Part I

Proofs

Chapter 3

Induction and the Well Ordering Principle

Now that you understand the basics of how to prove that a proposition is true, it is time to equip you with the most powerful methods we have for establishing truth: the Well Ordering Principle, the Induction Rule, and strong induction. These methods are especially useful when you need to prove that a predicate is true for all natural numbers.

Although the three methods look and feel different, it turns out that they are equivalent in the sense that whatever you can prove using one of the methods, you can also prove using either of the others. The choice of which method to use depends on whichever seems to be easiest or most natural for the problem at hand.

3.1 The Well Ordering Principle

Every nonempty set of nonnegative integers has a smallest element.
This statement is known as The Well Ordering Principle. Do you believe it? Seems sort of obvious, right? But notice how tight it is: it requires a nonempty setit's false for the empty set which has no smallest element because it has no elements at all! And it requires a set of nonnegative integers-it's false for the set of negative integers and also false for some sets of nonnegative rationals-for example, the set of positive rationals. So, the Well Ordering Principle captures something special about the nonnegative integers.

3.1.1 Well Ordering Proofs

While the Well Ordering Principle may seem obvious, it's hard to see offhand why it is useful. But in fact, it provides one of the most important proof rules in discrete mathematics.

In fact, looking back, we took the Well Ordering Principle for granted in proving that $\sqrt{2}$ is irrational. That proof assumed that for any positive integers m and n, the fraction m / n can be written in lowest terms, that is, in the form m^{\prime} / n^{\prime} where m^{\prime} and n^{\prime} are positive integers with no common factors. How do we know this is always possible?

Suppose to the contrary ${ }^{1}$ that there were $m, n \in \mathbb{Z}^{+}$such that the fraction m / n cannot be written in lowest terms. Now let C be the set of positive integers that are numerators of such fractions. Then $m \in C$, so C is nonempty. Therefore, by Well Ordering, there must be a smallest integer, $m_{0} \in C$. So by definition of C, there is an integer $n_{0}>0$ such that

$$
\text { the fraction } \frac{m_{0}}{n_{0}} \text { cannot be written in lowest terms. }
$$

This means that m_{0} and n_{0} must have a common factor, $p>1$. But

$$
\frac{m_{0} / p}{n_{0} / p}=\frac{m_{0}}{n_{0}}
$$

so any way of expressing the left hand fraction in lowest terms would also work for m_{0} / n_{0}, which implies

$$
\text { the fraction } \frac{m_{0} / p}{n_{0} / p} \text { cannot be in written in lowest terms either. }
$$

So by definition of C, the numerator, m_{0} / p, is in C. But $m_{0} / p<m_{0}$, which contradicts the fact that m_{0} is the smallest element of C.

Since the assumption that C is nonempty leads to a contradiction, it follows that C must be empty. That is, that there are no numerators of fractions that can't be written in lowest terms, and hence there are no such fractions at all.

We've been using the Well Ordering Principle on the sly from early on!

3.1.2 Template for Well Ordering Proofs

More generally, to prove that " $P(n)$ is true for all $n \in \mathbb{N}^{\prime}$ using the Well Ordering Principle, you can take the following steps:

- Define the set, C, of counterexamples to P being true. Namely, define ${ }^{2}$

$$
C::=\{n \in \mathbb{N} \mid P(n) \text { is false }\} .
$$

[^0]- Use a proof by contradiction and assume that C is nonempty.
- By the Well Ordering Principle, there will be a smallest element, n, in C.
- Reach a contradiction (somehow)—often by showing how to use n to find another member of C that is smaller than n. (This is the open-ended part of the proof task.)
- Conclude that C must be empty, that is, no counterexamples exist. QED

3.1.3 Examples

Let's use this this template to prove
Theorem.

$$
\begin{equation*}
1+2+3+\cdots+n=n(n+1) / 2 \tag{3.1}
\end{equation*}
$$

for all nonnegative integers, n.
First, we better address of a couple of ambiguous special cases before they trip us up:

- If $n=1$, then there is only one term in the summation, and so $1+2+3+\cdots+n$ is just the term 1. Don't be misled by the appearance of 2 and 3 and the suggestion that 1 and n are distinct terms!
- If $n \leq 0$, then there are no terms at all in the summation. By convention, the sum in this case is 0 .

So while the dots notation is convenient, you have to watch out for these special cases where the notation is misleading! (In fact, whenever you see the dots, you should be on the lookout to be sure you understand the pattern, watching out for the beginning and the end.)

We could have eliminated the need for guessing by rewriting the left side of (3.1) with summation notation:

$$
\sum_{i=1}^{n} i \quad \text { or } \quad \sum_{1 \leq i \leq n} i
$$

Both of these expressions denote the sum of all values taken by the expression to the right of the sigma as the variable, i, ranges from 1 to n. Both expressions make it clear what (3.1) means when $n=1$. The second expression makes it clear that when $n=0$, there are no terms in the sum, though you still have to know the convention that a sum of no numbers equals 0 (the product of no numbers is 1 , by the way).

OK, back to the proof:
Proof. By contradiction and use of the Well Ordering Principle. Assume that the theorem is false. Then, some nonnegative integers serve as counterexamples to it.

Let's collect them in a set:

$$
C::=\left\{n \in \mathbb{N} \left\lvert\, 1+2+3+\cdots+n \neq \frac{n(n+1)}{2}\right.\right\} .
$$

By our assumption that the theorem admits counterexamples, C is a nonempty set of nonnegative integers. So, by the Well Ordering Principle, C has a minimum element, call it c. That is, c is the smallest counterexample to the theorem.

Since c is the smallest counterexample, we know that (3.1) is false for $n=c$ but true for all nonnegative integers $n<c$. But (3.1) is true for $n=0$, so $c>0$. This means $c-1$ is a nonnegative integer, and since it is less than c, equation (3.1) is true for $c-1$. That is,

$$
1+2+3+\cdots+(c-1)=\frac{(c-1) c}{2}
$$

But then, adding c to both sides we get

$$
1+2+3+\cdots+(c-1)+c=\frac{(c-1) c}{2}+c=\frac{c^{2}-c+2 c}{2}=\frac{c(c+1)}{2}
$$

which means that (3.1) does hold for c, after all! This is a contradiction, and we are done.

Here is another result that can be proved using Well Ordering. It will be useful in Chapter 4 when we study number theory and cryptography.
Theorem 3.1.1. Every natural number can be factored as a product of primes.
Proof. By contradiction and Well Ordering. Assume that the theorem is false and let C be the set of all integers greater than one that cannot be factored as a product of primes. We assume that C is not empty and derive a contradiction.

If C is not empty, there is a least element, $n \in C$, by Well Ordering. The n can't be prime, because a prime by itself is considered a (length one) product of primes and no such products are in C.

So n must be a product of two integers a and b where $1<a, b<n$. Since a and b are smaller than the smallest element in C, we know that $a, b \notin C$. In other words, a can be written as a product of primes $p_{1} p_{2} \cdots p_{k}$ and b as a product of primes $q_{1} \cdots q_{l}$. Therefore, $n=p_{1} \cdots p_{k} q_{1} \cdots q_{l}$ can be written as a product of primes, contradicting the claim that $n \in C$. Our assumption that C is not empty must therefore be false.

3.1.4 Problems

Practice Problems

Problem 3.1 (Postage by Well Ordering).
For practice using the Well Ordering Principle, fill in the template of an easy to prove fact: every amount of postage that can be assembled using only 10 cent and 15 cent stamps is divisible by 5 .

