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Chapter 3

Induction and the Well
Ordering Principle

Now that you understand the basics of how to prove that a proposition is true,
it is time to equip you with the most powerful methods we have for establishing
truth: the Well Ordering Principle, the Induction Rule, and strong induction. These
methods are especially useful when you need to prove that a predicate is true for
all natural numbers.

Although the three methods look and feel different, it turns out that they are
equivalent in the sense that whatever you can prove using one of the methods,
you can also prove using either of the others. The choice of which method to use
depends on whichever seems to be easiest or most natural for the problem at hand.

3.1 The Well Ordering Principle

Every nonempty set of nonnegative integers has a smallest element.

This statement is known as The Well Ordering Principle. Do you believe it?
Seems sort of obvious, right? But notice how tight it is: it requires a nonempty set—
it’s false for the empty set which has no smallest element because it has no elements
at all! And it requires a set of nonnegative integers—it’s false for the set of negative
integers and also false for some sets of nonnegative rationals—for example, the set
of positive rationals. So, the Well Ordering Principle captures something special
about the nonnegative integers.
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60 CHAPTER 3. INDUCTION AND THE WELL ORDERING PRINCIPLE

3.1.1 Well Ordering Proofs

While the Well Ordering Principle may seem obvious, it’s hard to see offhand why
it is useful. But in fact, it provides one of the most important proof rules in discrete
mathematics.

In fact, looking back, we took the Well Ordering Principle for granted in prov-
ing that

√
2 is irrational. That proof assumed that for any positive integers m and

n, the fraction m/n can be written in lowest terms, that is, in the form m′/n′ where
m′ and n′ are positive integers with no common factors. How do we know this is
always possible?

Suppose to the contrary1 that there were m,n ∈ Z+ such that the fraction m/n
cannot be written in lowest terms. Now let C be the set of positive integers that are
numerators of such fractions. Then m ∈ C, so C is nonempty. Therefore, by Well
Ordering, there must be a smallest integer, m0 ∈ C. So by definition of C, there is
an integer n0 > 0 such that

the fraction
m0

n0
cannot be written in lowest terms.

This means that m0 and n0 must have a common factor, p > 1. But

m0/p

n0/p
=
m0

n0
,

so any way of expressing the left hand fraction in lowest terms would also work
for m0/n0, which implies

the fraction
m0/p

n0/p
cannot be in written in lowest terms either.

So by definition of C, the numerator, m0/p, is in C. But m0/p < m0, which contra-
dicts the fact that m0 is the smallest element of C.

Since the assumption that C is nonempty leads to a contradiction, it follows
that C must be empty. That is, that there are no numerators of fractions that can’t
be written in lowest terms, and hence there are no such fractions at all.

We’ve been using the Well Ordering Principle on the sly from early on!

3.1.2 Template for Well Ordering Proofs

More generally, to prove that “P (n) is true for all n ∈ N” using the Well Ordering
Principle, you can take the following steps:

• Define the set, C, of counterexamples to P being true. Namely, define2

C ::= {n ∈ N | P (n) is false} .
1This means that you are about to see an informal proof by contradiction.
2The notation {n | P (n) is false } means “the set of all elements n, for which P (n) is false.



3.1. THE WELL ORDERING PRINCIPLE 61

• Use a proof by contradiction and assume that C is nonempty.

• By the Well Ordering Principle, there will be a smallest element, n, in C.

• Reach a contradiction (somehow)—often by showing how to use n to find
another member of C that is smaller than n. (This is the open-ended part of
the proof task.)

• Conclude that C must be empty, that is, no counterexamples exist. QED

3.1.3 Examples

Let’s use this this template to prove

Theorem.
1 + 2 + 3 + · · ·+ n = n(n+ 1)/2 (3.1)

for all nonnegative integers, n.

First, we better address of a couple of ambiguous special cases before they trip
us up:

• If n = 1, then there is only one term in the summation, and so 1+2+3+· · ·+n
is just the term 1. Don’t be misled by the appearance of 2 and 3 and the
suggestion that 1 and n are distinct terms!

• If n ≤ 0, then there are no terms at all in the summation. By convention, the
sum in this case is 0.

So while the dots notation is convenient, you have to watch out for these special
cases where the notation is misleading! (In fact, whenever you see the dots, you
should be on the lookout to be sure you understand the pattern, watching out for
the beginning and the end.)

We could have eliminated the need for guessing by rewriting the left side of (3.1)
with summation notation:

n∑
i=1

i or
∑

1≤i≤n

i.

Both of these expressions denote the sum of all values taken by the expression to
the right of the sigma as the variable, i, ranges from 1 to n. Both expressions make
it clear what (3.1) means when n = 1. The second expression makes it clear that
when n = 0, there are no terms in the sum, though you still have to know the
convention that a sum of no numbers equals 0 (the product of no numbers is 1, by
the way).

OK, back to the proof:

Proof. By contradiction and use of the Well Ordering Principle. Assume that the
theorem is false. Then, some nonnegative integers serve as counterexamples to it.
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Let’s collect them in a set:

C ::=
{
n ∈ N | 1 + 2 + 3 + · · ·+ n 6= n(n+ 1)

2

}
.

By our assumption that the theorem admits counterexamples, C is a nonempty set
of nonnegative integers. So, by the Well Ordering Principle, C has a minimum
element, call it c. That is, c is the smallest counterexample to the theorem.

Since c is the smallest counterexample, we know that (3.1) is false for n = c but
true for all nonnegative integers n < c. But (3.1) is true for n = 0, so c > 0. This
means c−1 is a nonnegative integer, and since it is less than c, equation (3.1) is true
for c− 1. That is,

1 + 2 + 3 + · · ·+ (c− 1) =
(c− 1)c

2
.

But then, adding c to both sides we get

1 + 2 + 3 + · · ·+ (c− 1) + c =
(c− 1)c

2
+ c =

c2 − c+ 2c
2

=
c(c+ 1)

2
,

which means that (3.1) does hold for c, after all! This is a contradiction, and we are
done. �

Here is another result that can be proved using Well Ordering. It will be useful
in Chapter 4 when we study number theory and cryptography.

Theorem 3.1.1. Every natural number can be factored as a product of primes.

Proof. By contradiction and Well Ordering. Assume that the theorem is false and
let C be the set of all integers greater than one that cannot be factored as a product
of primes. We assume that C is not empty and derive a contradiction.

If C is not empty, there is a least element, n ∈ C, by Well Ordering. The n can’t
be prime, because a prime by itself is considered a (length one) product of primes
and no such products are in C.

So n must be a product of two integers a and b where 1 < a, b < n. Since
a and b are smaller than the smallest element in C, we know that a, b /∈ C. In
other words, a can be written as a product of primes p1p2 · · · pk and b as a product
of primes q1 · · · ql. Therefore, n = p1 · · · pkq1 · · · ql can be written as a product of
primes, contradicting the claim that n ∈ C. Our assumption that C is not empty
must therefore be false. �

3.1.4 Problems

Practice Problems

Problem 3.1 (Postage by Well Ordering).
For practice using the Well Ordering Principle, fill in the template of an easy to
prove fact: every amount of postage that can be assembled using only 10 cent and
15 cent stamps is divisible by 5.
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In particular, Let S(n) mean that exactly n cents postage can be assembled using
only 10 and 15 cent stamps. Then the proof shows that

S(n) IMPLIES 5 | n, for all nonnegative integers n. (*)

Fill in the missing portions (indicated by “. . . ”) of the following proof of (*).

