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Abstract  
  
Based on Tarski’s  meta theorem we argue that elimination methods such as Fourier and 
Gauss can be used to provide strikingly simple and elementary proofs of major theorems.  
Most such examples that others and ourselves provided in the past were of known 
theorems, here we present such a proof   for   a long standing conjecture: the strong 
polynomiality of linear programs, which is listed as the ninth problem in Smale’s list of   
Mathematical Problems for the Next Century.   
  
  
Introduction  
  
  
Already in 1918 C.I. Lewis [1] stated that “For purpose of application of algebra to 
ordinary reasoning, elimination is a process more important than solution, since most 
processes of reasoning take place through the elimination of middle terms”. The fact that 
the elimination method due to Fourier in 1824 [2], and sometimes known as Fourier-
Motzkin elimination, can lead to strikingly simple proofs of major theorems is well 
known. For instance Dantzig and Eaves [3] state that “From it one can derive easily, by 
trivial algebraic manipulations, the fundamental theorem of linear programming, Farkas 
lemma, the various theorems of the alternatives and the well known Motzkin 
Transportation theorem”. This property of Fourier elimination has maybe not received as 
much attention as it deserved because the process is hopelessly exponential. However, as 
pointed out initially in a  series of papers  (see[4] for a review ), and more recently and 
forcibly argued in [5] this “theorem proving” property is not accidental, indeed Fourier 
elimination as well as Gaussian elimination are particular cases of Tarski’s elimination 
for real closed fields [6]. In his remarkable meta theorem, Tarski stated   that all theorems 
of elementary algebra and geometry can be obtained by a single algorithm: quantifier 
elimination. This has provided the foundation for a major direction in automated theorem 
proving, as well as in robotics [7] [8]   and geographic databases [9] [10] and other 
applications [11]. However the curse of combinatorial explosion has severely limited the 
scope of applications, despite major progress in the understanding of its complexity 
(Renegar [12]).  
But if one is interested in properties that do not require an effective execution of the steps 
of the algorithm, for instance existential properties that are preserved by these steps, 
elimination can be used with spectacular results. This approach to “non automated” 
theorem proving has been labeled “Qualitative Theorem Proving” by Chandru and Lassez 
[5]. However, if one can use elimination to provide spectacularly simpler proofs of 



already known theorems having complex proofs using more sophisticated mathematical 
machinery, as shown in the aforementioned papers, the challenge remains of   providing 
such a proof for an important conjecture of substantial significance.   
The conjecture chosen was the strong polynomiality of linear programs. It was in fact 
suggested to me by Paris Kanellakis, when I showed some surprise that elimination was 
not used in a more systematic way. His argument was that solving the strong 
polynomiality problem of linear constraints would be the best way to validate the 
methodology. It has indeed been listed as the ninth problem in Smale’s list of 
mathematical problems for the 21

st
 century [13], mirroring Hilbert’s list of problems at 

the previous turn of century, over a hundred years ago. The issue is to find a solution  to a 
finite system of linear inequality constraints in a number of steps polynomial with respect 
to the number of constraints and the number of variables. The   first known algorithm to 
solve such linear programs is  Fourier elimination itself, established in 1824, it was 
rediscovered by de La Vallée Poussin,  Motzkin and others and has historical value as 
well as being at the heart to the proposed methodology. Considered later by Kantorovich 
it finally led  Dantzig to invent his simplex algorithm, whose importance in solving 
economic  problems cannot be overstated. The simplex is an extraordinary algorithm 
whose worst case complexity is exponential, but nevertheless has excellent practical 
behavior. Over the past fifty years many mathematicians, and computer scientists have 
studied its behavior, including celebrated scholars such as Smale, Karp and Kalai, while 
others have attempted to find a less complex algorithm at the theoretical level, or one that 
would outperform it at the practical level. I refer to [14] [15] for a discussion of this 
work, leading to Kachyian and  Karmarkar’s results who establish that  a set of linear 
constraints can be solved in polynomial time. However  two problems remain: at the 
theoretical level polynomiality has been established for a measure of complexity which 
takes into account the size of the coefficients. The still open problem is to find a so called 
strongly polynomial algorithm, whose complexity depends solely on the number of 
constraints and the number of variables, so that we can have real numbers as coefficients. 
At the practical level the problem is to find, if possible, an algorithm that will outperform 
the simplex in a significant way. I address the first problem here, not the second. Still, 
because of the historical, theoretical, practical and even political importance of that 
problem and the considerable efforts that have been devoted to it, particularly in the past 
sixty years, any claim that the strong polynomiality of linear programming has been 
settled should be considered with the utmost caution. Some will even think that a claim of   
the existence of an elementary proof based essentially on Fourier’s 1824 result  should 
not be considered at all. So I request that the reader consider the following arguments 
before dropping the paper:  
  