In particular, Let $S(n)$ mean that exactly n cents postage can be assembled using only 10 and 15 cent stamps. Then the proof shows that

$$
\begin{equation*}
S(n) \text { IMPLIES } 5 \mid n, \quad \text { for all nonnegative integers } n \text {. } \tag{}
\end{equation*}
$$

Fill in the missing portions (indicated by "...") of the following proof of $\left({ }^{*}\right)$.
Let C be the set of counterexamples to $\left({ }^{*}\right)$, namely

$$
C::=\{n \mid \ldots\}
$$

Assume for the purpose of obtaining a contradiction that C is nonempty. Then by the WOP, there is a smallest number, $m \in C$. This m must be positive because
But if $S(m)$ holds and m is positive, then $S(m-10)$ or $S(m-15)$ must hold, because
So suppose $S(m-10)$ holds. Then $5 \mid(m-10)$, because...
But if $5 \mid(m-10)$, then obviously $5 \mid m$, contradicting the fact that m is a counterexample.
Next, if $S(m-15)$ holds, we arrive at a contradiction in the same way. Since we get a contradiction in both cases, we conclude that. . . which proves that $\left({ }^{*}\right)$ holds.

Class Problems

Problem 3.2.

The proof below uses the Well Ordering Principle to prove that every amount of postage that can be assembled using only 6 cent and 15 cent stamps, is divisible by 3. Let the notation " $j \mid k$ " indicate that integer j is a divisor of integer k, and let $S(n)$ mean that exactly n cents postage can be assembled using only 6 and 15 cent stamps. Then the proof shows that

$$
\begin{equation*}
S(n) \text { IMPLIES } 3 \mid n, \quad \text { for all nonnegative integers } n \text {. } \tag{}
\end{equation*}
$$

Fill in the missing portions (indicated by "...") of the following proof of (*).
Let C be the set of counterexamples to $\left(^{*}\right)$, namely ${ }^{3}$

$$
C::=\{n \mid \ldots\}
$$

Assume for the purpose of obtaining a contradiction that C is nonempty. Then by the WOP, there is a smallest number, $m \in C$. This m must be positive because....

[^1]But if $S(m)$ holds and m is positive, then $S(m-6)$ or $S(m-15)$ must hold, because....
So suppose $S(m-6)$ holds. Then $3 \mid(m-6)$, because...
But if $3 \mid(m-6)$, then obviously $3 \mid m$, contradicting the fact that m is a counterexample.
Next, if $S(m-15)$ holds, we arrive at a contradiction in the same way. Since we get a contradiction in both cases, we conclude that...
which proves that $\left({ }^{*}\right)$ holds.

Problem 3.3.

Euler's Conjecture in 1769 was that there are no positive integer solutions to the equation

$$
a^{4}+b^{4}+c^{4}=d^{4}
$$

Integer values for a, b, c, d that do satisfy this equation, were first discovered in 1986. So Euler guessed wrong, but it took more two hundred years to prove it.

Now let's consider Lehman's equation, similar to Euler's but with some coefficients:

$$
\begin{equation*}
8 a^{4}+4 b^{4}+2 c^{4}=d^{4} \tag{3.2}
\end{equation*}
$$

Prove that Lehman's equation (3.2) really does not have any positive integer solutions.

Hint: Consider the minimum value of a among all possible solutions to (3.2).

Problem 3.4.

Use the Well Ordering Principle to prove that

$$
\begin{equation*}
\sum_{k=0}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} \tag{3.3}
\end{equation*}
$$

for all nonnegative integers, n.

Homework Problems

Problem 3.5.

Use the Well Ordering Principle to prove that any integer greater than or equal to 8 can be represented as the sum of integer multiples of 3 and 5 .

3.2 Ordinary Induction

Induction is by far the most powerful and commonly-used proof technique in discrete mathematics and computer science. In fact, the use of induction is a defining
characteristic of discrete-as opposed to continuous-mathematics. To understand how it works, suppose there is a professor who brings to class a bottomless bag of assorted miniature candy bars. She offers to share the candy in the following way. First, she lines the students up in order. Next she states two rules:

1. The student at the beginning of the line gets a candy bar.
2. If a student gets a candy bar, then the following student in line also gets a candy bar.

Let's number the students by their order in line, starting the count with 0 , as usual in Computer Science. Now we can understand the second rule as a short description of a whole sequence of statements:

- If student 0 gets a candy bar, then student 1 also gets one.
- If student 1 gets a candy bar, then student 2 also gets one.
- If student 2 gets a candy bar, then student 3 also gets one.

Of course this sequence has a more concise mathematical description:
If student n gets a candy bar, then student $n+1$ gets a candy bar, for all nonnegative integers n.

So suppose you are student 17. By these rules, are you entitled to a miniature candy bar? Well, student 0 gets a candy bar by the first rule. Therefore, by the second rule, student 1 also gets one, which means student 2 gets one, which means student 3 gets one as well, and so on. By 17 applications of the professor's second rule, you get your candy bar! Of course the rules actually guarantee a candy bar to every student, no matter how far back in line they may be.

3.2.1 A Rule for Ordinary Induction

The reasoning that led us to conclude that every student gets a candy bar is essentially all there is to induction.

The Principle of Induction.

Let $P(n)$ be a predicate. If

- $P(0)$ is true, and
- $P(n)$ IMPLIES $P(n+1)$ for all nonnegative integers, n,
then
- $P(m)$ is true for all nonnegative integers, m.

Since we're going to consider several useful variants of induction in later sections, we'll refer to the induction method described above as ordinary induction when we need to distinguish it. Formulated as a proof rule, this would be

Rule. Induction Rule

$$
\frac{P(0), \quad \forall n \in \mathbb{N} P(n) \text { IMPLIES } P(n+1)}{\forall m \in \mathbb{N} . P(m)}
$$

This general induction rule works for the same intuitive reason that all the students get candy bars, and we hope the explanation using candy bars makes it clear why the soundness of the ordinary induction can be taken for granted. In fact, the rule is so obvious that it's hard to see what more basic principle could be used to justify it. ${ }^{4}$ What's not so obvious is how much mileage we get by using it.

3.2.2 A Familiar Example

Ordinary induction often works directly in proving that some statement about nonnegative integers holds for all of them. For example, here is the formula for the sum of the nonnegative integers that we already proved (equation (3.1)) using the Well Ordering Principle:

Theorem 3.2.1. For all $n \in \mathbb{N}$,

$$
\begin{equation*}
1+2+3+\cdots+n=\frac{n(n+1)}{2} \tag{3.4}
\end{equation*}
$$

This time, let's use the Induction Principle to prove Theorem 3.2.1.
Suppose that we define predicate $P(n)$ to be the equation (3.4). Recast in terms of this predicate, the theorem claims that $P(n)$ is true for all $n \in \mathbb{N}$. This is great, because the induction principle lets us reach precisely that conclusion, provided we establish two simpler facts:

[^2]- $P(0)$ is true.
- For all $n \in \mathbb{N}, P(n)$ implies $P(n+1)$.

So now our job is reduced to proving these two statements. The first is true because $P(0)$ asserts that a sum of zero terms is equal to $0(0+1) / 2=0$, which is true by definition. The second statement is more complicated. But remember the basic plan for proving the validity of any implication from subsection 2.2.2: assume the statement on the left and then prove the statement on the right. In this case, we assume $P(n)$ in order to prove $P(n+1)$, which is the equation

$$
\begin{equation*}
1+2+3+\cdots+n+(n+1)=\frac{(n+1)(n+2)}{2} \tag{3.5}
\end{equation*}
$$

These two equations are quite similar; in fact, adding $(n+1)$ to both sides of equation (3.4) and simplifying the right side gives the equation (3.5):

$$
\begin{aligned}
1+2+3+\cdots+n+(n+1) & =\frac{n(n+1)}{2}+(n+1) \\
& =\frac{(n+2)(n+1)}{2}
\end{aligned}
$$

Thus, if $P(n)$ is true, then so is $P(n+1)$. This argument is valid for every nonnegative integer n, so this establishes the second fact required by the induction principle. Therefore, the induction principle says that the predicate $P(m)$ is true for all nonnegative integers, m, so the theorem is proved.