Let C be the set of counterexamples to (*), namely

C ::= {n | . . . }

Assume for the purpose of obtaining a contradiction thatC is nonempty.
Then by the WOP, there is a smallest number, m ∈ C. This m must be
positive because . . . .

But if S(m) holds and m is positive, then S(m− 10) or S(m− 15) must
hold, because . . . .

So suppose S(m− 10) holds. Then 5 | (m− 10), because. . .

But if 5 | (m− 10), then obviously 5 | m, contradicting the fact that m is
a counterexample.

Next, if S(m− 15) holds, we arrive at a contradiction in the same way.

Since we get a contradiction in both cases, we conclude that. . .

which proves that (*) holds.

Class Problems

Problem 3.2.
The proof below uses the Well Ordering Principle to prove that every amount of
postage that can be assembled using only 6 cent and 15 cent stamps, is divisible by
3. Let the notation “j | k” indicate that integer j is a divisor of integer k, and let
S(n) mean that exactly n cents postage can be assembled using only 6 and 15 cent
stamps. Then the proof shows that

S(n) IMPLIES 3 | n, for all nonnegative integers n. (*)

Fill in the missing portions (indicated by “. . . ”) of the following proof of (*).

Let C be the set of counterexamples to (*), namely3

C ::= {n | . . . }

Assume for the purpose of obtaining a contradiction thatC is nonempty.
Then by the WOP, there is a smallest number, m ∈ C. This m must be
positive because. . . .

3The notation “{n | . . . }” means “the set of elements, n, such that . . . .”
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But if S(m) holds and m is positive, then S(m − 6) or S(m − 15) must
hold, because. . . .

So suppose S(m− 6) holds. Then 3 | (m− 6), because. . .

But if 3 | (m− 6), then obviously 3 | m, contradicting the fact that m is
a counterexample.

Next, if S(m− 15) holds, we arrive at a contradiction in the same way.
Since we get a contradiction in both cases, we conclude that. . .

which proves that (*) holds.

Problem 3.3.
Euler’s Conjecture in 1769 was that there are no positive integer solutions to the
equation

a4 + b4 + c4 = d4.

Integer values for a, b, c, d that do satisfy this equation, were first discovered in
1986. So Euler guessed wrong, but it took more two hundred years to prove it.

Now let’s consider Lehman’s equation, similar to Euler’s but with some coeffi-
cients:

8a4 + 4b4 + 2c4 = d4 (3.2)

Prove that Lehman’s equation (3.2) really does not have any positive integer
solutions.

Hint: Consider the minimum value of a among all possible solutions to (3.2).

Problem 3.4.
Use the Well Ordering Principle to prove that

n∑
k=0

k2 =
n(n+ 1)(2n+ 1)

6
. (3.3)

for all nonnegative integers, n.

Homework Problems

Problem 3.5.
Use the Well Ordering Principle to prove that any integer greater than or equal to
8 can be represented as the sum of integer multiples of 3 and 5.

3.2 Ordinary Induction

Induction is by far the most powerful and commonly-used proof technique in dis-
crete mathematics and computer science. In fact, the use of induction is a defining

http://en.wikipedia.org/wiki/Euler's_sum_of_powers_conjecture
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characteristic of discrete—as opposed to continuous—mathematics. To understand
how it works, suppose there is a professor who brings to class a bottomless bag of
assorted miniature candy bars. She offers to share the candy in the following way.
First, she lines the students up in order. Next she states two rules:

1. The student at the beginning of the line gets a candy bar.

2. If a student gets a candy bar, then the following student in line also gets a
candy bar.

Let’s number the students by their order in line, starting the count with 0, as usual
in Computer Science. Now we can understand the second rule as a short descrip-
tion of a whole sequence of statements:

• If student 0 gets a candy bar, then student 1 also gets one.

• If student 1 gets a candy bar, then student 2 also gets one.

• If student 2 gets a candy bar, then student 3 also gets one.
...

Of course this sequence has a more concise mathematical description:

If student n gets a candy bar, then student n+1 gets a candy bar, for all
nonnegative integers n.

So suppose you are student 17. By these rules, are you entitled to a miniature candy
bar? Well, student 0 gets a candy bar by the first rule. Therefore, by the second rule,
student 1 also gets one, which means student 2 gets one, which means student 3
gets one as well, and so on. By 17 applications of the professor’s second rule, you
get your candy bar! Of course the rules actually guarantee a candy bar to every
student, no matter how far back in line they may be.

3.2.1 A Rule for Ordinary Induction

The reasoning that led us to conclude that every student gets a candy bar is essen-
tially all there is to induction.
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The Principle of Induction.

Let P (n) be a predicate. If

• P (0) is true, and

• P (n) IMPLIES P (n+ 1) for all nonnegative integers, n,

then

• P (m) is true for all nonnegative integers, m.

Since we’re going to consider several useful variants of induction in later sec-
tions, we’ll refer to the induction method described above as ordinary induction
when we need to distinguish it. Formulated as a proof rule, this would be

Rule. Induction Rule

P (0), ∀n ∈ NP (n) IMPLIES P (n+ 1)
∀m ∈ N. P (m)

This general induction rule works for the same intuitive reason that all the stu-
dents get candy bars, and we hope the explanation using candy bars makes it clear
why the soundness of the ordinary induction can be taken for granted. In fact, the
rule is so obvious that it’s hard to see what more basic principle could be used to
justify it.4 What’s not so obvious is how much mileage we get by using it.

3.2.2 A Familiar Example

Ordinary induction often works directly in proving that some statement about
nonnegative integers holds for all of them. For example, here is the formula for
the sum of the nonnegative integers that we already proved (equation (3.1)) using
the Well Ordering Principle:

Theorem 3.2.1. For all n ∈ N,

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
(3.4)

This time, let’s use the Induction Principle to prove Theorem 3.2.1.
Suppose that we define predicate P (n) to be the equation (3.4). Recast in terms

of this predicate, the theorem claims that P (n) is true for all n ∈ N. This is great,
because the induction principle lets us reach precisely that conclusion, provided
we establish two simpler facts:

4But see section 3.2.7.
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• P (0) is true.

• For all n ∈ N, P (n) IMPLIES P (n+ 1).

So now our job is reduced to proving these two statements. The first is true
because P (0) asserts that a sum of zero terms is equal to 0(0 + 1)/2 = 0, which is
true by definition. The second statement is more complicated. But remember the
basic plan for proving the validity of any implication from subsection 2.2.2: assume
the statement on the left and then prove the statement on the right. In this case, we
assume P (n) in order to prove P (n+ 1), which is the equation

1 + 2 + 3 + · · ·+ n+ (n+ 1) =
(n+ 1)(n+ 2)

2
. (3.5)

These two equations are quite similar; in fact, adding (n+1) to both sides of equa-
tion (3.4) and simplifying the right side gives the equation (3.5):

1 + 2 + 3 + · · ·+ n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1)

=
(n+ 2)(n+ 1)

2

Thus, if P (n) is true, then so is P (n + 1). This argument is valid for every non-
negative integer n, so this establishes the second fact required by the induction
principle. Therefore, the induction principle says that the predicate P (m) is true
for all nonnegative integers, m, so the theorem is proved.

