
6.042/18.062J Mathematics for Computer Science October 5, 2004
Tom Leighton and Ronitt Rubinfeld Lecture Notes

Communication Networks

This is a new topic in 6.042, so these lecture notes are more likely to contain errors. If
you suspect you’ve found an error or just find something particularly confusing, send
email to e lehman@mit.edu and I’ll try to correct the problem.

Today we’ll explore an important application of graphs in computer science: modeling
communication networks. Generally, vertices will represent computers, processors, and
switches and edges will represent wires, fiber, or other transmission lines through which
data flows. For some communication networks, like the internet, the corresponding graph
is enormous and largely chaotic. However, there do exist more organized networks, such
as certain telephone switching networks and the communication networks inside parallel
computers. For these, the corresponding graphs are highly structured. In this lecture,
we’ll look at some of the nicest and most commonly used communication networks.

1 Complete Binary Tree

Let’s start with a complete binary tree. Here is an example with 4 inputs and 4 outputs.

IN OUT IN IN INOUT OUT OUT0 0 1 1 2 2 3 3

The basic function of the communication networks we consider today is to transmit
packets of data between computers, processors, telephones, or other devices. The term
packet refers to some roughly fixed-size quantity of data— 256 bytes or 4096 bytes or
whatever. In this diagram and many that follow, the squares represent terminals, sources

2 Communication Networks

and destinations for packets of data. The circles represent switches, which direct pack-
ets through the network. A switch receives packets on incoming edges and relays them
forward along the outoing edges. Thus, you can imagine a data packet hopping through
the network from an input terminal, through a sequence of switches joined by directed
edges, to an output terminal.

Recall that there is a unique path between every pair of vertices in an undirected tree.
So the natural way to route a packet of data from an input terminal to an output in the
complete binary tree is along the analogous directed path. For example, the route of a
packet traveling from input 1 to output 3 is shown in bold.

1.1 Latency and Diameter

Latency is a critical issue in communication networks. This is the time required for a
packet to travel from an input to an output. One measure of latency is the number of
switches that a packet must pass through when traveling between the most distant input
and output. For example, in the complete binary tree example, the packet traveling from
input 1 to output 3 crosses 5 switches. We could measure latency some other way, such as
summing wire lengths, but switches usually have the biggest impact on network speed.

The diameter of a network is the number of switches on the shortest path between
the input and output that are farthest apart. Thus, diameter is an approximate measure
of worst-case latency. (Notice that the diameter of a communications network is defined
somewhat differently from the diameter of an undirected graph. Specifically, distance in a
communication network is measured by counting switches, but distance in an undirected
graph is measured by counting edges. Furthermore, in the context of a communication
network we’re only interested in the distance between inputs and outputs, not between
arbitrary pairs of switches.) Since input 1 and output 3 are as far apart as possible in the
complete binary tree, the diameter is 5.

We’re going to consider several different communication networks today. For a fair
comparison, let’s assume that each network has N inputs and N outputs, where N is a
power of two. For example, the diameter of a complete binary tree with N inputs and
outputs is 2 log N + 1. (All logarithms in this lecture— and in most of computer science—
are base 2.) This is quite good, because the logarithm function grows very slowly. We
could connect up 210 = 1024 inputs and outputs using a complete binary tree and still
have a latency of only 2 log(210) + 1 = 21.

1.2 Switch Size

One way to reduce the diameter of a network is to use larger switches. For example,
in the complete binary tree, most of the switches have three incoming edges and three
outgoing edges, which makes them 3 × 3 switches. If we had 4 × 4 switches, then we

Communication Networks 3

could construct a complete ternary tree with an even smaller diameter. In principle, we
could even connect up all the inputs and outputs via a single monster switch:

0

1

N−1

0

1

N−1

... ...
OUTIN

This isn’t very productive, however, since we’ve just concealed the original network
design problem inside this abstract switch. Eventually, we’ll have to design the internals
of the monster switch using simpler components, and then we’re right back where we
started. So the challenge in designing a communication network is figuring out how to
get the functionality of an N × N switch using elementary devices, like 3 × 3 switches.
Following this approach, we can build arbitrarily large networks just by adding in more
building blocks.

