M.J. Fischer -- mid 60's to mid 70's

M.J. Fischer, et al.,

 The First Decade: mid- 60 's to 70 'sM.J. Fischer -- mid 60's to mid 70's

Division of Engineering and
Applied Physics, Harvard, 1965
I was TA \& Mike was 1st year student in Applied Math (206?), taught by Oettinger
Wow, was Mike smart! - and experienced:
M.J. Fischer -- mid 60^{\prime} 's to mid 70^{\prime} 's

Already (at Michigan) equivalence (union/find) algorithms
 MAD compiler \& parsing

M.J. Fischer -- mid 60's to mid 70's

Parsing
...This is an area in which I have not worked, but I can relay the comment of Harrison at Berkeley who told me shortly after reading Fischer's paper on the subject that he was convinced that he and Fischer were the only two people who really understood precedence grammars.
--letter from Meyer, Jan. 2 1975, to EECS Dept. Head supporting Mike's promotion to tenure.
M.J. Fischer -- mid 60's to mid 70's

Harvard DEAP '63 - '68

pioneering a new discipline of theoretical Computer Science:

- Wang (\& Cobham)
on logic \& computational complexity
-- students Aanderaa, Cook
-Pat Fischer on Recursive Functions,
Automata, "real-time" automata
-- students Cole, Meyer, Ritchie, Rosenberg
M.J. Fischer -- mid 60's to mid 70's

Harvard DEAP '63 - '68

- Even \& Greibach on automata \& languages
-- students Mike 「ischer, Book
And nearby:
- Rabin, Blum: time-bounded complexity
- McNaughton/Papert, Krohn/Rhodes:

Algebraic automata theory
M.J. Fischer -- mid 60's to mid 70's

Harvard DEAP '63 - '68: people
Stol Aanderaa G. Birkhoff
Ron Book Steve Cook
Shimon Even Pat Fischer Sheila Greibach Albert R. Meyer
Tony Oettinger Dennis Ritchie Arny Rosenberg Hao Wang Alan Cobham Michael Rabir Ed Moore Krohn-Rhodes Manuel Blum McNaughton-Papert
M.J. Fischer -- mid 60 's to mid 70 's

Harvard DEAP '63 - '68
...influenced Mike's future work:

- complexity of multiplication
-- improved "overlap" argument, following Cook/Aanderaa, gave $O(n \log n)$ lower bound for online multiplication (w/ Paterson/Meyer, SIAM-AMS
Proc. 1974)
M.J. Fischer -- mid 60's to mid 70's

Harvard DEAP '63 - '68
-- string-matching
(w/ Wagner, JACM 1974;
w/Paterson, SIAM-AMS Proc., 1974)
-- converting off-line to online losing only a $\log n$ factor (w/Stockmeyer, STOC 1973), leading to
-- fast parallel prefix circuits (w/Ladner, JACM 1980)
M.J. Fischer -- mid 60's to mid 70's

Harvard DEAP '63 - '68

- translational argument, following
P.Fischer/Ruby \& Cook, for nondeterministic time hierarchy (w/Meyer, Seiferas, JACM 1978)
- bounds on formula size (w/ Meyer, Paterson, Vilfan)
M.J. Fischer -- mid 60's to mid 70's

Mike \& me:
Meyer to Carnegie Tech in '67
Fischer joins at CMU in ' 68 (just missing Floyd)
both to MIT Math/CS '69-75

```
M.J. Fischer - mid 60's to mid 70's
    Fischer-Meyer at MIT
Influential contributions:
    fast transitive closure
        economy of description
        \lambda-calculus schemata - CPS transform
COnly the last ever got refereed -
20 years later - but 100's off
citations)
```

I.J. Fischer -- mid 60 's to mid 70's

Fischer-Meyer at MIT
Less influential:
failed mutual exclusion (w/Rivest, Pratt)
-- but insightiful, fixed later

M.J. Fischer -- mid 60's to mid 70's
 Fischer-Meyer at MIT

Think-a-dot - original implementation


```
M.J. Fischer -- mid 60's to mid 70's
    Fischer-Meyer at MIT
Less influential:
    priority arguments in complexity
    (w/Lynch, TransAMS, 1976) - "sets
    that don't help"
    -- but connected Nancy & MIjke
    \Omega(n\operatorname{log}n) bounds on formula size
    (w/Paterson, SICOMP, 1982)
```

```
M.J. Fischer -- mid 60's to mid 70's
    Fischer-Meyer at MIT
    Think-a-dot
```

February 6, 1974
MIT 6.045: Intro to Theory of Computation
A. Meyer
notes by M. Fischer

1. THINK-A-DOT

The mini-theory of the Think-a-Dot game which we develop in this section will serve as a paradigm of the kinds of questions we will investigate and the style of mathematics we will use in our studies of abstract machines.

$$
\text { M.J. Fischer - - mid } 60^{\prime} \text { s to mid 70 }
$$

Fischer-Meyer at MIT
Lasting important contributions: exponential complexity of decidable theories (w/ lots of students \& Rabin) Dynamic Logic (w/ Pratt, later
Ladner at UW) and of course ...

M.J. Fischer - mid 60^{\prime} s to mid 70^{\prime} 's	
Fischer-Meyer: PhD. students	
Peter Bloniarz	Jean Ferrante
Mike Hammer	D.S. Johnson
Nancy Lynch	Ed McCreight
Robbie Moll	Nick Pippenger
Charles Rackoff	Joel Seiferas
Larry Stockmeyer Bostjan Vilfan	
Mitch Wand	Frances Yao

The complexity of multiplication was a significant focus of Mike's work.
 C'an integer multiplication be computed in linear-time?

M.J. Fischer -- mid 60 's to mid 70 's

Final Perspective
Theoretical Computer Science was a new field without most of today's distinct subdisciplines. With a small community of colleagues and now-prominent students, Mike made seminal contributions in this period to

* automata and formal language theory
* graph algorithms
* programming language theory
* computational complexity
* logic of programs
as well as working on • compilers, • graphics, • parsing, and • process synchronization
M.J. Fischer -- mid 60's to mid 70's

Final Perspective
We worked as a team -- with Paterson and our students -- for fenn and romance.
We thought our ideas would be valuable, but had no clue that a theoretician could be an entrepreneur.
We captivated students with our enthusiasm and engaging problems .
Some of what we did dead-ended - rightly so - but much remains the influential basis for current research.
M.J. Fischer -- mid 60^{\prime} 's to mid 70's

Final Perspective
And, by the way, we did it while raising infants, maintaining large gardens, and (Mike \& Alice) learning to figure skate.

M.J. Fischer -- mid 60 's to mid 70 's
Final Perspective
Is this perspective helpful in the
context of today's richly
developed field of computation
theory?
I leave that for you to consjder.

