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Mathematical Proofs

This text is all about methods for constructing and understanding proofs. In fact,

we could have titled the book Proofs, Proofs, and More Proofs. We will begin in Part I

with a description of basic proof techniques. We then apply these techniques in

chapter 4 to establish some very important facts about numbers, facts that form

the underpinning of the world’s most widely used cryptosystem.

Simply put, a proof is a method of establishing truth. Like beauty, “truth”

sometimes depends on the eye of the beholder, however, and it should not be sur-

prising that what constitutes a proof differs among fields. For example, in the

judicial system, legal truth is decided by a jury based on the allowable evidence

presented at trial. In the business world, authoritative truth is specified by a trusted

person or organization, or maybe just your boss. In fields such as physics and

biology, scientific truth! is confirmed by experiment. In statistics, probable truth is

! Actually, only scientific falsehood can really be demonstrated by an experiment—when the experi-

ment fails to behave as predicted. But no amount of experiment can confirm that the next experiment

won't fail. For this reason, scientists rarely speak of truth, but rather of theories that accurately predict
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established by statistical analysis of sample data.

Philosophical proof involves careful exposition and persuasion typically based

on a series of small, plausible arguments. The best example begins with “Cogito

ergo sum,” a Latin sentence that translates as “I think, therefore I am.” It comes

from the beginning of a 17th century essay by the mathematician/philosopher,

René Descartes, and it is one of the most famous quotes in the world: do a web

search on the phrase and you will be flooded with hits.

Deducing your existence from the fact that you're thinking about your exis-

tence is a pretty cool and persuasive-sounding idea. However, with just a few

more lines of argument in this vein, Descartes goes on to conclude that there is an

infinitely beneficent God. Whether or not you believe in a beneficent God, you'll

probably agree that any very short proof of God’s existence is bound to be far-

fetched. So even in masterful hands, this approach is not reliable.

Mathematics has its own specific notion of “proof.”

Definition. A formal proof of a proposition is a chain of logical deductions leading to

past, and anticipated future, experiments.


http://www.btinternet.com/~glynhughes/squashed/descartes.htm
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the proposition from a base set of axioms.

The three key ideas in this definition are highlighted: proposition, logical de-

duction, and axiom. These three ideas are explained in the following chapters,

beginning with propositions in chapter 1. We will then provide lots of examples of

proofs and even some examples of “false proofs” (i.e., arguments that look like a

proof but that contain mis-steps, or deductions that aren’t so logical when exam-

ined closely).
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Chapter 1

Propositions

Definition. A proposition is a mathematical statement that is either true or false.

For example, both of the following statements are propositions. The first is true

and the second is false.
Proposition 1.0.1. 2+ 3 =5.
Proposition 1.0.2. 1+ 1 =3.

Being true or false doesn’t sound like much of a limitation, but it does exclude

39
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statements such as, “Wherefore art thou Romeo?” and “Give me an A!”.

Unfortunately it is not always easy to decide if a proposition is true or false, or

even what the proposition means. In part, this is because the English language is

riddled with ambiguities. For example, here are some statements that illustrate the

issue:

1. “You may have cake, or you may have ice cream.”

2. “If pigs can fly, then you can understand the Chebyshev bound.”

3. “If you can solve any problem we come up with, then you get an A for the

course.”

4. “Every American has a dream.”

What precisely do these sentences mean? Can you have both cake and ice cream

or must you choose just one dessert? If the second sentence is true, then is the

Chebyshev bound incomprehensible? If you can solve some problems we come

up with but not all, then do you get an A for the course? And can you still get an A

even if you can’t solve any of the problems? Does the last sentence imply that all



41

Americans have the same dream or might some of them have different dreams?

Some uncertainty is tolerable in normal conversation. But when we need to

formulate ideas precisely—as in mathematics and programming—the ambiguities

inherent in everyday language can be a real problem. We can’t hope to make an

exact argument if we’re not sure exactly what the statements mean. So before we

start into mathematics, we need to investigate the problem of how to talk about

mathematics.

To get around the ambiguity of English, mathematicians have devised a spe-

cial mini-language for talking about logical relationships. This language mostly

V/Ti

uses ordinary English words and phrases such as “or”, “implies”, and “for all”.

But mathematicians endow these words with definitions more precise than those

found in an ordinary dictionary. Without knowing these definitions, you might

sometimes get the gist of statements in this language, but you would regularly get

misled about what they really meant.

Surprisingly, in the midst of learning the language of mathematics, we’ll come
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across the most important open problem in computer science—a problem whose

solution could change the world.

1.1 Compound Propositions

In English, we can modify, combine, and relate propositions with words such as
“not”, “and”, “or”, “implies”, and “if-then”. For example, we can combine three

7

propositions into one like this:

If all humans are mortal and all Greeks are human, then all Greeks are mortal.

For the next while, we won’t be much concerned with the internals of propositions—
whether they involve mathematics or Greek mortality—but rather with how propo-
sitions are combined and related. So we’ll frequently use variables such as P and
@ in place of specific propositions such as “All humans are mortal” and “2 + 3 =
5”. The understanding is that these variables, like propositions, can take on only
the values T (true) and F (false). Such true/false variables are sometimes called

Boolean variables after their inventor, George—you guessed it—Boole.
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1.1.1 NOT, AND, OR

We can precisely define these special words using truth tables. For example, if P
denotes an arbitrary proposition, then the truth of the proposition “NOT(P)” is

defined by the following truth table:

P | NOT(P)
F
F

The first row of the table indicates that when proposition P is true, the proposition
“NOT(P)” is false. The second line indicates that when P is false, “NOT(P)” is true.
This is probably what you would expect.

In general, a truth table indicates the true/false value of a proposition for each
possible setting of the variables. For example, the truth table for the proposition

“P AND @Q” has four lines, since the two variables can be set in four different ways:

P Q| PANDQ

F F
F F
F F F

According to this table, the proposition “P AND ()" is true only when P and @) are

both true. This is probably the way you think about the word “and.”
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There is a subtlety in the truth table for “P OR Q”:

P Q| PORQ
F

F

F F F

The third row of this table says that “P OR Q" is true even if both P and Q) are true.

This isn’t always the intended meaning of “or” in everyday speech, but this is the

standard definition in mathematical writing. So if a mathematician says, “You may

have cake, or you may have ice cream,” he means that you could have both.

If you want to exclude the possibility of both having and eating, you should

use “exclusive-or” (XOR):

1.1.2 IMPLIES

The least intuitive connecting word is “implies.” Here is its truth table, with the

lines labeled so we can refer to them later.

P Q| PIMPLIES Q

(tt)

F F (tf)

F (ft)
F F (£f)
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Let’s experiment with this definition. For example, is the following proposition

true or false?

“If the Riemann Hypothesis is true, then 2? > 0 for every real number z.”

The Riemann Hypothesis is a famous unresolved conjecture in mathematics (i.e.,

no one knows if it is true or false). But that doesn’t prevent you from answering

the question! This proposition has the form P — (@ where the hypothesis, P, is

“the Riemann Hypothesis is true” and the conclusion, @, is “x2 > 0 for every real

number z”. Since the conclusion is definitely true, we’re on either line (tt) or line

(ft) of the truth table. Either way, the proposition as a while is true!

One of our original examples demonstrates an even stranger side of implica-

tions.

“If pigs can fly, then you can understand the Chebyshev bound.”

Don’t take this as an insult; we just need to figure out whether this proposition is

true or false. Curiously, the answer has nothing to do with whether or not you can

understand the Chebyshev bound. Pigs cannot fly, so we’re on either line (ft) or
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line (ff) of the truth table. In both cases, the proposition is true!

In contrast, here’s an example of a false implication:

“If the moon shines white, then the moon is made of white cheddar.”

Yes, the moon shines white. But, no, the moon is not made of white cheddar cheese.

So we're on line (tf) of the truth table, and the proposition is false.

The truth table for implications can be summarized in words as follows:

An implication is true exactly when the if-part is false or the then-part is true.

This sentence is worth remembering; a large fraction of all mathematical state-

ments are of the if-then form!

1.1.3 IFF

Mathematicians commonly join propositions in one additional way that doesn’t

arise in ordinary speech. The proposition “P if and only if Q" asserts that P and @
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are logically equivalent; that is, either both are true or both are false.

P Q|PIFFQ

F F
F F
F F

For example, the following if-and-only-if statement is true for every real number

22 —4>0 iff |x|>2

For some values of z, both inequalities are true. For other values of x, neither in-

equality is true . In every case, however, the proposition as a whole is true.

1.1.4 Notation

Mathematicians have devised symbols to represent words like “AND” and “NOT”.

The most commonly-used symbols are summarized in the table below.

English Cryptic Notation
NOT(P) —-P (alternatively, P)
P AND Q PAQ

PORQ PvQ

PIMPLIESQ P — Q
if P then Q P—Q
PIFFQ P «—— @ (alternatively, P iff Q)

For example, using this notation, “If P AND NOT(Q), then R” would be written:

(PANQ) — R



48 CHAPTER 1. PROPOSITIONS

This symbolic language is helpful for writing complicated logical expressions com-
pactly. But words such as “OR” and “IMPLIES” generally serve just as well as the
cryptic symbols V and —, and their meaning is easy to remember. We will use
them interchangeably and you can feel free to use whichever convention is easiest

for you.

1.1.5 Logically Equivalent Implications

Do these two sentences say the same thing?

If I am hungry, then I am grumpy:.

If I am not grumpy, then I am not hungry.

We can settle the issue by recasting both sentences in terms of propositional logic.!
Let P be the proposition “I am hungry”, and let @) be “I am grumpy”. The first

sentence says “P IMPLIES ()” and the second says “NOT(Q) IMPLIES NOT(P)”. We

I This sounds scary, but don’t worry, propositional logic is easy. [Illegible] compound propositions.
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can compare these two statements in a truth table:

P | Q| PIMPLIES Q | NOT(Q) IMPLIES NOT(P)

F F F
F
F | F

Sure enough, the columns of truth values under these two statements are the same,
which precisely means they are equivalent. In general, “NOT(Q) IMPLIES NOT(P)”
is called the contrapositive of the implication “P IMPLIES ().” And, as we’ve just
shown, the two are just different ways of saying the same thing.

In contrast, the converse of “P IMPLIES QQ” is the statement “Q) IMPLIES P”. In

terms of our example, the converse is:

If I am grumpy, then I am hungry.

This sounds like a rather different contention, and a truth table confirms this sus-

picion:
P | Q| PIMPLIES Q | Q IMPLIES P

F F
F F
F|F

Thus, an implication is logically equivalent to its contrapositive but is not equiva-

lent to its converse.
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One final relationship: an implication and its converse together are equivalent

to an iff statement, specifically, to these two statements together. For example,

If I am grumpy, THEN I am hungry, AND

if  am hungry, THEN I am grumpy.

are equivalent to the single statement:

I am grumpy IFF I am hungry.

Once again, we can verify this with a truth table:

P | Q| (PIMPLIES Q) (QIMPLIES P) | (P IMPLIES Q) AND (Q IMPLIES P) | Q IFF P

F F F F
F F F F
F|F
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1.1.6 Problems

Class Problems

Homework Problems

1.2 Propositional Logic in Computer Programs

Propositions and logical connectives arise all the time in computer programs. For

example, consider the following snippet, which could be either C, C++, or Java:

if (x>0 || (x <=0 && y > 100) )

(further instructions)

The symbol | | denotes “OR”, and the symbol && denotes “AND”. The further in-
structions are carried out only if the proposition following the word if£ is true. On
closer inspection, this big expression is built from two simpler propositions. Let A
be the proposition that x > 0, and let B be the proposition that y > 100. Then

we can rewrite the condition “A OR (NOT(A) AND B)”. A truth table reveals that
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this complicated expression is logically equivalent to “A OR B”.

A B | AOR(NOT(A) AND B) | AORB

F
F
F F F F

This means that we can simplify the code snippet without changing the program’s

behavior:

if (x>0 [ y > 100)

(further instructions)

Rewriting a logical expression involving many variables in the simplest form

is both difficult and important. Simplifying expressions in software can increase

the speed of your program. Chip designers face a similar challenge—instead of

minimizing && and | | symbols in a program, their job is to minimize the number

of analogous physical devices on a chip. The payoff is potentially enormous: a

chip with fewer devices is smaller, consumes less power, has a lower defect rate,

and is cheaper to manufacture.
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1.2.1 Problems

Class Problems

Homework Problems

1.2.2 Problems

Class Problems

1.3 Predicates and Quantifiers

1.3.1 Propositions with infinitely many cases

Most of the examples of propositions that we have considered thus far have been
nice in the sense that it has been relatively easy to determine if they are true or
false. At worse, there were only a few cases to check in a truth table. Unfortunately,
not all propositions are so easy to check. That is because some propositions may
involve a large or infinite number of possible cases. For example, consider the

following proposition involving prime numbers. (A prime is an integer greater
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than 1 that is divisible only by itself and 1. For example, 2, 3, 5, 7, and 11 are

primes, but 4, 6, and 9 are not. A number greater than 1 that is not prime is said to

be composite.)

Proposition 1.3.1. For every nonnegative integer, n, the value of n* + n + 41 is prime.

It is not immediately clear whether this proposition is true or false. In such

circumstances, it is tempting to try to determine its veracity by computing the

value of?

p(n) ==n?+n +41. (1.1)

for several values ofn and then checking to see if they are prime. If any of the

computed values is not prime, then we will know that the proposition is false. If

all the computed values are indeed prime, then we might be tempted to conclude

that the proposition is true.

We begin with p(0) = 41 which is prime. p(1) = 43 is also prime. So is p(2) =

47, p(3) = 53,..., and p(20) = 461. Hmmm... It is starting to look like p(n) is

2The symbol ::= means “equal by definition.” It's always ok to simply write “=" instead of ::=, but

reminding the reader that an equality holds by definition can be helpful.
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a prime for every nonnegative integer n. In fact we can keep checking through

n = 39 and confirm that p(39) = 1601 is prime. The proposition certainly does

seem to be true.

But p(40) = 402 + 40 + 41 = 41 - 41, which is not prime. So it’s not true that the

expression is prime for all nonnegative integers, and thus the proposition is false!

EDITING NOTE: In fact, it’s not hard to show that no polynomial with integer

coefficients can map all natural numbers into prime numbers, unless it’s a constant.

Although surprising, this example is not as contrived or rare as you might sus-

pect. As we will soon see, there are many examples of propositions that seem to

be true when you check a few cases, but which turn out to be false. The key to

remember is that you can’t check a claim about an infinite set by checking a finite

set of its elements, no matter how large the finite set.

Propositions that involve all numbers are so common that there is a special
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notation for them. For example, Proposition 1.3.1 can also be written as

Vn € N. p(n) is prime. (1.2)

Here the symbol V is read “for all”. The symbol N stands for the set of nonnegative

integers, namely, 0, 1, 2, 3, ... (ask your instructor for the complete list). The symbol

“€” is read as “is a member of,” or “belongs to,” or simply as “is in”. The period

after the N is just a separator between phrases.

Here is another example of a proposition that, at first, seems to be true but

which turns out to be false.

Proposition 1.3.2. a* + b+ ¢* = d* has no solution when a, b, ¢, d are positive integers.

Euler (pronounced “oiler”) conjectured proposition to be true this in 1769. Ul-

timately the proposition was proven false in 1987 by Noam Elkies. The solution he

found was a = 95800,b = 217519, ¢ = 414560, d = 422481. No wonder it took 218

years to show the proposition is false!

In logical notation, Proposition 1.3.2 could be written,

VYa € ZTVb € Zt Ve € ZPVd € ZF. a* 4+ bt 4 ¢* £ d*.
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Here, Z7 is a symbol for the positive integers. Strings of V's are usually abbreviated

for easier reading, as follows:

Ya,b,c,d € Zt. a* +b* + * # d*.

The following proposition is even nastier.

Proposition 1.3.3. 313(x3 + y3) = 23 has no solution when x,y,z € Z*.

This proposition is also false, but the smallest counterexample values for z, y,

and z have more than 1000 digits! Even the world’s largest computers would not

be able to get that far with brute force. Of course, you may be wondering why

anyone would care whether or not there is a solution to 313(z3 + y3) = 23 where

x, y, and z are positive integers. It turns out that finding solutions to such equa-

tions is important in the field of elliptic curves, which turns out to be important

to the study of factoring large integers, which turns out (as we will see in Chap-

ter 4) to be important in cracking commonly-used cryptosystems, which is why

mathematicians went to the effort to find the solution with thousands of digits.

[Illegible] that have infinitely many cases to check turn out to be false. The
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following proposition (known as the “Four-Color Theorem”) turns out to be true.

Proposition 1.3.4. Every map can be colored with 4 colors so that adjacent® regions have

different colors.

The proof of this proposition is difficult and took over a century to perfect.

Alon the way, many incorrect proofs were proposed, including one that stood for

10 years in the late 19th century before the mistake was found. An extremely labo-

rious proof was finally found in 1976 by mathematicians Appel and Haken, who

used a complex computer program to categorize the four-colorable maps; the pro-

gram left a few thousand maps uncategorized, and these were checked by hand

by Haken and his assistants—including his 15-year-old daughter. There was a lot

of debate about whether this was a legitimate proof: the proof was too big to be

checked without a computer, and no one could guarantee that the computer cal-

culated correctly, nor did anyone have the energy to recheck the four-colorings of

the thousands of maps that were done by hand. Within the past decade, a mostly

3Two regions are adjacent only when they share a boundary segment of positive length. They are

not considered to be adjacent if their boundaries meet only at a few points.
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intelligible proof of the Four-Color Theorem was found, though a computer is still

needed to check the colorability of several hundred special maps.*

In some cases, we do not know whether or not a proposition is true. For exam-

ple, the following simple proposition (known as Goldbach’s Conjecture) has been

heavily studied since 1742 but we still do not know if it is true. Of course, it has

been checked by computer for many values of n, but as we have seen, that is not

sufficient to conclude that it is true.

Proposition 1.3.5 (Goldbach). Every even integer greater than 2 is the sum of two

primes.

While the preceding propositions are important in mathematics, computer sci-

entists are often interested in propositions concerning the “correctness” of pro-

grams and systems, to determine whether a program or system does what it’s

4See http://www.math.gatech.edu/ thomas/FC/fourcolor.html

The story of the Four-Color Proof is told in a well-reviewed popular (non-technical) book: “Four

Colors Suffice. How the Map Problem was Solved.” Robin Wilson. Princeton Univ. Press, 2003, 276pp.

ISBN 0-691-11533-8.


http://www.math.gatech.edu/~thomas/FC/fourcolor.html
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supposed to. Programs are notoriously buggy, and there’s a growing community

of researchers and practitioners trying to find ways to prove program correctness.

These efforts have been successful enough in the case of CPU chips that they are

now routinely used by leading chip manufacturers to prove chip correctness and

avoid mistakes like the notorious Intel division bug in the 1990’s.

EDITING NOTE: ref needed |

Developing mathematical methods to verify programs and systems remains an

active research area. We’ll consider some of these methods later in the text.

1.3.2 Predicates

A predicate is a proposition whose truth depends on the value of one or more vari-

ables. Most of the propositions above were defined in terms of predicates. For

example,

“n is a perfect square”
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is a predicate whose truth depends on the value of n. The predicate is true for

n = 4 since four is a perfect square, but false for n = 5 since five is not a perfect

square.

Like other propositions, predicates are often named with a letter. Furthermore,

a function-like notation is used to denote a predicate supplied with specific vari-

able values. For example, we might name our earlier predicate P:

P(n) ::=“nis a perfect square”

Now P(4) is true, and P(5) is false.

This notation for predicates is confusingly similar to ordinary function nota-

tion. If P is a predicate, then P(n) is either true or false, depending on the value

of n. On the other hand, if p is an ordinary function, like n? + n, then p(n) is a

numerical quantity. Don’t confuse these two!
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1.3.3 Quantifiers

There are a couple of assertions commonly made about a predicate: that it is sorme-

times true and that it is always true. For example, the predicate

”372 2 0//

is always true when z is a real number. On the other hand, the predicate

”5,1:2 _ 7 — OII

is only sometimes true; specifically, when z = +./7/5.

There are several ways to express the notions of “always true” and “sometimes
true” in English. The table below gives some general formats on the left and spe-
cific examples using those formats on the right. You can expect to see such phrases

hundreds of times in mathematical writing!

Always True
For all n, P(n) is true. Forallz € R, z2 > 0.
P(n) is true for every n. z? > 0 for every z € R.

Sometimes True

There exists an n such that P(n) is true. There exists an = € R such that 522 — 7 = 0.
P(n) is true for some n. 522 — 7 =0 for some z € R.
P(n) is true for at least one n. 522 — 7 = 0 for at least one = € R.
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All these sentences quantify how often the predicate is true. Specifically, an

assertion that a predicate is always true, is called a universally quantified statement.

An assertion that a predicate is sometimes true, is called an existentially quantified

statement.

Sometimes English sentences are unclear about quantification:

“If you can solve any problem we come up with, then you get an A for the

course.”

The phrase “you can solve any problem we can come up with” could reasonably

be interpreted as either a universal or existential statement. It might mean:

“You can solve every problem we come up with,”

or maybe

“You can solve at least one problem we come up with.”

In the preceding example, the quantified phrase appears inside a larger if-then

statement. This is quite normal; quantified statements are themselves propositions

and can be combined with AND, OR, IMPLIES, etc., just like any other proposition.
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1.3.4 Notation

There are symbols to represent universal and existential quantification, just as

there are symbols for “AND” (A), “IMPLIES” (—), and so forth. In particular, to

say that a predicate, P(x), is true for all values of = in some set, D, we write:

Vz € D. P(x) (1.3)

The universal quantifier symbol V is read “for all,” so this whole expression (1.3) is

read “For all z in D, P(x) is true.” Remember that upside-down “A” stands for

“ All. ”

To say that a predicate P(z) is true for at least one value of z in D, we write:

3z € D. P(x) (1.4)

The existential quantifier symbol 3, is read “there exists.” So expression (1.4) is read,

“There exists an z in D such that P(z) is true.” Remember that backward “E”

stands for “Exists.”

The symbols V and 3 are always followed by a variable—typically with an in-

dication of the set the variable ranges over—and then a predicate, as in the two
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examples above.

As an example, let Probs be the set of problems we come up with, Solves(x) be

the predicate “You can solve problem z”, and G be the proposition, “You get an A

for the course.” Then the two different interpretations of

“If you can solve any problem we come up with, then you get an A for

the course.”

can be written as follows:

(Vx € Probs. Solves(x)) IMPLIES G,

or maybe

(3« € Probs. Solves(z)) IMPLIES G.

1.3.5 Mixing Quantifiers

Many mathematical statements involve several quantifiers. For example, Gold-

bach’s Conjecture states:

“Every even integer greater than 2 is the sum of two primes.”
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Let’s write this more verbosely to make the use of quantification clearer:

For every even integer n greater than 2, there exist primes p and g such

thatn =p+q.

Let Evens be the set of even integers greater than 2, and let Primes be the set of

primes. Then we can write Goldbach’s Conjecture in logic notation as follows:

Vn € Evens dp € Primes 3¢ € Primes. n =p + q.
—_———

for every even there exist primes
integer n > 2 p and g such that

The proposition can also be written more simply as

Vn € Evens dp, q € Primes. p + ¢ = n.

1.3.6 Order of Quantifiers

Swapping the order of different kinds of quantifiers (existential or universal) usu-

ally changes the meaning of a proposition. For example, let’s return to one of our

initial, confusing statements:

“Every American has a dream.”
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This sentence is ambiguous because the order of quantifiers is unclear. Let A be

the set of Americans, let D be the set of dreams, and define the predicate H(a, d) to

be “American ¢ has dream d.” Now the sentence could mean that there is a single

dream that every American shares:

3d € DVa € A. H(a,d)

For example, it might be that every American shares the dream of owning their

own home.

Or it could mean that every American has a personal dream:

VYa € A3d e D. H(a,d)

For example, some Americans may dream of a peaceful retirement, while others

dream of continuing practicing their profession as long as they live, and still others

may dream of being so rich they needn’t think at all about work.



68 CHAPTER 1. PROPOSITIONS

Swapping quantifiers in Goldbach’s Conjecture creates a patently false state-

ment; namely that every even number > 2 is the sum of the same two primes:

dp,q € Primes Vn € Evens. n =p +gq.
—_—

there exist primes  for every even
p and g such that integer n > 2

1.3.7 Variables Over One Domain

When all the variables in a formula are understood to take values from the same
nonempty set, D, it’s conventional to omit mention of D. For example, instead of
Ve € D Jy € D. Q(x,y) we’'d write VzIy. Q(x,y). The unnamed nonempty set
that = and y range over is called the domain of discourse, or just plain domain, of the
formula.

It’s easy to arrange for all the variables to range over one domain. For exam-
ple, Goldbach’s Conjecture could be expressed with all variables ranging over the

domain N as

Vn. (n € Evens) IMPLIES (3p3q. p € Primes AND ¢ € Primes ANDn = p + q).
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1.3.8 Negating Quantifiers

There is a simple relationship between the two kinds of quantifiers. The following

two sentences mean the same thing:

It is not the case that everyone likes to snowboard.

There exists someone who does not like to snowboard.

In terms of logic notation, this follows from a general property of predicate formu-

las:

NOT (Vz. P(x)) 1isequivalentto 3z. NOT(P(z)).

Similarly, these sentences mean the same thing:

There does not exist anyone who likes skiing over magma.

Everyone dislikes skiing over magma.

We can express the equivalence in logic notation this way:

NOT (Jz. P(x)) IFF Va. NOT(P(z)). (1.5)
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The general principle is that moving a “not” across a quantifier changes the kind of

quantifier.

1.4 Validity

A propositional formula is called valid when it evaluates to T' no matter what truth
values are assigned to the individual propositional variables. For example, the
propositional version of the Distributive Law is that P AND (Q OR R) is equivalent

to (P AND @) OR (P AND R). This is the same as saying that

[P AND (Q OR R)] IFF [(P AND Q) OR (P AND R)]

is valid.

The same idea extends to predicate formulas, but to be valid, a formula now
must evaluate to true no matter what values its variables may take over any un-
specified domain, and no matter what interpretation a predicate variable may be
given. For example, we already observed that the rule for negating a quantifier is

captured by the valid assertion (1.5).
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Another useful example of a valid assertion is

JxVy. P(x,y) IMPLIES Vy3z. P(x,y). (1.6)

Here’s an explanation why this is valid:

Let D be the domain for the variables and P, be some binary predicate®

on D. We need to show that if

Jz € DVy € D. Py(z,y) 1.7)

holds under this interpretation, then so does

Yy € D 3x € D. Py(z,vy). (1.8)

So suppose (1.7) is true. Then by definition of 3, this means that some

element dy € D has the property that

\V/y e D. Po(do,y).