1.3 Switch Count

Another goal in designing a communication network is to use as few switches as possible
since routing hardware has a cost. The number of switches in a complete binary tree is
1 + 2 + 4 + 8 + . . . + N , since there is 1 switch at the top (the “root switch”), 2 below it,
4 below those, and so forth. By the formula for the sum of a geometric series, the total
number of switches is 2N − 1, which is nearly the best possible with 3× 3 switches.

1.4 Congestion

The complete binary tree has a fatal drawback: the root switch is a bottleneck. At best, this
switch must handle an enormous amount of traffic: every packet traveling from the left
side of the network to the right or vice-versa. Passing all these packets through a single
switch could take a long time. At worst, if this switch fails, the network is broken into
two equal-sized pieces. We’re going to develop a single statistic called “max congestion”
that quantifies bottleneck problems in communication networks. But we’ll need some
preliminary definitions.

A permutation is a function π that maps each number in the set {0, 1, . . . , N − 1} to
another number in the set such that no two numbers are mapped to the same value. In
other words, π(i) = π(j) if and only if i = j. For example, π(i) = i is one permutation
(called the identity permutation) and π(i) = (N − 1)− i is another.

For each permutation π, there is a corresponding permutation routing problem. In this
problem, one packet starts out at each input; in particular, the packet starting at input i is
called packet i. The challenge is to direct each packet i through the network from input i
to output π(i).

4 Communication Networks

A solution to a permutation routing problem is a specification of the path taken by
each of the N packets. In particular, the path taken by packet i from input i to output π(i)
is denoted Pi,π(i). For example, if π(i) = i, then there is an easy solution: let Pi,π(i) be the
path from input i up through one switch and back down to output i. On the other hand, if
π(i) = (N −1)− i, then each path Pi,π(i) must begin at input i, loop all the way up through
the root switch, and then travel back down to output (N −1)− i. These two situations are
illustrated below.

IN OUT IN IN INOUT OUT OUT0 0 1 1 2 2 3 3 IN OUT IN IN INOUT OUT OUT0 0 1 1 2 2 3 3

We can distinguish between a “good” set of paths and a “bad” set based on congestion.
The congestion of a set of paths P0,π(0), . . . , PN−1,π(N−1) is equal to the largest number of
paths that pass through a single switch. For example, the congestion of the set of paths
in the diagram at left is 1, since at most 1 path passes through each switch. However,
the congestion of the paths on the right is 4, since 4 paths pass through the root switch
(and the two switches directly below the root). Generally, lower congestion is better since
packets can be delayed at an overloaded switch.

By extending the notion of congestion, we can also distinguish between “good” and
“bad” networks with respect to bottleneck problems. The max congestion of a network is
that maximum over all permutations π of the minimium over all paths Pi,π(i) of the conges-
tion of the paths.

You may find it easier to think about max congestion in terms of a competition. Imag-
ine that you’ve designed a spiffy, new communication network. Your worst enemy de-
vises a permutation routing problem; that is, she decides which input terminal sends a
packet to which output terminal. However, you are free to choose the precise path that
each packet takes through your network so as to avoid overloading any one switch. As-
suming that you both do your absolute best, the largest number of packets that end up
passing through any switch is the max congestion of the network.

For example, if your enemy were trying to defeat the complete binary tree, she would
choose a permutation like π(i) = (N −1)− i. Then for every packet i, you would be forced
to select a path Pi,π(i) passing through the root switch. Thus, the max congestion of the
complete binary tree is N— which is horrible!