3.2.3 A Template for Induction Proofs

The proof of Theorem 3.2.1 was relatively simple, but even the most complicated induction proof follows exactly the same template. There are five components:

1. State that the proof uses induction. This immediately conveys the overall structure of the proof, which helps the reader understand your argument.
2. Define an appropriate predicate $P(n)$. The eventual conclusion of the induction argument will be that $P(n)$ is true for all nonnegative n. Thus, you should define the predicate $P(n)$ so that your theorem is equivalent to (or follows from) this conclusion. Often the predicate can be lifted straight from the proposition that you are trying to prove, as in the example above. The predicate $P(n)$ is called the induction hypothesis. Sometimes the induction hypothesis will involve several variables, in which case you should indicate which variable serves as n.
3. Prove that $P(0)$ is true. This is usually easy, as in the example above. This part of the proof is called the base case or basis step.
4. Prove that $P(n)$ implies $P(n+1)$ for every nonnegative integer n. This is called the inductive step. The basic plan is always the same: assume that $P(n)$ is true and then use this assumption to prove that $P(n+1)$ is true. These two statements should be fairly similar, but bridging the gap may require some ingenuity. Whatever argument you give must be valid for every nonnegative integer n, since the goal is to prove the implications $P(0) \rightarrow P(1), P(1) \rightarrow$ $P(2), P(2) \rightarrow P(3)$, etc. all at once.
5. Invoke induction. Given these facts, the induction principle allows you to conclude that $P(n)$ is true for all nonnegative n. This is the logical capstone to the whole argument, but it is so standard that it's usual not to mention it explicitly,

Always be sure to explicitly label the base case and the inductive step. It will make your proofs clearer, and it will decrease the chance that you forget a key step (such as checking the base case).

3.2.4 A Clean Writeup

The proof of Theorem 3.2.1 given above is perfectly valid; however, it contains a lot of extraneous explanation that you won't usually see in induction proofs. The writeup below is closer to what you might see in print and should be prepared to produce yourself.

Proof of Theorem 3.2.1. We use induction. The induction hypothesis, $P(n)$, will be equation (3.4).

Base case: $P(0)$ is true, because both sides of equation (3.4) equal zero when $n=0$.

Inductive step: Assume that $P(n)$ is true, where n is any nonnegative integer. Then

$$
\begin{array}{rlr}
1+2+3+\cdots+n+(n+1) & =\frac{n(n+1)}{2}+(n+1) & \text { (by induction hypothesis) } \\
& =\frac{(n+1)(n+2)}{2} & \text { (by simple algebra) }
\end{array}
$$

which proves $P(n+1)$.
So it follows by induction that $P(n)$ is true for all nonnegative n.
Induction was helpful for proving the correctness of this summation formula, but not helpful for discovering it in the first place. Tricks and methods for finding such formulas will be covered in Part III of the text.

3.2.5 A More Challenging Example

During the development of MIT's famous Stata Center, as costs rose further and further beyond budget, there were some radical fundraising ideas. One rumored

Figure 3.1: A $2^{n} \times 2^{n}$ courtyard for $n=3$.

Figure 3.2: The special L-shaped tile.
plan was to install a big courtyard with dimensions $2^{n} \times 2^{n}$ (as shown in Figure 3.1 for the case where $n=3$) and to have one of the central squares ${ }^{5}$ be occupied by a statue of a wealthy potential donor (who we will refer to as "Bill", for the purposes of preserving anonymity). A complication was that the building's unconventional architect, Frank Gehry, was alleged to require that only special L-shaped tiles (show in Figure 3.2) be used for the courtyard. It was quickly determined that a courtyard meeting these constraints exists, at least for $n=2$. (See Figure 3.3.) But what about for larger values of n ? Is there a way to tile a $2^{n} \times 2^{n}$ courtyard with L-shaped tiles and a statue in the center? Let's try to prove that this is so.

Theorem 3.2.2. For all $n \geq 0$ there exists a tiling of a $2^{n} \times 2^{n}$ courtyard with Bill in a central square.

Proof. (doomed attempt) The proof is by induction. Let $P(n)$ be the proposition that there exists a tiling of a $2^{n} \times 2^{n}$ courtyard with Bill in the center.

Base case: $P(0)$ is true because Bill fills the whole courtyard.
Inductive step: Assume that there is a tiling of a $2^{n} \times 2^{n}$ courtyard with Bill in the center for some $n \geq 0$. We must prove that there is a way to tile a $2^{n+1} \times 2^{n+1}$ courtyard with Bill in the center

Now we're in trouble! The ability to tile a smaller courtyard with Bill in the center isn't much help in tiling a larger courtyard with Bill in the center. We haven't figured out how to bridge the gap between $P(n)$ and $P(n+1)$.

[^3]

Figure 3.3: A tiling using L-shaped tiles for $n=2$ with Bill in a center square.

So if we're going to prove Theorem 3.2.2 by induction, we're going to need some other induction hypothesis than simply the statement about n that we're trying to prove.

When this happens, your first fallback should be to look for a stronger induction hypothesis; that is, one which implies your previous hypothesis. For example, we could make $P(n)$ the proposition that for every location of Bill in a $2^{n} \times 2^{n}$ courtyard, there exists a tiling of the remainder.

This advice may sound bizarre: "If you can't prove something, try to prove something grander!" But for induction arguments, this makes sense. In the inductive step, where you have to prove $P(n)$ IMPLIES $P(n+1)$, you're in better shape because you can assume $P(n)$, which is now a more powerful statement. Let's see how this plays out in the case of courtyard tiling.

Proof (successful attempt). The proof is by induction. Let $P(n)$ be the proposition that for every location of Bill in a $2^{n} \times 2^{n}$ courtyard, there exists a tiling of the remainder.

Base case: $P(0)$ is true because Bill fills the whole courtyard.
Inductive step: Assume that $P(n)$ is true for some $n \geq 0$; that is, for every location of Bill in a $2^{n} \times 2^{n}$ courtyard, there exists a tiling of the remainder. Divide the $2^{n+1} \times 2^{n+1}$ courtyard into four quadrants, each $2^{n} \times 2^{n}$. One quadrant contains Bill (\mathbf{B} in the diagram below). Place a temporary Bill (\mathbf{X} in the diagram) in each of the three central squares lying outside this quadrant as shown in Figure 3.4.

Now we can tile each of the four quadrants by the induction assumption. Replacing the three temporary Bills with a single L-shaped tile completes the job. This proves that $P(n)$ implies $P(n+1)$ for all $n \geq 0$. Thus $P(m)$ is true for all $n \in \mathbb{N}$, and the theorem follows as a special case, where we put Bill in a central square.

This proof has two nice properties. First, not only does the argument guarantee that a tiling exists, but also it gives an algorithm for finding such a tiling. Second, we have a stronger result: if Bill wanted a statue on the edge of the courtyard, away from the pigeons, we could accommodate him!

Figure 3.4: Using a stronger inductive hypothesis to prove Theorem 3.2.2.

Strengthening the induction hypothesis is often a good move when an induction proof won't go through. But keep in mind that the stronger assertion must actually be true; otherwise, there isn't much hope of constructing a valid proof! Sometimes finding just the right induction hypothesis requires trial, error, and insight. For example, mathematicians spent almost twenty years trying to prove or disprove the conjecture that "Every planar graph is 5-choosable" ${ }^{6}$. Then, in 1994, Carsten Thomassen gave an induction proof simple enough to explain on a napkin. The key turned out to be finding an extremely clever induction hypothesis; with that in hand, completing the argument was easy!

3.2.6 A Faulty Induction Proof

If we have done a good job in writing this text, right about now you should be thinking, "Hey, this induction stuff isn't so hard after all—just show $P(0)$ is true and that $P(n)$ implies $P(n+1)$ for any number $n . "$ And, you would be right, although sometimes when you start doing induction proofs on your own, you can run into trouble. For example, we will now attempt to ruin your day by using induction to "prove" that all horses are the same color. And just when you thought it was safe to skip class and work on your robot program instead. Bummer!

