n) a.e. n It remains only to prove(S.
‘Let X € A with |x] € E' be arbitrary. By the definitionof E,
together with fact (2), thereis some y ¢ Reduce(x) with |y] € E
Aso, by (L), y €¢B and c|y] < |x|]. Now
F(x) < spaceM(y), by definition of F(x),
< s(le|y|Ty, by assunption(4) because |y| € E
= s(i=xl)y, because S i s nondecr easi ng.
Now by (3),

Space, (X) < (k+2).8(lx]) because $n) = logn.

i

Therefore (5) is proved. O

As in part (A) above, corollaries mw follow immediately from

Fact 3.16 and Theorem 3.18. For example, if EXPSPACE = and

log=-lin B,
B IS invariant under padding, then B requires space c" a.e. n for some
rational ¢ > 1L

The particular method of padding (Definition 3.17) was chosen mainly
for simplicity. It illustrates the point that more information about
"frequency of difficult inputs® can be obtained.

Marry natural examples already possess, even without the artificially
added # symbol, a slightly weaker kind of padding property defined below.

This weaker property is also sufficient to imply Theorem 3.18 by a very

similar proof which we omit.

Definition 3.19. Let B < A+. B is naturally padded iff there is a

symbol d € A, a ig € N, and a function p € logspace, p;A+d* - A"',

such that:
*
(1). B.d B viap;
and log
(2. lp(y-dJ)l = |y]| + j, for all y € A+ and all integers j = jO'

However, the condition that B be invariant under some notion of
"padding" is necessary to reach the conclusion of Theorem 3.18. For
any large recursive S(n), let A < {0,1}+ be a recursive set which
requires space S(n) a.e. Nn. Define the set B by
=]

B ={ x-Olel x €A JT Y xe{®N |x| is odd }.

~-65-

Clearly A £ B, but it is easy to design an IOTM M which

log-lin

accepts B and for which SpaceM(x)= 0 for all x such that |x]

is odd.

il

e

Chapter 4. Reqgular-Like Expressions

Regular expressions are a family of notations for describing sets
of words. They were first introduced in automata theory as an alternative
characterization of the languages (sets of words) accepted by finite
state machines [Kle 56], [CEW58], [MY60]. A treatment of regular
expressions can be found in most automata theory texts, for example
[Har65], [Sal69]. [Brz62] is an early survey paper. More recently,
regular expressions have been used to define the lexical analysis phase
of compilers [6ri71], and to specify patterns for pattern matching
algorithms [AHU74] and text editors.

Given two regular expressions, one might want to determine if they
are equivalent, that is, if they describe the same set of words.
Several workers, for example [Gin67], [Brz64], have given algorithms
which solve this equivalence problem. However no deterministic algorithm
has been found which runs within time bounded by a polynomial in the
input length.

In this chapter, iater akia, we show (Theorem 4.13) that the
problem of recognizing equivalence of regular expressions has the same
time and space requirements as the problem of deciding membership of
words in context sensitive languages. Theorem 4.13 provides strong
evidence that there is no deterministic polynomial time algorithm for
this equivalence problem, or for the related problem of minimizing the

size of nondeterministic finite state automata [cf. XKW70].

-68=

There is reason to believe that the general membership problem for
context sensitive languages cannot be solved in deterministic polynomial
time. In particular, P # NP implies © # POLYSPACE iff CSL =P # ¢
[cf. Bo72]. (See the discussion following Lamma 3.9 concerning the
P versus NP question.) Because this question whether CSL - P 4 ¢
i s open, we cannot actually prove that the equivalence problem for
regular expressions is not in 6. However we can prove that

CSL -8 # ¢ iff the equivalence problem for regular expressions
is not in®; we also obtain a nontrivial linear lower bound on the
space required for the equivalence problem.

The succinctness of regular expressions is increased by allowing
the use of operations other than U, +, and *in writing expressions.

For example, the additional set operations of intersection (1) and
complementation (~) relative to ¥ are sometimes helpful. Brzozowski
[Brz64] has developed methods for handling regular expressions extended
by N and ~; in particular, his methods yield an algorithm for checking
equivalence of such extended regular expressions. However a priori
analysis of his algorithm shows that for no fixed k is the running time
2n

2+ }k .
bounded above by 2 on all inputs of length n and all n. In
section 4.2 we show that such complexity growth is inherent in the
problem. The equivalence problem for star-free expressions [MP71]

(which may use only the operations of U, ¢+, and ~) can be solved by

2
" } og, 1]
no algorithm which runs within time and space 2 if b> 3.

=69=

It immediately follows that the equivalence problem for star-free
expressions i s not elementary-recursive in the sense of Kalmar [cf. Pet67].
Ritchie [Rit63] has shown that (the characteristic function of) a set is
elementary recursive iff the set can be accepted within space

2n

2 }k
2 for some fixed k.

Apart from providing a nonelementary lower bound on a simple explicit
word problem, this result yields several interesting corollaries about
the complexity of decidable theories of formal logic. Chapter 5 is
devoted to these corollaries, each of which follows by an efficient
transformation from the equivalence problem for star-free expressions
to the decision problem for a particular logical theory. Thus these
theories are not elementary-recursive.

In section 4.1, lower bounds of exponential space and exponential
time are obtained for the equivalence problem i f the unary operation
"squaring” (defined by L2 = L.1) mey occur in expressions, even if
and ~ nmey not occur.

Regular-like expressions are regular expressions generalized by
allowing sets of operations other than the usual {U,o,*} . A particular
class of regular-like expressions is specified by a finite set Z of
alphabet symbols and a finite set ©® of operations which mey occur in

expressions.

Definition 4.1. Let Z be a finite alphabet and ® be a finite set of

symbols denoting operations on sets of words. Assume ¢ contains only

.-

unary and binary operations. Assume Z, ¢, and (2, L,)) are pairwise

disjoint sets of symbols.

We inductively define the class of Z~p-expressions and simulta-

neously define the mgp L which maps the class of Z-p-expressions to
subsets of C* If E is an expression, L(E) is the language (set of
words) described by E.
. . . T
(1). (). My is a Z=p-expression, and L(Y) = (X) .
(ii). 1If o€Z, 4o) is aZ-p-expression and L((0)) = (0}.
(2. |If Eq and E, are Z<p~expressions, then:
(i). If @€ v denotes the binary operation @,
(E, & Ez.-)v is aZ-p-expression and
L((E; @ E,)) = L(E;) @ L(E,).
(ii). 1f @ € © denotes the prefix (postfix) unary operation @,
(G,) (resp., (E@)) is a I-<p-expression and
L((@Eq) = @L(El) (resp., L((Elg D = L(El)@).
(3). That's all.

If E i s aZ=p-expression, |E| denotes the length of E viewed as

awod in @UpU{, , ,2,))*'

*
In particular, we consider cases where ¢ < { U N, «, , 7, ~}.

Binary operations U (union) and N (intersection) are familiar.

TNote: X is a formal symbol; X denotes the empty word itself. W allow A

as an expression merely as a technical convenience. A can be removed from

our proofs at the cost of minor awkwardness. See Remark 4.23.

«Flis

Concatenation is extended to sets of words in the obvious way;

Rl-Rz:(wy|w€R1 and y €R,]} forRlsRZQZ’k.

Bt - p.r® for all Kk €N,

If RcZI¥, define RO = (A} and

H mn H " H H 2
In particular, the unary "squaring” operation is R_ = R*R.
*
Unary operation (Kleene star) is mowv defined as

ok
R = U RS.
k=0

]

Unary operation ~ denotes set complementation relative to E*;
~R = Z* - R.

The set Z will always be clear from context.

To improve readability, several abbreviations are used in the text
in describing expressions. These are as follows.

Having made clear the distinction between the formal symbol @
and the metanotation @ for an operation, " " is usually dele#ted.
Similarly, we write (for (, etec.

Parentheses are used sparingly; the full parenthesization
required by Definition 4.1 is not used. Arny ambiguity can be resolved
by two precedence rules: any unary operation takes precedence over any
binary operation; concatenation takes precedence over both union and
intersection.

| f some character , say Z, is defined within the text to denote a
finite set of symbols, say Z = {0'1, Tps ***5 s then Z may be used to
abbreviate the Z-{U)} -expression (oq U o, Ue--u o) which
describes {cl, Tps *°*, crs}. Similarly (for example) Z - {cl}

mey be used to abbreviate tbe regular like expression (o, U« U L).

T Lw

Qccasional [y we let a word w € ZF abbreviate a Z-{+}-expression
whi ch describes {wy.

.Iteratedoperations such as }5 E are used to abbreviate
E,UE, U... UEL -

Two particul ar classes of expressions are used often enough to
deserve speci al notation

Recall =f=(wes*| jw =k) for k €N,

Let TF=(weZ¥| lw] =k} for k€N,

Wthin the context of regul ar-like expressions, Eﬁk] ([ka]) is an
abbrevi ation for the obvious Z-{U,-)-expression of size bounded by
7k(card(Z)), nanely,

[Zk] abbreviates Z:ZeX: -« T (k tines)

] abbreviates @ UX @ UA): -ue <@ UL (k tines).

I n nost proofs involving regul ar-1ike expressions, a najor concern

is the lengths of expressions we wite. All abbreviations nust be

taken into account when bounding the | engths of expressions.

Exanple 42. This exanpl e investigates two ways of witing a regular-
li ke expression whi ch describes (0,1} - (ob¥ | k=0).
(1). If «, *, and ~ are available, a sinple such expression is
Ey = ~((0-1)%) .
. Such an expression can also be witten using U, -, and *.
Expr essi on Fo Very sinply illustrates a technique to be used thoughout

Chapter 4
* * *

Fo=1(0UD U@UL 0U© UD -0-0 U 1.1).0 U 1y* .

“73

*
Fo describes the correct language because a word w € {0,1} is not in

((01)k | k=0} iff w"begins wrong" (i.e. begins with 1), or
"ends wrong” (i.e. ends with 0), or "moves wrong" (i.e. contains 00
or 11 as a subword).

Given a predicate P on regular-like expressions, an alphabet %, and
a set of operations ¢, we ney be interested to characterize the
complexity of deciding P restricted to Z~p-expressions. The problem of

"deciding” P is equivalent to the problem of accepting the set

P, ©) defined next.

Definition'4.3. Let P be an n-place predicate on regular-like expressions.
Define p(E, @) = ((Eys Epy *+%5 E) l Eq,Ey,vee B T€ Z~p-expressions

and P(El,Ez,-u,En) is true }.

For simplicity, we concentrate attention on the problem of checking
inequivalence of expressions. Define the binary predicate INEQ by
INEQ(El,Ez) iff L(El) # L(Ez).
In may cases we consider the special inequivalence predicate

NEC (nonempty complement) defined by

NEC(E,) iff L(E,) # =

1)
where Z is the smallest alphabet such that Eq is a Z-p-expression
for some .
For example, if E0 and F0 are as in Example 4.2, then
%
(EgsFy) € INEQ((0,1}, {~,*, ,U}) and (Fy) € NEC((0,1}, (U,+,"}).

It is obvious that NEC is a special case of INEQ in the sense that,

o Pl

*
if Z is the |anguage of some Z-p-expression, then an al gorithmwhich

accepts INEQ(Z,») immedi ately yields an al gorithmwhi ch accepts

NEC(Z,); formally NEC(Z,o) Slog-lin INEQ(Z,). A lower bound on the

conpl exity of NEC yields essentially the sane | ower bound on that of |INEQ
Hunt [Hun73a], [Hun73c] has extended our work to many ot her

interesting predicates on expressions. He gives various criteriato

determne if the generalization applies to a given predicate

For exanpl e, the unary predicates "L(E,) is cofinite", "L(E,) * Rb"

wher e RD is any particul ar unbounded regul ar set, and "L(El) is a

non-counting event [MP71]" satisfy one criterion. For these predicates

and ot hers which satisfy the criterion, P(Z,») is as conputationally

difficult as NECZ,®). 4%————-_—————_5>
The reader is referred

to [Hun73a], [Hun73c], and [HR74] for further details.

Renark. e consi der inequi val ence (rather than equival ence) problens
because such probl ens are nore anenabl e to sol uti on by nondet ermnistic
mgmﬂtmm;todmenﬁnetmﬂ:uEp #L@2L a nondetermni stic

al gorithmcan "guess™ aword in the symmetric difference

(L(E{)-L(E,)) U (L(E,)-L(E;)). (See for exanple Proposition41l)

It is then possible in-gzzsfcases to show that a particul ar inequival ence
problemis conpl ete i n sone nondet ermnistic conplexity class, whereas
it may not be i mmediate(or even true) that the correspondi ng

equi val ence problemis conplete in the cl ass because certai n nondet er -

mni stic conpl exity classes such as NP and CSL are not known to be

«75=

cl osed under conpl enent at i on.

Because determnistic time(space) classes are closed under
complement for countabl e(constructable) bounds, it is clear that a
| oner bound on the determnistic conplexity of a particular inequivalence
probl emimredi atel y gives a | ower bound on the determnistic conplexity
of the correspondi ng equivalence probl emprovided the tine(space) bounds
are count abl e(construct abl e). (The conditions of countability or
constructability are required only because our definition of conplexity
bounded set acceptance(Definition 22 places no bounds on the
resources used by the al gorithmwhen conputing on rejected words. O
course the countabl e or constructabl e conditions can be dropped if we
adopt the common definition of acceptance in which the al gorithmnust
halt within the resource bound on all. inputs.) See al so Remarks 4.20
and 4.21 for nore discussion on the determnistic or nondetermnistic

conpl exity of equival ence probl ens.

In the follow ng sections we characterize the conplexity of
accepting NEC(Z,p) or INEQ(Z,p) for various choices of Z and o.
Sections 41 and 4 2 consider Z = (0,1}, which actual |l y subsunes
all choices of finiteZwith card(@) =2 2 Section 44 contains two
results for the case Z = {0} which show that restriction to a one letter
al phabet can affect the conplexity of the inequivalence probl em

Section 41 considers several choices of ¢ from[U,o,*,2

}, and in
particul ar considers regul ar expressions as usual |y defined

@ = {U,-,*}). In section 4.2 we show that the inequival ence probl em

a3

.2
27 } rlogbn_l

if b> 3., We also investigate how the depth of nesting of ~ operations

with ¢ = [U,.,~} requires time and. space exceeding 2

affects the complexity, and find that each increase by one in ---depth

causes an exponential jump in complexity.

As was described in section 3.2, we can obtain a lower bound on
the complexity of a particular set B by showing S Seff B where Seff
is an efficient transformation and © is a suitably rich class of sets.
There i s one basic method used in section 4.1 to show & Sof f NEC (Z,%)

or © Soff INEQ(Z,») for various particular &, Z, ¢, and < In

ef £°
section 4.2 the technical details become more
complicated but the basic method remains the same, The method utilizes

the following formal notion of the computations of a STM.

Definition 44. Let M = (I,F,Q,é,qo,qa) be a (nondeterministic) STM.

Let d be an i.d. of M

PartComp (d) = { © | w= $d,$d,8d,$+++$d ,$ where d, =d and

di+1 € NeXtM(di) (and hence Idi+1l = ldil)
for all i =1,2,3,°°+,4-1),

Comp, (d) = PartCompy(d) N { w | w = aqup for some

_M -
@B € @QUTUEH 3.

Recall the convention that state a, is entered iff M is computing

-] 7=

on an input x which is to be accepted. The next fact is then obvious.

Fact 4.5. Let M = (I,F,Q,S,qo,qa) be anSTM which accepts a set A
+ + +
within space S(n) (S:N =+), Then for all x €1 ,
x € A iff Compy(q,x %S(lxl)-lxl) Z g

where ¥ denotes the blank tape symbol.

The next lemma provides a useful equivalent characterization

of CompM(d).

Lemma 4.6. Let M = (I,F,Q,é,qo,qa) be anSTM. Let d be an i.d. of M;
assume q_ does not appear as a symbol ind. Let k = |d] and
Z=QUTU(s.

Then for all w€X , w€ CompM(d) iff

(i). ("starts correctly") d is a prefix of w;

and
- " " 1 — eeoe
(ii). ("moves correctly") If wewritew = 010,050 where
Gj €2 for 1< j<m then for all j with 2 = j < m-k-2
o417 §4x+1% 14142 € (95199540
where NM is the function of Lemm 2.14;
and

(iii)« ("ends correctly")
(iiia). $ is the last symbol of w

and
(iiib). q, appears as a symbol in w,

Proof. The "only if" direction of the proof is straightforward. We

sketch the proof of the "if" direction.

Using Lemma 2.14 the following statement can be proved by induction

<78«

on the number of $*Symbols which appear in w:
. Forallwé€XZ,if |wl 2kt andw satisfies conditions (i),
(ii), and (iiia), then w € PartCompM(d).
Now assume w satisfies all four conditions. |If Jw| < k+2 then
q, cannot appear in w. |f |w| = k+3 then w cannot both end with $
and contain a, Therefore |w] 2 k+4, Now w E PartCompM(d) by the
above, and q, appears inwby (iiib). Therefore w E CompM(d) by the

definition of CompM(d). O

The proof of Lemma 4.8 soon to follow illustrates the general
method and is a prototype for most results of Chapter 4 which show

S Sege P&9) for some 6, C, 9, St g0y p e (NEC pypey,

-79-

41 Expressions Wth Sguari ng.

In this section we show that NEC((0,1},(U,-,*,2}) 18 =y . 1in"
complete i n EXPSPACE(Theorem 4.12) and that |NEQ({0,1}{U, -,%}) is
S| og-1 | n—corrpl ete in EXPNTIME (Theorem 418. It is then easy to
deduce | ower bounds of exponential space and exponential tine respectively
for these problens using the nethods outlined in section 32 A so,
NEC({0,1},{U,+,™}) is <l og-1i ,-conpl ete in CSL(Theorem 4.13) and

INEQ({0,1},(U, *}) is <, -complete in NP(Theorem 419.

lo
First, the foll ow nz fact is useful in the proofs of Lemmas 4.8
and 4.15. for any k E 1N+, usi ng squaring and concatenation we can wite
an expressi on [Zk]sq of length 0(log k) whi ch descri bes Z:k; nor eover
[Zk]sq i s conput abl e from bin(k) by a function in | ogspace.
bin(k) is defined as the binary representation of k EN without

| eadi ng zeroes unless k = Q

Lenma 47. Let Z be afinite alphabet. Thereis a constant ¢ = a(X)
+ . :
such that for any k EN there is a G(U -,2}-expression [Z?k]Sq such that
. LB) ==
and q
@) |Ef,) < alogk.
Moreover, there is a function f5 E 1ogspace with domain {0,1}+

such that fx(bin(l)) = (21 for all k ENY.

Proof. Define [Z)k]Sq inductively as foll ows:
1 2
Eeq =z ; B, = (B950? s ad B g = (2,002

for all k € NT,

=80~

It is obvious that (1) and (2) hold for some constant o(X).

The structural similarity between bin(k) and [Zk]sq should be
obvious from the inductive definition above. We | et the reader
convince himself that a suitable fZ} € logspace exists. (Alternatively,
fZ} can be defined by 2 sided recursion of concatenation (cf. Appendix II)

from functions which are trivially members of logspace.) a

Notation. Note that L([& U A)k]sq) = Egk
We use the notation [Z?Sk]S for [&ZU X)k]sq.

Lemma 4.8 is the first result which shows that a regular-like
expression can "simulate” a complexity bounded Turing machine. The

proof of thisleanmma weas first given in [MS72].

Lemma 4.8 Let A € EXPPACE There is a finite

*
alphabet Z such that A = _ Wme@iauye, ,2})-
og=-1lin

Proof. Let A € EXPSPACE By Lemmm 2.13 we can choose d € N such that

ome (nondeterministic) STM M = (1,F,Q,6,q0,qa) accepts A within space

dn

S(n) = 2 Let x € 17 be arbitrary, let n = |x|, ad

T=TUQU($ (where$ ¢T UQ).

We construct aE-{U,-,*,z}—expression EM(x) such that
dn

L(EM(X)) =3 CompM(qOXB2 n).
Therefore, (E,(x)) € NEC(Z, (U,*,*,%)) iff L(E (%)) # il
~dn
iff Comp(a x> %) #4 iff x €A

L etting fM be the function mapping x to E\{(x) for all x € I+,

g1

we shall see that fM € logspace and fM is linear bounded. Thus

A = 0g-1in NECEZ, (U,-,*,2)) via M’
By Lemma 4.6, words in L(EM(x)) can be characterized as follows:

w € - CompM(qox]éZdn-n) iff

dn

.(1). ("starts wrong") w does not begin with $q0x‘;62 s
or

(2). ("moves wrong") w is of the form aclczciaﬁcicécéy where

dn
e -1
a,y €, B € 38 , and cioéoé ¢ Ny (010,05) ;

or

(3). ("ends wrong'") w does not contain q, or does not end with $.

We now write expressions El’ E which formally describe the

22 3
sets of words (1), (2), (3) above.

If a€Z, let o denote Z~{c}.
(1) Words may satisfy (1) for three reasons.

First E11 describes all words which are "too short", that is
dn
242
By = 2 Jeg -
Recall from Leamma 4.7 that |[Z;m]sq] < Hz;sm]sq, < ologm for all m,

where @ depends only on Z. Therefore, viewing |E as a function of n,

11
IE11| = O(n) .

Second, E12 describes all words which do not begin with $q0x.

Let x=x

1X2X3' ‘ch

Ejp = (U $:(qyUage(xy Uxqpe(xy Uees ,
U xn-2'(;n-l U xn-l';{n)))"')'z .

Viewing |E12| as a function of n, note that |E12| = 0(n).

Finally, E13 describes all words longer than n+2 which do not

dn
begin with TEZ “M$ for some'T of length n+2,

82«

dn dn
_ +2 27 -n-1 - _* 42 e e
Ejy = B BT U B T s
Note |E13| = 0(n) for the same reasons given for IEILI .

Nowv | et _
Ey = Eyy UEjy) UEy4

(2'). Words (2) are described by an expression E2.
dn
[232 -1]sq serves as a "ruler” to measure the distance between pairs

UE

Subexpression

of words ©,0,0, and cicrécé which are inconsistent in the sense that

¢ N, (o See also Figure 4.1 where k = 2dn+1 is the

10203).
length of each i.d.

R T L R T T T M T PO e, VTR LS QLN SR Py
. | | | “ i&-z ! L' | ' |' o
“r ®z 9 % - "3

Figure 4.1: E2 "matches" a word w.

E, = I -(

dn %
2 01:0y70y" -l]sq.(EB = DylEfgiehy ol

U
0'10'2036 23

Note |E2| = 0(n).

(3. B = @-(g)n" U INF.

|E3| is fixed independent of n.

Now let EM(x) = E1 U E2 U E3 s
For w € =¥ we have
w & LE,(x)) iff w ¢ L(E;) and w ¢ L(E,) and w ¢ L(E

2dn-n
iff w € Comp,(q x¥) by Lemma 4.6.

3)

-83-

* dn
Therefore L(EM(x)) =x - CmpM(QOXBZ 'n) as required.

Let EM be the function with domain I defined by
fM(x) = (EM(x)) for all x € I+.
To complete the proof, we must show fM € logspace and fM is linear
bounded. The latter fact is immediate from our observation that
|E1|, |E2|, and |E3| (viewed as functions of n) are all 0(n).
Assuming fM € logspace, A Slog-lim NEC(ZI,{U,',*,Z}) via fM'

We now outline how one might formally prove that EM € logspace,
using a number of facts from Appendix II. Those readers familiar with
space bounded Turing machines may wish to skip the next paragraph.

First by Lemma 4.7 there is a function fE € logspace mapping
bin(m) to [Zm]Sq for all m. The functions mapping X to bin(le) and

x|

X to bin(2d) belong to logspace. Nw the functions

d|x]| d|x|

dlx|_

2, = bin2**e [x] - 1), a,(x) = wEad Sy 3y a,(x) = bin(2 1)

belong to logspace because addition and monus belong to logspace and
logspace i S closed under composition. Therefore, by another application

¢ ~laepr~ vmdar composition,, the functions mapping x to

[Zszdlxl-|x|-1]
sq
from x by two sided recursion of concatenation. Thus, all the

, etc. belong to logspace. Finally E12 is definable

componenets of EM(x) can be computed by functions in logspace. These
components can be combined appropriately by concatenation (E logspace)

to give Ey (%) a

Bl

Lama 4.9 Let A€ Cd. Thereis afinite

*.
alphabet Z such that A <) . ;. NEC(Z, (U,+,7}).

Proof. The proof is essentially the same as Lamma 4.8; only the
differences are sketched.

Let A€ C3 and let M = (I,F,Q,S,qo,qa) be a (nondeterministic)
STM which accepts A within space S(n) = nt+l, Let x E I+, n= |x|,
and Z=QUTU({$} as before.

Since x € A iff CompM(qox‘ni) £ 0, EM(x) i s constructed such that

L(E,(x)) = I = Comp,(q,x¥).