There is a precedent, Hochbaum and Naor [16]  proved , in an important particular case 
that Fourier’s algorithm could indeed have a low complexity. This I will also see as an 
avatar of Tarski’s meta theorem. So this power of Fourier elimination should not a priori 
be dismissed. Also Yamnitsky and Levin  [17] gave a remarkably concise proof  of a 
variant of Dikin-Karmarkar’s algorithm, so one cannot a priori rule out that extremely 
difficult problems in that area might still have “simple” solutions. The challenge is to find 
the right approach.  
  



Another  originality in the approach is that I look for an existential proof, not a 
constructive one, as opposed to the other known and successful approaches. This is due to 
the nature of the method, and it will be made clear why this relaxation can help 
considerably.  
  
Finally an simple extension to Fourier elimination plays a most significant role. This 
extension, due to Lassez and Maher [18] deals with implicit equalities.   
  
In the next section we review briefly various extensions of Fourier elimination: the 
detection of implicit equalities , constraint elimination and constant elimination. It should 
be pointed out that only the first extension [18] is needed for the settling of Smale’s 9

th
 

problem. We present the other two informally because   they can be presented at little 
cost as they are straightforward, they provide a novel and interesting geometric view of 
elimination, give an insight on convex hulls of affine spaces and unbounded sets, and 
finally they are the concepts that ultimately led to the discovery of the proof. Without this 
section it would look like the proof was found purely by accident, and a major purpose  
of,  and motivation for this paper would be defeated.    
After these preliminaries the proof is given.  
  
Elimination: Variables, Constraints and Constants.  
  
Variables: Fourier elimination  
Let  S={Ax≤b} be a set of inequalities where A is an (n,d) matrix of real numbers, x is a   
vector of d real variables, x=(x

1
, x

2
,…., x

d
) and b is a real constant vector in R

d
.  

  
To eliminate the variable x

k
  the inequalities are partitioned into:  

  
1. The subset Sp of  S which contains all the inequalities where x

k
  appears with a 

strictly positive coefficient.  
  

2. The subset Sq  of constraints where x
k
   appears with a strictly negative coefficient.  

  
3. The subset So of constraints where c

p
, c

q
 does not appear.  

  
 
From Sp and Sq all the possible pairs (c

p
, c

q
 ) where c

p
 is in Sp and   c

q
 is in Sq are 

formed. From each of these pairs a new inequality not containing x
k
   is generated by a 

positive linear combination of the two constraints c
p 
and c

q
 .  

  
The set of all inequalities generated this way together with So defines the result of 
Fourier elimination of the variable x

k
 . 

 



Note the important case where Sq is empty: no new constraint can be generated, so So is 
the result. Similarly if Sp is empty.  
  
Fourier’s algorithm consists in repeated elimination of the variables and has three 
possible outcomes:  
  
1. A contradiction as a constraint 0≤ a where a  is a strictly negative number is generated 
at some point in the process. S is found to be unsolvable.  
  
2. A non empty set of tautologies 0≤  t where t is a positive number, and no contradiction.  
S is solvable.  
  
3. The empty set of constraints. As no contradiction is generated S is solvable.  
  
Note: if there is a constraint with a strict inequality <, all combinations with other 
constraints will give strict inequality constraints.  
  
  
The third case is interesting as it corresponds to a case called strongly solvable [4] 
because the solvability does not depend on the values of the right hand side constants. If 
they are all set to 0 the set of constraints defines a full dimensional cone.  
  