False Theorem. All horses are the same color.
Notice that no n is mentioned in this assertion, so we're going to have to reformulate it in a way that makes an n explicit. In particular, we'll (falsely) prove that

False Theorem 3.2.3. In every set of $n \geq 1$ horses, all the horses are the same color.
${ }^{6} 5$-choosability is a slight generalization of 5-colorability. Although every planar graph is 4-colorable and therefore 5-colorable, not every planar graph is 4-choosable. If this all sounds like nonsense, don't panic. We'll discuss graphs, planarity, and coloring in Part II of the text.

This a statement about all integers $n \geq 1$ rather ≥ 0, so it's natural to use a slight variation on induction: prove $P(1)$ in the base case and then prove that $P(n)$ implies $P(n+1)$ for all $n \geq 1$ in the inductive step. This is a perfectly valid variant of induction and is not the problem with the proof below.

False proof. The proof is by induction on n. The induction hypothesis, $P(n)$, will be

In every set of n horses, all are the same color.
Base case: $(n=1) . P(1)$ is true, because in a set of horses of size 1 , there's only one horse, and this horse is definitely the same color as itself.

Inductive step: Assume that $P(n)$ is true for some $n \geq 1$. That is, assume that in every set of n horses, all are the same color. Now consider a set of $n+1$ horses:

$$
h_{1}, h_{2}, \ldots, h_{n}, h_{n+1}
$$

By our assumption, the first n horses are the same color:

$$
\underbrace{h_{1}, h_{2}, \ldots, h_{n},}_{\text {same color }} h_{n+1}
$$

Also by our assumption, the last n horses are the same color:

$$
h_{1}, \underbrace{h_{2}, \ldots, h_{n}, h_{n+1}}_{\text {same color }}
$$

So h_{1} is the same color as the remaining horses besides h_{n+1} (i.e., h_{2}, \ldots, h_{n}), and likewise h_{n+1} is the same color as the remaining horses besides $h_{1}\left(i . e ., h_{2}, \ldots, h_{n}\right)$. Since h_{1} and h_{n+1} are the same color as h_{2}, \ldots, h_{n}, horses $h_{1}, h_{2}, \ldots, h_{n+1}$ must all be the same color, and so $P(n+1)$ is true. Thus, $P(n)$ implies $P(n+1)$.

By the principle of induction, $P(n)$ is true for all $n \geq 1$.
We've proved something false! Is math broken? Should we all become poets? No, this proof has a mistake.

The first error in this argument is in the sentence that begins "So h_{1} is the same color as the remaining horses besides $h_{n+1}\left(\right.$ i.e., $\left.h_{2}, \ldots, h_{n}\right) \ldots$ "

The ". . ." notation in the expression " $h_{1}, h_{2}, \ldots, h_{n}, h_{n+1}$ " creates the impression that there are some remaining horses (namely h_{2}, \ldots, h_{n}) besides h_{1} and h_{n+1}. However, this is not true when $n=1$. In that case, $h_{1}, h_{2}, \ldots, h_{n}, h_{n+1}=h_{1}, h_{2}$ and there are no remaining horses besides h_{1} and h_{n+1}. So h_{1} and h_{2} need not be the same color!

This mistake knocks a critical link out of our induction argument. We proved $P(1)$ and we correctly proved $P(2) \longrightarrow P(3), P(3) \longrightarrow P(4)$, etc. But we failed to prove $P(1) \longrightarrow P(2)$, and so everything falls apart: we can not conclude that $P(2)$, $P(3)$, etc., are true. And, of course, these propositions are all false; there are sets of n non-uniformly-colored horses for all $n \geq 2$.

Students sometimes claim that the mistake in the proof is because $P(n)$ is false for $n \geq 2$, and the proof assumes something false, namely, $P(n)$, in order to prove $P(n+1)$. You should think about how to explain to such a student why this claim would get no credit on a Math for Computer Science exam.

3.2.7 Induction versus Well Ordering

The Induction Rule looks nothing like the Well Ordering Principle, but these two proof methods are closely related. In fact, as the examples above suggest, we can take any Well Ordering proof and reformat it into an Induction proof. Conversely, it's equally easy to take any Induction proof and reformat it into a Well Ordering proof.

EDITING NOTE: Here's how to reformat an induction proof and into a Well Ordering proof : suppose that we have a proof by induction with hypothesis $P(n)$. Then we start a Well Ordering proof by assuming the set of counterexamples to P is nonempty. Then by Well Ordering there is a smallest counterexample, s, that is, a smallest s such that $P(s)$ is false.

Now we use the proof of $P(0)$ that was part of the Induction proof to conclude that s must be greater than 0 . Also since s is the smallest counterexample, we can conclude that $P(s-1)$ must be true. At this point we reuse the proof of the inductive step in the Induction proof, which shows that since $P(s-1)$ true, then $P(s)$ is also true. This contradicts the assumption that $P(s)$ is false, so we have the contradiction needed to complete the Well Ordering Proof that $P(n)$ holds for all $n \in \mathbb{N}$.

So what's the difference? Well, sometimes induction proofs are clearer because they resemble recursive procedures that reduce handling an input of size $n+1$ to handling one of size n. On the other hand, Well Ordering proofs sometimes seem more natural, and also come out slightly shorter. The choice of method is really a matter of style and is up to you.

3.3 Strong Induction

Strong induction is a variation of ordinary induction that is useful when the predicate $P(n+1)$ naturally depends on $P(a)$ for values of $a<n$. As with ordinary induction, strong induction is useful to prove that a predicate $P(n)$ is true for all $n \in \mathbb{N}$.

3.3.1 A Rule for Strong Induction

Principle of Strong Induction. Let $P(n)$ be a predicate. If

- $P(0)$ is true, and
- for all $n \in \mathbb{N}, P(0), P(1), \ldots, P(n)$ together imply $P(n+1)$,
then $P(n)$ is true for all $n \in \mathbb{N}$.

The only change from the ordinary induction principle is that strong induction allows you to assume more stuff in the inductive step of your proof! In an ordinary induction argument, you assume that $P(n)$ is true and try to prove that $P(n+1)$ is also true. In a strong induction argument, you may assume that $P(0), P(1), \ldots$, and $P(n)$ are all true when you go to prove $P(n+1)$. These extra assumptions can only make your job easier. Hence the name: strong induction.

Formulated as a proof rule, strong induction is

Rule. Strong Induction Rule

$$
\frac{P(0), \quad \forall n \in \mathbb{N} .(P(0) \wedge P(1) \wedge \cdots \wedge P(m)) \text { IMPLIES } P(n+1)]}{\forall m \in \mathbb{N} . P(m)}
$$

The template for strong induction proofs is identical to the template given in Section 3.2.3 except for two things:

- you should state that your proof is by strong induction, and
- you can assume that $P(0), P(1), \ldots, P(n)$ are all true instead of only $P(n)$ during the inductive step.

3.3.2 Some Examples

Products of Primes

As a first example, we'll use strong induction to re-prove Theorem 3.1.1 which we previously proved using Well Ordering.
Lemma 3.3.1. Every integer greater than 1 is a product of primes.
Proof. We will prove Lemma 3.3.1 by strong induction, letting the induction hypothesis, $P(n)$, be
n is a product of primes.
So Lemma 3.3.1 will follow if we prove that $P(n)$ holds for all $n \geq 2$.
Base Case: $(n=2) P(2)$ is true because 2 is prime, and so it is a length one product of primes by convention.

Inductive step: Suppose that $n \geq 2$ and that i is a product of primes for every integer i where $2 \leq i<n+1$. We must show that $P(n+1)$ holds, namely, that $n+1$ is also a product of primes. We argue by cases:

If $n+1$ is itself prime, then it is a length one product of primes by convention, and so $P(n+1)$ holds in this case.

