
1

Mathematics for Computer Science

revised June 17, 2010, 1329 minutes

Eric Lehman

Google Inc.

F Tom Leighton

Massachusets Institute of Technology

Albert R Meyer

Massachusets Institute of Technology

2

Copyright © 2010, Eric Lehman, F Tom Leighton, Albert R Meyer . All rights reserved.

http://people.csail.mit.edu/meyer

Contents

I Proofs 33

1 Propositions 39

1.1 Compound Propositions . 42

1.1.1 NOT, AND, OR . 43

1.1.2 IMPLIES . 44

1.1.3 IFF . 46

1.1.4 Notation . 47

1.1.5 Logically Equivalent Implications 48

1.1.6 Problems . 51

3

4 CONTENTS

1.2 Propositional Logic in Computer Programs 51

1.2.1 Problems . 53

1.2.2 Problems . 53

1.3 Predicates and Quantifiers . 53

1.3.1 Propositions with infinitely many cases 53

1.3.2 Predicates . 60

1.3.3 Quantifiers . 62

1.3.4 Notation . 64

1.3.5 Mixing Quantifiers . 65

1.3.6 Order of Quantifiers . 66

1.3.7 Variables Over One Domain . 68

1.3.8 Negating Quantifiers . 69

1.4 Validity . 70

1.5 Satisfiability . 73

1.6 Problems . 75

CONTENTS 5

1.6.1 Problems . 75

2 Patterns of Proof 77

2.1 The Axiomatic Method . 77

2.2 Proof Templates . 83

2.2.1 Proof by Cases . 84

2.2.2 Proving an Implication . 87

2.2.3 Proving an “If and Only If” . 93

2.2.4 Proof by Contradiction . 96

Potential Pitfall . 99

2.3 Good Proofs in Practice . 101

2.3.1 Problems . 106

3 Induction 107

3.1 The Well Ordering Principle . 107

3.1.1 Well Ordering Proofs . 108

3.1.2 Template for Well Ordering Proofs 110

6 CONTENTS

3.1.3 Summing the Integers . 111

3.1.4 Factoring into Primes . 114

3.1.5 Problems . 116

3.2 Induction . 116

3.2.1 Ordinary Induction . 118

3.2.2 Strong Induction . 135

3.2.3 Strong Induction versus Induction 144

3.2.4 Problems . 145

4 Number Theory 147

4.1 Divisibility . 149

4.1.1 Facts about Divisibility . 150

4.1.2 When Divisibility Goes Bad . 153

4.1.3 Die Hard . 156

4.2 The Greatest Common Divisor . 162

4.2.1 Linear Combinations and the GCD 163

CONTENTS 7

4.2.2 Properties of the Greatest Common Divisor 166

4.2.3 Euclid’s Algorithm . 168

4.2.4 One Solution for All Water Jug Problems 169

4.2.5 The Pulverizer . 173

4.2.6 Problems . 176

4.3 The Fundamental Theorem of Arithmetic 176

4.3.1 Problems . 180

4.4 Alan Turing . 180

4.4.1 Turing’s Code (Version 1.0) . 183

4.4.2 Breaking Turing’s Code . 187

4.5 Modular Arithmetic . 188

4.5.1 Turing’s Code (Version 2.0) . 193

4.5.2 Problems . 197

4.6 Arithmetic with a Prime Modulus . 197

4.6.1 Multiplicative Inverses . 197

8 CONTENTS

4.6.2 Cancellation . 200

4.6.3 Fermat’s Little Theorem . 202

4.6.4 Breaking Turing’s Code—Again 205

4.6.5 Turing Postscript . 206

4.6.6 Problems . 208

4.7 Arithmetic with an Arbitrary Modulus 208

4.7.1 Relative Primality . 211

4.7.2 Euler’s Theorem . 214

4.8 The RSA Algorithm . 218

4.8.1 Problems . 221

II Mathematical Data Types 223

5 Sets and Relations 225

5.1 Sets . 225

5.1.1 Some Popular Sets . 227

CONTENTS 9

5.1.2 Comparing and Combining Sets 228

5.1.3 Complement of a Set . 229

5.1.4 Power Set . 230

5.1.5 Set Builder Notation . 230

5.1.6 Proving Set Equalities . 232

5.1.7 Glossary of Symbols . 234

5.1.8 Problems . 235

5.2 The Logic of Sets . 235

5.2.1 Russell’s Paradox . 235

5.2.2 The ZFC Axioms for Sets . 237

5.2.3 Avoiding Russell’s Paradox . 240

5.2.4 Does All This Really Work? . 241

5.3 Sequences . 244

5.4 Functions . 246

5.4.1 Function Composition . 249

10 CONTENTS

5.5 Relations . 250

5.5.1 Binary Relations and Functions 251

5.5.2 Relational Images . 253

5.5.3 Inverse Relations and Images 255

5.5.4 Surjective and Injective Relations 257

5.5.5 Relation Diagrams . 258

5.6 Cardinality . 261

5.6.1 Mappings and Cardinality . 261

5.6.2 The sizes of infinite sets . 263

5.6.3 Infinity is different . 268

5.6.4 Power sets are strictly bigger 271

5.7 Infinities in Computer Science . 273

5.7.1 Problems . 276

6 Recursive Data Types 277

6.1 Strings of Brackets . 278

CONTENTS 11

6.2 Arithmetic Expressions . 283

6.3 Structural Induction on Recursive Data Types 285

6.3.1 Functions on Recursively-defined Data Types 287

6.3.2 Recursive Functions on Nonnegative Integers 290

Tagged data . 297

6.3.3 Evaluation and Substitution with Aexp’s 300

A String Theorem . 309

6.3.4 Problems . 317

6.4 Games as a Recursive Data Type . 317

6.4.1 Tic-Tac-Toe . 318

6.4.2 Infinite Tic-Tac-Toe Games . 325

6.4.3 Two Person Terminating Games 327

6.4.4 Game Strategies . 331

6.4.5 Problems . 334

6.5 Induction in Computer Science . 334

12 CONTENTS

7 Simple Graphs 337

7.1 Degrees & Isomorphism . 340

7.1.1 Definition of Simple Graph . 340

7.1.2 Sex in America . 343

7.1.3 Handshaking Lemma . 347

7.1.4 Some Common Graphs . 348

7.1.5 Isomorphism . 349

7.1.6 Problems . 353

7.2 The Stable Marriage Problem . 353

7.2.1 The Problem . 354

7.2.2 The Mating Ritual . 358

7.2.3 A State Machine Model . 359

7.2.4 There is a Marriage Day . 361

7.2.5 They All Live Happily Every After... 362

7.2.6 ...Especially the Boys . 365

CONTENTS 13

7.2.7 Applications . 369

7.2.8 Problems . 371

7.3 Connectedness . 372

7.3.1 Paths and Simple Cycles . 372

7.3.2 Connected Components . 376

7.3.3 How Well Connected? . 378

7.3.4 Connection by Simple Path . 380

7.3.5 The Minimum Number of Edges in a Connected Graph 381

7.3.6 Problems . 384

7.4 Trees . 384

7.4.1 Tree Properties . 385

7.4.2 Spanning Trees . 389

Tree Variations . 391

Traversing a Graph . 393

Euler Tours and Hamiltonian Cycles 393

14 CONTENTS

7.4.3 Problems . 396

7.5 Coloring Graphs . 396

7.6 Modelling Scheduling Conflicts . 396

7.6.1 Degree-bounded Coloring . 399

7.6.2 Why coloring? . 402

7.6.3 Problems . 405

7.7 Bipartite Matchings . 405

7.7.1 Bipartite Graphs . 405

7.7.2 Bipartite Matchings . 407

7.7.3 The Matching Condition . 408

7.7.4 A Formal Statement . 411

7.7.5 Problems . 414

7.8 Planar Graphs . 414

7.8.1 Continuous & Discrete Faces 419

7.8.2 Planar Embeddings . 423

CONTENTS 15

7.8.3 What outer face? . 428

7.8.4 Euler’s Formula . 429

7.8.5 Number of Edges versus Vertices 431

7.8.6 Planar Subgraphs . 434

7.8.7 Planar 5-Colorability . 436

7.8.8 Classifying Polyhedra . 441

7.8.9 Problems . 444

8 Directed graphs 445

8.1 Digraphs . 445

8.1.1 Paths in Digraphs . 446

8.2 Picturing Relational Properties . 448

8.3 Composition of Relations . 450

8.4 Directed Acyclic Graphs . 451

8.4.1 Problems . 454

8.5 Communication Networks . 454

16 CONTENTS

8.6 Complete Binary Tree . 455

8.7 Routing Problems . 457

8.8 Network Diameter . 458

8.8.1 Switch Size . 460

8.9 Switch Count . 461

8.10 Network Latency . 461

8.11 Congestion . 463

8.12 2-D Array . 466

8.13 Butterfly . 469

8.14 Benes̆ Network . 475

8.14.1 Problems . 485

9 Partial Orders and Scheduling 487

9.1 Axioms for Partial Orders . 488

9.2 Representing Partial Orders by Set Containment 492

9.2.1 Problems . 495

CONTENTS 17

9.3 Total Orders . 495

9.3.1 Problems . 496

9.4 Product Orders . 496

9.4.1 Problems . 498

9.5 Scheduling . 498

9.5.1 Scheduling with Constraints 498

9.5.2 Parallel Task Scheduling . 503

9.6 Dilworth’s Lemma . 508

9.6.1 Problems . 511

10 State Machines 513

10.1 Basic definitions . 514

10.2 Reachability and Preserved Invariants 519

10.2.1 Die Hard Once and For All . 521

10.2.2 A Robot on a Grid . 522

10.3 Sequential algorithm examples . 526

18 CONTENTS

10.3.1 Proving Correctness . 526

10.3.2 The Euclidean Algorithm . 527

10.4 Derived Variables . 536

10.4.1 Weakly Decreasing Variables 538

10.4.2 Problems . 543

10.5 The Alternating Bit Protocol . 543

10.6 Reasoning About While Programs . 551

10.6.1 While Programs . 551

10.6.2 The While Program State Machine 553

10.6.3 Denotational Semantics . 557

10.6.4 Problems . 560

10.6.5 Logic of Programs . 560

III Counting 565

11 Sums & Asymptotics 567

CONTENTS 19

Closed Forms and Approximations . 567

11.1 The Value of an Annuity . 569

11.1.1 The Future Value of Money . 571

11.1.2 Closed Form for the Annuity Value 573

11.1.3 Infinite Geometric Series . 573

Related Sums . 577

11.1.4 Problems . 580

11.2 Book Stacking . 580

11.2.1 Formalizing the Problem . 581

11.2.2 Evaluating the Sum—The Integral Method 585

11.2.3 More about Harmonic Numbers 588

11.2.4 Problems . 590

11.3 Finding Summation Formulas . 590

11.3.1 Double Sums . 593

11.4 Stirling’s Approximation . 596

20 CONTENTS

11.4.1 Products to Sums . 597

11.5 Asymptotic Notation . 601

11.5.1 Little Oh . 602

11.5.2 Big Oh . 604

11.5.3 Theta . 608

11.5.4 Pitfalls with Big Oh . 610

11.5.5 Problems . 613

12 Counting 615

12.1 Why Count? . 615

12.2 Counting One Thing by Counting Another 620

12.2.1 The Bijection Rule . 621

12.2.2 Counting Sequences . 624

12.2.3 The Sum Rule . 624

12.2.4 The Product Rule . 626

12.2.5 Putting Rules Together . 627

CONTENTS 21

12.2.6 Problems . 631

12.3 The Pigeonhole Principle . 631

12.3.1 Hairs on Heads . 634

12.3.2 Subsets with the Same Sum . 635

12.3.3 Problems . 638

12.4 The Generalized Product Rule . 638

12.4.1 Defective Dollars . 641

12.4.2 A Chess Problem . 643

12.4.3 Permutations . 644

12.5 The Division Rule . 645

12.5.1 Another Chess Problem . 646

12.5.2 Knights of the Round Table . 648

12.5.3 Problems . 651

12.6 Counting Subsets . 651

12.6.1 The Subset Rule . 652

22 CONTENTS

12.6.2 Bit Sequences . 654

12.7 Sequences with Repetitions . 655

12.7.1 Sequences of Subsets . 655

12.7.2 The Bookkeeper Rule . 656

12.7.3 A Word about Words . 658

12.7.4 Problems . 660

12.8 Magic Trick . 660

12.8.1 The Secret . 661

12.8.2 The Real Secret . 665

12.8.3 Same Trick with Four Cards? 668

12.8.4 Problems . 670

12.9 Counting Practice: Poker Hands . 670

12.9.1 Hands with a Four-of-a-Kind 671

12.9.2 Hands with a Full House . 672

12.9.3 Hands with Two Pairs . 673

CONTENTS 23

12.9.4 Hands with Every Suit . 677

12.9.5 Problems . 679

12.10Inclusion-Exclusion . 679

12.10.1 Union of Two Sets . 680

12.10.2 Union of Three Sets . 682

12.10.3 Union of n Sets . 686

12.10.4 Computing Euler’s Function 694

12.10.5 Problems . 697

12.11Binomial Theorem . 697

12.11.1 Problems . 700

12.12Combinatorial Proof . 700

12.12.1 Boxing . 701

12.12.2 Finding a Combinatorial Proof 703

12.12.3 Problems . 705

13 Generating Functions 707

24 CONTENTS

13.1 Operations on Generating Functions 710

13.1.1 Scaling . 710

13.1.2 Addition . 711

13.1.3 Right Shifting . 713

13.1.4 Differentiation . 714

13.1.5 Products . 717

13.2 The Fibonacci Sequence . 719

13.2.1 Finding a Generating Function 720

13.2.2 Finding a Closed Form . 722

13.2.3 Problems . 725

13.3 Counting with Generating Functions 725

13.3.1 Choosing Distinct Items from a Set 726

13.3.2 Building Generating Functions that Count 727

13.3.3 Choosing Items with Repetition 730

13.3.4 Problems . 734

CONTENTS 25

13.3.5 An “Impossible” Counting Problem 734

13.3.6 Problems . 737

IV Probability 739

14 Introduction to Probability 741

14.1 Monty Hall . 742

14.1.1 The Four Step Method . 743

14.1.2 Clarifying the Problem . 744

14.1.3 Step 1: Find the Sample Space 745

14.1.4 Step 2: Define Events of Interest 750

14.1.5 Step 3: Determine Outcome Probabilities 753

14.1.6 Step 4: Compute Event Probabilities 757

14.1.7 An Alternative Interpretation of the Monty Hall Problem . . . 758

14.1.8 Problems . 759

14.2 Set Theory and Probability . 759

26 CONTENTS

14.2.1 Probability Spaces . 760

14.2.2 An Infinite Sample Space . 764

14.2.3 Problems . 767

14.3 Conditional Probability . 767

14.3.1 The “Halting Problem” . 770

14.3.2 Why Tree Diagrams Work . 775

14.3.3 The Law of Total Probability 777

A Coin Problem . 779

14.3.4 Medical Testing . 782

14.3.5 Conditional Identities . 787

14.3.6 Discrimination Lawsuit . 788

14.3.7 A Posteriori Probabilities . 791

14.3.8 Problems . 795

14.4 Independence . 795

14.4.1 Examples . 796

CONTENTS 27

14.4.2 Working with Independence 797

Some Intuition . 798

14.4.3 Mutual Independence . 800

DNA Testing . 801

14.4.4 Pairwise Independence . 804

14.4.5 Problems . 809

14.5 The Birthday Principle . 809

15 Random Processes 817

15.1 Gamblers’ Ruin . 818

The Probability Space . 821

15.1.1 A Recurrence for the Probability of Winning 825

15.1.2 Intuition . 831

How Long a Walk? . 835

Duration of a Biased Walk . 835

Duration of an Unbiased Walk . 837

28 CONTENTS

Quit While You Are Ahead . 840

15.1.3 Problems . 844

15.2 Random Walks on Graphs . 844

15.2.1 A First Crack at Page Rank . 847

15.2.2 Random Walk on the Web Graph 849

15.2.3 Stationary Distribution & Page Rank 851

15.2.4 Problems . 856

16 Random Variables 857

16.1 Random Variable Examples . 858

16.1.1 Indicator Random Variables . 859

16.1.2 Random Variables and Events 860

Conditional Probability . 861

16.1.3 Independence . 862

16.2 Probability Distributions . 865

16.2.1 Bernoulli Distribution . 869

CONTENTS 29

16.2.2 Uniform Distribution . 869

16.2.3 The Numbers Game . 870

16.2.4 Binomial Distribution . 875

Approximating the Cumulative Binomial Distribution Function . . . 882

16.2.5 Problems . 884

16.3 Average & Expected Value . 884

16.3.1 Expected Value of an Indicator Variable 888

16.3.2 Conditional Expectation . 889

16.3.3 Mean Time to Failure . 891

16.3.4 Linearity of Expectation . 896

16.4 Expectation of a Quotient . 912

16.4.1 A RISC Paradox . 912

16.4.2 A Probabilistic Interpretation 914

16.4.3 The Proper Quotient . 919

16.4.4 A Simpler Example . 920

30 CONTENTS

Infinite Linearity of Expectation . 921

Convergence Conditions for Infinite Linearity 921

A Paradox . 923

Solution to the Paradox . 925

16.4.5 The Expected Value of a Product 928

16.4.6 Problems . 931

17 Deviation from the Mean 933

17.1 Why the Mean? . 933

17.2 Markov’s Theorem . 936

Theorem Statement and Some Applications 941

Proof of Markov’s Theorem . 944

17.2.1 Applying Markov’s Theorem 946

17.2.2 Markov’s Theorem for Bounded Variables 948

Why R Must be Nonnegative . 949

Deviation Below the Mean . 950

CONTENTS 31

17.2.3 Problems . 954

17.3 Chebyshev’s Theorem . 954

17.3.1 Variance in Two Gambling Games 956

17.3.2 Standard Deviation . 958

17.4 Properties of Variance . 962

17.4.1 A Formula for Variance . 963

17.4.2 Variance of Time to Failure . 966

Expectation Squared . 970

17.4.3 Dealing with Constants . 972

17.4.4 Variance of a Sum . 974

17.4.5 Problems . 979

17.5 Estimation by Random Sampling . 979

17.5.1 Sampling . 982

17.5.2 Matching Birthdays . 984

17.5.3 Pairwise Independent Sampling 987

32 CONTENTS

17.6 Confidence versus Probability . 990

17.6.1 Problems . 993

17.7 The Chernoff Bound . 993

17.7.1 The Chernoff Bound . 996

17.7.2 Randomized Load Balancing 1002

17.7.3 Proof of the Chernoff Bound 1004

Index 1010

Part I

Proofs

33

35

Mathematical Proofs

This text is all about methods for constructing and understanding proofs. In fact,

we could have titled the book Proofs, Proofs, and More Proofs. We will begin in Part I

with a description of basic proof techniques. We then apply these techniques in

chapter 4 to establish some very important facts about numbers, facts that form

the underpinning of the world’s most widely used cryptosystem.

Simply put, a proof is a method of establishing truth. Like beauty, “truth”

sometimes depends on the eye of the beholder, however, and it should not be sur-

prising that what constitutes a proof differs among fields. For example, in the

judicial system, legal truth is decided by a jury based on the allowable evidence

presented at trial. In the business world, authoritative truth is specified by a trusted

person or organization, or maybe just your boss. In fields such as physics and

biology, scientific truth1 is confirmed by experiment. In statistics, probable truth is

1Actually, only scientific falsehood can really be demonstrated by an experiment—when the experi-

ment fails to behave as predicted. But no amount of experiment can confirm that the next experiment

won’t fail. For this reason, scientists rarely speak of truth, but rather of theories that accurately predict

36

established by statistical analysis of sample data.

Philosophical proof involves careful exposition and persuasion typically based

on a series of small, plausible arguments. The best example begins with “Cogito

ergo sum,” a Latin sentence that translates as “I think, therefore I am.” It comes

from the beginning of a 17th century essay by the mathematician/philosopher,

René Descartes, and it is one of the most famous quotes in the world: do a web

search on the phrase and you will be flooded with hits.

