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ABSTRACT 

The languages recognizable by time- and space-restricted multiple-counter ma- 
chines are compared to the languages recognizable by similarly restricted multiple- 
tape Turing machines. Special emphasis is placed on languages definable by machines 
which operate in "real time". Time and space requirements for counter machines 
and Turing machines are analyzed. A number of questions which remain open for 
time-restricted Turing machines are settled for their counter machine counterparts. 

Introduction 

In recent years there has been increasing interest in analyzing the 
complexity of Turing machine computations. Paralleling the work on 
time- and space-restricted Turing machines, we consider similar restric- 
tions on machines with counters in place of  tapes. Although counter ma- 
chines (CM's) appear to be much weaker than Turing machines (TM's), 
unrestricted CM's have been shown by Minsky [8] to be as powerful as 
TM's. Restricted counter machines are somewhat more tractable than are 
restricted Turing machines; therefore, a number of  questions which re- 
main open about restricted TM's are settled in this paper for restricted 
CM's. 

In this paper we view machines principally as language recognizers. 
Many of the properties of  TM recognizers carry over to CM's: e.g., the 
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closure properties of the classes of real-time recognizable languages. On 
the other hand, a number of significant differences between TM's and CM's 
can be demonstrated. Throughout  this paper we shall contrast correspond- 
ing properties of the two models. 

Section 1 contains a formal definition of a counter machine recognizer. 
Some results are proved concerning the relation of the defined model to 
certain variants of the model. In Section 2 we consider some specific 
recognition problems in order to lend some insight into the computational 
capabilities of CM's. Section 3 is concerned with space requirements of 
counter machines. We establish a straightforward relation between time 
and space requirements for CM's, and we demonstrate an isomorphism 
between the hierarchies arising from space bounds on CM's and on TM's. 
Section 4 contains some remarks about the time required to simulate one 
kind of machine on another. Finally, in Section 5, we investigate a number 
of properties of the classes of languages which are definable by CM's with 
various numbers of counters. We show these classes to form a hierarchy 
under set inclusion, and we establish a number of their closure properties. 

1. The Model and Some Variants 

1.1. Definitions 

An alphabet ~ is a finite set of elements called letters. A word over Z is 
any finite (possibly null) sequence of letters of Z. We let Z* denote the set 
of all words over Z (including the null word ~.), and we call any subset of 
~* a language (over Z). We refer the reader to Ginsburg [4] for definitions 
of  some of the standard operations on words and languages. 

A one-way (on-line) k-counter machine (k-CM) consists of a finite state 
control unit, k counters, each capable of containing any integer, and an 
input terminal. The states of the finite control are partitioned into polling 
and autonomous states. At the start of a computation the CM is in a desig- 
nated initial state and all counters are set to zero. A step in a CM compu- 
tation is uniquely determined by the state of the control unit, by the symbol 
scanned at the input terminal if the state is a polling state, and by the set 
of counters which contain zero. The action at that step consists of inde- 
pendently altering the contents of each counter by adding 0, ÷1 or -1  and 
changing the state of the control unit. 

More precisely, a k-CM is specified by 

(1) a finite nonempty set Qp of polling states; 
(2) a finite set Qa of autonomous states; 
(3) a finite input alphabet Z; 
(4) a state transition function 

M : ( Q a U  ( Q ~ x ~ ) ) x { 0 ,  1} k ~ Q a  u Qp; 

(5) a counter updating function 

K: (Qa U (Qp × ~)) × {0, 1} k--o {-1, o, 1} k ; 
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(6) a d e s i g n a t e d  ini t ial  state So in Qp; 

(7) a d e s i g n a t e d  s u b l e t  F o f  Qv,  t h e  f i n a l  states.  

Le t  Z d e n o t e  t h e  set  o f  all i n t e g e r s  a n d  Z k t h e  set  o f  all k - t u p l e s  o f  

i n t ege r s .  F o r  a n y  i n t e g e r  x, d e f i n e  t h e  f u n c t i o n  

0 
sg(x) = i f  x ~ O, 

a n d  e x t e n d  sg  to  Z k by  

sg( (x , ,  • • • , x ,})  = (sg(x,) ,  • • • , sg(xk)). 

A configuration o f  a k -CM is a m e m b e r  o f  (Qa to Qp)  x £ *  × z k. W e  
wr i t e  

(q, aw, ( x , ,  • • • , xk)  ) --+ (q", w, ( y , ,  • • • , Yk) ), 

o r  

( q ' ,  w ,  ( x l ,  • • • , x k ) )  - - - '  ( q " ,  w ,  ( z , ,  • • • , z k ) ) ,  

f o r  q in Qj,, q' in Qa ,  a in  £ ,  w in £* ,  a n d  t h e  xi, y~, a n d  zi in Z i f  

(1) m ( q ,  a, sg((x , ,  • • • , x~})) = q" 

a n d  

o r  

(2) 

a n d  

( x l ,  • " • , xk)  + K(q,  a, sg((x l ,  • • ' ,  xk))) = (y , ,  • • • , yk ) ,  

M ( q ' ,  sg((x , ,  • • • , xk))) = q" 

(Xl, • • • , x k )  + K ( q ' ,  sg( (x l ,  • • • , xk))) = ( q ,  • • • , zk). 

F o r  c o n f i g u r a t i o n s  C a n d  C '  we wr i t e  C ~ C '  i f  e i t h e r  C = C '  o r  i f  t h e r e  

exis t  c o n f i g u r a t i o n s  C = Co, C1, • ' • , Ct = C '  such  t ha t  Ci --+ Ci+l f o r  each  
O < ~ i < t .  

A k-CM halts in t steps in  its c o m p u t a t i o n  o f  a w o r d  w i f  t h e r e  a r e  c o n f i g u -  
r a t i o n s  Co, C1, • • • , Ct o f  t h e  k -CM wi th  

(So, w ,  ( o ,  • • • ,  o ) )  = C o  - - .  c ,  ~ c . ,  + • • • ---, c ,  = (q,  x ,  ( x , ,  • • • ,  x . ) )  

with  q in Qv. T h e  C M  accepts o r  rejects w a c c o r d i n g  as q is in F o r  Q,,  - F,  
r e spec t ive ly .  T h e  space r e q u i r e d  by  t h e  C M  in p r o c e s s i n g  w is t h e  s u m  o f  

t he  m a x i m u m  a b s o l u t e  va lues  o f  t h e  c o n t e n t s  o f  e ach  c o u n t e r  in t he  
c o u r s e  o f  t he  t s t eps  o f  t h e  c o m p u t a t i o n .  