Communication Networks 5

Let’s tally the results of our analysis so far:

network diameter switch size # switches congestion
complete binary tree 2 log N + 1 3× 3 2N − 1 N

2 2-D Array

Let’s look an another communication network. This one is called a 2-dimensional array
or grid or crossbar.

IN

IN

IN

IN

0

1

2

3

OUT OUT OUT OUT
0 1 2 3

Here there are four inputs and four outputs, so N = 4.

The diameter in this example is 7, which is the number of switches between input 0 and
output 3. More generally, the diameter of an array with N inputs and outputs is 2N − 1,
which is much worse than the diameter of 2 log N + 1 in the complete binary tree. On the
other hand, replacing a complete binary tree with an array almost eliminates congestion.

Theorem 1. The congestion of an N -input array is 2.

Proof. First, we show that the congestion is at most 2. Let π be any permutation. Define
Pi,π(i) to be the path extending from input i rightward to column j and then downward
to output π(i). Thus, the switch in row i and column j transmits at most two packets: the
packet originating at input i and the packet destined for column j.

Next, we show that the congestion is at least 2. In any permutation routing problem
where π(0) = 0 and π(N − 1) = N − 1, two packets must pass through the lower left
switch.

6 Communication Networks

Now we can record the characteristics of the 2-D array.

network diameter switch size # switches congestion
complete binary tree 2 log N + 1 3× 3 2N − 1 N

2-D array 2N − 1 2× 2 N2 2

The crucial entry here is the number of switches, which is N2. This is a major defect of
the 2-D array; a network of size N = 1000 would require a million 2× 2 switches! Still, for
applications where N is small, the simplicity and low congestion of the array make it an
attractive choice.

3 Butterfly

The Holy Grail of switching networks would combine the best properties of the complete
binary tree (low diameter, few switches) and of the array (low congestion). The butterfly
is a widely-used compromise between the two. Here is a butterfly network with N = 8
inputs and outputs.

001

010

011

100

101

110

111

000

IN

IN

IN

IN

IN

IN

IN

IN

0

1

2

3

4

5

6

7

OUT

OUT

OUT

OUT

OUT

OUT0

1

OUT3

2OUT

4

5

6

7

0 1 2 3
levels

The structure of the butterfly is certainly more complicated than that of the complete
binary tree or 2-D array! Let’s work through the various parts of the butterfly.

All the terminals and switches in the network are arranged in N rows. In particular,
input i is at the left end of row i, and output i is at the right end of row i. Now let’s
label the rows in binary; thus, the label on row i is the binary number b1b2 . . . blog N that
represents the integer i.

Communication Networks 7

Between the inputs and the outputs, there are log(N) + 1 levels of switches, num-
bered from 0 to log N . Each level consists of a column of N switches, one per row. Thus,
each switch in the network is uniquely identified by a sequence (b1, b2, . . . , blog N , l), where
b1b2 . . . blog N is the switch’s row in binary and l is the switch’s level.

All that remains is to describe how the switches are connected up. The basic connection
pattern is expressed below in a compact notation:

(b1, b2, . . . , bl+1, . . . , blog N , l)
↗
↘

(b1, b2, . . . , bl+1, . . . , blog N , l + 1)

(b1, b2, . . . , bl+1, . . . , blog N , l + 1)

This says that there are directed edges from switch (b1, b2, . . . , blog N , l) to two switches in
the next level. One edge leads to the switch in the same row, and the other edge leads to
the switch in the row obtained by inverting bit l + 1. For example, referring back to the
illustration of the size N = 8 butterfly, there is an edge from switch (0, 0, 0, 0) to switch
(0, 0, 0, 1), which is in the same row, and to switch (1, 0, 0, 1), which in the row obtained
by inverting bit l + 1 = 1.

The butterfly network has a recursive structure; specifically, a butterfly of size 2N con-
sists of two butterflies of size N , which are shown in dashed boxes below, and one ad-
ditional level of switches. Each switch in the new level has directed edges to a pair of
corresponding switches in the smaller butterflies; one example is dashed in the figure.