Deducing your existence from the fact that you’re thinking about your exis-

tence is a pretty cool and persuasive-sounding idea. However, with just a few

more lines of argument in this vein, Descartes goes on to conclude that there is an

infinitely beneficent God. Whether or not you believe in a beneficent God, you’ll

probably agree that any very short proof of God’s existence is bound to be far-

fetched. So even in masterful hands, this approach is not reliable.

Mathematics has its own specific notion of “proof.”

Definition. A formal proof of a proposition is a chain of logical deductions leading to

past, and anticipated future, experiments.

http://www.btinternet.com/~glynhughes/squashed/descartes.htm

37

the proposition from a base set of axioms.

The three key ideas in this definition are highlighted: proposition, logical de-

duction, and axiom. These three ideas are explained in the following chapters,

beginning with propositions in chapter 1. We will then provide lots of examples of

proofs and even some examples of “false proofs” (i.e., arguments that look like a

proof but that contain mis-steps, or deductions that aren’t so logical when exam-

ined closely).

38

Chapter 1

Propositions

Definition. A proposition is a mathematical statement that is either true or false.

For example, both of the following statements are propositions. The first is true

and the second is false.

Proposition 1.0.1. 2 + 3 = 5.

Proposition 1.0.2. 1 + 1 = 3.

Being true or false doesn’t sound like much of a limitation, but it does exclude

39

40 CHAPTER 1. PROPOSITIONS

statements such as, “Wherefore art thou Romeo?” and “Give me an A!”.

Unfortunately it is not always easy to decide if a proposition is true or false, or

even what the proposition means. In part, this is because the English language is

riddled with ambiguities. For example, here are some statements that illustrate the

issue:

1. “You may have cake, or you may have ice cream.”

2. “If pigs can fly, then you can understand the Chebyshev bound.”

3. “If you can solve any problem we come up with, then you get an A for the

course.”

4. “Every American has a dream.”

What precisely do these sentences mean? Can you have both cake and ice cream

or must you choose just one dessert? If the second sentence is true, then is the

Chebyshev bound incomprehensible? If you can solve some problems we come

up with but not all, then do you get an A for the course? And can you still get an A

even if you can’t solve any of the problems? Does the last sentence imply that all

41

Americans have the same dream or might some of them have different dreams?

Some uncertainty is tolerable in normal conversation. But when we need to

formulate ideas precisely—as in mathematics and programming—the ambiguities

inherent in everyday language can be a real problem. We can’t hope to make an

exact argument if we’re not sure exactly what the statements mean. So before we

start into mathematics, we need to investigate the problem of how to talk about

mathematics.

To get around the ambiguity of English, mathematicians have devised a spe-

cial mini-language for talking about logical relationships. This language mostly

uses ordinary English words and phrases such as “or”, “implies”, and “for all”.

But mathematicians endow these words with definitions more precise than those

found in an ordinary dictionary. Without knowing these definitions, you might

sometimes get the gist of statements in this language, but you would regularly get

misled about what they really meant.

Surprisingly, in the midst of learning the language of mathematics, we’ll come

42 CHAPTER 1. PROPOSITIONS

across the most important open problem in computer science—a problem whose

solution could change the world.

1.1 Compound Propositions

In English, we can modify, combine, and relate propositions with words such as

“not”, “and”, “or”, “implies”, and “if-then”. For example, we can combine three

propositions into one like this:

If all humans are mortal and all Greeks are human, then all Greeks are mortal.

For the next while, we won’t be much concerned with the internals of propositions—

whether they involve mathematics or Greek mortality—but rather with how propo-

sitions are combined and related. So we’ll frequently use variables such as P and

Q in place of specific propositions such as “All humans are mortal” and “2 + 3 =

5”. The understanding is that these variables, like propositions, can take on only

the values T (true) and F (false). Such true/false variables are sometimes called

Boolean variables after their inventor, George—you guessed it—Boole.

1.1. COMPOUND PROPOSITIONS 43

1.1.1 NOT, AND, OR

We can precisely define these special words using truth tables. For example, if P

denotes an arbitrary proposition, then the truth of the proposition “NOT(P)” is

defined by the following truth table:

P NOT(P)
T F
F T

The first row of the table indicates that when proposition P is true, the proposition

“NOT(P)” is false. The second line indicates that when P is false, “NOT(P)” is true.

This is probably what you would expect.

In general, a truth table indicates the true/false value of a proposition for each

possible setting of the variables. For example, the truth table for the proposition

“P ANDQ” has four lines, since the two variables can be set in four different ways:

P Q P AND Q
T T T
T F F
F T F
F F F

According to this table, the proposition “P AND Q” is true only when P and Q are

both true. This is probably the way you think about the word “and.”

44 CHAPTER 1. PROPOSITIONS

There is a subtlety in the truth table for “P OR Q”:

P Q P OR Q
T T T
T F T
F T T
F F F

The third row of this table says that “P OR Q” is true even if both P and Q are true.

This isn’t always the intended meaning of “or” in everyday speech, but this is the

standard definition in mathematical writing. So if a mathematician says, “You may

have cake, or you may have ice cream,” he means that you could have both.

If you want to exclude the possibility of both having and eating, you should

use “exclusive-or” (XOR):
P Q P XOR Q
T T F
T F T
F T T
F F F

1.1.2 IMPLIES

The least intuitive connecting word is “implies.” Here is its truth table, with the

lines labeled so we can refer to them later.

P Q P IMPLIES Q
T T T (tt)
T F F (tf)
F T T (ft)
F F T (ff)

1.1. COMPOUND PROPOSITIONS 45

Let’s experiment with this definition. For example, is the following proposition

true or false?

“If the Riemann Hypothesis is true, then x2 ≥ 0 for every real number x.”

The Riemann Hypothesis is a famous unresolved conjecture in mathematics (i.e.,

no one knows if it is true or false). But that doesn’t prevent you from answering

the question! This proposition has the form P −→ Q where the hypothesis, P , is

“the Riemann Hypothesis is true” and the conclusion, Q, is “x2 ≥ 0 for every real

number x”. Since the conclusion is definitely true, we’re on either line (tt) or line

(ft) of the truth table. Either way, the proposition as a while is true!

One of our original examples demonstrates an even stranger side of implica-

tions.

“If pigs can fly, then you can understand the Chebyshev bound.”

Don’t take this as an insult; we just need to figure out whether this proposition is

true or false. Curiously, the answer has nothing to do with whether or not you can

understand the Chebyshev bound. Pigs cannot fly, so we’re on either line (ft) or

46 CHAPTER 1. PROPOSITIONS

line (ff) of the truth table. In both cases, the proposition is true!

In contrast, here’s an example of a false implication:

“If the moon shines white, then the moon is made of white cheddar.”

Yes, the moon shines white. But, no, the moon is not made of white cheddar cheese.

So we’re on line (tf) of the truth table, and the proposition is false.

The truth table for implications can be summarized in words as follows:

An implication is true exactly when the if-part is false or the then-part is true.

This sentence is worth remembering; a large fraction of all mathematical state-

ments are of the if-then form!

1.1.3 IFF

Mathematicians commonly join propositions in one additional way that doesn’t

arise in ordinary speech. The proposition “P if and only if Q” asserts that P and Q

1.1. COMPOUND PROPOSITIONS 47

are logically equivalent; that is, either both are true or both are false.

P Q P IFF Q
T T T
T F F
F T F
F F T

For example, the following if-and-only-if statement is true for every real number

x:

x2 − 4 ≥ 0 iff |x| ≥ 2

For some values of x, both inequalities are true. For other values of x, neither in-

equality is true . In every case, however, the proposition as a whole is true.

1.1.4 Notation

Mathematicians have devised symbols to represent words like “AND” and “NOT”.

The most commonly-used symbols are summarized in the table below.

English Cryptic Notation

NOT(P) ¬P (alternatively, P)
P AND Q P ∧Q
P OR Q P ∨Q
P IMPLIES Q P −→ Q
if P then Q P −→ Q
P IFF Q P ←→ Q (alternatively, P iff Q)

For example, using this notation, “If P AND NOT(Q), then R” would be written:

(P ∧Q) −→ R

48 CHAPTER 1. PROPOSITIONS

This symbolic language is helpful for writing complicated logical expressions com-

pactly. But words such as “OR” and “IMPLIES” generally serve just as well as the

cryptic symbols ∨ and −→, and their meaning is easy to remember. We will use

them interchangeably and you can feel free to use whichever convention is easiest

for you.

1.1.5 Logically Equivalent Implications

Do these two sentences say the same thing?

If I am hungry, then I am grumpy.

If I am not grumpy, then I am not hungry.

We can settle the issue by recasting both sentences in terms of propositional logic.1

Let P be the proposition “I am hungry”, and let Q be “I am grumpy”. The first

sentence says “P IMPLIES Q” and the second says “NOT(Q) IMPLIES NOT(P)”. We

1This sounds scary, but don’t worry, propositional logic is easy. [Illegible] compound propositions.

1.1. COMPOUND PROPOSITIONS 49

can compare these two statements in a truth table:

P Q P IMPLIES Q NOT(Q) IMPLIES NOT(P)
T T T T
T F F F
F T T T
F F T T

Sure enough, the columns of truth values under these two statements are the same,

which precisely means they are equivalent. In general, “NOT(Q) IMPLIES NOT(P)”

is called the contrapositive of the implication “P IMPLIES Q.” And, as we’ve just

shown, the two are just different ways of saying the same thing.

In contrast, the converse of “P IMPLIES Q” is the statement “Q IMPLIES P”. In

terms of our example, the converse is:

If I am grumpy, then I am hungry.

This sounds like a rather different contention, and a truth table confirms this sus-

picion:
P Q P IMPLIES Q Q IMPLIES P
T T T T
T F F T
F T T F
F F T T

Thus, an implication is logically equivalent to its contrapositive but is not equiva-

lent to its converse.

50 CHAPTER 1. PROPOSITIONS

One final relationship: an implication and its converse together are equivalent

to an iff statement, specifically, to these two statements together. For example,

If I am grumpy, THEN I am hungry, AND

if I am hungry, THEN I am grumpy.

are equivalent to the single statement:

I am grumpy IFF I am hungry.

Once again, we can verify this with a truth table:

P Q (P IMPLIES Q) (Q IMPLIES P) (P IMPLIES Q) AND (Q IMPLIES P) Q IFF P
T T T T T T
T F F T F F
F T T F F F
F F T T T T

1.2. PROPOSITIONAL LOGIC IN COMPUTER PROGRAMS 51

1.1.6 Problems

Class Problems

Homework Problems

1.2 Propositional Logic in Computer Programs

Propositions and logical connectives arise all the time in computer programs. For

example, consider the following snippet, which could be either C, C++, or Java:

if (x > 0 || (x <= 0 && y > 100))

...

(further instructions)

The symbol || denotes “OR”, and the symbol && denotes “AND”. The further in-

structions are carried out only if the proposition following the word if is true. On

closer inspection, this big expression is built from two simpler propositions. Let A

be the proposition that x > 0, and let B be the proposition that y > 100. Then

we can rewrite the condition “A OR (NOT(A) AND B)”. A truth table reveals that

52 CHAPTER 1. PROPOSITIONS

this complicated expression is logically equivalent to “A OR B”.

A B A OR (NOT(A) AND B) A OR B
T T T T
T F T T
F T T T
F F F F

This means that we can simplify the code snippet without changing the program’s

behavior:

if (x > 0 || y > 100)

...

(further instructions)

Rewriting a logical expression involving many variables in the simplest form

is both difficult and important. Simplifying expressions in software can increase

the speed of your program. Chip designers face a similar challenge—instead of

minimizing && and || symbols in a program, their job is to minimize the number

of analogous physical devices on a chip. The payoff is potentially enormous: a

chip with fewer devices is smaller, consumes less power, has a lower defect rate,

and is cheaper to manufacture.

1.3. PREDICATES AND QUANTIFIERS 53

1.2.1 Problems

Class Problems

Homework Problems

1.2.2 Problems

Class Problems

1.3 Predicates and Quantifiers

1.3.1 Propositions with infinitely many cases

Most of the examples of propositions that we have considered thus far have been

nice in the sense that it has been relatively easy to determine if they are true or

false. At worse, there were only a few cases to check in a truth table. Unfortunately,

not all propositions are so easy to check. That is because some propositions may

involve a large or infinite number of possible cases. For example, consider the

following proposition involving prime numbers. (A prime is an integer greater

54 CHAPTER 1. PROPOSITIONS

than 1 that is divisible only by itself and 1. For example, 2, 3, 5, 7, and 11 are

primes, but 4, 6, and 9 are not. A number greater than 1 that is not prime is said to

be composite.)

Proposition 1.3.1. For every nonnegative integer, n, the value of n2 + n+ 41 is prime.

It is not immediately clear whether this proposition is true or false. In such

circumstances, it is tempting to try to determine its veracity by computing the

value of2

p(n) ::= n2 + n+ 41. (1.1)

for several values ofn and then checking to see if they are prime. If any of the

computed values is not prime, then we will know that the proposition is false. If

all the computed values are indeed prime, then we might be tempted to conclude

that the proposition is true.

We begin with p(0) = 41 which is prime. p(1) = 43 is also prime. So is p(2) =

47, p(3) = 53,. . . , and p(20) = 461. Hmmm. . . It is starting to look like p(n) is
2The symbol ::= means “equal by definition.” It’s always ok to simply write “=” instead of ::=, but

reminding the reader that an equality holds by definition can be helpful.

1.3. PREDICATES AND QUANTIFIERS 55

a prime for every nonnegative integer n. In fact we can keep checking through

n = 39 and confirm that p(39) = 1601 is prime. The proposition certainly does

seem to be true.

But p(40) = 402 + 40 + 41 = 41 · 41, which is not prime. So it’s not true that the

expression is prime for all nonnegative integers, and thus the proposition is false!

EDITING NOTE: In fact, it’s not hard to show that no polynomial with integer

coefficients can map all natural numbers into prime numbers, unless it’s a constant.

�

Although surprising, this example is not as contrived or rare as you might sus-

pect. As we will soon see, there are many examples of propositions that seem to

be true when you check a few cases, but which turn out to be false. The key to

remember is that you can’t check a claim about an infinite set by checking a finite

set of its elements, no matter how large the finite set.

Propositions that involve all numbers are so common that there is a special

56 CHAPTER 1. PROPOSITIONS

notation for them. For example, Proposition 1.3.1 can also be written as

∀n ∈ N. p(n) is prime. (1.2)

Here the symbol ∀ is read “for all”. The symbol N stands for the set of nonnegative

integers, namely, 0, 1, 2, 3, . . . (ask your instructor for the complete list). The symbol

“∈” is read as “is a member of,” or “belongs to,” or simply as “is in”. The period

after the N is just a separator between phrases.

Here is another example of a proposition that, at first, seems to be true but

which turns out to be false.

Proposition 1.3.2. a4 + b4 + c4 = d4 has no solution when a, b, c, d are positive integers.

Euler (pronounced “oiler”) conjectured proposition to be true this in 1769. Ul-

timately the proposition was proven false in 1987 by Noam Elkies. The solution he

found was a = 95800, b = 217519, c = 414560, d = 422481. No wonder it took 218

years to show the proposition is false!

In logical notation, Proposition 1.3.2 could be written,

∀a ∈ Z+ ∀b ∈ Z+ ∀c ∈ Z+ ∀d ∈ Z+. a4 + b4 + c4 6= d4.

1.3. PREDICATES AND QUANTIFIERS 57

Here, Z+ is a symbol for the positive integers. Strings of ∀’s are usually abbreviated

for easier reading, as follows:

∀a, b, c, d ∈ Z+. a4 + b4 + c4 6= d4.

The following proposition is even nastier.

Proposition 1.3.3. 313(x3 + y3) = z3 has no solution when x, y, z ∈ Z+.

This proposition is also false, but the smallest counterexample values for x, y,

and z have more than 1000 digits! Even the world’s largest computers would not

be able to get that far with brute force. Of course, you may be wondering why

anyone would care whether or not there is a solution to 313(x3 + y3) = z3 where

x, y, and z are positive integers. It turns out that finding solutions to such equa-

tions is important in the field of elliptic curves, which turns out to be important

to the study of factoring large integers, which turns out (as we will see in Chap-

ter 4) to be important in cracking commonly-used cryptosystems, which is why

mathematicians went to the effort to find the solution with thousands of digits.

[Illegible] that have infinitely many cases to check turn out to be false. The

58 CHAPTER 1. PROPOSITIONS

following proposition (known as the “Four-Color Theorem”) turns out to be true.

Proposition 1.3.4. Every map can be colored with 4 colors so that adjacent3 regions have

different colors.

The proof of this proposition is difficult and took over a century to perfect.

Alon the way, many incorrect proofs were proposed, including one that stood for

10 years in the late 19th century before the mistake was found. An extremely labo-

rious proof was finally found in 1976 by mathematicians Appel and Haken, who

used a complex computer program to categorize the four-colorable maps; the pro-

gram left a few thousand maps uncategorized, and these were checked by hand

by Haken and his assistants—including his 15-year-old daughter. There was a lot

of debate about whether this was a legitimate proof: the proof was too big to be

checked without a computer, and no one could guarantee that the computer cal-

culated correctly, nor did anyone have the energy to recheck the four-colorings of

the thousands of maps that were done by hand. Within the past decade, a mostly
3Two regions are adjacent only when they share a boundary segment of positive length. They are

not considered to be adjacent if their boundaries meet only at a few points.

1.3. PREDICATES AND QUANTIFIERS 59

intelligible proof of the Four-Color Theorem was found, though a computer is still

needed to check the colorability of several hundred special maps.4

In some cases, we do not know whether or not a proposition is true. For exam-

ple, the following simple proposition (known as Goldbach’s Conjecture) has been

heavily studied since 1742 but we still do not know if it is true. Of course, it has

been checked by computer for many values of n, but as we have seen, that is not

sufficient to conclude that it is true.

Proposition 1.3.5 (Goldbach). Every even integer greater than 2 is the sum of two

primes.

While the preceding propositions are important in mathematics, computer sci-

entists are often interested in propositions concerning the “correctness” of pro-

grams and systems, to determine whether a program or system does what it’s

4See http://www.math.gatech.edu/˜thomas/FC/fourcolor.html

The story of the Four-Color Proof is told in a well-reviewed popular (non-technical) book: “Four

Colors Suffice. How the Map Problem was Solved.” Robin Wilson. Princeton Univ. Press, 2003, 276pp.

ISBN 0-691-11533-8.

http://www.math.gatech.edu/~thomas/FC/fourcolor.html

60 CHAPTER 1. PROPOSITIONS

supposed to. Programs are notoriously buggy, and there’s a growing community

of researchers and practitioners trying to find ways to prove program correctness.

These efforts have been successful enough in the case of CPU chips that they are

now routinely used by leading chip manufacturers to prove chip correctness and

avoid mistakes like the notorious Intel division bug in the 1990’s.

EDITING NOTE: ref needed �

Developing mathematical methods to verify programs and systems remains an

active research area. We’ll consider some of these methods later in the text.

1.3.2 Predicates

A predicate is a proposition whose truth depends on the value of one or more vari-

ables. Most of the propositions above were defined in terms of predicates. For

example,

“n is a perfect square”

1.3. PREDICATES AND QUANTIFIERS 61

is a predicate whose truth depends on the value of n. The predicate is true for

n = 4 since four is a perfect square, but false for n = 5 since five is not a perfect

square.

Like other propositions, predicates are often named with a letter. Furthermore,

a function-like notation is used to denote a predicate supplied with specific vari-

able values. For example, we might name our earlier predicate P :

P (n) ::= “n is a perfect square”

Now P (4) is true, and P (5) is false.

This notation for predicates is confusingly similar to ordinary function nota-

tion. If P is a predicate, then P (n) is either true or false, depending on the value

of n. On the other hand, if p is an ordinary function, like n2 + n, then p(n) is a

numerical quantity. Don’t confuse these two!