3.2.3 A Template for Induction Proofs

The proof of Theorem 3.2.1 was relatively simple, but even the most complicated
induction proof follows exactly the same template. There are five components:

1. State that the proof uses induction. This immediately conveys the overall
structure of the proof, which helps the reader understand your argument.

2. Define an appropriate predicate P (n). The eventual conclusion of the in-
duction argument will be that P (n) is true for all nonnegative n. Thus, you
should define the predicate P (n) so that your theorem is equivalent to (or
follows from) this conclusion. Often the predicate can be lifted straight from
the proposition that you are trying to prove, as in the example above. The
predicate P (n) is called the induction hypothesis. Sometimes the induction
hypothesis will involve several variables, in which case you should indicate
which variable serves as n.

3. Prove that P (0) is true. This is usually easy, as in the example above. This
part of the proof is called the base case or basis step.
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4. Prove that P (n) implies P (n + 1) for every nonnegative integer n. This is
called the inductive step. The basic plan is always the same: assume that P (n)
is true and then use this assumption to prove that P (n+1) is true. These two
statements should be fairly similar, but bridging the gap may require some
ingenuity. Whatever argument you give must be valid for every nonnegative
integer n, since the goal is to prove the implications P (0) → P (1), P (1) →
P (2), P (2)→ P (3), etc. all at once.

5. Invoke induction. Given these facts, the induction principle allows you to
conclude that P (n) is true for all nonnegative n. This is the logical capstone
to the whole argument, but it is so standard that it’s usual not to mention it
explicitly,

Always be sure to explicitly label the base case and the inductive step. It will make
your proofs clearer, and it will decrease the chance that you forget a key step (such
as checking the base case).

3.2.4 A Clean Writeup

The proof of Theorem 3.2.1 given above is perfectly valid; however, it contains a
lot of extraneous explanation that you won’t usually see in induction proofs. The
writeup below is closer to what you might see in print and should be prepared to
produce yourself.

Proof of Theorem 3.2.1. We use induction. The induction hypothesis, P (n), will be
equation (3.4).

Base case: P (0) is true, because both sides of equation (3.4) equal zero when
n = 0.

Inductive step: Assume that P (n) is true, where n is any nonnegative integer.
Then

1 + 2 + 3 + · · ·+ n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1) (by induction hypothesis)

=
(n+ 1)(n+ 2)

2
(by simple algebra)

which proves P (n+ 1).
So it follows by induction that P (n) is true for all nonnegative n. �

Induction was helpful for proving the correctness of this summation formula, but
not helpful for discovering it in the first place. Tricks and methods for finding such
formulas will be covered in Part III of the text.

3.2.5 A More Challenging Example

During the development of MIT’s famous Stata Center, as costs rose further and
further beyond budget, there were some radical fundraising ideas. One rumored
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2n

2n

Figure 3.1: A 2n × 2n courtyard for n = 3.

Figure 3.2: The special L-shaped tile.

plan was to install a big courtyard with dimensions 2n×2n (as shown in Figure 3.1
for the case where n = 3) and to have one of the central squares5 be occupied by
a statue of a wealthy potential donor (who we will refer to as “Bill”, for the pur-
poses of preserving anonymity). A complication was that the building’s uncon-
ventional architect, Frank Gehry, was alleged to require that only special L-shaped
tiles (show in Figure 3.2) be used for the courtyard. It was quickly determined that
a courtyard meeting these constraints exists, at least for n = 2. (See Figure 3.3.) But
what about for larger values of n? Is there a way to tile a 2n × 2n courtyard with
L-shaped tiles and a statue in the center? Let’s try to prove that this is so.

Theorem 3.2.2. For all n ≥ 0 there exists a tiling of a 2n × 2n courtyard with Bill in a
central square.

Proof. (doomed attempt) The proof is by induction. Let P (n) be the proposition that
there exists a tiling of a 2n × 2n courtyard with Bill in the center.

Base case: P (0) is true because Bill fills the whole courtyard.
Inductive step: Assume that there is a tiling of a 2n × 2n courtyard with Bill in

the center for some n ≥ 0. We must prove that there is a way to tile a 2n+1 × 2n+1

courtyard with Bill in the center . . . . �

Now we’re in trouble! The ability to tile a smaller courtyard with Bill in the
center isn’t much help in tiling a larger courtyard with Bill in the center. We haven’t
figured out how to bridge the gap between P (n) and P (n+ 1).

5In the special case n = 0, the whole courtyard consists of a single central square; otherwise, there
are four central squares.
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B

Figure 3.3: A tiling using L-shaped tiles for n = 2 with Bill in a center square.

So if we’re going to prove Theorem 3.2.2 by induction, we’re going to need
some other induction hypothesis than simply the statement about n that we’re try-
ing to prove.

When this happens, your first fallback should be to look for a stronger induction
hypothesis; that is, one which implies your previous hypothesis. For example,
we could make P (n) the proposition that for every location of Bill in a 2n × 2n

courtyard, there exists a tiling of the remainder.
This advice may sound bizarre: “If you can’t prove something, try to prove

something grander!” But for induction arguments, this makes sense. In the induc-
tive step, where you have to prove P (n) IMPLIES P (n + 1), you’re in better shape
because you can assume P (n), which is now a more powerful statement. Let’s see
how this plays out in the case of courtyard tiling.

Proof (successful attempt). The proof is by induction. Let P (n) be the proposition
that for every location of Bill in a 2n × 2n courtyard, there exists a tiling of the
remainder.

Base case: P (0) is true because Bill fills the whole courtyard.
Inductive step: Assume that P (n) is true for some n ≥ 0; that is, for every

location of Bill in a 2n × 2n courtyard, there exists a tiling of the remainder. Divide
the 2n+1×2n+1 courtyard into four quadrants, each 2n×2n. One quadrant contains
Bill (B in the diagram below). Place a temporary Bill (X in the diagram) in each of
the three central squares lying outside this quadrant as shown in Figure 3.4.

Now we can tile each of the four quadrants by the induction assumption. Re-
placing the three temporary Bills with a single L-shaped tile completes the job.
This proves that P (n) implies P (n + 1) for all n ≥ 0. Thus P (m) is true for all
n ∈ N, and the theorem follows as a special case, where we put Bill in a central
square. �

This proof has two nice properties. First, not only does the argument guarantee
that a tiling exists, but also it gives an algorithm for finding such a tiling. Second,
we have a stronger result: if Bill wanted a statue on the edge of the courtyard,
away from the pigeons, we could accommodate him!
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X

X X

B

2n 2n

2n

a

2n

Figure 3.4: Using a stronger inductive hypothesis to prove Theorem 3.2.2.