001

010

011

100

101

110

111

000

IN

IN

IN

IN

IN

IN

IN

IN

0

1

2

3

4

5

6

7

OUT

OUT

OUT

OUT

OUT

OUT0

1

OUT3

2OUT

4

5

6

7

Despite the relatively complicated structure of the butterfly, there is a simple way to
route packets. In particular, suppose that we want to send a packet from input x1x2 . . . xlog N

to output y1y2 . . . ylog N . (Here we are specifying the input and output numbers in binary.)
Roughly, the plan is to “correct” the first bit by level 1, correct the second bit by level 2,

8 Communication Networks

and so forth. Thus, the sequence of switches visited by the packet is:

(x1, x2, x3, . . . , xlog N , 0) → (y1, x2, x3, . . . , xlog N , 1)

→ (y1, y2, x3, . . . , xlog N , 2)

→ (y1, y2, y3, . . . , xlog N , 3)

→ . . .

→ (y1, y2, y3, . . . , ylog N , log N)

In fact, this is the only path from the input to the output!

The congestion of the butterfly network turns out to be around
√

N ; more precisely,
the congestion is

√
N if N is an even power of 2 and

√
N/2 if N is an odd power of 2.

(You’ll prove this fact for homework.)

Let’s add the butterfly data to our comparison table:

network diameter switch size # switches congestion
complete binary tree 2 log N + 1 3× 3 2N − 1 N

2-D array 2N − 1 2× 2 N2 2

butterfly log N + 1 2× 2 N(log(N) + 1)
√

N or
√

N/2

The butterfly has lower congestion than the complete binary tree. And it uses fewer
switches and has lower diameter than the array. However, the butterfly does not capture
the best qualities of each network, but rather is compromise somewhere between the two.
So our quest for the Holy Grail of routing networks goes on.

4 Benes̆ Network

In the 1960’s, a researcher at Bell Labs named Benes̆ had a remarkable idea. He noticed
that by placing two butterflies back-to-back, he obtained a marvelous communication net-
work:

Communication Networks 9

OUT

OUT

OUT

OUT

OUT

OUT0

1

OUT3

2OUT

4

5

6

7

IN

IN

IN

IN

IN

IN

IN

IN

0

1

2

3

4

5

6

7

This doubles the number of switches and the diameter, of course, but completely elim-
inates congestion problems! The proof of this fact relies on a clever induction argument
that we’ll come to in a moment. Let’s first see how the Benes̆ network stacks up:

network diameter switch size # switches congestion
complete binary tree 2 log N + 1 3× 3 2N − 1 N

2-D array 2N − 1 2× 2 N2 2

butterfly log N + 1 2× 2 N(log(N) + 1)
√

N or
√

N/2
Benes̆ 2 log N 2× 2 2N log N 1

The Benes̆ network is small, compact, and completely eliminates congestion. The Holy
Grail of routing networks is in hand!

Theorem 2. The congestion of the N -input Benes̆ network is 1, where N = 2a for some a ≥ 1.

Proof. We use induction. Let P (a) be the propositon that the congestion of the size 2a

Benes̆ network is 1.

Base case. We must show that the congestion of the size N = 21 = 2 Benes̆ network is 1.
This network is shown below:

IN

IN OUT

OUT0

1

0

1

There are only two possible permutation routing problems for a 2-input network. If
π(0) = 0 and π(1) = 1, then we can route both packets along the straight edges. On the

10 Communication Networks

other hand, if π(0) = 1 and π(1) = 0, then we can route both packets along the diagonal
edges. In both cases, a single packet passes through each switch.

Inductive step. We must show that P (a) implies P (a + 1), where a ≥ 1. Thus, we assume
that the congestion of an N -input Benes̆ network is 1 in order to prove that the congestion
of a 2N -input Benes̆ network is also 1.