Le t  T a n d  S be  m o n o t o n e  i n c r e a s i n g  func t ions .  A c o u n t e r  m a c h i n e  
operates in time T [in space S] if, f o r  all n i> 0, w h e n  t h e  C M  is s t a r t e d  wi th  
i n p u t  w o f  l e n g t h  n, it  ha l t s  in T(n )  o r  f e w e r  s t eps  [ r e q u i r e s  space  n o t  ex-  
c e e d i n g  S(n)] .  

A l a n g u a g e  L o v e r  £ is recognized by a c o u n t e r  m a c h i n e  i f  t h e  C M  accep t s  
e v e r y  w o r d  in L a n d  re j ec t s  e v e r y  w o r d  in £ *  - L. L is recognizable in time 
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T(n) [in space S(n)], abbreviated T(n)-recognizable [S(n)-recognizable], if 
there is a CM recognizing L which operates in time T [in space S]. 

We single out the case T(n) = n as a real time. A language which is recog- 
nizable in time T(n) = n is called real-time recognizable. The significance of  
the real-time restriction stems from the importance of finding efficient 
algorithms for syntactic analysis. 

In analogy to our  definitions of counter machines and the various time 
and space restrictions thereon, one can define the corresponding notions 
for multitape Turing machines. For brevity, we refer the reader to the 
following papers for the appropriate definitions and related results: 
Rabin [11], Hartmanis and Stearns [6], Stearns, Hartmanis and Lewis 
[ 14], and Rosenberg [ 13]. 

1.2. Variants of  the Model 

Counter machines have been defined in various ways in the literature. 
It is worthwhile to verify, for the time-restricted case, that our model is 
not sensitive to mild changes in convention. Two machines will be said to 
be time-equivalent if they both recognize the same language and whenever 
one operates in time T(n), the other does also. 

THEOREM 1.1. Given any k-CM with the ability to alter the contents of each 
counter independently by any integer between +c and - c  in a single step (for some 

fixed integer c), one can effectively f ind a time-equivalent (ordinary) k-CM. 
Proof We sketch the construction and leave the details to the reader. 

When the original k-CM has counters containing the integers ml, • • • , mk, 
the "compressed" k-CM has counters containing [ m , / c ] , . . . ,  [ink~c], 
retaining the (bounded) residues m 1 - -  c [ m l / c ] ,  " " " , me -- c [mk/c] in finite 
state memory. I Clearly, the counters of the compressed machine need be 
altered by at most one per step. 

THEOREM 1.2. Given any k-CM, one can effectively f ind a time-equivalent 
k-CM which (a) stores only non-negative integers in its counters; (b) alters its coun- 
ters at most every c step, for  some integer c > O; (c) alters at most one counter per step. 

Proof For part (a) the CM stores the magnitudes of the desired numbers 
in its counters and retains the signs of the numbers by enlarging the size 
of the finite-state control unit (by a factor of 2k). For parts (b) and (c) the 
compression technique of Theorem 1.1 is used. 

Henceforth, we shall generally make the tacit assumption that counters 
contain only non-negative integers, i.e., that the CM's satisfy part (a) above. 

In contrast to these invariance results, we find that allowing a CM to 
have an input tape on which it has bilateral motion changes minimum time 
requirements quite drastically. This two-way (off-line) model has an input 
channel on which resides a read-only scanning device. An input word w is 
encoded on the input channel in the form $w$ and the read head is initially 

[x] denotes the integer part of the real number  x. 
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placed on the leftmost symbol of  w (or on the r ight-hand $ if w = ~.). At 
each step, a two-way CM can shift its read head one square left or  right 
on the input  as long as it does not leave the region on which the input  word 
is encoded. Accepting and rejecting states are considered halting states, 
and  a word is accepted or  rejected according to the state in which the  CM 
halts. We refer  the reader  to Stearns, Har tmanis  and Lewis [14] for  a 
lengthier discussion of  off-line machines. 

One easily verifies that  (1) the distinction between one-way and two-way 
is vacuous in the real-time case; and (2) given any one-way machine, one 
can effectively find a time-equivalent two-way machine. 

To  contrast one-way and two-way machines, let us consider the lan- 
guage L = {x a xT[ X ~ {0, 1}*, a ~ {0, 1}}, where x T denotes the reversal of  
word x. 

T H E O R E M  1.3. (a) The language L is not recognizable by any one-way 
k-CM which operates in time less than T(n) = 2 "/2k. (b) L is recognizable by a two- 
way CM which operates in time T(n) = cn2/[log n] for some constant c. (c) Every 
CM recognizing L operates in time T(n) ~ cn2~[log n] for some constant c and for  
all n. 

Proof (a) A memory configuration of  a one-way k-CM is the (k + 1)-tuple 
consisting of  its current  internal state and the contents of  its k counters. 
Any one-way k-CM recognizing L must  attain distinct memory  configura- 
tions after reading distinct binary words x and y; otherwise x a x T and 
y a x r would be treated identically. Let t be the maximum contents of  any 
counter  after reading a length m word. I f  the k-CM has q states, then the 
number  of  distinct memory  configurations of  the k-CM after reading 
length m words cannot  exceed q • (t + 1) k. By our  preceding remarks,  we 
must have q • (t + 1)k I> 2 m, whence t I> c • 2 "/k for some constant c. Since 
a counter  machine can alter the contents of  a counter  by at most one at 
each step, the k-CM must take no fewer than c • 2 c"-'/2k ~ d • 2 "/zk steps for 
some d, to process input  words x a x r of  length n. Hence the result. 