Strengthening the induction hypothesis is often a good move when an induc-
tion proof won’t go through. But keep in mind that the stronger assertion must
actually be true; otherwise, there isn’t much hope of constructing a valid proof!
Sometimes finding just the right induction hypothesis requires trial, error, and in-
sight. For example, mathematicians spent almost twenty years trying to prove or
disprove the conjecture that “Every planar graph is 5-choosable”6. Then, in 1994,
Carsten Thomassen gave an induction proof simple enough to explain on a nap-
kin. The key turned out to be finding an extremely clever induction hypothesis;
with that in hand, completing the argument was easy!

3.2.6 A Faulty Induction Proof

If we have done a good job in writing this text, right about now you should be
thinking, “Hey, this induction stuff isn’t so hard after all—just show P (0) is true
and that P (n) implies P (n + 1) for any number n.” And, you would be right,
although sometimes when you start doing induction proofs on your own, you
can run into trouble. For example, we will now attempt to ruin your day by using
induction to “prove” that all horses are the same color. And just when you thought
it was safe to skip class and work on your robot program instead. Bummer!

False Theorem. All horses are the same color.

Notice that no n is mentioned in this assertion, so we’re going to have to re-
formulate it in a way that makes an n explicit. In particular, we’ll (falsely) prove
that

False Theorem 3.2.3. In every set of n ≥ 1 horses, all the horses are the same color.
65-choosability is a slight generalization of 5-colorability. Although every planar graph is 4-colorable

and therefore 5-colorable, not every planar graph is 4-choosable. If this all sounds like nonsense, don’t
panic. We’ll discuss graphs, planarity, and coloring in Part II of the text.
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This a statement about all integers n ≥ 1 rather ≥ 0, so it’s natural to use a
slight variation on induction: prove P (1) in the base case and then prove that P (n)
implies P (n+1) for all n ≥ 1 in the inductive step. This is a perfectly valid variant
of induction and is not the problem with the proof below.

False proof. The proof is by induction on n. The induction hypothesis, P (n), will
be

In every set of n horses, all are the same color. (3.6)
Base case: (n = 1). P (1) is true, because in a set of horses of size 1, there’s only

one horse, and this horse is definitely the same color as itself.
Inductive step: Assume that P (n) is true for some n ≥ 1. That is, assume that

in every set of n horses, all are the same color. Now consider a set of n+ 1 horses:

h1, h2, . . . , hn, hn+1

By our assumption, the first n horses are the same color:

h1, h2, . . . , hn,︸ ︷︷ ︸
same color

hn+1

Also by our assumption, the last n horses are the same color:

h1, h2, . . . , hn, hn+1︸ ︷︷ ︸
same color

So h1 is the same color as the remaining horses besides hn+1 (i.e., h2, . . . , hn), and
likewise hn+1 is the same color as the remaining horses besides h1 (i.e., h2, . . . , hn).
Since h1 and hn+1 are the same color as h2, . . . , hn, horses h1, h2, . . . , hn+1 must all
be the same color, and so P (n+ 1) is true. Thus, P (n) implies P (n+ 1).

By the principle of induction, P (n) is true for all n ≥ 1. �

We’ve proved something false! Is math broken? Should we all become poets?
No, this proof has a mistake.

The first error in this argument is in the sentence that begins “So h1 is the same
color as the remaining horses besides hn+1 (i.e., h2, . . . , hn). . . ”

The “. . . ” notation in the expression “h1, h2, . . . , hn, hn+1” creates the impres-
sion that there are some remaining horses (namely h2, . . . , hn) besides h1 and hn+1.
However, this is not true when n = 1. In that case, h1, h2, . . . , hn, hn+1 = h1, h2 and
there are no remaining horses besides h1 and hn+1. So h1 and h2 need not be the
same color!

This mistake knocks a critical link out of our induction argument. We proved
P (1) and we correctly proved P (2) −→ P (3), P (3) −→ P (4), etc. But we failed to
prove P (1) −→ P (2), and so everything falls apart: we can not conclude that P (2),
P (3), etc., are true. And, of course, these propositions are all false; there are sets of
n non-uniformly-colored horses for all n ≥ 2.

Students sometimes claim that the mistake in the proof is because P (n) is false
for n ≥ 2, and the proof assumes something false, namely, P (n), in order to prove
P (n+ 1). You should think about how to explain to such a student why this claim
would get no credit on a Math for Computer Science exam.



3.3. STRONG INDUCTION 73

3.2.7 Induction versus Well Ordering

The Induction Rule looks nothing like the Well Ordering Principle, but these two
proof methods are closely related. In fact, as the examples above suggest, we can
take any Well Ordering proof and reformat it into an Induction proof. Conversely,
it’s equally easy to take any Induction proof and reformat it into a Well Ordering
proof.

EDITING NOTE: Here’s how to reformat an induction proof and into a Well Or-
dering proof : suppose that we have a proof by induction with hypothesis P (n).
Then we start a Well Ordering proof by assuming the set of counterexamples to P
is nonempty. Then by Well Ordering there is a smallest counterexample, s, that is,
a smallest s such that P (s) is false.

Now we use the proof of P (0) that was part of the Induction proof to conclude
that s must be greater than 0. Also since s is the smallest counterexample, we
can conclude that P (s − 1) must be true. At this point we reuse the proof of the
inductive step in the Induction proof, which shows that since P (s − 1) true, then
P (s) is also true. This contradicts the assumption that P (s) is false, so we have the
contradiction needed to complete the Well Ordering Proof that P (n) holds for all
n ∈ N. �

So what’s the difference? Well, sometimes induction proofs are clearer because
they resemble recursive procedures that reduce handling an input of size n + 1 to
handling one of size n. On the other hand, Well Ordering proofs sometimes seem
more natural, and also come out slightly shorter. The choice of method is really a
matter of style and is up to you.

3.3 Strong Induction

Strong induction is a variation of ordinary induction that is useful when the pred-
icate P (n + 1) naturally depends on P (a) for values of a < n. As with ordinary
induction, strong induction is useful to prove that a predicate P (n) is true for all
n ∈ N.

3.3.1 A Rule for Strong Induction

Principle of Strong Induction. Let P (n) be a predicate. If

• P (0) is true, and

• for all n ∈ N, P (0), P (1), . . . , P (n) together imply P (n+ 1),

then P (n) is true for all n ∈ N.
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The only change from the ordinary induction principle is that strong induction
allows you to assume more stuff in the inductive step of your proof! In an ordinary
induction argument, you assume that P (n) is true and try to prove that P (n + 1)
is also true. In a strong induction argument, you may assume that P (0), P (1), . . . ,
and P (n) are all true when you go to prove P (n+ 1). These extra assumptions can
only make your job easier. Hence the name: strong induction.

Formulated as a proof rule, strong induction is

Rule. Strong Induction Rule

P (0), ∀n ∈ N.
(
P (0) ∧ P (1) ∧ · · · ∧ P (m)

)
IMPLIES P (n+ 1)]

∀m ∈ N. P (m)

The template for strong induction proofs is identical to the template given in
Section 3.2.3 except for two things:

• you should state that your proof is by strong induction, and

• you can assume that P (0), P (1), . . . , P (n) are all true instead of only P (n)
during the inductive step.