Otherwise, $n+1$ is not prime, which by definition means $n+1=k m$ for some integers k, m such that $2 \leq k, m<n+1$. Now by the strong induction hypothesis, we know that k is a product of primes. Likewise, m is a product of primes. It follows immediately that $k m=n$ is also a product of primes. Therefore, $P(n+1)$ holds in this case as well.

So $P(n+1)$ holds in any case, which completes the proof by strong induction that $P(n)$ holds for all $n \geq 2$.

EDITING NOTE: Here's a fallacious argument: every number can be factored uniquely into primes. Apply the same proof as before, adding "uniquely" to the inductive hypothesis. The problem is that even if $n=a b$ and a, b have unique factorizations, it is still possible that $n=c d$ for different c and d, producing a different factorization of n.

The argument is false, but the claim is true and is known as the fundamental theorem of arithmetic.

Making Change

The country Inductia, whose unit of currency is the Strong, has coins worth 3 Sg (3 Strongs) and 5Sg. Although the Inductians have some trouble making small change like 4 Sg or 7 Sg , it turns out that they can collect coins to make change for any number that is at least 8 Strongs.

Strong induction makes this easy to prove for $n+1 \geq 11$, because then $(n+1)-$ $3 \geq 8$, so by strong induction the Inductians can make change for exactly $(n+1)-3$ Strongs, and then they can add a 3 Sg coin to get $(n+1)$ Sg. So the only thing to do is check that they can make change for all the amounts from 8 to 10 Sg , which is not too hard to do.

Here's a detailed writeup using the official format:
Proof. We prove by strong induction that the Inductians can make change for any amount of at least 8 Sg . The induction hypothesis, $P(n)$ will be:

There is a collection of coins whose value is $n+8$ Strongs.
Base case: $P(0)$ is true because a 3 Sg coin together with a 5 Sgcoin makes 8 Sg .
Inductive step: We assume $P(m)$ holds for all $m \leq n$, and prove that $P(n+1)$ holds. We argue by cases:

Case $(n+1=1)$: We have to make $(n+1)+8=9$ Sg. We can do this using three 3 Sg coins.

Case $(n+1=2)$: We have to make $(n+1)+8=10$ Sg. Use two $5 S g$ coins.
Case $(n+1 \geq 3)$: Then $0 \leq n-2 \leq n$, so by the strong induction hypothesis, the Inductians can make change for $n-2$ Strong. Now by adding a 3 Sg coin, they can make change for $(n+1) \mathrm{Sg}$.

So in any case, $P(n+1)$ is true, and we conclude by strong induction that for all $n \geq 0$, the Inductians can make change for $n+8$ Strong. That is, they can make change for any number of eight or more Strong.

The Stacking Game

Here is another exciting game that's surely about to sweep the nation!
You begin with a stack of n boxes. Then you make a sequence of moves. In each move, you divide one stack of boxes into two nonempty stacks. The game

Figure 3.5: An example of the stacking game with $n=10$ boxes. On each line, the underlined stack is divided in the next step.
ends when you have n stacks, each containing a single box. You earn points for each move; in particular, if you divide one stack of height $a+b$ into two stacks with heights a and b, then you score $a b$ points for that move. Your overall score is the sum of the points that you earn for each move. What strategy should you use to maximize your total score?

As an example, suppose that we begin with a stack of $n=10$ boxes. Then the game might proceed as shown in figure 3.5. Can you find a better strategy?

Let's use strong induction to analyze the unstacking game. We'll prove that your score is determined entirely by the number of boxes-your strategy is irrelevant!

Theorem 3.3.2. Every way of unstacking n blocks gives a score of $n(n-1) / 2$ points.
There are a couple technical points to notice in the proof:

- The template for a strong induction proof mirrors the template for ordinary induction.
- As with ordinary induction, we have some freedom to adjust indices. In this case, we prove $P(1)$ in the base case and prove that $P(1), \ldots, P(n)$ imply $P(n+1)$ for all $n \geq 1$ in the inductive step.

Proof. The proof is by strong induction. Let $P(n)$ be the proposition that every way of unstacking n blocks gives a score of $n(n-1) / 2$.

Base case: If $n=1$, then there is only one block. No moves are possible, and so the total score for the game is $1(1-1) / 2=0$. Therefore, $P(1)$ is true.

Inductive step: Now we must show that $P(1), \ldots, P(n)$ imply $P(n+1)$ for all $n \geq 1$. So assume that $P(1), \ldots, P(n)$ are all true and that we have a stack of $n+1$ blocks. The first move must split this stack into substacks with positive sizes a and b where $a+b=n+1$ and $0<a, b \leq n$. Now the total score for the game is the sum
of points for this first move plus points obtained by unstacking the two resulting substacks:

$$
\begin{array}{rlr}
\text { total score }= & (\text { score for 1st move }) \\
& +(\text { score for unstacking } a \text { blocks }) & \text { by } P(a) \text { and } P(b) \\
& +(\text { score for unstacking } b \text { blocks }) \\
= & a b+\frac{a(a-1)}{2}+\frac{b(b-1)}{2} & \\
= & \frac{(a+b)^{2}-(a+b)}{2}=\frac{(a+b)((a+b)-1)}{2} & \\
= & \frac{(n+1) n}{2} &
\end{array}
$$

This shows that $P(1), P(2), \ldots, P(n)$ imply $P(n+1)$.
Therefore, the claim is true by strong induction.

3.3.3 Strong Induction versus Induction

Is strong induction really "stronger" than ordinary induction? It certainly looks that way. After all, you can assume a lot more when proving the induction step. But actually, anything that can be proved with strong induction can also be proved with ordinary induction-you just need to use a "stronger" induction hypothesis.

Which method should you use? Whichever you find easier. But whichever method you choose, be sure to state the method up front so that the reader can understand and more easily verify your proof.

3.4 Invariants

One of the most important uses of induction in computer science involves proving that a program or process preserves one or more desirable properties as it proceeds. A property that is preserved through a series of operations or steps is known as an invariant. Examples of desirable invariants include properties such as a variable never exceeding a certain value or becoming negative, the altitude of a plane never dropping below 1,000 feet without the wingflaps and landing gear being deployed, and the temperature of a nuclear reactor never exceeding the threshold for a meltdown.

We typically use induction to prove that a proposition is an invariant. In particular, we show that the proposition is true at the beginning (this is the base case) and that if it is true after t steps have been taken, it will also be true after step $t+1$ (this is the inductive step). We can then use the induction principle to conclude that the proposition is indeed an invariant, i.e., that it will always hold.

3.4.1 A Simple Example: The Diagonally-Moving Robot

Invariants are useful in systems that have a start state or configuration and a welldefined series of steps during which the system can change state. ${ }^{7}$ For example, suppose that you have a robot that can walk across diagonals on an infinite 2dimensional grid. The robot starts at position $(0,0)$ and at each step it moves up or down by 1 unit vertically and left or right by 1 unit horizontally. To be clear, the robot must move by exactly 1 unit in each dimension during each step, since it can only traverse diagonals.

In this example, the state of the robot at any time can be specified by a coordinate pair (x, y) that denotes the robot's position. The start state is $(0,0)$ since it is given that the robot starts at that position. After the first step, the robot could be in states $(1,1),(1,-1),(-1,1)$, or $(-1,-1)$. After two steps, there are 9 possible states for the robot, including $(0,0)$.