By definition of V, this means that

Py(do, d)

5That is, a predicate that depends on two variables.
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is true for all d € D. So given any d € D, there is an element in D,

namely, dy, such that Py(dp,d) is true. But that’s exactly what (1.8)

means, so we've proved that (1.8) holds under this interpretation, as

required.

We hope this is helpful as an explanation, although purists would not really

want to call it a “proof.” The problem is that with something as basic as (1.6), it’s

hard to see what more elementary axioms are ok to use in proving it. What the

explanation above did was translate the logical formula (1.6) into English and then

appeal to the meaning, in English, of “for all” and “there exists” as justification.

In contrast to (1.6), the formula

Vy3z. P(x,y) IMPLIES JzVy. P(x,y). (1.9)

is not valid. We can prove this by describing an interpretation where the hypothe-

sis, Vy3x. P(x,y), is true but the conclusion, 3zVy. P(x,y), is not true. For exam-

ple, let the domain be the integers and P(z,y) mean « > y. Then the hypothesis

would be true because, given a value, n, for y we could, for example, choose the
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value of = to be n+ 1. But under this interpretation the conclusion asserts that there
is an integer that is bigger than all integers, which is certainly false. An interpreta-

tion like this which falsifies an assertion is called a counter model to the assertion.

1.5 Satisfiability

A proposition is satisfiable if some setting of the variables makes the proposition
true. For example, P AND Q) is satisfiable because the expression is true if P is true
or @ is false. On the other hand, P AND P is not satisfiable because the expression
as a whole is false for both settings of P. But determining whether or not a more

complicated proposition is satisfiable is not so easy. How about this one?

(P ORQ OR R) AND (P OR Q) AND (P OR R) AND (R OR Q)

The general problem of deciding whether a proposition is satisfiable is called
SAT. One approach to SAT is to construct a truth table and check whether or not
a T ever appears. But this approach is not very efficient; a proposition with n

variables has a truth table with 2" lines, so the effort required to decide about a
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proposition grows exponentially with the number of variables. For a proposition

with just 30 variables, that’s already over a billion lines to check!

Is there a more efficient solution to SAT? In particular, is there some, presum-

ably very ingenious, procedure that determines in a number of steps that grows

polynomially—like n? or n'*—instead of exponentially, whether any given propo-

sition is satisfiable or not? No one knows. And an awful lot hangs on the answer.

An efficient solution to SAT would immediately imply efficient solutions to many,

many other important problems involving packing, scheduling, routing, and cir-

cuit verification, among other things. This would be wonderful, but there would

also be worldwide chaos. Decrypting coded messages would also become an easy

task (for most codes). Online financial transactions would be insecure and secret

communications could be read by everyone.

Recently there has been exciting progress on sat-solvers for practical applica-

tions like digital circuit verification. These programs find satisfying assignments

with amazing efficiency even for formulas with millions of variables. Unfortu-
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nately, it’s hard to predict which kind of formulas are amenable to sat-solver meth-

ods, and for formulas that are NOT satisfiable, sat-solvers generally take exponen-

tial time to verify that.

So no one has a good idea how to solve SAT in polynomial time, or how to

prove that it can’t be done—researchers are completely stuck. The problem of de-

termining whether or not SAT has a polynomial time solution is known as the “P

vs. NP” problem. It is the outstanding unanswered question in theoretical com-

puter science. It is also one of the seven Millenium Problems: the Clay Institute

will award you $1,000,000 if you solve the P vs. NP problem.

1.6 Problems

1.6.1 Problems

Class Problems

Homework Problems


http://www.claymath.org/millennium/
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Chapter 2

Patterns of Proof

2.1 The Axiomatic Method

The standard procedure for establishing truth in mathematics was invented by Eu-
clid, a mathematician working in Alexandria, Egypt around 300 BC. His idea was
to begin with five assumptions about geometry, which seemed undeniable based
on direct experience. For example, one of the assumptions was “There is a straight

line segment between every pair of points.” Propositions like these that are simply

77
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accepted as true are called axioms.

Starting from these axioms, Euclid established the truth of many additional

propositions by providing “proofs”. A proof is a sequence of logical deductions

from axioms and previously-proved statements that concludes with the proposi-

tion in question. You probably wrote many proofs in high school geometry class,

and you'll see a lot more in this course.

There are several common terms for a proposition that has been proved. The

different terms hint at the role of the proposition within a larger body of work.

e Important propositions are called theorems.

® A lemma is a preliminary proposition useful for proving later propositions.

* A corollary is a proposition that follows in just a few logical steps from a

lemma or a theorem.

The definitions are not precise. In fact, sometimes a good lemma turns out to be

far more important than the theorem it was originally used to prove.

Euclid’s axiom-and-proof approach, now called the axiomatic method, is the
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foundation for mathematics today. In fact, just a handful of axioms, collectively

called Zermelo-Frankel Set Theory with Choice (ZFC), together with a few logical

deduction rules, appear to be sufficient to derive essentially all of mathematics.

Our Axioms

The ZFC axioms are important in studying and justifying the foundations of math-

ematics, but for practical purposes, they are much too primitive. Proving theorems

in ZFC is a little like writing programs in byte code instead of a full-fledged pro-

gramming language—by one reckoning, a formal proof in ZFC that 2 + 2 = 4

requires more than 20,000 steps! So instead of starting with ZFC, we’re going to

take a huge set of axioms as our foundation: we’ll accept all familiar facts from high

school math!

This will give us a quick launch, but you may find this imprecise specification

of the axioms troubling at times. For example, in the midst of a proof, you may

find yourself wondering, “Must I prove this little fact or can I take it as an axiom?”

Feel free to ask for guidance, but really there is no absolute answer. Just be up
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front about what you're assuming, and don’t try to evade homework and exam

problems by declaring everything an axiom!

Logical Deductions

Logical deductions or inference rules are used to prove new propositions using pre-

viously proved ones.

A fundamental inference rule is modus ponens. This rule says that a proof of P

together with a proof that P IMPLIES () is a proof of ).

Inference rules are sometimes written in a funny notation. For example, modus

ponens is written:

Rule.

P, PIMPLIES @

Q

When the statements above the line, called the antecedents, are proved, then we

can consider the statement below the line, called the conclusion or consequent, to

also be proved.
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A key requirement of an inference rule is that it must be sound: any assignment

of truth values that makes all the antecedents true must also make the consequent

true. So if we start off with true axioms and apply sound inference rules, every-

thing we prove will also be true.

You can see why modus ponens is a sound inference rule by checking the truth

table of P IMPLIES (). There is only one case where P and P IMPLIES () are both

true, and in that case ( is also true.

P Q‘P—»Q
F F
F

F F
There are many other natural, sound inference rules, for example:

Rule.

PIMPLIES ), ) IMPLIES R

P IMPLIES R

EDITING NOTE:



82 CHAPTER 2. PATTERNS OF PROOF

Rule.
NOT(P) IMPLIES (), NOT(Q)
])
[ |
Rule.
NOT(P) IMPLIES NOT(Q)
Q IMPLIES P
On the other hand,
Rule.

NOT(P) IMPLIES NOT(Q)

P IMPLIES Q

is not sound: if P is assigned T and @ is assigned F, then the antecedent is true

and the consequent is not.

Note that a propositional inference rule is sound precisely when the conjunc-

tion (AND) of all its antecedents implies its consequent.

As with axioms, we will not be too formal about the set of legal inference rules.

Each step in a proof should be clear and “logical”; in particular, you should state
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what previously proved facts are used to derive each new conclusion.

2.2 Proof Templates

In principle, a proof can be any sequence of logical deductions from axioms and
previously proved statements that concludes with the proposition in question.
This freedom in constructing a proof can seem overwhelming at first. How do
you even start a proof?

Here’s the good news: many proofs follow one of a handful of standard tem-
plates. Each proof has it own details, of course, but these templates at least provide
you with an outline to fill in. In the remainder of this chapter, we’ll through sev-
eral of these standard patterns, pointing out the basic idea and common pitfalls
and giving some examples. Many of these templates fit together; one may give
you a top-level outline while others help you at the next level of detail. And we’ll
show you other, more sophisticated proof techniques in Chapter 3.

The recipes that follow are very specific at times, telling you exactly which



84 CHAPTER 2. PATTERNS OF PROOF

words to write down on your piece of paper. You're certainly free to say things

your own way instead; we're just giving you something you could say so that

you're never at a complete loss.

2.2.1 Proof by Cases

Breaking a complicated proof into cases and proving each case separately is a use-

ful and common proof strategy. In fact, we have already implicitly used this strat-

egy when we used truth tables to show that certain propositions were true or valid.

For example, in section 1.1.5, we showed that an implication P — (@ is equivalent

to its contrapositive () — P by considering all 4 possible assignments of T or F

to P and Q. In each of the four cases, we showed that P — (@ was true if and

only if () — P was true. (For example, if P = T'and @ = F, then both P — @

and —() — P are false, thereby establishing that (P — Q) «— (-Q — P)is

true in for this case.) Hence we could conclude that P — () was true if and only

if =) — P are equivalent.

Proof by cases works in much more general environments than propositions
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involving Boolean variables. In what follows, we will use this approach to prove a

simple fact about acquaintances. As background, we will assume that for any pair

of people, either they have met or not. If every pair of people in a group has met,

we’ll call the group a club. If every pair of people in a group has not met, we'll call

it a group of strangers.

Theorem. Every collection of 6 people includes a club of 3 people or a group of 3 strangers.

Proof. The proof is by case analysis!. Let 2 denote one of the six people. There are

two cases:

1. Among the other 5 people besides z, at least 3 have met .

2. Among the other 5 people, at least 3 have not met «.

Now we have to be sure that at least one of these two cases must hold,? but

that’s easy: we’ve split the 5 people into two groups, those who have shaken hands

Describing your approach at the outset helps orient the reader. Try to remember to always do this.

2Part of a case analysis argument is showing that you've covered all the cases. Often this is obvious,

because the two cases are of the form “P” and “not P”. However, the situation above is not stated quite

so simply.
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with 2 and those who have not, so one of the groups must have at least half the

people.

Case 1: Suppose that at least 3 people have met .

This case splits into two subcases:

Case 1.1: Among the people who have met x, none have met each other.

Then the people who have met « are a group of at least 3 strangers. So

the Theorem holds in this subcase.

Case 1.2: Among the people who have met z, some pair have met each

other. Then that pair, together with z, form a club of 3 people. So the

Theorem holds in this subcase.

This implies that the Theorem holds in Case 1.

Case 2: Suppose that at least 3 people have not met x.

This case also splits into two subcases:

Case 2.1: Among the people who have not met x, every pair has met

each other. Then the people who have not met « are a club of at least 3
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people. So the Theorem holds in this subcase.

Case 2.2: Among the people who have not met z, some pair have not

met each other. Then that pair, together with x, form a group of at least

3 strangers. So the Theorem holds in this subcase.

This implies that the Theorem also holds in Case 2, and therefore holds in all cases.

2.2.2 Proving an Implication

Propositions of the form “If P, then Q)" are called implications. This implication is

often rephrased as “P IMPLIES Q" or “P — Q".

Here are some examples of implications:

* (Quadratic Formula) If az? + bz + ¢ = 0 and a # 0, then

. —b 4+ Vb% — dac
- 2a '

¢ (Goldbach’s Conjecture) If n is an even integer greater than 2, then n is a sum

of two primes.
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o If0<z<2 then —23+4x+1>0.

There are a couple of standard methods for proving an implication.

Method #1: Assume P is true

This method is really an example of proof by cases in disguise. In particular, when

proving P IMPLIES (), there are two cases to consider: P is true and P is false. The

case when P is false is easy since, by definition, T'IMPLIES () is true no matter what

@ is. This case is so easy that we usually just forget about it and start right off by

assuming that P is true when proving an implication, since this is the only case

that is interesting. Hence, in order to prove that P IMPLIES Q:

1. Write, “Assume P.”

2. Show that () logically follows.

For example, we will use this method to prove

Theorem 2.2.1. If0 < z < 2, then —x® + 4z +1 > 0.
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Before we write a proof of this theorem, we have to do some scratchwork to

figure out why it is true.

The inequality certainly holds for = 0; then the left side is equal to 1 and

1 > 0. As x grows, the 4z term (which is positive) initially seems to have greater

magnitude than —z® (which is negative). For example, when z = 1, we have

4z = 4, but —z3 = —1. In fact, it looks like —z3 doesn’t begin to dominate 4z until

z > 2. So it seems the —z® + 4z part should be nonnegative for all z between 0 and

2, which would imply that —z® + 4z + 1 is positive.

So far, so good. But we still have to replace all those “seems like” phrases with

solid, logical arguments. We can get a better handle on the critical —z* + 4z part

by factoring it, which is not too hard:

—2® 4 =22 - )2+ 1)

Aha! For z between 0 and 2, all of the terms on the right side are nonnegative. And

a product of nonnegative terms is also nonnegative. Let’s organize this blizzard of

observations into a clean proof.
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Proof. Assume 0 < z < 2. Then z, 2 — z, and 2 + « are all nonnegative. Therefore,

the product of these terms is also nonnegative. Adding 1 to this product gives a

positive number, so:

r(2-x)24+x)+1>0

Multiplying out on the left side proves that

2} 44 +1>0

as claimed. [ |

There are a couple points here that apply to all proofs:

* You'll often need to do some scratchwork while you're trying to figure out

the logical steps of a proof. Your scratchwork can be as disorganized as you

like—full of dead-ends, strange diagrams, obscene words, whatever. But

keep your scratchwork separate from your final proof, which should be clear

and concise.

® Proofs typically begin with the word “Proof” and end with some sort of



2.2. PROOF TEMPLATES 91

doohickey like [ or B or “q.e.d”. The only purpose for these conventions

is to clarify where proofs begin and end.

Pitfall

For the purpose of proving an implication P IMPLIES @, it's OK, and typical, to

begin by assuming P. But when the proof is over, it's no longer OK to assume that

P holds! For example, Theorem 2.2.1 has the form “if P, then Q” with P being

“0 <z < 2” and Q being “—z® + 4z + 1 > 0,” and its proof began by assuming

that 0 < 2 < 2. But of course this assumption does not always hold. Indeed, if you

were going to prove another result using the variable z, it could be disastrous to

have a step where you assume that 0 < x < 2 just because you assumed it as part

of the proof of Theorem 2.2.1.
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Method #2: Prove the Contrapositive

We have already seen that an implication “P IMPLIES Q" is logically equivalent to

its contrapositive

NOT(Q®) IMPLIES NOT(P).

Proving one is as good as proving the other, and proving the contrapositive is

sometimes easier than proving the original statement. Hence, you can proceed as

follows:

1. Write, “We prove the contrapositive:” and then state the contrapositive.

2. Proceed as in Method #1.

For example, we can use this approach to prove

Theorem 2.2.2. If r is irrational, then /r is also irrational.

Recall that rational numbers are equal to a ratio of integers and irrational num-

bers are not. So we must show that if r is not a ratio of integers, then +/r is also not

a ratio of integers. That’s pretty convoluted! We can eliminate both n0t’s and make
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the proof straightforward by considering the contrapositive instead.

Proof. We prove the contrapositive: if /r is rational, then r is rational.

Assume that /r is rational. Then there exist integers a and b such that:

s
Squaring both sides gives:
a2
TR
Since a? and b? are integers, r is also rational. |

2.2.3 Proving an “If and Only If”

Many mathematical theorems assert that two statements are logically equivalent;
that is, one holds if and only if the other does. Here is an example that has been

known for several thousand years:

Two triangles have the same side lengths if and only if two side lengths

and the angle between those sides are the same in each triangle.

The phrase “if and only if” comes up so often that it is often abbreviated “iff”.
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Method #1: Prove Each Statement Implies the Other

The statement “P IFF Q7 is equivalent to the two statements “P IMPLIES )” and

“(@Q) IMPLIES P”. So you can prove an “iff” by proving two implications:

1. Write, “We prove P implies () and vice-versa.”

2. Write, “First, we show P implies ().” Do this by one of the methods in Sec-

tion 2.2.2.

3. Write, “Now, we show () implies P.” Again, do this by one of the methods

in Section 2.2.2.

Method #2: Construct a Chain of IFFs

In order to prove that P is true iff @) is true:

1. Write, “We construct a chain of if-and-only-if implications.”

2. Prove P is equivalent to a second statement which is equivalent to a third

statement and so forth until you reach Q.
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This method sometimes requires more ingenuity than the first, but the result can

be a short, elegant proof, as we see in the following example.

Theorem 2.2.3. The standard deviation of a sequence of values x1, ..., x, is zero iff all

the values are equal to the mean.

Definition. The standard deviation of a sequence of values x1, z2, . .., x, is defined
to be:
N Pk N P o
n

where (1 is the mean of the values:

T1+ T+ + T
W=
n

As an example, Theorem 2.2.3 says that the standard deviation of test scores is
zero if and only if everyone scored exactly the class average. (We will talk a lot

more about means and standard deviations in Part IV of the book.)

Proof. We construct a chain of “iff” implications, starting with the statement that



96 CHAPTER 2. PATTERNS OF PROOF

the standard deviation (2.1) is zero:

\/(961—u)2+(wz—ﬂ)2+“'+(9””_“)2 = 0. (2.2)

(x1 = p)? + (w2 = p)* + - + (20 — p)? = 0. (23)

Squares of real numbers are always nonnegative, and so every term on the left

hand side of equation (2.3) is nonnegative. This means that (2.3) holds iff
Every term on the left hand side of (2.3) is zero. (24)
But a term (z; — p)? is zero iff x; = p, so (2.4) is true iff

Every z; equals the mean.

2.2.4 Proof by Contradiction

In a proof by contradiction or indirect proof, you show that if a proposition were false,

then some false fact would be true. Since a false fact can’t be true, the proposition
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had better not be false. That is, the proposition really must be true.

EDITING NOTE:

So proof by contradiction would be described by the inference rule

Rule.

-P—F

Proof by contradiction is always a viable approach. However, as the name sug-

gests, indirect proofs can be a little convoluted. So direct proofs are generally

preferable as a matter of clarity.

Method: In order to prove a proposition P by contradiction:

1. Write, “We use proof by contradiction.”

2. Write, “Suppose P is false.”

3. Deduce something known to be false (a logical contradiction).

4. Write, “This is a contradiction. Therefore, P must be true.”
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As an example, we will use proof by contradiction to prove that v/2 is irrational.

Recall that a number is rational if it is equal to a ratio of integers. For example,

3.5="7/2and 0.1111--- = 1/9 are rational numbers.

Theorem 2.2.4. /2 is irrational.

Proof. We use proof by contradiction. Suppose the claim is false; that is, v/2 is ra-

tional. Then we can write v/2 as a fraction n/d where n and d are positive integers.

Furthermore, let’s take n and d so that n/d is in lowest terms, namely, there is no

number greater than 1 that divides both n and d).

Squaring both sides gives 2 = n?/d? and so 2d> = n?. This implies that n is a

multiple of 2. Therefore n? must be a multiple of 4. But since 2d? = n?, we know

2d? is a multiple of 4 and so d? is a multiple of 2. This implies that d is a multiple

of 2.

So the numerator and denominator have 2 as a common factor, which contra-

dicts the fact that n/d is in lowest terms. So /2 must be irrational. [ |

EDITING NOTE:
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Potential Pitfall

Often students use an indirect proof when a direct proof would be simpler. Such

proofs aren’t wrong; they just aren’t excellent. Let’s look at an example. A function

f is strictly increasing if f(x) > f(y) for all real z and y such that z > y.

Theorem 2.2.5. If f and g are strictly increasing functions, then f + g is a strictly in-

creasing function.

Let’s first look at a simple, direct proof.

Proof. Let x and y be arbitrary real numbers such that > y. Then:

flz) > fly) (since f is strictly increasing)

g(z) > g(y) (since g is strictly increasing)

Adding these inequalities gives:

f()+g(z) > fly) +9(y)

Thus, f + g is strictly increasing as well. |
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Now we could prove the same theorem by contradiction, but this makes the

argument needlessly convoluted.

Proof. We use proof by contradiction. Suppose that f + g is not strictly increasing.

Then there must exist real numbers x and y such that z > y, but

f(x) +g(z) < fly) +9(y)

This inequality can only hold if either f(z) < f(y) or g(x) < g(y). Either way, we

have a contradiction because both f and g were defined to be strictly increasing.

Therefore, f + g must actually be strictly increasing. |

A proof of a proposition P by contradiction is really the same as proving the

implication T IMPLIES P by contrapositive. Indeed, the contrapositive of T'IMPLIES

P is NOT(P) IMPLIES F. As we saw in Section 2.2.2(???), such a proof would be

begin by assuming NOT(P) in an effort to derive a falsehood, just as you do in a

proof by contradiction.
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Pitfall

No matter how you think about it, it is important to remember that when you

start by assuming NOT(P), you will derive conclusions along the way that are not

necessarily true. (Indeed, the whole point of the method is to derive a falsehood.)

This means that you cannot rely on such intermediate results after the proof is

completed, for example that » is even in the proof of Theorem 2.2.4). There was

not much risk of that happening in the proof of Theorem 2.2.4, but when you are

doing more complicated proofs that build up from several lemmas, some of which

utilize a proof by contradiction, it will be important to keep track of which follow

from a (false) assumption in a proof by contradiction.

2.3 Good Proofs in Practice

One purpose of a proof is to establish the truth of an assertion with absolute cer-

tainty. Mechanically checkable proofs of enormous length or complexity can ac-

complish this. But humanly intelligible proofs are the only ones that help someone
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understand the subject. Mathematicians generally agree that important mathemat-

ical results can’t be fully understood until their proofs are understood. That is why

proofs are an important part of the curriculum.

To be understandable and helpful, more is required of a proof than just logical

correctness: a good proof must also be clear. Correctness and clarity usually go

together; a well-written proof is more likely to be a correct proof, since mistakes

are harder to hide.

In practice, the notion of proof is a moving target. Proofs in a professional

research journal are generally unintelligible to all but a few experts who know all

the terminology and prior results used in the proof. Conversely, proofs in the first

weeks of an introductory course like Mathematics for Computer Science would be

regarded as tediously long-winded by a professional mathematician. In fact, what

we accept as a good proof later in the term will be different than what we consider

to be a good proof in the first couple of weeks of this course. But even so, we can

offer some general tips on writing good proofs:
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State your game plan. A good proof begins by explaining the general line of rea-

soning. For example, “We use case analysis” or “We argue by contradiction.”

Keep a linear flow. Sometimes proofs are written like mathematical mosaics, with

juicy tidbits of independent reasoning sprinkled throughout. This is not

good. The steps of an argument should follow one another in an intelligi-

ble order.

A proof is an essay, not a calculation. Many students initially write proofs the way

they compute integrals. The result is a long sequence of expressions without

explanation, making it very hard to follow. This is bad. A good proof usually

looks like an essay with some equations thrown in. Use complete sentences.

Avoid excessive symbolism. Your reader is probably good at understanding words,

but much less skilled at reading arcane mathematical symbols. So use words

where you reasonably can.

Revise and simplify. Your readers will be grateful.
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Introduce notation thoughtfully. Sometimes an argument can be greatly simpli-

fied by introducing a variable, devising a special notation, or defining a new

term. But do this sparingly since you're requiring the reader to remember all

that new stuff. And remember to actually define the meanings of new vari-

ables, terms, or notations; don’t just start using them!

Structure long proofs. Long programs are usually broken into a hierarchy of smaller

procedures. Long proofs are much the same. Facts needed in your proof that

are easily stated, but not readily proved are best pulled out and proved in

preliminary lemmas. Also, if you are repeating essentially the same argu-

ment over and over, try to capture that argument in a general lemma, which

you can cite repeatedly instead.

Be wary of the “obvious”. When familiar or truly obvious facts are needed in a

proof, it’s OK to label them as such and to not prove them. But remember

that what’s obvious to you, may not be—and typically is not—obvious to

your reader.
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Most especially, don’t use phrases like “clearly” or “obviously” in an attempt

to bully the reader into accepting something you're having trouble proving.

Also, go on the alert whenever you see one of these phrases in someone else’s

proof.

Finish. At some point in a proof, you'll have established all the essential facts

you need. Resist the temptation to quit and leave the reader to draw the

“obvious” conclusion. Instead, tie everything together yourself and explain

why the original claim follows.

The analogy between good proofs and good programs extends beyond struc-

ture. The same rigorous thinking needed for proofs is essential in the design of

critical computer systems. When algorithms and protocols only “mostly work”

due to reliance on hand-waving arguments, the results can range from problem-

atic to catastrophic. An early example was the Therac 25, a machine that provided

radiation therapy to cancer victims, but occasionally killed them with massive

overdoses due to a software race condition. A more recent (August 2004) exam-
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ple involved a single faulty command to a computer system used by United and

American Airlines that grounded the entire fleet of both companies—and all their

passengers!

It is a certainty that we’ll all one day be at the mercy of critical computer sys-

tems designed by you and your classmates. So we really hope that you'll develop

the ability to formulate rock-solid logical arguments that a system actually does

what you think it does!

2.3.1 Problems

Class Problems

Homework Problems



Chapter 3

Induction

3.1 The Well Ordering Principle

Every nonempty set of nonnegative integers has a smallest element.

This statement is known as The Well Ordering Principle. Do you believe it?

Seems sort of obvious, right? But notice how tight it is: it requires a nonempty

set —it’s false for the empty set which has no smallest element because it has no

107
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elements at all! And it requires a set of nonnegative integers —it’s false for the

set of negative integers and also false for some sets of nonnegative rationals —for

example, the set of positive rationals. So, the Well Ordering Principle captures

something special about the nonnegative integers.

3.1.1 Well Ordering Proofs

While the Well Ordering Principle may seem obvious, it’s hard to see offhand why

it is useful. But in fact, it provides one of the most important proof rules in discrete

mathematics.

In fact, looking back, we took the Well Ordering Principle for granted in prov-

ing that /2 is irrational. That proof assumed that for any positive integers m and

n, the fraction m/n can be written in lowest terms, that is, in the form m’/n’ where

m’ and n’ are positive integers with no common factors. How do we know this is

always possible?

Suppose to the contrary that there were m,n € Z* such that the fraction m/n

cannot be written in lowest terms. Now let C be the set of positive integers that are
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numerators of such fractions. Then m € C, so C is nonempty. Therefore, by Well
Ordering, there must be a smallest integer, mo € C. So by definition of C, there is

an integer ny > 0 such that

the fraction —> cannot be written in lowest terms.
1o

This means that m and ny must have a common factor, p > 1. But

mo/p _ Mo
no/p  no’

so any way of expressing the left hand fraction in lowest terms would also work

for mg/no, which implies

mo/P

/ cannot be in written in lowest terms either.
No/p

the fraction

So by definition of C, the numerator, mg/p, is in C. But mg/p < mg, which contra-

dicts the fact that mg is the smallest element of C.