EM(x) is constructed as in the proof of lemma 4.8 where 2dn is

replaced by ntl, and []_ is replaced by [] (without the use of

sq
"squaring™). For example, subexpression E2 is now

Byo= I of

Y c0ye B @ - Ny(040,0,0))T .

010'2836\23 1772
Recall that [Z"'] abbreviates Z-Z-Z- --- +Z (n times). Therefore
|E2' = O0(n), Similarly one can check that the lengths of Eq and E3
(after modification) are also,0(n).
Let fM' be the function mapping x to EM(x) for all x. Then one

can prove fM' € logspace just as one proves fM E logspace in Lemm 4.8.
A=<, - . * :
log-1in NEC(Z,(U,+,™}) via £M'. O

In Lemmas 4.8 and, 4.9, the alphabet £ depends on the set A.

However we would like to show that (for example) NEC(Z, (U, -,*}) is
complete in CSL for a fixed alphabet Z. The next lemma shows that

alphabet symbols can be coded into binary. Therefore Lemmas 4.8 and

«85=

4.9 are true with Z = {0’1}‘&%?8., For convenience, mawy results to
follow are stated only for the case Z = {0,1}; these results are

actually true for any finite Z with card@) = 2

lemma 4.10. Let Z be a finite alphabet with card(@) = 2, and |et

2

‘2§§¢p = {U",*, sn}-

(D). INRQE,9) = . 15, IEQ(0,1},9).
(2). 1f also U,@* €%, then

NEC (E,Cp) Elog-lin NEC((OSI‘} ’@)'
Proof. (1). The transformation INEQ({O0,1},%) Slog-lin INEQ(Z,®) is
trivial. We only show INEQ(Z,p) < INEQ({0,11,%).

log=-1in
Let k = rlogz(card(Z}))-l. Let h be any one-to-one map,

(0,1} %

X
h = (Ol}k. Extend h as a mgp from ZE to 2 in the obvious way:

h(M) = h: h(wo) = h(wh(s) for all w e Z¥, a€Z; and
h(r) = { h(w) | we R} for RQE*.

If E is a Z4p-expression, let h(E) be the {0,1)-{p-expression
obtained from E by replacing each occurrence of a symbol a € Z in E
by the word h(c). A simple inductive proof shows that
L(h(E)) = h(L(E)) for all Z<p-expressions E.

(Eq,E,) € INFQ@,») iff (h(Ep),h(E,)) € INEQ({0,1},¢).

The function mapping (El’Ez) to (h(El),h(Ez)) i s obviously

linear bounded and a memba of logspace. The conclusion follows.

(2). Asin (1), we only show NEC(Z,®) <log-lin NEC ({0, 1},9).

14
Given an expression El let 2 be the set of alphabet symbols which

-86=

actual I yoccur in By Let € = h@) UX =(h) | c€Z) U
be the set of code words. As in part (1), for all Z=p-expressions E
*
Lh(E)) € ¢ and L(h(E)) =C iff L(E) =Z =

Let F be the {0,1}-{U,,*}-expression

k*

*
(0 U ¥y (0,137 - ¢y- (o U 1K)

F

[1}

Note L(F) = {0,13* - C*. Therefore
L((h(E;) U F)) = (0,13 iff L(E,) = v,

The reduction(2) is via the function napping E; to (h(E{) UB. [l

The next result gives an upper bound on the space conplexity of
INEQ(Z, (U, +,™}). Essentially the
sane al gorithmwas di scovered i ndependent!ly by Aho, Hopcroft, and
Ul nman [aHU74], Since | ower bounds are our nain interest, we only

outline the al gorithm

Proposition 411 . Let Z be a finite al phabet.

INEQ(Z, (U, +,™)) € CL.

Proof. Qdven two E-{U,-,* -expressions E, and E,, an IO'TMMtries to
Hoaor. } 2

1
nondeterministically '"'guess" aword w in L(El) @ L(Ez)

= (L(E) - L(Ey)) U (L(Ey) ~ L(Ey)). ¥ is guessed one synbol at a
tire. E; and E, wi |l be viewed as nondeterministic finite automata
(NFA's, cf. HU69) whi ch accept L(E,) and L(Ez) respectively. M can
simil ate these NFA's as though they were receiving w as input, and
thus determne if w belongs to L(E;) © L(E,).

An expression, say Eqs is viened as an NFA as follows. The

-

parentheses of E1 serve as the "states" of the NFA. |If Fis any
subexpression of El’ the leftmost (rightmost) parenthesis of Fis
the initial (final) state of an NFA which accepts L(F). Implicitly

the following transitions exist between "states" of El'

, N A N \
g)/""’__\\)‘\)‘(D D) g)f

(() U ()) ((R))

= H"j ~ e =

A A A A A %
O N, O Q9) s
(0] where < .
(()) (2) ()

i g e

These transitions need not appear explicitly on a work tape because

given two designated parentheses Py and Py (designated say by being

marked insome way), an IOTM can check whether or not there is an arc

from p, to P, by counting parentheses. Such a check can be performed

within time polynomial in lElf and space logarithmic in -El"
The simulation of these NFA's, E1 and E2, on w works as follows.

A parenthesis state in El (or EZ) will be marked at some time iff the

portion of w received up to that time could lead the NFA E1 (or E2)

to that state. The following procedure update(c) is used to update the

subset of marked states. update(c) should perform as follows for

a€xU(N. At the completion of a call on update(c), a state P,

is marked iff there is a state Py (possibly pq = p2) such that

t The h-self-loops are redundant, but are included for purposes

of exposition.

-88-

(i) there is an arc labelled o from py to Pys and (ii) Py Wes marked
before the call on update(c). Note update(c) can be programmed to run
deterministically in polynomial time and linear space.
M operates as follows. Given input x (with n = [x]):
(). Note that for any Z and ¢, the set of Z-p-expressions is a
context free language. W.ithin space (| og n)2 [cf. LSH65] check
that x is of the form (El’Ez) where E1 and E2 are E-{U,-,*}-

expressions. Reject if x is not of this form.

(2). Write El and E2 on ome work tape;

Mak the leftmost parenthesis of E1 and E2.

(3). Call update(N) n times.

(4). 1f exactly one of the rightmost parentheses of Eq and E2 are
marked, then accept.

(5. Nondeterministically guess a symbol o € Z;

Call update(oc).

(6). Go to (3).
M operates within space cn for some constant c. The conclusion

follows by Fact 2.8 (constant factor speedup). O

Completeness results now follow easily for the two cases

considered thus far.

-89-

Theorem 4.12, -

(1). WEC({0,1},(U,+,*,%)) is= -complete in EXPSPACE

log-1lin
(2). In particular:

(2i). There is a rational ¢ > 1 such that

NEC((0,1},(U,-,*,%)) ¢ NSPACE(c™) :

(211). NEC({0,1},(U, *,*,%)) € nspACE(2D).

Proof. First, for all A € EXPEPACE
* *

s < ¥ 2
log-1lin NEC(Z, (U, , }) <

Log-1tn NEC((0, 11, (U ", ,'])

for some Z by Lemmas 4.8 and 4.10. Therefore
*

) 2 L .o

EXPSPACE Slog-lin NEC({0,1},(U,*, , }) by transitivity of slog=-1lin
(2ii) is true because an IOTM, given a {0,1}-{U,°,*,2}—expression

E of length n, can first expand the squaring operations; that is,

replace F2 by F-F if F is some subexpression of E. This produces the

(0,1} ~{U,+,*}-expression E', where |E'| <2 and L(EY) = L(E).

The IOTM now applies the procedure of Proposition 4.11 to the pair

' * . .- n
(E',(0 U 1)). The entire procedure operates within space 0(2) and
(2ii) then follows.

(1) is now immediate by the definition of =< . —complete.

log-1lin
The proof of (2i) follows step (3) of Outline 3.8. That is,

for €> 0 let A € NSPACE(2™) - NSPACE((2-¢)"), and deduce (2i)
/b

1 - *
where c s (2-€) and Aélog-lin NEC ({0,1},(U,", ,2}) via some

length bn bounded function, See Outline 3.8 for further details. O

GO

Theorem 4. 13
(1). NEC({0,1},({U,+,™)) is =log-1in"CONPl ete in CSL.
2. | f a nondeterministic | OTM accepts NEC({O,l},[U,‘,*}) wthin

space S(n), then there is arational ¢ > 0 such that

S(n) zcn for infinitely many integers n

Proof. (1) is immediate fromlLemmas 49 and 4.10 and Proposition 4 11
) Let B = NEC({0,1} (U, +,*}). Suppose a nondetermnistic
| OTM accepts B within space $n) where for all c € Q+, & <cn
for all but finitely many n
Let S{) = max{ S(m) | m=<n }. Then B € NSPACES (n)) and
S'(n) I s nondecreasi ng.
By Fact 211 let the set A be such that A € CSL; and for all
s{N, 84(n+l) = o(n) inplies A ¢ NSPACE(S,(n)).
By part (1) above, A =; . _;;, Bvia sone length bn bounded function
for sone positive integer h Therefore, by Lenma 3.6,
A € NSPACE(S(bn) + logn). However, by definition of S(n and our

assumption ONn S(n), S'(b(nt+l)) + log(nt+l) = o(n). This contradiction

proves (2. O
Renar k 4.14.
. As was nentioned earlier (followng the definitions of

NEC and INEQ), we can imedi ately repl ace NEC by | NEQ i n Theor ens
4.12 and 4.13. [Hun73a), [Hun73c], and [HR74] give nany ot her

predi cat es whi ch are as conpl ex to deci de as NEC.

¥

@. The proofs of Lemmas 48 (49 and 4.10 actual |y show t hat
MPSPACE(resp., C3) is log-lin reducible to the inequival ence probl em
for {0,1}-{U,-,*,2}-expressi ons(resp., (01 -{U,-,*}-expressi ons) of
star-height one [cf. MP71 }, The expression E,(x) construct ed in
Lerma 48 (49 is of star-height one. Binary coding by Lemma 4. 10
does not increase star-height above one. Therefore the | ower bounds
of Theorens 412 and 4.13 also hold for the respective NEC or | NEQ
probl ens restricted to expressions of star-hei ght one.

3. Usi ng paddi ng techni ques of Ruby and Fi scher [RF65], one
can show that CSL Slog B inplies PQLYSPACE Slog B for any set B
(Hunt [Hun73a] has observed this fact using < in place of <

*
Thus, inmmedi ate fromTheorem4.13, NEC({0,1},{U,*, }) is <

1og')

log-complete

i n PCLYSPACE

W& now i nvesti gat e how removal of the * operation affects the
conpl exities of these problens. First consider '_[NEQ(E’{U’.,Z})_
Note that this is a purely finiteword problem if Eis a
Z?-[U,',z}-expressi on then L(E) is afinite set of words. |n fact,
if JE] =n, then w € L(E) inplies |w| = 2", This suggests that a
Z-{U,*,2)-expressi on cannot "simulate" a space 29" bounded STM as vas
done in Lemma 4.8 unless the expressionitself is of [ength roughly

dn
zdn; a ST whi ch operates w thin space " may run for tine 22 and

dn
thus may admt conputations of |ength 22,

However, a Z—{U,-,Z}-expr €ssi on can "simulate" a tine 2dn

bounded STM The conputations(in the sense of Comp, ()) of a

Gl

time Zdn bounded SM are of length roughly (Zdn)2 = 22dn.

The next result, presented by us previously in [SM73], was
stimulated by a remark of Brzozowski that our use of * in Lemmes

48 and 4.9 was very restricted and might therefore be removable.

Lema 4.15

EXPNTIME Slog-lin INEQ({O, 1} ’ [U’ 7 :2}) 2

Proof. The proof is very similar to that of Lama 4.8. W need only
*

find a substitute for all occurrences of Z in the expression EM(x)
constructed to prove Lemma 4.8.

+
Let A E EXPNTIME., Choose d E N such that a (nondeterministic)

STM M = (I,F,Q,é,qo,qa) accepts A within time zdn

+
A within space Zdn). Let x El,,n=|x|], and Z=TUQ U ($) as before.

(and thus M accepts

V& construct aE—[U,-,Z}-expression EM(x) such that

<b(n) 20
L(EM(X)) =Z - CompM(qoxlé)
where b(n) is specified below.
2dn- dn,.dn d
Note that E Comp(q,x¥ Ny implies o] < 27 (27 +1)t (29741

< 22dn+2’

because each i.d. in w is of length 2dn+1 and there are at most 2dn

such i.d.'s because M is time Zdn bounded; the markers $ account for
at most 2dn+1 more symbols.

Define a(n) = 22dn+2.

*
The role of Z in Lewna 4.8 is played by the expression [Zisa(n)]sq.
Construct Eq and E, exactly as in the proof of Lama 4.8, except

*
replace all occurrences of & by [Z‘Sa(n)] :
sq

=03

i . =a(n) a(n), |
Let Ey = [@-(q,N7*™] U ZM .5
Following the proof of Lamm 4.8, it can be checked that

L(El U E2 U ‘E3) contains all words in Esa(n) except those in

dn

CompM(qu‘pS -n)' L(E1 U E2 U E3) contains other words longer than

a(n); however no such word is longer than

blad = Bakny + V.4

5.
(These longest words are in L(E2).)

Therefore, we add all words w such that a(n) < |w| < b(n).

_ (n)+1 b(n)-a(n)-1
B, = BT b~

Now if EM(x) = E1 U E2 U E3 U Ea,
Zdn-n
LE,() = T - comp(qpxb° ™,
and therefore (EM(X)’[fb(n)]sq) € INEQ(ZJ,{U,-,Z}) iff x € A.
Let fM be the function mapping x to (EM(x), [Esb(n)]sq) for all
x € 1 « Following the proof of Lemma 4.8, the reader can check that

£M € logspace and fM is linear bounded. Finally the binary coding

lemma (4.10) implies the conclusion. a

Again we see that removal of the operation 2

causes an exponential
drop in complexity. The following lemma was discovered independently

by Hunt [Hun73a] (with < in place of Slog) using another proof.

Lamma 4.16

NP Slog INEQ({0,1},{U,"}).

Proof. Lemma 4.16 is analogous to 4.15 in the same way that Leymma 4.9

Gl

i s anal ogous to 4.8

G ven an STMMwhich accepts A € NPw thin polynomal tine p(n),
and given input x with n = |x], EM(x) is constructed as in Lemma 4.15
to describe =2 _ CompM(quhSP(“)'n) for some suitabl e pol ynoni al
b(n). > is repl aced by the expression [Zs(p(“)"'l)z] in this case,
and the "ruler" in E, is P11 pecall that =™ is witten as
ZeZeZe +rv <X (m tines). By Fact All.3 (Appendix 11), if q(n) is a
pol ynomal there are functions in logspace napping x to [Z}Q('lxl_)] and

to 29U 1. Further details are left to the reader. a

An upper bound on the time conplexity of INEQ(Z,{U,}) follows

by a mnor nodification to the procedure of Proposition 411

Proposition4.17. Let Z be a finite al phabet.

Proof. The set of Z-{U,*}-expressions i S a context free |anguage.
Aven input x of length n, an 10TM can check determnistically wthin

time-gn 3) [cf. Youb7] that x is of the form (El’EZ) where E, and E,

1
are 2-{U, «}-expressi ons.

Note that if Eis a Z-(U, }-expression,
w € L(E) inplies |w| =< |E|]. Therefore

L(Eq) # L(E

iff (w)[w € L(E;) @ L(E and |w] =n J.

2) 2)
The procedure of Proposition 4.11 (wth step (1) nodified as above)
t heref ore accepts INEQ(Z,{U,+}) W thin nondetermnistic pol ynom al

tine. a

95«

Theor em4 18

(1). INEQ((0,1},(U,*,%)) is Jog-1in"CONPl et e in EXPNT ME
(2). Therefore there are rational c,d > 1 such that
(21). INEQ((0,1),(U,*,%)) 4 NIDE(™)

(2i1). INEQ(({0,1},(U,*,%}) € NTDME(d™) .

Proof. (2ii) follows by elimnating the squaring operations as in
the proof of Theorem4.12, and then applying the procedure of
Proposition4.11 and 417. (1) nowfollows by Lemma 4. 15.

The proof of (2) is exactly as in Theoremé,12(21i) where

NTI ME r epl aces NSPACE O

Theor em4. 19,

I NEQ({0,1},{U,*}) is Sl_-conpl etein NP

5

Proof. The proof is immediate from Lemma 4.16 and Proposition 4.17. [

Thi s section concludes with several remarks on the naterial of

section 41

Renmark 420. (Deterministic time conplexities of these and rel ated
probl ens.)

G ven present know edge, Theorens 4.13 and 4.19 provide no
interesting | ower bounds on the determnistic tine conplexities of
NEC({0,1},(U,-,™) or INEQ((0,1},(U,-}). These results inply only
exponenti al upper bounds. Theorem4.13 inplies

NEC({0,1},{U,-,) € DTIM:E’.(dln) for sone constant d; by Fact 2.9C(b).

=96

A determnistic sinulation of the procedure of Proposition 417
yields INEQ((0,1},({U,*}) € DTIME‘.(dZn) for sone constant d,.
The exponential difference between the upper and | ower bounds
on determnistic tinmeis closely related to two inportant open probl ens

of conplexity theory, namely " = NP?" and "CSL < P?",

Corollary 4.20. 1.

(). NEC({0,1},{U,-,™)) €P iff CSLcP iff oSL G P.
0. INEQ({0,1],{U,*]) €® iff P = NP

Proof. The equivalence CSL €% iff CSLgP follows by the result
of Book [Bo72] that CSL # (D is nowinmediate fromLemma 3.9.

(2 is by Lemma 3.9 and 683 < NP. a

More generally, if aset Bis < conplete in CSL, e.g.

log-lin
B = I\EC({O,l},{U;,*}), t hen upper and | ower bounds on the determ -

nistic tinme conplexity of B are related to bounds for CSL by:

B € DTIME(T(n)) inplies c¢sL & U DTIME(T(en) + nk)
and c,k €N

CSL € DTIME(T(n)) inplies B € DTIME(T(n)),
the first inplication foll ow ng fromLemma 36
Gorollary 4,20,1(¢1) provides evidence that the probl em of
checki ng equi val ence of regul ar expressions(cf. [Gin67], [Brz64])
is conputationally intractable. (By '"regular expression” we nmean a
Z-{U,-,%}-expression. Fol | owing [Edm65], [Kar72], we call a problem
"intractable" if there is no determnistic al gorithmwhich sol ves the

problem within polynomal tine) If CSL = ® # ¢, then the equival ence

=97 =

problem for regular expressions is intractable, as are the problems
of checking equivalence of nondeterministic finite state automata
(NFA's, [cf. HU69]) and minimizing NFA's [cf. KW70]. Assuming

C4 - P # ¢, the equivalence problem for NFA's is intractable since
there are well-known deterministic polynomial time procedures for
converting any regular expression to an equivalent NFA (e.g. [Har65],
[8al69]).

To see that the minimization problem is intractable, suppose we
have a deterministic polynomial time procedure G which, when given an
NFA F, finds a smallest (in terms of numbe of states) NA which
accepts the same language as F. Let A € C3 and 'consider the following
procedure for accepting A. Given input X, construct EM(x) as in
Lemma 4.9 such that L(EM(x)) # =F iff x € A Convert EM(x) to an
equivalent NA and minimize this NEA using G. Since it is trivial to
check if a minimized NA accepts Z (it can have only one state), the
entire procedure accepts A within deterministic polynomial time.

If CSL - P # ¢, then such an G cannot exist.
There are also "gaps" in the known deterministic time complexities

of the problems with squaring. For example, Theorem 4.12 immediately

ol

w

gives a lower bound of DTIME(c™) for NEC({0,1},{U,-,
n
upper bound of DTIME:(dd) for some c,d> 1. As in the cases above,

,<}), but an

any improvement in this gap would supply new information about
Open Question2.10C for the case s5(m) € (c" | ¢> 13}, and vice versa.

Also, the deterministic space complexity of NEC({O,l},{U,',*}) is

=08~

related to the "l ba problem".

*
Gorollary 420.2 NEC({0,1},{U,*, }) € DSPACE(n) iff CSL = DSPACE(n).

Proof. Immediate fromTheorem4.13 and Lemma 36 O

Remark 421 (An alternative to the nondetermnistic hierarchy
t heor ens.)

| f one desires | ower bounds on only the determnistic tine or
space conpl exity of problems,the determnistic hierarchy theorens,
[SHL65]) and [HS65], can be used in place of Fact 211 to assert, for
exanpl e, the existence of a set A€ DTIME(2") - DTIME((2-¢)™).
The determnistic hierarchy theorens followhby fairly straightforward
diagonalizations, Whil e the known proof of Fact 2 11 requires additional
deeper "translational' argunents. For this reason, it seens worth
pointing out that the deeper results of Fact 211 are not al ways needed
to deduce | ower bounds on nondetermnistic conplexity. |In particular
we consi der nondetermnistic tine conplexity.

If Ais aset of words and Z is the snall est al phabet such that
Ac ZPJ,’ let & denote the set &7 - A

The first lemma was brought to my attention by Paul Young.

Lemra 4.21.1 (Young). Let T(n) be countable and satisfy T(n) = n

There is a set A < {0,1}"' such that

A € NTIME(n:T(n)) and A ¢ NTIME(T(n))

=90

Proof. Let (M(y) | y € (0,1}+} be an efficient effective
enumeration of the nondeterministic I0TM's such that each I0TM in
the list has two work tapes and has input alphabet {0,1}. py
"efficient effective enumeration”™ we meen that there is a universal
IOTM U and a constant ¢ such that for all x,y € {0,1}+,

(1). U accepts xfy iff M(y) accepts x,

o (ii). TimeU(x#y) < c|yITimeM(y)(x).
The standard methods of enumerating Turing machines (e.g. lists of
quintuples.[Min67]) are suitably efficient.

Nw | et

A=(ye(o,n7 | uy) acceptsy a Timey oy) < T(y1)).
¥)
Since T(n) is countable, and {M(y)} is an efficient enumeration in
the above sense, it follows that A € NTIME(n*T(n)).

Nw suppose A € NTIME(T(n)). First, implicit in [BGW70] is the
result that if B € NTIME(T(n)) then some I0TM with two work tapes
accepts B within time T(n). Therefore, for some Yor M(yo) has two
work tapes and M(yo) accepts A within time T(n). Nw

Yo € A iff M(y,) accepts y, and TimeM(yO)(Yo) < T(lygD)

(by definition of M(yo))
iff Yo € A (by definition of A).

This contradiction proves A ¢ NTIME(T(n)). O

Lemma 4.21.2. Let let A and B be sets

< < <
eff € { log-1in’ Slog’ p4? DE

of WordswithA§E+a1ngA+, and let Asef B via f, where

£

f(E+)§ p €4" for some set p. Then Kse D~ B viaf.

££

-100-

Proof. The proof is immediate from the definition of transformation

(Definition 3.3). O

Define the predicate EQUIV as EQUIV(El,Ez) i ff L(El) = L(E2).
We illustrate the use of Leammes 4.21.1 and 4.21.2 by proving an exponen-
tial lower bound on the nondeterministic time complexity of

EQUIV({0,1},({U,*,%}).

Corollary 4.21.3. There is a rational ¢ > 1 such that

EQUIV({0,1},(U,+,%}) & NTIME(c™).

Proof. By Lemma 4.21.1 let the set A € {0,1}+ satisfy
A € NTIME(n2") but A ¢ NTIME(2™). Let
D = ((El’EZ) | E, and E2 are {0,1}-{U,~,2}-expressions }u
Since A E EXPNTIME, the proof of Lemma 4.15 (with Lemma 4.10)
gives a function f such that A Slog-lin INEQ([O,l},{U,-,Z}) via £,
f is length bn bounded for some b E W, and f({0,1}+) S p.

By Lammm 4.21.2,

Allog-~in D - TNEQ({0,1},(U,* *|) = EQUIV({0,1},(U,",2}) via f.

Now let ¢ = 21/b and conclude as usual (via Lemma 3.6) that
EQUIV({0,1},(U,*,%}) € NTDME(c™) implies A € NTIME(2™) contrary

to assumption. a

Corollary 4.21.3 is of value itself because Theorem 4.18 does not
imply Corollary 4.21.3 given present knowledge. EXPNTIME iS not

known to be closed under complementation.

-101-

Remark 4.22. (Effective i.o. speedup and a.e. n lower bounds.)

It can be checked that the transformations described in section
4.1 are logspace-invertible (cf. Definition 3.12). In all cases, the
expression EM(x) i s syntactically simple enough that an I0TM can
determine within space log|y| that y = EM(x) for some x. The word
X can then be "read off™ subexpression Eq of EM(x). Fom the results

of section 3.3A and Theorems 4.12 and 4.13 we immediately obtain:

Corollary 4.22.1. There is a rational ¢ > 1 such that

NEC ({0, 1} ,(U, -,*,2}) possesses cn—to—log effective i.o. speedup.