Can the robot ever reach position $(1,0)$?
After playing around with the robot for a bit, it will become apparent that the robot will never be able to reach position $(1,0)$. This is because the robot can only reach positions (x, y) for which $x+y$ is even. This crucial observation quickly leads to the formulation of a predicate

$$
P(t):: \text { if the robot is in state }(x, y) \text { after } t \text { steps, then } x+y \text { is even }
$$

which we can prove to be an invariant by induction.
Theorem 3.4.1. The sum of robot's coordinates is always even.
Proof. We will prove that P is an invariant by induction.
$P(0)$ is true since the robot starts at $(0,0)$ and $0+0$ is even.
Assume that $P(t)$ is true for the inductive step. Let (x, y) be the position of the robot after t steps. Since $P(t)$ is assumed to be true, we know that $x+y$ is even. There are four cases to consider for step $t+1$, depending on which direction the robot moves.

Case 1 The robot moves to $(x+1, y+1)$. Then the sum of the coordinates is $x+y+2$, which is even, and so $P(t+1)$ is true.

Case 2 The robot moves to $(x+1, y-1)$. The the sum of the coordinates is $x+y$, which is even, and so $P(t+1)$ is true.

Case 3 The robot moves to $(x-1, y+1)$. The the sum of the coordinates is $x+y$, as with Case 2 , and so $P(t+1)$ is true.

Case 4 The robot moves to $(x-1, y-1)$. The the sum of the coordinates is $x+y-2$, which is even, and so $P(t+1)$ is true.

In every case, $P(t+1)$ is true and so we have proved $P(t)$ IMPLIES $P(t+1)$ and so, by induction, we know that $P(t)$ is true for all $t \geq 0$.

[^4]Corollary 3.4.2. The robot can never reach position $(1,0)$.
Proof. By theorem 3.4.1, we know the robot can only reach positions with coordinates that sum to an even number, and thus it cannot reach position (1,0).

Since this was the first time we proved that a predicate was an invariant, we were careful to go through all four cases in gory detail. As you become more experienced with such proofs, you will likely become more brief as well. Indeed, if we were going through the proof again at a later point in the text, we might simply note that the sum of the coordinates after step $t+1$ can be only $x+y, x+y+2$ or $x+y-2$ and therefore that it is even.

3.4.2 The Invariant Method

In summary, if you would like to prove that some property NICE holds for every step of a process, then it is often helpful to use the following method:

- Define $P(t)$ to be the predicate that NICE holds immediately after step t.
- Show that $P(0)$ is true, namely that NICE holds for the start state.
- Show that

$$
\forall t \in \mathbb{N} . P(t) \text { IMPLIEs } P(t+1)
$$

namely, that for any $t \geq 0$), if NICE holds immediately after step t, it must also hold after the following step.

3.4.3 A More Challenging Example: The 15-Puzzle

In the late 19th century, Noyes Chapman, a postmaster in Canastota, New York, invented the 15 -puzzle ${ }^{8}$, which consisted of a 4×4 grid containing 15 numbered blocks in which the 14 -block and the 15 -block were out of order. The objective was to move the blocks one at a time into an adjacent hole in the grid so as to eventually get all 15 blocks into their natural order. A picture of the 15-puzzle is shown in Figure 3.6 along with the configuration after the 12-block is moved into the hole below. The desired final configuration is shown in Figure 3.7.

The 15-puzzle became very popular in North America and Europe and is still sold in game and puzzle shops today. Prizes were offered for its solution, but it is doubtful that they were ever awarded, since it is impossible to get from the configuration in Figure 3.6 to the configuration in Figure 3.7 by only moving one block at a time into an adjacent hole. The proof of this fact is a little tricky so we have left it for you to figure out on your own. Instead, we will prove that the analogous task for the much easier 8-puzzle cannot be performed. Both proofs, of course, make use of the Invariant Method.

[^5]| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| 5 | 6 | 7 | 8 |
| 9 | 10 | 11 | 12 |
| 13 | 15 | 14 | |

(a)

1	2	3	4
5	6	7	8
9	10	11	
13	14	15	12

(b)

Figure 3.6: The 15-puzzle in its starting configuration (a) and after the 12-block is moved into the hole below (b). I'll fix the formatting later-dmj.

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

Figure 3.7: The desired final configuration for the 15-puzzle. Can it be achieved by only moving one block at a time into an adjacent hole? I'll fix the formatting later-dmj.

A	B	C				
D	E	F				
H	G					
(a)			\rightarrow	A	B	C
:---	:---	:---				
D	E	F				
H		\mathbf{G}				
(b)			\rightarrow	A	B	C
:---:	:---:	:---:				
D		F				
H	\mathbf{E}	G				
(c)						

Figure 3.8: The 8-Puzzle in its initial configuration (a) and after one (b) and two (c) possible moves. I'll fix the formatting later-dmj.

3.4.4 The 8-Puzzle

In the 8 -Puzzle, there are 8 lettered tiles $(\mathrm{A}-\mathrm{H})$ and a blank square arranged in a 3×3 grid. Any lettered tile adjacent to the blank square can be slid into the blank. For example, a sequence of two moves is illustrated in Figure 3.8.

In the initial configuration shown in Figure 3.8(a), the G and H tiles are out of order. We can find a way of swapping G and H so that they are in the right order, but then other letters may be out of order. Can you find a sequence of moves that puts these two letters in correct order, but returns every other tile to its original position? Some experimentation suggests that the answer is probably "no," and we will prove that is so by finding an invariant (i.e., a property of the puzzle that is always maintained, no matter how you move the tiles around). If we can then show that putting all the tiles in the correct order would violate the invariant, then we can conclude that the puzzle cannot be solved.
Theorem 3.4.3. No sequence of legal moves transforms the configuration in Figure 3.8(a) into the configuration in Figure 3.9.

A	B	C
D	E	F
\mathbf{G}	\mathbf{H}	

Figure 3.9: The desired final configuration of the 8-puzzle.
We'll build up a sequence of observations, stated as lemmas. Once we achieve a critical mass, we'll assemble these observations into a complete proof of Theorem 3.4.3.

Define a row move as a move in which a tile slides horizontally and a column move as one in which the tile slides vertically. Assume that tiles are read top-to-bottom and left-to-right like English text, that is, the natural order, defined as follows:

1	2	3
4	5	6
7	8	9

So when we say that two tiles are "out of order", we mean that the larger letter precedes the smaller letter in this natural order.

A	B	C				
D	F					
H	E	\mathbf{G}	\longrightarrow	A	B	C
:---:	:---:	:---:				
D	F	\mathbf{G}				
H	E					

Figure 3.10: An example of a column move in which the G-tile is moved into the adjacent hole above In this case, G changes order with E and H.

Our difficulty is that one pair of tiles (the G and H) is out of order initially. An immediate observation is that row moves alone are of little value in addressing this problem:

Lemma 3.4.4. A row move does not change the order of the tiles.
Proof. A row move moves a tile from cell i to cell $i+1$ or vice versa. This tile does not change its order with respect to any other tile. Since no other tile moves, there is no change in the order of any of the other pairs of tiles.

Let's turn to column moves. This is the more interesting case, since here the order can change. For example, the column move in Figure 3.10 changes the relative order of the pairs (G, H) and (G, E).

Lemma 3.4.5. A column move changes the relative order of exactly two pairs of tiles.
Proof. Sliding a tile down moves it after the next two tiles in the order. Sliding a tile up moves it before the previous two tiles in the order. Either way, the relative order changes between the moved tile and each of the two it crosses. The relative order between any other pair of tiles does not change.

These observations suggest that there are limitations on how tiles can be swapped. Some such limitation may lead to the invariant we need. In order to reason about swaps more precisely, let's define a term referring to a pair of items that are out of order:

Definition 3.4.6. A pair of letters L_{1} and L_{2} is an inversion if L_{1} precedes L_{2} in the alphabet, but L_{1} appears after L_{2} in the puzzle order.

For example, in the puzzle below, there are three inversions: $(D, F),(E, F)$, (G, E).