Digression. Time out! Let’s work through an example, develop some intuition, and
then complete the proof. Notice that inside a Benes̆ network of size 2N lurk two Benes̆
subnetworks of size N . (This follows from our earlier observation that a butterfly of
size 2N contains two butterflies of size N .) In the Benes̆ network shown below, the two
subnetworks are in dashed boxes.

OUT

OUT

OUT

OUT

OUT

OUT0

1

OUT3

2OUT

4

5

6

7

IN

IN

IN

IN

IN

IN

IN

IN

0

1

2

3

4

5

6

7

By the inductive assumption, the subnetworks can each route an arbitrary permution
with congestion 1. So if we can guide packets safely through just the first and last lev-
els, then we can rely on induction for the rest! Let’s see how this works in an example.
Consider the following permutation routing problem:

π(0) = 1 π(4) = 3

π(1) = 5 π(5) = 6

π(2) = 4 π(6) = 0

π(3) = 7 π(7) = 2

We can route each packet to its destination through either the upper subnetwork or
the lower subnetwork. However, the choice for one packet may constrain the choice for
another. For example, we can not route both packet 0 and packet 4 through the same
network since that would cause two packets to collide at a single switch, resulting in
congestion. So one packet must go through the upper network and the other through
the lower network. Similarly, packets 1 and 5, 2 and 6, and 3 and 7 must be routed

Communication Networks 11

through different networks. Let’s record these constraints in a graph. The vertices are
the 8 packets. If two packets must pass through different networks, then there is an edge
between them. Thus, our constraint graph looks like this:

1

2

3

4

5

6

7

0

Notice that at most one edge is incident to each vertex.

The output side of the network imposes some further constraints. For example, the
packet destined for output 0 (which is packet 6) and the packet destined for output 4
(which is packet 2) can not both pass through the same network; that would require both
packets to arrive from the same switch. Similarly, the packets destined for outputs 1 and
5, 2 and 6, and 3 and 7 must also pass through different switches. We can record these
additional constraints in our graph with gray edges:

1

2

3

4

5

6

7

0

Notice that at most one new edge is incident to each vertex. The two lines drawn be-
tween vertices 2 and 6 reflect the two different reasons why these packets must be routed
through different networks. However, we intend this to be a simple graph; the two lines
still signify a single edge.

Now here’s the key insight: a 2-coloring of the graph corresponds to a solution to the routing
problem. In particular, suppose that we could color each vertex either red or blue so that
adjacent vertices are colored differently. Then all constraints are satisfied if we send the
red packets through the upper network and the blue packets through the lower network.

The only remaining question is whether the constraint graph is 2-colorable. This fol-
lows from a fact proved in homework:

Theorem 3. If the graphs G1 = (V, E1) and G2 = (V, E2) both have maximum degree 1, then the
graph G = (V, E1 ∪ E2) is 2-colorable.

12 Communication Networks

For example, here is a 2-coloring of the constraint graph:

1

2

3

4

5

6

7

0

redblue

red

red

red

blueblue

blue

The solution to this graph-coloring problem provides a start on the packet routing prob-
lem:

We can complete the routing in the two smaller Benes̆ networks by induction! Back to the
proof. End of Digression.

Let π be an arbitrary permutation of {0, 1, . . . , 2N − 1}. Let G1 = (V, E1) be a graph
where the vertices are packets 0, 1, . . . , 2N − 1 and there is an edge u—v if |u − v| = N .
Let G2 = (V, E2) be a graph with the same vertices and an edge u—v if |π(u)− π(v)| = N .
By Theorem 3, the graph G = (V, E1 ∪ E2) is 2-colorable, so color the vertices red and
blue. Route red packets through the upper subnetwork and blue packets through the
lower subnetwork. We can complete the routing within each subnetwork by the induction
hypothesis P (a).

	Complete Binary Tree
	Latency and Diameter
	Switch Size
	Switch Count
	Congestion

	2-D Array
	Butterfly
	Benes Network