(b) We sketch the action of  a two-way CM M which recognizes L. 
(i) M traverses the input  word x a y, storing [log m] in acounter ,  where 

m is the length of  x. (All logarithms in this paper  are to the base 2.) 
(ii) M successively picks up [log m] binary symbols of  x, interpret ing 

them as a dyadic integer (where the dyadic integer represented by the 
binary string b n b n - 1  " " " bo will be 2~'=0 (bi + 1)2i), crosses to the correspond- 
ing [log m] symbols ofy  and checks that these symbols represent  the same 
integer. The  modification of  this step when the "a" is encountered  is ob- 
vious. 

Now step (i) clearly requires m steps. In step (ii), each number  conver- 
sion can be done in time d • 2 T M  rn] ~ d " m steps for some constant  d. Simi- 
larly, each positioning of  the read head can be done in time proport ional  
to m. Thus,  each execution of  step (ii) can be done in e • m steps for some 
constant e. Step (i) is executed once, and step (ii) is executed at most 
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m/[log m] + 1 times. Thus, M recognizes L in time 

T(n) <~ m + e • m(m/[log m] + 1) ~< e • n2/[log n] 

for some constant c, since n = 2m + 1. 
(c) To show that M operates within a constant factor of  best possible 

time, we paraphrase a result of  Cobham [ 1 ]. 

LEMMA. For any CM which recognizes the language L, we have 

(1) inf log S(n) > 0; 
,-~= log n 

(2) inf T(n) . log  S(n) 
n-~  n 2 > O. 

In Section 3 we prove that (1) implies that S(n) c > T(n) for some positive 
constant c. Using this result, (2) reduces to 

(.) T(n) • (log T(n)) >- d • n z 

for some constant d and for all n. This implies that 

d n z 
T(n) >I ~ log-----n 

for all n, as the reader may verify. 
This establishes part (c), completing the proof. 

2. Special Recognition Problems 

The purpose of  this section is to lend insight into the capabilities of  
counter machines. It is tautologous to remark that counter machines can 
solve those problems which can be couched in terms of  counting. It is, 
however, rather surprising to note the breadth of the problems that can 
be so approached. In fact, Minsky [8] has proved that, in the absence of 
time restriction, any (partially) computable problem can be rephrased as 
a counting problem. 

We now consider three problems which can be solved in real-time 
counter machines. No proofs will be given in this section; references to 
appropriate sources will appear instead. 

2.1. Ari thmetic  Express ions  

The first language we consider is the set of all well-formed arithmetic 
expressions in parenthesis-free notation. Assuming only unary and binary 
operators, the language L2 (the subscript denoting the highest ranking 
operator) is schematically defined by the grammar: 

(expression) ~ (unary operator) (expression) 
(expression) ~ (binary operator) (expression) (expression) 
(expression) ~ (operand).  
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The reader can easily supply the general definition of  L,. 

THEOREM 2.1. For all n, the language Ln is real-time recognizable by a 

1-CM. 
Proof The proof  follows from an algorithm presented by Oettinger [9]. 

One assigns a numerical value to each symbol in the vocabulary: - 1  to each 
operand, and + ( n -  1) to each n-ary operator (n I> 1). The 1-CM reads the 
input word, responding to each symbol by adding its numerical value to 
the counter. The input word is accepted if, and only if, (i) at the end of  the 
word the counter contains - 1 ,  and (ii) at no previous point in the computa- 
tion did the counter contain a negative number. One readily verifies that 
the CM recognizes L,. The theorem now follows by Theorem 1.1. 

Thus, even real-time one-counter machines can perform some relatively 
sophisticated computations. 

2.2. Commutative Languages 

A language L is commutative if all permutations of  every word in L are 
also in L. Clearly, in recognizing a commutative language, one need only 
consider the number of  occurrences of  the various vocabulary symbols 
in the input word. 

Given a vocabulary E = {al, • • • , a,}, we define, for any word w over 
E, #(w) to be the n-tuple of  non-negative integers (#1(w)," • • , # , (w)) ,  
where #~(w), 1 ~< i ~< n, is the number of  occurrences of ai in w. 

A set S of  n-tuples of  integers is linear if there exist non-negative n- 
tuples c, Pl, " • • , pr such that S = {c + 5~1"=1 kiPil each k ~  > 0}. S is semilinear 
if it is a finite union of linear sets. 

Using results of  Ginsburg and Spanier [5] and an application of  
Cramer's rule for solving systems of linear equations, one can show that 
for every semilinear set of  n-tuples of  integers S, and for every n-letter 
vocabulary ~ = {al, • • • , a,}, the language {w • l~* I #(w) • S} is equal to a 
finite Boolean combination of  sets which are real-time recognizable by 
1-CM's. Conversely, since a real-time 1-CM obviously accepts only context- 
free languages (cf. Fischer [2]), Parikh's theorem [10] shows that, for any 
language L real-time recognizable by a 1-CM, the set {#(w)l w • L} is semi- 
linear. We thus obtain the following result which was obtained in slightly 
different form by Laing [7]. 

THEOREM 2.2. (Laing [7]) Let S be a set of n-tuples of integers, and let 
= {al, • • • , a,}. The language L over ~ equal to {w • E*] #(w) • S }  is afinite 

Boolean combination of languages real-time recognizable by 1-CM's if, and only 
if, S is a semilinear set. 

Two examples of  commutative languages are of  special interest and 
are worthy of  mention. 

2.3. Walks in n-Space 

It is trivial to show that, given any real-time n-CM, one can find a time- 
equivalent n-tape TM. In view of the greater flexibility of TM tapes, it is 
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natural  to wonder  if a real-time TM with fewer than n tapes can be found  
to simulate a real-time n-CM. We present  one instance where this question 
is still open,  and ment ion one for which the question has recently been 
resolved in the affirmative. 

Let ~n = {al, a2, • • • , a2n-l, a2n} be an alphabet of  2n letters. 
Axis-Crossing Problem. The  n-dimensional axis-crossing problem is the 

language 

A, = {w ~ E*[ for some i, 1 <~ i ~< n, •2i_1(/./.)) = #2 i (W)} .  

Open Problem. It is obvious that, for all n, A,  is real-time recognizable by 
an n-CM. Is A., real-time recognizable by a 1-TM? 

Origin-Crossing Problem. The  n-dimensional origin-crossing problem is 

the language 
t 

O, = {w ~ ~*] for each i, 1 ~< i ~< n, #2i-1(w) = #2i(w)}. 