A	B	C
F	D	G
E	H	

There is exactly one inversion (G, H) in the start state:

A	B	C
D	E	F
\mathbf{H}	\mathbf{G}	

There are no inversions in the end state:

A	B	C
D	E	F
\mathbf{G}	\mathbf{H}	

Let's work out the effects of row and column moves in terms of inversions.
Lemma 3.4.7. During a move, the number of inversions can only increase by 2, decrease by 2 , or remain the same.
Proof. By Lemma 3.4.5, a row move does not change the order of the tiles; thus, in particular, a row move does not change the order of inversions.

By Lemma 3.4.7, a column move changes the relative order of exactly 2 pairs of tiles. There are three cases: If both pairs were originally in order, then the number of inversions after the move goes up by 2 . If both pairs were originally inverted, then the number of inversions after the move goes down by 2 . If one pair was originally inverted, and the other was originally in order, then the number of inversions stays the same (since changing the former pair makes the number of inversions smaller by 1 , and changing the latter pair makes the number of inversions larger by 1).

We are almost there. If the number of inversions only changes by 2 , then what about the parity? (The "parity" of a number refers to whether the number is even or odd. For example, 7 and 5 have odd parity, and 18 and 0 have even parity.)

Since adding or subtracting 2 from a number does not change its parity, we have the following corollary:
Corollary 3.4.8. Neither a row nor a column move ever changes the parity of the number of inversions.

Now we can bundle up all these observations and state an invariant, that is, a property of the puzzle that never changes, no matter how you slide the tiles around.

Lemma 3.4.9. In every configuration reachable from the configuration shown in Figure 3.8(a), the parity of the number of inversions is odd.

Proof. We use induction. Let $P(n)$ be the proposition that after n moves from the above configuration, the parity of the number of inversions is odd.

Base case: After zero moves, exactly one pair of tiles is inverted (H and G), which is an odd number. Therefore $P(0)$ is true.

Inductive step: Now we must prove that $P(n)$ implies $P(n+1)$ for all $n \geq 0$. So assume that $P(n)$ is true; that is, after n moves the parity of the number of inversions is odd. Consider any sequence of $n+1$ moves m_{1}, \ldots, m_{n+1}. By the induction hypothesis $P(n)$, we know that the parity after moves m_{1}, \ldots, m_{n} is odd. By Corollary 3.4.8, we know that the parity does not change during m_{n+1}. Therefore, the parity of the number of inversions after movies m_{1}, \ldots, m_{n+1} is odd, so we have $P(n+1)$ is true.

By the principle of induction, $P(n)$ is true for all $n \geq 0$.

The theorem we originally set out to prove is restated below With our invariant in hand, the proof is simple.

Theorem. No sequence of legal moves transforms the board below on the left into the board below on the right.

A	B	C
D	E	F
\mathbf{H}	\mathbf{G}	

A	B	C
D	E	F
\mathbf{G}	\mathbf{H}	

Proof. In the target configuration on the right, the total number of inversions is zero, which is even. Therefore, by Lemma 3.4.9, the target configuration is unreachable.

3.5 Problems

3.5.1 Problems

Practice Problems

Problem 3.6.

Find all possible (nonzero) amounts of postage that can be paid exactly using 3 and 5 cent stamps. Use induction to prove that your answer is correct.

Hint: Let $S(n)$ mean that exactly n cents of postage can be paid using only 3 and 5 cent stamps. Prove that the following proposition is true as part of your solution.

$$
\forall n .(n \geq 8) \text { IMPLIES } S(n)
$$

Class Problems

Problem 3.7.

Use induction to prove that

$$
\begin{equation*}
1^{3}+2^{3}+\cdots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2} \tag{3.7}
\end{equation*}
$$

for all $n \geq 1$.
Remember to formally

1. Declare proof by induction.
2. Identify the induction hypothesis $P(n)$.
3. Establish the base case.
4. Prove that $P(n) \Rightarrow P(n+1)$.
5. Conclude that $P(n)$ holds for all $n \geq 1$.
as in the five part template.

Problem 3.8.

Prove by induction on n that

$$
\begin{equation*}
1+r+r^{2}+\cdots+r^{n}=\frac{r^{n+1}-1}{r-1} \tag{3.8}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and numbers $r \neq 1$.

Problem 3.9.

Prove by induction:

$$
\begin{equation*}
1+\frac{1}{4}+\frac{1}{9}+\cdots+\frac{1}{n^{2}}<2-\frac{1}{n} \tag{3.9}
\end{equation*}
$$

for all $n>1$.

Problem 3.10. (a) Prove by induction that a $2^{n} \times 2^{n}$ courtyard with a 1×1 statue of Bill in a corner can be covered with L-shaped tiles. (Do not assume or reprove the (stronger) result of Theorem 3.2.2 that Bill can be placed anywhere. The point of this problem is to show a different induction hypothesis that works.)
(b) Use the result of part (a) to prove the original claim that there is a tiling with Bill in the middle.

Problem 3.11.

Find the flaw in the following bogus proof that $a^{n}=1$ for all nonnegative integers n, whenever a is a nonzero real number.

Bogus proof. The proof is by induction on n, with hypothesis

$$
P(n)::=\forall k \leq n . a^{k}=1,
$$

where k is a nonnegative integer valued variable.
Base Case: $P(0)$ is equivalent to $a^{0}=1$, which is true by definition of a^{0}. (By convention, this holds even if $a=0$.)

Inductive Step: By induction hypothesis, $a^{k}=1$ for all $k \in \mathbb{N}$ such that $k \leq n$. But then

$$
a^{n+1}=\frac{a^{n} \cdot a^{n}}{a^{n-1}}=\frac{1 \cdot 1}{1}=1
$$

which implies that $P(n+1)$ holds. It follows by induction that $P(n)$ holds for all $n \in \mathbb{N}$, and in particular, $a^{n}=1$ holds for all $n \in \mathbb{N}$.

Problem 3.12.

We've proved in two different ways that

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

But now we're going to prove a contradictory theorem!
False Theorem. For all $n \geq 0$,

$$
2+3+4+\cdots+n=\frac{n(n+1)}{2}
$$

Proof. We use induction. Let $P(n)$ be the proposition that $2+3+4+\cdots+n=$ $n(n+1) / 2$.
Base case: $P(0)$ is true, since both sides of the equation are equal to zero. (Recall that a sum with no terms is zero.)
Inductive step: Now we must show that $P(n)$ implies $P(n+1)$ for all $n \geq 0$. So suppose that $P(n)$ is true; that is, $2+3+4+\cdots+n=n(n+1) / 2$. Then we can reason as follows:

$$
\begin{aligned}
2+3+4+\cdots+n+(n+1) & =[2+3+4+\cdots+n]+(n+1) \\
& =\frac{n(n+1)}{2}+(n+1) \\
& =\frac{(n+1)(n+2)}{2}
\end{aligned}
$$

Above, we group some terms, use the assumption $P(n)$, and then simplify. This shows that $P(n)$ implies $P(n+1)$. By the principle of induction, $P(n)$ is true for all $n \in \mathbb{N}$.

Where exactly is the error in this proof?

Problem 3.13.

Define the potential, $p(S)$, of a stack of blocks, S, to be $k(k-1) / 2$ where k is the number of blocks in S. Define the potential, $p(A)$, of a set of stacks, A, to be the sum of the potentials of the stacks in A.

Generalize Theorem 3.3.2 about scores in the stacking game to show that for any set of stacks, A, if a sequence of moves starting with A leads to another set of stacks, B, then $p(A) \geq p(B)$, and the score for this sequence of moves is $p(A)-p(B)$.

Hint: Try induction on the number of moves to get from A to B.

Homework Problems

Problem 3.14.

Claim 3.5.1. If a collection of positive integers (not necessarily distinct) has sum $n \geq 1$, then the collection has product at most $3^{n / 3}$.