62 CHAPTER 1. PROPOSITIONS

1.3.3 Quantifiers

There are a couple of assertions commonly made about a predicate: that it is some-

times true and that it is always true. For example, the predicate

“x2 ≥ 0”

is always true when x is a real number. On the other hand, the predicate

“5x2 − 7 = 0”

is only sometimes true; specifically, when x = ±
√

7/5.

There are several ways to express the notions of “always true” and “sometimes

true” in English. The table below gives some general formats on the left and spe-

cific examples using those formats on the right. You can expect to see such phrases

hundreds of times in mathematical writing!

Always True

For all n, P (n) is true. For all x ∈ R, x2 ≥ 0.
P (n) is true for every n. x2 ≥ 0 for every x ∈ R.

Sometimes True

There exists an n such that P (n) is true. There exists an x ∈ R such that 5x2 − 7 = 0.
P (n) is true for some n. 5x2 − 7 = 0 for some x ∈ R.
P (n) is true for at least one n. 5x2 − 7 = 0 for at least one x ∈ R.

1.3. PREDICATES AND QUANTIFIERS 63

All these sentences quantify how often the predicate is true. Specifically, an

assertion that a predicate is always true, is called a universally quantified statement.

An assertion that a predicate is sometimes true, is called an existentially quantified

statement.

Sometimes English sentences are unclear about quantification:

“If you can solve any problem we come up with, then you get an A for the

course.”

The phrase “you can solve any problem we can come up with” could reasonably

be interpreted as either a universal or existential statement. It might mean:

“You can solve every problem we come up with,”

or maybe

“You can solve at least one problem we come up with.”

In the preceding example, the quantified phrase appears inside a larger if-then

statement. This is quite normal; quantified statements are themselves propositions

and can be combined with AND, OR, IMPLIES, etc., just like any other proposition.

64 CHAPTER 1. PROPOSITIONS

1.3.4 Notation

There are symbols to represent universal and existential quantification, just as

there are symbols for “AND” (∧), “IMPLIES” (−→), and so forth. In particular, to

say that a predicate, P (x), is true for all values of x in some set, D, we write:

∀x ∈ D. P (x) (1.3)

The universal quantifier symbol ∀ is read “for all,” so this whole expression (1.3) is

read “For all x in D, P (x) is true.” Remember that upside-down “A” stands for

“All.”

To say that a predicate P (x) is true for at least one value of x in D, we write:

∃x ∈ D. P (x) (1.4)

The existential quantifier symbol ∃, is read “there exists.” So expression (1.4) is read,

“There exists an x in D such that P (x) is true.” Remember that backward “E”

stands for “Exists.”

The symbols ∀ and ∃ are always followed by a variable—typically with an in-

dication of the set the variable ranges over—and then a predicate, as in the two

1.3. PREDICATES AND QUANTIFIERS 65

examples above.

As an example, let Probs be the set of problems we come up with, Solves(x) be

the predicate “You can solve problem x”, and G be the proposition, “You get an A

for the course.” Then the two different interpretations of

“If you can solve any problem we come up with, then you get an A for

the course.”

can be written as follows:

(∀x ∈ Probs. Solves(x)) IMPLIES G,

or maybe

(∃x ∈ Probs. Solves(x)) IMPLIES G.

1.3.5 Mixing Quantifiers

Many mathematical statements involve several quantifiers. For example, Gold-

bach’s Conjecture states:

“Every even integer greater than 2 is the sum of two primes.”

66 CHAPTER 1. PROPOSITIONS

Let’s write this more verbosely to make the use of quantification clearer:

For every even integer n greater than 2, there exist primes p and q such

that n = p+ q.

Let Evens be the set of even integers greater than 2, and let Primes be the set of

primes. Then we can write Goldbach’s Conjecture in logic notation as follows:

∀n ∈ Evens︸ ︷︷ ︸
for every even
integer n > 2

∃p ∈ Primes ∃q ∈ Primes.︸ ︷︷ ︸
there exist primes
p and q such that

n = p+ q.

The proposition can also be written more simply as

∀n ∈ Evens∃p, q ∈ Primes. p+ q = n.

1.3.6 Order of Quantifiers

Swapping the order of different kinds of quantifiers (existential or universal) usu-

ally changes the meaning of a proposition. For example, let’s return to one of our

initial, confusing statements:

“Every American has a dream.”

1.3. PREDICATES AND QUANTIFIERS 67

This sentence is ambiguous because the order of quantifiers is unclear. LetA be

the set of Americans, let D be the set of dreams, and define the predicateH(a, d) to

be “American a has dream d.” Now the sentence could mean that there is a single

dream that every American shares:

∃ d ∈ D ∀a ∈ A. H(a, d)

For example, it might be that every American shares the dream of owning their

own home.

Or it could mean that every American has a personal dream:

∀a ∈ A ∃ d ∈ D. H(a, d)

For example, some Americans may dream of a peaceful retirement, while others

dream of continuing practicing their profession as long as they live, and still others

may dream of being so rich they needn’t think at all about work.

68 CHAPTER 1. PROPOSITIONS

Swapping quantifiers in Goldbach’s Conjecture creates a patently false state-

ment; namely that every even number ≥ 2 is the sum of the same two primes:

∃ p, q ∈ Primes︸ ︷︷ ︸
there exist primes
p and q such that

∀n ∈ Evens.︸ ︷︷ ︸
for every even
integer n > 2

n = p+ q.

1.3.7 Variables Over One Domain

When all the variables in a formula are understood to take values from the same

nonempty set, D, it’s conventional to omit mention of D. For example, instead of

∀x ∈ D ∃y ∈ D. Q(x, y) we’d write ∀x∃y. Q(x, y). The unnamed nonempty set

that x and y range over is called the domain of discourse, or just plain domain, of the

formula.

It’s easy to arrange for all the variables to range over one domain. For exam-

ple, Goldbach’s Conjecture could be expressed with all variables ranging over the

domain N as

∀n. (n ∈ Evens) IMPLIES (∃p ∃q. p ∈ Primes AND q ∈ Primes AND n = p+ q).

1.3. PREDICATES AND QUANTIFIERS 69

1.3.8 Negating Quantifiers

There is a simple relationship between the two kinds of quantifiers. The following

two sentences mean the same thing:

It is not the case that everyone likes to snowboard.

There exists someone who does not like to snowboard.

In terms of logic notation, this follows from a general property of predicate formu-

las:

NOT (∀x. P (x)) is equivalent to ∃x. NOT(P (x)).

Similarly, these sentences mean the same thing:

There does not exist anyone who likes skiing over magma.

Everyone dislikes skiing over magma.

We can express the equivalence in logic notation this way:

NOT (∃x. P (x)) IFF ∀x. NOT(P (x)). (1.5)

70 CHAPTER 1. PROPOSITIONS

The general principle is that moving a “not” across a quantifier changes the kind of

quantifier.

1.4 Validity

A propositional formula is called valid when it evaluates to T no matter what truth

values are assigned to the individual propositional variables. For example, the

propositional version of the Distributive Law is that P AND (Q ORR) is equivalent

to (P AND Q) OR (P AND R). This is the same as saying that

[P AND (Q OR R)] IFF [(P AND Q) OR (P AND R)]

is valid.

The same idea extends to predicate formulas, but to be valid, a formula now

must evaluate to true no matter what values its variables may take over any un-

specified domain, and no matter what interpretation a predicate variable may be

given. For example, we already observed that the rule for negating a quantifier is

captured by the valid assertion (1.5).

1.4. VALIDITY 71

Another useful example of a valid assertion is

∃x∀y. P (x, y) IMPLIES ∀y∃x. P (x, y). (1.6)

Here’s an explanation why this is valid:

LetD be the domain for the variables and P0 be some binary predicate5

on D. We need to show that if

∃x ∈ D ∀y ∈ D. P0(x, y) (1.7)

holds under this interpretation, then so does

∀y ∈ D ∃x ∈ D. P0(x, y). (1.8)

So suppose (1.7) is true. Then by definition of ∃, this means that some

element d0 ∈ D has the property that

∀y ∈ D.P0(d0, y).

By definition of ∀, this means that

P0(d0, d)
5That is, a predicate that depends on two variables.

72 CHAPTER 1. PROPOSITIONS

is true for all d ∈ D. So given any d ∈ D, there is an element in D,

namely, d0, such that P0(d0, d) is true. But that’s exactly what (1.8)

means, so we’ve proved that (1.8) holds under this interpretation, as

required.

We hope this is helpful as an explanation, although purists would not really

want to call it a “proof.” The problem is that with something as basic as (1.6), it’s

hard to see what more elementary axioms are ok to use in proving it. What the

explanation above did was translate the logical formula (1.6) into English and then

appeal to the meaning, in English, of “for all” and “there exists” as justification.

In contrast to (1.6), the formula

∀y∃x. P (x, y) IMPLIES ∃x∀y. P (x, y). (1.9)

is not valid. We can prove this by describing an interpretation where the hypothe-

sis, ∀y∃x. P (x, y), is true but the conclusion, ∃x∀y. P (x, y), is not true. For exam-

ple, let the domain be the integers and P (x, y) mean x > y. Then the hypothesis

would be true because, given a value, n, for y we could, for example, choose the

1.5. SATISFIABILITY 73

value of x to be n+1. But under this interpretation the conclusion asserts that there

is an integer that is bigger than all integers, which is certainly false. An interpreta-

tion like this which falsifies an assertion is called a counter model to the assertion.

1.5 Satisfiability

A proposition is satisfiable if some setting of the variables makes the proposition

true. For example, P AND Q is satisfiable because the expression is true if P is true

or Q is false. On the other hand, P AND P is not satisfiable because the expression

as a whole is false for both settings of P . But determining whether or not a more

complicated proposition is satisfiable is not so easy. How about this one?

(P OR Q OR R) AND (P OR Q) AND (P OR R) AND (R OR Q)

The general problem of deciding whether a proposition is satisfiable is called

SAT. One approach to SAT is to construct a truth table and check whether or not

a T ever appears. But this approach is not very efficient; a proposition with n

variables has a truth table with 2n lines, so the effort required to decide about a

74 CHAPTER 1. PROPOSITIONS

proposition grows exponentially with the number of variables. For a proposition

with just 30 variables, that’s already over a billion lines to check!

Is there a more efficient solution to SAT? In particular, is there some, presum-

ably very ingenious, procedure that determines in a number of steps that grows

polynomially—like n2 or n14—instead of exponentially, whether any given propo-

sition is satisfiable or not? No one knows. And an awful lot hangs on the answer.

An efficient solution to SAT would immediately imply efficient solutions to many,

many other important problems involving packing, scheduling, routing, and cir-

cuit verification, among other things. This would be wonderful, but there would

also be worldwide chaos. Decrypting coded messages would also become an easy

task (for most codes). Online financial transactions would be insecure and secret

communications could be read by everyone.

Recently there has been exciting progress on sat-solvers for practical applica-

tions like digital circuit verification. These programs find satisfying assignments

with amazing efficiency even for formulas with millions of variables. Unfortu-

1.6. PROBLEMS 75

nately, it’s hard to predict which kind of formulas are amenable to sat-solver meth-

ods, and for formulas that are NOT satisfiable, sat-solvers generally take exponen-

tial time to verify that.

So no one has a good idea how to solve SAT in polynomial time, or how to

prove that it can’t be done—researchers are completely stuck. The problem of de-

termining whether or not SAT has a polynomial time solution is known as the “P

vs. NP” problem. It is the outstanding unanswered question in theoretical com-

puter science. It is also one of the seven Millenium Problems: the Clay Institute

will award you $1,000,000 if you solve the P vs. NP problem.

1.6 Problems

1.6.1 Problems

Class Problems

Homework Problems

http://www.claymath.org/millennium/

76 CHAPTER 1. PROPOSITIONS

Chapter 2

Patterns of Proof

2.1 The Axiomatic Method

The standard procedure for establishing truth in mathematics was invented by Eu-

clid, a mathematician working in Alexandria, Egypt around 300 BC. His idea was

to begin with five assumptions about geometry, which seemed undeniable based

on direct experience. For example, one of the assumptions was “There is a straight

line segment between every pair of points.” Propositions like these that are simply

77

78 CHAPTER 2. PATTERNS OF PROOF

accepted as true are called axioms.

Starting from these axioms, Euclid established the truth of many additional

propositions by providing “proofs”. A proof is a sequence of logical deductions

from axioms and previously-proved statements that concludes with the proposi-

tion in question. You probably wrote many proofs in high school geometry class,

and you’ll see a lot more in this course.

There are several common terms for a proposition that has been proved. The

different terms hint at the role of the proposition within a larger body of work.

• Important propositions are called theorems.

• A lemma is a preliminary proposition useful for proving later propositions.

• A corollary is a proposition that follows in just a few logical steps from a

lemma or a theorem.

The definitions are not precise. In fact, sometimes a good lemma turns out to be

far more important than the theorem it was originally used to prove.

Euclid’s axiom-and-proof approach, now called the axiomatic method, is the

2.1. THE AXIOMATIC METHOD 79

foundation for mathematics today. In fact, just a handful of axioms, collectively

called Zermelo-Frankel Set Theory with Choice (ZFC), together with a few logical

deduction rules, appear to be sufficient to derive essentially all of mathematics.

Our Axioms

The ZFC axioms are important in studying and justifying the foundations of math-

ematics, but for practical purposes, they are much too primitive. Proving theorems

in ZFC is a little like writing programs in byte code instead of a full-fledged pro-

gramming language—by one reckoning, a formal proof in ZFC that 2 + 2 = 4

requires more than 20,000 steps! So instead of starting with ZFC, we’re going to

take a huge set of axioms as our foundation: we’ll accept all familiar facts from high

school math!

This will give us a quick launch, but you may find this imprecise specification

of the axioms troubling at times. For example, in the midst of a proof, you may

find yourself wondering, “Must I prove this little fact or can I take it as an axiom?”

Feel free to ask for guidance, but really there is no absolute answer. Just be up

80 CHAPTER 2. PATTERNS OF PROOF

front about what you’re assuming, and don’t try to evade homework and exam

problems by declaring everything an axiom!

Logical Deductions

Logical deductions or inference rules are used to prove new propositions using pre-

viously proved ones.

A fundamental inference rule is modus ponens. This rule says that a proof of P

together with a proof that P IMPLIES Q is a proof of Q.

Inference rules are sometimes written in a funny notation. For example, modus

ponens is written:

Rule.

P, P IMPLIES Q

Q

When the statements above the line, called the antecedents, are proved, then we

can consider the statement below the line, called the conclusion or consequent, to

also be proved.

2.1. THE AXIOMATIC METHOD 81

A key requirement of an inference rule is that it must be sound: any assignment

of truth values that makes all the antecedents true must also make the consequent

true. So if we start off with true axioms and apply sound inference rules, every-

thing we prove will also be true.

You can see why modus ponens is a sound inference rule by checking the truth

table of P IMPLIES Q. There is only one case where P and P IMPLIES Q are both

true, and in that case Q is also true.

P Q P −→ Q
F F T
F T T
T F F
T T T

There are many other natural, sound inference rules, for example:

Rule.

P IMPLIES Q, Q IMPLIES R

P IMPLIES R

EDITING NOTE:

82 CHAPTER 2. PATTERNS OF PROOF

Rule.

NOT(P) IMPLIES Q, NOT(Q)

P

�

Rule.

NOT(P) IMPLIES NOT(Q)

Q IMPLIES P

On the other hand,

Rule.

NOT(P) IMPLIES NOT(Q)

P IMPLIES Q

is not sound: if P is assigned T and Q is assigned F, then the antecedent is true

and the consequent is not.

Note that a propositional inference rule is sound precisely when the conjunc-

tion (AND) of all its antecedents implies its consequent.

As with axioms, we will not be too formal about the set of legal inference rules.

Each step in a proof should be clear and “logical”; in particular, you should state

2.2. PROOF TEMPLATES 83

what previously proved facts are used to derive each new conclusion.

2.2 Proof Templates

In principle, a proof can be any sequence of logical deductions from axioms and

previously proved statements that concludes with the proposition in question.

This freedom in constructing a proof can seem overwhelming at first. How do

you even start a proof?

Here’s the good news: many proofs follow one of a handful of standard tem-

plates. Each proof has it own details, of course, but these templates at least provide

you with an outline to fill in. In the remainder of this chapter, we’ll through sev-

eral of these standard patterns, pointing out the basic idea and common pitfalls

and giving some examples. Many of these templates fit together; one may give

you a top-level outline while others help you at the next level of detail. And we’ll

show you other, more sophisticated proof techniques in Chapter 3.

The recipes that follow are very specific at times, telling you exactly which

84 CHAPTER 2. PATTERNS OF PROOF

words to write down on your piece of paper. You’re certainly free to say things

your own way instead; we’re just giving you something you could say so that

you’re never at a complete loss.

2.2.1 Proof by Cases

Breaking a complicated proof into cases and proving each case separately is a use-

ful and common proof strategy. In fact, we have already implicitly used this strat-

egy when we used truth tables to show that certain propositions were true or valid.

For example, in section 1.1.5, we showed that an implication P −→ Q is equivalent

to its contrapositive ¬Q −→ P by considering all 4 possible assignments of T or F

to P and Q. In each of the four cases, we showed that P −→ Q was true if and

only if ¬Q −→ P was true. (For example, if P = T and Q = F, then both P −→ Q

and ¬Q −→ P are false, thereby establishing that (P −→ Q) ←→ (¬Q −→ P) is

true in for this case.) Hence we could conclude that P −→ Q was true if and only

if ¬Q −→ P are equivalent.

Proof by cases works in much more general environments than propositions

2.2. PROOF TEMPLATES 85

involving Boolean variables. In what follows, we will use this approach to prove a

simple fact about acquaintances. As background, we will assume that for any pair

of people, either they have met or not. If every pair of people in a group has met,

we’ll call the group a club. If every pair of people in a group has not met, we’ll call

it a group of strangers.

Theorem. Every collection of 6 people includes a club of 3 people or a group of 3 strangers.

Proof. The proof is by case analysis1. Let x denote one of the six people. There are

two cases:

1. Among the other 5 people besides x, at least 3 have met x.

2. Among the other 5 people, at least 3 have not met x.

Now we have to be sure that at least one of these two cases must hold,2 but

that’s easy: we’ve split the 5 people into two groups, those who have shaken hands

1Describing your approach at the outset helps orient the reader. Try to remember to always do this.

2Part of a case analysis argument is showing that you’ve covered all the cases. Often this is obvious,

because the two cases are of the form “P” and “not P”. However, the situation above is not stated quite

so simply.

86 CHAPTER 2. PATTERNS OF PROOF

with x and those who have not, so one of the groups must have at least half the

people.

Case 1: Suppose that at least 3 people have met x.

This case splits into two subcases:

Case 1.1: Among the people who have met x, none have met each other.

Then the people who have met x are a group of at least 3 strangers. So

the Theorem holds in this subcase.

Case 1.2: Among the people who have met x, some pair have met each

other. Then that pair, together with x, form a club of 3 people. So the

Theorem holds in this subcase.

This implies that the Theorem holds in Case 1.

Case 2: Suppose that at least 3 people have not met x.

This case also splits into two subcases:

Case 2.1: Among the people who have not met x, every pair has met

each other. Then the people who have not met x are a club of at least 3

2.2. PROOF TEMPLATES 87

people. So the Theorem holds in this subcase.

Case 2.2: Among the people who have not met x, some pair have not

met each other. Then that pair, together with x, form a group of at least

3 strangers. So the Theorem holds in this subcase.

This implies that the Theorem also holds in Case 2, and therefore holds in all cases.

�

2.2.2 Proving an Implication

Propositions of the form “If P , then Q” are called implications. This implication is

often rephrased as “P IMPLIES Q” or “P −→ Q”.

Here are some examples of implications:

• (Quadratic Formula) If ax2 + bx+ c = 0 and a 6= 0, then

x =
−b±

√
b2 − 4ac

2a
.

• (Goldbach’s Conjecture) If n is an even integer greater than 2, then n is a sum

of two primes.

88 CHAPTER 2. PATTERNS OF PROOF

• If 0 ≤ x ≤ 2, then −x3 + 4x+ 1 > 0.

There are a couple of standard methods for proving an implication.