Since the assumption that C' is nonempty leads to a contradiction, it follows

that C' must be empty. That is, that there are no numerators of fractions that can’t

be written in lowest terms, and hence there are no such fractions at all.
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We’ve been using the Well Ordering Principle on the sly from early on!

3.1.2 Template for Well Ordering Proofs

More generally, there is a standard way to use Well Ordering to prove that some
property, P(n) holds for every nonnegative integer, n. Here is a standard way to

organize such a well ordering proof:
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To prove that “P(n) is true for all n € N” using the Well Ordering Principle:

® Define the set, C, of counterexamples to P being true. Namely, define”

C:={n e N| P(n)is false} .

¢ Assume for proof by contradiction that C' is nonempty.

¢ By the Well Ordering Principle, there will be a smallest element, n, in C.

® Reach a contradiction (somehow) —often by showing how to use n to find

another member of C that is smaller than n. (This is the open-ended part of

the proof task.)

¢ Conclude that C' must be empty, that is, no counterexamples exist. QED

“The notation {n | P(n)} means “the set of all elements n, for which P(n) is true.

3.1.3 Summing the Integers

Let’s use this this template to prove
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Theorem.

14243+ -+n=n(n+1)/2 3.1)

for all nonnegative integers, n.

First, we better address of a couple of ambiguous special cases before they trip

us up:

¢ Ifn = 1, then there is only one term in the summation, and so 1+2+3+---+n

is just the term 1. Don’t be misled by the appearance of 2 and 3 and the

suggestion that 1 and n are distinct terms!

e If n <0, then there are no terms at all in the summation. By convention, the

sum in this case is 0.

So while the dots notation is convenient, you have to watch out for these special

cases where the notation is misleading! (In fact, whenever you see the dots, you

should be on the lookout to be sure you understand the pattern, watching out for

the beginning and the end.)

We could have eliminated the need for guessing by rewriting the left side of (3.1)



3.1. THE WELL ORDERING PRINCIPLE 113

with summation notation:

Zz’ or Z i.

i=1 1<i<n
Both of these expressions denote the sum of all values taken by the expression to
the right of the sigma as the variable, ¢, ranges from 1 to n. Both expressions make
it clear what (3.1) means when n = 1. The second expression makes it clear that
when n = 0, there are no terms in the sum, though you still have to know the
convention that a sum of no numbers equals 0 (the product of no numbers is 1, by

the way).

OK, back to the proof:

Proof. By contradiction. Assume that the theorem is false. Then, some nonnegative

integers serve as counterexamples to it. Let’s collect them in a set:

C:::{n6N|l+2+3+“~+n7§n(n;l)}.

By our assumption that the theorem admits counterexamples, C' is a nonempty set
of nonnegative integers. So, by the Well Ordering Principle, C has a minimum

element, call it c. That is, ¢ is the smallest counterexample to the theorem.
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Since c is the smallest counterexample, we know that (3.1) is false for n = c but

true for all nonnegative integers n < c. But (3.1) is true for n = 0, so ¢ > 0. This

means c— 1 is a nonnegative integer, and since it is less than ¢, equation (3.1) is true

for c — 1. That s,

c—1)c
1+2+3+~~~+(c—1):( 5 Je.
But then, adding ¢ to both sides we get
-1 2 2 1
1+2+3+--~+(c—1)+c=(C2)C+c:C ;* CZC(C; )

which means that (3.1) does hold for ¢, after all! This is a contradiction, and we are

done. [ |

3.1.4 Factoring into Primes

We’ve previously taken for granted the Prime Factorization Theorem that every inte-

ger greater than one has a unique! expression as a product of prime numbers. This

is another of those familiar mathematical facts which are not really obvious. We’ll

prove the uniqueness of prime factorization in a later chapter, but well ordering

1. .unique up to the order in which the prime factors appear
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gives an easy proof that every integer greater than one can be expressed as some

product of primes.

Theorem 3.1.1. Every natural number can be factored as a product of primes.

Proof. The proof is by Well Ordering.

Let C be the set of all integers greater than one that cannot be factored as a

product of primes. We assume C is not empty and derive a contradiction.

If C is not empty, there is a least element, n € C, by Well Ordering. The n can’t

be prime, because a prime by itself is considered a (length one) product of primes

and no such products are in C'.

So n must be a product of two integers a and b where 1 < a,b < n. Since ¢ and b

are smaller than the smallest element in C, we know that a,b ¢ C. In other words,

a can be written as a product of primes pips - - - pr and b as a product of primes

q1---q. Therefore, n = pj---prqi---q can be written as a product of primes,

contradicting the claim that n € C. Our assumption that C' # () must therefore be

false. [ |
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3.1.5 Problems

Practice Problems

Class Problems

Homework Problems

3.2 Induction

Induction is by far the most powerful and commonly-used proof technique in dis-

crete mathematics and computer science. In fact, the use of induction is a defining

characteristic of discrete —as opposed to continuous —mathematics. To understand

how it works, suppose there is a professor who brings to class a bottomless bag of

assorted miniature candy bars. She offers to share the candy in the following way.

First, she lines the students up in order. Next she states two rules:

1. The student at the beginning of the line gets a candy bar.

2. If a student gets a candy bar, then the following student in line also gets a
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candy bar.

Let’s number the students by their order in line, starting the count with 0, as usual

in Computer Science. Now we can understand the second rule as a short descrip-

tion of a whole sequence of statements:

e If student 0 gets a candy bar, then student 1 also gets one.

e If student 1 gets a candy bar, then student 2 also gets one.

¢ If student 2 gets a candy bar, then student 3 also gets one.

Of course this sequence has a more concise mathematical description:

If student n gets a candy bar, then student n + 1 gets a candy bar, for all

nonnegative integers n.

So suppose you are student 17. By these rules, are you entitled to a miniature candy

bar? Well, student 0 gets a candy bar by the first rule. Therefore, by the second rule,

student 1 also gets one, which means student 2 gets one, which means student 3
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gets one as well, and so on. By 17 applications of the professor’s second rule, you

get your candy bar! Of course the rules actually guarantee a candy bar to every

student, no matter how far back in line they may be.

3.21 Ordinary Induction

The reasoning that led us to conclude every student gets a candy bar is essentially

all there is to induction.
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The Principle of Induction.

Let P(n) be a predicate. If

e P(0) is true, and

e P(n) IMPLIES P(n + 1) for all nonnegative integers, n,

then

e P(m) is true for all nonnegative integers, m.

Since we're going to consider several useful variants of induction in later sec-

tions, we’ll refer to the induction method described above as ordinary induction

when we need to distinguish it. Formulated as a proof rule, this would be

Rule. Induction Rule

P(0), Vn e N[P(n)IMPLIES P(n + 1)]

Vm € N. P(m)

This general induction rule works for the same intuitive reason that all the stu-

dents get candy bars, and we hope the explanation using candy bars makes it clear
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why the soundness of the ordinary induction can be taken for granted. In fact, the

rule is so obvious that it’s hard to see what more basic principle could be used to

justify it.> What’s not so obvious is how much mileage we get by using it.

Using Ordinary Induction

Ordinary induction often works directly in proving that some statement about

nonnegative integers holds for all of them. For example, here is the formula for

the sum of the nonnegative integer that we already proved (equation (3.1)) using

the Well Ordering Principle:

Theorem 3.2.1. Foralln € N,

1
1+2+3+~-~+n=% (32)

This time, let’s use the Induction Principle to prove Theorem 3.2.1.

Suppose that we define predicate P(n) to be the equation (3.2). Recast in terms

of this predicate, the theorem claims that P(n) is true for all n € N. This is great,

because the induction principle lets us reach precisely that conclusion, provided

2But see section 3.2.1.
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we establish two simpler facts:

e P(0)is true.

e Foralln € N, P(n) IMPLIES P(n + 1).

So now our job is reduced to proving these two statements. The first is true
because P(0) asserts that a sum of zero terms is equal to 0(0 + 1)/2 = 0, which is
true by definition. The second statement is more complicated. But remember the
basic plan for proving the validity of any implication: assume the statement on the
left and then prove the statement on the right. In this case, we assume P(n) in order

to prove P(n + 1), which is the equation

1+2+3+-~-+n+(n+1)=w. (3.3)

These two equations are quite similar; in fact, adding (n + 1) to both sides of equa-

tion (3.2) and simplifying the right side gives the equation (3.3):

n(n+1)

14243+ 4+n+(n+1)= 5

+(n+1)

(n+2)(n+1)
2
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Thus, if P(n) is true, then so is P(n + 1). This argument is valid for every non-

negative integer n, so this establishes the second fact required by the induction

principle. Therefore, the induction principle says that the predicate P(m) is true

for all nonnegative integers, m, so the theorem is proved.

A Template for Induction Proofs

The proof of Theorem 3.2.1 was relatively simple, but even the most complicated

induction proof follows exactly the same template. There are five components:

1. State that the proof uses induction. This immediately conveys the overall

structure of the proof, which helps the reader understand your argument.

2. Define an appropriate predicate P(n). The eventual conclusion of the in-

duction argument will be that P(n) is true for all nonnegative n. Thus, you

should define the predicate P(n) so that your theorem is equivalent to (or fol-

lows from) this conclusion. Often the predicate can be lifted straight from the

claim, as in the example above. The predicate P(n) is called the induction hy-
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pothesis. Sometimes the induction hypothesis will involve several variables,

in which case you should indicate which variable serves as n.

3. Prove that P(0) is true. This is usually easy, as in the example above. This

part of the proof is called the base case or basis step.

4. Prove that P(n) implies P(n + 1) for every nonnegative integer n. This is

called the inductive step. The basic plan is always the same: assume that P(n)

is true and then use this assumption to prove that P(n + 1) is true. These two

statements should be fairly similar, but bridging the gap may require some

ingenuity. Whatever argument you give must be valid for every nonnegative

integer n, since the goal is to prove the implications P(0) — P(1), P(1) —

P(2), P(2) — P(3), etc. all at once.

5. Invoke induction. Given these facts, the induction principle allows you to

conclude that P(n) is true for all nonnegative n. This is the logical capstone

to the whole argument, but it is so standard that it’s usual not to mention it

explicitly,
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Explicitly labeling the base case and inductive step may make your proofs clearer.

A Clean Writeup

The proof of Theorem 3.2.1 given above is perfectly valid; however, it contains a

lot of extraneous explanation that you won’t usually see in induction proofs. The

writeup below is closer to what you might see in print and should be prepared to

produce yourself.

Proof. We use induction. The induction hypothesis, P(n), will be equation (3.2).

Base case: P(0) is true, because both sides of equation (3.2) equal zero when

n=0.

Inductive step: Assume that P(n) is true, where n is any nonnegative integer.

Then

n(n+1)

1+2+4+3+-+n+(n+1)= 5

+ (n+1) (byinduction hypothesis)

_ %Q(nw (by simple algebra)

which proves P(n + 1).
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So it follows by induction that P(n) is true for all nonnegative n. [ |

Induction was helpful for proving the correctness of this summation formula, but

not helpful for discovering it in the first place. Tricks and methods for finding such

formulas will appear in a later chapter.

Courtyard Tiling

During the development of MIT’s famous Stata Center, costs rose further and fur-

ther over budget, and there were some radical fundraising ideas. One rumored

plan was to install a big courtyard with dimensions 2" x 2™

271

27’L

One of the central squares would be occupied by a statue of a wealthy potential

donor. Let’s call him “Bill”. (In the special case n = 0, the whole courtyard consists

of a single central square; otherwise, there are four central squares.) A complica-
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tion was that the building’s unconventional architect, Frank Gehry, was alleged to

require that only special L-shaped tiles be used:

A courtyard meeting these constraints exists, at least for n = 2:

For larger values of n, is there a way to tile a 2" x 2" courtyard with L-shaped

tiles and a statue in the center? Let’s try to prove that this is so.

Theorem 3.2.2. For all n > 0 there exists a tiling of a 2 x 2™ courtyard with Bill in a

central square.

Proof. (doomed attempt) The proof is by induction. Let P(n) be the proposition that

there exists a tiling of a 2" x 2" courtyard with Bill in the center.

Base case: P(0) is true because Bill fills the whole courtyard.
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Inductive step: Assume that there is a tiling of a 2" x 2" courtyard with Bill in

the center for some n > 0. We must prove that there is a way to tile a 27! x 2n+1

courtyard with Bill in the center .... u

Now we're in trouble! The ability to tile a smaller courtyard with Bill in the

center isn’t much help in tiling a larger courtyard with Bill in the center. We haven't

figured out how to bridge the gap between P(n) and P(n + 1).

So if we're going to prove Theorem 3.2.2 by induction, we’re going to need

some other induction hypothesis than simply the statement about n that we're try-

ing to prove.

When this happens, your first fallback should be to look for a stronger induction

hypothesis; that is, one which implies your previous hypothesis. For example,

we could make P(n) the proposition that for every location of Bill in a 2" x 2"

courtyard, there exists a tiling of the remainder.

This advice may sound bizarre: “If you can’t prove something, try to prove

something grander!” But for induction arguments, this makes sense. In the induc-
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tive step, where you have to prove P(n) IMPLIES P(n + 1), you're in better shape

because you can assume P(n), which is now a more powerful statement. Let’s see

how this plays out in the case of courtyard tiling.

Proof. (successful attempt) The proof is by induction. Let P(n) be the proposition

that for every location of Bill in a 2" x 2" courtyard, there exists a tiling of the

remainder.

Base case: P(0) is true because Bill fills the whole courtyard.

Inductive step: Assume that P(n) is true for some n > 0; that is, for every

location of Bill in a 2" x 2™ courtyard, there exists a tiling of the remainder. Divide

the 271 x 27! courtyard into four quadrants, each 2" x 2". One quadrant contains

Bill (B in the diagram below). Place a temporary Bill (X in the diagram) in each of

the three central squares lying outside this quadrant:
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.

2’n

Now we can tile each of the four quadrants by the induction assumption. Re-

placing the three temporary Bills with a single L-shaped tile completes the job.

This proves that P(n) implies P(n + 1) for all n > 0. The theorem follows as a

special case. [

This proof has two nice properties. First, not only does the argument guarantee

that a tiling exists, but also it gives an algorithm for finding such a tiling. Second,

we have a stronger result: if Bill wanted a statue on the edge of the courtyard,

away from the pigeons, we could accommodate him!

Strengthening the induction hypothesis is often a good move when an induc-

tion proof won't go through. But keep in mind that the stronger assertion must



130 CHAPTER 3. INDUCTION

actually be true; otherwise, there isn’t much hope of constructing a valid proof!

Sometimes finding just the right induction hypothesis requires trial, error, and in-

sight. For example, mathematicians spent almost twenty years trying to prove or

disprove the conjecture that “Every planar graph is 5-choosable”®. Then, in 1994,

Carsten Thomassen gave an induction proof simple enough to explain on a nap-

kin. The key turned out to be finding an extremely clever induction hypothesis;

with that in hand, completing the argument is easy!

A Faulty Induction Proof

False Theorem. All horses are the same color.

Notice that no n is mentioned in this assertion, so we’re going to have to re-

formulate it in a way that makes an n explicit. In particular, we’ll (falsely) prove

that

35-choosability is a slight generalization of 5-colorability. Although every planar graph is 4-colorable

and therefore 5-colorable, not every planar graph is 4-choosable. If this all sounds like nonsense, don’t

panic. We'll discuss graphs, planarity, and coloring in a later chapter.
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False Theorem 3.2.3. In cvery set of n > 1 horses, all the horses are the same color.

This a statement about all integers n > 1 rather > 0, so it’s natural to use a

slight variation on induction: prove P(1) in the base case and then prove that P(n)

implies P(n + 1) for all n > 1 in the inductive step. This is a perfectly valid variant

of induction and is not the problem with the proof below.

False proof. The proof is by induction on n. The induction hypothesis, P(n), will

be

In every set of n horses, all are the same color. (3.4)

Base case: (n = 1). P(1) is true, because in a set of horses of size 1, there’s only

one horse, and this horse is definitely the same color as itself.

Inductive step: Assume that P(n) is true for some n > 1. that is, assume that

in every set of n horses, all are the same color. Now consider a set of n + 1 horses:

hi, ha, ..., By, hpya
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By our assumption, the first n horses are the same color:

h’l; h’27 ceey hna hn+1
—_—

same color

Also by our assumption, the last » horses are the same color:

hi, ha, ...y hn, hpya

same color

So h, is the same color as the remaining horses besides k41, and likewise h, 1 is

the same color as the remaining horses besides n;. So hy and h,, 4 are the same

color. That is, horses hq, ha, . .., hy,+1 must all be the same color, and so P(n + 1) is

true. Thus, P(n) implies P(n + 1).

By the principle of induction, P(n) is true for all n > 1. |

We’ve proved something false! Is math broken? Should we all become poets?

No, this proof has a mistake.

The error in this argument is in the sentence that begins, “So h; and h,,4; are

the same color.” The “...” notation creates the impression that there are some

remaining horses besides hy and h,11. However, this is not true when n = 1. In
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that case, the first set is just h; and the second is hy, and there are no remaining

horses besides them. So h; and hs need not be the same color!

This mistake knocks a critical link out of our induction argument. We proved

P(1) and we correctly proved P(2) — P(3), P(3) — P(4), etc. But we failed to

prove P(1) — P(2), and so everything falls apart: we can not conclude that P(2),

P(3), etc., are true. And, of course, these propositions are all false; there are horses

of a different color.

Students sometimes claim that the mistake in the proof is because P(n) is false

for n > 2, and the proof assumes something false, namely, P(n), in order to prove

P(n + 1). You should think about how to explain to such a student why this claim

would get no credit on a Math for Computer Science exam.

Induction versus Well Ordering

The Induction Axiom looks nothing like the Well Ordering Principle, but these two

proof methods are closely related. In fact, as the examples above suggest, we can

take any Well Ordering proof and reformat it into an Induction proof. Conversely,
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it’s equally easy to take any Induction proof and reformat it into a Well Ordering

proof.

EDITING NOTE: Here’s how to reformat an induction proof and into a Well Or-

dering proof : suppose that we have a proof by induction with hypothesis P(n).

Then we start a Well Ordering proof by assuming the set of counterexamples to P

is nonempty. Then by Well Ordering there is a smallest counterexample, s, that is,

a smallest s such that P(s) is false.

Now we use the proof of P(0) that was part of the Induction proof to conclude

that s must be greater than 0. Also since s is the smallest counterexample, we

can conclude that P(s — 1) must be true. At this point we reuse the proof of the

inductive step in the Induction proof, which shows that since P(s — 1) true, then

P(s) is also true. This contradicts the assumption that P(s) is false, so we have the

contradiction needed to complete the Well Ordering Proof that P(n) holds for all

n € N. [ |
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So what’s the difference? Well, sometimes induction proofs are clearer because

they resemble recursive procedures that reduce handling an input of size n + 1 to

handling one of size n. On the other hand, Well Ordering proofs sometimes seem

more natural, and also come out slightly shorter. The choice of method is really a

matter of style—but style does matter.

3.2.2 Strong Induction

A useful variant of induction is called strong induction. Strong Induction and Ordi-

nary Induction are used for exactly the same thing: proving that a predicate P(n)

is true for alln € N.
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Principle of Strong Induction. Let P(n) be a predicate. If

e P(0) is true, and

e foralln € N, P(0), P(1), ..., P(n) together imply P(n + 1),

then P(n) is true for all n € N.

Rule. Strong Induction Rule

P(0), Vn e N[(Vm <n.P(m))IMPLIES P(n + 1)]

Vn € N. P(n)

The only change from the ordinary induction principle is that strong induction

allows you to assume more stuff in the inductive step of your proof! In an ordinary

induction argument, you assume that P(n) is true and try to prove that P(n + 1)

is also true. In a strong induction argument, you may assume that P(0), P(1), ...,

and P(n) are all true when you go to prove P(n + 1). These extra assumptions can

only make your job easier.
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Products of Primes

As a first example, we’ll use strong induction to re-prove Theorem 3.1.1 which we

previously proved using Well Ordering.

Lemma 3.2.4. Every integer greater than 1 is a product of primes.

Proof. We will prove Lemma 3.2.4 by strong induction, letting the induction hy-

pothesis, P(n), be

n is a product of primes.

So Lemma 3.2.4 will follow if we prove that P(n) holds for all n > 2.

Base Case: (n = 2) P(2) is true because 2 is prime, and so it is a length one

product of primes by convention.

Inductive step: Suppose that n > 2 and that 7 is a product of primes for every

integer i where 2 < ¢ < n + 1. We must show that P(n + 1) holds, namely, that

n + 1is also a product of primes. We argue by cases:

If n + 1 is itself prime, then it is a length one product of primes by convention,

so P(n + 1) holds in this case.
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Otherwise, n + 1 is not prime, which by definition means n + 1 = km for some

integers k, m such that 2 < k,m < n + 1. Now by strong induction hypothesis, we

know that k is a product of primes. Likewise, m is a product of primes. it follows

immediately that km = n is also a product of primes. Therefore, P(n + 1) holds in

this case as well.

So P(n + 1) holds in any case, which completes the proof by strong induction

that P(n) holds for all nonnegative integers, n.

EDITING NOTE: Here’s a fallacious argument: every number can be factored

uniquely into primes. Apply the same proof as before, adding “uniquely” to the

inductive hypothesis. The problem is that even if n = ab and a, b have unique

factorizations, it is still possible that n = cd for different ¢ and d, producing a

different factorization of n.

The argument is false, but the claim is true and is known as the fundamental

theorem of arithmetic.
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Making Change

The country Inductia, whose unit of currency is the Strong, has coins worth 35g

(3 Strongs) and 5Sg. Although the Inductians have some trouble making small

change like 4Sg or 7Sg, it turns out that they can collect coins to make change for

any number that is at least 8 Strongs.

Strong induction makes this easy to prove for n+1 > 11, because then (n+1) —

3 > 8, so by strong induction the Inductians can make change for exactly (n+1)—3

Strongs, and then they can add a 3Sg coin to get (n + 1)Sg. So the only thing to do

is check that they can make change for all the amounts from 8 to 10Sg, which is not

too hard to do.

Here’s a detailed writeup using the official format:

Proof. We prove by strong induction that the Inductians can make change for any

amount of at least 8Sg. The induction hypothesis, P(n) will be:
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There is a collection of coins whose value is n + 8 Strongs.

Base case: P(0) is true because a 35g coin together with 5Sgcoin makes 8Sg.

Inductive step: We assume P(m) holds for all m < n, and prove that P(n + 1)

holds. We argue by cases:

Case (n+ 1 = 1): We have to make (n+1) +8 = 9Sg. We can do this using three

3Sg coins.

Case (n + 1 = 2): We have to make (n + 1) + 8 = 10Sg. Use two 5Sg coins.

Case (n +1 > 3): Then 0 < n — 2 < n, so by the strong induction hypothesis,

the Inductians can make change for n — 2 Strong. Now by adding a 3Sg coin, they

can make change for (n + 1)Sg.

So in any case, P(n + 1) is true, and we conclude by strong induction that for

alln =0,1,..., the Inductians can make change for n + 8 Strong. That is, they can

make change for any number of eight or more Strong.
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The Stacking Game

141

Here is another exciting game that’s surely about to sweep the nation : -) !

You begin with a stack of n boxes. Then you make a sequence of moves. In

each move, you divide one stack of boxes into two nonempty stacks. The game

ends when you have n stacks, each containing a single box. You earn points for

each move; in particular, if you divide one stack of height a + b into two stacks

with heights a and b, then you score ab points for that move. Your overall score is

the sum of the points that you earn for each move. What strategy should you use

to maximize your total score?

As an example, suppose that we begin with a stack of n = 10 boxes. Then the

game might proceed as follows:

Stack Heights

H»—l»—l»—\\l\')l\:)\uk\cncn‘g
e = Sl CR[UNJUIJUR &)
— N DN N NN

e T T O

=N NN NN
el e

1
1
1
1

Score

25 points

6
4
4
2
1
1
1
1

Total Score

45 points
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On each line, the underlined stack is divided in the next step. Can you find a better

strategy?

Analyzing the Game

Let’s use strong induction to analyze the unstacking game. We'll prove that your

score is determined entirely by the number of boxes —your strategy is irrelevant!

Theorem 3.2.5. Every way of unstacking n blocks gives a score of n(n — 1)/2 points.

There are a couple technical points to notice in the proof:

* The template for a strong induction proof is exactly the same as for ordinary

induction.

* As with ordinary induction, we have some freedom to adjust indices. In this

case, we prove P(1) in the base case and prove that P(1),..., P(n) imply

P(n+1) for all n > 1 in the inductive step.

Proof. The proof is by strong induction. Let P(n) be the proposition that every way

of unstacking n blocks gives a score of n(n — 1)/2.
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Base case: If n = 1, then there is only one block. No moves are possible, and so
the total score for the game is 1(1 — 1)/2 = 0. Therefore, P(1) is true.

Inductive step: Now we must show that P(1), ..., P(n) imply P(n + 1) for all
n > 1. So assume that P(1), ..., P(n) are all true and that we have a stack of n 4 1
blocks. The first move must split this stack into substacks with positive sizes a and
bwhere a+b=n+1and 0 < a,b < n. Now the total score for the game is the sum
of points for this first move plus points obtained by unstacking the two resulting

substacks:

total score = (score for 1st move)

+ (score for unstacking a blocks)

+ (score for unstacking b blocks)

(a—1)  bb—1)
2 + 2

=ab+ 2 by P(a) and P(b)

(a+b)?—(a+b) (a+b)((a+b)—1)

2 2

(n+1)n
2

This shows that P(1), P(2), ..., P(n) imply P(n + 1).
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Therefore, the claim is true by strong induction. |

3.2.3 Strong Induction versus Induction

Is strong induction really “stronger” than ordinary induction? You can assume a
lot more when proving the induction step, so it may seem that strong induction is
much more powerful, but it’s not. Strong induction may make it easier to prove
a proposition, but any proof by strong induction can be reformatted to prove the
same thing by ordinary induction (using a slightly more complicated induction
hypothesis). Again, the choice of method is a matter of style.

When you're doing a proof by strong induction, you should say so: it will help

your reader to know that P(n + 1) may not follow directly from just P(n).
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3.2.4 Problems

Practice Problems

Class Problems

Homework Problems

EDITING NOTE:

Problem 3.1.