Corollary 4.22.,2. For all rational r <1, NEC((O,l},{U,',*})

possesses nr—to—log effective i.o. speedup.

None of the sets NEC(Z,9) or INEQ(Z,p) described above possess a
nontrivial lower bound on a.e. n complexity because our syntactic
conventions imply that the length of any well-formed Z-<p-expression
is divisible by 3. However, Z<p-expressions can be "naturally
padded” (cf. Definition 3.19) to any length divisible by 3. For

example, using methods of section 3.3B we can prove the following:

Corollary 4.22.3. Let B = NEC({0,1} ,{U,-,*,z]). There is a rational

c > 1 such that given any deterministic TI0TM M which accepts B

there is an integer n, such that

0
(Vn = n, such that 3 divides n) (x € B)[|x] = n and SpaceM(x) > " 1.

-102-

Remark 4.23. (A is not needed.)

The ability to write A as a regular-like expression is not
essential to our proofs. For example, for any k € N+, an expression
[z+sk

by the rules:

+
]sq which describes { ® €Z | |w] < m } can be constructed

+<2k sk, (2
E, = (@2 us

b [E-PSZk+1]Sq i ([EKk]Sq)ZE U2 US .

[E'*'Sk]gq can be used in place of [ZJSk]Sq in the expressions
EM(x) constructed to prove Lammmes 4.8 and 4.15. Further minor
modifications to the expressions are required; the reader can easily

supply these.

Remark. One can of course investigate the complexity of NEC(L,¥)

or INEQ(Y,¥) for sets of operations ¥ other than those discussed here.
For example,. Hunt [I-Iun73};_l (seealso EAHU?A, Chapter lﬂ) considers
regular expressions extended by intersection and proves that

NEC({0, 1} ,{U, ., *,ﬂ}) ¢ NSPACE(C n/log ™ for some c¢> 1.

Hunt and Hopcroft (personal communication) have al so observed that
*

NEC({0, 1}, fu,., ,ﬂ}) € EXPSPACE. The above lower bound can be

improved slightly for the inequivalence problem;

INEQ({0, 1} A, -, "<,ﬂ})¢ NSPACE(cn/log ™) for some c> L
. We believe ‘”’m‘{ o\
A proof can be found in [Sto74] . AAcombination of the techniques in

[Hun?’.%b] and [Sto?‘ﬂ shouldlA»)‘rvield the same lower bound

NSPACE(cn/log n) alse on the NEC problem.

-103-

4.2 Expressions With Complementation.

To simplify notation in this section (and later) let g(k,r) be the

r

2

. 2° }k .
function 2 for k € N and real r. That is, g(0,r) = r and
g(etl,r) = 22057 for all k €N,

This section considers regular-like expressions with the operation
of set complementation. In particular this includes the class of
"star=-free" expressions containing only the operations U, °*, and ~.
The languages describable by star-free expressions have been extensively
studied as an interesting subset of the regular languages [cf. MP71],
For example, it is known that star—frie expressions cannot describe all
regular languages; in particular (00) is the language of no
2-{U,*,~} -expression. ,-

Our interest in such expressions is to characterize the complexity
of their equivalence problem. As was mentioned earlier, Brzozowski
[Brz64] gives an algorithm which checks equivalence of regular expressions
extended by other Boolean operations including ~,

Even though star-free expressions cannot describe all regular
languages, we shall show that they can describe certain regular
languages much more succinctly than can regular-like expressions
which use only U, *, and * In particular, a star-free expression of
length 0(n) can describe the computations of any given STM which uses

space g(rlogbnj,O) on any given input of length n. It follows that the

inequivalence problem for star-free expressions is enormously difficult

=104~

to decide; NEC({0,1},{U,+,~}) is accepted by no I0TM which operates
within space g(rlogbn-i,O) for b > 3 (Theorem 4,27).

It immediately follows that other decision problems concerning
star-free expressions are also this complex. For example, the problem
of finding a shortest star-free expfession equivalent to a given
star-free expression also requires space g(rlogbn-l,O), (cf. Remak 4.20).
See also [Hun73a]l, [Hun73c], and [HR74] for other predicates which are
as difficult to decide as NEC.

By examining a straightforward algorithm for deciding
NEC({0,1},{U,*,~}), we see wy such multiple exponential complexity
might arise. Given a {0,1}-{U,.,~}-expression E, we might first
construct a nondeterministic finite automaton (NFA) which accepts L(E)
and then check that this NFA does not accept {0,1)} *. This NA can be
constructed inductively on the structure of E by well-known methods
[cf. RS59]., However, given a NA F with q states which accepts L(El)’
to construct a NFA F' which accepts L(~El), we mey first have to
transform F to an equivalent deterministic finite automaton (DFA) F",
say by the Rabin-Scott '"subset construction" [RS59]. F'", and thus F',
might have as mawy as 29 states. T might then be incorporated into a
larger NFA which later must be mede deterministic, resulting in a OA
with 22q states, and so on. This suggests that the number of exponen-
tial functions which must be composed to yield a complexity bound is
closely related to the depth of nesting of ~ operations in the expressions

being checked for equivalence.

-105-

The relation between "~=depth" and complexity iS characterized
by another result (Theorem 4.28) which states that, for any fixed integer
k, thereisactE Q+ such that the inequivalence Problem for
(0,13-(y, -,~,*}—expressions of maxdmum —-depth k cannot be solved by
an algorithm which uses less than space g(k,cn); however this problem
can be solved by an algorithm which uses space g(k,dn) for some other
constant d. If * is not allowed, we show (Theorem 4,29) that the
inequivalence problem for (0,1} -(U,*,~}-expressions of maximum—-depth

k requires space g(k=-3,cvn) for some constant c.

Definition 4.24. Let E be a Z<p-expression and define depth(E)

inductively as follows:
depth((0)) =0 for a<€Z U\ ;
depth((E1 @ E2)) = max(depth(El),depth(Ez))
and if @€ - (~} ;

depth((El@))

depth((@El)) = depth(El)

depth((NEl)) depth(El) + 1.

If k € N, let P(Z,p,depth < k) denote the set P(Z,p) restricted to
regular-like expressions of depth not exceeding k. That is, if P

is an n-place predicate,

P, depth < k) = PE,0) N { (Ep,Ey,**,E) | depth(E) =k

for 1 <i <n}.

We first obtain some rough upper bounds on the complexity of
inequivalence problems with complementation. The algorithms utilize

the " subset-construction" together with scme ideas used in the

-106-

algorithm of Proposition 4.11.

Proposition 4.25.

(1). INEQ({0,1},(U,*,~,*}) € NSPACE(g(n,0)).

(2). For all k € N, mEq({0,1),(U,*,~,*) ,depth = k) € NSPACE (g (k, 2n)) . |

Proof sketch. Given [0,1}-{U,°,~,*)-expressions E1 and E2’ construct

NFA's which accept L(El) and L(Ez). Note that if L(Ei') i s accepted
by an NFA with 9y states for i = 1,2, then:

(i). L((El' U Ez')) and L((El'-EZ')) are each accepted by an
NA with q1+q2+2 states;

(ii). L((El'*)) is accepted by an NFA with q1+2 states;

(iii). L((~E1')) is accepted by an NFA with 2‘:11 states.
See for example [RS59] or [HU69].
It isnow easy to show by induction that if Eis a (0,1}-{U,°,~,*}
-expression and n = |[E[, then L(E) is accepted by an NFA with
< g(n-1,0) states. |If also depth(E) < k, then L(E) is accepted by
an NFA with < g(k,n) states. A description of an NFA with q states can
be coded onto an 9M tape within space O(q2) in a straightforward way.
Note (g(k,n))2 < g(k,2n) and (g(n-l,O))2 < g(n,0) for all k,n = 1
Also, given two NFA's with Q4 and a, states, by using the method

of Proposition 4.11, a nondeterministic IOTM can determine within

TBy [Sav70], the distiction between NSPACE(S(n)) and DSPACE(S(n)) is

n
essentially negligible for S(n) = 22 » For example,
oh 2n+1
NSPACE(2™) < DSPACE(2 Y. W consider NSPACE here for definateness.

-107-

space qq+q, whet her or not they accept different |anguages.

The concl usi ons fol | ow O

The next | emma contains all the technical details required to
obtain the [ower bounds. The proof of the lemma shows how expressi ons

using ~ can very succinctly "simulate" the conputations of STMs.

Lemma 4. 26. Let Mbe a(nondetermnistic) STMwhich accepts a set
A< T within space S(n). Assune # ¢ |. There are deterninistic
| OTMs T and ' whi ch conmpute functions f and £' respectively, there
Is aconstant a € Q+ and a polynomal p(all depending on M with the
followng properties.

For all x € I+ and all mz € N such that s(x]) < g(m,2):

Q. £(x#0™#0%) = E (= E,(x,m,2)) where

(). Eis a {0,1}-(U,*,~}-expression ;
(i), 1B < a3 + |x)) ;
(liii). depth(E) < m+ 3 ;

(liv). L(E) # (0,13 iff x €A ;
(Ilv) . Timey(x#0"#0%) < p(|E|) and Spacen(x#0"#0%) = |E| ,
. £1 (x#0"#0%) = E' (= Eyj (xom,2)) where
(2i). E'is a {0,1}-{U,*,~, *}-expression ;
(2) 1zl =3Pt ofixD)
(2i11). depth(E') = m ;
(2iv). L(E') # (0,1} iff X €A ;

(2v). Timeyy, (x#Om#Oz) < p(lE')) and Spacey, (x#0™#0%) < |E'| .

-108-

Before proving this lemma, we prove the main results which
illustrate its use. The first result concerns the case of

unlimited ---depth.

Theorem 4.27. For all rational b > 3:

(1). NSPACE(g([log,nl,0)) < NEC((0,1},(U,*,~)) ;
and p
(2). NEC({0,1},(U,-,~}) & NSPACE(g([log;nl,0)).

Proof. (1). Given b >3, let A € NSPACE(g(/log,nl,0)) and let M
be an STM which accepts A within space S(m) = g(rlogbc"n—],l) for
some constant ¢'" chosen so that (in particular) S(n) = ntl,

We describe a deterministic algorithm which computes a transformation
f" such that A <ot NEC({0,1},(U,*,~}) via f". Given x with n = |x],
first compute . m = rlogbc"n_l; note that this can be done in time
polynomial in n and space linear in n. Let I be the IOTM of Lemma 4.26.
Simulate M on input x#0™#0, obtaining'a (0,1} -{U,,~} -expression E.
Finally produce E as output.

Since S(n) = g(m,1), E satisfies the conditions (1) of Lemma 4.26.
First [E] < {;\(S'mm2 + n) = c'n for some constant ¢' which depends on
a b, and ¢", but not on n. Thus £" is linear bounded. Also, M
operates within time p(c'n) and space ¢'n on input x#0"#0, where .

p is a polynomial. Therefore f" € polylin. Since L(E) 4 {0,1)
iff x €A, f" is the required transformation.
(2). Asume NEC({0,1},{U,*,~}) ENSPACE(g(rlogbn_l,O)) for some

b > 3. Choose rational b',b" with 3< b <bd" < b

-109-

By Fact 2.11, there is a set A such that
A€ NSPACE(g(rlogb,ﬁT,O)) - NSPACE(g([log,,nl,0)).
By part (1) above, by Lemmma 3.7, and by assumption, it follows that
A € NSPACE(g(rlogbcn'l,O)) for some c € N+.
However, rlogbcn—l < l_logb,,n_l for all but finitely may n.
Therefore A € I\IS:ACE(g(rlogb,,n-l,O)), and this contradiction

implies the conclusion. O

Recall that Proposition 4.25 gives an upper bound of space g(n,0)
for this problem versus the lower bound of g(rlogbn-l,O) just proven.
Whether this gap can be decreased i s an open question on which we will
comment at the end of this section.

We obtain a tighter complexity characterization for the case
{U,-,~,*} by holding ~-depth fixed at some k while allowing the

lengths of expressions to grow.

Theorem 4.28. For all integers k =z 1:

(1). NEC({0,1},{U,*,~,”} depth < k) is < g-complete

in U NSPACE(g(k,dn)) ;
d €N
(2). In particular,
(2i), Thereis a c € Q+ such that
NEC((0,1},(U,*,~,*} ,depth < k) € NSPACE(g(k,cn)),

(2ii). NEC({0,1},{U,*,~,™},depth < k) € NSPACE(g(k,2n)).

Proof. First, the upper bound (2ii) required for completeness (1)

is given by Proposition 4.25.

-110-

To prove the other half of completeness, |et A € NSPACE(g(k,dn))

for some k,d € N+, and |l et the STM M accept A within space S(n) = g(k,dn).
We show how to compute £" such that

A sz NEC({O,I},{U,-,~,*},depth < k) viaf". Given X with n = |x},

set m=k and z = dn, then simulate the ToTM I' of Lemma 4.26 on

input x#Om#Oz, and produce the resulting expression E' as output.

since S(n) = g(m,z), E' satisfies the conditions (2) of Lexma 4.26.

In particular, depth(E') =k and |E'| < a(3mmzz & m2n) <c'n

for a constant ¢' which is independent of n. As in the preceding

proof, it is easy to see that f£" € polylin and that £f" transforms

A correctly.

The lower bound (2i) follows from (1) in the usual way.]

Theorem 4.29. For all integers k = 4:

(1). U NSPACE(g(k-3,dvA)) < NEC({0,1},{U,*,~} depth < k)
d €N p4

(2). Thereisa c € Q+ such that

NEC({0,1},{U,+,~} ,depth < k) & NSPACE(g(k-3,cVh)).

Proof. Proceed as in the proof of Theorem 4.28 except set m = k-3.

and z = [aval, and use M in place of M, O

We now turn to the proof of Lemma 4.26. The proof of course can
be simplified if one is content to show only that space g(k,n) is not

sufficient for my fixed k, or operation *

is allowed, or oneis
content with weaker bounds on the length and depth of EM(x,m,z) and

E‘M'(x’m’z)' A version of our proof simplified in these ways is

=111

sketched in Chapter 11 of [AHU74].
The proof of Lammma 426 is similar in spirit to the proof in [Mey'73]
that the emptiness problem for 'y-expressions" isS not elementary-
recursive, It is instructive to review one essential idea of [Mey73]
which is also used here: honv regular-like expressions using
~ and y (y is defined below) can very succinctly describe the computa-
tions of STM's.
Let M be an SM and let d be an i.d. of M with |d| = k. Recall
from the proofs of section 4.1 that, given a regular-like expression E
which describes Ek (that is, E is a "ruler'" which measures distance
k), by using E as a subexpression and using operations U, +, and *, one
can write an expression EM(d) which describes E* = CompM(d) for
some alphabet X. |f operation ~ can also be used, NEM(d) describes
CompM(d).
Nw |l et G be a particular deterministic "counting'" SIM. When
started on an i.d. of the form &qook&, G successively adds 1 to
the binary representation on its tape until 1k is obtained. G
then halts. Note that the unique computation of G on input &qook&
is longer than 2k. Therefore, ~EG(&qook&) describes a single word
of length exceeding Zl;. Nowv suppose an operation y is available
where yw) = (wW€Z | |w = lwl} for w €x’. The expression

K. Also, if

]
E' = Y(NEG(&qook&)) thus describes Ek for some k' > 2
E isS an expression such that L(E) = Ek, it isnot hard to see

(cf. Lemmas 4.8 and 4.9) that |E'| < c|E| for some constant c

=112~

independent of k. In sumary, given an expression E (a "ruler™) which
describes Z}k, one can write an expression E' (an exponentially longer

1
"ruler") which describes Ek where k- > 2k

. Moreover, |E'| < clE] '
for some constant c.

Nw starting with the "ruler” % for some z, and applying the above
construction m times, we obtain aZ—{U,-,*,~,y}-expression E which
describesZ?)e for some £ > g(m,z). Moreover, |E| = O(sz). As in
section 4.1, E can now be used as a ruler to write an expression of
length O(cmz) which simulates the computations of a given STM M,
even if M uses space g(m,z). This is a very succinct representation
of the computations of M, since ¢™z grows much slower than g(m,z) as
a function of m In particular, it follows that
NEC (T, (U, *,",~,v})) & NSPACE(g(k,n)) for all k € N,

However, if y cammot be used, difficulties arise. NEG(&qOOk&)
is a single word of length exceeding 2k. However, to continue the
construction, we need a "ruler* consisting of all words of some large
length. The solution to this dilemma, described in detail shortly, is
to write an expression which describes all cycles of a computation.
This set of cycles can then serve as a "ruler",

A preliminary lemma is useful. In the proof of Lenmmm 4.26, it
is convenient to represent i.d.'s in a slightly redundant form.

The jth symbol of the redundant form of an i.d. d contains the

th

information in the (j-l)th, j , ad (j+1)th symbols of d.

-113-

Definition 430 Let M= (I,I“,Q,é,qo,qa) be an STM, Assume
x3)+

$¢TUQ Definethemp p:(CUQT > ((TUQU () as foll ovs.

eoe e — ' 1 | B 1
If d5,8,,0o%,d; €T UQ P(dydydyeeed) = dy'd,"d, d, ' where

(3,dq,d,) if 3 =1
¥ . . »
(4 _159,5%) if j=k

Note p i S one-to-one so p'l iS a function on range(p).

r is aredundant i.d. (r.i.d.) of Miff p'J(r) is defined and

is ani.d, of M
The function Next,, IS extended to r.i.d."s in the obvious way:

If r are r.i.d.'s of M,

1°%2

¢ NextM(rl) i ff p-l(rz) € NextM(p-l(rl)).

The techni cal conveni ence gained by using r.i.d.'s is the fol | ow ng.
| f Fqsfo arer.i.d.'s, a "local check"(cf. Lemma 214) consists
of conparing the single jth synbol s of r, and r, for sone j.
Furthermore, given an arbitrary word My in ((ruQu {$})X3)+, one
can check if T, € o((T U Q+) or not by checking each adj acent pair
of synbols in ry for consistency. This is formalized in the follow ng

Lemma 4.31 which is the anal ogue for r.i.d.'s of Lemma 2 14

Lemma 4 3L Let M= (I,F,Q,é,qo,qa) be an STM Let $ be the speci al

endmarker as in Definition 4.30 above.

-114-

X t
Let T=(UQU (D - ((5,5,9).
There are functions RM:E - ZE, JM:E - 22 with the following property.
Let Ty = T19T9oT953° Ty be an r.i.d. of M,
and let T, = TyToolpg® " Toy be arbitrary,

where T15T2; €X for 1<) =<k,

Then r, € NextM(rl) iff
(1). T)s € RM(rlj) for all j, 1 <j <k,
(2). r

and

2,541 € JM(ij) for all j, 1 £ j < k-1,

Proof. JM((01,02,03)) contains all triples in Z which could
+

consistently follow (0'1,0‘2,0’3) in my word in o ((T U Q))-

For all (01,02,03) €z,

3 ((91505,03)) = { (0,,05,0) €Z| o €T UQU (%})

Ry is defined in the obvious way from the function NM of Lemma 2.14:
RM((01,02,03)) = { (01',02',03')A€ = 01'02'63' € NM(010203)}.

The simple verification that Iy and Ry have the required property

isleft as an exercise. O

TThe triple ($,$,3) never appears in aword in range(p). A technical
condition within the proof of Lenma 4.26 requires that ($,$ $) be

explicitly removed from Z.

-115-

Proof of Lemma 4.26. Part (1) is done first in detail. (2) then follows

by some minor modifications to (1).

(1). LetM= (I GM,qo,qa) be the given STM which accepts

e e
a set A within space S(n). Let x E IM+ and integers m,z E Nt with
s(|x|) < g(m,z) be given. Let n = [x],

The major portion of the proof describes the construction of a
2-{U,*,--)-expression Em_!_1 such that L(Em_*_l) # o iff x € A, where
Z is alarge alphabet defined below. The {0,1}-{U,*,~)-expression
EM(x,m,z) i s then obtained from Em+1 by appropriately coding the
symbols Z into binary. We show that EM(x,m,z) satisfies conditions
(li) = (liv) of Lemma 4.26. It will be clear from the description of
the construction that there is an 10T M which computes EM(x,m,z) from
x#0™#0% within time polynomial in and space linear in IEM(x,m,z)l ’
so that (lv) is also satisfied.

A particular deterministic "counting" STM G used here differs in
an important way from the one described earlier in the outline of the
proof for y-expressions. Namely, the halting state is never entered.

Wen started in an i.d. &qooa&, G cycles forever through the 2a

i.d.'s { &wqo& | w € {O,l}a) (with several steps taken between
occurrences of these i.d.'s to perform the addition modulo 2a)-
Also, letting D be the set of i.d.'s which occur in a computation of G

. a . .
started in &qy0 &, G is progranmed so that the particular word &qq

appears as a subword of precisely one i,d, in D. In the construction
. . . . L . a
of E o1 &qo is used to uniquely identify the initial i.d. &qoo &,

-116-

Definition of the "counting" machine (G,

G =(1,7,0,8,95,9,) where 1 =T =({0,1,8 ana Q= (q),9;,9,}.

50xT » 20TX(-1,0,1)

i s given by the following table. 9 isa
left-moving state which performs the addition. 9, i s a right-moving

state which returns to & after the addition i s completed.

8 0 1 &
%o {(a,,0,1)) ((a951,1)} ((aq,&-1)}
ay ((ay,1,1)) ((aq50,-1)) ((ags&, 1))
a, ¢ ¢ ¢

Table 4.2.1. Transition table for "counting'" machine G,

+
Also for £ EN define:
init(4) = p(&qooz&),
loop(4) = min{ j € N* | Next,(init(4), 3) = (init(8)] },
loop(£)-1
D(4) = U Next (init(4), j).
i=0

The next fact, which can be verified by inspection, states those

-117-

properties of G to be used.

Fact 426.1. For all & € N*

(1). loop(%) €N and 1loop(#) 2 2 T4 ;:

(2). Assume w € D(4). Then ($,&,q0) appears as a symbol in w
iff w=init(4). Moreover, ($,&,q0) is the first symbol of

init(4), and |init(L)| = £+3.

Nw for k = 1,2,3,¢+,m, let % = (Ik’rk’Qk’ak’qk()’qu)

be a "copy" of G; that is, Ik = Tk = {Ok,lk,&k}, Qk = {ko’qkl’qu}g
and Sk is given by Table 4.2,1 where all states and tape symbols are
subscripted with k.

£
Also, let init, (4) = P(& 9,0 %).
The alphabet symbols used in writing E .y are the following.

Zo= @QUT UGHT - ((5,8,9) for 1sksm

Zo1 = Q@ UT, U - (65,8,9)).

z ., - (#.

Note: For k = 1,2,3,¢<+*,m, 0 maps (Qk U Fk)+ into Ek+' and

7\
Rﬁ(k) and JG(k) both map Ek into 2_’k (cf. Lemma 4,.31).

Assume symbols are chosen so that Z}l, 22, 23, vee T

k2 are

pairwise disjoint.

mt2
The entire alphabet is T = U 21 .
i—=lI

-118-

k
Al so denot e Esk= U Z)i
1=1
o2
and Eék = {J E__.L "
i=k

Let S = card(z)o

For the renai nder of the proof, the "0-notation" has the follow ng
neani ng. Let fl(n,m,z,s,k) be a function of the indicated paraneters

(not necessarily depending on all the paraneters). Then 0(f,) denotes

an unspeci fied function f2 with the property that

f,(,m,z,5,5) < c-£y(nym,z,8,0) for al nymz,sk &N

+ .
where ¢ E N can be chosen i ndependently of all paraneters M,x,n,m,z,s,k.
Certai n subexpressi ons occur often within Em—l-l;
*
is nowgiven for ,these. Even though cannot be used explicitly, it
*

special notation

is possible towite a 2={U,+,~} -~expression Whi ch describes ® where

®@ €2, Frst let

L1251 =+ U#h.
By convention, ~ denotes conpl enentation relative to 2* inthis
cont(ixt. Therefore I 2 1)) =z, Asonote that
(T 1] =0(1) and depth([Z"]) = 1
| f ®§Z}, | et

*

10)1=~1Z"1.@-9).1 2"

where "Z - @" as usual abbreviates an expression equal to the union of
* *

*
the synbols in Z-®, Notethat If ®]y=0, |[[@ 1] =0(s),
*
and depth([D =2

-119-

In using these expressions within the construction of Eg4q» the
brackets [and] are deleted to improve readability. Howev*er we must
keep in mind the length and depth of the expression which ® abbreviates.

As in the outline for y-expressions, we construct longer and
longer '"rulers" in stages. The expression constructed at the kth
stage describes a "ruler" which "measures” distance d(k,z). The
numbers d(k,z) are defined as follows.

d(1l,z) = loop(z)

d(ktl,z) = loop(d(k,z) = 4) for k € NT,

Lemma 4262, For all k € Nt aqk,z) 2 g(k,2) + 4.