Method #1: Assume P is true

This method is really an example of proof by cases in disguise. In particular, when

proving P IMPLIES Q, there are two cases to consider: P is true and P is false. The

case when P is false is easy since, by definition, T IMPLIESQ is true no matter what

Q is. This case is so easy that we usually just forget about it and start right off by

assuming that P is true when proving an implication, since this is the only case

that is interesting. Hence, in order to prove that P IMPLIES Q:

1. Write, “Assume P .”

2. Show that Q logically follows.

For example, we will use this method to prove

Theorem 2.2.1. If 0 ≤ x ≤ 2, then −x3 + 4x+ 1 > 0.

2.2. PROOF TEMPLATES 89

Before we write a proof of this theorem, we have to do some scratchwork to

figure out why it is true.

The inequality certainly holds for x = 0; then the left side is equal to 1 and

1 > 0. As x grows, the 4x term (which is positive) initially seems to have greater

magnitude than −x3 (which is negative). For example, when x = 1, we have

4x = 4, but −x3 = −1. In fact, it looks like −x3 doesn’t begin to dominate 4x until

x > 2. So it seems the−x3 + 4x part should be nonnegative for all x between 0 and

2, which would imply that −x3 + 4x+ 1 is positive.

So far, so good. But we still have to replace all those “seems like” phrases with

solid, logical arguments. We can get a better handle on the critical −x3 + 4x part

by factoring it, which is not too hard:

−x3 + 4x = x(2− x)(2 + x)

Aha! For x between 0 and 2, all of the terms on the right side are nonnegative. And

a product of nonnegative terms is also nonnegative. Let’s organize this blizzard of

observations into a clean proof.

90 CHAPTER 2. PATTERNS OF PROOF

Proof. Assume 0 ≤ x ≤ 2. Then x, 2− x, and 2 + x are all nonnegative. Therefore,

the product of these terms is also nonnegative. Adding 1 to this product gives a

positive number, so:

x(2− x)(2 + x) + 1 > 0

Multiplying out on the left side proves that

−x3 + 4x+ 1 > 0

as claimed. �

There are a couple points here that apply to all proofs:

• You’ll often need to do some scratchwork while you’re trying to figure out

the logical steps of a proof. Your scratchwork can be as disorganized as you

like—full of dead-ends, strange diagrams, obscene words, whatever. But

keep your scratchwork separate from your final proof, which should be clear

and concise.

• Proofs typically begin with the word “Proof” and end with some sort of

2.2. PROOF TEMPLATES 91

doohickey like � or � or “q.e.d”. The only purpose for these conventions

is to clarify where proofs begin and end.

Pitfall

For the purpose of proving an implication P IMPLIES Q, it’s OK, and typical, to

begin by assuming P . But when the proof is over, it’s no longer OK to assume that

P holds! For example, Theorem 2.2.1 has the form “if P , then Q” with P being

“0 ≤ x ≤ 2” and Q being “−x3 + 4x + 1 > 0,” and its proof began by assuming

that 0 ≤ x ≤ 2. But of course this assumption does not always hold. Indeed, if you

were going to prove another result using the variable x, it could be disastrous to

have a step where you assume that 0 ≤ x ≤ 2 just because you assumed it as part

of the proof of Theorem 2.2.1.

92 CHAPTER 2. PATTERNS OF PROOF

Method #2: Prove the Contrapositive

We have already seen that an implication “P IMPLIES Q” is logically equivalent to

its contrapositive

NOT(Q) IMPLIES NOT(P).

Proving one is as good as proving the other, and proving the contrapositive is

sometimes easier than proving the original statement. Hence, you can proceed as

follows:

1. Write, “We prove the contrapositive:” and then state the contrapositive.

2. Proceed as in Method #1.

For example, we can use this approach to prove

Theorem 2.2.2. If r is irrational, then
√
r is also irrational.

Recall that rational numbers are equal to a ratio of integers and irrational num-

bers are not. So we must show that if r is not a ratio of integers, then
√
r is also not

a ratio of integers. That’s pretty convoluted! We can eliminate both not’s and make

2.2. PROOF TEMPLATES 93

the proof straightforward by considering the contrapositive instead.

Proof. We prove the contrapositive: if
√
r is rational, then r is rational.

Assume that
√
r is rational. Then there exist integers a and b such that:

√
r =

a

b

Squaring both sides gives:

r =
a2

b2

Since a2 and b2 are integers, r is also rational. �

2.2.3 Proving an “If and Only If”

Many mathematical theorems assert that two statements are logically equivalent;

that is, one holds if and only if the other does. Here is an example that has been

known for several thousand years:

Two triangles have the same side lengths if and only if two side lengths

and the angle between those sides are the same in each triangle.

The phrase “if and only if” comes up so often that it is often abbreviated “iff”.

94 CHAPTER 2. PATTERNS OF PROOF

Method #1: Prove Each Statement Implies the Other

The statement “P IFF Q” is equivalent to the two statements “P IMPLIES Q” and

“Q IMPLIES P”. So you can prove an “iff” by proving two implications:

1. Write, “We prove P implies Q and vice-versa.”

2. Write, “First, we show P implies Q.” Do this by one of the methods in Sec-

tion 2.2.2.

3. Write, “Now, we show Q implies P .” Again, do this by one of the methods

in Section 2.2.2.

Method #2: Construct a Chain of IFFs

In order to prove that P is true iff Q is true:

1. Write, “We construct a chain of if-and-only-if implications.”

2. Prove P is equivalent to a second statement which is equivalent to a third

statement and so forth until you reach Q.

2.2. PROOF TEMPLATES 95

This method sometimes requires more ingenuity than the first, but the result can

be a short, elegant proof, as we see in the following example.

Theorem 2.2.3. The standard deviation of a sequence of values x1, . . . , xn is zero iff all

the values are equal to the mean.

Definition. The standard deviation of a sequence of values x1, x2, . . . , xn is defined

to be:

√
(x1 − µ)2 + (x2 − µ)2 + · · ·+ (xn − µ)2

n
(2.1)

where µ is the mean of the values:

µ ::=
x1 + x2 + · · ·+ xn

n

As an example, Theorem 2.2.3 says that the standard deviation of test scores is

zero if and only if everyone scored exactly the class average. (We will talk a lot

more about means and standard deviations in Part IV of the book.)

Proof. We construct a chain of “iff” implications, starting with the statement that

96 CHAPTER 2. PATTERNS OF PROOF

the standard deviation (2.1) is zero:

√
(x1 − µ)2 + (x2 − µ)2 + · · ·+ (xn − µ)2

n
= 0. (2.2)

Since zero is the only number whose square root is zero, equation (2.2) holds iff

(x1 − µ)2 + (x2 − µ)2 + · · ·+ (xn − µ)2 = 0. (2.3)

Squares of real numbers are always nonnegative, and so every term on the left

hand side of equation (2.3) is nonnegative. This means that (2.3) holds iff

Every term on the left hand side of (2.3) is zero. (2.4)

But a term (xi − µ)2 is zero iff xi = µ, so (2.4) is true iff

Every xi equals the mean.

�

2.2.4 Proof by Contradiction

In a proof by contradiction or indirect proof, you show that if a proposition were false,

then some false fact would be true. Since a false fact can’t be true, the proposition

2.2. PROOF TEMPLATES 97

had better not be false. That is, the proposition really must be true.

EDITING NOTE:

So proof by contradiction would be described by the inference rule

Rule.

¬P −→ F

P

�

Proof by contradiction is always a viable approach. However, as the name sug-

gests, indirect proofs can be a little convoluted. So direct proofs are generally

preferable as a matter of clarity.

Method: In order to prove a proposition P by contradiction:

1. Write, “We use proof by contradiction.”

2. Write, “Suppose P is false.”

3. Deduce something known to be false (a logical contradiction).

4. Write, “This is a contradiction. Therefore, P must be true.”

98 CHAPTER 2. PATTERNS OF PROOF

As an example, we will use proof by contradiction to prove that
√

2 is irrational.

Recall that a number is rational if it is equal to a ratio of integers. For example,

3.5 = 7/2 and 0.1111 · · · = 1/9 are rational numbers.

Theorem 2.2.4.
√

2 is irrational.

Proof. We use proof by contradiction. Suppose the claim is false; that is,
√

2 is ra-

tional. Then we can write
√

2 as a fraction n/d where n and d are positive integers.

Furthermore, let’s take n and d so that n/d is in lowest terms, namely, there is no

number greater than 1 that divides both n and d).

Squaring both sides gives 2 = n2/d2 and so 2d2 = n2. This implies that n is a

multiple of 2. Therefore n2 must be a multiple of 4. But since 2d2 = n2, we know

2d2 is a multiple of 4 and so d2 is a multiple of 2. This implies that d is a multiple

of 2.

So the numerator and denominator have 2 as a common factor, which contra-

dicts the fact that n/d is in lowest terms. So
√

2 must be irrational. �

EDITING NOTE:

2.2. PROOF TEMPLATES 99

Potential Pitfall

Often students use an indirect proof when a direct proof would be simpler. Such

proofs aren’t wrong; they just aren’t excellent. Let’s look at an example. A function

f is strictly increasing if f(x) > f(y) for all real x and y such that x > y.

Theorem 2.2.5. If f and g are strictly increasing functions, then f + g is a strictly in-

creasing function.

Let’s first look at a simple, direct proof.

Proof. Let x and y be arbitrary real numbers such that x > y. Then:

f(x) > f(y) (since f is strictly increasing)

g(x) > g(y) (since g is strictly increasing)

Adding these inequalities gives:

f(x) + g(x) > f(y) + g(y)

Thus, f + g is strictly increasing as well. �

100 CHAPTER 2. PATTERNS OF PROOF

Now we could prove the same theorem by contradiction, but this makes the

argument needlessly convoluted.

Proof. We use proof by contradiction. Suppose that f + g is not strictly increasing.

Then there must exist real numbers x and y such that x > y, but

f(x) + g(x) ≤ f(y) + g(y)

This inequality can only hold if either f(x) ≤ f(y) or g(x) ≤ g(y). Either way, we

have a contradiction because both f and g were defined to be strictly increasing.

Therefore, f + g must actually be strictly increasing. �

�

A proof of a proposition P by contradiction is really the same as proving the

implication T IMPLIESP by contrapositive. Indeed, the contrapositive of T IMPLIES

P is NOT(P) IMPLIES F. As we saw in Section 2.2.2(???), such a proof would be

begin by assuming NOT(P) in an effort to derive a falsehood, just as you do in a

proof by contradiction.

2.3. GOOD PROOFS IN PRACTICE 101

Pitfall

No matter how you think about it, it is important to remember that when you

start by assuming NOT(P), you will derive conclusions along the way that are not

necessarily true. (Indeed, the whole point of the method is to derive a falsehood.)

This means that you cannot rely on such intermediate results after the proof is

completed, for example that n is even in the proof of Theorem 2.2.4). There was

not much risk of that happening in the proof of Theorem 2.2.4, but when you are

doing more complicated proofs that build up from several lemmas, some of which

utilize a proof by contradiction, it will be important to keep track of which follow

from a (false) assumption in a proof by contradiction.

2.3 Good Proofs in Practice

One purpose of a proof is to establish the truth of an assertion with absolute cer-

tainty. Mechanically checkable proofs of enormous length or complexity can ac-

complish this. But humanly intelligible proofs are the only ones that help someone

102 CHAPTER 2. PATTERNS OF PROOF

understand the subject. Mathematicians generally agree that important mathemat-

ical results can’t be fully understood until their proofs are understood. That is why

proofs are an important part of the curriculum.

To be understandable and helpful, more is required of a proof than just logical

correctness: a good proof must also be clear. Correctness and clarity usually go

together; a well-written proof is more likely to be a correct proof, since mistakes

are harder to hide.

In practice, the notion of proof is a moving target. Proofs in a professional

research journal are generally unintelligible to all but a few experts who know all

the terminology and prior results used in the proof. Conversely, proofs in the first

weeks of an introductory course like Mathematics for Computer Science would be

regarded as tediously long-winded by a professional mathematician. In fact, what

we accept as a good proof later in the term will be different than what we consider

to be a good proof in the first couple of weeks of this course. But even so, we can

offer some general tips on writing good proofs:

2.3. GOOD PROOFS IN PRACTICE 103

State your game plan. A good proof begins by explaining the general line of rea-

soning. For example, “We use case analysis” or “We argue by contradiction.”

Keep a linear flow. Sometimes proofs are written like mathematical mosaics, with

juicy tidbits of independent reasoning sprinkled throughout. This is not

good. The steps of an argument should follow one another in an intelligi-

ble order.

A proof is an essay, not a calculation. Many students initially write proofs the way

they compute integrals. The result is a long sequence of expressions without

explanation, making it very hard to follow. This is bad. A good proof usually

looks like an essay with some equations thrown in. Use complete sentences.

Avoid excessive symbolism. Your reader is probably good at understanding words,

but much less skilled at reading arcane mathematical symbols. So use words

where you reasonably can.

Revise and simplify. Your readers will be grateful.

104 CHAPTER 2. PATTERNS OF PROOF

Introduce notation thoughtfully. Sometimes an argument can be greatly simpli-

fied by introducing a variable, devising a special notation, or defining a new

term. But do this sparingly since you’re requiring the reader to remember all

that new stuff. And remember to actually define the meanings of new vari-

ables, terms, or notations; don’t just start using them!

Structure long proofs. Long programs are usually broken into a hierarchy of smaller

procedures. Long proofs are much the same. Facts needed in your proof that

are easily stated, but not readily proved are best pulled out and proved in

preliminary lemmas. Also, if you are repeating essentially the same argu-

ment over and over, try to capture that argument in a general lemma, which

you can cite repeatedly instead.

Be wary of the “obvious”. When familiar or truly obvious facts are needed in a

proof, it’s OK to label them as such and to not prove them. But remember

that what’s obvious to you, may not be—and typically is not—obvious to

your reader.

2.3. GOOD PROOFS IN PRACTICE 105

Most especially, don’t use phrases like “clearly” or “obviously” in an attempt

to bully the reader into accepting something you’re having trouble proving.

Also, go on the alert whenever you see one of these phrases in someone else’s

proof.

Finish. At some point in a proof, you’ll have established all the essential facts

you need. Resist the temptation to quit and leave the reader to draw the

“obvious” conclusion. Instead, tie everything together yourself and explain

why the original claim follows.

The analogy between good proofs and good programs extends beyond struc-

ture. The same rigorous thinking needed for proofs is essential in the design of

critical computer systems. When algorithms and protocols only “mostly work”

due to reliance on hand-waving arguments, the results can range from problem-

atic to catastrophic. An early example was the Therac 25, a machine that provided

radiation therapy to cancer victims, but occasionally killed them with massive

overdoses due to a software race condition. A more recent (August 2004) exam-

106 CHAPTER 2. PATTERNS OF PROOF

ple involved a single faulty command to a computer system used by United and

American Airlines that grounded the entire fleet of both companies—and all their

passengers!

It is a certainty that we’ll all one day be at the mercy of critical computer sys-

tems designed by you and your classmates. So we really hope that you’ll develop

the ability to formulate rock-solid logical arguments that a system actually does

what you think it does!

2.3.1 Problems

Class Problems

Homework Problems

Chapter 3

Induction

3.1 The Well Ordering Principle

Every nonempty set of nonnegative integers has a smallest element.

This statement is known as The Well Ordering Principle. Do you believe it?

Seems sort of obvious, right? But notice how tight it is: it requires a nonempty

set —it’s false for the empty set which has no smallest element because it has no

107

108 CHAPTER 3. INDUCTION

elements at all! And it requires a set of nonnegative integers —it’s false for the

set of negative integers and also false for some sets of nonnegative rationals —for

example, the set of positive rationals. So, the Well Ordering Principle captures

something special about the nonnegative integers.

3.1.1 Well Ordering Proofs

While the Well Ordering Principle may seem obvious, it’s hard to see offhand why

it is useful. But in fact, it provides one of the most important proof rules in discrete

mathematics.

In fact, looking back, we took the Well Ordering Principle for granted in prov-

ing that
√

2 is irrational. That proof assumed that for any positive integers m and

n, the fraction m/n can be written in lowest terms, that is, in the form m′/n′ where

m′ and n′ are positive integers with no common factors. How do we know this is

always possible?

Suppose to the contrary that there were m,n ∈ Z+ such that the fraction m/n

cannot be written in lowest terms. Now let C be the set of positive integers that are

3.1. THE WELL ORDERING PRINCIPLE 109

numerators of such fractions. Then m ∈ C, so C is nonempty. Therefore, by Well

Ordering, there must be a smallest integer, m0 ∈ C. So by definition of C, there is

an integer n0 > 0 such that

the fraction
m0

n0
cannot be written in lowest terms.

This means that m0 and n0 must have a common factor, p > 1. But

m0/p

n0/p
=
m0

n0
,

so any way of expressing the left hand fraction in lowest terms would also work

for m0/n0, which implies

the fraction
m0/p

n0/p
cannot be in written in lowest terms either.

So by definition of C, the numerator, m0/p, is in C. But m0/p < m0, which contra-

dicts the fact that m0 is the smallest element of C.

Since the assumption that C is nonempty leads to a contradiction, it follows

that C must be empty. That is, that there are no numerators of fractions that can’t

be written in lowest terms, and hence there are no such fractions at all.

110 CHAPTER 3. INDUCTION

We’ve been using the Well Ordering Principle on the sly from early on!

3.1.2 Template for Well Ordering Proofs

More generally, there is a standard way to use Well Ordering to prove that some

property, P (n) holds for every nonnegative integer, n. Here is a standard way to

organize such a well ordering proof:

3.1. THE WELL ORDERING PRINCIPLE 111

To prove that “P (n) is true for all n ∈ N” using the Well Ordering Principle:

• Define the set, C, of counterexamples to P being true. Namely, definea

C ::= {n ∈ N | P (n) is false} .

• Assume for proof by contradiction that C is nonempty.

• By the Well Ordering Principle, there will be a smallest element, n, in C.

• Reach a contradiction (somehow) —often by showing how to use n to find

another member of C that is smaller than n. (This is the open-ended part of

the proof task.)

• Conclude that C must be empty, that is, no counterexamples exist. QED

aThe notation {n | P (n)}means “the set of all elements n, for which P (n) is true.

3.1.3 Summing the Integers

Let’s use this this template to prove

112 CHAPTER 3. INDUCTION

Theorem.

1 + 2 + 3 + · · ·+ n = n(n+ 1)/2 (3.1)

for all nonnegative integers, n.

First, we better address of a couple of ambiguous special cases before they trip

us up:

• If n = 1, then there is only one term in the summation, and so 1+2+3+· · ·+n

is just the term 1. Don’t be misled by the appearance of 2 and 3 and the

suggestion that 1 and n are distinct terms!

• If n ≤ 0, then there are no terms at all in the summation. By convention, the

sum in this case is 0.

So while the dots notation is convenient, you have to watch out for these special

cases where the notation is misleading! (In fact, whenever you see the dots, you

should be on the lookout to be sure you understand the pattern, watching out for

the beginning and the end.)

We could have eliminated the need for guessing by rewriting the left side of (3.1)

3.1. THE WELL ORDERING PRINCIPLE 113

with summation notation:

n∑
i=1

i or
∑

1≤i≤n

i.

Both of these expressions denote the sum of all values taken by the expression to

the right of the sigma as the variable, i, ranges from 1 to n. Both expressions make

it clear what (3.1) means when n = 1. The second expression makes it clear that

when n = 0, there are no terms in the sum, though you still have to know the

convention that a sum of no numbers equals 0 (the product of no numbers is 1, by

the way).

OK, back to the proof:

Proof. By contradiction. Assume that the theorem is false. Then, some nonnegative

integers serve as counterexamples to it. Let’s collect them in a set:

C ::=
{
n ∈ N | 1 + 2 + 3 + · · ·+ n 6= n(n+ 1)

2

}
.

By our assumption that the theorem admits counterexamples, C is a nonempty set

of nonnegative integers. So, by the Well Ordering Principle, C has a minimum

element, call it c. That is, c is the smallest counterexample to the theorem.