The second case is also particularly interesting as shown in  [18] because it contains a 
hidden property of Fourier’s algorithm. A   linear inequality C≤a in a set S of inequalities 
defining a polyhedral set P is called an implicit equality if and only if replacing the 
inequality by an  equality in that constraint does not affect the definition of P.  The 
hidden property of Fourier’s algorithm is that S contains implicit equalities if and only if 
Fourier’s algorithm generates tautologies 0≤0. In that case all the constraints in S that 
were used to generate such a tautology are implicit equalities. One should note that the 
proof of this result comes partly from a basic property called independence of negative 
constraints, reported in Lassez and McAloon [19]. This has been used to prove in again a 
very simple way, non trivial properties of implicit equalities and redundancy [18] [20].  
  
 Another simple characterization of implicit equalities established in [18] and that we will 
use here is the following corollary to Fourier’s algorithm hidden property.  
  
Proposition:  
A set {Ci≤r

i
} i=1,…,n of inequalities is a set of implicit equalities if and only if there is a 

strictly positive linear combination of the constraints whose coefficients are all 0:  
  
        ∑λiCi = [0] and   ∑λi r

i
  =0, λi>0  i=1,….,n  

  
Note: [0] denotes the linear expression where all coefficients are 0        ∑λiCi = 0 would 
denote an hyperplane.  
  
  



  
  
  
Eliminating Constraints:  
It is known that variable elimination corresponds to the operation of projection 
geometrically. Let us make a remark that will initially appear to be absurdly pedantic:   
Yes elimination of variables can be viewed as a projection, but for the last step.  
Indeed when we eliminate the last variable of a non empty polyhedral set we are left with 
either the empty set or tautologies such as 0≤  3.  An empty set of constraints or such 
tautologies define the whole space, so suddenly the dimension goes up, indeed 0x+0y≤ 3 
is satisfied for all real numbers x, y, such a constraint defines R

2
. The explanation is 

simple if we consider projections on an arbitrary hyperplane. The operation of projection 
of a polyhedral set P consists in fact of two parts: a cylindrification , where we construct 
the set of points which project on  P along the direction of the normal vector of the 
hyperplane, and a section where the projection is obtained as the intersection of this 
cylinder  with the hyperplane. This can be achieved easily as a variant of Fourier 
elimination:  
  
   
Cylindrification: Let h be a normal vector of the hyperplane H. For each constraint C≤ r 
in the set defining the polyhedral set, let σ denote the valuation of the left hand side of the 
constraint, that is the dot product of h with the vector of coefficients of  C. Now we add 
to each constraint’s left hand side the monomial σz where z is a new variable. A 
straightforward adaptation of the proof of correctness of Fourier elimination shows us 
that we obtain the smallest cylinder containing the polyhedral set P when we eliminate 
the variable z. Intersecting with H gives us the required projection. Because we now have 
an  equality we can eliminate a variable.   
So we can define an arbitrary set of independent vectors spanning the whole space and 
project along   these instead of the initial set of axes, generalizing Fourier elimination to 
arbitrary sets of coordinates (not necessarily orthogonal).  
Therefore strictly speaking Fourier elimination represents a projection only when we set a 
variable to 0 after we eliminate it from the set: 0x ≤3 represents a one dimensional space 
space, if we add x=0 we have the origin.  
  
But what happens if we do not intersect? We will not eliminate a variable at each step, 
apart from the extra one that we introduced. Consider a single point, it is an affine space 
of dimension 0.  When we cylindrify along the first axis we obtain an affine set of 
dimension one, a line. As we proceed with cylindrification we generate affine spaces of 
increasing dimension, leading ultimately to a hyperplane of dimension d-1 and then to the 
whole space. We draw two conclusions from this: first the variables are not eliminated, it 
is the constraints that are eliminated, because the whole space is represented by an empty 
set of constraints (tautologies been redundant). The other conclusion provides an 
interesting and more intuitive geometrical explanation of Fourier’s algorithm hidden 
property which is a key to the proof we will present in the next section. A set of implicit 
equalities defines an affine set, so cylindrification will lead to a hyperplane defined by   
constraints C≤ r and -C≤ -r, and then to the tautology 0≤ 0.  



  
  
  
  
  
  
Constant elimination and the construction of convex hulls  
  
Once we have considered variable and constraint elimination, we should indeed consider 
constant elimination. It is in fact even more straightforward than the two others.  
  
Let the conic hull of a polyhedral set  P  be the set of points on half  lines issued from the 
origin which intersect P.  
  