3.3.2 Some Examples

Products of Primes

As a first example, we’ll use strong induction to re-prove Theorem 3.1.1 which we
previously proved using Well Ordering.

Lemma 3.3.1. Every integer greater than 1 is a product of primes.

Proof. We will prove Lemma 3.3.1 by strong induction, letting the induction hy-
pothesis, P (n), be

n is a product of primes.

So Lemma 3.3.1 will follow if we prove that P (n) holds for all n ≥ 2.
Base Case: (n = 2) P (2) is true because 2 is prime, and so it is a length one

product of primes by convention.
Inductive step: Suppose that n ≥ 2 and that i is a product of primes for every

integer i where 2 ≤ i < n + 1. We must show that P (n + 1) holds, namely, that
n+ 1 is also a product of primes. We argue by cases:

If n+ 1 is itself prime, then it is a length one product of primes by convention,
and so P (n+ 1) holds in this case.

Otherwise, n+ 1 is not prime, which by definition means n+ 1 = km for some
integers k,m such that 2 ≤ k,m < n+ 1. Now by the strong induction hypothesis,
we know that k is a product of primes. Likewise, m is a product of primes. It
follows immediately that km = n is also a product of primes. Therefore, P (n + 1)
holds in this case as well.

So P (n + 1) holds in any case, which completes the proof by strong induction
that P (n) holds for all n ≥ 2.

�
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EDITING NOTE: Here’s a fallacious argument: every number can be factored
uniquely into primes. Apply the same proof as before, adding “uniquely” to the
inductive hypothesis. The problem is that even if n = ab and a, b have unique
factorizations, it is still possible that n = cd for different c and d, producing a
different factorization of n.

The argument is false, but the claim is true and is known as the fundamental
theorem of arithmetic.

�

Making Change

The country Inductia, whose unit of currency is the Strong, has coins worth 3Sg
(3 Strongs) and 5Sg. Although the Inductians have some trouble making small
change like 4Sg or 7Sg, it turns out that they can collect coins to make change for
any number that is at least 8 Strongs.

Strong induction makes this easy to prove for n+1 ≥ 11, because then (n+1)−
3 ≥ 8, so by strong induction the Inductians can make change for exactly (n+1)−3
Strongs, and then they can add a 3Sg coin to get (n+ 1)Sg. So the only thing to do
is check that they can make change for all the amounts from 8 to 10Sg, which is not
too hard to do.

Here’s a detailed writeup using the official format:

Proof. We prove by strong induction that the Inductians can make change for any
amount of at least 8Sg. The induction hypothesis, P (n) will be:

There is a collection of coins whose value is n+ 8 Strongs.

Base case: P (0) is true because a 3Sg coin together with a 5Sgcoin makes 8Sg.
Inductive step: We assume P (m) holds for all m ≤ n, and prove that P (n+ 1)

holds. We argue by cases:
Case (n+1 = 1): We have to make (n+1)+8 = 9Sg. We can do this using three

3Sg coins.
Case (n+ 1 = 2): We have to make (n+ 1) + 8 = 10Sg. Use two 5Sg coins.
Case (n + 1 ≥ 3): Then 0 ≤ n − 2 ≤ n, so by the strong induction hypothesis,

the Inductians can make change for n− 2 Strong. Now by adding a 3Sg coin, they
can make change for (n+ 1)Sg.

So in any case, P (n + 1) is true, and we conclude by strong induction that for
all n ≥ 0, the Inductians can make change for n+ 8 Strong. That is, they can make
change for any number of eight or more Strong.

�

The Stacking Game

Here is another exciting game that’s surely about to sweep the nation!
You begin with a stack of n boxes. Then you make a sequence of moves. In

each move, you divide one stack of boxes into two nonempty stacks. The game
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Stack Heights Score
10
5 5 25 points
5 3 2 6
4 3 2 1 4
2 3 2 1 2 4
2 2 2 1 2 1 2
1 2 2 1 2 1 1 1
1 1 2 1 2 1 1 1 1
1 1 1 1 2 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

Total Score = 45 points

Figure 3.5: An example of the stacking game with n = 10 boxes. On each line, the
underlined stack is divided in the next step.

ends when you have n stacks, each containing a single box. You earn points for
each move; in particular, if you divide one stack of height a + b into two stacks
with heights a and b, then you score ab points for that move. Your overall score is
the sum of the points that you earn for each move. What strategy should you use
to maximize your total score?

As an example, suppose that we begin with a stack of n = 10 boxes. Then the
game might proceed as shown in figure 3.5. Can you find a better strategy?

Let’s use strong induction to analyze the unstacking game. We’ll prove that
your score is determined entirely by the number of boxes—your strategy is irrele-
vant!

Theorem 3.3.2. Every way of unstacking n blocks gives a score of n(n− 1)/2 points.

There are a couple technical points to notice in the proof:

• The template for a strong induction proof mirrors the template for ordinary
induction.

• As with ordinary induction, we have some freedom to adjust indices. In this
case, we prove P (1) in the base case and prove that P (1), . . . , P (n) imply
P (n+ 1) for all n ≥ 1 in the inductive step.

Proof. The proof is by strong induction. Let P (n) be the proposition that every way
of unstacking n blocks gives a score of n(n− 1)/2.

Base case: If n = 1, then there is only one block. No moves are possible, and so
the total score for the game is 1(1− 1)/2 = 0. Therefore, P (1) is true.

Inductive step: Now we must show that P (1), . . . , P (n) imply P (n+ 1) for all
n ≥ 1. So assume that P (1), . . . , P (n) are all true and that we have a stack of n+ 1
blocks. The first move must split this stack into substacks with positive sizes a and
b where a+ b = n+1 and 0 < a, b ≤ n. Now the total score for the game is the sum
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of points for this first move plus points obtained by unstacking the two resulting
substacks:

total score = (score for 1st move)
+ (score for unstacking a blocks)
+ (score for unstacking b blocks)

= ab+
a(a− 1)

2
+
b(b− 1)

2
by P (a) and P (b)

=
(a+ b)2 − (a+ b)

2
=

(a+ b)((a+ b)− 1)
2

=
(n+ 1)n

2

This shows that P (1), P (2), . . . , P (n) imply P (n+ 1).
Therefore, the claim is true by strong induction. �

3.3.3 Strong Induction versus Induction

Is strong induction really “stronger” than ordinary induction? It certainly looks
that way. After all, you can assume a lot more when proving the induction step.
But actually, anything that can be proved with strong induction can also be proved
with ordinary induction—you just need to use a “stronger” induction hypothesis.

Which method should you use? Whichever you find easier. But whichever
method you choose, be sure to state the method up front so that the reader can
understand and more easily verify your proof.

3.4 Invariants

One of the most important uses of induction in computer science involves prov-
ing that a program or process preserves one or more desirable properties as it pro-
ceeds. A property that is preserved through a series of operations or steps is known
as an invariant. Examples of desirable invariants include properties such as a vari-
able never exceeding a certain value or becoming negative, the altitude of a plane
never dropping below 1,000 feet without the wingflaps and landing gear being de-
ployed, and the temperature of a nuclear reactor never exceeding the threshold for
a meltdown.