The  geometric names of  these languages arise f rom the interpretat ion 
of  each letter a2i-1 [a2~] as an instruction to take one step left [right] along 
the ith axis of  n-space. 

In contrast to the above open problem about A,, for O, we have the 
following result of M. Fischer and A. Rosenberg [3]. 

T H E O R E M  2.3. For all n >I 1, the language O, is real-time recognizable by 
a l-tape Turing machine. 

COROLLARY.  Let ~ = {al, " " " , an}. The languages {x~y[ x, y E ~*, 
~ ~,, and x is a permutation of y} and {w ~ ~*[ #1(w) = #~(w) . . . . .  #,(w)} 

are real-time recognizable by 1-TM's. 

3. Space Requirements 

3.1. Space Complexity Classes 

Stearns, Hartmanis ,  and Lewis [ 14] have defined, for a function S, the 
tape complexity class C s to be the class of  languages recognizable by TM's 
which operate  in space S. Tape  complexity classes, partially o rdered  by set 
inclusion, have a rich structure which includes infinitely many incom- 
parable infinite chains. I f  one similarly defines C' s to be the class of  lan- 
guages recognizable by CM's which operate in space S, then one obtains 
the same structure. In this section we investigate the classes C's. The  main 
result of  the section is that C~ = C~og~s~ for any function S. 

We first exhibit two space compression results for CM's. The  fact that 
these compressions can be effected with no time loss will be useful in later 
sections. 

LEMMA 3.1. Given any k-CM which operates in space S(n), one can find a 
time-equivalent k-CM which operates in space [c • S(n)] for any constant c > O. 

The  Lemma follows f rom Theo rem 1.2(b). 
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At the cost o f  adding  more  counters  to a CM, Lem m a  3.1 can be signifi- 
cantly improved.  

L E M M A  3.2. Let S be an increasing function. Given any CM which operates 
in space bounded by a polynomial in S, one can find a time-equivalent CM which 
operates in space S. 

Proof We describe how any coun te r  of  a CM can be replaced by two 
counters  whose contents  remain b o u n d e d  by the square root  o f  the con- 
tents of  the original counter .  By applying this construct ion several times, 
the result will follow. 

T h e  simulation proceeds  in two al ternat ing modes,  the cu r ren t  mode  
being r e m e m b e r e d  in finite memory .  Mode I cor responds  to the case where  
the coun te r  to be simulated contains an in teger  m = r 2 + 2i (0 ~< i ~< r), 
mode  II to the case where  the coun te r  contains m = r z + 2i + 1 (0 ~< i < r). 

Mode I: Suppose that  the coun te r  to be simulated contains m = r 2 + 2i. 
We replace that  coun te r  by two counters  A and B containing r -- i and i 
respectively. T o  simulate the inc rement ing  o f  the original coun te r  by +1 
we distinguish two cases. I f  i = r, i.e., coun te r  A contains 0, then  coun te r  B 
is inc remented  by +1,  the roles o f  counters  A and B are in terchanged,  and 
the machine remains in mode  I. I f /  ~ r, the counters  remain unchanged ,  
but  mode  II is entered.  

Mode II: I f  the coun te r  to be simulated contains m = r '~ + 2i + 1, then 
once again, coun te r  A contains r - i and coun te r  B contains i. T o  simulate 
the inc rement ing  o f  the original coun te r  by +1, coun te r  A is decreased by 
1, coun te r  B is increased by 1 and mode  I is eritered. 

Simulated dec rement ing  o f  the original coun te r  proceeds  by reversing 
the process of  simulated increment ing  with the obvious minor  modifica- 
tions. Clearly the o r ig ina l  coun te r  contains zero when,  and only when, 
both counters  A and B contain zero. Similarly, when the original coun te r  
contains an integer  m /> 0, one  of  counters  A and B contains i = [(m -- 
[~'-mm]2)/2] ~< [V~m], and the o ther  contains [X/mini - i ~< ['v~m]. Finally, 
ou r  new CM requires  only a single step to simulate a step o f  the original 
counter .  

Using Lemmas  3.1 and 3.2, we can prove  the main result  o f  this section, 
namely that the T M  and CM space hierarchies are isomorphic.  

T H E O R E M  3.1. A language is recognizable by a CM which operates in 
space S if, and only if, it is recognizable by a TM which operates in space log (S). 

Proof By encoding  the contents  o f  the various counters  of  the CM on 
separate tracks o f  its tape in (possibly compressed)  binary notation,  a T M  
can clearly simulate a CM which operates  in space S, using space b o u n d e d  
by log (S). 

For  the converse we employ an algori thm repor t ed  in Fischer [2] for  
simulating a T u r i n g  machine  tape using three  counters ,  A, B and C. 

Assume that the TM employs m distinct symbols, labelled 0 (blank), 
1 ,  • • • , m - 1. I f  at some point  the nonblank por t ion  o f  the T M  tape is o f  
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the form afar-1 • " • aocbobl • • • bs with the read-write head residing on the 
c, then at the corresponding point in the simulation, counter A will contain 
the integer 

larl  • m r +  l a r - l l  ' m r - '  + '  ' " + la l l  . m  + la01, 

counter B will contain 

Ibs[ " m s + [ b s - 1 ]  • m s-1 + "  • • + Ib l [  • m + [b0J ,  

and counter C will contain zero. (We use the notation lakl to denote the 
integer label of symbol ak.) The integer Icl is retained in finite memory. 

If  the TM replaces c by d and shifts its head right, the CM multiplies the 
contents of counter A by m and adds [d[, and it divides the contents of 
counter B by m, retaining the residue [b0[ in finite memory. Left shifts are 
simulated analogously. Throughout  this simulation, counter C is used as 
an auxiliary register. 

It is now clear that, if the TM scans at most [log S ] squares of tape, then 
counters A, B and C never grow larger than 

m[log $1+1 ~ mS[lOg m]+l 

The result now follows by Lemma 3.2. 

3.2. Time-Space Relation 

There is a strong relation between time and space requirements for 
counter machines. This relation is made explicit in the following theorem. 