The construction of the conic hull is trivial using   Fourier elimination:  
Multiply each right hand side of the constraints defining P by a new variable t, and add 
the constraint t>0 to the set. Indeed a point belongs to the conic hull if and only if its 
coordinates are a multiple of the coordinates of a point in P. This gives a parametric 
definition of the conic hull of P.  Eliminating the variable t by Fourier elimination gives 
us a non parametric definition. (but for the origin which is taken away by the < 
inequality). 
Eliminating the variable t is in essence eliminating the right hand side constants, so we 
call this process elimination of constants.  
  
It is straightforward to verify that the convex hull of  P with the origin is obtained by 
adding to the constraints defining the conic hull the constraints from P that have positive 
constants as their right hand side. Again one has to take into account the fact that the 
origin itself will be excluded because of the strict inequalities arising from Fourier 
elimination and the requirement that t>0. This is only a minor correction, the main 
advantage is that P does not need to be bounded. In fact if we combine constant 
elimination and cylindrification we can construct convex hulls of   affine sets and other 
unbounded polyhedral sets. These remarks were obtained over ten years ago before I 
retired from the IBM Research Center, I was unable to exploit them in any significant 
way, so they remained as elementary unpublishable remarks. But the work with Chandru 
gave me hope that they could lead to elegant proofs of new results.  
  
Solvability, constant elimination and implicit equalities:  
  
It is known that  the problem of solvability of a set of linear constraints is strongly 
polynomially equivalent to the problem of deciding if a cone is reduced to the origin.  
We will nevertheless outline a method using constant elimination, as it is from this 
construction that the proof was found, as a side effect. This proof is existential, but one 
can easily derive efficient   methods to construct solutions from such a decision 
procedure. Our purpose here is to come up with the simplest possible proof of strong 
polynomiality, not to come up with the lowest possible complexity bound.   



  
A problem with variable elimination is that we cannot control the combinatorial 
explosion. When we restrict ourselves to strongly solvable sets however we can vary the 
right hand side of the constraints as we wish since strong solvability is preserved by 
translation. Deciding strong solvability is linked to the existence of implicit equalities. So 
we can play with the right hand side, making only one constant negative and all others 
positive, then constant elimination looses its complexity. We loose information, bounded 
sets  become unbounded, solvable sets become unsolvable, but still a relationship remains 
regarding the implicit equalities. It is this Achille’s heel that will exploit in the next 
section.    
  
Consider the set  S of n constraints  
S= {Ci≤ 0} i=1,….,n  
We want to relate the existence of implicit equalities in S to the concept of solvability.  
Let x be a distinguished variable, and without loss of generality we can assume that Cn 
has been chosen so that x has a positive coefficient in Cn, and that at least one of the 
other constraints is such that x appears with a negative coefficient. Otherwise we can 
reduce S because all coefficients of x have the same sign, and start over with another 
variable.  
Let T be the set of   n constraints obtained from S in the following way:  
If  Ci , i<n, has x with a negative coefficient,  or if x does not appear in Ci, Ci ≤ 0 is in T.  
If  Ci has x with a strictly positive coefficient, Ci-Cn ≤ 1 is in T. Finally Cn≤ -1 is in T.  
  
Clearly S, when Cn≤0 is replaced by Cn<0  is the conic hull of T. T is unsolvable if and 
only if its conic hull is empty, that is if and only if  Cn ≤ 0 is an implicit equality in S.   
  
Now if we assume   that Cn has been scaled so that the coefficient of x is larger in 
absolute value than the negative coefficients in the other constraints of S, we can 
eliminate x in T by Fourier elimination and obtain a new set   U of n-1 constraints  in a 
smaller dimension that is solvable if and only if T is solvable. We can take an arbitrary 
set of constraints as being U and perform the reverse construction by adding a new 
variable. This gives us a method to tie finding implicit equalities and solvability. There 
are many others, we will not go into this as a side effect of this construction is what gives 
us the key to the proof. The side effect comes when we look at which properties are 
preserved when we set the right hand side of all constraints to 0.   
The only prerequisites for that proof are Fourier’s algorithm extended by Lassez and 
Maher [18], and the associated proposition which states that implicit equalities are 
characterized by positive linear combinations whose coefficient are all nil., and the well 
known fact that a constraint is redundant in a set if and only if it is a positive linear 
combination of the other constraints in the set, with eventually the addition of an 
arbitrary positive constant to the right hand side. (We will not consider this addition here 
as we will deal strictly with cones, which are represented by constraints having a right 
hand side constant equal to 0). We also note that finding implicit equalities in a cone is 
(strongly) polynomially equivalent to solvability. As we mentioned before this is well 
known and can be done a number of ways, including the one we sketched using constant 
elimination. We   also can add one dimension and build the convex hull of the polyhedral 