We typically use induction to prove that a proposition is an invariant. In par-
ticular, we show that the proposition is true at the beginning (this is the base case)
and that if it is true after t steps have been taken, it will also be true after step t+ 1
(this is the inductive step). We can then use the induction principle to conclude
that the proposition is indeed an invariant, i.e., that it will always hold.
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3.4.1 A Simple Example: The Diagonally-Moving Robot

Invariants are useful in systems that have a start state or configuration and a well-
defined series of steps during which the system can change state.7 For example,
suppose that you have a robot that can walk across diagonals on an infinite 2-
dimensional grid. The robot starts at position (0, 0) and at each step it moves up
or down by 1 unit vertically and left or right by 1 unit horizontally. To be clear, the
robot must move by exactly 1 unit in each dimension during each step, since it can
only traverse diagonals.

In this example, the state of the robot at any time can be specified by a coordi-
nate pair (x, y) that denotes the robot’s position. The start state is (0, 0) since it is
given that the robot starts at that position. After the first step, the robot could be in
states (1, 1), (1,−1), (−1, 1), or (−1,−1). After two steps, there are 9 possible states
for the robot, including (0, 0).

Can the robot ever reach position (1, 0)?
After playing around with the robot for a bit, it will become apparent that the

robot will never be able to reach position (1, 0). This is because the robot can only
reach positions (x, y) for which x+y is even. This crucial observation quickly leads
to the formulation of a predicate

P (t) :: if the robot is in state (x, y) after t steps, then x+ y is even

which we can prove to be an invariant by induction.

Theorem 3.4.1. The sum of robot’s coordinates is always even.

Proof. We will prove that P is an invariant by induction.
P (0) is true since the robot starts at (0, 0) and 0 + 0 is even.
Assume that P (t) is true for the inductive step. Let (x, y) be the position of the

robot after t steps. Since P (t) is assumed to be true, we know that x + y is even.
There are four cases to consider for step t + 1, depending on which direction the
robot moves.

Case 1 The robot moves to (x+1, y+1). Then the sum of the coordinates is x+y+2,
which is even, and so P (t+ 1) is true.

Case 2 The robot moves to (x+ 1, y − 1). The the sum of the coordinates is x+ y,
which is even, and so P (t+ 1) is true.

Case 3 The robot moves to (x− 1, y + 1). The the sum of the coordinates is x+ y,
as with Case 2, and so P (t+ 1) is true.

Case 4 The robot moves to (x−1, y−1). The the sum of the coordinates is x+y−2,
which is even, and so P (t+ 1) is true.

In every case, P (t+ 1) is true and so we have proved P (t) IMPLIES P (t+ 1) and so,
by induction, we know that P (t) is true for all t ≥ 0. �

7Such systems are known as state machines and we will study them in greater detail in
Chapterchap:state-machines.
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Corollary 3.4.2. The robot can never reach position (1, 0).

Proof. By theorem 3.4.1, we know the robot can only reach positions with coordi-
nates that sum to an even number, and thus it cannot reach position (1, 0). �

Since this was the first time we proved that a predicate was an invariant, we
were careful to go through all four cases in gory detail. As you become more
experienced with such proofs, you will likely become more brief as well. Indeed, if
we were going through the proof again at a later point in the text, we might simply
note that the sum of the coordinates after step t+ 1 can be only x+ y, x+ y + 2 or
x+ y − 2 and therefore that it is even.

3.4.2 The Invariant Method

In summary, if you would like to prove that some property NICE holds for every
step of a process, then it is often helpful to use the following method:

• Define P (t) to be the predicate that NICE holds immediately after step t.

• Show that P (0) is true, namely that NICE holds for the start state.

• Show that
∀t ∈ N. P (t) IMPLIES P (t+ 1),

namely, that for any t ≥ 0), if NICE holds immediately after step t, it must
also hold after the following step.

3.4.3 A More Challenging Example: The 15-Puzzle

In the late 19th century, Noyes Chapman, a postmaster in Canastota, New York,
invented the 15-puzzle8, which consisted of a 4 × 4 grid containing 15 numbered
blocks in which the 14-block and the 15-block were out of order. The objective
was to move the blocks one at a time into an adjacent hole in the grid so as to
eventually get all 15 blocks into their natural order. A picture of the 15-puzzle is
shown in Figure 3.6 along with the configuration after the 12-block is moved into
the hole below. The desired final configuration is shown in Figure 3.7.

The 15-puzzle became very popular in North America and Europe and is still
sold in game and puzzle shops today. Prizes were offered for its solution, but
it is doubtful that they were ever awarded, since it is impossible to get from the
configuration in Figure 3.6 to the configuration in Figure 3.7 by only moving one
block at a time into an adjacent hole. The proof of this fact is a little tricky so we
have left it for you to figure out on your own. Instead, we will prove that the
analogous task for the much easier 8-puzzle cannot be performed. Both proofs, of
course, make use of the Invariant Method.

8Actually, there is a dispute about who really invented the 15-puzzle. Sam Lloyd, a well-known
puzzle designer, claimed to be the inventor, but this claim has since been discounted.
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1 2 3 4
5 6 7 8
9 10 11 12

13 15 14
(a)

1 2 3 4
5 6 7 8
9 10 11
13 14 15 12

(b)

Figure 3.6: The 15-puzzle in its starting configuration (a) and after the 12-block is
moved into the hole below (b). I’ll fix the formatting later—dmj.

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15

Figure 3.7: The desired final configuration for the 15-puzzle. Can it be achieved
by only moving one block at a time into an adjacent hole? I’ll fix the formatting
later—dmj.
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A B C
D E F
H G

(a)

→

A B C
D E F
H G

(b)

→

A B C
D F
H E G

(c)

Figure 3.8: The 8-Puzzle in its initial configuration (a) and after one (b) and two (c)
possible moves. I’ll fix the formatting later—dmj.

3.4.4 The 8-Puzzle

In the 8-Puzzle, there are 8 lettered tiles (A–H) and a blank square arranged in a
3× 3 grid. Any lettered tile adjacent to the blank square can be slid into the blank.
For example, a sequence of two moves is illustrated in Figure 3.8.

In the initial configuration shown in Figure 3.8(a), the G and H tiles are out of
order. We can find a way of swapping G and H so that they are in the right order,
but then other letters may be out of order. Can you find a sequence of moves that
puts these two letters in correct order, but returns every other tile to its original
position? Some experimentation suggests that the answer is probably “no,” and
we will prove that is so by finding an invariant (i.e., a property of the puzzle that
is always maintained, no matter how you move the tiles around). If we can then
show that putting all the tiles in the correct order would violate the invariant, then
we can conclude that the puzzle cannot be solved.

Theorem 3.4.3. No sequence of legal moves transforms the configuration in Figure 3.8(a)
into the configuration in Figure 3.9.

A B C
D E F
G H

Figure 3.9: The desired final configuration of the 8-puzzle.