114 CHAPTER 3. INDUCTION

Since c is the smallest counterexample, we know that (3.1) is false for n = c but

true for all nonnegative integers n < c. But (3.1) is true for n = 0, so c > 0. This

means c−1 is a nonnegative integer, and since it is less than c, equation (3.1) is true

for c− 1. That is,

1 + 2 + 3 + · · ·+ (c− 1) =
(c− 1)c

2
.

But then, adding c to both sides we get

1 + 2 + 3 + · · ·+ (c− 1) + c =
(c− 1)c

2
+ c =

c2 − c+ 2c
2

=
c(c+ 1)

2
,

which means that (3.1) does hold for c, after all! This is a contradiction, and we are

done. �

3.1.4 Factoring into Primes

We’ve previously taken for granted the Prime Factorization Theorem that every inte-

ger greater than one has a unique1 expression as a product of prime numbers. This

is another of those familiar mathematical facts which are not really obvious. We’ll

prove the uniqueness of prime factorization in a later chapter, but well ordering
1. . . unique up to the order in which the prime factors appear

3.1. THE WELL ORDERING PRINCIPLE 115

gives an easy proof that every integer greater than one can be expressed as some

product of primes.

Theorem 3.1.1. Every natural number can be factored as a product of primes.

Proof. The proof is by Well Ordering.

Let C be the set of all integers greater than one that cannot be factored as a

product of primes. We assume C is not empty and derive a contradiction.

If C is not empty, there is a least element, n ∈ C, by Well Ordering. The n can’t

be prime, because a prime by itself is considered a (length one) product of primes

and no such products are in C.

So nmust be a product of two integers a and bwhere 1 < a, b < n. Since a and b

are smaller than the smallest element in C, we know that a, b /∈ C. In other words,

a can be written as a product of primes p1p2 · · · pk and b as a product of primes

q1 · · · ql. Therefore, n = p1 · · · pkq1 · · · ql can be written as a product of primes,

contradicting the claim that n ∈ C. Our assumption that C 6= ∅ must therefore be

false. �

116 CHAPTER 3. INDUCTION

3.1.5 Problems

Practice Problems

Class Problems

Homework Problems

3.2 Induction

Induction is by far the most powerful and commonly-used proof technique in dis-

crete mathematics and computer science. In fact, the use of induction is a defining

characteristic of discrete —as opposed to continuous —mathematics. To understand

how it works, suppose there is a professor who brings to class a bottomless bag of

assorted miniature candy bars. She offers to share the candy in the following way.

First, she lines the students up in order. Next she states two rules:

1. The student at the beginning of the line gets a candy bar.

2. If a student gets a candy bar, then the following student in line also gets a

3.2. INDUCTION 117

candy bar.

Let’s number the students by their order in line, starting the count with 0, as usual

in Computer Science. Now we can understand the second rule as a short descrip-

tion of a whole sequence of statements:

• If student 0 gets a candy bar, then student 1 also gets one.

• If student 1 gets a candy bar, then student 2 also gets one.

• If student 2 gets a candy bar, then student 3 also gets one.

...

Of course this sequence has a more concise mathematical description:

If student n gets a candy bar, then student n+ 1 gets a candy bar, for all

nonnegative integers n.

So suppose you are student 17. By these rules, are you entitled to a miniature candy

bar? Well, student 0 gets a candy bar by the first rule. Therefore, by the second rule,

student 1 also gets one, which means student 2 gets one, which means student 3

118 CHAPTER 3. INDUCTION

gets one as well, and so on. By 17 applications of the professor’s second rule, you

get your candy bar! Of course the rules actually guarantee a candy bar to every

student, no matter how far back in line they may be.

3.2.1 Ordinary Induction

The reasoning that led us to conclude every student gets a candy bar is essentially

all there is to induction.

3.2. INDUCTION 119

The Principle of Induction.

Let P (n) be a predicate. If

• P (0) is true, and

• P (n) IMPLIES P (n+ 1) for all nonnegative integers, n,

then

• P (m) is true for all nonnegative integers, m.

Since we’re going to consider several useful variants of induction in later sec-

tions, we’ll refer to the induction method described above as ordinary induction

when we need to distinguish it. Formulated as a proof rule, this would be

Rule. Induction Rule

P (0), ∀n ∈ N [P (n) IMPLIES P (n+ 1)]

∀m ∈ N. P (m)

This general induction rule works for the same intuitive reason that all the stu-

dents get candy bars, and we hope the explanation using candy bars makes it clear

120 CHAPTER 3. INDUCTION

why the soundness of the ordinary induction can be taken for granted. In fact, the

rule is so obvious that it’s hard to see what more basic principle could be used to

justify it.2 What’s not so obvious is how much mileage we get by using it.

Using Ordinary Induction

Ordinary induction often works directly in proving that some statement about

nonnegative integers holds for all of them. For example, here is the formula for

the sum of the nonnegative integer that we already proved (equation (3.1)) using

the Well Ordering Principle:

Theorem 3.2.1. For all n ∈ N,

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
(3.2)

This time, let’s use the Induction Principle to prove Theorem 3.2.1.

Suppose that we define predicate P (n) to be the equation (3.2). Recast in terms

of this predicate, the theorem claims that P (n) is true for all n ∈ N. This is great,

because the induction principle lets us reach precisely that conclusion, provided
2But see section 3.2.1.

3.2. INDUCTION 121

we establish two simpler facts:

• P (0) is true.

• For all n ∈ N, P (n) IMPLIES P (n+ 1).

So now our job is reduced to proving these two statements. The first is true

because P (0) asserts that a sum of zero terms is equal to 0(0 + 1)/2 = 0, which is

true by definition. The second statement is more complicated. But remember the

basic plan for proving the validity of any implication: assume the statement on the

left and then prove the statement on the right. In this case, we assume P (n) in order

to prove P (n+ 1), which is the equation

1 + 2 + 3 + · · ·+ n+ (n+ 1) =
(n+ 1)(n+ 2)

2
. (3.3)

These two equations are quite similar; in fact, adding (n+ 1) to both sides of equa-

tion (3.2) and simplifying the right side gives the equation (3.3):

1 + 2 + 3 + · · ·+ n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1)

=
(n+ 2)(n+ 1)

2

122 CHAPTER 3. INDUCTION

Thus, if P (n) is true, then so is P (n + 1). This argument is valid for every non-

negative integer n, so this establishes the second fact required by the induction

principle. Therefore, the induction principle says that the predicate P (m) is true

for all nonnegative integers, m, so the theorem is proved.

A Template for Induction Proofs

The proof of Theorem 3.2.1 was relatively simple, but even the most complicated

induction proof follows exactly the same template. There are five components:

1. State that the proof uses induction. This immediately conveys the overall

structure of the proof, which helps the reader understand your argument.

2. Define an appropriate predicate P (n). The eventual conclusion of the in-

duction argument will be that P (n) is true for all nonnegative n. Thus, you

should define the predicate P (n) so that your theorem is equivalent to (or fol-

lows from) this conclusion. Often the predicate can be lifted straight from the

claim, as in the example above. The predicate P (n) is called the induction hy-

3.2. INDUCTION 123

pothesis. Sometimes the induction hypothesis will involve several variables,

in which case you should indicate which variable serves as n.

3. Prove that P (0) is true. This is usually easy, as in the example above. This

part of the proof is called the base case or basis step.

4. Prove that P (n) implies P (n + 1) for every nonnegative integer n. This is

called the inductive step. The basic plan is always the same: assume that P (n)

is true and then use this assumption to prove that P (n+1) is true. These two

statements should be fairly similar, but bridging the gap may require some

ingenuity. Whatever argument you give must be valid for every nonnegative

integer n, since the goal is to prove the implications P (0) → P (1), P (1) →

P (2), P (2)→ P (3), etc. all at once.

5. Invoke induction. Given these facts, the induction principle allows you to

conclude that P (n) is true for all nonnegative n. This is the logical capstone

to the whole argument, but it is so standard that it’s usual not to mention it

explicitly,

124 CHAPTER 3. INDUCTION

Explicitly labeling the base case and inductive step may make your proofs clearer.

A Clean Writeup

The proof of Theorem 3.2.1 given above is perfectly valid; however, it contains a

lot of extraneous explanation that you won’t usually see in induction proofs. The

writeup below is closer to what you might see in print and should be prepared to

produce yourself.

Proof. We use induction. The induction hypothesis, P (n), will be equation (3.2).

Base case: P (0) is true, because both sides of equation (3.2) equal zero when

n = 0.

Inductive step: Assume that P (n) is true, where n is any nonnegative integer.

Then

1 + 2 + 3 + · · ·+ n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1) (by induction hypothesis)

=
(n+ 1)(n+ 2)

2
(by simple algebra)

which proves P (n+ 1).

3.2. INDUCTION 125

So it follows by induction that P (n) is true for all nonnegative n. �

Induction was helpful for proving the correctness of this summation formula, but

not helpful for discovering it in the first place. Tricks and methods for finding such

formulas will appear in a later chapter.

Courtyard Tiling

During the development of MIT’s famous Stata Center, costs rose further and fur-

ther over budget, and there were some radical fundraising ideas. One rumored

plan was to install a big courtyard with dimensions 2n × 2n:

2n

2n

One of the central squares would be occupied by a statue of a wealthy potential

donor. Let’s call him “Bill”. (In the special case n = 0, the whole courtyard consists

of a single central square; otherwise, there are four central squares.) A complica-

126 CHAPTER 3. INDUCTION

tion was that the building’s unconventional architect, Frank Gehry, was alleged to

require that only special L-shaped tiles be used:

A courtyard meeting these constraints exists, at least for n = 2:

B

For larger values of n, is there a way to tile a 2n × 2n courtyard with L-shaped

tiles and a statue in the center? Let’s try to prove that this is so.

Theorem 3.2.2. For all n ≥ 0 there exists a tiling of a 2n × 2n courtyard with Bill in a

central square.

Proof. (doomed attempt) The proof is by induction. Let P (n) be the proposition that

there exists a tiling of a 2n × 2n courtyard with Bill in the center.

Base case: P (0) is true because Bill fills the whole courtyard.

3.2. INDUCTION 127

Inductive step: Assume that there is a tiling of a 2n × 2n courtyard with Bill in

the center for some n ≥ 0. We must prove that there is a way to tile a 2n+1 × 2n+1

courtyard with Bill in the center �

Now we’re in trouble! The ability to tile a smaller courtyard with Bill in the

center isn’t much help in tiling a larger courtyard with Bill in the center. We haven’t

figured out how to bridge the gap between P (n) and P (n+ 1).

So if we’re going to prove Theorem 3.2.2 by induction, we’re going to need

some other induction hypothesis than simply the statement about n that we’re try-

ing to prove.

When this happens, your first fallback should be to look for a stronger induction

hypothesis; that is, one which implies your previous hypothesis. For example,

we could make P (n) the proposition that for every location of Bill in a 2n × 2n

courtyard, there exists a tiling of the remainder.

This advice may sound bizarre: “If you can’t prove something, try to prove

something grander!” But for induction arguments, this makes sense. In the induc-

128 CHAPTER 3. INDUCTION

tive step, where you have to prove P (n) IMPLIES P (n + 1), you’re in better shape

because you can assume P (n), which is now a more powerful statement. Let’s see

how this plays out in the case of courtyard tiling.

Proof. (successful attempt) The proof is by induction. Let P (n) be the proposition

that for every location of Bill in a 2n × 2n courtyard, there exists a tiling of the

remainder.

Base case: P (0) is true because Bill fills the whole courtyard.

Inductive step: Assume that P (n) is true for some n ≥ 0; that is, for every

location of Bill in a 2n × 2n courtyard, there exists a tiling of the remainder. Divide

the 2n+1×2n+1 courtyard into four quadrants, each 2n×2n. One quadrant contains

Bill (B in the diagram below). Place a temporary Bill (X in the diagram) in each of

the three central squares lying outside this quadrant:

3.2. INDUCTION 129

X

X X

B

2n 2n

2n

a

2n

Now we can tile each of the four quadrants by the induction assumption. Re-

placing the three temporary Bills with a single L-shaped tile completes the job.

This proves that P (n) implies P (n + 1) for all n ≥ 0. The theorem follows as a

special case. �

This proof has two nice properties. First, not only does the argument guarantee

that a tiling exists, but also it gives an algorithm for finding such a tiling. Second,

we have a stronger result: if Bill wanted a statue on the edge of the courtyard,

away from the pigeons, we could accommodate him!

Strengthening the induction hypothesis is often a good move when an induc-

tion proof won’t go through. But keep in mind that the stronger assertion must

130 CHAPTER 3. INDUCTION

actually be true; otherwise, there isn’t much hope of constructing a valid proof!

Sometimes finding just the right induction hypothesis requires trial, error, and in-

sight. For example, mathematicians spent almost twenty years trying to prove or

disprove the conjecture that “Every planar graph is 5-choosable”3. Then, in 1994,

Carsten Thomassen gave an induction proof simple enough to explain on a nap-

kin. The key turned out to be finding an extremely clever induction hypothesis;

with that in hand, completing the argument is easy!

A Faulty Induction Proof

False Theorem. All horses are the same color.

Notice that no n is mentioned in this assertion, so we’re going to have to re-

formulate it in a way that makes an n explicit. In particular, we’ll (falsely) prove

that

35-choosability is a slight generalization of 5-colorability. Although every planar graph is 4-colorable

and therefore 5-colorable, not every planar graph is 4-choosable. If this all sounds like nonsense, don’t

panic. We’ll discuss graphs, planarity, and coloring in a later chapter.

3.2. INDUCTION 131

False Theorem 3.2.3. In every set of n ≥ 1 horses, all the horses are the same color.

This a statement about all integers n ≥ 1 rather ≥ 0, so it’s natural to use a

slight variation on induction: prove P (1) in the base case and then prove that P (n)

implies P (n+ 1) for all n ≥ 1 in the inductive step. This is a perfectly valid variant

of induction and is not the problem with the proof below.

False proof. The proof is by induction on n. The induction hypothesis, P (n), will

be

In every set of n horses, all are the same color. (3.4)

Base case: (n = 1). P (1) is true, because in a set of horses of size 1, there’s only

one horse, and this horse is definitely the same color as itself.

Inductive step: Assume that P (n) is true for some n ≥ 1. that is, assume that

in every set of n horses, all are the same color. Now consider a set of n+ 1 horses:

h1, h2, . . . , hn, hn+1

132 CHAPTER 3. INDUCTION

By our assumption, the first n horses are the same color:

h1, h2, . . . , hn,︸ ︷︷ ︸
same color

hn+1

Also by our assumption, the last n horses are the same color:

h1, h2, . . . , hn, hn+1︸ ︷︷ ︸
same color

So h1 is the same color as the remaining horses besides hn+1, and likewise hn+1 is

the same color as the remaining horses besides h1. So h1 and hn+1 are the same

color. That is, horses h1, h2, . . . , hn+1 must all be the same color, and so P (n+ 1) is

true. Thus, P (n) implies P (n+ 1).

By the principle of induction, P (n) is true for all n ≥ 1. �

We’ve proved something false! Is math broken? Should we all become poets?

No, this proof has a mistake.

The error in this argument is in the sentence that begins, “So h1 and hn+1 are

the same color.” The “. . . ” notation creates the impression that there are some

remaining horses besides h1 and hn+1. However, this is not true when n = 1. In

3.2. INDUCTION 133

that case, the first set is just h1 and the second is h2, and there are no remaining

horses besides them. So h1 and h2 need not be the same color!

This mistake knocks a critical link out of our induction argument. We proved

P (1) and we correctly proved P (2) −→ P (3), P (3) −→ P (4), etc. But we failed to

prove P (1) −→ P (2), and so everything falls apart: we can not conclude that P (2),

P (3), etc., are true. And, of course, these propositions are all false; there are horses

of a different color.

Students sometimes claim that the mistake in the proof is because P (n) is false

for n ≥ 2, and the proof assumes something false, namely, P (n), in order to prove

P (n+ 1). You should think about how to explain to such a student why this claim

would get no credit on a Math for Computer Science exam.

Induction versus Well Ordering

The Induction Axiom looks nothing like the Well Ordering Principle, but these two

proof methods are closely related. In fact, as the examples above suggest, we can

take any Well Ordering proof and reformat it into an Induction proof. Conversely,

134 CHAPTER 3. INDUCTION

it’s equally easy to take any Induction proof and reformat it into a Well Ordering

proof.

EDITING NOTE: Here’s how to reformat an induction proof and into a Well Or-

dering proof : suppose that we have a proof by induction with hypothesis P (n).

Then we start a Well Ordering proof by assuming the set of counterexamples to P

is nonempty. Then by Well Ordering there is a smallest counterexample, s, that is,

a smallest s such that P (s) is false.

Now we use the proof of P (0) that was part of the Induction proof to conclude

that s must be greater than 0. Also since s is the smallest counterexample, we

can conclude that P (s − 1) must be true. At this point we reuse the proof of the

inductive step in the Induction proof, which shows that since P (s − 1) true, then

P (s) is also true. This contradicts the assumption that P (s) is false, so we have the

contradiction needed to complete the Well Ordering Proof that P (n) holds for all

n ∈ N. �

3.2. INDUCTION 135

So what’s the difference? Well, sometimes induction proofs are clearer because

they resemble recursive procedures that reduce handling an input of size n + 1 to

handling one of size n. On the other hand, Well Ordering proofs sometimes seem

more natural, and also come out slightly shorter. The choice of method is really a

matter of style—but style does matter.

3.2.2 Strong Induction

A useful variant of induction is called strong induction. Strong Induction and Ordi-

nary Induction are used for exactly the same thing: proving that a predicate P (n)

is true for all n ∈ N.

136 CHAPTER 3. INDUCTION

Principle of Strong Induction. Let P (n) be a predicate. If

• P (0) is true, and

• for all n ∈ N, P (0), P (1), . . . , P (n) together imply P (n+ 1),

then P (n) is true for all n ∈ N.

Rule. Strong Induction Rule

P (0), ∀n ∈ N[(∀m ≤ n. P (m)) IMPLIES P (n+ 1)]

∀n ∈ N. P (n)

The only change from the ordinary induction principle is that strong induction

allows you to assume more stuff in the inductive step of your proof! In an ordinary

induction argument, you assume that P (n) is true and try to prove that P (n + 1)

is also true. In a strong induction argument, you may assume that P (0), P (1), . . . ,

and P (n) are all true when you go to prove P (n+ 1). These extra assumptions can

only make your job easier.

3.2. INDUCTION 137

Products of Primes

As a first example, we’ll use strong induction to re-prove Theorem 3.1.1 which we

previously proved using Well Ordering.

Lemma 3.2.4. Every integer greater than 1 is a product of primes.

Proof. We will prove Lemma 3.2.4 by strong induction, letting the induction hy-

pothesis, P (n), be

n is a product of primes.

So Lemma 3.2.4 will follow if we prove that P (n) holds for all n ≥ 2.

Base Case: (n = 2) P (2) is true because 2 is prime, and so it is a length one

product of primes by convention.

Inductive step: Suppose that n ≥ 2 and that i is a product of primes for every

integer i where 2 ≤ i < n + 1. We must show that P (n + 1) holds, namely, that

n+ 1 is also a product of primes. We argue by cases:

If n+ 1 is itself prime, then it is a length one product of primes by convention,

so P (n+ 1) holds in this case.

138 CHAPTER 3. INDUCTION

Otherwise, n+ 1 is not prime, which by definition means n+ 1 = km for some

integers k,m such that 2 ≤ k,m < n+ 1. Now by strong induction hypothesis, we

know that k is a product of primes. Likewise, m is a product of primes. it follows

immediately that km = n is also a product of primes. Therefore, P (n+ 1) holds in

this case as well.

So P (n + 1) holds in any case, which completes the proof by strong induction

that P (n) holds for all nonnegative integers, n.

�

EDITING NOTE: Here’s a fallacious argument: every number can be factored

uniquely into primes. Apply the same proof as before, adding “uniquely” to the

inductive hypothesis. The problem is that even if n = ab and a, b have unique

factorizations, it is still possible that n = cd for different c and d, producing a

different factorization of n.

The argument is false, but the claim is true and is known as the fundamental

theorem of arithmetic.