THEOREM 3.2. Let  S be a f u n c t i o n  with S (n )  >! n. A language  L is recog- 

nizable by a C M  which operates in space S if, and  only if, it is recognizable by a 

C M  which operates in time bounded by a polynomial  in S. 

P r o o f  Let L be recognized by a CM with q states and k counters which 
operates in space S. It follows that, in processing an input of length n, the 
CM can assume the most q • n .  (S(n) + 1) k distinct configurations. (See Sec- 
tion 1.1 for the definition of the configuration of a k-CM.) Clearly, if a config- 
uration is repeated in the course of  a computation, the CM will never halt. 
Therefore, since by definition of recognition the CM always halts, the CM 
must operate in time 

T(n )  = q • n • (S(n)  + 1) k <~ c • S (n)  k+l 

for some constant c independent of n. 
Conversely, if time is bounded by a polynomial in S, then so is space 

since a CM can increment its counters by at most one at each step. We now 
appeal to Lemma 3.2 to complete the proof. 

Open Problem. Is there an analogue of Theorem 3.2 which is valid for 
Turing machines? 

3.3. Basis for Complexity  Classes 

Stearns, Hartmanis and Lewis [14] remark that to study any space 
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complexi ty class Cs of  TM's,  it suffices to consider  one- tape  TM's. We now 
show this not  to  be t rue  for  the CM complexi ty classes. In part icular  we 
show that the class of  languages recognizable by (k + 1)-CM's which opera te  
in space S(n) = n proper ly  includes the class recognizable by k-CM's which 
opera te  in space S(n) = n for  any integer  k. 

For  k = 1, 2, • • • , let Lk be the language Lk = {0r"ll0m'l " " • 0 m k / ~ i 0 r n i [  

1 ~< i ~< k, each mj t> 1, and each/3~ ~ {0, 1}}. 

T H E O R E M  3.3. (a) For each k, the language Lk is recognizable by a (real 
time) k-CM which operates in space S(n) = n. (b) I f  an r-CM M recognizes L~,for 
k >I r, then M operates in space S(n) >- cnklrfor some constant c. 

Proof T h e  p roo f  o f  part  (a) is s t ra ightforward and is left to the reader .  
T o  establish (b), note  that distinct binary words x of  the fo rm 0 m'l • • • 

10ink must  leave M in distinct m e m o r y  configurations.  Now if each m~ <~ h, 
the n u m b e r  of  such distinct words is h k. I f  t is the m ax im u m  contents  at- 
tained by any coun te r  of  M in processing such words, then the n u m b e r  o f  
distinct m e m o r y  configurat ions of  M is no grea ter  than q(t + 1) T, where  q 
is the n u m b e r  of  states of  M. We must then have q(t + 1) ~/> h k, whence 
t /> d • h kIT for  some constant  d. Since h + 1 >1 n/(k+ 1), where  n is the length 
o f  the input  word,  M must  opera te  in space S(n) >1 c • n k~ for  some constant  
c, comple t ing  the proof.  

C O R O L L A R Y .  For all k, the class of languages recognized by (k + 1)-CM's 
in space S(n) = n properly includes the corresponding class recognized by k-CM's. 

4. Simulation of  One Machine by Another 

In this section we investigate precise t ime bounds  for  one  machine  to 
simulate another .  For  simplicity we restrict at tention to the problem of  
simulating machines which opera te  in linear time, that is, in t ime T(n) = cn 
for  some constant  c. T h e  generalizat ion o f  several of  the results to arbi t rary  
T(n) is immediate.  

4.1. Turing Machines and Counter Machines 

It is obvious that,  for  any t iming funct ion T(n), given any k-CM which 
operates  in time T(n), one  can find a t ime-equivalent  k-TM. It is, however,  
r a the r  surpr is ing to note  that a ' I - T M  can simulate a real-time k-CM with 
little t ime loss and can simulate a k-CM which operates  in t ime T(n) > 
(1 + e) • n with no t ime loss. 

T H E O R E M  4.1. Given any k-CM which operates in (linear) time T(n) <~ 
c • n for any ~ > O, one can effectively find an equivalent one-tape TM which 
operates in time T(n) = (1 + ~)n. 

Proof T h e  p r o o f  proceeds  in three  stages. (a) Given a k-CM M, we find a 
t ime-equivalent  k-CM M '  which alters at most  one  coun te r  per  step. (b) 
Next  we construct  a single-tape TM T, equivalent  to M' ,  which operates  in 
t ime T(n) = 12cn. (c) Finally we obtain, for  any desired real n u m b e r  d > 0, 
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a single-tape TM T ' ,  equivalent to T, which operates  in time T(n) = (1 + 
(12c -- 1)d)n. Since the feasibility o f  steps (a) and (c) are demons t ra ted  by 
T h e o r e m  1.2 and by the speed-up theorem of  Har tmanis  and Stearns [6],  
we consider  only step (b). 

Given M' ,  we construct  T as follows. T h e  tape o f  T is divided into k 
tracks, one for  each counte r  o f  M' ,  and each track is divided into two chan- 
nels. A binary representa t ion  of  a non-negat ive integer  will appear  in each 
track, justified so that the low-order  bits o f  all integers appear  in the same 
tape square. This  encoding  is such that, for  i = 1, • • • , k, if the ith coun te r  
o f  M'  contains, at the nth step in the computa t ion ,  the integer  x~, then  at 
the n th  stage in the simulation, the ith track o f  the tape of  T will contain 
integers y~ and zi with the propert ies :  ( 1 ) y ~ -  zi =xi ,  (2)yi + zi <~ n, and (3) 
there  is no bit position in which the binary representa t ions  ofy~ and z, both 
contain a one. This  last condit ion assures us that x, = 0 when, and only 
when, y~ = zi = O. 

For the case k = 3, Figure 1 illustrates a possible configurat ion of  the 
tape o f  T af ter  15 steps by M' .  T h e  counters  o f  M'  contain 7, - 5  and 0, 
respectively. 