We’ll build up a sequence of observations, stated as lemmas. Once we achieve
a critical mass, we’ll assemble these observations into a complete proof of Theo-
rem 3.4.3.

Define a row move as a move in which a tile slides horizontally and a column
move as one in which the tile slides vertically. Assume that tiles are read top-
to-bottom and left-to-right like English text, that is, the natural order, defined as
follows:

1 2 3
4 5 6
7 8 9

So when we say that two tiles are “out of order”, we mean that the larger letter
precedes the smaller letter in this natural order.
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A B C
D F
H E G

−→
A B C
D F G
H E

Figure 3.10: An example of a column move in which the G-tile is moved into the
adjacent hole above In this case, G changes order with E and H .

Our difficulty is that one pair of tiles (the G and H) is out of order initially. An
immediate observation is that row moves alone are of little value in addressing
this problem:

Lemma 3.4.4. A row move does not change the order of the tiles.

Proof. A row move moves a tile from cell i to cell i+ 1 or vice versa. This tile does
not change its order with respect to any other tile. Since no other tile moves, there
is no change in the order of any of the other pairs of tiles. �

Let’s turn to column moves. This is the more interesting case, since here the or-
der can change. For example, the column move in Figure 3.10 changes the relative
order of the pairs (G,H) and (G,E).

Lemma 3.4.5. A column move changes the relative order of exactly two pairs of tiles.

Proof. Sliding a tile down moves it after the next two tiles in the order. Sliding a
tile up moves it before the previous two tiles in the order. Either way, the relative
order changes between the moved tile and each of the two it crosses. The relative
order between any other pair of tiles does not change. �

These observations suggest that there are limitations on how tiles can be swapped.
Some such limitation may lead to the invariant we need. In order to reason about
swaps more precisely, let’s define a term referring to a pair of items that are out of
order:

Definition 3.4.6. A pair of letters L1 and L2 is an inversion if L1 precedes L2 in the
alphabet, but L1 appears after L2 in the puzzle order.

For example, in the puzzle below, there are three inversions: (D,F ), (E,F ),
(G,E).

A B C
F D G
E H

There is exactly one inversion (G,H) in the start state:

A B C
D E F
H G
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There are no inversions in the end state:

A B C
D E F
G H

Let’s work out the effects of row and column moves in terms of inversions.

Lemma 3.4.7. During a move, the number of inversions can only increase by 2, decrease
by 2, or remain the same.

Proof. By Lemma 3.4.5, a row move does not change the order of the tiles; thus, in
particular, a row move does not change the order of inversions.

By Lemma 3.4.7, a column move changes the relative order of exactly 2 pairs of
tiles. There are three cases: If both pairs were originally in order, then the number
of inversions after the move goes up by 2. If both pairs were originally inverted,
then the number of inversions after the move goes down by 2. If one pair was
originally inverted, and the other was originally in order, then the number of in-
versions stays the same (since changing the former pair makes the number of in-
versions smaller by 1, and changing the latter pair makes the number of inversions
larger by 1). �

We are almost there. If the number of inversions only changes by 2, then what
about the parity? (The “parity” of a number refers to whether the number is even
or odd. For example, 7 and 5 have odd parity, and 18 and 0 have even parity.)

Since adding or subtracting 2 from a number does not change its parity, we
have the following corollary:

Corollary 3.4.8. Neither a row nor a column move ever changes the parity of the number
of inversions.

Now we can bundle up all these observations and state an invariant, that is,
a property of the puzzle that never changes, no matter how you slide the tiles
around.

Lemma 3.4.9. In every configuration reachable from the configuration shown in Fig-
ure 3.8(a), the parity of the number of inversions is odd.

Proof. We use induction. Let P (n) be the proposition that after n moves from the
above configuration, the parity of the number of inversions is odd.

Base case: After zero moves, exactly one pair of tiles is inverted (H and G),
which is an odd number. Therefore P (0) is true.

Inductive step: Now we must prove that P (n) implies P (n + 1) for all n ≥ 0.
So assume that P (n) is true; that is, after n moves the parity of the number of
inversions is odd. Consider any sequence of n + 1 moves m1, . . . , mn+1. By the
induction hypothesis P (n), we know that the parity after moves m1, . . . , mn is
odd. By Corollary 3.4.8, we know that the parity does not change during mn+1.
Therefore, the parity of the number of inversions after movies m1, . . . , mn+1 is
odd, so we have P (n+ 1) is true.

By the principle of induction, P (n) is true for all n ≥ 0. �
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The theorem we originally set out to prove is restated below With our invariant
in hand, the proof is simple.

Theorem. No sequence of legal moves transforms the board below on the left into the
board below on the right.

A B C
D E F
H G

A B C
D E F
G H

Proof. In the target configuration on the right, the total number of inversions is
zero, which is even. Therefore, by Lemma 3.4.9, the target configuration is un-
reachable. �

3.5 Problems

3.5.1 Problems

Practice Problems

Problem 3.6.
Find all possible (nonzero) amounts of postage that can be paid exactly using 3
and 5 cent stamps. Use induction to prove that your answer is correct.

Hint: Let S(n) mean that exactly n cents of postage can be paid using only 3
and 5 cent stamps. Prove that the following proposition is true as part of your
solution.

∀n. (n ≥ 8) IMPLIES S(n).

Class Problems

Problem 3.7.
Use induction to prove that

13 + 23 + · · ·+ n3 =
(
n(n+ 1)

2

)2

. (3.7)

for all n ≥ 1.
Remember to formally

1. Declare proof by induction.

2. Identify the induction hypothesis P (n).

3. Establish the base case.

4. Prove that P (n)⇒ P (n+ 1).

5. Conclude that P (n) holds for all n ≥ 1.
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as in the five part template.

Problem 3.8.
Prove by induction on n that

1 + r + r2 + · · ·+ rn =
rn+1 − 1
r − 1

(3.8)

for all n ∈ N and numbers r 6= 1.

Problem 3.9.
Prove by induction:

1 +
1
4

+
1
9

+ · · ·+ 1
n2

< 2− 1
n
, (3.9)

for all n > 1.

Problem 3.10. (a) Prove by induction that a 2n × 2n courtyard with a 1 × 1 statue
of Bill in a corner can be covered with L-shaped tiles. (Do not assume or reprove
the (stronger) result of Theorem 3.2.2 that Bill can be placed anywhere. The point
of this problem is to show a different induction hypothesis that works.)

(b) Use the result of part (a) to prove the original claim that there is a tiling with
Bill in the middle.

Problem 3.11.
Find the flaw in the following bogus proof that an = 1 for all nonnegative integers
n, whenever a is a nonzero real number.

Bogus proof. The proof is by induction on n, with hypothesis

P (n) ::= ∀k ≤ n. ak = 1,

where k is a nonnegative integer valued variable.
Base Case: P (0) is equivalent to a0 = 1, which is true by definition of a0. (By

convention, this holds even if a = 0.)
Inductive Step: By induction hypothesis, ak = 1 for all k ∈ N such that k ≤ n.

But then
an+1 =

an · an

an−1
=

1 · 1
1

= 1,

which implies that P (n + 1) holds. It follows by induction that P (n) holds for all
n ∈ N, and in particular, an = 1 holds for all n ∈ N.