3.2. INDUCTION 139

�

Making Change

The country Inductia, whose unit of currency is the Strong, has coins worth 3Sg

(3 Strongs) and 5Sg. Although the Inductians have some trouble making small

change like 4Sg or 7Sg, it turns out that they can collect coins to make change for

any number that is at least 8 Strongs.

Strong induction makes this easy to prove for n+1 ≥ 11, because then (n+1)−

3 ≥ 8, so by strong induction the Inductians can make change for exactly (n+1)−3

Strongs, and then they can add a 3Sg coin to get (n+ 1)Sg. So the only thing to do

is check that they can make change for all the amounts from 8 to 10Sg, which is not

too hard to do.

Here’s a detailed writeup using the official format:

Proof. We prove by strong induction that the Inductians can make change for any

amount of at least 8Sg. The induction hypothesis, P (n) will be:

140 CHAPTER 3. INDUCTION

There is a collection of coins whose value is n+ 8 Strongs.

Base case: P (0) is true because a 3Sg coin together with 5Sgcoin makes 8Sg.

Inductive step: We assume P (m) holds for all m ≤ n, and prove that P (n+ 1)

holds. We argue by cases:

Case (n+ 1 = 1): We have to make (n+ 1) + 8 = 9Sg. We can do this using three

3Sg coins.

Case (n+ 1 = 2): We have to make (n+ 1) + 8 = 10Sg. Use two 5Sg coins.

Case (n + 1 ≥ 3): Then 0 ≤ n − 2 ≤ n, so by the strong induction hypothesis,

the Inductians can make change for n− 2 Strong. Now by adding a 3Sg coin, they

can make change for (n+ 1)Sg.

So in any case, P (n + 1) is true, and we conclude by strong induction that for

all n = 0, 1, . . . , the Inductians can make change for n+ 8 Strong. That is, they can

make change for any number of eight or more Strong.

�

3.2. INDUCTION 141

The Stacking Game

Here is another exciting game that’s surely about to sweep the nation :-) !

You begin with a stack of n boxes. Then you make a sequence of moves. In

each move, you divide one stack of boxes into two nonempty stacks. The game

ends when you have n stacks, each containing a single box. You earn points for

each move; in particular, if you divide one stack of height a + b into two stacks

with heights a and b, then you score ab points for that move. Your overall score is

the sum of the points that you earn for each move. What strategy should you use

to maximize your total score?

As an example, suppose that we begin with a stack of n = 10 boxes. Then the

game might proceed as follows:

Stack Heights Score
10
5 5 25 points
5 3 2 6
4 3 2 1 4
2 3 2 1 2 4
2 2 2 1 2 1 2
1 2 2 1 2 1 1 1
1 1 2 1 2 1 1 1 1
1 1 1 1 2 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

Total Score = 45 points

142 CHAPTER 3. INDUCTION

On each line, the underlined stack is divided in the next step. Can you find a better

strategy?

Analyzing the Game

Let’s use strong induction to analyze the unstacking game. We’ll prove that your

score is determined entirely by the number of boxes —your strategy is irrelevant!

Theorem 3.2.5. Every way of unstacking n blocks gives a score of n(n− 1)/2 points.

There are a couple technical points to notice in the proof:

• The template for a strong induction proof is exactly the same as for ordinary

induction.

• As with ordinary induction, we have some freedom to adjust indices. In this

case, we prove P (1) in the base case and prove that P (1), . . . , P (n) imply

P (n+ 1) for all n ≥ 1 in the inductive step.

Proof. The proof is by strong induction. Let P (n) be the proposition that every way

of unstacking n blocks gives a score of n(n− 1)/2.

3.2. INDUCTION 143

Base case: If n = 1, then there is only one block. No moves are possible, and so

the total score for the game is 1(1− 1)/2 = 0. Therefore, P (1) is true.

Inductive step: Now we must show that P (1), . . . , P (n) imply P (n+ 1) for all

n ≥ 1. So assume that P (1), . . . , P (n) are all true and that we have a stack of n+ 1

blocks. The first move must split this stack into substacks with positive sizes a and

b where a+ b = n+ 1 and 0 < a, b ≤ n. Now the total score for the game is the sum

of points for this first move plus points obtained by unstacking the two resulting

substacks:

total score = (score for 1st move)

+ (score for unstacking a blocks)

+ (score for unstacking b blocks)

= ab+
a(a− 1)

2
+
b(b− 1)

2
by P (a) and P (b)

=
(a+ b)2 − (a+ b)

2
=

(a+ b)((a+ b)− 1)
2

=
(n+ 1)n

2

This shows that P (1), P (2), . . . , P (n) imply P (n+ 1).

144 CHAPTER 3. INDUCTION

Therefore, the claim is true by strong induction. �

3.2.3 Strong Induction versus Induction

Is strong induction really “stronger” than ordinary induction? You can assume a

lot more when proving the induction step, so it may seem that strong induction is

much more powerful, but it’s not. Strong induction may make it easier to prove

a proposition, but any proof by strong induction can be reformatted to prove the

same thing by ordinary induction (using a slightly more complicated induction

hypothesis). Again, the choice of method is a matter of style.

When you’re doing a proof by strong induction, you should say so: it will help

your reader to know that P (n+ 1) may not follow directly from just P (n).

3.2. INDUCTION 145

3.2.4 Problems

Practice Problems

Class Problems

Homework Problems

EDITING NOTE:

Problem 3.1.

Use strong induction to prove the Well Ordering Principle. Hint: Prove that if a set

of nonnegative integers contains an integer, n, then it has a smallest element.

�

146 CHAPTER 3. INDUCTION

Chapter 4

Number Theory

Number theory is the study of the integers. Why anyone would want to study the

integers is not immediately obvious. First of all, what’s to know? There’s 0, there’s

1, 2, 3, and so on, and, oh yeah, -1, -2, Which one don’t you understand? Sec-

ond, what practical value is there in it? The mathematician G. H. Hardy expressed

pleasure in its impracticality when he wrote:

[Number theorists] may be justified in rejoicing that there is one sci-

ence, at any rate, and that their own, whose very remoteness from or-

147

148 CHAPTER 4. NUMBER THEORY

dinary human activities should keep it gentle and clean.

Hardy was specially concerned that number theory not be used in warfare; he

was a pacifist. You may applaud his sentiments, but he got it wrong: Number

Theory underlies modern cryptography, which is what makes secure online com-

munication possible. Secure communication is of course crucial in war—which

may leave poor Hardy spinning in his grave. It’s also central to online commerce.

Every time you buy a book from Amazon, check your grades on WebSIS, or use a

PayPal account, you are relying on number theoretic algorithms.

Number theory also provides an excellent environment for us to practice and

apply the proof techniques that we developed in Chapters 2 and 3.

Since we’ll be focusing on properties of the integers, we’ll adopt the default

convention in this chapter that variables range over the set of integers, Z.

4.1. DIVISIBILITY 149

4.1 Divisibility

The nature of number theory emerges as soon as we consider the divides relation

a divides b iff ak = b for some k.

The notation, a | b, is an abbreviation for “a divides b.” If a | b, then we also say that

b is a multiple of a. A consequence of this definition is that every number divides

zero.

This seems simple enough, but let’s play with this definition. The Pythagore-

ans, an ancient sect of mathematical mystics, said that a number is perfect if it equals

the sum of its positive integral divisors, excluding itself. For example, 6 = 1+2+3

and 28 = 1 + 2 + 4 + 7 + 14 are perfect numbers. On the other hand, 10 is not

perfect because 1 + 2 + 5 = 8, and 12 is not perfect because 1 + 2 + 3 + 4 + 6 = 16.

Euclid characterized all the even perfect numbers around 300 BC. But is there an

odd perfect number? More than two thousand years later, we still don’t know! All

numbers up to about 10300 have been ruled out, but no one has proved that there

isn’t an odd perfect number waiting just over the horizon.

150 CHAPTER 4. NUMBER THEORY

So a half-page into number theory, we’ve strayed past the outer limits of human

knowledge! This is pretty typical; number theory is full of questions that are easy

to pose, but incredibly difficult to answer.1 For example, several such problems

are shown in the box on the following page.

Interestingly, we’ll see that computer scientists have found ways to turn some

of these difficulties to their advantage.

4.1.1 Facts about Divisibility

The lemma below states some basic facts about divisibility that are not difficult to

prove:

Lemma 4.1.1. The following statements about divisibility hold.

1. If a | b, then a | bc for all c.

2. If a | b and b | c, then a | c.

3. If a | b and a | c, then a | sb+ tc for all s and t.
1Don’t Panic—we’re going to stick to some relatively benign parts of number theory. These super-

hard unsolved problems rarely get put on problem sets.

4.1. DIVISIBILITY 151

4. For all c 6= 0, a | b if and only if ca | cb.

Proof. We’ll prove only part 2.; the other proofs are similar.

Proof of 2: Assume a | b and b | c. Since a | b, there exists an integer k1 such that

ak1 = b. Since b | c, there exists an integer k2 such that bk2 = c. Substituting ak1

for b in the second equation gives (ak1)k2 = c. So a(k1k2) = c, which implies that

a | c. �

EDITING NOTE:

Proof of (4): We must show that a | b implies ca | cb and vice-versa.

• First, suppose a | b. This means ak = b for some k. Multiplying both sides by

c gives cak = cb for some k. This implies ca | cb.

• Now, suppose ca | cb. Then cak = cb for some k. We can divide both sides by

c since c is nonzero, so ak = b for some k. This means a | b.

�

152 CHAPTER 4. NUMBER THEORY

Famous Conjectures in Number Theory

Fermat’s Last Theorem There are no positive integers x, y, and z such that

xn + yn = zn

for some integer n > 2. In a book he was reading around 1630, Fermat

claimed to have a proof but not enough space in the margin to write it down.

Wiles finally gave a proof of the theorem in 1994, after seven years of working

in secrecy and isolation in his attic. His proof did not fit in any margin.

Goldbach Conjecture Every even integer greater than two is equal to the sum of

two primesa. For example, 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, etc. The conjecture

holds for all numbers up to 1016. In 1939 Schnirelman proved that every even

number can be written as the sum of not more than 300,000 primes, which

was a start. Today, we know that every even number is the sum of at most 6

primes.

Twin Prime Conjecture There are infinitely many primes p such that p + 2 is also

a prime. In 1966 Chen showed that there are infinitely many primes p such

that p+ 2 is the product of at most two primes. So the conjecture is known to

be almost true!

Primality Testing There is an efficient way to determine whether a number is

prime. A naive search for factors of an integer n takes a number of steps

proportional to
√
n, which is exponential in the size of n in decimal or bi-

nary notation. All known procedures for prime checking blew up like this

on various inputs. Finally in 2002, an amazingly simple, new method was

discovered by Agrawal, Kayal, and Saxena, which showed that prime test-

ing only required a polynomial number of steps. Their paper began with a

quote from Gauss emphasizing the importance and antiquity of the problem

even in his time—two centuries ago. So prime testing is definitely not in the

category of infeasible problems requiring an exponentially growing number

of steps in bad cases.

Factoring Given the product of two large primes n = pq, there is no efficient way

to recover the primes p and q. The best known algorithm is the “number field

sieve”, which runs in time proportional to:

e1.9(lnn)1/3(ln lnn)2/3

This is infeasible when n has 300 digits or more.

aRecall that a prime is a number greater than 1 that is divisible only by itself and 1.

4.1. DIVISIBILITY 153

4.1.2 When Divisibility Goes Bad

As you learned in elementary school, if one number does not evenly divide an-

other, you get a “quotient” and a “remainder” left over. More precisely:

Theorem 4.1.2 (Division Theorem). 2 Let n and d be integers such that d > 0. Then

there exists a unique pair of integers q and r, such that

n = q · d+ r AND 0 ≤ r < d. (4.1)

The number q is called the quotient and the number r is called the remainder of n

divided by d. We use the notation qcnt(n, d) for the quotient and rem(n, d) for the

remainder.

For example, qcnt(2716, 10) = 271 and rem(2716, 10) = 6, since 2716 = 271 ·

10 + 6. Similarly, rem(−11, 7) = 3, since −11 = (−2) · 7 + 3. There is a remainder

operator built into many programming languages. For example, the expression

“32 % 5” evaluates to 2 in Java, C, and C++. However, all these languages treat

2This theorem is often called the “Division Algorithm,” even though it is not what we would call an

algorithm. We will take this familiar result for granted without proof.

154 CHAPTER 4. NUMBER THEORY

negative numbers strangely.

EDITING NOTE:

but it’s worth emphasizing that it is an “existence and uniqueness” theorem: it

asserts that q and r exist and also that these values are unique. Thus, the Division

Theorem is one example of an “existence and uniqueness” theorem; there are many

others.

Not surprisingly, the proof of such a theorem always has two parts:

• A proof that something exists, such as the quotient q and remainder r.

• A proof that nothing else fits the bill; that is, there is no

other quotient q′ and remainder r′.

We’ll prove a famous “existence and uniqueness” theorem in this way shortly.

�

4.1. DIVISIBILITY 155

156 CHAPTER 4. NUMBER THEORY

4.1.3 Die Hard

Simon: On the fountain, there should be 2 jugs, do you see them? A 5-gallon and

a 3-gallon. Fill one of the jugs with exactly 4 gallons of water and place it on the

scale and the timer will stop. You must be precise; one ounce more or less will

result in detonation. If you’re still alive in 5 minutes, we’ll speak.

Bruce: Wait, wait a second. I don’t get it. Do you get it?

Samuel: No.

Bruce: Get the jugs. Obviously, we can’t fill the 3-gallon jug with 4 gallons of water.

Samuel: Obviously.

Bruce: All right. I know, here we go. We fill the 3-gallon jug exactly to the top,

right?

Samuel: Uh-huh.

Bruce: Okay, now we pour this 3 gallons into the 5-gallon jug, giving us exactly

3 gallons in the 5-gallon jug, right?

Samuel: Right, then what?

Bruce: All right. We take the 3-gallon jug and fill it a third of the way. . .

Samuel: No! He said, “Be precise.” Exactly 4 gallons.

Bruce: Sh—. Every cop within 50 miles is running his a— off and I’m out here

playing kids’ games in the park.

Samuel: Hey, you want to focus on the problem at hand?

4.1. DIVISIBILITY 157

The preceding script is from the movie Die Hard 3: With a Vengeance. In the

movie, Samuel L. Jackson and Bruce Willis have to disarm a bomb planted by the

diabolical Simon Gruber. Fortunately, they find a solution in the nick of time. (No

doubt reading the script helped.) On the surface, Die Hard 3 is just a B-grade action

movie; however, we think the inner message of the film is that everyone should

learn at least a little number theory.

Unfortunately, Hollywood never lets go of a gimmick. Although there were no

water jug tests in Die Hard 4, rumor has it that the jugs will return in future sequels:

Die Hard 5: Die Hardest Bruce goes on vacation and—shockingly—happens into

a terrorist plot. To save the day, he must make 3 gallons using 21- and 26-

gallon jugs.

Die Hard 6: Die of Old Age Bruce must save his assisted living facility from a

criminal mastermind by forming 2 gallons with 899- and 1147-gallon jugs.

Die Hard 7: Die Once and For All Bruce has to make 4 gallons using 3- and 6-

gallon jugs.

158 CHAPTER 4. NUMBER THEORY

It would be nice if we could solve all these silly water jug questions at once. In

particular, how can one form g gallons using jugs with capacities a and b?

Finding an Invariant Property

Suppose that we have water jugs with capacities a and b with b ≥ a. The state of

the system is described below with a pair of numbers (x, y), where x is the amount

of water in the jug with capacity a and y is the amount in the jug with capacity b.

Let’s carry out sample operations and see what happens, assuming the b-jug is big

4.1. DIVISIBILITY 159

enough:

(0, 0)→ (a, 0) fill first jug

→ (0, a) pour first into second

→ (a, a) fill first jug

→ (2a− b, b) pour first into second (assuming 2a ≥ b)

→ (2a− b, 0) empty second jug

→ (0, 2a− b) pour first into second

→ (a, 2a− b) fill first

→ (3a− 2b, b) pour first into second (assuming 3a ≥ 2b)

What leaps out is that at every step, the amount of water in each jug is of the form

s · a+ t · b (4.2)

for some integers s and t. An expression of the form (4.2) is called an integer linear

combination of a and b, but in this chapter we’ll just call it a linear combination, since

we’re only talking integers. So we’re suggesting:

160 CHAPTER 4. NUMBER THEORY

Lemma 4.1.3. Suppose that we have water jugs with capacities a and b. Then the amount

of water in each jug is always a linear combination of a and b.

Lemma 4.1.3 is easy to prove by induction on the number of pourings.

Proof. The induction hypothesis, P (n), is the proposition that after n steps, the

amount of water in each jug is a linear combination of a and b.

Base case: (n = 0). P (0) is true, because both jugs are initially empty, and 0 · a+ 0 ·

b = 0.

Inductive step. We assume by induction hypothesis that after n steps the amount

of water in each jug is a linear combination of a and b. There are two cases:

• If we fill a jug from the fountain or empty a jug into the fountain, then that jug

is empty or full. The amount in the other jug remains a linear combination of

a and b. So P (n+ 1) holds.

• Otherwise, we pour water from one jug to another until one is empty or the

other is full. By our assumption, the amount in each jug is a linear combina-

4.1. DIVISIBILITY 161

tion of a and b before we begin pouring:

j1 = s1 · a+ t1 · b

j2 = s2 · a+ t2 · b

After pouring, one jug is either empty (contains 0 gallons) or full (contains a

or b gallons). Thus, the other jug contains either j1 + j2 gallons, j1 + j2−a, or

j1 +j2−b gallons, all of which are linear combinations of a and b. So P (n+1)

holds in this case as well.

So in any case, P (n+ 1) follows, completing the proof by induction. �

This theorem has an important corollary:

Corollary 4.1.4. Bruce dies.

Proof. In Die Hard 7 , Bruce has water jugs with capacities 3 and 6 and must form

4 gallons of water. However, the amount in each jug is always of the form 3s + 6t

by Lemma 4.1.3. This is always a multiple of 3 by Lemma 4.1.1.3, so he cannot

measure out 4 gallons. �

162 CHAPTER 4. NUMBER THEORY

But Lemma 4.1.3 isn’t very satisfying. We’ve just managed to recast a pretty

understandable question about water jugs into a complicated question about linear

combinations. This might not seem like progress. Fortunately, linear combinations

are closely related to something more familiar, namely greatest common divisors,

and these will help us solve the water jug problem.

4.2 The Greatest Common Divisor

The greatest common divisor of a and b is exactly what you’d guess: the largest

number that is a divisor of both a and b. It is denoted by gcd(a, b). For example,

gcd(18, 24) = 6. The greatest common divisor turns out to be a very valuable piece

of information about the relationship between a and b and for reasoning about in-

tegers in general. So we’ll be making lots of arguments about greatest common

divisors in what follows.

4.2. THE GREATEST COMMON DIVISOR 163

4.2.1 Linear Combinations and the GCD

The theorem below relates the greatest common divisor to linear combinations.

This theorem is very useful; take the time to understand it and then remember it!

Theorem 4.2.1. The greatest common divisor of a and b is equal to the smallest positive

linear combination of a and b.

For example, the greatest common divisor of 52 and 44 is 4. And, sure enough,

4 is a linear combination of 52 and 44:

6 · 52 + (−7) · 44 = 4

Furthermore, no linear combination of 52 and 44 is equal to a smaller positive

integer.

Proof of Theorem 4.2.1. By the Well Ordering Principle, there is a smallest positive

linear combination of a and b; call it m. We’ll prove that m = gcd(a, b) by showing

both gcd(a, b) ≤ m and m ≤ gcd(a, b).

First, we show that gcd(a, b) ≤ m. Now any common divisor of a and b—that

164 CHAPTER 4. NUMBER THEORY

is, any c such that c | a and c | b—will divide both sa and tb, and therefore also

divides sa+ tb for any s and t. The gcd(a, b) is by definition a common divisor of a

and b, so

gcd(a, b) | sa+ tb (4.3)

every s and t. In particular, gcd(a, b) | m, which implies that gcd(a, b) ≤ m.