Track 

Low-order  s q u a r e - -  

I 0 

I 

I 0 

o I 

1 o 

o I 

I o 

o 

o 

J 

Read- wrife 
head 

Channel 

)+ 
)- 
)+ 
)- 
)+ 

T h e  process of  simulating a s t ep  o f  M'  proceeds  as follows: I f  coun te r  
i is to be inc remented  [dec remen ted ] ,  1 is added  toyi [zi]. Af ter  any neces- 
sary carries are pe r fo rmed ,  T moves one  additional square to the left in 
o r d e r  to de te rmine  if the leading digit of  e i ther  channel  o f  track i has been 
reached.  T then pe r fo rms  a "clean-up" while shift ing right until the blank 
square to the right o f  the low-order  square is detected.  In this clean-up, T 
maintains condit ion (3) above and replaces any leading zeros thus created 
by blanks. Finally, T shifts left one  square to r e tu rn  to the low-order  posi- 
tion. It is clear that du r ing  the clean-up, T also detects whether  the value 
o f  coun te r  i is now zero or  nonzero.  

Figure 1. A possible configuration of T's tape after 15 steps by M': Counter 1 contains 
7, counter 2 contains --5, and counter 3 contains 0. 
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Figure 2 illustrates the change in the configuration of the tape of T 
which results from adding one to the second counter of M' when M' is in 
the configuration of Figure 1. 

Track 

'f 
Low-order  s q u a r e - -  

I 0 0 I 

1 0 

I 0 0 

I 0 0 0 

0 

o 

Read ,write 
head 

Channel 

)- 

Figure  2. The  configuration of T's  tape after simulating the incrementing of counter 2 
of M'  by 1. 

To estimate the time required for a complete simulation of M' by T we 
note that in the simulation of the first 2 h+l steps of the computation o f M  ~, 
the worst case for T will occur when each step increases the same counter 
of M'. In this case, there will be 2 h steps in which no carry is required, 2 h-1 
steps involving a carry of 1,2 h-2 steps involving a carry of 2, etc., 1 step with 
a carry of h and 1 step with a carry of h + 1. Since the simulation of a step 
of M' involving a carry of length i takes 2i + 4 steps by T, we see that the 
time taken by T is: 

h 
T(2 h+l) = ~ 2h-~(2i + 4) + 2(h + 1) + 4 

i=O 

h 

= ~ 2 h - i ( 2 i + 4 ) ÷  ~ 2h-~(2(h+l )+4)  
i=o i=h+ l 

~< ~ 2h-i(2i + 4) 
i=O 4 
2h(2 i2 -i + 4 ~ 2 <) 

l=0 i=0 

= 2  ~ • 12 

Now, given n, choose h = [log n] so that 2 h ~< n < 2 h+l. Then T(n) <~ 
T(2 h+l) ~ 12 • 2 h ~< 12n. (A careful analysis would show that a bound of 6n 
actually holds.) Thus, Theorem 4.1 follows. 

Open Problem. Can the e of Theorem 4.1 be set to 0? This problem is 
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open  even for  the case o f  real-time 2-CM's. (Cf. the axis-crossing prob lem 
in Section 2.2.) 

In contrast  to T h e o r e m  4.1, a one-way CM may require  exponent ia l  
t ime to simulate a real-time one- tape  TM. 

T H E O R E M  4.2. (a) Given any linear-time k-tape TM, one can find an equiv- 
alent one-way CM which operates in time T(n) = a" for some constant a. (b) There 
is a language L, real-time recognizable by a one-tape TM, which is not recognizable 
by any k-CM which operates in time less than T(n) = 2 nl'k. 

Proof (a) A l inear-t ime TM operates  in space S(n) = cn. Part (a) thus 
follows f rom T h e o r e m s  3.1 and 3.2. 

(b) T h e  language L = {x a x T] x e {0, 1 }*, a ~ { 0, 1 } } is easily shown to be 
real-t ime recognizable by a one- tape  TM (in fact by a real-t ime pushdown 
automaton) .  T h e r e f o r e ,  part  (b) follows f rom the p r o o f  of  T h e o r e m  1.3(a). 

We can thus bound  the time requi red  for  a CM to simulate a linear- 
t ime T M  by the inequalities 

c7 <- T(n) <- c".,_ 

for  some constants cl and c2. 

4.2. k-Counter Machines and 3-Counter Machines 

T H E O R E M  4.3. (a) Given any linear-time k-CM, one can find an equivalent 
3-CM which operates in time T(n) = cnk+2 for some constant c. (b) There is a lan- 
guage L, real-time recognizable by a k-CM, which is not recognizable by any r-CM 
which operates in time less than T(n) klr. 

Proof (a) Given a k-CM M which operates  in t ime d • n, for  some con- 
stant d, one  easily constructs an equivalent  1-TM which (i) operates  in time 
d'n • log n (for some d'), (ii) operates  in space log dn, and (iii) uses 2 k + 1 
working symbols. T h e  1-TM encodes the contents  o f  the counters  o f  M in 
binary on its tape using one track o f  tape per  counter .  It simulates an 
alteration to the counters  of  M by al ter ing the binary integers on the corre-  
sponding  tracks o f  its tape. One  easily verifies that,  if we assume that M 
alters at most one  coun te r  at each step, then  a single step o f  M, while M is 
checking the nth input  symbol, requires  no more  than log dn steps o f  the 
1-TM. Thus  the 1-TM satisfies the assertions above. 

We now employ the algori thm of  T h e o r e m  3.1 to find a 3-CM to 
simulate the 1-TM jus t  constructed.  Now to simulate a single step o f  the 
1-TM which, in turn,  is working on the simulation of  M checking the nth 
input  symbol, the 3-CM must  multiply a n u m b e r  o f  magni tude  at most 
(2 k + 1) l°gdn ~ e • n k+1/2 (for some constant  e) by 2 k + 1, divide a n u m b e r  of  
similar magni tude  by 2 x + 1, and add a n u m b e r  of  magni tude  at most 2 k + 
1. Each such simulated step thus requires  at most 3 • (2 k + 1) • e • n k+ljz 
steps o f  the 3-CM. 

Since the 1-TM operates  in time d' • n • log n, the simulating 3-CM 
operates  in t ime h • n k+3/2 • log n ~< c • n k+', as was asserted. 
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(b) We now recall the family of  languages 

Lk = {0m~10m21 " " " omkfliomi[ 1 <~ i <~ k, each m s I> 1, and each fli ~ {0, 1}}. 