Proof. By induction on k, using Fact 4.26,1(1). O

The sets of words which serve as "rulers" in this construction are
more complicated than those used in section 4.1. For this reason,
it is useful to have semantic descriptions of the rulers as well as

regular-like expressions for them.
*

We now define certain words inZ which are used in these

semantic descriptions. The words i fortsks=sm and i €N

are defined inductively. Informally, one should think of C; as the

ith r.i.d. of G(k) started on initk(d(k-l,z) = 4) (although i

for k> 1 is slightly more complicated than this).

Definition of the words Cki .

For i €N, cqyy is the unique word in NeXtG(l) (init,(2z), 1)

-120-

For 1<k «ml and i €N

b

Cre1,i = “k0?11%1 A% 2%13%%3 Ok, d(k,2)-271,d(k,2)-1%,d (k, z) -1

wher e %3 EEk+1 for 1=<j < d(k,z)-1
and g = @8 Aig ot A agk,z)-1 is the unique word in

NeXtq (el (inity o (d(k,2) - 4, 1)°

The next fact gives those properties of the (e} to be used.

The fact follows fromthe definitions of d(k,z) and Ci » and Fact 4.26.1,

Fact 4.26.3 (1), For.all k, 1 =k = m-1, Wwite

Cerl,i T “ko%11%k1%12%2%13%3 T k,d(k,z)-21,d(k,2)-1%,d (k, z) -1
and & =& a8 ai’d(k,z)_1 as above.
i N
Then % € Nexta(k_l_l) (ci) for all 1 €N,

Aso, for all k, 1 <k = m

*

@ ey €@y) foral i €Nj;

3. For all i,j € N, Cpi = Ckj iff 1= (mod d(k,z)) ;
4. ($,&k,qk0) appears as a synbol in Crsi i ff i = ko

We are nowin a position to give semantic descriptions of the
sets of words which serve as "rulers". Actually, two related sets of

wor ds Sk, and Sk, arerequired at a given stage k, for 1 =k <m

-121-

Semantic description of the "rulers" SEk and SFk.

For 1<%k < m:

SEk is the set of words of the form

gj lckj 'gj I+1ck’j '+1€j l+2ck’j l+2§j l+3ck,j 1+3§j V_M e §j||ckj||§ju+1

where j" > j' and j'"™+1 = j'(mod d(k,z)), and where & € 22k+1

is arbitrary for j' <i < j"™1 ;

SFk = SEk N{w | o aPpears exactly once as a subword of w }.

th

Again if we informally describe ¢, . as the i r.i.d. of G(k),

ki
then SEk is the set of all computations of G(k) which start on an
arbitrary ij" run for an arbitrary (2 1) number of cycles, and

stop on ij" such that (if the computation were continued one more

step to Ck,j"+1) ck,j”+1 = ij,. Arbitrary single symbols from
22k+1 occur between adjacent r.i.d.'s Cki and ck, i+|in these computations,
as well as at the beginning and end of these computations. S:k i s the
set of words in SEk which are computations (in the above sense) which
-run 1;or exactly one cycle; that is, these words contain 1o exactly
once as a subword.
The major technical portion of the proof nown follows.
Z-{U,+,~} -expressions Ek and Fk for 1 < k < m are constructed
inductively such that L(~Ek) = SEk and L(~Fk) = SFk‘ Finally,

A " "
using Fm as a ''ruler", weconstruct Em_'_1 such that

® -]
LE) 7 L iff CompM(qoxhﬁd(m’z) n 2) #¢ iff M accepts X.

-122-

The reader should recall that the alphabets El, 22, 23, vee, Em-l-2

are pairwise disjoint. This fact is used implicitly several times
in the constructions below. Also note that may of the basic ideas

used in the case k = 1 are also used in the induction step.

Base k = 1,
E1 should describe precisely those words which are not in SE]_.
Ey iswritten as a mion of "mistakes"” which could cause a word to be

excluded from SEl;

By =% .U ey e
i=1

For each i, the length and depth of e and a semantic description of
L(eli) are given as comments.

First recall SE1 is the set of words w of the form (*) shown

below, where also Wi = Sy for some i' with 1 = i' < A, and

Vi1 € Ne"tg(l) (wi) for all i with 1 <i =< £-1, and w, € NextG(l) Wwy).
W=ty Wy by Wy L, Waley eee b, g oW,)
where A 2 2, ti & 222 for 0=<1i <A, (*)

+
and wiezi3 for 1<i <A

Construction 'of ell‘

*
€41 is constructed so that, for all w € Z , w ¢ L(eu) iff

w is aword of 'the form (*),

-123-

The first term of €11 describes all words which are "too short",
i.e. shorter than z+6. The last four terms together describe a language

which includes all words longer than z+5 which are not in

— z+5 L] * *I *O Ld z+3. L] .k
ey, = TP UL T UD T, uZhE, TP D
* z+2 *
T B Rl "0
leqq) = 0(zs). (Recall "Z" abbreviates an expression of length

s, and thus Z)z+3 = 0(zs).)

*
depth(ell) =1 (Recall "= " abbreviates an expression of depth 1.)
For the remainder of the construction of El' assume w ¢ L(en)

and therefore that w denotes a word of the form (%),

Construction of e, ..
L2

ey, 1s constructed so that w ¢ L(elz) iff Wy = initl(z) = S99
for some i', 1 < i' < ¢,

Let ¥1Y5¥3* Y43 = €19 Where y; € Z) for 1< = 243,
Note ¥y = ($,&1,q10) is the special symbol which appears in cy4 iff
Cy; — C19° Let —j denote (& - {yj}).

L(e12) is completely described as the union of three mistakes:

(i). 7 does not appear in w; these words are described by

*
@ - {y))
(ii). Some occurrence of v1 i s immediately preceded by some o € 21;

or

that is, y, appears in the wong place;

* %*
z Zy0vL s

=124~

or
(iii). Sone Yy is not imediately fol | oned by VoYY, Y

z+3°
t hese words are descri bed by
* — -_— o
ey ey Uyye(yg Uyge(y, U eee
o —_ *
yz+1.(yz+2 U yz+2.yz+3)))'°')'2 ‘
ey is now the union of the three expressions above.
|e12|: 0(zs); depth(elz) =2 (Recall "@& - {yl})*" abbr evi at es

an expression of depth 2)

Constructi on of €qq

eqq is constructed so that w ¢ L(eys) iff w contains no pair
of adjacent triples 0150, & El whi ch are inconsistent in the sense

Ty & 351y (9P~

ey = I U_0r@y = Jgqy©@) I

c €
1

|e13| = 0(1); depth(e

Constructi on of s

Assumng also that w ¢ L(e13), €1 is constructed so that
w £ e 14) iff o "noves correctly", that is, Vi1 € l\bxta(l)’w)
for all i, 1 <i < £-1, such that W is an r.i.d, of G(1).

By Lemma 4.31, e,, can be written as

* z+3 o
ey = I o (GLEJZlo-E (2 - Rg 1y @) Yoo .

|e14[= 0(zs); depth(e14) = %,

-125-

Construction of €5

Assuming again that w ¢ L(e13) and also that wp isan r.i.d.
of G(1), ey; is constructed so that w ¢ L(e;.) iff w "loops back

correctly™, that is, LAY € Nextﬁ(l) Wy - Again by Lemma 4.31,

z+3 . .
eqs= U U .z - Rﬁ(l)(cr))-EJ“‘-cr-Ez“L"'J .

=% ® EEl

legs] = 0(z2s); depth(e;) = 1
5
N Ey = (iU:|eli).
Comparing this construction with the definition of SEq in terms
of the form (*), it should now be apparent that L(~E,) = SE,.
To construct Fy, note that a word IS not in S5 iff either
w ¢ SE, or w contains two (or more) occurrences of yq° Recall

that ($,&1,q10) appears in i iff C1; = C190° Fq can thus be written

as follows.
% % x
Fl = (El U Z '($,&1,q10)'2 '(ss&l,qlo)'z)0

Clearly L(~F1) = SFl.
To summarize the length and depth of Eq and Fy:
(12) |E1| < |F1| = 0(z2s)

(1d) depth(El) = depth(Fl) = 2

-126-

I nduction step kHH (k. <m

Assune we have the expressions Ek and e such t hat L(~E,) = SE,

and 'L(~Fk) = ST, .
Ek+1 is constructed first. The constructionis simlar to the
base case; the details are slightly nore involved. Again,

5
w1 = ¢ L_J St)
i=0
iswitten as a union of "mistakes",
Recal | ($,&k,qk0) is the special synbol which appears in i

iff 1=o0(md d(k,z) iff ey =c,. Letu= (5,8,q9,.

Construction of €1

90.
*

X
&t1,0 = E Y Gge - (u)) Ty gD .
VW claimthat w ¢ L(ep 1 o) iff w can be written in the form
(%) below (The portion of (**) preceding ";" denotes a

singl e word formed by concatenating the rows in order.)
Lo

o x0 T11 ®k1 T12 k2 T13 %3 °°° ®k,d(k,z)-2 T1,d(k,z)-1 Sk,d(k,z)-1 F1

°k0 T21 ®k1 F22 k2 23 %k3 °°° Sk,d(k,z)-2 T2,d(k,z)-1 ®k,d(k,z)-1 "2

°k0 Ti1 “k1 Ti2 k2 Ti3 %k3 °°° Sk,d(k,z)-2 Ti,d(k,z)-1 ®k,d(k,z)-1 i

ko T1 k1 T2 k2 43 k3 Cr,d(k,z)-2 T2,d(k,z)-1 ®k,d(k,z)-1 4 °

where £ =z 1, and e X for 0=s1i<4,1<j <d(k,z)-1.

12713 ¢ Sl

-127-

Assume w & L(ek+1,0)’ First, w € L(NER) and therefore w € SEk'
Therefore (in particular) Glckj'GZ is aprefix of w for some j' and

The second term of ensures that
some 04,0, € 2, 4. 96+J0 :

Chey? = Co by Fact 4.26.3(4), and because Cri € (Esk) for all i,

and 2 and Z.41 are disjoint.

lek+1,0| =]Ekl + 0(s): depth(ek+1,0) = max(depth(Ek),Z).
Until further notice, we assume w ¢ L and therefore
7 (&1, 0

that w denotes a word of the form (*%),

Construction of a1 1"

ek+1’1 is constructed so that w ¢ L(ek+1,1) iff Az 2, and

t1622k+2 for 0=<1ix< 4, and r,

l<i<pA 15| <dk,z)-1.

I €2k+1 for all 1i,j,

The mistake "4 < 2' occurs iff w contains only one occurrence of c
* *
@ = (u}) eue@ - (u}) .

NE

_“The mistake "ti € 2k+1” occurs iff, for some o € 2k+1’ either

o immediately precedes an occurrence of c, . or o is the |last

k0
symbol of w:

* * e % *
Bty Gy lig) Bl VB L, .
The mistake "rij € 22k+2" occurs iff some symbol in 22k+2

immediately precedes c, . for some j # O:

Kj

* % <k
LoBopyp @ge = (W) Ty T

-128-

Then ek+1’1 is the union of the three expressions above,

= 0(s); depth = 2,
oy 1] = 008)s deptiibery. 4)
For the remainder of the construction of Ek-l-l’ assume

w ¢ L(ek+1,0 U e.k+1’1) and therefore that w denotes a word of the

form (%%*%) below.

w = (%)

€0 %o T11 %k1 T12 %k2 T13 k3 Ck,d(k,z)-2 T1,d(k,z)-1 %k, d(k,z)-1 °

0

°x0 21 k1 T22 k2

k0 Ti1 k1 Ti2 k2

0

°ko Tl Skl o2 k2 T43 k3 777 Ck,d(k,z)-2 T4,d(k,z)-1 ®k,d(k,z)-1

i for 1<i< g

ad 1 =T, i3 '’ r]‘.,d(k,z)-l ?

r
i il

i2

where A 2 2, t; € Ezk+2’ and rl.,. € Zk+1 for 0<1i=x<4,

1< j <dk,z)-1,

Construction of el 0"

ertl. 2 i s constructed to ensure that w contains a copy of the

b

initial r.i.d., of G(k+l) started with d(k,z)-4 zeroes, That is,

w ¢ L(ek_|_1 o) iff Ty = initk+|(d(k,z)-4) for some i', 1< 1i' < £,

The construction is analogous to that of e12 given above,

k3 Ck,d(k,z)-2 F2,d(k,z)-1 ®k,d(k,z)-1 ©

Ck,d(k,z)-2 T1,d(k,z)-1 Sk,d(k,z)-1 ©

1

2

i

K

-129-

Let ¥y = ofp1%041,000 Y2 = Be1o e, 00Ot

0 0

3 = (e, 00017 %) Yo = Opepno 012 Ot

Y5 = Oi150410 %0010 Y6 = Opqro 109
*

so that init, 4 (d(k,z)-4) € Y1Y9Y3Y, Y5V g
For 1<j <6 let ;5 denote (&, - {yj}).
L(ek+1,2) i s described as the union of four mistakes:
(i) « ¥4 does not appear:
@ - (30 s
(ii). Someyy is immediately preceded by ckj for some j # O,

that is, ¥, appears in the wrong place:
* * *
oDy Cg - (0) ey T

(iti), If rij=ylforsomei,j, then .

Fi,i+1Tivj+2 " Ti,d(k,2)-4T1,d(k,2)-3 £ ¥,957, ¢
3 * - k-
Zoym@g) (yy Uyy @g) (v,
* — * * *
Uy Cgun) V4 Caur) B’ B B T
*
L)) T 3

(iv). Ifr,, = ¥4 for some i,j, then ri,d(k,z)-zri,d(k,Z)-l # YsYgt

1]
% % - —
z .yl.(ESk+1) '(ys'(zsk)*'y6 U y6)’(2§k)*'22k+2'2* .

Note that in (iii) and (iv), with w in form (%**x), if v matches
rij for some i,j, then Ezk+2 must match t. Also, each (25k> can
only match ij' for some j's

-130-

Now ek+1,2 is the union of the four expressions above.

The fact that w is in form (**%) verifies that
L(. * '
w & H41,2) Lff 1y, € yi¥,¥,Y,y5y, for some i

iff Ty = initk+1(d(k,z)-4) for some i'.
|ek+1,2| = 0(s); depth(ek+1,2) = 2,

Construction of €11 3°

ek+1,3 prevents inconsistent triples. That is, w € L(ek+1,3)

iff w contains no "adjacent™ triples r; r » Which are

it 1,341

inconsistent in the sense ri ,j+1 ¢ JG(k+1) (I".L_]) .

* * *
1,3 Z°C U 0o @) -Gy - Jgqeany @) 1T
> - 2 P .
kt+l
*
With @ in form (**), (&) can only match some Cpq®
Therefore, w ¢ L(ek+1,3) iff ri,j+1 € JG(k+1)(r1'J) for all i,j,

with 1 zi <4 and 1< | < d(k,z)-2,

41,31 = O(8)5 depthley, 5) = 2.

Construction of ek_|_1 4*

%6+]4 ensures that the moves of G(k+1) are described correctly
by successive ri's in w,

First we need the following fact: If wisin form (***) and

w = apy for some «,B,y E E*, then B E SFy iff either
B = rijTri+1,J. or =t Tt . for somei,] EN ad some™ EZ".

This can be seen by inspection of form (**%*) and the semantic

-131-

description of SFk’

starting arbitrarily.

that is, SFk i s one complete cycle of the {ckj]

W wish to write e ., , such that © ¢ L(ek+l 4) iff
’ 3

ris1,5 € Roee1)(Tyy for all i,j. Ve use the preceding fact about

— 1 " 2 1"
w = ¢fy to locate and constrain "adjacent" symbols rij and IO

The constraints forced by the expression below will not apply to

£,y € Dopyp While rig*Tee1,j € Frs

Since L(~Fk) = SFk by induction, ek 1,4 could be written as:

t;>t;,q Since t,
+

* *
' = & -(~Fkﬂ G)Z

where ¢=(U 0-2*'(2 = R(I(k+1)(c)))
o

€L

By De Morgan's law, e' is equivalent to
e" = E*CN(Fk U rvG)IE* .
Now note the following two facts.

(i). Using only the definitions of the operations on words ad

the fact that Rﬁ(k+1) mapsZk_H_ into ZE, the following expression

can be shown to describe L(~G).

* g
AUZU @ - Zk_l_l)-E u U D> 'RG(k+1)(c) .

SR

(ii). AU ZCc L(Fk).

Therefore €' can be written equivalently as

* * * *
kt1,4 LB U @-Z5,)T U ooz R sty O yE .

U
c €4

-132-

Assuming also that w ¢ L(ek+1 305 by Lemma 4.31 we have that
s

w ¢ L(e for all i, 1 < i < £-1,

k+l,4) 1ff T € NeXtG(k+1)(ri)
such that r; is an r.i.d. of G(ktl). (Recall that w ¢ L(ek+1’2)

ensures that oo is an r.i.d, of G(k+l) for somei’, 1 < i' < £.)

= |F| +0(s); depth(e = max(depth(F,),1) + :

€1, 4l Yebd, 47

Construction of ek+1 5

€41, 5 Ensures that w "loops back correctly™, that is,
?
that rp € NeXtG(k+1)(rE)'

First note another obvious fact: If w = tooszta for
*

ome o,y € (ESk+1) ,

B =tyTtg1 for some j € N and some T € E*. This follows from the

then 8 € SEk iff either B = rlerzj or

semantic description of &, , together with the facts that

k’
Eatyy ST and Iy N T 0 g,

We'wish to write ek_l_l’5 such that w ¢ L(ek+1,5) iff

rlj € R(I(k+1)(rf,j) for all j, 1= j < d(k,z)-1, Thus since

L(~Ek) = SEk’ ek+1,5 could be written as:

I Gy (BN U @ - Rg (b)) 0 D Gy T -
0 € Ry

As in the construction of etl above, this expression can be
]

written equivalently as:

* *
el 5 = & Cggend U E, VR @ =T,)

* *
U U Ry @ Z 20) Cqyy) T

o€l

-133-

Assuming also that w ¢ L(e ,q 3) and that ry is an r.i.d. of
?

GQetl), © 4 1 1£f 1, € Nextg(ktl) (xd).

ekl 5)
legs1, 5! = |E, | + 0(s); depth(ey; 5) = max(depth(E),1) + 1.

5
Finally, B = ¢ ;jo pil,i
*

To summarize the construction of Ek+1’ assume w € % is

now arbitrary. w ¢ L(E,) iff
wis aword in form (*%%),

and o

and ryq € Nextg g qy(r;)
and ry € NeXtG(k+1) (r'e’) .

But (ignoring the {ti)), the rows of (¥*%%) are therefore just

= initk+1(d(k,z)-4) for some i', 1 < i' < £,

for all i, =i =< A-1,

“RHL, i Sl L Sl 20 T, ey, TOF SOMe T 3T with

Ck+l, ™1 =~ Sktl,§' (dee. ™1 = §' (mod d(k+l,z))).

It should now be apparent that L(~Ek+1) = SEk+1'

_The construction of F +

kel 1S analogous to that of Fl'

. - *. L] *. L] *
Pt = By UZ - Baligatiyy 0)'Z o0y, 007)

Clearly L(~Fk+1) = SFk+1'

The length and depth of E and F 1 are given by:

kt+1 kt+
@8 Byl < IFpgl = 25] + 1R] +06s) 3
(2d) depth(E, ;) = depth(F, ;) = max(depth(E,),depth(F,),1) + 1.

-134-

The relations (1£), (1d), (24), (2d) imply:
k 2
IE) < IF, | = 0(3e%)
and for 1 < k < m,

depth(E,) = depth(F,) = k +1

Final stage mtl.

Em’l_1 1S now constructed such that

d(m, z)-n-2

LEE..) #Z° 1ff Comp, (q.x¥) # 9.
mt+1 M0

Recall that M accepts A within space S(n), and S(|x|) < g(m,2)
by assumption. Also, g(m,z) < d(m,z)~4 by Lamma 4.26.2.
LI
Therefore L(Em+1) #2 iff x €A

5

Wewrite E_ .4 = (ilflo eml,i)°

: e and
Construct e and entl, 1 exactly like "k+1,0 ®k+1,1 above

mt1,0

where Kk = m Then w ¢ L(em_'_]_’0

Ue iff wis aword of the

o1, 1)
form (*%%) where k = m

IEmI + 0(s); depth(e

mh1,0) = max(depth(E),2).

lept1, 0!
|em+1’1| = 0(s); depth(em_'_l’l) = 2,
For .the remainder, of the construction of Em+1, assume

and therefore that w is a word of the form

W e Llen oY o)
(*¥*%%) where k = m. Also let T15TysTq,%"%,T, be as in (¥*%),
em_l’2 is constructed so that
. d(m,2z)-n-2
w € I"(em—!-l 2) i ff rl = p(qOX‘hs ’))°

-135-

The construction is similar to and somewhat simpler than the

construction of ek+1,2 above.
Let x = X X Kqt oK . Let ¥9,¥95Y35°°"5Y 14 € Z}m+1 be such that

d(m,2z)-n-2 *
p(q,x¥) € ¥9¥5Y5 Y oV i3 nd

That is, Yy < ($,q0,x1), y2 = (qO’Xl’Xz)’ Y. = for 3<i<n,

17 (Fyope¥i15%g)

yn+1 = (xn_l,xn:w), yn+2 = (xnsM’B)Q yn+3 = (B:“s“), yn+4 = (%su,$)°

For 1 < j < nth, let ¥4 denote (&_; ~ {Yj})-

* - * - T
em+1,2 = EIIH‘Z.(ES‘[II) '(Y1 U yl'(ESm) '(Y2 u yZ’(ESm) '(Y3 k) e

B = % — *
et U yn+1'(zsm) ‘(Yn+2 U yn+2'(25m+1) 'yn+3’(2sm+1) x

* *
T @) T) ee) T

% - * *
U 20 @) Vo C) T -

*l
The argument that w ¢ L(em+1’2) i FF Ty €V 9300y oY 1aY 1

IS analogous to the one given above for ek+1,2’

To bound the length of em+1,2, ;ecall that

* . 03
”(Esm) " abbreviates ~(T 'izznn-l-l) D 3‘,
"(Esm_l)*” abbreviates ~(T -(22m+2)-z),
"o abbreviates ~U#, and 2m+2 = (#.
| -

Let s' = card(22m+1).
Then |em+1,2] = 0(s"n); depth(em+1’2) =2

Also note that only alphabet symbols from EZm—I—l appear within
entl. 2° This fact is used below to obtain an improved bound on the

2
length of n1,2 after the alphabet symbols have been coded into

=136~

binary. In particular, we wish to bound the length of the coded

version of e

w1, 2 by cn, where ¢ depends on M but not on x, m, or =z,

and e

Construct e 1.4

mt+1,3 k+1,4
where k = m and JM (1%4) replaces JG(k+1) (RG(k+1))' By the discussion

exactly like €1 3 and e above,
b}

concerning ek+1’4, it then follows that w ¢ L(em+1’B U em—|-1,4) iff

ri+|€ NextM(ri) for all i, L < i < £-1, such that r, isan r.i.d,
of M. Of course, since w & L(em+1’2) ensures that r, isan r.i.d.

of M, we conclude that r.

|+I€ NextM(ri) for all i, 1< i < £=1,

lem-!—l,3l = 0(s); depth(em_l’3) = 2,

lema, sl = IF | + 0(s); depth(e 1 ,) = max(depth(F)),1) + 1.

Finally w ¢ L(em_'_l,s)

(Recall the acceptance convention for STM's.)

iff w contains the symbol ($,qa,B).

em+1,5 = (E = {(ssqe,}‘)})*

lem—l—l,Sl = 0(s); depth(em_'_l,S) = 2,

5
Let Eml—(.U em+1’i).
i=0
Asume © €Z° i's now arbitrary. Now
w ¢ L(E_,,) iff w is of the form (¥**%) where k = m
m+1 and
ry = 0(qup? MH 2
and
. ri+|€ NextM(ri) for 1< 4i < 2=1

($,9,,¥) appears in

-137-

iff M accepts x within space d(m,z)-2

iff x €A,

- e .
Therefore L(Em-l-l) % iff x €A

The next Lema 4.26.4 describes a coding of many alphabet
symbols into binary in the case where ~ appears in expressions.
There are of course several alternative methods of coding, some of
which are simpler to prove correct than the one given here. This
particular method of coding is chosen to obtain a better bound on the
length of the coded em+1,2
on the length of EM(x,m,z).

as described above, and thus a better bound

Lema 4.26.4. There is a constant ¢ > 0 such that the following holds.