Now, we show that m ≤ gcd(a, b). We do this by showing that m | a. A

symmetric argument shows that m | b, which means that m is a common divisor

of a and b. Thus, m must be less than or equal to the greatest common divisor of a

and b.

All that remains is to show that m | a. By the Division Algorithm, there exists a

quotient q and remainder r such that:

a = q ·m+ r (where 0 ≤ r < m)

4.2. THE GREATEST COMMON DIVISOR 165

Recall that m = sa+ tb for some integers s and t. Substituting in for m gives:

a = q · (sa+ tb) + r, so

r = (1− qs)a+ (−qt)b.

We’ve just expressed r as a linear combination of a and b. However, m is the

smallest positive linear combination and 0 ≤ r < m. The only possibility is that

the remainder r is not positive; that is, r = 0. This implies m | a. �

Corollary 4.2.2. An integer is linear combination of a and b iff it is a multiple of gcd(a, b).

Proof. By (4.3), every linear combination of a and b is a multiple of gcd(a, b). Con-

versely, since gcd(a, b) is a linear combination of a and b, every multiple of gcd(a, b)

is as well. �

Now we can restate the water jugs lemma in terms of the greatest common

divisor:

Corollary 4.2.3. Suppose that we have water jugs with capacities a and b. Then the

amount of water in each jug is always a multiple of gcd(a, b).

166 CHAPTER 4. NUMBER THEORY

For example, there is no way to form 4 gallons using 3- and 6-gallon jugs, be-

cause 4 is not a multiple of gcd(3, 6) = 3.

4.2.2 Properties of the Greatest Common Divisor

We’ll often make use of some basic gcd facts:

Lemma 4.2.4. The following statements about the greatest common divisor hold:

1. Every common divisor of a and b divides gcd(a, b).

2. gcd(ka, kb) = k · gcd(a, b) for all k > 0.

3. If gcd(a, b) = 1 and gcd(a, c) = 1, then gcd(a, bc) = 1.

4. If a | bc and gcd(a, b) = 1, then a | c.

5. gcd(a, b) = gcd(b, rem(a, b)).

Here’s the trick to proving these statements: translate the gcd world to the lin-

ear combination world using Theorem 4.2.1, argue about linear combinations, and

then translate back using Theorem 4.2.1 again.

4.2. THE GREATEST COMMON DIVISOR 167

Proof. We prove only parts 3. and 4.

Proof of 3. The assumptions together with Theorem 4.2.1 imply that there exist

integers s, t, u, and v such that:

sa+ tb = 1

ua+ vc = 1

Multiplying these two equations gives:

(sa+ tb)(ua+ vc) = 1

The left side can be rewritten as a · (asu + btu + csv) + bc(tv). This is a linear

combination of a and bc that is equal to 1, so gcd(a, bc) = 1 by Theorem 4.2.1.

Proof of 4. Theorem 4.2.1 says that gcd(ac, bc) is equal to a linear combination of

ac and bc. Now a | ac trivially and a | bc by assumption. Therefore, a divides every

linear combination of ac and bc. In particular, a divides gcd(ac, bc) = c · gcd(a, b) =

c · 1 = c. The first equality uses part 2. of this lemma, and the second uses the

assumption that gcd(a, b) = 1. �

168 CHAPTER 4. NUMBER THEORY

4.2.3 Euclid’s Algorithm

Part (5) of Lemma 4.2.4 is useful for quickly computing the greatest common divi-

sor of two numbers. For example, we could compute the greatest common divisor

of 1147 and 899 by repeatedly applying part (5):

gcd(1247, 899) = gcd
(
899, rem(1247, 899)︸ ︷︷ ︸

=248

)

= gcd
(
248, rem(899, 248)︸ ︷︷ ︸

=155

)

= gcd
(
155, rem(248, 155)︸ ︷︷ ︸

=93

)

= gcd
(
93, rem(155, 93)︸ ︷︷ ︸

=62

)

= gcd
(
62, rem(93, 62)︸ ︷︷ ︸

=31

)

= gcd
(
31, rem(62, 31)︸ ︷︷ ︸

=0

)

= gcd(31, 0)

= 31

The last equation might look wrong, but 31 is a divisor of both 31 and 0 since every

integer divides 0.

4.2. THE GREATEST COMMON DIVISOR 169

This process is called Euclid’s algorithm and it was discovered by the Greeks

over 3000 years ago.

But what about Die Hard 5. Is it possible for Bruce to make 3 gallons using 21-

and 26-gallon jugs? Using Euclid’s algorithm:

gcd(26, 21) = gcd(21, 5) = gcd(5, 1) = 1.

Now 3 is a multiple of 1, so we can’t rule out the possibility that 3 gallons can be

formed. On the other hand, we don’t know if it can be done either. To resolve the

matter, we will need more number theory.

4.2.4 One Solution for All Water Jug Problems

Corollary 4.2.2 says that 3 can be written as a linear combination of 21 and 26, since

3 is a multiple of gcd(21, 26) = 1. In other words, there exist integers s and t such

that:

3 = s · 21 + t · 26

We don’t know what the coefficients s and t are, but we do know that they exist.

170 CHAPTER 4. NUMBER THEORY

Now the coefficient s could be either positive or negative. However, we can

readily transform this linear combination into an equivalent linear combination

3 = s′ · 21 + t′ · 26 (4.4)

where the coefficient s′ is positive. The trick is to notice that if we increase s by

26 in the original equation and decrease t by 21, then the value of the expression

s · 21 + t · 26 is unchanged overall. Thus, by repeatedly increasing the value of s

(by 26 at a time) and decreasing the value of t (by 21 at a time), we get a linear

combination s′ · 21 + t′ · 26 = 3 where the coefficient s′ is positive. Notice that then

t′ must be negative; otherwise, this expression would be much greater than 3.

Now we can form 3 gallons using jugs with capacities 21 and 26: We simply

repeat the following steps s′ times:

1. Fill the 21-gallon jug.

2. Pour all the water in the 21-gallon jug into the 26-gallon jug. If at any time the

26-gallon jug becomes full, empty it out, and continue pouring the 21-gallon

jug into the 26-gallon jug.

4.2. THE GREATEST COMMON DIVISOR 171

At the end of this process, we must have have emptied the 26-gallon jug exactly

|t′| times. Here’s why: we’ve taken s′ · 21 gallons of water from the fountain, and

we’ve poured out some multiple of 26 gallons. If we emptied fewer than |t′| times,

then by (4.4), the big jug would be left with at least 3 + 26 gallons, which is more

than it can hold; if we emptied it more times, the big jug would be left containing

at most 3− 26 gallons, which is nonsense. But once we have emptied the 26-gallon

jug exactly |t′| times, equation (4.4) implies that there are exactly 3 gallons left.

Remarkably, we don’t even need to know the coefficients s′ and t′ in order to

use this strategy! Instead of repeating the outer loop s′ times, we could just repeat

until we obtain 3 gallons, since that must happen eventually. Of course, we have to

keep track of the amounts in the two jugs so we know when we’re done. Here’s

172 CHAPTER 4. NUMBER THEORY

the solution that approach gives:

(0, 0) fill 21−−−→ (21, 0)
pour 21 into 26−−−−−−−−→ (0, 21)

fill 21−−−→ (21, 21)
pour 21 into 26−−−−−−−−→ (16, 26)

empty 26−−−−−→ (16, 0)
pour 21 into 26−−−−−−−−→ (0, 16)

fill 21−−−→ (21, 16)
pour 21 into 26−−−−−−−−→ (11, 26)

empty 26−−−−−→ (11, 0)
pour 21 into 26−−−−−−−−→ (0, 11)

fill 21−−−→ (21, 11)
pour 21 into 26−−−−−−−−→ (6, 26)

empty 26−−−−−→ (6, 0)
pour 21 into 26−−−−−−−−→ (0, 6)

fill 21−−−→ (21, 6)
pour 21 into 26−−−−−−−−→ (1, 26)

empty 26−−−−−→ (1, 0)
pour 21 into 26−−−−−−−−→ (0, 1)

fill 21−−−→ (21, 1)
pour 21 into 26−−−−−−−−→ (0, 22)

fill 21−−−→ (21, 22)
pour 21 into 26−−−−−−−−→ (17, 26)

empty 26−−−−−→ (17, 0)
pour 21 into 26−−−−−−−−→ (0, 17)

fill 21−−−→ (21, 17)
pour 21 into 26−−−−−−−−→ (12, 26)

empty 26−−−−−→ (12, 0)
pour 21 into 26−−−−−−−−→ (0, 12)

fill 21−−−→ (21, 12)
pour 21 into 26−−−−−−−−→ (7, 26)

empty 26−−−−−→ (7, 0)
pour 21 into 26−−−−−−−−→ (0, 7)

fill 21−−−→ (21, 7)
pour 21 into 26−−−−−−−−→ (2, 26)

empty 26−−−−−→ (2, 0)
pour 21 into 26−−−−−−−−→ (0, 2)

fill 21−−−→ (21, 2)
pour 21 into 26−−−−−−−−→ (0, 23)

fill 21−−−→ (21, 23)
pour 21 into 26−−−−−−−−→ (18, 26)

empty 26−−−−−→ (18, 0)
pour 21 into 26−−−−−−−−→ (0, 18)

fill 21−−−→ (21, 18)
pour 21 into 26−−−−−−−−→ (13, 26)

empty 26−−−−−→ (13, 0)
pour 21 into 26−−−−−−−−→ (0, 13)

fill 21−−−→ (21, 13)
pour 21 into 26−−−−−−−−→ (8, 26)

empty 26−−−−−→ (8, 0)
pour 21 into 26−−−−−−−−→ (0, 8)

fill 21−−−→ (21, 8)
pour 21 into 26−−−−−−−−→ (3, 26)

empty 26−−−−−→ (3, 0)
pour 21 into 26−−−−−−−−→ (0, 3)

The same approach works regardless of the jug capacities and even regardless

the amount we’re trying to produce! Simply repeat these two steps until the de-

sired amount of water is obtained:

1. Fill the smaller jug.

2. Pour all the water in the smaller jug into the larger jug. If at any time the

larger jug becomes full, empty it out, and continue pouring the smaller jug

into the larger jug.

4.2. THE GREATEST COMMON DIVISOR 173

By the same reasoning as before, this method eventually generates every multiple

of the greatest common divisor of the jug capacities—all the quantities we can

possibly produce. No ingenuity is needed at all!

4.2.5 The Pulverizer

We have shown that no matter which pair of numbers a and b we are given, there

is always a pair of integer coefficients s and t such that

gcd(a, b) = sa+ tb.

Unfortunately, the proof was nonconstructive: it didn’t suggest a way for finding

such s and t. That job is tackled by a mathematical tool that dates to sixth-century

India, where it was called kuttak, which means “The Pulverizer”. Today, the Pul-

verizer is more commonly known as “the extended Euclidean GCD algorithm”,

because it is so close to Euclid’s Algorithm.

Euclid’s Algorithm for finding the GCD of two numbers relies on repeated ap-

174 CHAPTER 4. NUMBER THEORY

plication of the equation:

gcd(a, b) = gcd(b, rem(a, b,)).

For example, we can compute the GCD of 259 and 70 as follows:

gcd(259, 70) = gcd(70, 49) since rem(259, 70) = 49

= gcd(49, 21) since rem(70, 49) = 21

= gcd(21, 7) since rem(49, 21) = 7

= gcd(7, 0) since rem(21, 7) = 0

= 7.

The Pulverizer goes through the same steps, but requires some extra bookkeeping

along the way: as we compute gcd(a, b), we keep track of how to write each of

the remainders (49, 21, and 7, in the example) as a linear combination of a and b

(this is worthwhile, because our objective is to write the last nonzero remainder,

which is the GCD, as such a linear combination). For our example, here is this

4.2. THE GREATEST COMMON DIVISOR 175

extra bookkeeping:

x y (rem(x, y)) = x− q · y
259 70 49 = 259− 3 · 70
70 49 21 = 70− 1 · 49

= 70− 1 · (259− 3 · 70)
= −1 · 259 + 4 · 70

49 21 7 = 49− 2 · 21
= (259− 3 · 70)− 2 · (−1 · 259 + 4 · 70)
= 3 · 259− 11 · 70

21 7 0

We began by initializing two variables, x = a and y = b. In the first two columns

above, we carried out Euclid’s algorithm. At each step, we computed rem(x, y),

which can be written in the form x− q · y. (Remember that the Division Algorithm

says x = q·y+r, where r is the remainder. We get r = x−q·y by rearranging terms.)

Then we replaced x and y in this equation with equivalent linear combinations of

a and b, which we already had computed. After simplifying, we were left with a

linear combination of a and b that was equal to the remainder as desired. The final

solution is boxed.

176 CHAPTER 4. NUMBER THEORY

4.2.6 Problems

Class Problems

4.3 The Fundamental Theorem of Arithmetic

We now have almost enough tools to prove something that you probably already

know.

Theorem 4.3.1 (Fundamental Theorem of Arithmetic). Every positive integer n can

be written in a unique way as a product of primes:

n = p1 · p2 · · · pj (p1 ≤ p2 ≤ · · · ≤ pj)

Notice that the theorem would be false if 1 were considered a prime; for exam-

ple, 15 could be written as 3 ·5 or 1 ·3 ·5 or 12 ·3 ·5. Also, we’re relying on a standard

convention: the product of an empty set of numbers is defined to be 1, much as the

sum of an empty set of numbers is defined to be 0. Without this convention, the

theorem would be false for n = 1.

There is a certain wonder in the Fundamental Theorem, even if you’ve known

4.3. THE FUNDAMENTAL THEOREM OF ARITHMETIC 177

it since you were in a crib. Primes show up erratically in the sequence of integers.

In fact, their distribution seems almost random:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, . . .

Basic questions about this sequence have stumped humanity for centuries. And

yet we know that every natural number can be built up from primes in exactly one

way. These quirky numbers are the building blocks for the integers.

The Fundamental Theorem is not hard to prove, but we’ll need a couple of

preliminary facts.

Lemma 4.3.2. If p is a prime and p | ab, then p | a or p | b.

Proof. The greatest common divisor of a and pmust be either 1 or p, since these are

the only positive divisors of p. If gcd(a, p) = p, then the claim holds, because a is a

multiple of p. Otherwise, gcd(a, p) = 1 and so p | b by part (4) of Lemma 4.2.4. �

A routine induction argument extends this statement to:

Lemma 4.3.3. Let p be a prime. If p | a1a2 · · · an, then p divides some ai.

178 CHAPTER 4. NUMBER THEORY

The Prime Number Theorem

Let π(x) denote the number of primes less than or equal to x. For example, π(10) =

4 because 2, 3, 5, and 7 are the primes less than or equal to 10. Primes are very

irregularly distributed, so the growth of π is similarly erratic. However, the Prime

Number Theorem gives an approximate answer:

lim
x→∞

π(x)
x/ lnx

= 1

Thus, primes gradually taper off. As a rule of thumb, about 1 integer out of every

lnx in the vicinity of x is a prime.

The Prime Number Theorem was conjectured by Legendre in 1798 and proved a

century later by de la Vallee Poussin and Hadamard in 1896. However, after his

death, a notebook of Gauss was found to contain the same conjecture, which he

apparently made in 1791 at age 15. (You sort of have to feel sorry for all the other-

wise “great” mathematicians who had the misfortune of being contemporaries of

Gauss.)

In late 2004 a billboard appeared in various locations around the country:
first 10-digit prime found

in consecutive digits of e


. com

Substituting the correct number for the expression in curly-braces produced the

URL for a Google employment page. The idea was that Google was interested in

hiring the sort of people that could and would solve such a problem.

How hard is this problem? Would you have to look through thousands or millions

or billions of digits of e to find a 10-digit prime? The rule of thumb derived from

the Prime Number Theorem says that among 10-digit numbers, about 1 in

ln 1010 ≈ 23

is prime. This suggests that the problem isn’t really so hard! Sure enough, the first

10-digit prime in consecutive digits of e appears quite early:

e =2.718281828459045235360287471352662497757247093699959574966

9676277240766303535475945713821785251664274274663919320030

599218174135966290435729003342952605956307381323286279434 . . .

4.3. THE FUNDAMENTAL THEOREM OF ARITHMETIC 179

Now we’re ready to prove the Fundamental Theorem of Arithmetic.

Proof. Theorem 3.1.1 showed, using the Well Ordering Principle, that every posi-

tive integer can be expressed as a product of primes. So we just have to prove this

expression is unique. We will use Well Ordering to prove this too.

The proof is by contradiction: assume, contrary to the claim, that there exist

positive integers that can be written as products of primes in more than one way.

By the Well Ordering Principle, there is a smallest integer with this property. Call

this integer n, and let

n = p1 · p2 · · · pj

= q1 · q2 · · · qk

be two of the (possibly many) ways to write n as a product of primes. Then p1 | n

and so p1 | q1q2 · · · qk. Lemma 4.3.3 implies that p1 divides one of the primes qi. But

since qi is a prime, it must be that p1 = qi. Deleting p1 from the first product and

qi from the second, we find that n/p1 is a positive integer smaller than n that can

also be written as a product of primes in two distinct ways. But this contradicts

180 CHAPTER 4. NUMBER THEORY

Figure 4.1: Alan Turing

the definition of n as the smallest such positive integer. �

4.3.1 Problems

Class Problems

4.4 Alan Turing

The man pictured in Figure 4.1 is Alan Turing, the most important figure in the

history of computer science. For decades, his fascinating life story was shrouded

4.4. ALAN TURING 181

by government secrecy, societal taboo, and even his own deceptions.

At age 24, Turing wrote a paper entitled On Computable Numbers, with an Ap-

plication to the Entscheidungsproblem. The crux of the paper was an elegant way to

model a computer in mathematical terms. This was a breakthrough, because it al-

lowed the tools of mathematics to be brought to bear on questions of computation.

For example, with his model in hand, Turing immediately proved that there exist

problems that no computer can solve—no matter how ingenious the programmer.

Turing’s paper is all the more remarkable because he wrote it in 1936, a full decade

before any electronic computer actually existed.

The word “Entscheidungsproblem” in the title refers to one of the 28 mathe-

matical problems posed by David Hilbert in 1900 as challenges to mathematicians

of the 20th century. Turing knocked that one off in the same paper. And perhaps

you’ve heard of the “Church-Turing thesis”? Same paper. So Turing was obviously

a brilliant guy who generated lots of amazing ideas. But this lecture is about one

of Turing’s less-amazing ideas. It involved codes. It involved number theory. And

182 CHAPTER 4. NUMBER THEORY

it was sort of stupid.

Let’s look back to the fall of 1937. Nazi Germany was rearming under Adolf

Hitler, world-shattering war looked imminent, and—like us—Alan Turing was

pondering the usefulness of number theory. He foresaw that preserving military

secrets would be vital in the coming conflict and proposed a way to encrypt com-

munications using number theory. This is an idea that has ricocheted up to our own

time. Today, number theory is the basis for numerous public-key cryptosystems,

digital signature schemes, cryptographic hash functions, and electronic payment

systems. Furthermore, military funding agencies are among the biggest investors

in cryptographic research. Sorry Hardy!

Soon after devising his code, Turing disappeared from public view, and half a

century would pass before the world learned the full story of where he’d gone and

what he did there. We’ll come back to Turing’s life in a little while; for now, let’s

investigate the code Turing left behind. The details are uncertain, since he never

formally published the idea, so we’ll consider a couple of possibilities.

4.4. ALAN TURING 183

4.4.1 Turing’s Code (Version 1.0)

The first challenge is to translate a text message into an integer so we can perform

mathematical operations on it. This step is not intended to make a message harder

to read, so the details are not too important. Here is one approach: replace each

letter of the message with two digits (A = 01, B = 02, C = 03, etc.) and string all

the digits together to form one huge number. For example, the message “victory”

could be translated this way:

“v i c t o r y”
→ 22 09 03 20 15 18 25

Turing’s code requires the message to be a prime number, so we may need to pad

the result with a few more digits to make a prime. In this case, appending the

digits 13 gives the number 2209032015182513, which is prime.