�
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Problem 3.12.
We’ve proved in two different ways that

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

But now we’re going to prove a contradictory theorem!

False Theorem. For all n ≥ 0,

2 + 3 + 4 + · · ·+ n =
n(n+ 1)

2

Proof. We use induction. Let P (n) be the proposition that 2 + 3 + 4 + · · · + n =
n(n+ 1)/2.
Base case: P (0) is true, since both sides of the equation are equal to zero. (Recall
that a sum with no terms is zero.)
Inductive step: Now we must show that P (n) implies P (n + 1) for all n ≥ 0. So
suppose that P (n) is true; that is, 2 + 3 + 4 + · · · + n = n(n + 1)/2. Then we can
reason as follows:

2 + 3 + 4 + · · ·+ n+ (n+ 1) = [2 + 3 + 4 + · · ·+ n] + (n+ 1)

=
n(n+ 1)

2
+ (n+ 1)

=
(n+ 1)(n+ 2)

2

Above, we group some terms, use the assumption P (n), and then simplify. This
shows that P (n) implies P (n + 1). By the principle of induction, P (n) is true for
all n ∈ N. �

Where exactly is the error in this proof?

Problem 3.13.
Define the potential, p(S), of a stack of blocks, S, to be k(k − 1)/2 where k is the
number of blocks in S. Define the potential, p(A), of a set of stacks, A, to be the
sum of the potentials of the stacks in A.

Generalize Theorem 3.3.2 about scores in the stacking game to show that for
any set of stacks, A, if a sequence of moves starting with A leads to another set of
stacks,B, then p(A) ≥ p(B), and the score for this sequence of moves is p(A)−p(B).

Hint: Try induction on the number of moves to get from A to B.

Homework Problems

Problem 3.14.
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Claim 3.5.1. If a collection of positive integers (not necessarily distinct) has sum n ≥ 1,
then the collection has product at most 3n/3.

For example, the collection 2, 2, 3, 4, 4, 7 has the sum:

2 + 2 + 3 + 4 + 4 + 7 = 22

On the other hand, the product is:

2 · 2 · 3 · 4 · 4 · 7 = 1344
≤ 322/3

≈ 3154.2

(a) Use strong induction to prove that n ≤ 3n/3 for every integer n ≥ 0.

(b) Prove the claim using induction or strong induction. (You may find it easier to
use induction on the number of positive integers in the collection rather than induction
on the sum n.)

Problem 3.15.
For any binary string, α, let num (α) be the nonnegative integer it represents in
binary notation. For example, num (10) = 2, and num (0101) = 5.

An n+1-bit adder adds two n+1-bit binary numbers. More precisely, an n+1-bit
adder takes two length n+ 1 binary strings

αn ::= an . . . a1a0,

βn ::= bn . . . b1b0,

and a binary digit, c0, as inputs, and produces a length n+ 1 binary string

σn ::= sn . . . s1s0,

and a binary digit, cn+1, as outputs, and satisfies the specification:

num (αn) + num (βn) + c0 = 2n+1cn+1 + num (σn) . (3.10)

There is a straighforward way to implement an n + 1-bit adder as a digital
circuit: an n+ 1-bit ripple-carry circuit has 1 + 2(n+ 1) binary inputs

an, . . . , a1, a0, bn, . . . , b1, b0, c0,

and n+ 2 binary outputs,
cn+1, sn, . . . , s1, s0.

As in Problem 1.5, the ripple-carry circuit is specified by the following formulas:

si ::= ai XOR bi XOR ci (3.11)
ci+1 ::= (ai AND bi) OR (ai AND ci) OR (bi AND ci), . (3.12)

for 0 ≤ i ≤ n.
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(a) Verify that definitions (3.11) and (3.12) imply that

an + bn + cn = 2cn+1 + sn. (3.13)

for all n ∈ N.

(b) Prove by induction on n that an n+1-bit ripple-carry circuit really is an n+1-
bit adder, that is, its outputs satisfy (3.10).

Hint: You may assume that, by definition of binary representation of integers,

num (αn+1) = an+12n+1 + num (αn) . (3.14)

Problem 3.16.
The 6.042 mascot, Theory Hippotamus, made a startling discovery while playing
with his prized collection of unit squares over the weekend. Here is what hap-
pened.

First, Theory Hippotamus put his favorite unit square down on the floor as in
Figure 3.11 (a). He noted that the length of the periphery of the resulting shape
was 4, an even number. Next, he put a second unit square down next to the first
so that the two squares shared an edge as in Figure 3.11 (b). He noticed that the
length of the periphery of the resulting shape was now 6, which is also an even
number. (The periphery of each shape in the figure is indicated by a thicker line.)
Theory Hippotamus continued to place squares so that each new square shared
an edge with at least one previously-placed square and no squares overlapped.
Eventually, he arrived at the shape in Figure 3.11 (c). He realized that the length of
the periphery of this shape was 36, which is again an even number.

Our plucky porcine pal is perplexed by this peculiar pattern. Use induction on
the number of squares to prove that the length of the periphery is always even, no
matter how many squares Theory Hippotamus places or how he arranges them.

(a) (b) (c)

Figure 3.11: Some shapes that Theory Hippotamus created.
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Problem 3.17.
Find all possible (nonzero) amounts of postage that can be paid exactly using 3
and 7 cent stamps. Use induction to prove that your answer is correct.

Hint: Let S(n) mean that exactly n cents of postage can be paid using only 3
and 7 cent stamps. Prove that the following proposition is true as part of your
solution.

∀n. (n ≥ 12) IMPLIES S(n).

Problem 3.18.
A group of n ≥ 1 people can be divided into teams, each containing either 4 or 7
people. What are all the possible values of n? Use induction to prove that your
answer is correct.

Problem 3.19.
The following Lemma is true, but the proof given for it below is defective. Pin-
point exactly where the proof first makes an unjustified step and explain why it is
unjustified.

Lemma 3.5.2. For any prime p and positive integers n, x1, x2, . . . , xn, if p | x1x2 . . . xn,
then p | xi for some 1 ≤ i ≤ n.

False proof. Proof by strong induction on n. The induction hypothesis, P (n), is that
Lemma holds for n.

Base case n = 1: When n = 1, we have p | x1, therefore we can let i = 1 and
conclude p | xi.

Induction step: Now assuming the claim holds for all k ≤ n, we must prove it
for n+ 1.

So suppose p | x1x2 . . . xn+1. Let yn = xnxn+1, so x1x2 . . . xn+1 = x1x2 . . . xn−1yn.
Since the righthand side of this equality is a product of n terms, we have by induc-
tion that p divides one of them. If p | xi for some i < n, then we have the desired
i. Otherwise p | yn. But since yn is a product of the two terms xn, xn+1, we have
by strong induction that p divides one of them. So in this case p | xi for i = n or
i = n+ 1. �

EDITING NOTE:

Problem 3.20.
Use strong induction to prove the Well Ordering Principle. Hint: Prove that if a set
of nonnegative integers contains an integer, n, then it has a smallest element.

�
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