Let Z = {0950 e] be a finite alphabet. Let ® be

2:%3>

one of the sets {U,.,~} or {U,.,N,*) .
+

Define the mgp h:Z » (0,1} by

i
h (ci) = 10

for 1 <1i<s,
0N T § .
Extend h, h.zE + 2872 , in the obvious way (cf. proof of Lemma 4.10).
Let ¢ be the {0,1}-{U,+,~}-expression
G=((0e(~0UO0) U(OUO-1).
| f E is a Z~p-expression, define the {0,1} <p-expression B(E)
inductively by the rules:
B((0)) = (h(o)) if o €I U (N
B((E; @ E,)) = (B(Eq) @ B(E,))
1 2 1 Pte } where @ #
B((E4®)) = (B(E))®)
B((~Ey)) = (~(B(E)) UG)) .

1]

-138-

Let C=(10i | 1<i<s) be the set of code words.
Let E be an arbitrary ZJ-cp-express:'Lon;c (All occurrences of ~
in E denote complementation relative to Z .)
Then: (1). L(B(E)) N C* = h(L(E)) :
(2). depth(B(E)) < depth(E) T 1 ;

(3). IB(E)| = cslE].

Proof. (3) should be obvious by inspection. (2) is easily proved by

induction on depth(E).
*

To prove (1), let Ly = L(~¢) = (A) U 1-{0,1} .0 « Note that
*
C c Ly and that C is a uniquely decipherable code, that is, his
* *
one-to-one as a mg from Z to {0,1} .
Now by induction on the length of E, one can show that
(1). L(B(E)) < L,

(i1). L(B(E)) N C* = h(L(E)).

and

We prove the induction step for one case. Asume (i) and (ii)

hold for an expression El' Let E = (~E1) so B(E) = (~(B(E1) Uug).
*

Assume w € {0,1} .
(1). w € L(B(E)) = w € I(~(B(E¢) UG))

= we€ LCG) = LO.

(i1). w € L(B(E)) N ¢~
*

iff ©€C = L(B(E,)) because k=’
* 0

iff weEC = h(L(El)) by induction
*

iff w € h(L(E)) because h i s one-to-one on Z ,
*

ad h@®) €¢° for REZ,

-139-
*

The remaining cases, E = E1 U EZ’ E = E1-E2, and E = E1 , all
follow in a straightforward way from the facts that C is uniquely
decipherable, and that if w;,w, € Ly and wiew, E C° then w;,w, € .

0O

Returning to the proof of the main Lemma 4.26, let h and C

be as in Lemma 4.264 for the alphabet Z used to construct Enrl-l'
*

By Lemma 4.26.4(1), L(E_) #Z iff L(B(E_,1)) N c* #c,

Let s+l

H= 0¢~0 U0) U (~0 U 0)-1U (~0 U 0)-(0
*

and note L(H) = {0, - c¥ .

U 11l).(~0 U 0),

Therefore

L(B(E_) UH) $ (0,13% iff LE_) #Z iff x €A
Let EM(x,m,z) = B(Em_l) UH .
We must now bound the depth and length of EM(x,m,z).

dePth(Em—l—l) = max(depth(Em),depth(Fm) + 1,2) =m + 2
depth(B(Em—l—l)) < depth(Em—l—l) +1l=m+3 Dby Leima 4.26.4(2).

and thus depth(E,(x,m,2)) < m +3.

To bound the length of EM(x,m,z), note. that:
(i). By (x,mz)| = [BE)| + [H] +0(1) 3
(ii). "} = 0(s) ;

(1i1). 1B(E] = [Blepyq)1 + 0 5

Ut

(iv). lem+1,i' < {Fm| + o(s) fori # 2

=140~

Now (iv), Lemma 4.26.4(3), and the bound |F_| = 0(3"2%)

derived above gives

. IBleg 4| = 0(3m2282) for i # 2.

It remains only to bound the length of B(em-l-l,Z)' To achieve

the desired bound, assume Z i s enumerated so that

Zow1 = (915 055 04, <+, 04}, where s' = card(@,_,;) depends only

on M (not on x, my, or z). Therefore . ¢ sz_l_l implies |h(o)| < s'+1,
By our remarks above that |em+1,2| = 0(s'n) and that em_'_.l’2

contains only alphabet symbols in 1° it isclear that

22m+
(D). | Blegy I = 0" n)

(That is, the application of g to "expands'" each alphabet

em—l-l,Z
symbol by at most a factor of 0(s'), and "expands" each operation
symbol by at most the fixed factor |G|, cf. Lamm 4.26.4)

Combining (i), (ii), (iii), (v), and (vi) gives
IEM(x,m,z)l & O(3mz2s2 + s'zn).
Finally, note that s = s' + 0(m) because the alphabets
Zys Ty, +++, Zm are each of fixed size.
We conclude that there is a constant a (depending only on M)
such that m2 2
IEM(x,m,z)l < a(3zm + |x]) for all x, m, and z
We | et the reader supply his om argument that EM(x,m,z) can be
computed uniformly from x, m, and =z, within time polynomial in and
space linear in EM(x,m,z) + The basic argument is by induction on Kk,

noting that, given B(E) and B(FL), B(E,) and B(F,) can be

=141-

constructed within time polynomia in and space linear in their lengths.

This completes part (1) of the proof.

(2). Operation * is row available. W describe modifications
to the construction just given. For all k, construct Ek' and Fk'
exactly like E, and Fk except:

Ml). If0 €I, write 8% as (U8 U U ej)*
where @ = {61,62,---,ej). Nw @ is an expression of depth 0.

M2). In the construction of El" write subexpression e15' as:

ers' = I-Ipe(aLé o @1 Rﬁ(l)(a))-zz”-o:z*‘*)*-c)-Z .
1

Note that |e15‘| = 0(zs); depth(els') = 0.

; . z+3.d]
We claim that if w € (222-21) -222 for some £ 2 2 (that is,
ifwisof the form (%), cf. the construction of en), then
w € L(e15') iff w€ L(els).
To see this, assume w is of the form (*) and write

W= ToWaqlggWygee Wy pyg TgWo ToWa Ty eee Ly g WyqWioWi3™ "V 243 By
b

z+3

where tiEZZZ for 0 < i =< g, wiGZ)1

for 2 <1 < 4-1,

for 1 < j < z+3,
and TR Ezl)] =z

In particular, note that t,t, €Z,, and recall I ,N Z =9¢.

It ismow easy to see that

w ¢ Lie,.") . for 1 <3 < 2z+3 1ff w & L(eq,.).

142

Clearly modification (M1) does not alter the language described
by an expression. In particular, since w & L(en') iff w¢ L(ell)
iff wisof the form (*), it follows that L(~E1') = L(~E{) .

I n general, it then follbws that L(~Ek') = L(~Ek) for all k.

One further modification concerns the method of coding
expressions over alphabet Z to expressions over alphabet {0,1}.

Let h:Z - {0,1}* and C be as in Lamma 4.26.4. If Eisa
E-{U,-,~,*}—expression, define the [0,1}-[U,',~,*}-expression B'(E)

by the rules given for B(E) in Lema 4.26.4 where ' replaces. g and

G' replaces G, where * %
G'=(0(OU1l) U@UI -1)>.

Since L(G) = L(G'), the proof of Lemma 4.26.4 shows that

(1. LB'E) N c”

h(L(E)) for all E.

Since depth(G?) 0, we also have
(2). depth(B'(E)) = depth(E) for all E
Now let E '(x,m,z2) = B'(EI;H_]_) U H.
By the argument above that L(El'n+1) = L(Em+1) and by (1') we conclude
that L(E,'(x,m,2)) = L(E(x,m,z)).
The new bounds on the depth and length of EM'(x,m,z) are as follows.
From (M1) and (2'):
depth(E,') = depth(F,") =0 ;

depth(E, ;) = depth(F, ;) = max(depth(E,'),depth(F ")) +1-=-k
for 1<k <nm;

and depth(E,' (x,m,z)) = depth(E;m_l) =m (provided m = 1).

-143-

Modification (M2) gives IEl'I < IFl'I = 0(sz). The relation

(24) derived earlier remains the same, and therefore

1| < 1 m
|Em ' IFm | 0(3 s2).

0(3™sz T sn) and therefore

1
It can now be checked that lEm+1'

|Em' (x,m,z)] = 0(s(3"sz + sn))
< a(3mm22 + mzlxl)
for some constant a depending only on M.

This completes the proof of Lemmma 4.26. O

-144 -

Section 4.2 closes with two open questions concerning the complexity
of inequivalence problems with ~. The first concerns the gap between

known lower and upper bounds for NEC({0,1},{U *,~})«

Open Question 4.33. Precisely where between g(rlogbn_|,0) and g(n,0)
does the space requirement for NEC({0,1},(U, *,~}) lie?

In particular, is NSPACE(g(n,0)) < NEC({0,1},{U,*,~}) ?

In the proof of Lemma 4.26 we essentially use three occurrences

of expressions for the g(k,0) "ruler" tc construct expressiocus for the

=146~

g(k+1,0) "ruler'". Thus the size of the expression for the g(k,0)
"ruler" grows exponentially in k and we obtain only a g(logbn,O)
lower bound on the complexity of NEC({0,1},{U,*,~}). The lower
bound could be raised to g(en,0) for some constant c, thereby
settling Open Question 4.33, if one could construct an appropriate
g(k+1,0) “ruler” using only one copy of a g(k,0) '"ruler". Some of
the logical theories mentioned in Chapter 5 contain enough notational
power that only one occurrence of the formula corresponding to a
g(k,0) ruler is required to obtain a g(k+1,0) ruler and so one can
obtain g(en,0) lower bounds on their complexity. However, for the
case of regular-like expressions using U, *, and ~, or even allowing

*
as well, we are unable to settle Open Question 4.33.

For technical completeness, we would like to show that no two
out of three of the operations U,*,~ yield a nonelementary
inequivalence problem. We know by Theorem 4.27 that
INEQ({0,1),{U,*,~}) is nonelementary. The complexity of
INEQ (&, (U, .}) (where card(@) = 2) is characterized by Theorem 4.19
as being precisely NP which is certainly elementary. Also, it is
easy to see that INEQ(S,{U,~)) € P, 1If E is a Z-{U,~}-expression

then either L(E) = ® or L(E) = 2*'® for some ® < 2, Moreover,

-147- (Nate: pp. 148 to 156 ar e del eted)

such a description of L(E) can be obtained deterministically within

time polynomial in the length of E. The case { ,N} is open.

Open Question. Characterize the complexity o INEQ(Y, { ,"’})

for card(¥)2 2. In particular, is it el ementary-recursive.2

~157-

44 Expressions Qver a One-Letter A phabet.

W have seen in previous sections that the conplexity of INEQ(X,®)
or NEC(Z,») for a particular ® does not depend significantly on Z
provi ded card(@) = 2(cf. Lemma 410. Thi s section shows that the
conpl exity of a probl emcan be affected, sonmetines drastically, by the
restrictionto a one-letter al phabet.

This is best illustrated by the case ¢ = {(U,*,~}. The results
of section 42 showthat INEQZ[U <,~}) is not el ementary-recursive
if Z=1(0,1}. However, this probl embecones relatively trivial

if T =[O

Theor em4 37.

INEQ({0},{U,*,~}) € P .

Proof. The proof rests on the fact that a {0}-{U,*,~}-expressi on

E describes either a finite or cofinite set of words, and noreover
*

that all words w € {0} of length exceeding |E| are either

all not inareal in L(E). That is:

Lenma 4.37.1 Let E be a {0}-{U,-,~}-expression. Then either
*

(). (finite) For all w € {0} , w € L(E) = |w] < [E|,
or
(i1). (cofinite) For all w € [0}*, w ¢ IE) = |w = |E],

Proof. By induction on the length of E
If E=() or E=(\), thelemais certainly true.

Suppose the lemma i S true of expressions E; and E,

1

-158-

If E= (~E)), then WELE) iff ©¢L(EY, |E] < I[E]
and thus the lemma is true of E

Suppose E = (E1~E2). First suppose L(El) and L(Ez) are both
finite. Then L(E) is finite, and w € L(E) implies w = W, 0, for some
wy € L(E;) and v, € L(E,). Since |v;] < |E;] and |o,] = [E,]
by induction, |w| < IEll + |E2I < |E]. Now suppose L(El) is cofinite
and L(Ez) is finite. |If L(E2) = ¢, then L(E) = ¢ and the lemma is

trueof E If L(EZ) # ¢, then 0k

€ L(E,) for somek = |E2I by
induction. Also by induction, z > |E1| implies 0% ¢ I‘(El)

for all integers z, Therefore z > |E1| + Kk implies

0% € L(E))-L(E,)) = L(E). But |E;| + k= |E] + E,] < |E], and thus
the lemma is true of E The case i n which both L(El) and L(E2) are
cofinite is handled similarly.

The reader can check the case E = (El U EZ) in a similar fashion.

This completes the proof of Lemma 4.37.1. O

Thus if Eis a [0}-{U,',—| -expression, L(E) has a finite

representation of the form [F,t], where F& N, F is finite, t E {0,1},

{o0*] z€eFy) if t=o0
[F,t] represents
(0% | z¢F} if £=1,

and either max(F) < |[E|] or F = ¢.
Also it is not hard to see that, given finite representations for
L(El) and L(Ez), a deterministic algorithm can find a finite represen-

tation for L(E1 U E2), L(El'Ez)’ or L(~E1) within time bounded by

=159~

a fixed polynomal in lEll + |E2|. Therefore, using this al gorithm
recursively, the tine required to find a finite representation of

L(¢E) is bounded above by T(|E|) where

T(n) = max{ T(ny) T T(n,) | nyny, >0 @d nyin, <n '} + p(n)
where p(n) is a pol ynomal .
Therefore T(n) = O(n.p(n)) assumng(w thout |oss of generality)
t hat p(ny)+p(ny) < p(n) for all ny,0, > 0 with n,+n, < n.
Also, a determnistic algorithmcan check that two finite
representations describe different sets of words wthin polynomal tine.
The first step of the main al gorithm checking that x is of the
form (Eq,Ep) wher e Eq and E, are {0}-{U,*,~) -expressions, can be
done determnistically within time o(|x|%) [cf, Yous7].

The various pi eces can be put together to give a determnistic

pol ynom al tine acceptance al gorithmfor INEQ({0},{U,*,~}). a

For anot her ¢, NEC({0},p) is conpletein 2 class whichmay lie
strictly above #, The inequival ence probl emfor regul ar expressions
@@ = {U,+,%)) over a one-letter al phabet is <-complete in NP
(Recall that in the two-letter case, NEC({0,1},{U,*,*)) is

<jog-complete in POLYSPACE(cf. Remark 4.14(3)).)

Theorem4.38. WNEC({0),{U,+,*}) is$-conplete in NP

W omit the proof of Theorem4.38. A proof can be found in [SM73].

=160~

-161-

Chapter 5. Nonelementary Logical Theories

By using efficient reducibility techniques, several workers
[Mey731, [FR74], [Rob73] have obtained lower bounds on the complexities
of decision problems for certain decidable logical theories. In fact,
the first example of a provably difficult natural decision problem
was provided by Meyer [Mey73] wio showed that the decision problem for
the weak monadic second order theory of successor (WS1S) is not
elementary-recursive. Subsequently, Robertson [Rob73] showed that the
satisfiability problem for sentences in the first order language of the
nonnegative integers with < and a single uninterpreted monadic
predicate is not elementary-recursive. The purpose of this chapter
is to show that these two results and others follow as simple corollaries
of the result that the emptiness problem for star-free expressions
IS not elementary-recursive (cf. $4.2).

To simplify notation in this chapter:

A star-free expression is a {0,1}-(U,+,~}-expression;

NE(star-free) = { E | E is a star-free expression

and L(Ej #9)

Note that E € NEC({0,1},(U,*,~}) iff (~E) € NE(star-free).

The next fact is now immediate from Theorem 4.27.

-162-

Fact 51. For all rational b > 3, NE(star-free) ¢ NSPACE(g(rlogbn_l,O)).

In particular, NE(star-free) is not elementary-recursive.

In this chapter we consider several decision problems concerning
restricted forms of symbolic logic such as the two mentioned in the
opening paragraph. In each case we show that NE(star-free) is
efficiently (in particular $pz) reducible to the particular decision
problem, and thus that these decision problems are not elementary-
recursive.

The main advantage of obtaining such results as corollaries of
Fact 5.1 (rather than by a direct arithmetization of Turing machines)
is simplicity. In the cases we consider, there is a simple, easily
described transformation from NE(star-free) to the particular decision
problem, and so we mey avoid repeating for each decision problem the
arithmetization of Turing machines which we have already carried out
in terms of star-free expressions.

WSS can also play the role of NE(star-free) as a starting point
for further reductions. However, for several particular theories T,
we know of no direct transformation from WSS to the decision problem
for TT, even though there is a simple transformation from NE(star-free)
to T. Intuitively, NE(star-free) succeeds where W3S fails because

WSS is a considerably richer language than the language of star-free

~rIn certain cases, the only known efficient transformation from WSS to
T involves first taking a decision procedure (Turing machine) M for

WSS and then arithmetizing M in the language of T.

-163-

expressions; in the language of star-free expressions there is no
direct analogue of logical quantifiers or variables.

A disadvantage of obtaining such results as corollaries of the
star-freeresult is that (in the:cases we consider) the implied lower
complexity bound is somewhat weaker than the bound which can be
obtained by a direct arithmetization. Since space g(rlogbn—l,O) is
the best known lower bound on the complexity of NE(star=free),
space g(rlogbn-l,O) is the best lower bound one can obtain on a set B
by a transformation f from NE(star-free) to B, assuming [£(x)] = |x]
for all x. However, as was first pointed out by RabinT for wsls,
and then by Meyer for the satisfiability problem for sentences in the
first order theory of linear order, one can show that these problems
require space g(rcn_l,O) for some c > 0, This lower bound is closer
to known upper bounds of g(rdn—l,O) for some constant d, [Buc60al],
[Elg6l], [Rab69]. O course, if one wants only to show that a certain
decision problem is not elementary-recursive, then an efficient trans-
formation from NE(star-free) to the problem is sufficient.

We assume 'the reader is familiar with the basic notions of the
predicate calculus, (see for example [Sho67]).

Let L(<,P) be the set of formulas written in first order predicate
calculus using only the binary relational symbol < and the monadic
predicate symbol P, together with the usual logical connectives

A, V, ~, 2, etc., quantifiers 3 and ¥, variables, and parentheses.

Personal communication.

-164-

We shall use other relational symbols such as < and = in writing
formulas since these can be expressed in terms of < by formulas of
fixed size; for example (x = y) iff ~((x<y) V (y <x)).
Lower case Romen letters are used to denote first order variables.
(Variables mey in general be subscripted by a binary number, although
the particular formulas we shall write require only a fixed (approxi-
mately 8) number of variables.)

A formula F is a sentence if F contains no free variables.

Let S be a set and let <S be a linear (i.e. total) order on S.

Let ® be a sentence in L(<,P), ¢ is satisfiable with respect to
(8,<,) iff there is an interpretation PS - {0,1} t of P such that

¢ is true under the interpretation (5,<.,,P). Let SAT(S,<.) be the

g2
set of all such satisfiable sentences.

The main result is that if Sis an infinite set with linear order
<S’ then NE(star-free) sz SAT(S,<.,) and hence SAT(S,<.) is not
elementary-recursive.

Remark: The first order theories of (N,<), (Q,<), and various
other orders without a predicate P are all elementary-recursive
[cf. Fer74].

Before proving the general result, it is instructive to prove a
somewhat simpler special case, namely S = N (the nonnegative integers)

and <S = < (the usual relation "less than" on integers). Decidability

of SAT(N,<) follows from [Buc60b]. The result than SAT(N,<) is not

tVieN 1 as "true" and 0 as 'false".

-165-

el enent ary-recur si ve was obt ai ned i ndependent|y by Robertson [Rob73]

using a direct arithnetization.

Theorem 52
. NE(star-free) sz SAT(N,<).
2. Ther ef ore SAT(N,<) is not el enentary-recursive, and in fact

SAT(N,<) ¢ NSPACE(g(Flogan,O)) for all b >3

Proof, (1. AQven a star-free expression E, we construct a formul a

with two free variabl es FE(x,y) € L(<,P) such that:
) If pP:N-(0,1} and i,j €N, then Féi, j) is true under
the interpretation (N,<,p) iff

(0. 1 and P(i)P(i+l)P(i+2).++P(j-1) € L(E)
or
(ii). i=] and A € L(E).

FE(x,y) is constructed i nductively on the structure of E

F(M(X,Y) is (x=y) ;

Fiopy@®y) is (v =x T 1M A~Rx)) ;

F(l)(x,}') is (("y=x+ ") AR)
where ("y =x T 1'y abbreviates ((x <y) A ~@zfx <:z<y)).
Inductively, if Eand E' are star-free expressions then:
Fgugy®y) is (Fp(,y) V Fp(xy)) 3

Fgpy(®y) 1s @) (Fy(x,2) A Fii(2,)) ;

Fopy (oY) s ((xSy) A~F(x,y)).

=166~

By renamingvariables appropriately, note that FE(x,y) can be
written using exactly three variables. It is also easy to prove by
induction that FE(x,y) has the property (*) above for all star-free
expressions E

Nw | et P be the sentence

©p = (Fx) @y) (F (%,¥)).

Then clearly E € NE(star-free) iff ?p € SAT(N,<).

Let f be the function mapping E to Pe for all E. Clearly f can
be computed within polynomial time and linear space, and f is linear
bounded. (To be completely precise, £(x) must also be defined if x
is not a well-formed star-free expression. However an I0TM computing
f can first check within space logn that x is well-formed, and output
ome ill-formed- or false sentence if not.)

(2). This is now immediate by Fact 5.1 and Lemma 3.7. O

A transformation similar to that of Theorem 52 can be used to
enbed NE(star-free) in the language of certain wesk monadic second
order theories of N. For example, |et WIS be the set of true
sentences written in wesk monadic second order logic using only the
predicates y = x+1 (y is the successor of x) and x € X. [Mey73]

shows that WS1S is not elementary-recursive. This also follows

easily from Fact 5.1.

Theorem 5.3. ‘ NE(star-free) <_, WS1s,

pd
Therefore WS1s is not elementary-recursive.

-167-

Proof. A formula FE(x,y,f_) i s constructed to satisfy property (%)

of Theorem 5.2, where P is now viewed as a finite set variable.

Fog®y,R) is (x =y) 3

F(o)(x,y,g) is ((y=xt) A~ €P)) ;

F(l)(X,Y,E) is ((y==t) A (x€P)).

F(EUE')’ F(E-E')’ and F(~E) @re written as in Theorem 52 where
"(x < y)" is expressed by the formula

(A ((x €A) A~y+L €A A (V2)(z+1 €A = 2z € A).

As before, FE(x,y,g_) can be written using a fixed number of

variables.
Finally, if E= (ZP) (Ex) (Ty) (FE(x,y,g)) then

E € NE(star-free) iff P € Wsls. O

\<?.1)
Remak. |f depth(E) = kA then CpE of Theorem 5.3 is transformable within

polynomial time to a sentence Cp"E in prenex norma form with k-1

alternations of set quantifiers. Also, from Theorem 4.29 it follows that,

for any k 2 1, NSPACE(g(k,n)) < NE(star-free) N { E | depth(E) < ks }.
Therefore, for k =2 1, NSPACE(g(k,n)) isS transformable within

polynomial time to WS1S restricted to prenex sentences with at most

k+3 alternations of set quantifiers. By a direct proof, Robertson

[Rob73] has obtained the stronger result that, for k 2 2, NSPACE(g(k,n))

i s transformable within polynomial time to prenex sentences with at most

k-1 alternations of set quantifiers.

-168-

Similarly in Theorem 52 one can relate the complexity of deciding

SAT(N,<) to the number of alternations of first order quantifiers.

We now turn to the main result of this section, that NE(star-free)
is efficiently reducible to SAT(S,<) for an arbitrary infinite set S
with linear order <. C course SAT(S,<) nmey not be decidable for certain
choices of S and <, However, whatever the upper complexity bound,
SAT(S,<) is never elementary-recursive.

It should first be pointed out that the simple transformation of
Theorem 5.2 does not*work for general S. This is illustrated by
choosing (S,<) = (Z ,<*) where 7: =Q X Z ? and

(49529) <, (9,,2,) iff either (qy <q,) or (qy = q, and z;<3z,)

for 4q,,q, EQ, 2452, € L,
Nw |et E be a particular star-free expression which describes the
set of words which " start with 0" and "end with 1'' and "do not contain

01 as a subword". That is

= ~(~(0-(~0 U 0)) U~((~0 U 0):1) U(~0 U 0)-01.(~0 U0)) =
(Recall L((~0 U 0)) = (0,1} .)
Certainly L(E) = ¢ and therefore E ¢ NE(star-free). However
letting FE(X,Y) and Pp = (gx) (Ty) (FE(x,y)) be as in Theorem 5.2, we

claim that ¢, € SAT(Z",<,). To see this, choose (for example)

0 if gq<0
P(q,z) = for all g€ Q, z € Z
1 if q>0

TQ denotes the rational numbers. Z denotes the integers.