Use strong induction to prove the Well Ordering Principle. Hint: Prove that if a set

of nonnegative integers contains an integer, n, then it has a smallest element.
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Chapter 4

Number Theory

Number theory is the study of the integers. Why anyone would want to study the
integers is not immediately obvious. First of all, what’s to know? There’s 0, there’s
1,2, 3, and so on, and, oh yeah, -1, -2, .... Which one don’t you understand? Sec-
ond, what practical value is there in it? The mathematician G. H. Hardy expressed

pleasure in its impracticality when he wrote:

[Number theorists] may be justified in rejoicing that there is one sci-

ence, at any rate, and that their own, whose very remoteness from or-

147
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dinary human activities should keep it gentle and clean.

Hardy was specially concerned that number theory not be used in warfare; he

was a pacifist. You may applaud his sentiments, but he got it wrong: Number

Theory underlies modern cryptography, which is what makes secure online com-

munication possible. Secure communication is of course crucial in war—which

may leave poor Hardy spinning in his grave. It’s also central to online commerce.

Every time you buy a book from Amazon, check your grades on WebSIS, or use a

PayPal account, you are relying on number theoretic algorithms.

Number theory also provides an excellent environment for us to practice and

apply the proof techniques that we developed in Chapters 2 and 3.

Since we'll be focusing on properties of the integers, we’ll adopt the default

convention in this chapter that variables range over the set of integers, Z.
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4.1 Divisibility

The nature of number theory emerges as soon as we consider the divides relation

adivides b iff ak = bfor some k.

The notation, a | b, is an abbreviation for “a divides b.” If a | b, then we also say that
b is a multiple of a. A consequence of this definition is that every number divides
Zero.

This seems simple enough, but let’s play with this definition. The Pythagore-
ans, an ancient sect of mathematical mystics, said that a number is perfect if it equals
the sum of its positive integral divisors, excluding itself. For example, 6 = 14243
and 28 = 1 + 2 4 4 + 7 4 14 are perfect numbers. On the other hand, 10 is not
perfect because 1 + 2 + 5 = 8, and 12 is not perfect because 1 + 2 + 3 + 4 + 6 = 16.
Euclid characterized all the even perfect numbers around 300 BC. But is there an
odd perfect number? More than two thousand years later, we still don’t know! All
numbers up to about 103°° have been ruled out, but no one has proved that there

isn’t an odd perfect number waiting just over the horizon.
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So a half-page into number theory, we’ve strayed past the outer limits of human

knowledge! This is pretty typical; number theory is full of questions that are easy

to pose, but incredibly difficult to answer.! For example, several such problems

are shown in the box on the following page.

Interestingly, we'll see that computer scientists have found ways to turn some

of these difficulties to their advantage.

4.1.1 Facts about Divisibility

The lemma below states some basic facts about divisibility that are not difficult to

prove:

Lemma 4.1.1. The following statements about divisibility hold.

1. Ifa | b, then a | be for all c.

2. Ifa|bandb|c thena | c.

3. Ifa|band a | c, then a| sb+ tcforall s and t.

1Don’t Panic—we’re going to stick to some relatively benign parts of number theory. These super-

hard unsolved problems rarely get put on problem sets.
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4. Forall c# 0, a | bifand only if ca | cb.

Proof. We'll prove only part 2.; the other proofs are similar.

Proof of 2: Assume a | band b | c. Since a | b, there exists an integer k; such that

aky = b. Since b | ¢, there exists an integer k, such that bk, = c. Substituting ak;

for b in the second equation gives (ak1)ke = c. So a(k1k2) = ¢, which implies that

al e [ |

EDITING NOTE:

Proof of (4): We must show that a | b implies ca | ¢b and vice-versa.

e First, suppose a | b. This means ak = b for some k. Multiplying both sides by

c gives cak = cb for some k. This implies ca | cb.

e Now, suppose ca | cb. Then cak = cb for some k. We can divide both sides by

¢ since ¢ is nonzero, so ak = b for some k. This means a | b.
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Famous Conjectures in Number Theory

Fermat’s Last Theorem There are no positive integers z, y, and z such that

x”b + yn — Z’fl/

for some integer n > 2. In a book he was reading around 1630, Fermat
claimed to have a proof but not enough space in the margin to write it down.
Wiles finally gave a proof of the theorem in 1994, after seven years of working

in secrecy and isolation in his attic. His proof did not fit in any margin.

Goldbach Conjecture Every even integer greater than two is equal to the sum of
two primes’. For example, 4 =2+ 2,6 = 3 + 3,8 = 3+ 5, etc. The conjecture
holds for all numbers up to 10'6. In 1939 Schnirelman proved that every even
number can be written as the sum of not more than 300,000 primes, which
was a start. Today, we know that every even number is the sum of at most 6

primes.

Twin Prime Conjecture There are infinitely many primes p such that p + 2 is also

e et e T 107 e oo T et od a1l ot 1l i i Lt Ty e e et 1
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4.1.2 When Divisibility Goes Bad

As you learned in elementary school, if one number does not evenly divide an-

other, you get a “quotient” and a “remainder” left over. More precisely:

Theorem 4.1.2 (Division Theorem). ? Let n and d be integers such that d > 0. Then

there exists a unique pair of integers q and r, such that

n=q-d+7rAND 0 <r <d. 4.1)

The number g is called the quotient and the number r is called the remainder of n

divided by d. We use the notation qcnt(n, d) for the quotient and rem(n, d) for the

remainder.

For example, qent(2716,10) = 271 and rem(2716,10) = 6, since 2716 = 271 -

10 + 6. Similarly, rem(—11,7) = 3, since —11 = (—2) - 7 + 3. There is a remainder

operator built into many programming languages. For example, the expression

“32 % 5” evaluates to 2 in Java, C, and C++. However, all these languages treat

2This theorem is often called the “Division Algorithm,” even though it is not what we would call an

algorithm. We will take this familiar result for granted without proof.
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negative numbers strangely.

EDITING NOTE:

but it’s worth emphasizing that it is an “existence and uniqueness” theorem: it

asserts that ¢ and r exist and also that these values are unique. Thus, the Division

Theorem is one example of an “existence and uniqueness” theorem; there are many

others.

Not surprisingly, the proof of such a theorem always has two parts:

¢ A proof that something exists, such as the quotient ¢ and remainder r.

e A proof that nothing else fits the bill; that is, there is no

other quotient ¢’ and remainder 7.

We'll prove a famous “existence and uniqueness” theorem in this way shortly.
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41.3 Die Hard

Simon: On the fountain, there should be 2 jugs, do you see them? A 5-gallon and

a 3-gallon. Fill one of the jugs with exactly 4 gallons of water and place it on the

scale and the timer will stop. You must be precise; one ounce more or less will

result in detonation. If you're still alive in 5 minutes, we'll speak.

Bruce: Wait, wait a second. I don’t get it. Do you get it?

Samuel: No.

Bruce: Get the jugs. Obviously, we can't fill the 3-gallon jug with 4 gallons of water.

Samuel: Obviously.

Bruce: All right. I know, here we go. We fill the 3-gallon jug exactly to the top,

right?

Samuel: Uh-huh.

Bruce: Okay, now we pour this 3 gallons into the 5-gallon jug, giving us exactly

3 gallons in the 5-gallon jug, right?
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The preceding script is from the movie Die Hard 3: With a Vengeance. In the

movie, Samuel L. Jackson and Bruce Willis have to disarm a bomb planted by the

diabolical Simon Gruber. Fortunately, they find a solution in the nick of time. (No

doubt reading the script helped.) On the surface, Die Hard 3 is just a B-grade action

movie; however, we think the inner message of the film is that everyone should

learn at least a little number theory.

Unfortunately, Hollywood never lets go of a gimmick. Although there were no

water jug tests in Die Hard 4, rumor has it that the jugs will return in future sequels:

Die Hard 5: Die Hardest Bruce goes on vacation and—shockingly—happens into

a terrorist plot. To save the day, he must make 3 gallons using 21- and 26-

gallon jugs.

Die Hard 6: Die of Old Age Bruce must save his assisted living facility from a

criminal mastermind by forming 2 gallons with 899- and 1147-gallon jugs.

Die Hard 7: Die Once and For All Bruce has to make 4 gallons using 3- and 6-

gallon jugs.
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It would be nice if we could solve all these silly water jug questions at once. In

particular, how can one form g gallons using jugs with capacities a and b?

Finding an Invariant Property

Suppose that we have water jugs with capacities a and b with b > a. The state of

the system is described below with a pair of numbers (x, y), where z is the amount

of water in the jug with capacity a and y is the amount in the jug with capacity b.

Let’s carry out sample operations and see what happens, assuming the b-jug is big
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enough:
(0,0) — (a,0) fill first jug
— (0,a) pour first into second
— (a,a) fill first jug
— (2a —b,b) pour first into second (assuming 2a > b)
— (2a —b,0) empty second jug
— (0,2a — b) pour first into second
— (a,2a —b) fill first
— (3a — 2b,b) pour first into second (assuming 3a > 2b)

What leaps out is that at every step, the amount of water in each jug is of the form

s-a-+t-b (4.2)

for some integers s and ¢. An expression of the form (4.2) is called an integer linear

combination of a and b, but in this chapter we'll just call it a linear combination, since

we're only talking integers. So we're suggesting:
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Lemma 4.1.3. Suppose that we have water jugs with capacities a and b. Then the amount

of water in each jug is always a linear combination of a and b.

Lemma 4.1.3 is easy to prove by induction on the number of pourings.

Proof. The induction hypothesis, P(n), is the proposition that after n steps, the

amount of water in each jug is a linear combination of a and b.

Base case: (n = 0). P(0) is true, because both jugs are initially empty, and 0-a+0-

b=0.

Inductive step. We assume by induction hypothesis that after n steps the amount

of water in each jug is a linear combination of a and b. There are two cases:

¢ If we fill ajug from the fountain or empty ajug into the fountain, then that jug

is empty or full. The amount in the other jug remains a linear combination of

a and b. So P(n + 1) holds.

* Otherwise, we pour water from one jug to another until one is empty or the

other is full. By our assumption, the amount in each jug is a linear combina-
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tion of a and b before we begin pouring;:

j1231~a+t1~b

Jo=52-a+ty-b

After pouring, one jug is either empty (contains 0 gallons) or full (contains a

or b gallons). Thus, the other jug contains either j; + j» gallons, j; + j2 —a, or

Jj1+j2 — b gallons, all of which are linear combinations of a and b. So P(n+1)

holds in this case as well.

So in any case, P(n + 1) follows, completing the proof by induction. ]

This theorem has an important corollary:

Corollary 4.1.4. Bruce dies.

Proof. In Die Hard 7 , Bruce has water jugs with capacities 3 and 6 and must form

4 gallons of water. However, the amount in each jug is always of the form 3s + 6t

by Lemma 4.1.3. This is always a multiple of 3 by Lemma 4.1.1.3, so he cannot

measure out 4 gallons. [ |



162 CHAPTER 4. NUMBER THEORY

But Lemma 4.1.3 isn’t very satisfying. We’ve just managed to recast a pretty

understandable question about water jugs into a complicated question about linear

combinations. This might not seem like progress. Fortunately, linear combinations

are closely related to something more familiar, namely greatest common divisors,

and these will help us solve the water jug problem.

4.2 The Greatest Common Divisor

The greatest common divisor of a and b is exactly what you’'d guess: the largest

number that is a divisor of both a and b. It is denoted by ged(a, b). For example,

gcd(18,24) = 6. The greatest common divisor turns out to be a very valuable piece

of information about the relationship between a and b and for reasoning about in-

tegers in general. So we’ll be making lots of arguments about greatest common

divisors in what follows.
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4.2.1 Linear Combinations and the GCD

The theorem below relates the greatest common divisor to linear combinations.

This theorem is very useful; take the time to understand it and then remember it!

Theorem 4.2.1. The greatest common divisor of a and b is equal to the smallest positive

linear combination of a and b.

For example, the greatest common divisor of 52 and 44 is 4. And, sure enough,

4 is a linear combination of 52 and 44:

6-52+(—7)-44=4

Furthermore, no linear combination of 52 and 44 is equal to a smaller positive

integer.

Proof of Theorem 4.2.1. By the Well Ordering Principle, there is a smallest positive

linear combination of a and b; call it m. We'll prove that m = ged(a, b) by showing

both ged(a, b) < mand m < ged(a, b).

First, we show that gcd(a,b) < m. Now any common divisor of ¢ and b—that
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is, any ¢ such that ¢ | a and ¢ | b—will divide both sa and tb, and therefore also

divides sa + tb for any s and t. The ged(a, b) is by definition a common divisor of a

and b, so

ged(a,b) | sa + tb (4.3)

every s and ¢. In particular, gcd(a, b) | m, which implies that ged(a, b) < m.

Now, we show that m < gcd(a,b). We do this by showing that m | a. A

symmetric argument shows that m | b, which means that m is a common divisor

of a and b. Thus, m must be less than or equal to the greatest common divisor of a

and b.

All that remains is to show that m | a. By the Division Algorithm, there exists a

quotient ¢ and remainder r such that:

a=q-m+r (where 0 < r < m)
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Recall that m = sa + tb for some integers s and ¢. Substituting in for m gives:

a=gq-(sa+th)+r, )

r=(1-gs)a+ (—qt)b.

We've just expressed r as a linear combination of a and b. However, m is the

smallest positive linear combination and 0 < r < m. The only possibility is that

the remainder r is not positive; that is, » = 0. This implies m | a. n

Corollary 4.2.2. An integer is linear combination of a and b iff it is a multiple of ged(a, b).

Proof. By (4.3), every linear combination of a and b is a multiple of gcd(a, b). Con-

versely, since ged(a, b) is a linear combination of a and b, every multiple of ged(a, b)

is as well. ]

Now we can restate the water jugs lemma in terms of the greatest common

divisor:

Corollary 4.2.3. Suppose that we have water jugs with capacities a and b. Then the

amount of water in each jug is always a multiple of gcd(a, b).
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For example, there is no way to form 4 gallons using 3- and 6-gallon jugs, be-

cause 4 is not a multiple of gcd(3,6) = 3.

4.2.2 Properties of the Greatest Common Divisor

We’'ll often make use of some basic ged facts:

Lemma 4.2.4. The following statements about the greatest common divisor hold:

1. Every common divisor of a and b divides gcd(a, b).

2. ged(ka, kb) = k - ged(a, b) forall k > 0.

3. Ifged(a,b) = 1and ged(a, c) = 1, then ged(a, be) = 1.

4. Ifa | bc and ged(a,b) = 1, then a | c.

5. ged(a, b) = ged(b, rem(a, b)).

Here’s the trick to proving these statements: translate the gcd world to the lin-

ear combination world using Theorem 4.2.1, argue about linear combinations, and

then translate back using Theorem 4.2.1 again.
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Proof. We prove only parts 3. and 4.

Proof of 3. The assumptions together with Theorem 4.2.1 imply that there exist

integers s, t, u, and v such that:

sa+th=1

ua+vec=1

Multiplying these two equations gives:

(sa + tb)(ua+vec) =1

The left side can be rewritten as a - (asu + btu + csv) + be(tv). This is a linear

combination of a and be that is equal to 1, so ged(a, be) = 1 by Theorem 4.2.1.

Proof of 4. Theorem 4.2.1 says that gcd(ac, bc) is equal to a linear combination of

ac and be. Now a | ac trivially and a | be by assumption. Therefore, a divides every

linear combination of ac and bc. In particular, a divides ged(ac, be) = ¢ - ged(a, b) =

c-1 = c. The first equality uses part 2. of this lemma, and the second uses the

assumption that ged(a, b) = 1. ]
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4.2.3 Euclid’s Algorithm

Part (5) of Lemma 4.2.4 is useful for quickly computing the greatest common divi-
sor of two numbers. For example, we could compute the greatest common divisor

of 1147 and 899 by repeatedly applying part (5):

ged(1247,899) = ged (899, rem(1247,899))
N———
=248

= ged (248, rem(899, 248))
N————
=155

= ged (155, rem(248, 155))
—_———
=93

= ged (93, rem (155, 93))
N————

=62

= ged (62, rem(93,62))
—_————

=31

= ng(Bl7 rem(627 3]‘))
=0

= ged(31,0)

=31

The last equation might look wrong, but 31 is a divisor of both 31 and 0 since every

integer divides 0.
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This process is called Euclid’s algorithm and it was discovered by the Greeks

over 3000 years ago.

But what about Die Hard 5. Is it possible for Bruce to make 3 gallons using 21-

and 26-gallon jugs? Using Euclid’s algorithm:

ged(26,21) = ged(21,5) = ged(5,1) = 1.

Now 3 is a multiple of 1, so we can’t rule out the possibility that 3 gallons can be

formed. On the other hand, we don’t know if it can be done either. To resolve the

matter, we will need more number theory.

4.2.4 One Solution for All Water Jug Problems

Corollary 4.2.2 says that 3 can be written as a linear combination of 21 and 26, since

3 is a multiple of ged(21,26) = 1. In other words, there exist integers s and ¢ such

that:

3=5-2141-26

We don’t know what the coefficients s and ¢ are, but we do know that they exist.
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Now the coefficient s could be either positive or negative. However, we can

readily transform this linear combination into an equivalent linear combination

3=g-21+1-26 (4.4)

where the coefficient s’ is positive. The trick is to notice that if we increase s by

26 in the original equation and decrease ¢ by 21, then the value of the expression

s-21 4+t - 26 is unchanged overall. Thus, by repeatedly increasing the value of s

(by 26 at a time) and decreasing the value of ¢ (by 21 at a time), we get a linear

combination s’ - 21 + ¢’ - 26 = 3 where the coefficient s’ is positive. Notice that then

t’ must be negative; otherwise, this expression would be much greater than 3.

Now we can form 3 gallons using jugs with capacities 21 and 26: We simply

repeat the following steps s” times:

1. Fill the 21-gallon jug.

2. Pour all the water in the 21-gallon jug into the 26-gallon jug. If at any time the

26-gallon jug becomes full, empty it out, and continue pouring the 21-gallon

jug into the 26-gallon jug.
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At the end of this process, we must have have emptied the 26-gallon jug exactly

|t'| times. Here’s why: we’ve taken s’ - 21 gallons of water from the fountain, and

we’ve poured out some multiple of 26 gallons. If we emptied fewer than |t'| times,

then by (4.4), the big jug would be left with at least 3 + 26 gallons, which is more

than it can hold; if we emptied it more times, the big jug would be left containing

at most 3 — 26 gallons, which is nonsense. But once we have emptied the 26-gallon

jug exactly |t'| times, equation (4.4) implies that there are exactly 3 gallons left.

Remarkably, we don’t even need to know the coefficients s’ and ¢ in order to

use this strategy! Instead of repeating the outer loop s’ times, we could just repeat

until we obtain 3 gallons, since that must happen eventually. Of course, we have to

keep track of the amounts in the two jugs so we know when we’re done. Here’s
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the solution that approach gives:

(0,0) fill21 (21,0) pour 21 into 26 (0,21)
fill21 (21,21) pour 21 into 26 (16, 26) empty 26 (16,0) pour 21 into 26 (0, 16)
fill21 (21,16) pour 21 into 26 (11,26) empty 26 (11,0) pour 21 into 26 (0,11)
fill21 (21,11) pour 21 into 26 (6,26) empty 26 (6,0) pour 21 into 26 (0.6)
fill21 (21,6) pour 21 into 26 (1,26) empty 26 (1,0) pour 21 into 26 0.1)
fill21 (21,1) pour 21 into 26 (0,22)
fill21 (21,22) pour 21 into 26 (17, 26) empty 26 (17,0) pour 21 into 26 (0,17)
fill21 (21,17) pour 21 into 26 (12, 26) empty 26 (12,0) pour 21 into 26 0,12)
fill21 (21,12) pour 21 into 26 (7,26) empty 26 (7,0) pour 21 into 26 0,7)
21 (21,7) pour 21 into 26 (2, 26) empty 26 (2,0) pour 21 into 26 0,2)
fill21 (21,2) pour 21 into 26 (0,23)
fill21 (21,23) pour 21 into 26 (18, 26) empty 26 (18,0) pour 21 into 26 (0,18)
fill21 (21,18) pour 21 into 26 (13, 26) empty 26 (13,0) pour 21 into 26 (0,13)
fill21 (21,13) pour 21 into 26 (8, 26) empty 26 (8,0) pour 21 into 26 (0,8)
fill21 (21,8) pour 21 into 26 (3, 26) empty 26 (3.0) pour 21 into 26 0.3)

The same approach works regardless of the jug capacities and even regardless

the amount we’re trying to produce! Simply repeat these two steps until the de-

sired amount of water is obtained:

1. Fill the smaller jug.

2. Pour all the water in the smaller jug into the larger jug. If at any time the

larger jug becomes full, empty it out, and continue pouring the smaller jug

into the larger jug.
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By the same reasoning as before, this method eventually generates every multiple

of the greatest common divisor of the jug capacities—all the quantities we can

possibly produce. No ingenuity is needed at all!

4.2.5 The Pulverizer

We have shown that no matter which pair of numbers a and b we are given, there

is always a pair of integer coefficients s and ¢ such that

ged(a, b) = sa + tb.

Unfortunately, the proof was nonconstructive: it didn’t suggest a way for finding

such s and ¢. That job is tackled by a mathematical tool that dates to sixth-century

India, where it was called kuttak, which means “The Pulverizer”. Today, the Pul-

verizer is more commonly known as “the extended Euclidean GCD algorithm”,

because it is so close to Euclid’s Algorithm.

Euclid’s Algorithm for finding the GCD of two numbers relies on repeated ap-
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plication of the equation:

ged(a,b) = ged(b,rem(a, b,)).

For example, we can compute the GCD of 259 and 70 as follows:

ged (259, 70) = ged(70,49) since rem(259, 70) = 49
= gcd(49,21) since rem(70,49) = 21
= ged(21,7) since rem(49,21) =7
= ged(7,0) since rem(21,7) =0
=T.

The Pulverizer goes through the same steps, but requires some extra bookkeeping

along the way: as we compute gcd(a,b), we keep track of how to write each of

the remainders (49, 21, and 7, in the example) as a linear combination of a and b

(this is worthwhile, because our objective is to write the last nonzero remainder,

which is the GCD, as such a linear combination). For our example, here is this
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extra bookkeeping:

x Yy (rem(z,y)) = z—q-y

259 70 49 = 259-3-70

70 49 21 = 70-1-49
= 70—1-(259—3-70)
= —1-2594+4-70

49 21 7T = 49-2.21
= (259 -3-70)—2-(—1-259 +4-70)
= [3:259—11-70]

21 7 0

We began by initializing two variables, z = a and y = b. In the first two columns

above, we carried out Euclid’s algorithm. At each step, we computed rem(z,y),

which can be written in the form z — ¢ - y. (Remember that the Division Algorithm

says & = ¢-y+r, where r is the remainder. We get r = x—q-y by rearranging terms.)

Then we replaced = and y in this equation with equivalent linear combinations of

a and b, which we already had computed. After simplifying, we were left with a

linear combination of ¢ and b that was equal to the remainder as desired. The final

solution is boxed.
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4.2.6 Problems

Class Problems

4.3 The Fundamental Theorem of Arithmetic

We now have almost enough tools to prove something that you probably already

know.

Theorem 4.3.1 (Fundamental Theorem of Arithmetic). Every positive integer n can

be written in a unique way as a product of primes:

n = p1-p2---pj (p1 <p2 <--- < pj)

Notice that the theorem would be false if 1 were considered a prime; for exam-

ple, 15 could be written as 3-5 or 1-3-5 or 12-3-5. Also, we're relying on a standard

convention: the product of an empty set of numbers is defined to be 1, much as the

sum of an empty set of numbers is defined to be 0. Without this convention, the

theorem would be false for n = 1.

There is a certain wonder in the Fundamental Theorem, even if you've known
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it since you were in a crib. Primes show up erratically in the sequence of integers.

In fact, their distribution seems almost random:

2,3,5,7,11,13,17,19, 23,29, 31,37, 41,43, ...

Basic questions about this sequence have stumped humanity for centuries. And

yet we know that every natural number can be built up from primes in exactly one

way. These quirky numbers are the building blocks for the integers.

The Fundamental Theorem is not hard to prove, but we’ll need a couple of

preliminary facts.

Lemma 4.3.2. Ifpisaprimeandp | ab, thenp| aorp|b.

Proof. The greatest common divisor of a and p must be either 1 or p, since these are

the only positive divisors of p. If ged(a, p) = p, then the claim holds, because a is a

multiple of p. Otherwise, gcd(a, p) = 1 and so p | b by part (4) of Lemma 42.4. W

A routine induction argument extends this statement to:

Lemma 4.3.3. Let p be a prime. If p | a1az - - - ay, then p divides some a;.
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The Prime Number Theorem

Let 7(z) denote the number of primes less than or equal to z. For example, 7(10) =

4 because 2, 3, 5, and 7 are the primes less than or equal to 10. Primes are very

irregularly distributed, so the growth of 7 is similarly erratic. However, the Prime

Number Theorem gives an approximate answer:

Thus, primes gradually taper off. As a rule of thumb, about 1 integer out of every

In 2 in the vicinity of x is a prime.

The Prime Number Theorem was conjectured by Legendre in 1798 and proved a

century later by de la Vallee Poussin and Hadamard in 1896. However, after his

death, a notebook of Gauss was found to contain the same conjecture, which he

apparently made in 1791 at age 15. (You sort of have to feel sorry for all the other-

wise “great” mathematicians who had the misfortune of being contemporaries of

Gauss.)
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Now we’re ready to prove the Fundamental Theorem of Arithmetic.

Proof. Theorem 3.1.1 showed, using the Well Ordering Principle, that every posi-

tive integer can be expressed as a product of primes. So we just have to prove this

expression is unique. We will use Well Ordering to prove this too.

The proof is by contradiction: assume, contrary to the claim, that there exist

positive integers that can be written as products of primes in more than one way:.

By the Well Ordering Principle, there is a smallest integer with this property. Call

this integer n, and let

n=pi-p2c-p;

=4q1-92" gk

be two of the (possibly many) ways to write n as a product of primes. Then p; | n

andsop; | ¢1¢2 - - - qx- Lemma 4.3.3 implies that p; divides one of the primes ¢;. But

since ¢; is a prime, it must be that p; = ¢;. Deleting p; from the first product and

¢; from the second, we find that n/p; is a positive integer smaller than n that can

also be written as a product of primes in two distinct ways. But this contradicts
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Figure 4.1: Alan Turing

the definition of n as the smallest such positive integer. u

4.3.1 Problems

Class Problems

4.4 Alan Turing

The man pictured in Figure 4.1 is Alan Turing, the most important figure in the

history of computer science. For decades, his fascinating life story was shrouded
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by government secrecy, societal taboo, and even his own deceptions.

At age 24, Turing wrote a paper entitled On Computable Numbers, with an Ap-

plication to the Entscheidungsproblem. The crux of the paper was an elegant way to

model a computer in mathematical terms. This was a breakthrough, because it al-

lowed the tools of mathematics to be brought to bear on questions of computation.