set with a given point in that new dimension, it is less expensive than constant 
elimination, or we can go to the dual. This problem will not be addressed here.  
  
  
  
  
  
  
  
Strong  Polynomiality of linear programs: some inequalities are more 
equal than others  
  
  
  
Theorem  
Solving a linear program is strongly polynomial  
  
Proof  
   
We want to find implicit equalities in a cone S={Ci≤0} i=1,....,n  
   
We build T={Ci-Cn≤0,Cn≤0} for i=1,...,n-1.  
   
Now if a subset of S has all implicit equalities, we have for that subset   a positive linear 
combination:  
   
∑λiCi =[0 ] by the proposition above, and then ∑λi (Ci-Cn)+ (∑λi)Cn=[0] , so T has 
implicit equalities and Cn ≤0 is an implicit equality in T.  
  
Conversely if there are implicit equalities in T, we have a positive linear combination:  
∑ µi (Ci-Cn)+ µCn=[0]   
  
If  µ=∑ µi then S has implicit equalities, if  µ<∑ µi then Cn≤0 is redundant in S, as Cn is 
then equal to a positive linear combination of constraints in S.   
If µ>∑ µi then S has implicit equalities and Cn is one of them.  
  
Now, we can scale Cn by multiplying by an arbitrary positive number, so that the 
coefficient of a chosen variable x in Cn is in absolute value strictly greater than any of the 
coefficients of x in the other constraints in S. As a consequence T will be such that the 
coefficient of x in Cn is of opposite sign to the coefficient of x in all other constraints of 
T. We can therefore eliminate the variable x, resulting in a cone   U defined by n-1 
constraints.  
In that process, if there are implicit equalities in T   then there will be implicit equalities 
in U and/or the constraint 0≤0 is generated  [18].  



We can repeat the process by starting again with U. The implicit equalities propagate 
until  constraints  0≤0 are generated.  
  
As the number of constraints and the number of  variables decreases by 1 when going 
from S to T to U,  the set of constraints becomes smaller and, if there are implicit 
equalities in S, the constraint 0≤0 will be generated at some stage  when constructing U. 
Each time it is generated we know that the preceding T has implicit equalities, and that 
the preceding S has either implicit equalities or has its last constraint redundant.  
  
Complexity (rough bound)  
We initially build at most n blocks of constraints S-U-T    each one obtained from the 
preceding. It means that we have at most k of order 0( n 

2   
) constraints altogether in these 

blocks (we assume without loss of generality that the number of variables is less than the 
number of constraints). When this operation is completed, the algorithm terminates as no 
implicit equality has been detected,   S will not contain any. If we have found implicit 
equalities in a block, we can propagate them backwards by keeping track of the 
coefficients in the successive linear combinations [18]  and the propagation will either 
reach S, and we will detect implicit equalities  or find a redundancy in S, or stop in one of 
the intermediate blocks, telling us that a constraint is redundant in that block. We can 
then repeat the process from there with at most  k-1 constraints altogether. Consequently 
we will have generated   at most 0(n 

4 
) constraints by simple operations of variable 

elimination.  
This cost is more than the cost of transformation from a solvability problem to the 
problem of detecting implicit equalities in a cone. This process gives us an existential 
proof, not a constructive one. To effectively obtain a solution there are   many ways, that 
are strongly polynomial: we can test if a constraint is a facet for instance, it will be 
simpler if we assume boundedness or full dimensionality. In that case it might be more 
practical to go directly to the computation of the extreme point optimizing the objective 
function by using  binary type searches in directions close to the direction defined by the 
objective function. There is also the issue of what can be computed in parallel. In other 
words a full investigation is needed in order to find what  is the best complexity that this 
method can lead to. It is beyond the scope of that paper.  
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