=169~

It is now straightforward to verify that FE((O,O),(l,O)) is true
* *

under the interpretation (Z »<4 P) and therefore cpE € SAT(Z Fa®
(Informally, the infinite word P(0,0)P(0,1)P(0,2)e+e +.+P(1,-1)P(1,0)

= 000--+ <++111 correctly starts with 0 and ends with 1 and yet

doesn*t contain 01 as a subword.)

The proof that L(E) #¢ iff P € SAT(N,< implicitly uses the
property of N that for all i,j € N there are at most finitely may
k €N SUCQ that i < k < j. This property does not hold for other sets
such as Z causing the difficulty illustrated above. However this
difficulty can be overcome by a modification to the transformation
of Theorem 5.2.

Fix a particular infinite set Swith linear order <, The first
step utilizes the predicate P to pick out a set of discrete " points"
from the (possibly dense) set S. The formula point(x) is satisfied
by an interpretation of x and P iff P is identically false on some opan
interval below x and is identically true on some interval above x.

The truth value of P(x) under the interpretation is not constrained

by point(x).

point(x) is (3s)@t)(Vw)((s<x<t) A ((s<w< Xx) =~P(w))
A((x<w<t)=PwWw)).
Let nextpt(x,y) be the following formula which is satisfied by

an interpretation of x, y, and P iff x and y are "points™ and y is

the next point after x.

-170-

nextpt(x,y) is (point(x) A point(y)

A (Vz) ((x < z <y) = ~point(z))).
Let PS -+ {0,1} be a given interpretation of B
Define Points(P) = { x € S | point(x)).

| f P1sPy € Points(P), we say that Py and P, are finitely far

apart iff card{ w | Py <wW< p, and w € Points(P) } is finite.

| f %,y € Points(P), x <y, and x and y are finitely far apart,

define wordP(X,Y) = P(XO)P(xl)P(XZ)”'P(Xf,)

where Xg = X, nextpt(xz,y), and nextpt(xi_l,xi) for L<i < A

Define wordP(x,x) =X for all Xx € Points(P).

Lemma 5.4. For any star-free expression E there is a formula FE(x,y,u,v)
in L(<,P) with the following properties.

Let ?2S = {0,1} be any interpretation of P.

(i). For all 812855538, € S, FE(s1,82,83°%4) is true (under the
interpretation (S,<,P)) only if $15855,8358, € Points(P)
andslsszss3384.

(ii). 1If P15P9sPgsPy, € Points(P), Py <Py < Pj < Pps Py and p, are
finitely far apart, and Ps and p, are finitely far apart, then

Fp(py,P,,Pq,p,) is true iff WordP(pl,pz)'WOTdP(P3’p4) € L(E).
(iii). 1If P1sPysP, € Points(P) and Py < Py < Py then

FE(pl’pZ’pZ’pl}) is teue L1ff FE(pl’pA’p4’p4) is true.

-171-

(iv). Moreover there is a linear bounded function f € polylin

such that f(E) = FE for all star-free expressions E.

Proof. FE i s defined inductively.

Let point(x,y,u,v) = (point(x) A point(y) A point(u) A point(v))

Foo (7,,v) IS (point(x,y,u,v) A (x =y) A (U=V) A (xS U));

F(O)(X,Y,U,V) is (point(x,y,u,v) A (y < u)

A ((nextpt(x,y) A (u = v) A~B(x))

V (nextpt(u,v) A (x =y) A~R(u))))3

F(l)(x,y,u,v) is similar to F(O) (x,¥7,u,v) 3
Fpug)®y.wv) 1 (F(x,y,u,v) V Fpi(x,7,9,7)) ;

Fepop'y®%,uv) 18 (@2)(Fg(x,2,2,2) A Ty, (2,5,5,7))

vV (z) (FE(X,Y,U,Z) A FEl(st’V’V)) 73

F(“E)(x,y,u,V) is (point(x,y,u,v) A (x Sy < u =<v)

A ""FE(X,Y,U,V)).

The assertions (i), (ii), and (iii) all follow by straightforward
inductive proofsa

For example, one part of the inductive step for (iii) is as follows.
Assume (iii) is true for expressions E and E'.

Assume P15>PysP, € Points(P) and Py < P, < P, Then

-172-

v (Hz) (FE(Pl’stpzsz) A FEt(zsP49p43p4)))

1£f (F2) (F(py52,2,2) N Fpi(2,0,5P,5P,))
by induction
1ff ((F2) (Fg(py>2,2,2) N Fpi(2,P,,P,5P,))
V (@2)(Fp(pyspy5P,52) N Fpi(2z,0,59,50,)))
(because by part (i), the second disjunct
implies the first)

iff F(E-E')(pl’p4’p4’p4) by definition.

The remaining cases are easier and are left to the reader. O

Let PS = {0,1}, let E be a star-free expression, and let

pl,pz,pi,pé € Points(P) with Py < Py and p.i < p."Z .

Define (Py,Pp) =p p (P1sPy) Lff (F(Py,pp,u,v) @ F(py,ppstu,v))

istrue for all u,v € S.

Note that EP E is an equivalence relation on
b4

8= (pl’pZ) € sxs | P15>Py € Points(P) and Py =P, }e

Let index(=) be the index (number of equivalence classes
P,E
H

of =P,E.

Lenmma 5.5. For all P:S - {0,1} and all star-free expressions E,

index(EP) is finite,
b4

Proof. Fix some P.S = (0,1}, and abbreviate EP g 8 EE'
’

by induction that index(EE) ig finite, The proof is similar to

We prove

-173-

Brzozowski's proof that any extended regular expression has a finite

number of types of derivatives [Brz64].

If E=(N) or (0O) or (1) it istrivial to check that index(EE)
is finite.

Let E and E' be star-free expressions with index(EE) =n and
index(EE'> =n', From the inductive definition of FE(x,y,u,v) we have
for all (p;,p,),(p3>Py) € §:

(). If (py,py) =p (Py>py) them (py,p,) = (P1:Py)-

Therefore index(= ;) < n,

(2). If (pyspy) Sp (P1spy) and (Py,Py) =, (Py5Py)s
then (py,P,) pyg: (Pi,Pé)-

Therefore index(Spjgi) < mn'.

(3). Let 01,02,03,--‘,Cn, c 8§ bpe the equivalence classes of Sgre
If (x,5) €8 define
Classes(x,y) = { i l Hz)[x<z<y ad FE(x,z,z,z)
and (z,y) € Cil)
Now i f (PysPy) =g (p.l,pé) and Classes(pq,p,) = Classes(p;_,p;),

|
then (py,P,) =g (pi,p;_). Therefore index(s; p,) < n2t

(L, (2), and (3) are easy to verify from the definition of FE.

We sketch the verification of (3). Let wu,v € S
Fg.pr (P1sPpot,v) is true iff ((F2)(Fy(pqs2,2,2) A Fpy(2,p,5,u,V)
v (Hz)(FE(Pl,PZ,U,Z) A FE|(Z,V’V,V))).

But FE(Pl,PZ,u,z) is true iff FE(pi,pé,u,z) is true because

(pl’PZ) EE (Pi9pé)-

=174~

Also, (E2) (FE(Plszsz,z) A FEt(zspzyu’V)) is true
iff (Ez) (FE(p.l,z,z,z) A FE,(z,pé,u,v)) is true
because Classes(pl,pz) = Classes(pi,pé).
It follows that FE.E'(pl,pz,u,V) is true

iff FE.E,(pi,pé,u,v) is true. Q

Theorem 5.6. Let S be an infinite set with linear order <,
NE(star-free) < SAT(S,<).
Therefore SAT(S,<) is not elementary-recursive, and in fact

SAT(S,<) ¢ NSPACE(g(rlogbn-l,O)) for all b > 3.

Proof. Let CpE be the sentence

Pp = (Ex) (@y) (FL(%,5,5,Y)

A (T2)(V2') ((x S 2 < 2' S 3) = ~F (x,2,2',5)).

We claim that E € NE(star-free) iff P € SAT(S,S .

(only if). Lft w € L(E) be a shortest word in L(E); that is,
for all w' € (0,1} , lw'l < |w] implies w' ¢ L(E).

Since S is infinite, we can choose PS - {0,1} and x,y € Points(P)
such that x and y are finitely far apart and wordP(x,y) = w. Therefore
FE(x,y,y,y) is true by Lemma 5.4(ii).

Choose any z,z' € Points(P) with x < z < z' <y. Sincez<z',
IwordP(x,z) -wordp(z',y)l < lwordP(x,y)I = |w]., Again by Lemma 5.4(ii),
and since w is a shortest word in L(E), we have that FE(x,z,z',y) is
false. By Lemma 5.4(i), Fy(x,z,z',y) is also falseif z ¢ Points(P)

or z' € Points(P).

=175~

Thus cpE is true under the interpretation (5,<,P).

(if). Let P.S =+ (0,1} be such that @, is true under (S,<,P).
Therefore there are points x and y such that F(x,y,y,y) and
V2)(Vz")Y((x=sz<z2z'sy) = NFE(x,z,z',y)).

Suppose x and y are not finitely far apart. Then since index(EP’E)
is finite, there must be z,z' € Points(P) such that x<z<z' <y
and (X, z) DP,E (x,2"). Now

FE(x,z,z',y) is true

iff FE(x,z',z',y) is true (by definition of EP,E)

iff FE(x,y,y,y) is true (by Lemma 5.4(iii)).
Therefore FE(x,z,z',y) is true contrary to:assumption.

It follows that x and y are finitely far apart and thus
wordP(x,y) € L(E). a

*
For example, SAT(Z,<), SAT(Q,S, and SAT(Z ,<,) are not

elementary-recursive.

A related decision problem is the satisfiabilitg problem for
sentences in the first order theory of linear order. Let L(<) be the
set of formulas written in first order predicate calculus using only
the binary relational symbol <, Let SAT< be the set of satisfiable
sentences in L) that is, if ® € L(K) is a sentence, then
® € SAT< iff thereis aset Sand alinear order <S on S such that
@ IS true under the interpretation (8,<) -

By a direct arithmetization, Meyer has shown that

SAT< ¢ NSPACE(g(lenl,0)) for some constant ¢ > O.

-176-

Also, SAI € DSPACE(g(rdn-l,O)) for some d > 0 by [Rab69].
A nonelementary lower bound on SAT< also follows by a transformation

very similar to the one just given.

Theorem 5.7. NE(star-free) < , SAT<.

pl
Thus SAT< is not elementary-recursive.
Proof. Given a star-free expression E, a sentence P in (<) is
constructed such that E € NE(star-free) iff P € SAT<. The
construction is very similar to that of Theorem 56 and Lemma 5.4.
The main difference is that the linear order is used to pick out a set
of discrete "points” and also to "simulate” the monadic predicate P.
If Sis aset with linear order <, x € Sis a "point” iff
X is isolated below. "p(x) is true" iff x is also isolated above
(so "P(x) is false" if x is isolated below but not above).
Construct FE(x,y,u,v) and cpE exactly as in Lemma 54 and Theorem
5.6 except:

(i). Write point(x) as
Fs)((s <x) A ~@w)(s <w<x));
(ii). Replace each occurrence of P(x) by
E)(x<t) A~E@w)(x<w<t)).

Exactly as in the proofs of Lemmes 54 and 55 and Theorem 5.6,

it follows that E € NE(star-free) iff ?p € SAT<, O

-177-

As a final example, we consider the first order theory of two
successors and prefix. Formulas in the language of this theory*
contain first order variables interpreted as ranging over {0,1} ,
atomic predicates SO(X,y) and 84(x,y) interpreted asy = x.0 and
y = %1 respectLver, and the atomic predicate x < y interpreted
as (@w € (0,1})[xw=y],

This theory, with the additional predicate of equal length,
E(x,y) interpreted as |x}| = |y}, IS Epﬂ, to WS1s [ER66], which implies
a fortiori an upper bound of space g(dn,0) for the theory without

the equal length predicate. The following theorem implies a lower

bound of space g(rlogbn_l,O) for b > 3.

Theorem 5.8. NE(star-free) Spf' The first order theory of two

successors and prefix.

Proof. Given a star-free expression E, we construct a formula with two
*

free variables GE(x,Y) such that for all a,b € {0,1}
-~ GE(a,b) iff (44w € L(E))[a.w=1"> 1.
GE(x,y) i s constructed inductively on the structure of E
G(x)(X,y) is (x=vy) ;
GO)(x,y) is S8,5(x,¥) 5 G qy(x,¥) is Sy(x,¥) ;
G(E.E,)(x,y) is (Hz2) (Gp(x,2) A GLi(2,¥)) ;
G(EUE')(X’Y) is (GE(X,Y) ¥ GEI(X’Y)) 3
G(~E) (x,y) is ((x < y) A~Go(x,5)).

The remainder of the proof is essentially the same as for Theorem 5.2.

-178-

Remark. (Length of proofs).

In the study of logical theories, it is natural to consider the
length of proofs of true sentences, as well as the time and space
required by procedures which recognize the true sentences. O course,
given any complete consistent system of axioms AX for a theory T, an
upper bound on the length of proofs from the axioms AX implies a
corresponding upper bound on the space required to decide T, assuming
that membership of words in AX can be decided efficiently (say, within
polynomial time). In particular, for the decision problems considered
in this chapter there is no upper bound on the length of proofs
elementary-recursive in the length of sentences, provided the axioms
are "efficiently recognizable" as above. See [FR74] for further
discussion on the relation between length of proofs and computational

complexity.

=179~

Chapter 66 Complexity of Finite Problems

The previous two chapters have shown that efficient reducibility
techniques can yield non-trivial lower bounds on the complexities of
certain decision problems. For reasons of technical simplicity, lower
bounds have been stated in a form which implies that, no matter which
algorithm is used to solve the particular problem, the time or space
used by the algorithm must exceed the lower bound on some input of
length n for infinitely many n. The fact that any algorithm must use

excessively large amounts of time or space infinitely often might be

viewed as plausible evidence that any algorithm will also perform badly
on inputs of reasonable size which actually arise in practice.

Indeed, in order to draw meaningful conclusions about computational
complexity, it is essential to know at what finite point the asymptotic
lower bounds we have derived begin to take effect. Such information is
implicit in our earlier proofs (cf. $3.3B).

Qur purpose in this chapter is to demonstrate that our methods
yield astronomical lower bounds (in the most literal sense, cf.

Theorem 6.1 below) on the complexity of decision problems for expressions
with only a few hundred characters.

We first consider the decision problem for the weak monadic
second order theory of the natural numbers and successor. Let WS1S be
the set of true sentences written in weak monadic second order logic
using only the relations y = x4 and x € A; that is, the second order

sentences which are true under the standard interpretation (N,successor)

-180-

with set variables ranging over finite subsets of N, Bichi [Bucé60a]
and Elgot [Elgél] have shown that wWS1lS is decidable. T

For the purposes of this chapter, logical formulas are written in
a language StT enriched by certain notational abbreviations. In
particular we may use decimal constants within formulas, writing
5 for O+14+14+1+1+1, x4 for x+1+1+141, etc. Also, the binary
relational symbols <, <, =, #, >, 2 on integers mgy be used.

Let BASS be the set of true sentences in £, Note that the
additional predicates of BASS are all expressible in WS1S, so EWSIS
has no more expressive powe than wslS, and BEANSS is also decidable.
Let Z be the alphabet of £, For fixed integers n, we seek lower bounds
on the complexity of recognizing the finite set BANISN Z?n.”‘r

Turing machine time and space are not sufficient to measure the
complexity of finite sets. Any finite set is accepted by a finite
state automaton within real time (time T(n) = n) and within space
zero. This is accomplished by coding a finite table of the elements of
a set into the states of the automaton.

Thus, for assessing the complexity of finite sets, account must be

TO1 the other hand, see [Mey73] or Theorem 5.3 of this paper for a
lower bound on the i.o. time and space complexity of WS1s,

™¢ is defined precisely below.

HTWe shall include a blank symbol in Z, so that EwS1s N Z" essentially

contains the true sentences of length less than or equal to n.

-181-

taken of the size or complexity of the device performing an algorithm as
well as the time and space required by the algorithm. One quite general
way to do this is to measure the number of basic operations on bits or
the amount of logical circuitry required to decide membership in finite
sets. Wk assume the basic operations on bits are binary operations
performed by "gates'" with two inputs and one output which may itself

be fanned out to serve as input to other gates in a circuit. This
circuit model yields a basic measure of complexity for Boolean functions
as well as finite sets (via appropriate encoding into Boolean vectors)

called combinational complexity [cf. Sav72], Precise definitions

appear below,

It will turn out that the alphabet Z used for EWS1S contains 63
characters, each of which can therefore be coded into six binary digits.
In particular, sentences of length 616 correspond to binary words or
Boolean vectors of 6+616 = 3696 bits and this will be the number of
inputs to a circuit which "accepts" the true sentences. The circuit
is to have a single output line which gives the value one if and only
i f the input vector is the code of a true sentence of length 616.

One main result can now be informally stated.

Theorem 6.1. If C is a Boolean circuit which accepts EWS1s N 2616,

then C contains more than 10123 gates.

Thus i f a circuit C accepts EWS1S restricted to sentences of

length not exceeding 616, and if each gate is the size of a proton,

-182-

then to accommodate C the entire known universe would be packed with
gates. T

The first lower bound on the combinational complexity of sentences
of logic was obtained by Ehrenfeucht [Ehr72; originally written in 1967]
who showed that the size of circuits which accept true sentences of
length n about integer arithmetic with all quantifiers bounded by
constants described using exponential notation (e.g., 325) must
exceed ¢ for some ¢ > 1 and all sufficiently large n. More generally,
Meyer [Mey74] has observed that i f MPSPACE sz A for some language
A, then the combinational complexity of A must grow exponentially. This
observation implies Ehrenfeucht's original result (indeed SPACE(g(€n ,0))

is Spff to Ehrenfeucht's formulation of bounded arithmetic), and also

implies that the combinational complexity of most of the decision

problems studied in this thesis grows exponentially.

However,
in order to obtain significant lower bounds for as small sentences as
possible, it seems better to carry out a more direct arithmetization
based on this efficient transformation result instead of appealing
explicitly to the result.

We now define more precisely the notion of combinational complexity.

T

We take 10"13

cm. to be the radius of a proton, and 11x 10° light years

P~ 1028 cm, to be the radius of the universe.

-183-

A circuit is best defined as a straight-line algorithm. Straight-line
algorithms are defined in [Sav72] for general domains and functional

bases. We repeat the definition, restricting it to the Boolean case.

Definition 6.2. Let Q16 ={g | g:{0,1}2 + {0,1} } be the set of

Boolean functions of two arguments.

.Let Q<Q S N+, and t € N, An Q-straight-line algorithm

16> M

or Q-circuit of size t with m inputs is a sequence

C = Bm’ mh1? Bm—l—Z’ TR Bm-H:-l

such that for m < k < mtt=-1, = (i,j,g) Where i and j are integers

Py
with 0<i,j<k and g € Q.

With each step Bk for k 2 mwe identify an associated function

§k:{0,1}m + (0,1} by induction. First, if 0 < A < m-1, define §,
to be the gth projection,
o0 0 — o o0 m
§g(bgbybyeeeb) = b, for all bybybyeeeb o E (0,1},
If m=< k < mt-1 and Bk = (i,j.,g) then define
5 () = 85, (0),E,(x) for x & (0,137,
If f is a function, f:[O,l}m - (0,1}p for positive integers m and
p, then the circuit C computes f iff C has m inputs and there are

integers 0 = il’iz’""ip < m+t-1 such that
£(x) = £, ()€, (x)+++E. (x) for all x € (0,1}",

The combinational complexity of a function f:{O,l}m - (0,1]p

is the smallest t such that there is a 016-circuit of size t which

=184~

conput es f. t

Let S be afinite al phabet. An encoding for Sis a one-to-one
function hS - {0,1}s where s = rlog(card(S))w.Tt
*

Let h:s* - (0,1 be the extensionof h
let Acs® for sone n € Nt Dpefine £, h:{o,l}sn + (0,1} by
b

£,y =1 ff wE(hE | x €AY,

The conbi nati onal conpl exity of the finite set Ais the mni mum

over all encodings h of the conbinational conplexity of fA he
9

+ . . : . .
If LS, thenthe conbinational conplexity of L is a function

C. (L) .N* 5 N such that for each n,

C,(LXn) = the conbinational conplexity of LN s™,

(Note: The subscript = denotes unbounded fan-out [cf. Sav74l.)

Remark 6.3 The notion of conbi nati onal conplexity is in a sense
i nconparabl e with tine or space conpl exity on Turing nachi nes.
For exanpl e, define L, c {0,1}+ by x € LA it |x] € A
where A is sone non-recursive set of integers. Then Lo I S non-recursive

(O course there is no loss of generality in not allow ng basic functions
of one argunent. For exanple, an inversion gate ~b can be conputed as

gNA(b,b) where gNA(Vl’VZ) = ~(v1 A V2)°

ttLogarithms wi th no specified base are taken to the base 2

By considering only bl ock encodi ngs, the exposition is sonewhat

sinplified and there is essentially no | oss of generality.

-185-

and its tinme and space conplexity are not even defined. But C,(L)(m) =1
for all n because, for each fixed n, LN {0,1}n is either ¢ or (0,1}“.
Thus, non-recursive and arbitrarily conpl ex recursive sets can have
atrivially small conbinational conplexity.

Anot her contrast is that tinme or space conplexity of recursive
| anguages can be as large as any recursive function, whereas any
| anguage L has conbi national conplexity ¢_(ry(n) <c” for somec > 1
[cf. TLup50]. Moreover, there are el enentary-recursive | anguages,
in fact |anguages i n EXPSPACE, whose conbi national conplexity is nmaxi mum
for all values of n(over any given al phabet §, so that relatively
"easy" recursive | anguages can have naxi nal |y | arge conbi nati ona
conpl exi ty.

However, there is a basic relation in one direction between these
two notions of conputational conplexity. Conbinational conplexity
in effect always provides a | ower bound on tine conplexity.
M Fischer and N Pippenger [FP74] have shown t hat

L € DTIME(T(n)) inplies C_(L)(n) < O(T(n)-log T(n)) -

So in particular, an exponential |ower bound on c_(L)(n) inplies an

exponenti al |ower bound on tine conplexity.

-186-

61 Second Ordea Theory of Successor.

Since our numerical results depend on the language £ used to

write sentences, we give a BNF ganmar for £,

<member of £> ::= <formula> | <member of £ ¥

<formu1a> s o= H<variab1e> <formula> l V<variab1e> <formu1a> l
~<formu1a> l <formu1a> <logical cnetv> <formula> |
(<formula>) | <atom>

<{term> <{order relation> <term> I
<term> € <get variable> I <term> ¢ <set variable>

<atom> 8-

<term> -

<integer variable> I <constant> I

<integer variable> + <constant>

<logical cnetv> ;= A [vf=}e
<order relation> ::= < | <] =]#]=2]>
<variable> ::= <integer variable> | <set variable >

<integer variable> ::= <integer variable> <lower case> | <iower case>

<set variable> ::

<set variable ><upper case > | <upper case>

lolel -lplaq

Il
[M)

<lower case > ::

el e e

| 8] ¢

Il
>

<upper case> ::

-187-

<constant> ::= <constant> <digit> I <digit>

<ldaigit> ::= 0| 1] 2|3 .. | 8] 9.

Let Z be the alphabet of £, that is, the set of terminal symbols
above. Note that card(@) = 63, .
If & € £, then 13| denotes the length of & viewed as a word in Z .
In the absence of parentheses, the precedence order for logical
connectives is ~, A, V, =, = (decreasing). Binding of quantifiers to
formulas takes precedence over all logical connectives. To improve
readability, redundant parentheses are sometimes used in the text in
writing formulas; these are underlined, (and), and are not counted
in the length of formulas.
® € £ is asentence if ¢ contains no free variables. Let
EWS1s be the set of sentences in &£ which are true under the standard
interpretation of the integers,with set variables ranging over finite
subsets of N. (Leading zeroes are ignored in interpreting
constants.) The symbol ¥ denotes a blank "padding” character which
Is ignored in determining the truth value of a sentence. Since

sentences can be padded with blanks, C_(EWS1S)(n) serves to measure

the combinational complexity of deciding sentences of length < n.

-188-

Theorem 64. Let k, m, and n be positive integers such that:

m kt+1

(. 2 >2 -log(2k+m), and
(2). k=242 3logm, and

(3). n=466T l_(1og102) m| + 11 l_loglom_l .