For example, with his model in hand, Turing immediately proved that there exist

problems that no computer can solve—no matter how ingenious the programmer.

Turing’s paper is all the more remarkable because he wrote it in 1936, a full decade

before any electronic computer actually existed.

The word “Entscheidungsproblem” in the title refers to one of the 28 mathe-

matical problems posed by David Hilbert in 1900 as challenges to mathematicians

of the 20th century. Turing knocked that one off in the same paper. And perhaps

you've heard of the “Church-Turing thesis”? Same paper. So Turing was obviously

a brilliant guy who generated lots of amazing ideas. But this lecture is about one

of Turing’s less-amazing ideas. It involved codes. It involved number theory. And
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it was sort of stupid.

Let’s look back to the fall of 1937. Nazi Germany was rearming under Adolf

Hitler, world-shattering war looked imminent, and—like us—Alan Turing was

pondering the usefulness of number theory. He foresaw that preserving military

secrets would be vital in the coming conflict and proposed a way to encrypt com-

munications using number theory. This is an idea that has ricocheted up to our own

time. Today, number theory is the basis for numerous public-key cryptosystems,

digital signature schemes, cryptographic hash functions, and electronic payment

systems. Furthermore, military funding agencies are among the biggest investors

in cryptographic research. Sorry Hardy!

Soon after devising his code, Turing disappeared from public view, and half a

century would pass before the world learned the full story of where he’d gone and

what he did there. We’ll come back to Turing’s life in a little while; for now, let’s

investigate the code Turing left behind. The details are uncertain, since he never

formally published the idea, so we’ll consider a couple of possibilities.
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4.4.1 Turing’s Code (Version 1.0)

The first challenge is to translate a text message into an integer so we can perform
mathematical operations on it. This step is not intended to make a message harder
to read, so the details are not too important. Here is one approach: replace each
letter of the message with two digits (4 = 01, B = 02, C' = 03, etc.) and string all
the digits together to form one huge number. For example, the message “victory”
could be translated this way:

”

“v i ¢ t o r y
— 22 09 03 20 15 18 25

Turing’s code requires the message to be a prime number, so we may need to pad

the result with a few more digits to make a prime. In this case, appending the

digits 13 gives the number 2209032015182513, which is prime.

Here is how the encryption process works. In the description below, m is the

unencoded message (which we want to keep secret), m* is the encrypted message

(which the Nazis may intercept), and & is the key.

Beforehand The sender and receiver agree on a secret key, which is a large prime
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Encryption The sender encrypts the message m by computing:

For example, suppose that the secret key is the prime number k£ = 22801763489

and the message m is “victory”. Then the encrypted message is:

= 2209032015182513 - 22801763489

= 50369825549820718594667857

There are a couple of questions that one might naturally ask about Turing’s

code.

1. How can the sender and receiver ensure that m and & are prime numbers, as

required?
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The general problem of determining whether a large number is prime or
composite has been studied for centuries, and reasonably good primality
tests were known even in Turing’s time. In 2002, Manindra Agrawal, Neeraj
Kayal, and Nitin Saxena announced a primality test that is guaranteed to
work on a number n in about (logn)!? steps, that is, a number of steps
bounded by a twelfth degree polynomial in the length (in bits) of the in-
put, n. This definitively places primality testing way below the problems

of exponential difficulty. Amazingly, the description of their breakthrough

algorithm was only thirteen lines long!

Of course, a twelfth degree polynomial grows pretty fast, so the Agrawal, et

al. procedure is of no practical use. Still, good ideas have a way of breed-

ing more good ideas, so there’s certainly hope that further improvements

will lead to a procedure that is useful in practice. But the truth is, there’s

no practical need to improve it, since very efficient probabilistic procedures

for prime-testing have been known since the early 1970’s. These procedures
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have some probability of giving a wrong answer, but their probability of be-

ing wrong is so tiny that relying on their answers is the best bet you'll ever

make.

2. Is Turing’s code secure?

The Nazis see only the encrypted message m* = m - k, so recovering the

original message m requires factoring m™*. Despite immense efforts, no really

efficient factoring algorithm has ever been found. It appears to be a funda-

mentally difficult problem, though a breakthrough someday is not impossi-

ble. In effect, Turing’s code puts to practical use his discovery that there are

limits to the power of computation. Thus, provided m and & are sufficiently

large, the Nazis seem to be out of luck!

This all sounds promising, but there is a major flaw in Turing’s code.
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4.4.2 Breaking Turing’s Code

Let’s consider what happens when the sender transmits a second message using

Turing’s code and the same key. This gives the Nazis two encrypted messages to

look at:

mi =mq -k and my =mg -k

The greatest common divisor of the two encrypted messages, m; and m}, is the

secret key k. And, as we’ve seen, the GCD of two numbers can be computed very

efficiently. So after the second message is sent, the Nazis can recover the secret key

and read every message!

It is difficult to believe a mathematician as brilliant as Turing could overlook

such a glaring problem. One possible explanation is that he had a slightly different

system in mind, one based on modular arithmetic.
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4.5 Modular Arithmetic

On page 1 of his masterpiece on number theory, Disquisitiones Arithmeticae, Gauss

introduced the notion of “congruence”. Now, Gauss is another guy who managed

to cough up a half-decent idea every now and then, so let’s take a look at this one.

Gauss said that a is congruent to b modulo n iff n | (a — b). This is written

a=b (mod n).

For example:

29=15 (mod 7) becauseT| (29— 15).

There is a close connection between congruences and remainders:

Lemma 4.5.1 (Congruences and Remainders).

a=b (modn) iff rem(a,n)=rem(b,n).

Proof. By the Division Theorem, there exist unique pairs of integers ¢, 71 and ¢z, 2
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such that:

a=qn-+rmr where 0 < r; < n,

b=qon+1ry where 0 < ry < n.

Subtracting the second equation from the first gives:

a—b=(q1—qg)n+ (rL —ra) where —n < r; — 1y < n.

Now a = b (mod n) if and only if n divides the left side. This is true if and only

if n divides the right side, which holds if and only if r; — 73 is a multiple of n.

Given the bounds on r; — ry, this happens precisely when r; = 7, that is, when

rem(a,n) = rem(b, n). |

So we can also see that

20=15 (mod 7) because rem(29,7) =1 =rem(15,7).

This formulation explains why the congruence relation has properties like an equal-

ity relation. Notice that even though (mod 7) appears over on the right side, the

= symbol, it isn’t any more strongly associated with the 15 than with the 29. It
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would really be clearer to write 29 = ,,,q 7 15 for example, but the notation with

the modulus at the end is firmly entrenched and we'll stick to it.

We’ll make frequent use of the following immediate Corollary of Lemma 4.5.1:

Corollary 4.5.2.

a =rem(a,n) (mod n)

Still another way to think about congruence modulo n is that it defines a partition

of the integers into n sets so that congruent numbers are all in the same set. For example,

suppose that we’re working modulo 3. Then we can partition the integers into 3

sets as follows:

{ , -6, -3, 0, 3, 6, 9, ... }
{ ..., =5, -2, 1, 4, 7, 10, ... }
{ ..., —4, -1, 2, 5, 8, 11, ... }

according to whether their remainders on division by 3 are 0, 1, or 2. The upshot

is that when arithmetic is done modulo n there are really only n different kinds

of numbers to worry about, because there are only n possible remainders. In this

sense, modular arithmetic is a simplification of ordinary arithmetic and thus is a

good reasoning tool.



4.5. MODULAR ARITHMETIC 191

There are many useful facts about congruences, some of which are listed in the

lemma below. The overall theme is that congruences work a lot like equations, though

there are a couple of exceptions.

Lemma 4.5.3 (Facts About Congruences). The following hold for n > 1:

1. a=a (mod n)

2. a=b (mod n) implies b = a (mod n)

3. a=0b (mod n)and b =c (mod n) implies a = ¢ (mod n)

4. a=b (mod n) implies a + ¢ = b+ ¢ (mod n)

5. a =b (mod n) implies ac = be (mod n)

6. a=b (mod n)and c=d (mod n) implya+c=b+d (mod n)

7. a=b (mod n)and c = d (mod n) imply ac = bd (mod n)

Proof. Parts 1-3. follow immediately from Lemma 4.5.1. Part 4. follows immedi-

ately from the definition that a = b (mod n) iff n | (a —b). Likewise, part 5. follows
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because if n | (a — b) then it divides (a — b)c = ac — be. To prove part 6., assume

a=b (modn) (4.5)
and
c=d (modn). (4.6)
Then
a+c=b+c (modn) (by part 4. and (4.5)),
c+b=d+b (modn) (by part 4. and (4.6)), so
b+c=b+d (modn) and therefore
a+c=b+d (modn) (by part 3.)
Part 7 has a similar proof. ]
EDITING NOTE:

There is a close connection between modular arithmetic and the remainder op-

eration, which we looked at last time. To clarify this link, let’s reconsider the par-
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tition of the integers defined by congruence modulo 3:

{ -6, -3, 0, 3, 6, 9, }
{ ..., =5, —2, 1, 4, 7, 10, }
{ ..., -4, -1, 2, 5, 8, 11, }

Notice that two numbers are in the same set if and only if they leave the same

remainder when divided by 3. The numbers in the first set all leave a remainder of

0 when divided by 3, the numbers in the second set leave a remainder of 1, and the

numbers in the third leave a remainder of 2. Furthermore, notice that each number

is in the same set as its own remainder. For example, 11 and rem(11,3) = 2 are

both in the same set. Let’s bundle all this happy goodness into a lemma.

4.5.1 Turing’s Code (Version 2.0)

In 1940, France had fallen before Hitler’s army, and Britain stood alone against the

Nazis in western Europe. British resistance depended on a steady flow of sup-

plies brought across the north Atlantic from the United States by convoys of ships.

These convoys were engaged in a cat-and-mouse game with German “U-boats”—
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submarines—which prowled the Atlantic, trying to sink supply ships and starve

Britain into submission. The outcome of this struggle pivoted on a balance of in-

formation: could the Germans locate convoys better than the Allies could locate

U-boats or vice versa?

Germany lost.

But a critical reason behind Germany’s loss was made public only in 1974: Ger-

many’s naval code, Enigma, had been broken by the Polish Cipher Bureau (see

http://en.wikipedia.org/wiki/Polish_Cipher_Bureau) and the secret

had been turned over to the British a few weeks before the Nazi invasion of Poland

in 1939. Throughout much of the war, the Allies were able to route convoys around

German submarines by listening in to German communications. The British gov-

ernment didn’t explain how Enigma was broken until 1996. When it was finally

released (by the US), the story revealed that Alan Turing had joined the secret

British codebreaking effort at Bletchley Park in 1939, where he became the lead

developer of methods for rapid, bulk decryption of German Enigma messages.


http://en.wikipedia.org/wiki/Polish_Cipher_Bureau
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Turing’s Enigma deciphering was an invaluable contribution to the Allied victory

over Hitler.

Governments are always tight-lipped about cryptography, but the half-century

of official silence about Turing’s role in breaking Enigma and saving Britain may

be related to some disturbing events after the war. More on that later. Let’s get

back to number theory and consider an alternative interpretation of Turing’s code.

Perhaps we had the basic idea right (multiply the message by the key), but erred

in using conventional arithmetic instead of modular arithmetic. Maybe this is what

Turing meant:

Beforehand The sender and receiver agree on a large prime p, which may be made

public. (This will be the modulus for all our arithmetic.) They also agree on

asecretkey k € {1,2,...,p—1}.

Encryption The message m can be any integer in the set {0,1,2,...,p — 1}; in par-

ticular, the message is no longer required to be a prime. The sender encrypts
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the message m to produce m* by computing:

m* = rem(mk,p) 4.7)

Decryption (Uh-oh.)

The decryption step is a problem. We might hope to decrypt in the same way

as before: by dividing the encrypted message m* by the key k. The difficulty is

that m* is the remainder when mk is divided by p. So dividing m* by k might not

even give us an integer!

This decoding difficulty can be overcome with a better understanding of arith-

metic modulo a prime.



4.6. ARITHMETIC WITH A PRIME MODULUS 197

4.5.2 Problems

Class Problems

4.6 Arithmetic with a Prime Modulus

4.6.1 Multiplicative Inverses

The multiplicative inverse of a number z is another number 2~ such that:

z-z l=1

Generally, multiplicative inverses exist over the real numbers. For example, the

multiplicative inverse of 3 is 1/3 since:

The sole exception is that 0 does not have an inverse.

On the other hand, inverses generally do not exist over the integers. For exam-

ple, 7 can not be multiplied by another integer to give 1.

Surprisingly, multiplicative inverses do exist when we’re working modulo a
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prime number. For example, if we’re working modulo 5, then 3 is a multiplicative

inverse of 7, since:

7-3=1 (mod 5)

(All numbers congruent to 3 modulo 5 are also multiplicative inverses of 7; for

example, 7-8 =1 (mod 5) as well.) The only exception is that numbers congruent

to 0 modulo 5 (that is, the multiples of 5) do not have inverses, much as 0 does not

have an inverse over the real numbers. Let’s prove this.

Lemma 4.6.1. If p is prime and k is not a multiple of p, then k has a multiplicative inverse

modulo p.

Proof. Since p is prime, it has only two divisors: 1 and p. And since k is not a

multiple of p, we must have ged(p, k) = 1. Therefore, there is a linear combination

of p and k equal to 1:

sp+thk=1

Rearranging terms gives:

sp=1-—tk
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This implies that p | (1 — tk) by the definition of divisibility, and therefore tk = 1

(mod p) by the definition of congruence. Thus, ¢ is a multiplicative inverse of k. W

Multiplicative inverses are the key to decryption in Turing’s code. Specifically,

we can recover the original message by multiplying the encoded message by the

inverse of the key:

m* -k~ = rem(mk,p) -k~ (the def. (4.7) of m*)
= (mk)k~" (mod p) (by Cor. 4.5.2)
=m (mod p).

This shows that m*k~" is congruent to the original message m. Since m was in

therange0,1,...,p — 1, we can recover it exactly by taking a remainder:

m = rem(m*k~",p)

So all we need to decrypt the message is to find a value of k~!. From the proof of

Lemma 4.6.1, we know that ¢ is such a value, where sp + tk = 1. Finding ¢ is easy

using the Pulverizer.
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4.6.2 Cancellation

Another sense in which real numbers are nice is that one can cancel multiplicative

terms. In other words, if we know that mi1k = msk, then we can cancel the £’s and

conclude that m; = my, provided k& # 0. In general, cancellation is not valid in

modular arithmetic. For example,

2-3=4-3 (mod 6),

but canceling the 3’s leads to the false conclusion that 2 = 4 (mod 6). The fact

that multiplicative terms can not be canceled is the most significant sense in which

congruences differ from ordinary equations. However, this difference goes away

if we’re working modulo a prime; then cancellation is valid.

Lemma 4.6.2. Suppose p is a prime and k is not a multiple of p. Then

ak =bk (modp) IMPLIES a=b (mod p).

Proof. Multiply both sides of the congruence by k. n
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We can use this lemma to get a bit more insight into how Turing’s code works.

In particular, the encryption operation in Turing’s code permutes the set of possible

messages. This is stated more precisely in the following corollary.

Corollary 4.6.3. Suppose p is a prime and k is not a multiple of p. Then the sequence:

rem((1-k),p), rem((2-k),p), ..., rem(((p—1)-k),p)

is a permutation® of the sequence:

Proof. The sequence of remainders contains p— 1 numbers. Since i-k is not divisible

by p for i = 1,...p — 1, all these remainders are in the range 1 to p — 1 by the

definition of remainder. Furthermore, the remainders are all different: no two

numbers in the range 1 to p — 1 are congruent modulo p, and by Lemma 4.6.2,

i-k=j-k (mod p)ifand only if i = j (mod p). Thus, the sequence of remainders

must contain all of the numbers from 1 to p — 1 in some order. |

3 A permutation of a sequence of elements is a reordering of the elements.
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For example, suppose p = 5 and k = 3. Then the sequence:

rem((1-3),5), rem((2-3),5), rem((3-3),5), rem((4-3),5)

=3 =1 =4 =2

is a permutation of 1, 2, 3, 4. As long as the Nazis don’t know the secret key k,

they don’t know how the set of possible messages are permuted by the process of

encryption and thus they can’t read encoded messages.

4.6.3 Fermat’s Little Theorem

An alternative approach to finding the inverse of the secret key £ in Turing’s code

(about equally efficient and probably more memorable) is to rely on Fermat’s Little

Theorem, which is much easier than his famous Last Theorem.

Theorem 4.6.4 (Fermat’s Little Theorem). Suppose p is a prime and k is not a multiple

of p. Then:

K1 =1 (mod p)
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Proof. We reason as follows:

p—Du=1-2---(p—1)

=rem(k,p) - rem(2k,p) - - - rem((p — 1)k, p) (by Cor 4.6.3)

=k-2k---(p— 1)k (mod p) (by Cor 4.5.2)

=(p—1)-k (mod p) (rearranging terms)
Now (p—1)!is not a multiple of p because the prime factorizationsof 1, 2, ..., (p—

1) contain only primes smaller than p. So by Lemma 4.6.2, we can cancel (p — 1)!

from the first and last expressions, which proves the claim. |

Here is how we can find inverses using Fermat’s Theorem. Suppose pis a prime

and k is not a multiple of p. Then, by Fermat’s Theorem, we know that:

EP72. k=1 (mod p)

Therefore, kP~2 must be a multiplicative inverse of k. For example, suppose that

we want the multiplicative inverse of 6 modulo 17. Then we need to compute
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rem(6'°,17), which we can do by successive squaring. All the congruences below

hold modulo 17.

64 = (62)2 =922=4

6° = (6*)> =4*=16

6°=6%-6*-62-6=16-4-2-6=3

Therefore, rem(6'°,17) = 3. Sure enough, 3 is the multiplicative inverse of 6 mod-

ulo 17, since:

3:6=1 (mod 17)

In general, if we were working modulo a prime p, finding a multiplicative in-

verse by trying every value between 1 and p — 1 would require about p operations.

However, the approach above requires only about [Illegible]2(?) log p operations,

which is far better when p is large.
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4.6.4 Breaking Turing’s Code—Again

The Germans didn’t bother to encrypt their weather reports with the highly-secure

Enigma system. After all, so what if the Allies learned that there was rain off the

south coast of Iceland? But, amazingly, this practice provided the British with a

critical edge in the Atlantic naval battle during 1941.

The problem was that some of those weather reports had originally been trans-

mitted using Enigma from U-boats out in the Atlantic. Thus, the British obtained

both unencrypted reports and the same reports encrypted with Enigma. By com-

paring the two, the British were able to determine which key the Germans were

using that day and could read all other Enigma-encoded traffic. Today, this would

be called a known-plaintext attack.

Let’s see how a known-plaintext attack would work against Turing’s code. Sup-

pose that the Nazis know both m and m* where:

*

m* =mk (mod p)
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Now they can compute:

mP~™% . m* = mP~?% - rem(mk, p) (def. (4.7) of m™)

P=2.mk (mod p) (by Cor 4.5.2)

m

mP~! .k (mod p)

=k (mod p) (Fermat’s Theorem)

Now the Nazis have the secret key k and can decrypt any message!

This is a huge vulnerability, so Turing’s code has no practical value. Fortu-

nately, Turing got better at cryptography after devising this code; his subsequent

deciphering of Enigma messages surely saved thousands of lives, if not the whole

of Britain.

4.6.5 Turing Postscript

A few years after the war, Turing’s home was robbed. Detectives soon determined

that a former homosexual lover of Turing’s had conspired in the robbery. So they

arrested him—that is, they arrested Alan Turing—because homosexuality was a
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British crime punishable by up to two years in prison at that time. Turing was

sentenced to a hormonal “treatment” for his homosexuality: he was given estrogen

injections. He began to develop breasts.

Three years later, Alan Turing, the founder of computer science, was dead. His

mother explained what happened in a biography of her own son. Despite her

repeated warnings, Turing carried out chemistry experiments in his own home.

Apparently, her worst fear was realized: by working with potassium cyanide while

eating an apple, he poisoned himself.

However, Turing remained a puzzle to the very end. His mother was a de-

voutly religious woman who considered suicide a sin. And, other biographers

have pointed out, Turing had previously discussed committing suicide by eating

a poisoned apple. Evidently, Alan Turing, who founded computer science and

saved his country, took his own life in the end, and in just such a way that his

mother could believe it was an accident.

Turing’s last project before he disappeared from public view in 1939 involved
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the construction of an elaborate mechanical device to test a mathematical conjec-
ture called the Riemann Hypothesis. This conjecture first appeared in a sketchy
paper by Bernhard Riemann in 1859 and is now one of the most famous unsolved

problem in mathematics.

4.6.6 Problems
Class Problems

Homework Problems

4.7 Arithmetic with an Arbitrary Modulus

Turing’s code did not work as he hoped. However, his essential idea—using num-
ber theory as the basis for cryptography—succeeded spectacularly in the decades
after his death.

In 1977, Ronald Rivest, Adi Shamir, and Leonard Adleman at MIT proposed a

highly secure cryptosystem (called RSA) based on number theory. Despite decades
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The Riemann Hypothesis

The formula for the sum of an infinite geometric series says:

2, 3 1
l+z+z+2°+--- =
1-z
Substituting = 3, ¢ = 3+, # = 75, and so on for each prime number gives a
sequence of equations:
LI ST
92s ' 92s | 93s T 1— 1/2s
[ S
3s 32s 33s T 1— 1/3s
A
55 525 53s - 1-1/58
etc.

Multiplying together all the left sides and all the right sides gives:

Sie ()

n=1 pEprimes

The sum on the left is obtained by multiplying out all the infinite series and apply-

ing the Fundamental Theorem of Arithmetic. For example, the term 1/300° in the


http://www.claymath.org/millennium/
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of attack, no significant weakness has been found. Moreover, RSA has a major

advantage over traditional codes: the sender and receiver of an encrypted mes-

sage need not meet beforehand to agree on a secret key. Rather, the receiver has

both a secret key, which she guards closely, and a public key, which she distributes

as widely as possible. The sender then encrypts his message using her widely-

distributed public key. Then she decrypts the received message using her closely-

held private key. The use of such a public key cryptography system allows you and

Amazon, for example, to engage in a secure transaction without meeting up be-

forehand in a dark alley to exchange a key.

Interestingly, RSA does not operate modulo a prime, as Turing’s scheme may

have, but rather modulo the product of fwo large primes. Thus, we’ll need to know

a bit about how arithmetic works modulo a composite number in order to under-

stand RSA. Arithmetic modulo an arbitrary positive integer is really only a little

more painful than working modulo a prime—though you may think this is like

the doctor saying, “This is only going to hurt a little,” before he jams a big needle
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in your arm.

4.7.1 Relative Primality

First, we need a new definition. Integers a and b are relatively prime iff ged(a, b) = 1.

For example, 8 and 15 are relatively prime, since ged(8, 15) = 1. Note that, except

for multiples of p, every integer is relatively prime to a prime number p.

Next we’ll need to generalize what we know about arithmetic modulo a prime

to work modulo an arbitrary positive integer n. The basic theme is that arithmetic

modulo n may be complicated, but the integers relatively prime to n remain fairly

well-behaved. For example, the proof of Lemma 4.6.1 of an inverse for £ modulo p

extends to an inverse for k relatively prime to n:

Lemma 4.7.1. Let n be a positive integer. If k is relatively prime to n, then there exists

an integer k™1 such that:

As a consequence of this lemma, we can cancel a multiplicative term from both
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sides of a congruence if that term is relatively prime to the modulus:

Corollary 4.7.2. Suppose n is a positive integer and k is relatively prime to n. If

ak = bk (mod n)

then

a=b (modn)

This holds because we can multiply both sides of the first congruence by k!

and simplify to obtain the second.

The following lemma is the natural generalization of Corollary 4.7.2.

Lemma 4.7.3. Suppose n is a positive integer and k is relatively prime ton. Let ky, ..., ky,

denote all the integers relatively prime to n in the range 1 to n — 1. Then the sequence:

rem(ky - k,n), rem(ks-k,n), rem(ks-k,n), .. yrem(k, - k,n)

is a permutation of the sequence:

[ R
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Proof. We will show that the remainders in the first sequence are all distinct and

are equal to some member of the sequence of k;’s. Since the two sequences have

the same length, the first must be a permutation of the second.

First, we show that the remainders in the first sequence are all distinct. Suppose

that rem(k;k,n) = rem(k;k,n). This is equivalent to k;k = k;k (mod n), which

implies k; = k; (mod n) by Corollary 4.7.2. This, in turn, means that k; = k;

since both are between 1 and n — 1. Thus, none of the remainder terms in the first

sequence is equal to any other remainder term.

Next, we show that each remainder in the first sequence equals one of the k;.

By assumption, ged(k;, n) = 1 and ged(k, n) = 1, which means that

ged(n, rem(k;k,n)) = ged(kik, n) (by part (5) of Lemma 4.2.4)

=1 (by part (3) of Lemma 4.2.4).

Since rem(k;k,n) is in the range from 0 to n — 1 by the definition of remainder,

and since it is relatively prime to n, it must (by definition of the k;’s) be equal to

some k;. u
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4.7.2 Euler’s Theorem

RSA relies heavily on a generalization of Fermat’s Theorem known as Euler’s The-

orem. For both theorems, the exponent of k£ needed to produce an inverse of k

modulo n depends on the number of integers in the set {1,2,...,n — 1} that are

relatively prime to n. This value is known as Euler’s ¢ function (a.k.a. Euler’s totient

function) and it is denoted as ¢(n). For example, ¢(7) = 6 since 1,2, 3,4, 5, and 6

are all relatively prime to 7. Similarly, ¢(12) = 4 since 1, 5, 7, and 11 are the only

numbers less than 12 that are relatively prime to 12.

If n is prime, then ¢(n) = n — 1 since every number less than a prime number

is relatively prime to that prime. When n is composite, however, the ¢ function

gets a little complicated. The following theorem characterizes the ¢ function for

composite n. We won't prove the theorem in its full generality, although we will

give a proof for the special case when n is the product of two primes since that is

the case that matters for RSA.

Theorem 4.7.4. The function ¢ obeys the following relationships:
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(a) If a and b are relatively prime, then ¢(ab) = ¢(a)d(b).

(b) If pis a prime, then ¢(p*) = p* — p*=L for k > 1.

Corollary 4.7.5. Let p{'p5?---p}’ be the unique prime factorization of an integer n

where py < py < --- < pj for j > 1. Then

o(n) = (P —p?" P — P57 .0 —p) )
For example,
6(300) = 6(22 -3 57)

= (22 -2")(3' = 3")(5* - 5"

=2-2-20

= 80.
Corollary 4.7.6. Let n = pq where p and q are different primes. Then ¢(n) = (p—1)(q—
1).