It is obvious that  each Lk is real-time recognizable by a k-CM. It follows 
f rom the p roof  of  Theorem 3.3(b) that  no r-CM recognizing Lk operates in 
time less than cn k/" for some constant  c. The  theorem follows. 

5. R e a l - T i m e  R e c o g n i z a b l e  L a n g u a g e s  

Let cgk denote  the class of  languages real-time recognizable by k-CM's 
(k = 0, 1, 2, • • "), and let cg = Uk cgk. In this section we investigate a number  
of  properties of  the classes cg k and of  of. 

5.1. The Counter Hierarchy 

Most of  the negative results in this section depend  on the following 
basic lemma. 

We say that two words x and y are n-equivalent with respect to a language L, 
denoted  x En y (mod L), if, for all words z of  length not  exceeding n, xz is in 
L when, and only when, yz is in L. 

Let T(M) denote  the language recognized by the CM M. 

L E M M A  5.1. Let M be a real-time k-CM with q states. The number of equiva- 
lence classes of En(mod T(M)) cannot exceed q • (n + 1)k << cnk for some constant c. 

The  proof  is obvious when one considers the number  of  distinct mem- 
ory configurations of  M which can be distinguished in n steps (which are 
n-inequivalent). 

Lemma 5.1 immediately yields the following theorem. 

T H E O R E M  5.1. For all k, cgk is properly included in ~k+l. 
Proof Consider the family of  languages Lk Of Theorems  3.3(b) and 

4.3(b). Given any distinct words x = 0 ml 1 • • • 10mk+l and y = 0"  1 • • • 10r~+l, 
where each mi and r; <<- h, there is a sequence z = fl,O t of length not  exceed- 
ing h + 1 such that xz is in Lk+l while yz is not. Since the number  of  distinct 
words of  this form is h TM, it follows that the number  of  equivalence classes 
ofEh+l(mod Lk+l) is no less than h TM. 

Now, since the number  of  equivalence classes of  Eh+l(mOd T(M)) for 
any real-time k-CM M is no greater than q(h + 1) k < h ~+1 for large h, it 
follows that  Lk+l is not in T~. 

It is obvious that Lk+ 1 is in c~k+a, whence for all k, Lk+~ is in cg~+l _ ~k. 
The  theorem follows. 

Lemma 5.1 and T h e o r e m  5.1 were noted independent ly  by Laing [7]. 

5.2. Linear Time and Speed-up 

Using part  (b) of  Theo rem 1.2, one immediately obtains a "speed-up" 
theorem for counter  machines. 

T H E O R E M  5.2. Given a k-CM which operates in time T(n) = n + E(n), 



280 PATRICK C. FISCHER, ALBERT R. MEYER AND ARNOLD L. ROSENBERG 

E(n) >I O, one can find an equivalent k-CM which operates in time T ' (n)  = n + 
[cE(n)] for any constant c > O. 

I n  pa r t i cu la r ,  we have  the  fo l lowing  corol lary .  

C O R O L L A R Y .  Given any k-CM which operates in time T(n) = d • n, d >~ 1, 
one can find an equivalent k-CM which operates in time (1 + [(d - 1)/c]) • n for 
any constant c .> O. 

T h u s  any  l inear  t ime  C M  can be  r e p l a c e d  by an  equ iva l en t  C M  which  
o p e r a t e s  in t ime  (1 + E) • n. I t  is n a t u r a l  to w o n d e r  if  the  E can  be  set  to zero ,  
e s tab l i sh ing  the  equ iva l ence  o f  l inear  t ime  a n d  real  t ime.  We  n o w  show 
this no t  to be  the  case. 

T H E O R E M  5.3. Let L = {0Pl m] p >t m > 0}. The language L* is (a) rec- 
ognizable in time 2n by a 1-CM, but (b) not real-time recognizable by any CM. 

Proof Par t  (a) is obvious .  W e  establ ish p a r t  (b) by con t rad ic t ion .  
A s s u m e  tha t  the  k -CM M, h a v i n g  q states,  r ecogn izes  L* in real  t ime.  
Let  b0 = q, a n d  f o r  i = 1, • . • , k, let bi = q  • ( 3 b ,  + 2) i. W e  shall  show tha t  

M m u s t  accep t  a s t r ing  o f  the  f o r m  

0%10%-11 • • • OC'lOal e 

w h e r e  d < e, or  re jec t  such  a s t r ing  w h e r e  d t> e. T h e  in tegers  c~ will sat isfy 
the  inequal i t ies  

1 ~<c~<bi ( i = l , . . . , k ) .  

Now,  fo r  any  in t ege r s  p a n d  m > p, M m u s t  be in dist inct  m e m o r y  con-  
f igura t ions  a f t e r  r e a d i n g  0 p a n d  0m; o the rwi se  0ml m e L* a n d  0Pl m ~ L* 
wou ld  be t r e a t e d  identical ly.  Since the  n u m b e r  o f  dis t inct  m e m o r y  conf igu-  
ra t ions  is b o u n d e d  by q • (t + 1)~, w h e r e  t is the  la rges t  i n t ege r  a t t a ined  by 
any  c o u n t e r ,  it fol lows tha t  a f t e r  r e a d i n g  s o m e  w o r d  0~k fo r  ck ~< bk, s o m e  
c o u n t e r  o f  M m u s t  con ta in  t /> 3bk-1 + 1. T h e r e f o r e ,  a f t e r  r e a d i n g  0ekl,  
s o m e  c o u n t e r  o f  M m u s t  con ta in  an  i n t ege r  no t  less t h a n  3bk-1. 