For example, the collection $2,2,3,4,4,7$ has the sum:

$$
2+2+3+4+4+7=22
$$

On the other hand, the product is:

$$
\begin{aligned}
2 \cdot 2 \cdot 3 \cdot 4 \cdot 4 \cdot 7 & =1344 \\
& \leq 3^{22 / 3} \\
& \approx 3154.2
\end{aligned}
$$

(a) Use strong induction to prove that $n \leq 3^{n / 3}$ for every integer $n \geq 0$.
(b) Prove the claim using induction or strong induction. (You may find it easier to use induction on the number of positive integers in the collection rather than induction on the sum n.)

Problem 3.15.

For any binary string, α, let num (α) be the nonnegative integer it represents in binary notation. For example, num $(10)=2$, and num $(0101)=5$.

An $n+1$-bit adder adds two $n+1$-bit binary numbers. More precisely, an $n+1$-bit adder takes two length $n+1$ binary strings

$$
\begin{gathered}
\alpha_{n}::=a_{n} \ldots a_{1} a_{0}, \\
\beta_{n}::=b_{n} \ldots b_{1} b_{0},
\end{gathered}
$$

and a binary digit, c_{0}, as inputs, and produces a length $n+1$ binary string

$$
\sigma_{n}::=s_{n} \ldots s_{1} s_{0}
$$

and a binary digit, c_{n+1}, as outputs, and satisfies the specification:

$$
\begin{equation*}
\operatorname{num}\left(\alpha_{n}\right)+\operatorname{num}\left(\beta_{n}\right)+c_{0}=2^{n+1} c_{n+1}+\operatorname{num}\left(\sigma_{n}\right) . \tag{3.10}
\end{equation*}
$$

There is a straighforward way to implement an $n+1$-bit adder as a digital circuit: an $n+1$-bit ripple-carry circuit has $1+2(n+1)$ binary inputs

$$
a_{n}, \ldots, a_{1}, a_{0}, b_{n}, \ldots, b_{1}, b_{0}, c_{0}
$$

and $n+2$ binary outputs,

$$
c_{n+1}, s_{n}, \ldots, s_{1}, s_{0}
$$

As in Problem 1.5, the ripple-carry circuit is specified by the following formulas:

$$
\begin{align*}
s_{i} & :: \tag{3.11}\\
c_{i+1} & : \tag{3.12}\\
= & =\left(a_{i} \text { XOR } b_{i} \text { XND } b_{i}\right) \text { OR }\left(a_{i} \text { AND } c_{i}\right) \text { OR }\left(b_{i} \text { AND } c_{i}\right), .
\end{align*}
$$

for $0 \leq i \leq n$.
(a) Verify that definitions (3.11) and (3.12) imply that

$$
\begin{equation*}
a_{n}+b_{n}+c_{n}=2 c_{n+1}+s_{n} \tag{3.13}
\end{equation*}
$$

for all $n \in \mathbb{N}$.
(b) Prove by induction on n that an $n+1$-bit ripple-carry circuit really is an $n+1$ bit adder, that is, its outputs satisfy (3.10).
Hint: You may assume that, by definition of binary representation of integers,

$$
\begin{equation*}
\operatorname{num}\left(\alpha_{n+1}\right)=a_{n+1} 2^{n+1}+\operatorname{num}\left(\alpha_{n}\right) . \tag{3.14}
\end{equation*}
$$

Problem 3.16.

The 6.042 mascot, Theory Hippotamus, made a startling discovery while playing with his prized collection of unit squares over the weekend. Here is what happened.

First, Theory Hippotamus put his favorite unit square down on the floor as in Figure 3.11 (a). He noted that the length of the periphery of the resulting shape was 4 , an even number. Next, he put a second unit square down next to the first so that the two squares shared an edge as in Figure 3.11 (b). He noticed that the length of the periphery of the resulting shape was now 6 , which is also an even number. (The periphery of each shape in the figure is indicated by a thicker line.) Theory Hippotamus continued to place squares so that each new square shared an edge with at least one previously-placed square and no squares overlapped. Eventually, he arrived at the shape in Figure 3.11 (c). He realized that the length of the periphery of this shape was 36 , which is again an even number.

Our plucky porcine pal is perplexed by this peculiar pattern. Use induction on the number of squares to prove that the length of the periphery is always even, no matter how many squares Theory Hippotamus places or how he arranges them.

Figure 3.11: Some shapes that Theory Hippotamus created.

Problem 3.17.

Find all possible (nonzero) amounts of postage that can be paid exactly using 3 and 7 cent stamps. Use induction to prove that your answer is correct.

Hint: Let $S(n)$ mean that exactly n cents of postage can be paid using only 3 and 7 cent stamps. Prove that the following proposition is true as part of your solution.

$$
\forall n .(n \geq 12) \text { IMPLIES } S(n)
$$

Problem 3.18.

A group of $n \geq 1$ people can be divided into teams, each containing either 4 or 7 people. What are all the possible values of n ? Use induction to prove that your answer is correct.

Problem 3.19.

The following Lemma is true, but the proof given for it below is defective. Pinpoint exactly where the proof first makes an unjustified step and explain why it is unjustified.

Lemma 3.5.2. For any prime p and positive integers $n, x_{1}, x_{2}, \ldots, x_{n}$, if $p \mid x_{1} x_{2} \ldots x_{n}$, then $p \mid x_{i}$ for some $1 \leq i \leq n$.

False proof. Proof by strong induction on n. The induction hypothesis, $P(n)$, is that Lemma holds for n.

Base case $n=1$: When $n=1$, we have $p \mid x_{1}$, therefore we can let $i=1$ and conclude $p \mid x_{i}$.

Induction step: Now assuming the claim holds for all $k \leq n$, we must prove it for $n+1$.

So suppose $p \mid x_{1} x_{2} \ldots x_{n+1}$. Let $y_{n}=x_{n} x_{n+1}$, so $x_{1} x_{2} \ldots x_{n+1}=x_{1} x_{2} \ldots x_{n-1} y_{n}$. Since the righthand side of this equality is a product of n terms, we have by induction that p divides one of them. If $p \mid x_{i}$ for some $i<n$, then we have the desired i. Otherwise $p \mid y_{n}$. But since y_{n} is a product of the two terms x_{n}, x_{n+1}, we have by strong induction that p divides one of them. So in this case $p \mid x_{i}$ for $i=n$ or $i=n+1$.

EDITING NOTE:

Problem 3.20.
Use strong induction to prove the Well Ordering Principle. Hint: Prove that if a set of nonnegative integers contains an integer, n, then it has a smallest element.

Part II

Mathematical Data Types

Part III

Counting

Part IV

Probability

Index

$$
n+1 \text {-bit adder, } 87
$$

base case, 67
basis step, 67
Induction, 64
induction hypothesis, 67
Induction Rule, 73
inductive step, 68
invariant, 77
inversion, 82
lowest terms, 60
ordinary induction, 66
potential, 86
ripple-carry circuit, 87
smallest counterexample, 62
summation notation, 61
Well Ordering, 74
Well Ordering Principle, 59, 66, 73

[^0]: ${ }^{1}$ This means that you are about to see an informal proof by contradiction.
 ${ }^{2}$ The notation $\{n \mid P(n)$ is false $\}$ means "the set of all elements n, for which $P(n)$ is false.

[^1]: ${ }^{3}$ The notation " $\{n \mid \ldots\}$ " means "the set of elements, n, such that \ldots. .

[^2]: ${ }^{4}$ But see section 3.2.7.

[^3]: ${ }^{5}$ In the special case $n=0$, the whole courtyard consists of a single central square; otherwise, there are four central squares.

[^4]: ${ }^{7}$ Such systems are known as state machines and we will study them in greater detail in Chapterchap:state-machines.

[^5]: ${ }^{8}$ Actually, there is a dispute about who really invented the 15 -puzzle. Sam Lloyd, a well-known puzzle designer, claimed to be the inventor, but this claim has since been discounted.