Corollary 4.7.6 follows easily from Corollary 4.7.5 and Theorem 4.7.4, but since

Corollary 4.7.6 is important to RSA and we have not provided a proof of Theo-
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rem 4.7.4, we will give a direct proof of Corollary 4.7.6 in what follows.

Proof of 4.7.6. Since p and ¢ are prime, any number that is not relatively prime to

n = pq must be a multiple of p or a multiple of g. Among the numbers 1, 2, ...,

pq — 1, there are precisely ¢ — 1 multiples of p and p — 1 multiples of ¢. Since p and ¢

are relatively prime and since the numbers under consideration are less than pq,

the ¢ — 1 multiples of p are different than the p — 1 multiples of ¢q. Hence,

p(n)=(pg—1)—(¢—1)—(p—1)

=pqg—q—p+1

=p-1(@-1),

as claimed. ]

We can now prove Euler’s Theorem:

Theorem 4.7.7 (Euler’s Theorem). Suppose n is a positive integer and k is relatively

prime to n. Then
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Proof. Let k1, ..., k, denote all integers relatively prime to n such that 0 < k; < n.

Then r = ¢(n), by the definition of the function ¢. The remainder of the proof

mirrors the proof of Fermat’s Theorem. In particular,

ky ko k,

=rem(ky - k,n) - rem(ks - k,n) - -rem(k, - k,n) (by Lemma 4.7.3)

=(ky k) (k2-k) - (kr-k) (mod n) (by Cor 4.5.2)

= (ky-ky---k.)- k" (mod n) (rearranging terms)

Part (3) of Lemma 4.2.4. implies that k - k3 - - - k, is relatively prime to n. So by

Corollary 4.7.2, we can cancel this product from the first and last expressions. This

proves the claim. [

We can find multiplicative inverses using Euler’s theorem as we did with Fer-

mat’s theorem: if k is relatively prime to n, then k#(™~1 is a multiplicative inverse

of k modulo n. However, this approach requires computing ¢(n). Computing ¢(n)

(using Corollary 4.7.5) if we know the prime factorization of n. Unfortunately, find-

ing the factors of n can be hard to do when 7 is large and so the Pulverizer is often
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the best approach to computing inverses mod 7.

4.8 The RSA Algorithm

Here, then, is the RSA public key encryption scheme:

Beforehand The receiver creates a public key and a secret key as follows.

1. Generate two distinct primes, p and g. Since they can be used to gener-

ate the secret key, they must be kept hidden.
2. Letn = pq.

3. Select an integer e such that ged(e, (p — 1)(¢ — 1)) = 1.

The public key is the pair (e, n). This should be distributed widely.

4. Compute d such that de = 1 (mod (p — 1)(¢ — 1)). This can be done
using the Pulverizer.

The secret key is the pair (d, n). This should be kept hidden!

Encoding Given a message m, the sender first checks that ged(m,n) = 1. The

4Tt would be very bad if ged(m, n) equals p or g since then it would be easy for someone to use the
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sender then encrypts message m to produce m’ using the public key:

m’ = rem(m®,n).

Decoding The receiver decrypts message m’ back to message m using the secret

key:

Why does decoding work? We need to show that the decryption rem((m’)¢,n)

is indeed equal to the sender’s message m. Since m’ = rem(m®,n), m’ is congruent

to m® modulo n by Corollary 4.5.1. That is,

By raising both sides to the power d, we obtain the congruence

(m")?=m® (mod n). (4.8)

encoded message to compute the secret key If gcd(m,n) = n, then the encoded message would be 0,

which is fairly useless.
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The encryption exponent e and the decryption exponent d are chosen such that
de =1 (mod (p —1)(¢ — 1)). So, there exists an integer r such thated = 1 + r(p —

1)(g¢ — 1). By substituting 1 + r(p — 1)(¢ — 1) for ed in4.8, we obtain

(m' ) =m - -m" P~V (mod n). 4.9)

By Euler’s Theorem and the assumption that gcd(m,n) = 1, we know that

m?®™ =1 (mod n).

From Corollary 4.7.6, we know that ¢(n) = (p — 1)(¢ — 1). Hence,

(m)? =m - m @Y= (mod n)

=m-1" (mod n)

=m (mod n).

Hence, the decryption process indeed reproduces the original message m.
Is it hard for someone without the secret key to decrypt th message? No one
knows for sure but it is generally believed that if n is a very large number (say,

with a thousand digits), then it is difficult to reverse engineer d from e and n. Of
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course, it is easy to compute d if you know p and ¢ (by using the Pulverizer) but it

is not known how to quickly factor n into p and ¢ when n is very large. Maybe with

a little more studying of number theory, you will be the first to figure out how to

do it. Although, we should warn you that Gauss worked on it for years without a

lot to show for his efforts. And if you do figure it out, you might wind up meeting

some serious-looking fellows in black suits. ...

4.8.1 Problems

Practice Problems

Class Problems

Homework Problems

Exam Problems
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Part 11

Mathematical Data Types
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Chapter 5

Sets and Relations

5.1 Sets

EDITING NOTE: We've been assuming that the concepts of sets, sequences, and
functions are already familiar ones, and we’ve mentioned them repeatedly. Now

we’ll do a quick review of the definitions. |

Propositions of the sort we’ve considered so far are good for reasoning about

individual statements, but not so good for reasoning about a collection of objects.

225
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Let’s first review a couple mathematical tools for grouping objects and then extend

our logical language to cope with such collections.

Informally, a set is a bunch of objects, which are called the elements of the set.

The elements of a set can be just about anything: numbers, points in space, or even

other sets. The conventional way to write down a set is to list the elements inside

curly-braces. For example, here are some sets:

A = {Alex, Tippy, Shells, Shadow} dead pets
B = {red,blue, yellow} primary colors
C = {{a,b},{a,c},{b,c}} a set of sets

This works fine for small finite sets. Other sets might be defined by indicating how

to generate a list of them:

D ={1,2,4,8,16,...} the powers of 2

The order of elements is not significant, so {z,y} and {y, 2} are the same set

written two different ways. Also, any object is, or is not, an element of a given
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set —there is no notion of an element appearing more than once in a set.! So

writing {z, 2} is just indicating the same thing twice, namely, that z is in the set. In

particular, {z,z} = {z}.

The expression e € S asserts that e is an element of set S. For example, 32 € D

and blue € B, but Tailspin ¢ A —yet.

Sets are simple, flexible, and everywhere. You'll find some set mentioned in

nearly every section of this text.

5.1.1 Some Popular Sets

Mathematicians have devised special symbols to represent some common sets.

symbol set elements

0 the empty set none

N nonnegative integers  {0,1,2,3,...}

Z integers {..,-3,-2,-1,0,1,2,3,...}
Q rational numbers 3, =2, 16, etc.

R real numbers 7, e, =9, V2, etc.

C complex numbers i, ¥, V2 —2i, etc.

A superscript “*” restricts a set to its positive elements; for example, R™ denotes

the set of positive real numbers. Similarly, R~ denotes the set of negative reals.

11t’s not hard to develop a notion of multisets in which elements can occur more than once, but

multisets are not ordinary sets.
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5.1.2 Comparing and Combining Sets

The expression S C T indicates that set S is a subset of set T, which means that

every element of S is also an element of T' (it could be that .S = T'). For example,

N C Z and Q C R (every rational number is a real number), but C € Z (not every

complex number is an integer).

As a memory trick, notice that the C points to the smaller set, just like a < sign

points to the smaller number. Actually, this connection goes a little further: there

is a symbol C analogous to <. Thus, S C T means that S is a subset of T, but the

two are not equal. So A C A, but A ¢ A, for every set A.

There are several ways to combine sets. Let’s define a couple of sets for use in

examples:

X ={1,2,3}

Y :={2,3,4}

® The union of sets X and Y (denoted X U Y') contains all elements appearing

in X or Y or both. Thus, X UY = {1,2, 3,4}
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e The intersection of X and Y (denoted X N Y') consists of all elements that

appearinboth X andY.So X NY = {2,3}.

* The set difference of X and Y (denoted X — Y') consists of all elements that

arein X, butnotin Y. Therefore, X — Y = {1} and Y — X = {4}

5.1.3 Complement of a Set

Sometimes we are focused on a particular domain, D. Then for any subset, A, of
D, we define A to be the set of all elements of D not in A. Thatis, A::= D — A. The
set A is called the complement of A.

For example, when the domain we’re working with is the real numbers, the
complement of the positive real numbers is the set of negative real numbers to-
gether with zero. That is,

R =R U{0}.

It can be helpful to rephrase properties of sets using complements. For exam-

ple, two sets, A and B, are said to be disjoint iff they have no elements in common,
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thatis, AN B = (). This is the same as saying that A is a subset of the complement

of B, thatis, A C B.

5.1.4 Power Set

The set of all the subsets of a set, 4, is called the power set, P(A), of A. So B € P(A)

iff B C A. For example, the elements of P({1,2}) are 0, {1} , {2} and {1, 2}.

More generally, if A has n elements, then there are 2" sets in P(A). For this

reason, some authors use the notation 24 instead of P(A).

5.1.5 Set Builder Notation

An important use of predicates is in set builder notation. We'll often want to talk

about sets that cannot be described very well by listing the elements explicitly or

by taking unions, intersections, etc., of easily-described sets. Set builder notation

often comes to the rescue. The idea is to define a set using a predicate; in particular,

the set consists of all values that make the predicate true. Here are some examples

of set builder notation:
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A:={n e N|nisaprime and n = 4k + 1 for some integer &}

Bu={zeR|z’-3z+1>0}

Cu={a+bicC|a®+20> <1}

The set A consists of all nonnegative integers n for which the predicate

“n is a prime and n = 4k + 1 for some integer k”

is true. Thus, the smallest elements of A are:

5,13,17,29,37,41,53,57,61,73, .. ..

Trying to indicate the set A by listing these first few elements wouldn’t work very
well; even after ten terms, the pattern is not obvious! Similarly, the set B consists

of all real numbers x for which the predicate

22 —3x+1>0

is true. In this case, an explicit description of the set B in terms of intervals would

require solving a cubic equation. Finally, set C consists of all complex numbers
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a + bi such that:

a?+2% <1

This is an oval-shaped region around the origin in the complex plane.

5.1.6 Proving Set Equalities

Two sets are defined to be equal if they contain the same elements. Thatis, X =Y
means that z € X if and only if z € Y, for all elements, z. (This is actually the
first of the ZFC axioms.) So set equalities can be formulated and proved as “iff”

theorems. For example:

Theorem 5.1.1 (Distributive Law for Sets). Let A, B, and C be sets. Then:

AN(BUC)=(ANB)U(ANC) (.1)

Proof. The equality (5.1) is equivalent to the assertion that

2€AN(BUC) iff z€ (ANB)U(ANC) (5.2)

for all z. Now we’ll prove (5.2) by a chain of iff’s.
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First we need a rule for distributing a propositional AND operation over an OR

operation. It’s easy to verify by truth-table that

Lemma 5.1.2. The propositional formulas

P AND (Q OR R)

and

(P AND Q) OR (P AND R)

are equivalent.

Now we have

z€ AN(BUCQC)
iff (z€ A)AND (z € BUC) (def of M)
iff (€ A)AND (2 € BORz € () (def of L)
iff (¢ AANDz€ B)OR(z€ AANDz € () (Lemma 5.1.2)
iff (z¢ANB)OR(z€ ANC) (def of N)

iff 2e(ANB)U(ANC) (def of U)
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5.1.7 Glossary of Symbols

meaning

symbol

Iw\%Jl<>:l-

ENDCﬁIﬂm('—'—'@
S

+

NNNZ=

oi=Ne)

is defined to be
and

or

implies

not

not P

not P

iff, equivalent
Xor

exists

for all

is a member of, belongs to

is a subset of, is contained by
is a proper subset of, is properly contained by

set union

set intersection
complement of the set A
powerset of the set A
the empty set, {}
nonnegative integers
integers

positive integers
negative integers
rational numbers
real numbers
complex numbers
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5.1.8 Problems

Homework Problems

5.2 The Logic of Sets

5.2.1 Russell’s Paradox

Reasoning naively about sets turns out to be risky. In fact, one of the earliest at-
tempts to come up with precise axioms for sets by a late nineteenth century logican
named Gotlob Frege was shot down by a three line argument known as Russell’s
Paradox:> This was an astonishing blow to efforts to provide an axiomatic founda-

tion for mathematics.

2Bertrand Russell was a mathematician/logician at Cambridge University at the turn of the Twen-

tieth Century. He reported that when he felt too old to do mathematics, he began to study and write

about philosophy, and when he was no longer smart enough to do philosophy, he began writing about

politics. He was jailed as a conscientious objector during World War I. For his extensive philosophical

and political writing, he won a Nobel Prize for Literature.
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Let S be a variable ranging over all sets, and define

W:a={S|S¢gS}.

So by definition,

SeWiffS¢s,

for every set S. In particular, we can let S be W, and obtain the contra-

dictory result that

WeWifWw ¢ Ww.

A way out of the paradox was clear to Russell and others at the time: it’s un-

justified to assume that W is a set. So the step in the proof where we let S be W has

no justification, because .S ranges over sets, and W may not be a set. In fact, the

paradox implies that 1V had better not be a set!

But denying that IV is a set means we must reject the very natural axiom that

every mathematically well-defined collection of elements is actually a set. So the

problem faced by Frege, Russell and their colleagues was how to specify which



5.2. THE LOGIC OF SETS 237

well-defined collections are sets. Russell and his fellow Cambridge University col-

league Whitehead immediately went to work on this problem. They spent a dozen

years developing a huge new axiom system in an even huger monograph called

Principia Mathematica.

5.2.2 The ZFC Axioms for Sets

It's generally agreed that, using some simple logical deduction rules, essentially

all of mathematics can be derived from some axioms about sets called the Axioms

of Zermelo-Frankel Set Theory with Choice (ZFC).

We're not going to be working with these axioms in this course, but we thought

you might like to see them —and while you're at it, get some practice reading quan-

tified formulas:

Extensionality. Two sets are equal if they have the same members. In formal log-

ical notation, this would be stated as:

(Vz. (2 € T IFF z € y)) IMPLIES & = y.
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Pairing. For any two sets z and y, there is a set, {z,y}, with z and y as its only

elements:

V,y. Ju. Vz. [z € wIFF (z = £ OR z = y)]

Union. The union, u, of a collection, z, of sets is also a set:

Vz. JuVz. (Jy. x € y ANDy € 2) IFF x € u.

Infinity. There is an infinite set. Specifically, there is a nonempty set, x, such that

for any set y € x, the set {y} is also a member of x.

EDITING NOTE:

Subset. Given any set, z, and any proposition P (y), there is a set containing

precisely those elements y € « for which P(y) holds.

Power Set. All the subsets of a set form another set:

Vz. dp. Yu. u C ¢ IFF u € p.
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Replacement. Suppose a formula, ¢, of set theory defines the graph of a function,

that is,

Va,y, z. [¢(x,y) AND ¢(x, z)] IMPLIES y = z.

Then the image of any set, s, under that function is also a set, . Namely,

Vs It Vy. [Fz. d(z,y) IFFy € ).

Foundation. There cannot be an infinite sequence

cEx, €0 €21 € X

of sets each of which is a member of the previous one. This is equivalent

to saying every nonempty set has a “member-minimal” element. Namely,

define

member-minimal(m, x) ::= [m € £ ANDVy € z.y ¢ m)].

Then the Foundation axiom is

V. z # () IMPLIES 3m. member-minimal(m, x).
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EDITING NOTE: If well-founded posets are defined, then rephrase Foun-

dation as The € relation on sets is well-founded. |

Choice. Given a set, s, whose members are nonempty sets no two of which have
any element in common, then there is a set, ¢, consisting of exactly one ele-

ment from each set in s.

EDITING NOTE:

JyVzVw ((z € w AND w € x)IMPLIES
FvIu(It((u € wWAND weEt) AND(u € t ANDE € y))
[FFu = v))

5.2.3 Avoiding Russell’s Paradox

These modern ZFC axioms for set theory are much simpler than the system Russell
and Whitehead first came up with to avoid paradox. In fact, the ZFC axioms are

as simple and intuitive as Frege’s original axioms, with one technical addition: the
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Foundation axiom. Foundation captures the intuitive idea that sets must be built

up from “simpler” sets in certain standard ways. And in particular, Foundation

implies that no set is ever a member of itself. So the modern resolution of Russell’s

paradox goes as follows: since S ¢ S for all sets S, it follows that W, defined

above, contains every set. This means W can’t be a set —or it would be a member

of itself.

5.24 Does All This Really Work?

So this is where mainstream mathematics stands today: there is a handful of ZFC

axioms from which virtually everything else in mathematics can be logically de-

rived. This sounds like a rosy situation, but there are several dark clouds, suggest-

ing that the essence of truth in mathematics is not completely resolved.

¢ The ZFC axioms weren't etched in stone by God. Instead, they were mostly

made up by some guy named Zermelo. Probably some days he forgot his

house keys.
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So maybe Zermelo, just like Frege, didn’t get his axioms right and will be

shot down by some successor to Russell who will use Zermelo’s axioms to

prove a proposition P and its negation NOT P. Then math would be broken.

This sounds crazy, but after all, it has happened before.

In fact, while there is broad agreement that the ZFC axioms are capable of

proving all of standard mathematics, the axioms have some further conse-

quences that sound paradoxical. For example, the Banach-Tarski Theorem

says that, as a consequence of the Axiom of Choice, a solid ball can be di-

vided into six pieces and then the pieces can be rigidly rearranged to give

two solid balls, each the same size as the original!

* Georg Cantor was a contemporary of Frege and Russell who first developed

the theory of infinite sizes (because he thought he needed it in his study of

Fourier series). Cantor raised the question whether there is a set whose size

is strictly between the “smallest’” infinite set, N, and P(N); he guessed not:

3See Problem ??
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Cantor’s Continuum Hypothesis: There is no set, A, such that P(N) is strictly

bigger than A and A is strictly bigger than N.

The Continuum Hypothesis remains an open problem a century later. Its

difficulty arises from one of the deepest results in modern Set Theory —

discovered in part by Godel in the 1930’s and Paul Cohen in the 1960's —

namely, the ZFC axioms are not sufficient to settle the Continuum Hypoth-

esis: there are two collections of sets, each obeying the laws of ZFC, and in

one collection the Continuum Hypothesis is true, and in the other it is false.

So settling the Continuum Hypothesis requires a new understanding of what

Sets should be to arrive at persuasive new axioms that extend ZFC and are

strong enough to determine the truth of the Continuum Hypothesis one way

or the other.

e But even if we use more or different axioms about sets, there are some un-

avoidable problems. In the 1930’s, Godel proved that, assuming that an ax-

iom system like ZFC is consistent —meaning you can’t prove both P and
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NOT(P) for any proposition, P —then the very proposition that the system
is consistent (which is not too hard to express as a logical formula) cannot be
proved in the system. In other words, no consistent system is strong enough

to verify itself.

5.3 Sequences

Sets provide one way to group a collection of objects. Another way is in a sequence,
which is a list of objects called terms or components. Short sequences are commonly
described by listing the elements between parentheses; for example, (a,b,c) is a
sequence with three terms.

While both sets and sequences perform a gathering role, there are several dif-

ferences.

* The elements of a set are required to be distinct, but terms in a sequence can
be the same. Thus, (a, b, a) is a valid sequence of length three, but {a, b, a} is

a set with two elements —not three.
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* The terms in a sequence have a specified order, but the elements of a set do
not. For example, (a,b,c) and (a, c,b) are different sequences, but {a,b, c}

and {a, ¢, b} are the same set.

e Texts differ on notation for the empty sequence; we use A for the empty se-

quence.

The product operation is one link between sets and sequences. A product of sets,
S1 xSy % - x.8y,,1s anew set consisting of all sequences where the first component
is drawn from S, the second from S5, and so forth. For example, Nx{a, b} is the set
of all pairs whose first element is a nonnegative integer and whose second element

isanaorab:

N x {a,b} = {(0,a), (0,b), (1,a),(1,0),(2,a),(2,b),...}

A product of n copies of a set S is denoted S™. For example, {0, 1} is the set of all

3-bit sequences:

{0, 1}3 = {(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)}
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5.4 Functions

A function assigns an element of one set, called the domain, to elements of another

set, called the codomain. The notation

f:A— B

indicates that f is a function with domain, A, and codomain, B. The familiar

notation “f(a) = b” indicates that f assigns the element b € B to a. Here b would

be called the value of f at arqument a.

Functions are often defined by formulas as in:

where z is a real-valued variable, or

fa(y, 2) == y10yz

where y and z range over binary strings, or

fa(z,n) ::= the pair (n, x)

where n ranges over the nonnegative integers.
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A function with a finite domain could be specified by a table that shows the

value of the function at each element of the domain. For example, a function

f4(P, Q) where P and @ are propositional variables is specified by:

P Q] fa(PQ)
F| F

F

F F

Notice that f, could also have been described by a formula:

f4(P,Q) ::= [P IMPLIES Q).

A function might also be defined by a procedure for computing its value at any

element of its domain, or by some other kind of specification. For example, define

f5(y) to be the length of a left to right search of the bits in the binary string y until

a 1 appears, so

f5(0010) = 3,

f5(100) = 1a

f5(0000) is undefined.

Notice that f5 does not assign a value to any string of just 0’s. This illustrates
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an important fact about functions: they need not assign a value to every element in

the domain. In fact this came up in our first example f;(x) = 1/2%, which does not

assign a value to 0. So in general, functions may be partial functions, meaning that

there may be domain elements for which the function is not defined. If a function

is defined on every element of its domain, it is called a fotal function.

It’s often useful to find the set of values a function takes when applied to the

elements in a set of arguments. So if f : A — B, and S is a subset of A, we define

f(S) to be the set of all the values that f takes when it is applied to elements of S.

That is,

f(S):={be B| f(s) =bforsomes € S}.

For example, if we let [r, s] denote the interval from r to s on the real line, then

f([L,2]) = [1/4,1].

For another example, let’s take the “search for a 1” function, f5. If we let X be

the set of binary words which start with an even number of 0’s followed by a 1,

then f5(X) would be the odd nonnegative integers.
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Applying f to a set, S, of arguments is referred to as “applying f pointwise to

S”,and the set f(S) is referred to as the image of S under f.* The set of values that

arise from applying f to all possible arguments is called the range of f. That is,

range (f) == f(domain (f)).

Some authors refer to the codomain as the range of a function, but they shouldn’t.

The distinction between the range and codomain will be important in Sections 5.5.4

and 5.6 when we relate sizes of sets to properties of functions between them.

5.4.1 Function Composition

Doing things step by step is a universal idea. Taking a walk is a literal example, but

so is cooking from a recipe, executing a computer program, evaluating a formula,

and recovering from substance abuse.

4There is a picky distinction between the function f which applies to elements of A and the function

which applies f pointwise to subsets of A, because the domain of f is A, while the domain of pointwise-

fis P(A). It is usually clear from context whether f or pointwise-f is meant, so there is no harm in

overloading the symbol f in this way.
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Abstractly, taking a step amounts to applying a function, and going step by

step corresponds to applying functions one after the other. This is captured by the

operation of composing functions. Composing the functions f and g means that

first f applied is to some argument, z, to produce f(z), and then g is applied to

that result to produce g(f(z)).

Definition 5.4.1. For functions f : A — B and g : B — C, the composition, g o f, of

g with f is defined to be the function 4 : A — C defined by the rule:

forall x € A.

Function composition is familiar as a basic concept from elementary calculus,

and it plays an equally basic role in discrete mathematics.

5.5 Relations

Relations are another fundamental mathematical data type. Equality and “less-

than” are very familiar examples of mathematical relations. These are called binary
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relations because they apply to a pair (a, b) of objects; the equality relation holds for
the pair when a = b, and less-than holds when a and b are real numbers and a < b.
In this section we’ll define some basic vocabulary and properties of binary re-

lations.

5.5.1 Binary Relations and Functions

Binary relations are far more general than equality or less-than. Here’s the official

definition:

Definition 5.5.1. A binary relation, R, consists of a set, A, called the domain of R, a

set, B, called the codomain of R, and a subset of A x B called the graph of R.

Notice that Definition 5.5.1 is exactly the same as the definition in Section 5.4
of a function, except that it doesn’t require the functional condition that, for each
domain element, q, there is at most one pair in the graph whose first coordinate is
a. So a function is a special case of a binary relation.

A relation whose domain is A and codomain is B is said to be “between A and
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B”, or “from A to B.” When the domain and codomain are the same set, A, we
simply say the relation is “on A.” It's common to use infix notation “a R b” to
mean that the pair (a, b) is in the graph of R.

For example, we can define an “in-charge of” relation, 7', for MIT in Spring "10
to have domain equal to the set, F, of names of the faculty and codomain equal to
all the set, IV, of subject numbers in the current catalogue. The graph of 7" contains

precisely the pairs of the form
({(instructor-name) , (subject-num))

such that the faculty member named (instructor-name) is in charge of the subject

with number (subject-num) in Spring “10. So graph (T') contains pairs like

(A. R. Meyer, 6.042),

(A. R. Meyer, 18.062),
(A. R. Meyer, 6.844),

(T. Leighton, 6.042),

(T. Leighton, 18.062),
(G, Freeman, 6.011),

(G. Freeman,

(G. Freeman,

(G. Freeman,

(T. Eng,

(J. Guttag,

G)C)

i—]
o Oy O OO O
(@)
pd
H
— — —

This is a surprisingly complicated relation: Meyer is in charge of subjects with
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three numbers. Leighton is also in charge of subjects with two of these three num-

bers —because the same subject, Mathematics for Computer Science, has two num-

bers: 6.042 and 18.062, and Meyer and Leighton are co-in-charge of the subject.

Freeman is in-charge of even more subjects numbers (around 20), since as Depart-

ment Education Officer, he is in charge of whole blocks of special subject numbers.

Some subjects, like 6.844 and 6.00 have only one person in-charge. Some faculty,

like Guttag, are in charge of only one subject number, and no one else is co-in-

charge of his subject, 6.00.

Some subjects in the codomain, IV, do not appear in the list —that is, they are

not an element of any of the pairs in the graph of T'; these are the Fall term only

subjects. Similarly, there are faculty in the domain, F, who do not appear in the

list because all their in-charge subjects are Fall term only.

5.5.2 Relational Images

The idea of the image of a set under a function extends directly to relations.
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Definition 5.5.2. The image of a set, Y, under a relation, R, written R(Y"), is the set

of elements of the codomain, B, of R that are related to some element in Y, namely,

R(Y):={be B|yRbforsomey e Y}.