A s s u m e ,  fo r  i nduc t i on ,  tha t  f o r  0 < i < k, i n t ege r s  ce, ck-l,  • • • , c k - ,  
have  b e e n  chosen  so t ha t  w h e n  M is s c a n n i n g  the  final s y m b o l  o f  t he  w o r d  

0Ckl0Ck-I 1 • " • ]0ek-i+ll  

at  least  i o f  the  c o u n t e r s  o f  M con ta in  in tegers  not  less t h a n  3bk-~. As above ,  
w h e n  M now scans i n p u t  w o r d s  o f  the  f o r m  0 p a n d  0 m fo r  bk-~ 1> m > p I> 1, 
it m u s t  e n t e r  c o n f i g u r a t i o n s  which  a re  bkLr inequiva len t .  By o u r  induc t ive  
hypo thes i s ,  i o f  the  c o u n t e r s  o f  M a re  too  l a rge  to affect  bk_requ iva l ence  
o f  con f igu ra t ions .  T h e r e f o r e ,  M c a n n o w  at ta in  no  m o r e  t h a n  q • (t + 1) k-i 
bk_~-inequivalent con f igu ra t i ons ,  w h e r e  t is the  l a rges t  i n t e g e r  a t t a ined  by 
any  o f  the  k - i " u n c l o g g e d "  coun te r s .  I t  fol lows tha t  t h e r e  is an  i n t e g e r  
ck-~ ~< bk-~ such tha t ,  a f t e r  r e a d i n g  the  w o r d  

(Fkl • • • 0 % - - -  10%-i l ,  
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at least i + 1 of  the counters o f  M contain integers not  less than  3bk-t-x. 
B y  induction, there must be an input  word w = 0 e k l  • . • 0 ~11, where 

each c, ~< bt (i = 1, • • • , k) such that, after  reading w, all o f  the counters of  
M contain integers no less than 3b0 = 3q. The re  must  now be integers 1 
c < d ~ q + 1 such that  w0 ~ and wO n lead M to q-equivalent configurations, 
Therefore ,  M must  treat  wOel *+1 ~ L* and wOal e+~ ~ L* identically, con- 
tradicting the assumption that  M recognizes L*. The  proof  is completed. 

T he o re m 5.3 thus demonstrates  the inequivalence o f  linear time and 
real t ime for CM's. 

I t  is worthwhile to note that  the language L* is real-time recognizable 
by a 1-CM which can, in a single step, set its counter  to zero. Th e o r e m 5.3 
thus demonstrates  the 

Remark. The  class of  languages real-time recognizable by CM's with 
"store zero" instructions properly includes of. 

The  reader  will easily verify that  almost all the results repor ted  in this 
paper  remain valid for these s t rengthened CM's. 

5.3. C losure  Propert ies  

In this final section we investigate the closure properties of  the classes 
~gk and of  g~. 

The  closure properties o f  the class cg are almost identical to those of  the 
class of  real-time definable languages (Rosenberg [ 13]). 

T H E O R E M  5.4. The class ~ is closed under the operations of  (a) complemen- 
tation, (b) union, (c) intersection, (d) suffzxing with a regular set, and (e) inverse 
generalized sequential machine mapping. 

The  constructions required to prove Th e o r e m 5.4 are virtually identical 
to those used by Rosenberg [13] to establish the analogous results for 
T u r i ng  machines. We refer  the reader  to Rosenberg's  paper  for these 
constructions. 

LEMMA 5.2. The language L = { 0 m l l 0 m 2 1  • • • Omr-110mr20 m] r I> 1, 
each mi >>- 1, and for  some 1 <- i <~ r, m = mi} is not in of. 

Proof  Given any distinct binary words of  the form x = 0roll • • • 0mrl 
(r >t 1, 1 ~< m~ <~ h) a n d y  = 0n'l • • • 0nsl (s/> 1, 1 ~< nj ~< h), then, whenever  
{m,, • • • , mr} ~ {nl,  • • • , ns}, there is a word z~ {2} • {0}* of  length not 
exceeding h + 1 such that xz ~ L whileyz eL. It thus follows that  the number  
of  equivalence classes of  En(mod L) no less than 2 n-1. The  result now fol- 
lows by Lemma 5.1. 

T H E O R E M  5.5. The class ¢g is not closed under the operations of(a)  concat- 
enation, even with a regular set, (b) length-preserving homomorphism, (c) Kleene 
closure, and (d) reversal. 

Proof  (a)-(c) Let H be the language H = {0ml0"~l • • . 0"r20"l r t> 0, 
each ni /> 1, and m/> 1 }. Clearly H is in cg~. Let R be the regular  set R = 
({0}{0}*{ 1})*. Since R H  = L, part (a) follows by Lemma 5.2. 
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L e t f  be the  ( l eng th -p rese rv ing)  h o m o m o r p h i s m  de f ined  by:  f ( 0 )  --  0, 

f ( 1 )  = 1 , f ( 2 )  = 2 , f ( 3 )  = 1. Clear ly  R { 0 } { 0 } * { 3 } H  is in ~'1. H o w e v e r ,  the  
i m a g e  o f  this l a n g u a g e  u n d e r f  is L, es tabl ishing (b). 

By T h e o r e m  5.4, G = H{3}  U R is in c~. H o w e v e r ,  G* is no t  in ~ ,  o r  
else, u s ing  T h e o r e m  5.4, so w o u l d  be G* n R{2} • {0}* • {3} = L • {3}, 
c o n t r a d i c t i n g  L e m m a  5.2. Th i s  establishes (c). 

(d) O n e  easily verifies tha t  the  l a n g u a g e  K = {ln0m I 0 ' <  n <~ m}* is in 
~1. H o w e v e r ,  t he  reversa l  o f  K is the  l a n g u a g e  L* o f  T h e o r e m  5.3 which  
we k n o w  no t  to be in ~ .  

W e  finally no te  

T H E O R E M  5.6. For all m, n > O, there is a language H in $'m and a lan- 
guage K in $' ,  such that H tO K is in ¢gm+n - -  ~m+n-1 .  

Proof  W e  mere ly  let 

H = {0all • • • 0aml0b' l  • • • ObnfliOai I 1 <~ i <~ m, each  a~, bj /> 1, 

and  each/3k  ~ { 0, 1 } }, 

K = {0C'l • • • 0Cml0all • • • 0a./3~0aq 1 ~< i ~< n, each  c~, dj i> 1, 

and  each  flk ~ { 0, 1 } }. 

Clearly H U K is ihe  l a n g u a g e  Lm+n of, T h e o r e m  5.1, a n d  is, t he r e fo re ,  in 

Trn+n - -  ~m+n-1 .  

Open Problem. Is t he re  an  a n a l o g u e  o f  T h e o r e m  5.6 fo r  T M ' s ?  
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