Then C_(EWS1S) (n) > k=4

Theorem 6.4 is proved below. For a fixed numerical value of n, a
lower bound on C_(EWS1S)(n) is obtained by choosing k and m to satisfy
the above constraints. For example, we can now obtain the precise

formulation of

123

Theorem 6.1. C(EWS1s) (616) > 10

Proof. Choose k = 414, m = 424, n = 616, and note that 2*10 > 10123

The proof of Theorem 64 is similar to the proofs of Chapter 4
which utilize efficient transformations between sets to obtain lower
complexity bounds. The basic argument is as follows. We first prove
Lemm 6.5 which states that if k, m, and n satisfy certain constraints
then there is a function fo:{o’l}m + {0,13 of "large” (> 21"3)
combinational complexity such that questions about the value of f0
on words of length m can be transformed to questions about membership
of sentences of length n in EWS1S; moreover, the combinational
complexity of the transformation 7 is relatively "small". It then
follows that the combinational complexity of EWS1S must be almost as

large as that of £ For assume that the combinational complexity of

00

-189-

EWS1S is small. Then by placing a circuit which computes T in series
with a circuit which accepts EWS1S, we obtain a "small" circuit which
computes fO contrary to assumption.

Ore preliminary is required before proving Lemma 6.5. W shall
use a special case of an "abbreviation trick"™ due to M. Fischer and
A. Meyer [FM74], |If & is a logical formula involving several occurrences
of a subformula, the trick allows one to write ¢ equivalently as a
formula involving only one occurrence of the subformula

In the proof of Lemm 6.5, we shall always apply the trick to

formulas | of the form
Q(ul,ooo,un) = lele Zo'.szm A(ul’oo.,un’zl,-oo’zm)
where Ql’”"Qm are quantifiers, Ups*to,U denote variables which occur

freeinl, and Zys0s2Z denote variables. A denotes a formula (with

free variables u1,~~~,un,z1,---,zm) of the form

A = C vus G(vn,'",vlp) T G(v21,"',V2p) _—— G(vzl,---,vf’p) o

where G(vl,--o,vF) denotes a formula of p free variables Vl""’vp’ and
for 1 <1i=<4 the ith occurrence, G(Vil’"°’vip)’ of G in A denotes
a substitution instance of G(vl,-",vp) with V4 replaced by Vil’ v,
replacedbyviz, and soon. Each vij’ 1<i=<yg, 1< j< p denotes
either a variable or a constant. In the cases we consider, each Vy s
which is a variable is either free in ¢ or is bound by one of the
guantifiers Ql’Qz""’Qm‘

Under these conditions, | can be written equivalently as a

-190-

formula &' involving one occurrence of G as follows. First let A’

be the formula obtained from A by replacing the ith occurrence,
G(vil,---’vip), of G by the atomic formula yj = 1 fori=1,2,3,e¢,4,
where Y1sY¥9s***5¥, denote new variables. Nw we use "dummy variables"
y’dl’""dp’ and write a separate formula to ensure that if y = Y;

and dj = Vij for some i and all j = 1,2,3,+¢¢,p, then y =1 iff

G(dl,---,dp) is true. That is:

Fiuypecnyny) = Qpey Qi ipgenlygt &'

2
A VdyeeeTa Yy (

A fhgregy £ v Beliom,, M¥ 1)

= (y=1 @ 6(dy,*+,d)).

In the cases we consider, & uses sufficiently few variables that
the additional variables yl""’yz’y’dl""’dp can each be written as
a single letter. Also, each of the Vij is either a single letter or a
single digit.

Under these conditions, the length of &' is related to the lengths
of I and G by:

Length relation for the abbreviation trick:

l28'] = 8] + (1-2)|G] + (44p + 94 + 2p + 13),

In particular, the symbols lel'"szm plus those symbols in A’

contribute (|&| + 3£ - 2|G]) to |&'].

-191-

Lemma 65. Let k, m, and n be positive integers which satisfy (1) and
(3) of Theorem 6.4. Then there is a function fO:{O,l}m + {0,1
such that:

(i). The combinational complexity of fO is greater than k-3

and
(ii). For each x € {0,1}m there i s a sentence P, € & such that
iCpx| =n, and P E EwSls iff fo(x) =1
Moreover, if h:Z - {0,1]6 is any encoding, and if T is the function
which maps x to ’ﬁ(cpx) for all x € {O,I}m, then the combinational

complexity of T is less than 220m3.

Proof. Let k, m, and n be fixed integers which satisfy constraints
(1) and (3) of Theorem 6.4.

We first describe the formula Easy'(F) (of one free set variable)
which is used within Py Easy'(F) i s constructed in Lemma 6.5.1 which
comprises the major technical portion of the proof of Lemm 6.5. Some
definitions are required to state this sublemma

Let NAND be the singleton set consisting of the Boolean function
ByA of two argments defined by gNA(Vl’Vz) = ~(v1 A v2)-

If x € (0,1}m, int(x) is the nonnegative integer z such that x is a
reverse binary representation (possibly with following zeroes) of z.
For example, int(111000) = 7 and int(101100) =13 (if m = 6).

Let F< N, fet(F) is the function mapping (0,13™ to (0,1}
defined by fet(F)(x) =1 iff m(int(x) +1) € F.
fet(F) is the means by which functions from [0,1}ul to {0,1} are

represented as sets of integers in our arithmetization of circuits.

-192-

Lemma 6.5.1, Let k and m satisfy (1) of Theorem 6.4. There is a
formula Easy' (F) in £ such that:
(1), For all finite FE N, Easy'(F) is true iff thereis a
NAND-circuit of size 2k with m inputs which computes fet(F) ;

and
(ii). |Easy'(F)| = 380 + 10 Lloglom—l .

Proof. We first write a formula Easy(F) involving several occurrences
of a subformula, and then obtain Easy'(F) from Easy(F) via the
abbreviation trick described above.

Some notation is helpful. If SEN, let seq(S) denote the
(infinite) binary sequence bob1b2b3-~-, where b‘i =1if i €8S
and bi =0if i ¢S, Letmword(S,j) denote the finite binary word
bjbj+1bj+2'”bj+m-1 of seq(S).

Let dec(m) denote the decimal representation of m Let dec(k)
be a decimal representation of k with leading zeroes if necessary to
meke |dec(k)| = ldec(m)]« (Constraint (1) implies k < m)

Easy(F) is a conjunction of five terms. The first four terms
Ve 1};"2, g, Vg place constraints on the variables B, P, d, and q.
The last term \lrs expresses the fact that fet(F) is computable by a

NAND-circuit of size = 2k (which is the same as being computable by

a NAND-circuit of size exactly 2k)-
. Va(¢1(B,d,a)) istrueiff d € B and B = BO where

Bo=[z|mstd and =z =0 (modm)).

-193-

¥, 1is (d€B A dec(m) €B
A((a<dec(m) V a>d) = a@¢B)

A((a<d A a#0) = (a€B ® a+dec(m) €B))).

($2). Assuming B

By and d € B, then Va(lllz(B,P,d,a)) is trueiff

for all integers i with 0 = mi < d, m=word(P,mi) IS a reverse binary
representation of the integer z where z = (i=1)(mod Zm) and 0 < z < 2%,

That is,
m m m m m m

seq(P) = 111...11000¢ 00100+« 00010+« 00110+ +000010° 00 +=» ,

and where, if seq(P) = PoP1Po" " *» then this pattern continues at least
to bit py, 1 of seq(P). The bits of seq(P) beyond the (d+m-1)*™ are
not constrained by \bz. (The formula \hz is similar to one used by

Robertson [Rob73].)

¥, is ((a<dec(m) = a€P)
Al asd., =
((a€P © a+dec(m) ¢ P)
o
@b((bEB V b=0)A b<a

AVi((b<siANi<a) = 1i€P))))).

($3). Assuming that B = d E B, and that seq(P) is as above, then

BO,
Va(§,(P,d,a)) is trueiff d=0 (mod m2™),

¢3 states simply that wm~word(P,d) = M.

=194~

¢3is ((d<a A a<d+dec(m)) = a€P).

Recall d € B and 0 ¢ B by($1), and thus d > 0., Now the truth of
Va(\]ti) for 1 = 1,2,3 together imply that seq(P) cycles at |east once
through the 2™ binary words of length m (See Figure 6.1. Upwad

arrows point to those positions of seq(P) which belong to B)

seq(P) =
m m m m m m
r11---1‘1()00-'-05'.60---06610---0?) 611---f1f11---ﬁ don't care +..
t t t 1 1

d

Figure 6.1. P, B, and d.

($4). If B and P are as in Figure 6.1, then Va(¢4(B,P,q,a)) is true

iff ¢ €B and qu2k.

\[J4is (q€B A ((a€B A as<q = a+dec(k) €P)) .

To summarize ($1) through (y4), if

Va(‘lll(B,d,a) A \sz(B,P,d,a) A ¢3(P,d,a) A ¢4(B,P,q,a)) is true then:

ﬂ(l). B=(z|msz<d ad z=0 (mod) 3,

2. seq(P) is as in Figure 6.1,
*)
(3. d=0 (mod m2™) and 4> 0,

1(4). 4€3 and q<m2,

-195-

(45). We first describe the formula Match which is used as a

subformula within 1{:5.
Match(Xl,wl,Xz,wz) is

dK Vb (wl<w2 A (w1€B \ w1<dec(m))

/\(_(wlsb A b<w2_l =2 (bEK © b+dec(m) € K))
A(b<w1+dec(m) = (bEK @& bGXl))

A(w,<b = (b€EK @ bExz)) i S
The following lemma describes certain properties of Match.

Lemma 6.5.2. Assume B, P, d, and q are as in (*). Let S,S S, < N,

1°
(i). Let 2152, € B U (03, Match(Sl,zl,Sz,zz) is trueiff
z, < z, and m-word(Sl,zl) = m-word(Sz,zz).
(ii). Let a€ B Match(P,i,S,a) is trueiff i < a and
either (1 € B and m-word(P,i) = m~word(S,a))
or (0<i<m and m-word(S,a) = ot 1y,
(iii). Let a€ B with a=<g Then thereis at most onei €N

such that Match(P,i,S,a) is true.

Proof. (i) and (ii) are 1left as exercises. See Figure 6.2 which shows
how K can be chosen in two particular cases. In Figure 6.2, m= 6 and

words are divided into blocks of length six for readability.

To verify (iii), let a€ B with a< g be fixed. Constraint (1)

of Theorem 6.4 implies k < m-1, Now asquzksmzm_l implies

that for all i,,1, € B with il’_i < a

2

-196-

seq(Sl) = 010010 101100 000000 101111 000000 000Q---
seq(K) = 010010 101100 101100 101100 010011 0000---
seq(sz) = 100100 001100 111111 101100 010011 000Q<--
1
22=18
i=4
!
seq(P) = 111111 000000 100000 010000 110000 =*-*
seq(K) = 111111 000011 000011 001010 000000 «--*
seq(S) = 001010 000000 000011 001010 000000 ---
f .
a=12
Figure 6.2. Illustrating the proof of Leamma 6.5.2 (i) and (ii).

() m-word(P,i,) = m-word(P,i)) iff i, =1, ; and

(F¥k) m-word(P,il) = boblbzv--bm_zo for some bo’bl’“.,bm_z € (0,1}°

Nov suppose that Match(P,il,S,a) and Match(P,iz,S,a) are both true.
Part (ii) of the lemma implies i1, < a and one of four cases:

First, if 11,:‘.2 € B then part (i) of the lemma together with
(**) implies i1= :’.2 :

Second, if il,i2 < m then part(ii) of the lemma implies
1= 12 = i where m-word(S,a) = Oilm_i 3

The other two cases, namely where one of il,i2 belongs to B and
the other is less than m, cannot occur because of (***) together with

parts (i) and (ii). For example, if il € Band i, <m, then

2

-197-

m-word(P,il) m-word(S,a) because Match(P,il,S,a) is true

12 m-iz . .
0“1 because Match(P,lz,S,a) is true.

However this now contradicts (***) which states that m-word(P,il)

must end with 0. O

We now describe how sets of integers are viewed as representing
circuits and "computations' of circuits.

Let B, P, d, gqbeasin (*¥), and let 1, J <N, Then q-circuit(1,J)
i s defined and g-circuit(I,J) is the NAND-circuit C of size t = q/m
with m inputs where C = Bm’ 12 Bm—l-2’ Bm-l-t-l iff
for each a E B with m=< a < g there exist i,j such that

(i). Match(P,i,I,a) and Match(?,j,J,a) are both true, and

(11)s Byegy = (@(1),2(3),8y,), where o is given by

z if z<m
d(z) = :
z/m+m-1 if =z € B,

It is important to note by Lema 6.5.2(iii) that gq-circuit(I,J)
i s uniquely defined when it is defined.

Figure 6.3 illustrates how a particular pair 1,3 <N codes a
circuit in thecaseq =20, m=5, (so t =4). In Figure 6.3: seq(P)
is shown for reference; X is a "don't care" symbol; words are divided

into blocks of length five for readability.

-198-

4O

Q'CirCUit(I’J) = (0,1,8NA), (S’A’gNA)’ (2’6’gNA)’ (5’7.’gNA)

- Bs ’ B6 ’ B7 ’ 38

seq(P) = 11111 00000 10000 01000 11000 - ..

seq(I) = XXXXX 11111 00011 00111 00OOQO - - -

seq(J) = XXX 01111 00001 10000 01000 ««-

seq(D) = 11101 OOXX 1xXXx OOXX IXXXX eee
a 01234 5 10 15 20

a(a) 01234 5 6 7 8

Figure 63 | and J "code" acircuit.

For arbitrary 1,7 <N, if C = q-circuit(I,J) = Bpr Bor1s **%s Boir 1

isacircuit as on the preceding page, if x € {0,13™, and D © N, then
Drepresents the conputationof Con x iff for all awth
a€{z|0<z<m)jU({z€B|mszsxq)

a€D iff g, =1

-199-

wher e the (§;) are the associated functions of C(cf. Definition 62.
Note in particular that if Drepresents the conputation of C
on X, then m=word(D,0) = X
Figure 63 also shows a set D which represents the conputation of
g-circuit(l, J on input 11101,
We note one fact and then wite 4!5 Fact 653 is imediate from
the definition of int(x) and fct(¥), and the fact that P is constrained

as in Figure 6.1

Fact 653 Let = € {0,1}™, Fc N, and e = m(int(x) +1). Then

m-word(P,e) =X, and e & F iff fet(F)(x) =1

Now assumng that B, P, d, and q are as in (*) above,
¢5(F,B,P,q) is trueiff thereis aNAND-circuit of sizeg/m(< 2k)

whi ch conput es fet(F).
45 is 3l 47 Ve @0 Va Ti 3 y, where wg is

(5.1) (e€B =
(5.2) (Match(D,0,P,e)
(5.3) A(a€B =
" (Match(P,i,I,a) A Match(P,j,J,a)
" A(a€D ® ~(1€D A FED))))
(5.4) A(qQED ©® e€F))).

=200~

Informally, 415 expresses the following.
There exists a circuit, gq-=circuit(I,J), of size t = ¢ym such that:
(5.1) For all inputs x € {0,1}m (where e = m(int(x) +1)), there
exists a computation D such that:
(5.2) m-word(D,0) = m-word(P,e) = X by Lemma 6,.5.2(i)
and Fact6,5.3; and
(5.3) for all gates Ba(a) with a € B there exist i and]

such that the output %a(a) (x) of Bd(a) i s computed

correctly as N(ga(i) (x) N § (x)); and

a(3)

(5.4) ogate B) produces output L iff e € F (iff fet(F)(x) = 1,

a(q
cf. Fact 6.5.3).

Finally let Easy(F) be
[» '
HB dp Hd Hq HI HJ Ve ID Va Hi Hj (\ylA ¢2A 1{;3A¢4Aw5)
so that by standard manipulation of quantifiers Easy(F) is equivalent

to HBHPHqu(Va(¢1A¢2A¢3/\¢4)/\¢5)-

We |l et the reader supply any additional argument required to
convince himself that Easy(F) is true iff there is a NAND-circuit of
size Zk which computes fct(F). (In the "if"™ direction, aways choose

m k

p=m2, q = m2 , and choose I,J such that (gate Boz of)

(q)
q-circuit(I,J) computes fct(F) and moreover that
#i¥j(Match(P,i,I,a) A Match(P,j,J,a)) iS true also for those a € B
with a > q.)
We now count the length of Easy(Fr).

Let u= [log)m]+ 1. Note that |dec(k)] = |dec(m)| = p.

-201-

First, |Match| =72 + 3.
The | engt hs of \lfl, \er, \Lf3, 1{:4, \1:'5 are respectively 40 + 3,
61+ 2y, 14+, 18 + 1, and 41 * 3|Match|, The length of Easy is the
sumof these plus 28 additional synbols, so
(Easy) = 202 + 7y + 3|Mateh] .
Wsi ng the Fi scher-Myer abbreviation trick with £=3 and p=4to
reduce the three occurrences of Match to one, Easy can be witten
equi val ently as Easy' where
[Easy'| = |Easy|] - 2|Match| + 96

=380 + 10 Lloglom_] .

Not e that the additional variables dl,dz,d3,d4,y1,y2,y3,y used in
the abbreviation trick can be naned E,e¢,L, f,g,h,4%,0 respectively.

Thi s conpl etes the proof of Lemma 651 O

Wé now return to the proof of Lemma 65 and the construction
of o , Let cp; be the follow ng sentence, where w(x) and Lessthan(G,F)
X
are. defined bel ow
cp; is HdF VG (w(x) € F A ~Easy'(F)
A (Lessthan(G,F) = Easy'(G))).
The formul a Lessthan(G,F) i S

da(a€F A a€¢G A Vb(b>a = (BbEG & DPEF)).

Lessthan(G,F) is easily seen to define a linear order on finite

subsets of N,

=202~

w(x) is a decimal representation of m(int(x) +1); leading
zeroes are appended so that
Iw(x)l = L(loglOZ) m_i + I_loglom + 2,
(Note that x € (O,I}m implies int(x) < 2™ .1 It follows that the

decimal representation of m(int(x) +1) need never be longer than

Lloglo(mzm)J +1< L(loglOZ) m] + Lloglom_] + 2.)

k+1
It is easy to see that there are at most (2k + n’)2 NAND-circuits

of size Zk with m inputs. (That is, each of the total 2k+1 possible

inputs to gates is filled with a number between 0 and 2k-i-m- 1.)
m
However there are 22 functions from [0,1}m to (0,1}. Constraint (1)

om K 2k+1
of Theorem 6.4 ensures 2° > (2°+ m and therefore that there is

a finite FS N such that Easy' (F) is false.
Since Lessthan defines a linear order, there is exactly one finite
Fy © N such that ¥Vg¢ —Easyl(Fo) A (Lessthan(G,Fo) = Easy' (G))) is true.
We take fO = fct(Fo).
Since any Boolean function of two arguments can be synthesized
using at most five "NAND-gates" [cf. Har65], and since Easy'(FO) is
false, it follows that the combinational complexity of £, = fct(F

0
must exceed (1/5)-2k > 2k'3.

0’

Also by the definition of fet(F), w(x) < FO iff fo(x) =1,

so w;;istrue iff £o(x) =1

|Lessthan| = 29 .

"

o, |

14 + |w(x)] + |Lessthan| + 2|Easy"'|

45 + 2|Easy'| + [(logy 2y m| + Llogygm] .

=203~

The abbreviation trick with £=2 and p=1 applied to cp; and Easy'
gives cp)'(equivalent to CP;; and

| |

X

|92] - |Easy'] + 41
466 t L(long) m| +11 I_loglomJ .

The additional variables dl,yl,yz,y can be named M,k,m,n respectively.

By constraint (3) of Theorem 6.4, j = 0 can be chosen so that

o, =o. 8 and o | =n,

P and fo satisfy the requirements of Lemm 6.5.

It remains only to bound the combinational complexity of the trans=-
formation T mapping x to %(@x). For fixed k, m, and n, Aﬁ(w(x)) is the
only part of ?1(ch) which depends on x. (Recall that the length of
w(x) is independent of x.) Thus all bits of /fl(cpx) excluding 'ﬁ(w(x))
can be computed using exactly two gates, namely the two gates with
constant output. Nw 220m3 is a gross upper bound on the combinational
complexity of the transformation mapping X to %(w(x)), using
straightforward classical algorithms for binary addition, binary
multiplication, and binary-to-decimal conversion [cf. Knu69].

This completes the proof of Lemma 6.5. O

Proof of Theorem 64. Let k, m, and n satisfy the constraints (1), (2),

and (3) of the theorem. Assume the conclusion is false, that is
C, (EWS1S) (n) < K4,
Therefore there is an encoding h:Z - [0,1}6 and a 016-circuit C of

k-4

sire 2 with 6n inputs which computes a function f where in

=204~

particular for all sentences @ E £n Z7,
fM@)) =1 iff o € msls.
Let £ and T be as in Lemma 6.5 for this k, m, n, and encoding h.
Let T be an 016-circuit of size< 220m3 which computes T,

Nw | et % be the circuit shown in Figure 64. f

— - £the,))
b4 : T h(Cpx) C ——">= fo(x)
e, <
N
4
Figure 64. Thecircuit C0
Since f(h(cpx)) =1 iff @ € EWS1ls iff fo(x) =1, C0 computes fO'
But "size of cy" = "size of 1" + "size of ¢"

< 20,3 + k=4 < Jk-3

because constraint (2) implies 2203 < %% This contradicts the

fact that the combinational complexity of fO i s greater than 2k—3_

Therefore we must have C_(EWS1S)(n) > 2k'4. O

TIt is clear how to define CO from C and T within the formalism

of straight-line algorithms.

-205-

62 First Oder Integer Arithnetic.

.In this sectionwe obtain even stronger |ower bounds on the
conbi nati onal conplexity of a logical decision problem Consider
the first order theory of the nonnegative integers with primtives
addition, nultiplication, and exponentiation to the base 2 Sentences
are againwittenin alanguage £' allow ng deci mal constants and the
relations <, <, =, #, >, =, Terns are any arithnetic expressions
i nvol ving constants, variables, addition; nultiplication; and base 2
exponentiation. For exanple, x+300.y and 2'2(i+1) are terns,
and xeu+6 < 2% s an atonic formla

£' is defined by the foll owng B\F grammar, where <forml a>,

<order relation> , and <constant> are defined as in the grammar

given for £in 86.1,

<member of £> .= <member of £> % | <formula>

Il

<atom> 5 <term> <order re1ation> <t§m>

<term> ::

]

<term>+<term> I <ter:m> . <term> I T<term> l
(<term>) | <variable> | <constant>

<variable> ::= <variab1e> <lower case> | <lower case>

Llower case> ::= a| bl c| «ee | y]| z.

t <term> denotes o lterm> , and the latter natation is used

inthe text inwiting formulas. The precedence order for arithnetic

=206~

operations is t, <, + (decreasing). As before, redundant parentheses,
(and), are sometimes used. Let 2' be the alphabet of £'; note that
card(T') = 55.

Let FIA be the set of sentences in &' which are true under the

standard interpretation for +, +, t, etc. with variables ranging over N,

Theorem 6.6. Let k, m, and n be positive integers such that:
ay. 2m-2/m> 2k(2¥ -m+1), and
). 227/ = 2203 and
(3). n=242+ l_(log102) m|] +6 Lloglom_J .

Then C_(FIA)(n) > 2577 /k

For example, with k = 426, m = 447, and n = 388:

Corollary 6.6.1. C.(FIA)(388) > 2410 > 10123.

If we seek a more modest bound, say a trillion gates, then

choosing k = 53, m =69, and n = 268 gives:

Corollary 662. C_(FIA)(268) > 2%0 > 1012,

Note: In Corollaries 6.6.1 and 6.6.2, the lengths of sentences in

" bits™ are respectively 6.388 = 2328 and 6268 = 1608.

Proof of Theorem 6.6. There are a number of similarities between this

proof and that of Theorem 6.4 and Lemma 6.5. W sketch only the essential

details.

Fix k, m, and n to satisfy the constraints (1), (2), and (3).

-207-

Let m(z) denote the number of prime positive integers that do

not exceed z.

Fact 6.6.1 [cf. NZ66]. For z = 2,

(1/4)z/logz < m(z) < 9z/logz.

For d,i € N, Bit(d,i) is true iff the coefficient of 2i in the

binary expansion of d is 1L

For u,i € N and a € N+, Res(u,a,i) is trueiff u=i (mod a)
and 1 <a
. We now describe how integers are viewed as representing functions,
circuits, and computations of circuits. Asin §6.1, let int(x) be the
integer i such that x is a reverse binary representation of i.
If z €N, fct(z) is the function mapping {0,1}" to (0,1}
defined by fet(z)(x) =1 iff int(x) divides z.

Of course there are functions from {0,1}m to {0,1} which do not equal

fet(z) for all z. However the following is true.

Lema 6.6.2. Let F=(£] £:00,13" > (0,1} and (Fz)[f = fet(z)]).

2m-2
Then card(F) > 2 /m .,

Proof. Let X ={ x € [0,1}m l int(x) is prime }.
Given any choices of bX € (0,1} for x €X, thereisaz
such that fet(z)(x) = bx for all x € X. Namely z =TT int(x).