For example, to find the subject numbers that Meyer is in charge of in Spring

’09, we can look for all the pairs of the form

(A. Meyer, (subject-number))

in the graph of the teaching relation, 7', and then just list the right hand sides

of these pairs. These righthand sides are exactly the image 7'(A. Meyer), which

happens to be {6.042,18.062,6.844}. Similarly, to find the subject numbers that

either Freeman or Eng are in charge of, we can collect all the pairs in 7" of the form

(G. Freeman, (subject-number))

or

(T. Eng, (subject-number));

and list their right hand sides. These right hand sides are exactly the image 7'({G. Freeman, T. Eng}.
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So the partial list of pairs in T" given above implies that

{6.011, 6.881, 6.882, 6.UAT} C T({G.Freeman,T. Eng}.

Finally, since the domain, F, is the set of all in-charge faculty, T'(F') is exactly the

set of all Spring '09 subjects being taught.

5.5.3 Inverse Relations and Images

Definition 5.5.3. The inverse, R~ of a relation R : A — B is the relation from B to

A defined by the rule

bR 'a1FFa R B.

The image of a set under the relation, R~!, is called the inverse image of the set.

That is, the inverse image of a set, X, under the relation, R, is R7Y(X).

Continuing with the in-charge example above, we can find the faculty in charge

of 6.UAT in Spring "10 can be found by taking the pairs of the form

({instructor-name) , 6.U AT)

in the graph of the teaching relation, 7', and then just listing the left hand sides of
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these pairs; these turn out to be just Eng and Freeman. These left hand sides are

exactly the inverse image of {6.UAT} under T

Now let D be the set of introductory course 6 subject numbers. These are the

subject numbers that start with 6.0. Now we can likewise find out all the instruc-

tors who were in-charge of introductory course 6 subjects in Spring ‘09, by taking

all the pairs of the form ((instructor-name),6.0...) and list the left hand sides of

these pairs. These left hand sides are exactly the inverse image of of D under 7.

From the part of the graph of T'shown above, we can see that

{Meyer, Leighton, Freeman, Guttag} C 71 (D).

That is, Meyer, Leighton, Freeman, and Guttag were among the instructors in

charge of introductory subjects in Spring "10. Finally, the inverse image under 7" of

the set, IV, of all subject numbers is the set of all instructors who were in charge of

a Spring ’09 subject.

It gets interesting when we write composite expressions mixing images, inverse

images and set operations. For example, T'(T~!(D)) is the set of Spring 09 subjects
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that have an instructor in charge who also is in in charge of an introductory subject.

So T(T~1(D)) — D are the advanced subjects with someone in-charge who is also

in-charge of an introductory subject. Similarly, 7~ (D) N T~!(N — D) is the set of

faculty in charge of both an introductory and an advanced subject in Spring "09.

5.5.4 Surjective and Injective Relations

There are a few properties of relations that will be useful when we take up the topic

of counting because they imply certain relations between the sizes of domains and

codomains. We say a binary relation R : A — B is:

* surjective when every element of B is mapped to at least once; more concisely,

R is surjective iff R(A) = B.

e total when every element of A is assigned to some element of B; more con-

cisely, R is total iff A = R~!(B).

e injective if every element of B is mapped to at most once, and
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* bijective if R is total, surjective, and injective function.5

Note that this definition of R being total agrees with the definition in Section 5.4

when R is a function.

If R is a binary relation from A to B, we define R(A) to to be the range of R. So

a relation is surjective iff its range equals its codomain. Again, in the case that R

is a function, these definitions of “range” and “total” agree with the definitions in

Section 5.4.

5.5.5 Relation Diagrams

We can explain all these properties of a relation R : A — B in terms of a diagram

where all the elements of the domain, A, appear in one column (a very long one if

A is infinite) and all the elements of the codomain, B, appear in another column,

and we draw an arrow from a point a in the first column to a point b in the sec-

o

5These words “surjective,” “injective,” and “bijective” are not very memorable. Some authors use

the possibly more memorable phrases onto for surjective, one-to-one for injective, and exact correspondence

for bijective.
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ond column when a is related to b by R. For example, here are diagrams for two

functions:
A B A B
a —— 1 a — 1
b 2 b 2
C 3 c 3
d 4 d 4
e 5

Here is what the definitions say about such pictures:

* “Ris a function” means that every point in the domain column, A, has at

most one arrow out of it.

* “Ris total” means that every point in the A column has at least one arrow out of

it. So if R is a function, being total really means every point in the A column

has exactly one arrow out of it.

* “R is surjective” means that every point in the codomain column, B, has at

least one arrow into it.

* “R is injective” means that every point in the codomain column, B, has at

most one arrow into it.
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* “Risbijective” means that every point in the A column has exactly one arrow

out of it, and every point in the B column has exactly one arrow into it.

So in the diagrams above, the relation on the left is a total, surjective function

(every element in the A column has exactly one arrow out, and every element in

the B column has at least one arrow in), but not injective (element 3 has two arrows

going into it). The relation on the right is a total, injective function (every element

in the A column has exactly one arrow out, and every element in the B column has

at most one arrow in), but not surjective (element 4 has no arrow going into it).

Notice that the arrows in a diagram for R precisely correspond to the pairs in

the graph of R. But graph (R) does not determine by itself whether R is total or

surjective; we also need to know what the domain is to determine if R is total, and

we need to know the codomain to tell if it’s surjective.

Example 5.5.4. The function defined by the formula 1/z? is total if its domain is

R but partial if its domain is some set of real numbers including 0. It is bijective

if its domain and codomain are both R*, but neither injective nor surjective if its
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domain and codomain are both R.

5.6 Cardinality

5.6.1 Mappings and Cardinality

The relational properties in Section 5.5 are useful in figuring out the relative sizes
of domains and codomains.

If A is a finite set, we let |A| be the number of elements in A. A finite set may
have no elements (the empty set), or one element, or two elements,.. . or any non-
negative integer number of elements.

Now suppose R : A — B is a function. Then every arrow in the diagram for
R comes from exactly one element of A, so the number of arrows is at most the

number of elements in A. That is, if R is a function, then

|A| > #arrows.

Similarly, if R is surjective, then every element of B has an arrow into it, so there
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must be at least as many arrows in the diagram as the size of B. That is,

#arrows > |B|.

Combining these inequalities implies that if R is a surjective function, then |A| >

|B|. In short, if we write A surj B to mean that there is a surjective function from

A to B, then we've just proved a lemma: if A surj B, then |A| > |B|. The following

definition and lemma lists this statement and three similar rules relating domain

and codomain size to relational properties.

Definition 5.6.1. Let A, B be (not necessarily finite) sets. Then

1. Asurj B iff there is a surjective function from A to B.

2. Ainj B iff there is a total injective relation from A to B.

3. Abij B iff there is a bijection from A to B.

4. Astrict B iff A surj B, but not B surj A.

Lemma 5.6.2. [Mapping Rules] Let A and B be finite sets.

1. If Asurj B, then |A| > |B].



5.6. CARDINALITY 263

2. If Ainj B, then |A| < |B].

3. If R bij B, then |A| = |B|.

4. If R strict B, then |A| > |B|.

Mapping rule 2. can be explained by the same kind of “arrow reasoning” we

used for rule 1. Rules 3. and 4. are immediate consequences of these first two

mapping rules.

5.6.2 The sizes of infinite sets

Mapping Rule 1 has a converse: if the size of a finite set, 4, is greater than or equal

to the size of another finite set, B, then it’s always possible to define a surjective

function from A to B. In fact, the surjection can be a total function. To see how this

works, suppose for example that

A= {ao,al,az,ag,a4,a5}

B = {b()7b17b27b3} .
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Then define a total function f : A — B by the rules

flag) :=bo, flar) :=0b1, f(az) :=bs, f(as) = f(as) = f(as) ::= bs.

EDITING NOTE:

_f((lj) = bmin(i.fﬁ) )

fori=0,...,5. Since 5 > 3, this f is a surjection. [ |

In fact, if A and B are finite sets of the same size, then we could also define a

bijection from A to B by this method.

In short, we have figured out if A and B are finite sets, then |A| > |B| if and only

if A surj B, and similar iff’s hold for all the other Mapping Rules:
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Lemma 5.6.3. For finite sets, A, B,

Al > |B| iff AsujB,

Al < |B| iff AinjB,

Al =B iff AbijB,

|A| > |B| iff Astrict B.

This lemma suggests a way to generalize size comparisons to infinite sets,

namely, we can think of the relation surj as an “at least as big as” relation between

sets, even if they are infinite. Similarly, the relation bij can be regarded as a “same

size” relation between (possibly infinite) sets, and strict can be thought of as a

“strictly bigger than” relation between sets.

Warning: We haven’t, and won’t, define what the “size” of an infinite is. The

definition of infinite “sizes” is cumbersome and technical, and we can get by just

fine without it. All we need are the “as big as” and “same size” relations, surj and

bij, between sets.
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But there’s something else to watch out for. We’ve referred to surj as an “as

big as” relation and bij as a “same size” relation on sets. Of course most of the “as

big as” and “same size” properties of surj and bij on finite sets do carry over to

infinite sets, but some important ones don’t —as we’re about to show. So you have to

be careful: don’t assume that surj has any particular “as big as” property on infinite

sets until it’s been proved.

Let’s begin with some familiar properties of the “as big as” and “same size”

relations on finite sets that do carry over exactly to infinite sets:

Lemma 5.6.4. For any sets, A, B,C,

1. Asurj Band B surj C, implies A surjC.

2. Abij Band B bij C, implies AbijC.

3. Abij B implies B bij A.

Lemma 5.6.4.1 and 5.6.4.2 follow immediately from the fact that compositions

of surjections are surjections, and likewise for bijections, and Lemma 5.6.4.3 fol-

lows from the fact that the inverse of a bijection is a bijection. We'll leave a proof
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of these facts to Problem ??.

Another familiar property of finite sets carries over to infinite sets, but this time

it’s not so obvious:

Theorem 5.6.5 (Schroder-Bernstein). For any sets A, B, if A surj B and B surj A,

then A bij B.

That is, the Schroder-Bernstein Theorem says that if A is at least as big as B

and conversely, B is at least as big as A, then A is the same size as B. Phrased

this way, you might be tempted to take this theorem for granted, but that would

be a mistake. For infinite sets A and B, the Schroder-Bernstein Theorem is actually

pretty technical. Just because there is a surjective function f : A — B —which

need not be a bijection —and a surjective function g : B — A —which also need

not be a bijection —it’s not at all clear that there must be a bijectione : A — B. The

idea is to construct e from parts of both f and g. We'll leave the actual construction

to Problem ??.
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5.6.3 Infinity is different

A basic property of finite sets that does not carry over to infinite sets is that adding

something new makes a set bigger. That is, if A is a finite set and b ¢ A, then

|[AU{b}| =|A| +1,and so A and A U {b} are not the same size. But if A is infinite,

then these two sets are the same size!

Lemma 5.6.6. Let A beasetand b ¢ A. Then A is infinite iff A bij AU {b}.

Proof. Since A is not the same size as AU{b} when A is finite, we only have to show

that AU {b} is the same size as A when A is infinite.

That is, we have to find a bijection between A U {b} and A when A is infinite.

Here’s how: since A is infinite, it certainly has at least one element; call it ay. But

since A is infinite, it has at least two elements, and one of them must not be equal

to ag; call this new element a;. But since A is infinite, it has at least three elements,

one of which must not equal ag or a;; call this new element a,. Continuing in the

way, we conclude that there is an infinite sequence ag, a1, az, . . ., Gy, . . . of different
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elements of A. Now it’s easy to define a bijectione : AU {b} — A:

e(b) == ay,
e(an) = ant1 forn € N,
e(a) i=a fora € A—{b,ap,a1,...}.

A set, C, is countable iff its elements can be listed in order, that is, the distinct

elements is A are precisely

CoyCly-+-3Cpyennn

This means that if we defined a function, f, on the nonnegative integers by the rule

that f(4) ::= ¢;, then f would be a bijection from N to C'. More formally,

Definition 5.6.7. A set, C, is countably infinite iff N bij C. A set is countable iff it is

finite or countably infinite.

A small modification® of the proof of Lemma 5.6.6 shows that countably infinite

sets are the “smallest” infinite sets, namely, if A is a countably infinite set, then

6See Problem ??
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A surj N.

Since adding one new element to an infinite set doesn’t change its size, it’s

obvious that neither will adding any finite number of elements. It's a common

mistake to think that this proves that you can throw in countably infinitely many

new elements. But just because it’s ok to do something any finite number of times

doesn’t make it OK to do an infinite number of times. For example, starting from

3, you can add 1 any finite number of times and the result will be some integer

greater than or equal to 3. But if you add add 1 a countably infinite number of

times, you don’t get an integer at all.

It turns out you really can add a countably infinite number of new elements

to a countable set and still wind up with just a countably infinite set, but another

argument is needed to prove this:

Lemma 5.6.8. If A and B are countable sets, then so is AU B.

Proof. Suppose the list of distinct elements of A is ag,a,... and the list of B is
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bo, b1, . ... Then a list of all the elements in A U B is just

ao,bo,al,bl,...an,bn,.... (53)

Of course this list will contain duplicates if A and B have elements in common,

but then deleting all but the first occurrences of each element in list (5.3) leaves a

list of all the distinct elements of A and B. [ |

5.6.4 Power sets are strictly bigger

It turns out that the ideas behind Russell’s Paradox, which caused so much trouble

for the early efforts to formulate Set Theory, also lead to a correct and astonishing

fact discovered by Georg Cantor in the late nineteenth century: infinite sets are not

all the same size.

In particular,

Theorem 5.6.9. For any set, A, the power set, P(A), is strictly bigger than A.

Proof. First of all, P(A) is as big as A: for example, the partial function f : P(A4) —

A, where f({a}) :==a for a € A and f is only defined on one-element sets, is a
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surjection.

To show that P(A) is strictly bigger than A, we have to show that if g is a func-

tion from A to P(A), then g is not a surjection. So, mimicking Russell’s Paradox,

define

Agi={acAla¢gla)}.

Now A, is a well-defined subset of A, which means it is a member of P(A). But

A, can’t be in the range of g, because if it were, we would have

for some ag € A, so by definition of A,

a€glag) iff ac Ay, iff ad¢g(a)

for all a € A. Now letting a = a yields the contradiction

ag € g(ag) iff ag ¢ g(aop).

So g is not a surjection, because there is an element in the power set of A, namely

the set A, that is not in the range of g. |
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Larger Infinities

There are lots of different sizes of infinite sets. For example, starting with the infi-

nite set, N, of nonnegative integers, we can build the infinite sequence of sets

N, P(N), P(P(N)), P(P(P(N))), - ...

By Theorem 5.6.9, each of these sets is strictly bigger than all the preceding ones.
But that’s not all: the union of all the sets in the sequence is strictly bigger than each
set in the sequence (see Problem ??). In this way you can keep going, building still
bigger infinities.

So there is an endless variety of different size infinities.

5.7 Infinities in Computer Science

We've run into a lot of computer science students who wonder why they should
care about infinite sets. They point out that any data set in a computer memory
is limited by the size of memory, and there is a finite limit on the possible size of

computer memory for the simple reason that the universe is (or at least appears to
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be) finite.

The problem with this argument is that universe-size bounds on data items are

so big and uncertain (the universe seems to be getting bigger all the time), that it’s

simply not helpful to make use of such bounds. For example, by this argument

the physical sciences shouldn’t assume that measurements might yield arbitrary

real numbers, because there can only be a finite number of finite measurements in

a universe with a finite lifetime. What do you think scientific theories would look

like without using the infinite set of real numbers?

Similarly, in computer science it simply isn’t plausible that writing a program

to add nonnegative integers with up to as many digits as, say, the stars in the sky

(billions of galaxies each with billions of stars), would be any different than writing

a program that would add any two integers no matter how many digits they had.

That’s why basic programming data types like integers or strings, for example,

can be defined without imposing any bound on the sizes of data items. Each datum

of type st ring has only a finite number of letters, but there are an infinite number
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of data items of type string. When we then consider string procedures of type

string-->string, not only are there an infinite number of such procedures, but

each procedure generally behaves differently on different inputs, so that a single

string-->string procedure may embody an infinite number of behaviors. In

short, an educated computer scientist can’t get around having to cope with infinite

sets.

On the other hand, the more exotic theory of different size infinities and contin-

uum hypotheses rarely comes up in mainstream mathematics, and it hardly comes

up at all in computer science, where the focus is mainly on finite sets, and occasion-

allly on countable sets. In practice, only logicians and set theorists have to worry

about collections that are too big to be sets. In fact, at the end of the 19th century,

the general mathematical community doubted the relevance of what they called

“Cantor’s paradise” of unfamiliar sets of arbitrary infinite size. So if the romance

of really big infinities doesn’t appeal to you, be assured that not knowing about

them won’t lower your professional abilities as a computer scientist.
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Yet the idea behind Russell’s paradox and Cantor’s proof embodies the sim-

plest form of what is known as a “diagonal argument.” Diagonal arguments are

used to prove many fundamental results about the limitations of computation,

such as the undecidability of the Halting Problem for programs (see Problem ?7?)

and the inherent, unavoidable, inefficiency (exponential time or worse) of proce-

dures for other computational problems. So computer scientists do need to study

diagonal arguments in order to understand the logical limits of computation.

5.7.1 Problems

Practice Problems

Class Problems

EDITING NOTE: Add problem that the 4" time-bounded halting problem re-

quires time 2". |

Homework Problems



Chapter 6

Recursive Data Types

Recursive data types play a central role in programming. From a mathematical point
of view, recursive data types are what induction is about. Recursive data types are
specified by recursive definitions that say how to build something from its parts.

These definitions have two parts:
¢ Base case(s) that don’t depend on anything else.

¢ Constructor case(s) that depend on previous cases.

277
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6.1 Strings of Brackets

Let brkts be the set of all strings of square brackets. For example, the following

two strings are in brkts:

[ITOCCCCIT and [LCTTCTIT] (6.1)

Since we're just starting to study recursive data, just for practice we’ll formulate

brkts as a recursive data type,

Definition 6.1.1. The data type, brkts, of strings of brackets is defined recur-

sively:

* Base case: The empty string, A, is in brkts.

e Constructor case: If s € brkts, then s] and s[ arein brkts.

Here we're writing s] to indicate the string that is the sequence of brackets (if
any) in the string s, followed by a right bracket; similarly for s| .
A string, s € brkts, is called a matched string if its brackets “match up” in

the usual way. For example, the left hand string above is not matched because its
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second right bracket does not have a matching left bracket. The string on the right

is matched.

We're going to examine several different ways to define and prove properties

of matched strings using recursively defined sets and functions. These properties

are pretty straighforward, and you might wonder whether they have any partic-

ular relevance in computer scientist —other than as a nonnumerical example of

recursion. The honest answer is “not much relevance, any more.” The reason for

this is one of the great successes of computer science.
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Expression Parsing

During the early development of computer science in the 1950’s and 60’s, creation

of effective programming language compilers was a central concern. A key aspect

in processing a program for compilation was expression parsing. The problem was

to take in an expression like

ryx sy +7

and put in the brackets that determined how it should be evaluated —should it be

[z +y]*2*+y]+7, or,

x+[y*z2+[y+7]], or,

[z 4 [y« 2°]) + [y + 7],

The Turing award (the “Nobel Prize” of computer science) was ultimately be-

stowed on Robert Floyd, for, among other things, being discoverer of a simple

program that would insert the brackets properly.
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One precise way to determine if a string is matched is to start with 0 and read

the string from left to right, adding 1 to the count for each left bracket and sub-

tracting 1 from the count for each right bracket. For example, here are the counts

for the two strings above

L1 1roorrrotr1ri111
010 -101234321°0
Lo 11011711
0012 32121010

A string has a good count if its running count never goes negative and ends with 0.

So the second string above has a good count, but the first one does not because its

count went negative at the third step.

Definition 6.1.2. Let

GoodCount ::= {s € brkts | s has a good count} .

The matched strings can now be characterized precisely as this set of strings

with good counts. But it turns out to be really useful to characterize the matched

strings in another way as well, namely, as a recursive data type:

Definition 6.1.3. Recursively define the set, RecMatch, of strings as follows:
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e Base case: A € RecMatch.

¢ Constructor case: If s, € RecMatch, then

[ s1t € RecMatch.

Here we're writing [ s ]¢ to indicate the string that starts with a left bracket,

followed by the sequence of brackets (if any) in the string s, followed by a right

bracket, and ending with the sequence of brackets in the string ¢.

Using this definition, we can see that A € RecMatch by the Base case, so

[AIX =[] € RecMatch

by the Constructor case. So now,

[MIL] =[]1[] € RecMatch (letting s = A\, t =[1])
[[11Xx=1[[1] € RecMatch (letting s = [1,¢t =))
[[11[] € RecMatch (lettings=[1,t=1[1)

are also strings in RecMatch by repeated applications of the Constructor case. If

you haven’t seen this kind of definition before, you should try continuing this



6.2. ARITHMETIC EXPRESSIONS 283

example to verify that [[[1][1]1[] € RecMatch
Given the way this section is set up, you might guess that RecMatch = GoodCount,
and you’d be right, but it’s not completely obvious. The proof is worked out in

Problem ??.

6.2 Arithmetic Expressions

Expression evaluation is a key feature of programming languages, and recognition
of expressions as a recursive data type is a key to understanding how they can be
processed.

To illustrate this approach we’ll work with a toy example: arithmetic expres-
sions like 322 + 2z + 1 involving only one variable, “z.” We'll refer to the data type

of such expressions as Aexp. Here is its definition:

Definition 6.2.1. ¢ Base cases:

1. The variable, z, is in Aexp.

2. The arabic numeral, k, for any nonnegative integer, k, is in Aexp.
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¢ Constructor cases: If e, f € Aexp, then

3. (e+ f) € Aexp. The expression (e + f) is called a sum. The Aexp’s e and

f are called the components of the sum; they're also called the summands.

4. (e x f) € Aexp. The expression (e * f) is called a product. The Aexp’s

e and f are called the components of the product; they're also called the

multiplier and multiplicand.

5. —(e) € Aexp. The expression —(e) is called a negative.

Notice that Aexp’s are fully parenthesized, and exponents aren’t allowed. So

the Aexp version of the polynomial expression 3z? + 2z + 1 would officially be

written as

((Bx(zxx))+((2%x)+1)). (6.2)

These parentheses and *’s clutter up examples, so we'll often use simpler expres-

sions like “3z% + 2z + 1” instead of (6.2). But it’s important to recognize that

3z2 4+ 2z + 1 is not an Aexp; it’s an abbreviation for an Aexp.

EDITING NOTE:
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Example 6.2.2. The set, List, of pure lists is defined recursively by:

1. The O-tuple is in List.

2. If ¢1 and ¢ are in List, then the pair ({1, {2) is in List.

In Lisp-like programming languages, the pairing operation is called cons and

the O-tuple is called nil.

6.3 Structural Induction on Recursive Data Types

Structural induction is a method for proving some property, P, of all the elements

of a recursively-defined data type. The proof consists of two steps:

e Prove P for the base cases of the definition.

® Prove P for the constructor cases of the definition, assuming that it is true for

the component data items.
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A very simple application of structural induction proves that the recursively

defined matched strings always have an equal number of left and right brackets.

To do this, define a predicate, P, on strings s € brkts:

P(s) == shas an equal number of left and right brackets.

Proof. We'll prove that P(s) holds for all s € RecMatch by structural induction on

the definition that s € RecMatch, using P(s) as the induction hypothesis.

Base case: P()\) holds because the empty string has zero left and zero right

brackets.

Constructor case: For r = [ s ] ¢, we must show that P(r) holds, given that P(s)

and P(t) holds. So let n,, n; be, respectively, the number of left brackets in s and ¢.

So the number of left bracketsin ris 1 + ng + n;.

Now from the respective hypotheses P(s) and P(t), we know that the number

of right brackets in s is n;, and likewise, the number of right brackets in ¢ is n;. So

the number of right brackets in r is 1 4+ n, 4+ n., which is the same as the number

of left brackets. This proves P(r). We conclude by structural induction that P(s)
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holds for all s € RecMatch. [ |

6.3.1 Functions on Recursively-defined Data Types

Functions on recursively-defined data types can be defined recursively using the

same cases as the data type definition. Namely, to define a function, f, on a recur-

sive data type, define the value of f for the base cases of the data type definition,

and then define the value of f in each constructor case in terms of the values of f

on the component data items.

For example, from the recursive definition of the set, RecMatch, of strings of

matched brackets, we define:

Definition 6.3.1. The depth, d(s), of a string, s € RecMatch, is defined recursively

by the rules:

e d(A\) ==0.

e d([s]t)::=max{d(s) + 1,d(t)}
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Warning: When a recursive definition of a data type allows the same element to

be constructed in more than one way, the definition is said to be ambiguous. A

function defined recursively from an ambiguous definition of a data type will not

be well-defined unless the values specified for the different ways of constructing

the element agree.

We were careful to choose an unambiguous definition of RecMatch to ensure

that functions defined recursively on the definition would always be well-defined.

As an example of the trouble an ambiguous definition can cause, let’s consider yet

another definition of the matched strings.

Example 6.3.2. Define the set, M C brkts recursively as follows:

e Base case: \ € M,

* Constructor cases: if s,¢ € M, then the strings [ s | and st are also in M.

Quick Exercise: Give an easy proof by structural induction that M/ = RecMatch.

Since M = RecMatch, and the definition of M seems more straightforward,
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why didn’t we use it? Because the definition of M is ambiguous, while the trickier

definition of RecMatch is unambiguous. Does this ambiguity matter? Yes it does.

For suppose we defined

fst) = (f(s)+1)-(f(t) +1) for st # A.

Let a be the string [ [ ]] € M built by two successive applications of the first

M constructor starting with A\. Next let b::=aa and c::=bb, each built by successive

applications of the second M constructor starting with a.

Alternatively, we can build ba from the second constructor with s = band ¢ = q,

and then get to c using the second constructor with s = ba and t = a.

Now by these rules, f(a) = 2, and f(b) = (24 1)(2+ 1) = 9. This means that

f(c) = f(bb) = (9+1)(9+1) = 100.

Butalso f(ba) = (941)(2+1) = 27, so that f(c) = f(baa) = (27+1)(2+1) = 84.

The outcome is that f(c) is defined to be both 100 and 84, which shows that the
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rules defining f are inconsistent.

On the other hand, structural induction remains a sound proof method even

for ambiguous recursive definitions, which is why it was easy to prove that M =

RecMatch.

6.3.2 Recursive Functions on Nonnegative Integers

The nonnegative integers can be understood as a recursive data type.

Definition 6.3.3. The set, N, is a data type defined recursivly as:

e 0eN.

e If n € N, then the successor, n + 1, of nis in N.

This of course makes it clear that ordinary induction is simply the special case

of structural induction on the recursive Definition 6.3.3, This also justifies the famil-

iar recursive definitions of functions on the nonnegative integers. Here are some

examples.

The Factorial function. This function is often written “n!.” You will see a lot of it
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later in the term. Here we’ll use the notation fac(n):

e fac(0) = 1.

e fac(n+1) == (n+1)-fac(n) forn > 0.

The Fibonacci numbers. Fibonacci numbers arose out of an effort 800 years ago

to model population growth. They have a continuing fan club of people

captivated by their extraordinary properties. The nth Fibonacci number, fib,

can be defined recursively by:

fib(0) ::= 0,
fib(1) =1,
fib(n) ::= fib(n — 1) + fib(n — 2) forn > 2.

Here the recursive step starts at n = 2 with base cases for 0 and 1. This is

needed since the recursion relies on two previous values.

What is fib(4)? Well, fib(2) = fib(1) + fib(0) = 1, fib(3) = fib(2) + fib(1) = 2,

so fib(4) = 3. The sequence starts out 0,1,1,2,3,5,8,13,21, ....
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Sum-notation. Let “S(n)” abbreviate the expression “>""" ; f(i).” We can recur-

sively define S(n) with the rules

e S(0)::=0.

* S(n+1):=f(n+1)+S(n)forn > 0.

EDITING NOTE:

Simultaneous recursive definitions: You can define several things at the same

time, in terms of each other. For example, we may define two functions f

and ¢ from N to N, recursively, by:

e f(n+1):=f(n)+g(n), forn >0,

e g(n+1):= f(n) x g(n), forn > 0.

EDITING NOTE:



6.3. STRUCTURAL INDUCTION ON RECURSIVE DATA TYPES 293

Induction on Fibonacci Numbers

We can use the recursive definition of a function to establish its properties by struc-
tural induction.

As an illustration, we’ll prove a cute identity involving Fibonacci numbers.
Fibonacci numbers provide lots of fun for mathematicians because they satisfy

many such identities.

Proposition 6.3.4. Yn > 0(X7_ (F? = F,Fpq1).

Example: n = 4:

02 +124+12+224+32=15=3-5.

Let’s try a proof by (standard, not strong) induction. The theorem statement sug-
gests trying it with P(n) defined as:

n

> F=FoFo.
=0

Base case (n = 0). $_ F? ::= (Fy)? = 0 = FyF}y because Fy := 0.

Inductive step (n > 0). Now we stare at the gap between P(n) and P(n + 1).
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P(n+1) is given by a summation that’s obtained from that for P(n) by adding one

term; this suggests that, once again, we subtract. The difference is just the term

F2

»+1- Now, we are assuming that the original P(n) summation totals F;, ;1 and

want to show that the new P(n + 1) summation totals F;, 1 F, 2. So we would like

the difference to be

Fn+1Fn+2 - FnFn—i-l-

So, the actual difference is F2,, and the difference we want is Fj, 1 F, 4o —

F, F, 1. Are these the same? We want to check that:

2
FL+1 - Fn+1Fn+2 - FnFn+1-

e

But this is true, because it is really the Fibonacci definition in disguise: to see this,

divide by Fj,41.
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I11-formed Function Definitions

There are some blunders to watch out for when defining functions recursively.
Below are some function specifications that resemble good definitions of functions

on the nonnegative integers, but they aren’t.

fi(n) :=2+ fi(n—1). (6.3)

This “definition” has no base case. If some function, fi, satisfied (6.3), so would a
function obtained by adding a constant to the value of f;. So equation (6.3) does

not uniquely define an f;.

0, ifn=0,

fa(n) == i (6.4)
fa(n+1) otherwise.

This “definition” has a base case, but still doesn’t uniquely determine f,. Any

function that is 0 at 0 and constant everywhere else would satisfy the specification,

so (6.4) also does not uniquely define anything.

In a typical programming language, evaluation of f»(1) would begin with a
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recursive call of f»(2), which would lead to a recursive call of f>(3), ... with recur-

sive calls continuing without end. This “operational” approach interprets (6.4) as

defining a partial function, fs, that is undefined everywhere but 0.

0, if nis divisible by 2,
fa(n) == ¢ 1, if nis divisible by 3, (6.5)
2, otherwise.

This “definition” is inconsistent: it requires f3(6) = 0 and f3(6) = 1, so (6.5) doesn’t

define anything.

A Mysterious Function

Mathematicians have been wondering about this function specification for a while:

1, ifn <1,
fa(n) == q fa(n/2) if n > 1iseven, (6.6)
fa(Bn+1) ifn > 1isodd.

For example, f41(3) = 1 because

fa(3) == f4(10) ::= f4(5) 2= fa(16) := f4(8) ::= fu(4) == fa(2) := f4(1) = 1.

The constant function equal to 1 will satisfy (6.6), but it’s not known if another

function does too. The problem is that the third case specifies fi(n) in terms of
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fa at arguments larger than n, and so cannot be justified by induction on N. It’s
known that any f;, satisfying (6.6) equals 1 for all » up to over a billion.

Quick exercise: Why does the constant function 1 satisfy (6.6)?

EDITING NOTE:

Tagged data

Labelling a recursively defined data item with a tag that uniquely determines the
rule used to construct it is a standard approach to avoiding ambiguous recursive
definitions in programming. This amounts to working with data items that are
already parsed, that is, represented as parse trees.

For example, the parse tree for the arithmetic expression

—(a(x-x)+bx)+1 (6.7)

is shown in Figure 6.1.
In a computer, such a tree would be represented by pairs or triples that begin

with a fag equal to the label of the top node of the parse tree. The general definition
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prod prod

var ‘ ‘ prod ‘ ‘ var ‘ ‘ var ‘

Figure 6.1: Parse tree for —(a(x - ) 4+ bz) + 1
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of parse trees for Aexp’s would be:

Definition 6.3.5. The set, Aexp-parse-tree, of parse trees for arithmetic expressions

over a set of variables, V, is defined recursively as follows:

e Base cases:

1. If n € Z, then (int,n) € Aexp-parse-tree.

2. If v € V, then (var, v) € Aexp-parse-tree.

* Constructor cases: if e, ¢’ € Aexp-parse-tree, then

1. (sum,e,€’) € Aexp-parse-tree,

2. (prod,e,€’) € Aexp-parse-tree, and

3. (minus,e) € Aexp-parse-tree.

So the Aexp-parse-tree corresponding to formula 6.7 would be:

(sum, (minus, (sum, (prod, (var, a),(prod, (var, x), (var, xz))),
(prod, (var, by, (var, x)))),

(int, 1)))

(6.8)
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Now the expression 6.7 is certainly a lot more humanly intelligible than 6.8, but 6.8

is in the representation best suited and commonly used in compiling and process-

ing computer programs.

6.3.3 Evaluation and Substitution with Aexp’s

Evaluating Aexp’s

Since the only variable in an Aexp is z, the value of an Aexp is determined by

the value of z. For example, if the value of z is 3, then the value of 3z% + 2z + 1

is obviously 34. In general, given any Aexp, e, and an integer value, n, for the

variable, z, we can evaluate e to finds its value, eval(e, n). It’s easy, and useful, to

specify this evaluation process with a recursive definition.

Definition 6.3.6. The evaluation function, eval : AexpxZ — Z, is defined recursively

on expressions, e € Aexp, as follows. Let n be any integer.

¢ Base cases:
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1. Caseleis z]

eval(z,n) :=n.

(The value of the variable, z, is given to be n.)

2. Caseleis k]

eval(k,n) ::= k.

(The value of the numeral k is the integer k, no matter what value z has.)

e Constructor cases:

3. Caseleis (e1 + e2)]

eval((e1 + e2),n) :=eval(ey, n) + eval(ea, n).

4. Caseleis (e1 * e)]

eval((eg x ea),n) ::=eval(er, n) - eval(eq, n).

5. Caseleis —(e1)]

eval(—(ep),n) := —eval(ey,n).
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For example, here’s how the recursive definition of eval would arrive at the

value of 3 + z2 when z is 2:

eval((3 + (z x x)),2) = eval(3, 2) + eval((z * x),2) (by Def 6.3.6.3)

=3+ eval((z x 2),2) (by Def 6.3.6.2)
= 3+ (eval(z, 2) - eval(z, 2)) (by Def 6.3.6.4)
=34+(2-2) (by Def 6.3.6.1)
=34+4=1.

Substituting into Aexp’s

Substituting expressions for variables is a standard, important operation. For ex-

ample the result of substituting the expression 3z for  in the (z(z — 1)) would be

(3z(3z — 1). We'll use the general notation subst(f, e) for the result of substituting

an Aexp, f, for each of the z’s in an Aexp, e. For instance,

subst(3z, z(x — 1)) = 3z(3z — 1).

This substitution function has a simple recursive definition:
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Definition 6.3.7. The substitution function from Aexp x Aexp to Aexp is defined

recursively on expressions, e € Aexp, as follows. Let f be any Aexp.

e Base cases:

1. Caseleis z]

subst(f, z) == f.

(The result of substituting f for the variable, z, is just f.)

2. Caseleis k]

subst(f, k) :=k.

(The numeral, k, has no z’s in it to substitute for.)

e Constructor cases:

3. Caseleis (e1 + e2)]

subst(f, (e1 + e2))) ::= (subst(f, e1) + subst(f,es2)).

4. Caseleis (e * e2)]

subst(f, (e1 * e2))) := (subst(f, e1) * subst(f, e2)).
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5. Caseleis —(e1)]

subst(f, —(e1)) ::= —(subst(f, e1)).

Here’s how the recursive definition of the substitution function would find the

result of substituting 3« for « in the z(z — 1):

subst(3z, (z(z — 1))) = subst(3z, (2 * (z + —(1)))) (unabbreviating)
= (subst(3z, z) * subst(3z, (z + —(1)))) (by Def 6.3.7 4)
= (3x * subst(3z, (z + —(1)))) (by Def 6.3.7 1)
= (3a * (subst(3, z) + subst(3z, —(1)))) (by Def 6.3.7 3)
= (32 * (3x + —(subst(3z,1)))) (by Def 6.3.7 1 & 5)
— (32 % (3 + —(1))) (by Def 6.3.7 2)
= 32(3z — 1) (abbreviation)

Now suppose we have to find the value of subst(3z, (z(x — 1))) when z = 2.

There are two approaches.

First, we could actually do the substitution above to get 3z(3z — 1), and then
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we could evaluate 3z(3z — 1) when z = 2, that is, we could recursively calculate

eval(3z(3z — 1),2) to get the final value 30. In programming jargon, this would

be called evaluation using the Substitution Model. Tracing through the steps in

the evaluation, we find that the Substitution Model requires two substitutions for

occurrences of z and 5 integer operations: 3 integer multiplications, 1 integer ad-

dition, and 1 integer negative operation. Note that in this Substitution Model the

multiplication 3 - 2 was performed twice to get the value of 6 for each of the two

occurrences of 3zx.

The other approach is called evaluation using the Environment Model. Namely,

we evaluate 3z when = = 2 using just 1 multiplication to get the value 6. Then we

evaluate z(z — 1) when z has this value 6 to arrive at the value 6 - 5 = 30. So the

Environment Model requires 2 variable lookups and only 4 integer operations: 1

multiplication to find the value of 3z, another multiplication to find the value 6 - 5,

along with 1 integer addition and 1 integer negative operation.
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So the Environment Model approach of calculating

eval(z(z — 1), eval(3z, 2))

instead of the Substitution Model approach of calculating

eval(subst(3z, z(x — 1)), 2)

is faster. But how do we know that these final values reached by these two ap-

proaches always agree? We can prove this easily by structural induction on the

definitions of the two approaches. More precisely, what we want to prove is

Theorem 6.3.8. For all expressions e, f € Aexpandn € Z,

eval(subst(f, e),n) = eval(e, eval(f,n)). (6.9)

Proof. The proof is by structural induction on e.!

Base cases:

e Case[eis x]

IThis is an example of why it’s useful to notify the reader what the induction variable is—in this

case it isn’t n.
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The left hand side of equation (6.9) equals eval( f, n) by this base case in Def-

inition 6.3.7 of the substitution function, and the right hand side also equals

eval(f,n) by this base case in Definition 6.3.6 of eval.

e Case[eisk].

The left hand side of equation (6.9) equals k by this base case in Defini-

tions 6.3.7 and 6.3.6 of the substitution and evaluation functions. Likewise,

the right hand side equals k by two applications of this base case in the Defi-

nition 6.3.6 of eval.

Constructor cases:

e Caseleis (e + e2)]

By the structural induction hypothesis (6.9), we may assume that for all f €

Aexpand n € Z,

eval(subst(f, e;),n) = eval(e;, eval(f,n)) (6.10)

for i = 1,2. We wish to prove that
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eval(subst(f, (e1 + e2)),n) = eval((e1 + e2), eval(f,n)) (6.11)

But the left hand side of (6.11) equals

eval( (subst(f,e1) + subst(f, ez)), n)

by Definition 6.3.7.3 of substitution into a sum expression. But this equals

eval(subst(f, e1),n) + eval(subst(f, e2),n)

by Definition 6.3.6.3 of eval for a sum expression. By induction hypothe-

sis (6.10), this in turn equals

eval(eq,eval(f,n)) + eval(eq, eval(f,n)).

Finally, this last expression equals the right hand side of (6.11) by Defini-

tion 6.3.6.3 of eval for a sum expression. This proves (6.11) in this case.

e cis (e * ey). Similar.

® ¢is —(e1). Even easier.
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This covers all the constructor cases, and so completes the proof by structural

induction.

EDITING NOTE:

A String Theorem

Here is a more complex proof, illustrating a combination of structural induction

and strengthening the hypothesis.

Theorem 6.3.9. In a string of Os and 1s, the number of occurrences of the pattern 01 is

less than or equal to the number of occurrences of 10, plus one.

Let’s try to prove this by structural induction. First we must define P(s). Let’s

write num(pat, s) as the number of occurrences of the pattern string pat in s. Now

our inductive hypothesis is

P(s) : num(01, s) < num(10, s) + 1.

If you try to prove this by structural induction, you will get stuck. Why? Consider
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what happens when you add 1 at the end. This could increase the number of 01s

without increasing the number of 10s.

So, to prove by structural induction on strings, let’s strengthen the hypothesis

by adding another clause. If a string ends in 0 then the number of 01s is less than

or equal to the number of 10s. That solves the problem by weakening what we

have to show when the string ends in 1. But maybe it causes another problem

somewhere else. Let’s give it a try:

Redefine P(s):=

num(01,s) < num(10,s)+ 1, and

If s ends in 0 then

num(01,s) < num(10,s).

This means that, for each inductive step have two things to show.

Structured proof display commented out here

First let’s consider s1. This is the case that looks dangerous, because it might

increase the number of 01s. We have to prove two statements. The second is easy,
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because the new string doesn’t end in 0. We say it’s “vacuously true”.

The first statement now takes some work. We might be adding to the num-

ber of 01s. However, if we do, the previous string must have ended with 0. Then

the inductive hypothesis says that the previous string had to satisfy the stronger

inequality in the second statement. Adding one to the LHS of the stronger inequal-

ity yields the weaker inequality we want.

The following proof fragment considers cases based on whether s ends in 0 or

not. If not, it might end in 1, or might be empty (don’t forget this possibility).

Structured proof display commented out here

Of course, you could also expand the step for s ending in 1 into a careful series

of inequalities.

Now consider s0. We hope that what we did to make the s1 case work doesn’t

mess up the s0 case. But we have to check.

The first statement is easy. It follows from the first statement of the inductive

hypothesis for s, because we are not increasing the number of 01s. But now the
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second statement takes more work. The difficulty is that the new string ends in 0,

which means that we have to show the stronger inequality in the second statement.

But to do this, we might only have the weaker inequality for the previous string.

The argument again depends on what the previous string s ended with. So again,

we consider cases, based on whether s ends in 0 or 1, or is empty. If s ends in 0 we

rely on the second statement of the inductive hypothesis for s (with the stronger

inequality), whereas if s ends in 1 we rely on the first statement (with the weaker

inequality). In this case, we have to “turn the weaker inequality into the stronger

inequality”.

Structured proof display commented out here

If you actually write out all these cases in the proof, you will notice that some

facts are stated repeatedly, e.g., that when you add a 0 to the end of a string you

are not increasing the number of 01s. To avoid having to state these facts several

times, you can move them earlier in the proof.
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EDITING NOTE:

Example.

Definition 6.3.10. Define a set, E, recursively as follows:

e Basecase: 0 € F,

e Constructor cases: if n € E, then

1. n+2 € E,whenn > 0;

2. —nm € E,whenn > 0.

Using this definition, we can see that 0 € E by the Base case,so0+2=2¢ F

by Constructor case 1., andso2 +2 =4 € E,4+4+2 =6 € £, ..., and in fact

any nonnegative even number is in £ by successive application of case 1. Also, by

case 2., —2,—4,—6,--- € E. So clearly all the even integers are in £.

Is anything else in ££? The definition doesn’t say so explicitly, but an implicit

condition on a recursive definition is that the only way things get into F is as a

consequence of the Base and Constructor cases. In other words, I will be exactly
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the set of even integers.

A very simple application of structural induction proves that the set E given

by Definition 6.3.10 is exactly the set of even numbers. We already explained why

all the even numbers are in E. So what’s left is to show that:

Lemma. Every number in the set I in Definition 6.3.10 is even.

Proof. The proof is by structural induction on n € E. The induction hypothesis is

Q(n) ::==nis even.

Base case: (0) holds since 0 is even.

Constructor cases: assuming n € E and Q(n) holds, prove that

* Q(n + 2) holds. This is immediate, since adding 2 to an even number gives

an even number.

® (—n) holds. This is also immediate, since n is even iff —n is even.

This completes the proof of the Constructor cases, and we conclude by struc-

tural induction at @Q(n) holds for alln € E. [ |
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defining the set, £, of even numbers as in Definitions 6.3.10, but without the

conditions 1. and 2. that restrict application of the rules. Namely,

Definition 6.3.11. Define a set, E’, recursively as follows:

e Basecase: 0 € I,

e Constructor cases: if n € E’, then

1. n+2ecF,

2. —ne kL.

Now Definition 6.3.11 is perfectly legitimate, and we could us it to prove by

structural induction that E’ also is the set of even integers, that is, E/ = E. But

Definition 6.3.11 is ambiguous. For example, 0 € E’ by the base case, but also

0 = —0 € E' by applying constructor case 2 to the base case. This begins to matter

when we try to define a function, s, from E’ to nonnegative integers based on
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Definition 6.3.11:

So 5(0) ::= 1 by the base case of this definition, and also s(0) = s(—0) ==1+

5(0) = 1+ 1 = 2 by the second constructor case, which shows that these rules are

inconsistent.

On the other hand, using the unambiguous Definition 6.3.10 of £, essentially

the same definition of S works just fine. Namely, define

s(0) =1,
s(n+2) =14 s(n), forn >0
s(—n) =1+ s(n) forn > 0.

Now s(n) is unambiguously defined, and in fact is precisely the (unique) num-

ber of steps required to construct n € E according to the unambiguous Defini-
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tion 6.3.10 of .

6.3.4 Problems

Practice Problems

Class Problems

Homework Problems

6.4 Games as a Recursive Data Type

Chess, Checkers, and Tic-Tac-Toe are examples of two-person terminating games of
perfect information, —2PTG'’s for short. These are games in which two players al-
ternate moves that depend only on the visible board position or state of the game.
“Perfect information” means that the players know the complete state of the game
at each move. (Most card games are not games of perfect information because nei-

ther player can see the other’s hand.) “Terminating” means that play cannot go on
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forever —it must end after a finite number of moves.?

We will define 2PTG’s as a recursive data type. To see how this will work, let’s

use the game of Tic-Tac-Toe as an example.

6.4.1 Tic-Tac-Toe

Tic-Tac-Toe is a game for young children. There are two players who alternately

write the letters “X” and “O” in the empty boxes of a 3 x 3 grid. Three copies of

the same letter filling a row, column, or diagonal of the grid is called a tic-tac-toe,

and the first player who gets a tic-tac-toe of their letter wins the game.

EDITING NOTE: Children generally don’t take long to figure out an optimal

strategy for playing the game. |

We’re now going give a precise mathematical definition of the Tic-Tac-Toe game

tree as a recursive data type.

2Since board positions can repeat in chess and checkers, termination is enforced by rules that prevent
any position from being repeated more than a fixed number of times. So the “state” of these games is

the board position plus a record of how many times positions have been reached.
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EDITING NOTE: Children of course have no need for such a definition, and it

would be too complicated for them anyway. But if we had to write a Tic-Tac-Toe

playing computer program, we’d need this kind of picky precision. |

Here’s the idea behind the definition: at any point in the game, the “board

position” is the pattern of X’s and O’s on the 3 x 3 grid. From any such Tic-Tac-Toe

pattern, there are a number of next patterns that might result from a move. For

example, from the initial empty grid, there are nine possible next patterns, each

with a single X in some grid cell and the other eight cells empty. From any of these

patterns, there are eight possible next patterns gotten by placing an O in an empty

cell. These move possibilities are given by the game tree for Tic-Tac-Toe indicated

in Figure 6.2.

Definition 6.4.1. A Tic-Tac-Toe pattern is a 3 x 3 grid each of whose 9 cells contains

either the single letter, X, the single letter, O, or is empty.

EDITING NOTE:

Moreover, there must be either
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Figure 6.2: The Top of the Game Tree for Tic-Tac-Toe.
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¢ one more X than O’s, with at most two tic-tac-toes of X’s, and no tic-tac-toe

of O’s, or

* an equal number of X’s and O’s, with at most one tic-tac-toes of O’s, and no

tic-tac-toe of X’s.

A pattern, Q, is a possible next pattern after P, providing P has no tic-tac-toes

and

¢ if P has an equal number of X’s and O’s, and () is the same as P except that

a cell that was empty in P has an X in Q, or

¢ if P has one more X than O’s, and () is the same as P except that a cell that

was empty in P hasan O in Q.

If P is a Tic-Tac-Toe pattern, and P has no next patterns, then the terminated

Tic-Tnc-Toe game trees at P are

e (P, (win)),if P has a tic-tac-toe of X's.
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e (P, (lose)), if P has a tic-tac-toe of O's.

e (P, (tie)), otherwise.

The Tic-Tac-Toe game trees starting at P are defined recursively:

Base Case: A terminated Tic-Tac-Toe game tree at P is a Tic-Tac-Toe game tree

starting at P.

Constructor case: If P is a non-terminated Tic-Tac-Toe pattern, then the Tic-

Tac-Toe game tree starting at P consists of P and the set of all game trees starting

at possible next patterns after P.

For example, if

olx|o
Po= X|O X
X
olx|o
Q1= X|0X
X 0
olx|o
Q= X |0 X
X |0
olx|o
R="X|0[X
X0 X

the game tree starting at P is pictured in Figure 6.3.
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EDITING NOTE:

Then,

(P.{(Q1,(Lose)), (@2, {(R,(tie)})}) (6.12)

is the tagged recursive datum that corresponds to a Tic-Tac-Toe “end game” that

starts with P. This game is easier to understand by looking at its game tree in

Figure 6.3. Notice that the game tree —which so far we haven’t actually defined

—is simply the parse tree of the tagged datum.

Game trees are usually pictured in this way with the starting pattern (referred

to as the “root” of the tree) at the top and lines connecting the root to the game trees

that start at each possible next pattern. The “leaves” at the bottom of the tree (trees

grow upside down in computer science) correspond to terminated games. A path

from the root to a leaf describes a complete play of the game. (In English, “game”

can be used in two senses: first we can say that Chess is a game, and second we

can play a game of Chess. The first usage refers to the data type of Chess game
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Figure 6.3: Game Tree for the Tic-Tac-Toe game starting at 1.
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trees, and the second usage refers to a “play.”)

6.4.2 Infinite Tic-Tac-Toe Games

At any point in a Tic-Tac-Toe game, there are at most nine possible next patterns,

and no play can continue for more than nine moves. But we can expand Tic-Tac-

Toe into a larger game by running a 5-game tournament: play Tic-Tac-Toe five

times and the tournament winner is the player who wins the most individual

games. A 5-game tournament can run for as many as 45 moves.

It's not much of generalization to have an n-game Tic-Tac-Toe tournament. But

then comes a generalization that sounds simple but can be mind-boggling: consol-

idate all these different size tournaments into a single game we can call Tournament-

Tic-Tac-Toe (T*). The first player in a game of T* chooses any integer n > 0. Then

the players play an n-game tournament. Now we can no longer say how long a

T* play can take. In fact, there are T* plays that last as long as you might like: if

you want a game that has a play with, say, nine billion moves, just have the first

player choose n equal to one billion. This should make it clear the game tree for
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T* is infinite.

But still, it’s obvious that every possible T play will stop. That’s because after

the first player chooses a value for n, the game can’t continue for more than 9n

moves. So it’s not possible to keep playing forever even though the game tree is

infinite.

This isn’t very hard to understand, but there is an important difference between

any given n-game tournament and 7**: even though every play of 7* must come to

an end, there is no longer any initial bound on how many moves it might be before

the game ends —a play might end after 9 moves, or 9(2001) moves, or 9(10'° + 1)

moves. It just can’t continue forever.

EDITING NOTE:

While there is no bound on how long to play, at least after the first move to an

n x n board in meta-Tic-Tac-Toe, we know the game will end with n? moves.

Now that we recognize T* as a 2PTG, we can go on to a meta-T* game, where
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the first player chooses a number, m > 0, of T4 games to play, and then the second

player gets the first move in each of the individual 7% games to be played.

Then, of course, there’s meta-meta-T. ...

EDITING NOTE: Every play of the meta-meta game must still end, but now even

after the first move, there is no bound on how long a game might continue. |

6.4.3 Two Person Terminating Games

Familiar games like Tic-Tac-Toe, Checkers, and Chess can all end in ties, but for

simplicity we'll only consider win/lose games —no “everybody wins”-type games

at MIT.: -) But everything we show about win/lose games will extend easily to

games with ties, and more generally to games with outcomes that have different

payoffs.

EDITING NOTE:

Of course Tic-Tac-Toe and the other games will fit this set up if we treat a game

that ends in a tie as a loss for the usual first player —White in Chess, Red in Check-
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ers, the X-player in Tic-Tac-Toe.

Like Tic-Tac-Toe, or Tournament-Tic-Tac-Toe, the idea behind the definition of

2PTG’s as a recursive data type is that making a move in a 2PTG leads to the start

of a subgame. In other words, given any set of games, we can make a new game

whose first move is to pick a game to play from the set.

So what defines a game? For Tic-Tac-Toe, we used the patte