Therefore card(F) = 2card(_X)_

But card(x) = mre 1) = m2™ » 2m—2/m (since (1) implies m ZDZ).

-208-

Let u,v €N and t € N+. Then t=circuit(u,v) is the NAND-circuit

of size t- m with m inputs, Bm’ Bm+1’ Bm.;.z’...’ Bt-1’ where for each
awith m=< a< t-1,

Ba:(i,j,gNA) where Res(u,a, i) and Res(v,a,j)s

Not all circuits can be represented exactly in this way because
the residues of u and v (mod a) cannot be chosen independently for

a=mml,m2,°*¢, Howeve:

Lenma 6.6.3. Let C be a NAND-circuit of size t with m inputs, and
assume t < m(t'~1) - T(m=-1) for some t'.
Then there are u,v € N such that t'=circuit(u,v) computes the

same function as C.

Proof. Consider A ={ a | m=<ast'-1 and ais prime}.
For each a € A, leti_and j_with 0<14i ,j < a be arbitrary.
a a a~a
By the Chinese Remainder Theorem [cf. N766] there are u,v € N such
that Res(u, a, ia) and Reﬁ(v,a,ja) for all a € A.
card(A) = m(t' - 1) - T(m=-1) = t.

Therefore, ia and ja for a € A can be chosen so that the steps

Ba for a € A of t'-circuit(u,v) mimic the circuit C. The steps Bk

with k € A and k 2 m are irrelevant. O

If Cisacircuit of size t-mwith m inputs, if x € {0,1}m,

and d € N, then d represents the computation of C on x iff

Bit(d,i) = éi(x) for 0<i < t-1

where the {Ei} are the associated functions of C (cf. Definition 6.2).

=209~

In particular, note that the binary representation of d must begin

with the reverse of x; thus d = int(x) + b-2™ for some b € N,

Bit and Res can be expressed in FIA as:
Res(u,i,a) is Ib(u = bea+i A i< a)
Bit(d,i) is Vr¥b(r =21 VvV d # 2+.b.2 41).

(To see that Bit(d,i) is correct, note that its negation
Fr@b (r <2 A d=2.p.2"+r) is trueiff the coefficient

of 2i in the binary expansion of d is 0.)

Easy(z) is Hu dv Ve Hd Va di Tj (

(E1) (&< gleem) =

(E2) (Tp(d = et p-20eCM 4

(E3) A((dec(m) <a A as2dec®) =

" (Res(u,a,i) A Res(n,a, j)

" A (Bit(d,a) ® ~(Bit(d,i) A Bit(d,j)))))
(E4) A (Bit(a,2dec(®)y B(z=bwe)))).

Informally, Easy(z) expresses the following.

There exists a circuit, (2k+1)-circuit(u,v), such that:

(B) for all inputs x € (0,1}™ (where e = int(x)) there exists a

computation d such that:
(E2) the binary representation of d begins with e = int(x) ; and
(E3) for all gates Ba‘ ms< a< Zk, the output §a<x) of Ba is

computed correctly as ~(E (%) A gJ(x)) ;3 and

=210~

(E4) theoutput of 8 _, & (¥, isl iff e divides z
2k’ "ok

(iff fet(z)(x) = 1).

The next lemma describes properties of Easy(z).

Lemma 6.6.4. Let z €N,
(i)« Easy(z) is true iff there exist u,v € N such that
(2k+1)-circuit(u,v) computes fect(z),
(ii). If Easy(z) is true, there is a NAND-circuit of size Zk-m+1
which computes fct(z).
(iii). If Easy(z) is false, there is no NAND-circuit of size 2k_3/k

which computes fct(z).
Proof. We |let the reader check (i) by following the informal
description of Easy(z) above. (ii) IS immediate from (i).

To prove (iii), assume Easy(z) is false and suppose C is a

NAND-circuit of size t = 2k'3/k which computes fet(z).
Let t' = 2k+l. Nowv
- k-3 k-2
t=2 /k<2 "/k - 9m/logm (because (2) of Theorem 6.6

implies 2573/k 2 9m/1og m)
(t=1) -(m-1) (by Fact 6.6.1).
Therefore by Lemma 6.6.3, there are u,v € N such that (2k+1)-circuit(u,v)
computes fct(z). Part (i) of this lemma now contradicts the fact that

Easy(z) is false. O

After replacing the occurrences of Bit and Res by their definitions,

we find
|Easy] = 179 + 6 Lloglom_] .

-211-

(Note: Using the abbreviation trick to eliminate multiple occurrences of
Bit or Res does not yield a shorter formula In this case.)

Let cp; be the sentence

dzVy (db(z = bew(x)) A ~Easy (2)

A (y<z = Easy(y))).

w(x) IS a decimal representation of int(x), with leading
zeroes appended i f necessary to make the length of w(x) be
exactly L(10g102) m] t1.

There are at most (zk)2(2k-m+1) NAND-circuits of size

2k -=m+1 with m inputs.

m=2 k
Constraint (1) of Theorem 6.6 implies 22 /m > (2k)2(2 'm+1).
Then Lemma 6.6.2 and Lemma 6.6.4(ii) together imply that there is some
z € N such that Easy(z) is false.

Thus there is precisely one zq € N such that

Vy(~Easy(zo) A (y< 2y = Easy(y))) is true.

Let fo = fct(zo).

By Lemm 6.6.4(iii) and by our remarks in $6.1 concerning the

synthesis of Ql -circuits by NAND-circuits, it follows that the

k-6

6

combinational complexity of fO exceeds (1/5)-2k' 3/k > 2" "k,

Also, cp; is true iff w(x) divides zy iff £,(x) = 1

0
Using the abbreviation trick to replace the two occurrences of

Easy by one, we find Cp)'(equivalent to @; and

oy | = 262 + [(logy2) m] + 6 [logygm] .

-212-

Now cpx iscp!'{ padded with blanks if necessary to be of length
exactly n.

As before, if T is the transformation mapping x to 'ﬁ(cpx) for
an encoding h of &', then the combinational complexity of T is

certainly bounded above by 220m3.

The reader can now complete the proof that C_(FIA)(n) > Zk_7/k
by following the proof of Theorem 6.4. The necessary facts are:

Lo ;

(i). the combinational complexity of fo exceeds 2
(ii). fo(x) =1 iff P € HA ; and (iii). by constraint (2) of

the theorem, the combinational complexity of T is < Zk-7/k. [l

-213-

Chapter 7. Conclusion

We have demonstrated that efficient reducibility techniques can
yield interesting lower bounds on the inherent computational complexity
of a variety of decision problems from automata theory and logic.

For several of these problems, such as the equivalence problem for
star-free expressions (cf. $84.2) and the decision problems for the
various logical theories discussed in Chapter 5, our results imply
that any attempt to find an efficient algorithm for the problem

i s foredoomed.

Recent studies by coworkers (cf. [Fer74], [FR74], [Mey73],
[Rac74], [Rob73]) of decision procedures for logical theories show
that these reducibility methods are applicable to nearly all the
classical decidable theories. Moreover -tm';ith the exception of
the propositional calculus and certain theories resembling the first
order theory of equality, all these decidable theories can be proved
to require exponential or greater time.

Hopefully, both the general method of efficient reducibility and
ome of the particular techniques of efficiently arithmetizing Turing
machines will extend to algebra, topology, number theory, and other
areas where decision procedures arise, and will curtail wasted effort
in searching for efficient procedures when none exist. The exhibition
of provably difficult problems in these areas is one direction for

further research.

-213a-

Acknowledgement. Michael J. Fischer contributed to several
discussions concerning this work, and his interest is

appreciated.

[AHU74]

[AU70]

[AU72]

[B166]

[B167]

[B171]

[Bo72]

[Brz62]

[Brz64]

[Buc60a]

[Buc60b]

[BGW70]

- 214-

Bi bl i ogr aphy

Aho, AV, Hopcroft, JE, and Ulnan, JD, The Design and
Anal ysis Of Conputer Al gorithns, to appear.

Aho, AV, and Ulnan, J.D., "A characterization of two-way

deterninistic classes of languages," J, Qnput. Syst. Sci. 4,
6 (Dec 1970), 523-538.

Aho, AV, and Ulman JD, The Theory of Parsin Translation,
and Conpi ling, Vol, I: Parsing, Prentice-Hall, Engl enood
aiffs, NewJersey, 1972.

Blum, M, 'Recursive function theory and speed of computation,"
Canadi an Mith. Bull. 9 (1966), 745-750.

Blum M ™A nachi ne-i ndependent theory of the conplexity of
recursive functions,” J, AOM14, 2(April 1967), 322-336.

Bum M "on effective procedures for speeding up algorithns,"”
J ACGM18, 2(April 1971), 290-305.

Book, RV, "On |anguages accepted in pol ynomal tine,"
SIAM J, Qonput. 1, 4 (Dec 1972), 281-287.

Brzozowski, J. A, "A survey of regul ar expressions and their
applications,”" | RE Trans. EC-11(June 1962), 324-335.

Brzozowski, J. A, 'Derivatives Of regul ar expressions,"
J AOM1L, 4 (Oct 1964), 481-494.

~&hi, JR, 'Wak second order arithnetic and finite autonata,!

Zeit. £, Mith. Log. and Gund. der Math. 6 (1960), 66-92.

Bichi, JR, "Oh a decision nethod in restricted second order
arithnetic," Poc. Internat. Gongr. Logic, Mthod. and Phil os.
. (1960), Stanford Lhiv. Press, Stanford, Gi., 1962, 1-11.

Book, RV, Qeibach, SA, and \Wgbreit, B, "Tine and tape
bounded Turing acceptors and AFL's," J. Conput. Syst. Sci. 4
(1970), 606-621.

[Col69]

[Co71a]

[Co71b]

[Co73]

[CEW58]

[CR72]

[Edm65]

[Ehr72]

[Elg61]

[ER66]

[Fer74]

[FM74]

[FMR72]

-215=

Cole, SN, "Real-tine conputation by n-dinensional iterative
arrays of finite state machines," | EEE Trans. c-18(April 1969),
349-365,

Cook, SA, "The conplexity of theoremproving procedures,"
Proc. 3rd ACM Symp. on Theory Conputi ng (1971), 151-158.

Cook, SA, T'"Characterizations Of pushdown nachines in terns of
ti me-bounded conputers,” J, AOM18, 1(Jan. 1971), 4-18.

Cook, SA, "A hierarchy for nondetermnistic tine complexity,"
J. Comput, Syst. &i. 7, 4(Aig. 1973), 343-353.

Copi, I.M, Elgot, CC, and Wight, JB, ‘'Realization of
events by |ogical nets,™ J, AOU5(April 1958), 181-196.

ook, SA, and Reckhow, RA, "Ti ne-bounded random access
machines," Proc. 4th ACM Symp. on Theory of Computing
(1972), 73-80.

Ednonds, J., "Paths, trees and flowers,'" Canadi an Jour.
Mith 1Z-(1965), 449-467

Ehrenfeucht, A, "Practical decidability," Report QJ CS 008-72,
Dept. of Conputer Science, Lhiv. of Colorado (Dec. 1972).

Elgot, CC, "Decision problens of finite autonata design and
related arithmetics, Trans. AMS 98 (1961), 21-51.

Elgot, CC, and Rabin, MO, ™"Decidability and undecidability
of extensions of second(first) order theory of (generalized)
successor, " Jour. Symb. Logic 31, 2(June 1966), 169~181,

Ferrante, J., "Some upper and |ower bounds on deci sion
procedures in logic,” Doctoral Thesis, Dept. of Mathenatics,
M.T, to appear 1974.

Fischer, MJ, and Meyer, AR, personal commmication.

Fischer, RPC, Myer, AR, and Rosenberg, AL, "Real-tine
simulation of multi-head tape units,” 1 AQMI19 4(Qt. 1972),
590- 607.

[FP74]

[FR74]

[Gin67]

[Gri71]

[GIS74]

[Har65]

[Hun73a]

[Hun73b]

[Hun73c]

[HR74]

[HS65]

[HU69]

=216~ .

Fischer, Ml, and Pippenger, N, to appear.

Fischer, MJ, and Rabin, MO, " Super-exponential conpl exjity
of Presburger arithnetic,” Proc. AMS Synp. on Conplexity

Real Conput ati onal Processes (1974), to appear; al so, MAC Tech.
Mno. 43, MI.LT, Project MAC Canbridge, Mss. (Feb. 1974).

G nzburg, A, "A procedure for checking equality of regular
expressions," J, AOM 14, 2(April 1967), 355-362.

Qies, D, Conpiler Const ruction for Dagital GConputers,
Wl ey, New York, 1971

Garey, MR, Johnson, DS, and Stockneyer, L J., 'Some
sinplified NP-conpl et e problems,'" Proc. 6th ACM Symp. on
Theory of Conputing (1974), 47-63.

Harrison, MA, Introduction to Switching and Autonata Theory,
MGawH 1, New York, 1965.

Hunt, HB III, "On the tine and tape conplexity of |anguages I,"
Tech. Report TR73-156, Dept. of Conputer Science, Cornell
Uhiversity, (Jan. 1973).

Hunt, HB 1I1I, "The equi val ence problemfor regul ar
expressions with intersectionis not polynomal in tape,"
Tech. Report TR73-161, Dept. of Conputer Science, Cornell
Uni versity, (March 1973.

Hunt, HB 1III, "On the tine and tape conpl exity of |anguages I,"
Proc. 5th ACM Symp. on Theory of Conputing (1973), 10-19.

Hunt, HB 111, and Rosenkrantz, DJ., '"Computational parallels
bet ween the regul ar and context-free | anguages,'" Broc. 6th ACM

Symp, on Theory Gonput i ng (1974), 64-74.

Hartmanis, J.,, and Stearns, RE, "On the conputati onal
conpl exity of algorithns," Trans. AMS 117 (1965), 285-306.

Hopcroft, JE, and Ulrman, JD, Forrmal Languages and Their
Rel ation ta Autonata, Addi son-V¢sley, Reading, Mss., 1969.

[Tb72]

[Jer72]

[Jon731]

[Rar72]

[Kle56]

[Kmu69]

[Rnu74]

[KW701]

[Lin73]

[Lup50]

[L1S74]

[1M74]

-217-

I barra, OH, ™A note concerning nondetermnistic tape
complexities,'" J, AOM19, 4(Cct. 1972), 608-612.

Jeroslow, RC, "om the stopping problemfor conputing
machines with a tinme bound," SI GACT News, No. 15
(April 1972), 9-11.

Jones, ND, 'Reducibility anong conbi natorial problens in
| og n space," Proc. 7th Annual Princeton Gnf. on Infornation
Sciences and Systens (1973), 547-551,

Karp, RM , "Reducibility anong conbi natorial problens," in
Conpl exi ty Of Conputer Conputations, RE MIller and
JW Thatcher, ed, P enumPress, New York, 1972, 85-104.

Kleene, SC, 'Representation of events in nerve nets and
finite automata,” in Autonata Studies, Princeton Lhiv. Press,
Princeton, New Jersey, 1956, 3-41.

Knuth, p,E,, The Art of Conputer Programming, Vel, 2:

Sem nurrerical A gorithns, Addison-Vésley, Reading, Mss. , 1969.

Knuth, DE, "Postscript about NP-hard problems,'" S| GACT News 6,
2(April 1974), 15-16.

Kaneda, T., and Winer, P, "on the state mnimzation of
nondetermnistic finite automata,” | EEE Trans. G 19,
7 (July 1970), 617-527.

Lind, J, "Qonputing in logarithmc space," Bachelor's Thesis,
Dept. of Hectrical Engineering, M.T, 1973

Lupanov, OB, "on the synthesis of contact networks,"
Dokl . Akad. Mauk SSSR Z0 (1950), 421-423.

Ladner, R, Lynch, N, and Sel man, A, "Comparison Of
pol ynom al -ti me reducibilities," Proc. 6th ACMSynp. on
Theory of Conputing (1974), 110-121.

Lind, J., and Meyer, AR, "A characterization of |og-space
conput abl e functions,™ to appear as a Project MAC Techni cal
Report, 1974.

[LSH65]

[Mey731

[Mey74]

[Min67]

(M71]

MP71]

[Ms72]

[MY60]

[NZ66]

[Pet67]

[Rab60]

[Rab69]

-218-

Lewis, PM. 1II, Stearns, RE., and Hartmanis, J., 'Memory
bounds for recognition of context-free and context-sensitive

languages,'" 6th IEEE Symp. on Switching Circuit Theory and
Logical Design (1965), 191-202.

Meyer, AR, 'Weak monadic second order theory of successor
i S not elementary-recursive," Boston Univ. Logic Colloguium
Proc.s to appear 1974; also MAC Tech Mem 38, M.I.T,
Project MAC, (1973).

-~

Meyer, AR, persona%-comnm:‘:c-a‘ttbn‘;;G.SSS Lecture Notes,
Dept. of Electrical Engineering, M..T, (1974).

Minsky, ML, Computation: Finite, and Infinite Machines,
Prentice-Hall, Englewood Cliffs, Newv Jersey, 1967.

Meyer, AR, and McCreight, EM., " Computationally complex and
pseudo-random zero-one valued functioms,"in Theory of Machines
and Computations, Academic Press, New York, 1971, 19-42.

McNaughton, R, and Papert, S., Counter-Free Automata,
M.I.T. Press, Cambridge, Mass. 1971.

Meyer, AR, and Stockmeyer, L.J, "The equivalence problem
for regular expressions with squaring requires exponential
space,'" Proc. 13th IEEE Symp. on Switching and Automata
Theory (1973), 125-129.

MéNaughton, R, and Yamada, H., "Regular expressions and state
graphs for automata," IRE Trans. EC9 (March 1960), 39-47.

Niven, 1., and Zuckerman, H.S, An Introduction. ta the Theory
of Numbers, Wiley, Newv York, 1966.

Péter, R, Recursive Functions, Academic Press, Nav York, 1967.

Rabin, MO, "Degree of difficulty of computing a function and
a partial ordering of recursive sets,”" Tech. Report 2,
Hebrew Unlv,, Jerusalem, Israel, (1960).

Rabin, M. 0,, '"Decidability of second-order theories and
automata on infinite trees,'" Trans. AMS 141 (1969), 1-35.

[Rac74]

[Rit63]

[Rob73]

[Rog67]

[RF65]

[RS59]

[Sah72]

[Sal€e9]

[Sav70]

[Sav72]

[Sav74]

[Set73]

-219-

Rackoff, C., '"Complexity of some logical theories," Doctoral
Thesis, Dept. of Electrical Engineering, M. I.T.,, to appear 1974.

Ritchie, RW, "Classes of predictably computable functions,"
Trans. AMS 106 (1963), 139-173.

Robertson, E.L., "Structure of complexity in the weakmonadic
second-order theories of the natural numbers,'" Research
Report CS-73-31, Dept. of Applied Analysis and Computer
Science, Univ., of Waterloo, (Dec., 1973); also Proc. 6th ACM
Symp. on Theory of Computing (1974), 161-171.

Rogers, H. Jr., Theory of Recursive Functions and Effective
Computability, McGraw-Hill, Newvw York, 1967.

Ruby, S., and Fischer, P.C., '"Translational methods and

computational complexity, "™ 6th I[EEE Symp. on Switching
Circuit Theory and Logical Design (1965), 173-178.

Rabin, MO, and Scott, D, "Finite automataand their
decision problems," I1BM J. Research and Development 3
(1959), 115-125; also in Sequential Machines: Selected Papers,
E.F. Moore, ed., Addison-Wesley, Reading, Mass., 1964, 63-91.

Sahni, S., '"Some related problems from network flows, game

theory, and integer programming,' Proc. 13th IEEE Symp. on
Switching and Automata Theory (1972), 130-138.

Salomaa, A., Theory of Automata, Pergamon Press, Newv York, 19609.

Savitch, W. J., "Relationships between nondeterministic and
deterministic tape complexities,” J. Comput. Syst. Sci. 4,
2 (April 1970), 177-192.

Savage, J.E., "Computational work and time on finite machines,"
J. AGM 18, 4 (Oct. 1972), 660-674.

Savage, J.E., "The complexity of computing,” JPL Tech. Report,
draft, June, 1974, Chapter 2

Sethi, R., '"Complete register allocation problems," Proc.
5th ACM Symp. on Theory of Computing (1973), 182-195.

{Sho67]

[SFTM73]

[SHL65]

[sM73]

[Ss63]

[Tra70]
[U1173]
[Win65]
[Yam62]

[You~~]

[Sto74a

-220-

Shoenfield, JR, Mthematical Logic, Addi son-\Vésl ey,
Readi ng, Mss., 1967.

Seiferas, JI., Fischer, MJ, and Meyer, AR, "Refinements
of the nondetermnistic tinme and space hierarchies," Proc.
14th LEEE Synp. on Switching and Automata Theory (1973), 130-137.

Stearns, RE, Hartmanis, J, and Lewis, PM 1II, "Hierarchies
of menory limted computations,™ 6th | EEE Synp. on Swi t chi ng
Qrcuit Theory and Logi cal Design (1965), 179-190.

Stockneyer, LJ., and Meyer, AR, '"Word probl ens requiring
exponential tine: prelimnary report," Proc. 5th ACM Synp.
on Theory Of Conputing (1973), 1-9.

Shepherdson, J.c., and Sturgis, HE, "Computability of
recursive functions," J, ACM10, 2(April 1963), 217-255.

Trachtenbrot, BA, "On autoreducibility," Sovi et Math,
Deki. 11- 3 (1970), 814-817,

Ulnman, JD, "Polynomial conpl ete schedul i ng problens, "
4th Synp. on Operating SystemPrinciples (1973), 96-101.

Wnograd, S, "om the tine required to perform addition,”
J AM12, 2(April 1965), 277-285.

Yamada, H, "Real-tine conputation and recursive functions
not real -ti ne computable," HRE Fans. EC-11 (1962), 753-760.

Younger, DH, '"Recognition and parsing of context-free
| anguages in tinme n**3," Information and Control 10 (1967),
189- 208.

Stockmeyer, L.J., "The complexity of decision problems in
automata theory and logic, ' Doctoral Thesis, Dept. of
Electrical Engineering, M. I. T. (June, 1974).

-221-

Appendix |I. Notation.

¢ The empty set.
A- B (x | x€A and x¢ B } (set difference).
A®B A -B)U(@®B-A (synnnetric difference).
A The set of all subsets of the set A
card(A) The cardinality of the set A
Axk AXAXAX e XA (k times).
X The empty word.
|w] The length of the word w.
or WeT Concatenation of words w and T,
E* The set of all words over the alphabet Z including M.
=t ¥ - .
*
)2 {WeZ | |w| =k}, for positive integer %,
== (wed" | lo] skj.
ck The word coc...c of length k.-
bin(k) The binary representation of positive integer k.
N The nonnegative integers.

N* The positive integers.

-222-

V4 The integers.

Q The rational numbers.

Q+ The positive rational numbers.

I_r_l Theinteger part of real r.
Mel The least integer z such that z = r.
log r logzr.

21‘
= - . k
2 }
g (i, 1) 2

-223-

Appendix ITI. Sore Properties of logspace.

. An I0TM M computes a function f: (E*)Xn + A* of nvariables if
M computes a function £':(Z U {#))* + 2" where #¢% and

x
f' (xl#‘xz#-}{3#"'#7{n) = f(X1,x2’X3,"',xn) fOI’ aII Xl,xz,"',xn 6 E .

Definition. A function f:(Z}*)X(n—'-l)

- A+ of dl variables is defined
from functions g:(Z*)Xn—bA* and hl,hz:(z*)xmz) A * by

two sided recursion of concatenation if f satisfies

ad f(?fnﬂ‘-) = g(in)
f(in, yo') = hl(in’y’o-)'f(En’Y).hZ(.}_{n’y’o-)

*)Qﬁ o
for all EDE(E) ,YEZI,acl

Fact AII.1 [Lin73],[IM74]. 1logspace i s closed under explicit
transformation (substituting constants and renaming or identifying

variables), composition, and two sided recursion of concatenation.

Fact ATII.2 [Lin73],[IM74].
(D. The concatenation function belongs to logspace.
(2). For any alphabet Z, f ¢ logspace where
f(x) = bin(|x|) (the binary representation of |x‘|)*
for all x € Z .
(3). Binary addition, monus, and multiplication belong to
logspace. That is, there are functions f+, f_, fx € logspace

such that f@(bin(ml),bin(mz)) = bin(m1 ® m2)

for B € {'l', =, X and all ml’mz € N.

-224-

m, = m if m 2 m
Monmus isS defined as my *m, = 1 2 1 2
0 otherwise .

Lemma All.3. Let p(n) be a polynomial with integer coefficients,
let © be a finite alphabet, and let $ be a symbol,
Then f E logspace where
*
£x) = $PUXD 20 for 211 L e,
The reader may verify Lemma All.3. Fact AII.2 (2) and (3) may

be useful.