Here is how the encryption process works. In the description below, m is the

unencoded message (which we want to keep secret), m∗ is the encrypted message

(which the Nazis may intercept), and k is the key.

Beforehand The sender and receiver agree on a secret key, which is a large prime

184 CHAPTER 4. NUMBER THEORY

k.

Encryption The sender encrypts the message m by computing:

m∗ = m · k

Decryption The receiver decrypts m∗ by computing:

m∗

k
=
m · k
k

= m

For example, suppose that the secret key is the prime number k = 22801763489

and the message m is “victory”. Then the encrypted message is:

m∗ = m · k

= 2209032015182513 · 22801763489

= 50369825549820718594667857

There are a couple of questions that one might naturally ask about Turing’s

code.

1. How can the sender and receiver ensure that m and k are prime numbers, as

required?

4.4. ALAN TURING 185

The general problem of determining whether a large number is prime or

composite has been studied for centuries, and reasonably good primality

tests were known even in Turing’s time. In 2002, Manindra Agrawal, Neeraj

Kayal, and Nitin Saxena announced a primality test that is guaranteed to

work on a number n in about (log n)12 steps, that is, a number of steps

bounded by a twelfth degree polynomial in the length (in bits) of the in-

put, n. This definitively places primality testing way below the problems

of exponential difficulty. Amazingly, the description of their breakthrough

algorithm was only thirteen lines long!

Of course, a twelfth degree polynomial grows pretty fast, so the Agrawal, et

al. procedure is of no practical use. Still, good ideas have a way of breed-

ing more good ideas, so there’s certainly hope that further improvements

will lead to a procedure that is useful in practice. But the truth is, there’s

no practical need to improve it, since very efficient probabilistic procedures

for prime-testing have been known since the early 1970’s. These procedures

186 CHAPTER 4. NUMBER THEORY

have some probability of giving a wrong answer, but their probability of be-

ing wrong is so tiny that relying on their answers is the best bet you’ll ever

make.

2. Is Turing’s code secure?

The Nazis see only the encrypted message m∗ = m · k, so recovering the

original messagem requires factoringm∗. Despite immense efforts, no really

efficient factoring algorithm has ever been found. It appears to be a funda-

mentally difficult problem, though a breakthrough someday is not impossi-

ble. In effect, Turing’s code puts to practical use his discovery that there are

limits to the power of computation. Thus, provided m and k are sufficiently

large, the Nazis seem to be out of luck!

This all sounds promising, but there is a major flaw in Turing’s code.

4.4. ALAN TURING 187

4.4.2 Breaking Turing’s Code

Let’s consider what happens when the sender transmits a second message using

Turing’s code and the same key. This gives the Nazis two encrypted messages to

look at:

m∗1 = m1 · k and m∗2 = m2 · k

The greatest common divisor of the two encrypted messages, m∗1 and m∗2, is the

secret key k. And, as we’ve seen, the GCD of two numbers can be computed very

efficiently. So after the second message is sent, the Nazis can recover the secret key

and read every message!

It is difficult to believe a mathematician as brilliant as Turing could overlook

such a glaring problem. One possible explanation is that he had a slightly different

system in mind, one based on modular arithmetic.

188 CHAPTER 4. NUMBER THEORY

4.5 Modular Arithmetic

On page 1 of his masterpiece on number theory, Disquisitiones Arithmeticae, Gauss

introduced the notion of “congruence”. Now, Gauss is another guy who managed

to cough up a half-decent idea every now and then, so let’s take a look at this one.

Gauss said that a is congruent to b modulo n iff n | (a− b). This is written

a ≡ b (mod n).

For example:

29 ≡ 15 (mod 7) because 7 | (29− 15).

There is a close connection between congruences and remainders:

Lemma 4.5.1 (Congruences and Remainders).

a ≡ b (mod n) iff rem(a, n) = rem(b, n).

Proof. By the Division Theorem, there exist unique pairs of integers q1, r1 and q2, r2

4.5. MODULAR ARITHMETIC 189

such that:

a = q1n+ r1 where 0 ≤ r1 < n,

b = q2n+ r2 where 0 ≤ r2 < n.

Subtracting the second equation from the first gives:

a− b = (q1 − q2)n+ (r1 − r2) where −n < r1 − r2 < n.

Now a ≡ b (mod n) if and only if n divides the left side. This is true if and only

if n divides the right side, which holds if and only if r1 − r2 is a multiple of n.

Given the bounds on r1 − r2, this happens precisely when r1 = r2, that is, when

rem(a, n) = rem(b, n). �

So we can also see that

29 ≡ 15 (mod 7) because rem(29, 7) = 1 = rem(15, 7).

This formulation explains why the congruence relation has properties like an equal-

ity relation. Notice that even though (mod 7) appears over on the right side, the

≡ symbol, it isn’t any more strongly associated with the 15 than with the 29. It

190 CHAPTER 4. NUMBER THEORY

would really be clearer to write 29 ≡ mod 7 15 for example, but the notation with

the modulus at the end is firmly entrenched and we’ll stick to it.

We’ll make frequent use of the following immediate Corollary of Lemma 4.5.1:

Corollary 4.5.2.

a ≡ rem(a, n) (mod n)

Still another way to think about congruence modulo n is that it defines a partition

of the integers into n sets so that congruent numbers are all in the same set. For example,

suppose that we’re working modulo 3. Then we can partition the integers into 3

sets as follows:

{ . . . , −6, −3, 0, 3, 6, 9, . . . }
{ . . . , −5, −2, 1, 4, 7, 10, . . . }
{ . . . , −4, −1, 2, 5, 8, 11, . . . }

according to whether their remainders on division by 3 are 0, 1, or 2. The upshot

is that when arithmetic is done modulo n there are really only n different kinds

of numbers to worry about, because there are only n possible remainders. In this

sense, modular arithmetic is a simplification of ordinary arithmetic and thus is a

good reasoning tool.

4.5. MODULAR ARITHMETIC 191

There are many useful facts about congruences, some of which are listed in the

lemma below. The overall theme is that congruences work a lot like equations, though

there are a couple of exceptions.

Lemma 4.5.3 (Facts About Congruences). The following hold for n ≥ 1:

1. a ≡ a (mod n)

2. a ≡ b (mod n) implies b ≡ a (mod n)

3. a ≡ b (mod n) and b ≡ c (mod n) implies a ≡ c (mod n)

4. a ≡ b (mod n) implies a+ c ≡ b+ c (mod n)

5. a ≡ b (mod n) implies ac ≡ bc (mod n)

6. a ≡ b (mod n) and c ≡ d (mod n) imply a+ c ≡ b+ d (mod n)

7. a ≡ b (mod n) and c ≡ d (mod n) imply ac ≡ bd (mod n)

Proof. Parts 1–3. follow immediately from Lemma 4.5.1. Part 4. follows immedi-

ately from the definition that a ≡ b (mod n) iff n | (a− b). Likewise, part 5. follows

192 CHAPTER 4. NUMBER THEORY

because if n | (a− b) then it divides (a− b)c = ac− bc. To prove part 6., assume

a ≡ b (mod n) (4.5)

and

c ≡ d (mod n). (4.6)

Then

a+ c ≡ b+ c (mod n) (by part 4. and (4.5)),

c+ b ≡ d+ b (mod n) (by part 4. and (4.6)), so

b+ c ≡ b+ d (mod n) and therefore

a+ c ≡ b+ d (mod n) (by part 3.)

Part 7 has a similar proof. �

EDITING NOTE:

There is a close connection between modular arithmetic and the remainder op-

eration, which we looked at last time. To clarify this link, let’s reconsider the par-

4.5. MODULAR ARITHMETIC 193

tition of the integers defined by congruence modulo 3:

{ . . . , −6, −3, 0, 3, 6, 9, . . . }
{ . . . , −5, −2, 1, 4, 7, 10, . . . }
{ . . . , −4, −1, 2, 5, 8, 11, . . . }

Notice that two numbers are in the same set if and only if they leave the same

remainder when divided by 3. The numbers in the first set all leave a remainder of

0 when divided by 3, the numbers in the second set leave a remainder of 1, and the

numbers in the third leave a remainder of 2. Furthermore, notice that each number

is in the same set as its own remainder. For example, 11 and rem(11, 3) = 2 are

both in the same set. Let’s bundle all this happy goodness into a lemma.

�

4.5.1 Turing’s Code (Version 2.0)

In 1940, France had fallen before Hitler’s army, and Britain stood alone against the

Nazis in western Europe. British resistance depended on a steady flow of sup-

plies brought across the north Atlantic from the United States by convoys of ships.

These convoys were engaged in a cat-and-mouse game with German “U-boats”—

194 CHAPTER 4. NUMBER THEORY

submarines—which prowled the Atlantic, trying to sink supply ships and starve

Britain into submission. The outcome of this struggle pivoted on a balance of in-

formation: could the Germans locate convoys better than the Allies could locate

U-boats or vice versa?

Germany lost.

But a critical reason behind Germany’s loss was made public only in 1974: Ger-

many’s naval code, Enigma, had been broken by the Polish Cipher Bureau (see

http://en.wikipedia.org/wiki/Polish Cipher Bureau) and the secret

had been turned over to the British a few weeks before the Nazi invasion of Poland

in 1939. Throughout much of the war, the Allies were able to route convoys around

German submarines by listening in to German communications. The British gov-

ernment didn’t explain how Enigma was broken until 1996. When it was finally

released (by the US), the story revealed that Alan Turing had joined the secret

British codebreaking effort at Bletchley Park in 1939, where he became the lead

developer of methods for rapid, bulk decryption of German Enigma messages.

http://en.wikipedia.org/wiki/Polish_Cipher_Bureau

4.5. MODULAR ARITHMETIC 195

Turing’s Enigma deciphering was an invaluable contribution to the Allied victory

over Hitler.

Governments are always tight-lipped about cryptography, but the half-century

of official silence about Turing’s role in breaking Enigma and saving Britain may

be related to some disturbing events after the war. More on that later. Let’s get

back to number theory and consider an alternative interpretation of Turing’s code.

Perhaps we had the basic idea right (multiply the message by the key), but erred

in using conventional arithmetic instead of modular arithmetic. Maybe this is what

Turing meant:

Beforehand The sender and receiver agree on a large prime p, which may be made

public. (This will be the modulus for all our arithmetic.) They also agree on

a secret key k ∈ {1, 2, . . . , p− 1}.

Encryption The message m can be any integer in the set {0, 1, 2, . . . , p− 1}; in par-

ticular, the message is no longer required to be a prime. The sender encrypts

196 CHAPTER 4. NUMBER THEORY

the message m to produce m∗ by computing:

m∗ = rem(mk, p) (4.7)

Decryption (Uh-oh.)

The decryption step is a problem. We might hope to decrypt in the same way

as before: by dividing the encrypted message m∗ by the key k. The difficulty is

that m∗ is the remainder when mk is divided by p. So dividing m∗ by k might not

even give us an integer!

This decoding difficulty can be overcome with a better understanding of arith-

metic modulo a prime.

4.6. ARITHMETIC WITH A PRIME MODULUS 197

4.5.2 Problems

Class Problems

4.6 Arithmetic with a Prime Modulus

4.6.1 Multiplicative Inverses

The multiplicative inverse of a number x is another number x−1 such that:

x · x−1 = 1

Generally, multiplicative inverses exist over the real numbers. For example, the

multiplicative inverse of 3 is 1/3 since:

3 · 1
3

= 1

The sole exception is that 0 does not have an inverse.

On the other hand, inverses generally do not exist over the integers. For exam-

ple, 7 can not be multiplied by another integer to give 1.

Surprisingly, multiplicative inverses do exist when we’re working modulo a

198 CHAPTER 4. NUMBER THEORY

prime number. For example, if we’re working modulo 5, then 3 is a multiplicative

inverse of 7, since:

7 · 3 ≡ 1 (mod 5)

(All numbers congruent to 3 modulo 5 are also multiplicative inverses of 7; for

example, 7 · 8 ≡ 1 (mod 5) as well.) The only exception is that numbers congruent

to 0 modulo 5 (that is, the multiples of 5) do not have inverses, much as 0 does not

have an inverse over the real numbers. Let’s prove this.

Lemma 4.6.1. If p is prime and k is not a multiple of p, then k has a multiplicative inverse

modulo p.

Proof. Since p is prime, it has only two divisors: 1 and p. And since k is not a

multiple of p, we must have gcd(p, k) = 1. Therefore, there is a linear combination

of p and k equal to 1:

sp+ tk = 1

Rearranging terms gives:

sp = 1− tk

4.6. ARITHMETIC WITH A PRIME MODULUS 199

This implies that p | (1− tk) by the definition of divisibility, and therefore tk ≡ 1

(mod p) by the definition of congruence. Thus, t is a multiplicative inverse of k. �

Multiplicative inverses are the key to decryption in Turing’s code. Specifically,

we can recover the original message by multiplying the encoded message by the

inverse of the key:

m∗ · k−1 = rem(mk, p) · k−1 (the def. (4.7) of m∗)

≡ (mk)k−1 (mod p) (by Cor. 4.5.2)

≡ m (mod p).

This shows that m∗k−1 is congruent to the original message m. Since m was in

the range 0, 1, . . . , p− 1, we can recover it exactly by taking a remainder:

m = rem(m∗k−1, p)

So all we need to decrypt the message is to find a value of k−1. From the proof of

Lemma 4.6.1, we know that t is such a value, where sp + tk = 1. Finding t is easy

using the Pulverizer.

200 CHAPTER 4. NUMBER THEORY

4.6.2 Cancellation

Another sense in which real numbers are nice is that one can cancel multiplicative

terms. In other words, if we know that m1k = m2k, then we can cancel the k’s and

conclude that m1 = m2, provided k 6= 0. In general, cancellation is not valid in

modular arithmetic. For example,

2 · 3 ≡ 4 · 3 (mod 6),

but canceling the 3’s leads to the false conclusion that 2 ≡ 4 (mod 6). The fact

that multiplicative terms can not be canceled is the most significant sense in which

congruences differ from ordinary equations. However, this difference goes away

if we’re working modulo a prime; then cancellation is valid.

Lemma 4.6.2. Suppose p is a prime and k is not a multiple of p. Then

ak ≡ bk (mod p) IMPLIES a ≡ b (mod p).

Proof. Multiply both sides of the congruence by k−1. �

4.6. ARITHMETIC WITH A PRIME MODULUS 201

We can use this lemma to get a bit more insight into how Turing’s code works.

In particular, the encryption operation in Turing’s code permutes the set of possible

messages. This is stated more precisely in the following corollary.

Corollary 4.6.3. Suppose p is a prime and k is not a multiple of p. Then the sequence:

rem((1 · k), p), rem((2 · k), p), . . . , rem(((p− 1) · k) , p)

is a permutation3 of the sequence:

1, 2, . . . , (p− 1).

Proof. The sequence of remainders contains p−1 numbers. Since i·k is not divisible

by p for i = 1, . . . p − 1, all these remainders are in the range 1 to p − 1 by the

definition of remainder. Furthermore, the remainders are all different: no two

numbers in the range 1 to p − 1 are congruent modulo p, and by Lemma 4.6.2,

i · k ≡ j · k (mod p) if and only if i ≡ j (mod p). Thus, the sequence of remainders

must contain all of the numbers from 1 to p− 1 in some order. �

3A permutation of a sequence of elements is a reordering of the elements.

202 CHAPTER 4. NUMBER THEORY

For example, suppose p = 5 and k = 3. Then the sequence:

rem((1 · 3), 5)︸ ︷︷ ︸
=3

, rem((2 · 3), 5)︸ ︷︷ ︸
=1

, rem((3 · 3), 5)︸ ︷︷ ︸
=4

, rem((4 · 3), 5)︸ ︷︷ ︸
=2

is a permutation of 1, 2, 3, 4. As long as the Nazis don’t know the secret key k,

they don’t know how the set of possible messages are permuted by the process of

encryption and thus they can’t read encoded messages.

4.6.3 Fermat’s Little Theorem

An alternative approach to finding the inverse of the secret key k in Turing’s code

(about equally efficient and probably more memorable) is to rely on Fermat’s Little

Theorem, which is much easier than his famous Last Theorem.

Theorem 4.6.4 (Fermat’s Little Theorem). Suppose p is a prime and k is not a multiple

of p. Then:

kp−1 ≡ 1 (mod p)

4.6. ARITHMETIC WITH A PRIME MODULUS 203

Proof. We reason as follows:

(p− 1)! ::= 1 · 2 · · · (p− 1)

= rem(k, p) · rem(2k, p) · · · rem((p− 1)k, p) (by Cor 4.6.3)

≡ k · 2k · · · (p− 1)k (mod p) (by Cor 4.5.2)

≡ (p− 1)! · kp−1 (mod p) (rearranging terms)

Now (p−1)! is not a multiple of p because the prime factorizations of 1, 2, . . . , (p−

1) contain only primes smaller than p. So by Lemma 4.6.2, we can cancel (p − 1)!

from the first and last expressions, which proves the claim. �

Here is how we can find inverses using Fermat’s Theorem. Suppose p is a prime

and k is not a multiple of p. Then, by Fermat’s Theorem, we know that:

kp−2 · k ≡ 1 (mod p)

Therefore, kp−2 must be a multiplicative inverse of k. For example, suppose that

we want the multiplicative inverse of 6 modulo 17. Then we need to compute

204 CHAPTER 4. NUMBER THEORY

rem(615, 17), which we can do by successive squaring. All the congruences below

hold modulo 17.

62 ≡ 36 ≡ 2

64 ≡ (62)2 ≡ 22 ≡ 4

68 ≡ (64)2 ≡ 42 ≡ 16

615 ≡ 68 · 64 · 62 · 6 ≡ 16 · 4 · 2 · 6 ≡ 3

Therefore, rem(615, 17) = 3. Sure enough, 3 is the multiplicative inverse of 6 mod-

ulo 17, since:

3 · 6 ≡ 1 (mod 17)

In general, if we were working modulo a prime p, finding a multiplicative in-

verse by trying every value between 1 and p− 1 would require about p operations.

However, the approach above requires only about [Illegible]2(?) log p operations,

which is far better when p is large.

4.6. ARITHMETIC WITH A PRIME MODULUS 205

4.6.4 Breaking Turing’s Code—Again

The Germans didn’t bother to encrypt their weather reports with the highly-secure

Enigma system. After all, so what if the Allies learned that there was rain off the

south coast of Iceland? But, amazingly, this practice provided the British with a

critical edge in the Atlantic naval battle during 1941.

The problem was that some of those weather reports had originally been trans-

mitted using Enigma from U-boats out in the Atlantic. Thus, the British obtained

both unencrypted reports and the same reports encrypted with Enigma. By com-

paring the two, the British were able to determine which key the Germans were

using that day and could read all other Enigma-encoded traffic. Today, this would

be called a known-plaintext attack.

Let’s see how a known-plaintext attack would work against Turing’s code. Sup-

pose that the Nazis know both m and m∗ where:

m∗ ≡ mk (mod p)

206 CHAPTER 4. NUMBER THEORY

Now they can compute:

mp−2 ·m∗ = mp−2 · rem(mk, p) (def. (4.7) of m∗)

≡ mp−2 ·mk (mod p) (by Cor 4.5.2)

≡ mp−1 · k (mod p)

≡ k (mod p) (Fermat’s Theorem)

Now the Nazis have the secret key k and can decrypt any message!

This is a huge vulnerability, so Turing’s code has no practical value. Fortu-

nately, Turing got better at cryptography after devising this code; his subsequent

deciphering of Enigma messages surely saved thousands of lives, if not the whole

of Britain.

4.6.5 Turing Postscript

A few years after the war, Turing’s home was robbed. Detectives soon determined

that a former homosexual lover of Turing’s had conspired in the robbery. So they

arrested him—that is, they arrested Alan Turing—because homosexuality was a

4.6. ARITHMETIC WITH A PRIME MODULUS 207

British crime punishable by up to two years in prison at that time. Turing was

sentenced to a hormonal “treatment” for his homosexuality: he was given estrogen

injections. He began to develop breasts.

Three years later, Alan Turing, the founder of computer science, was dead. His

mother explained what happened in a biography of her own son. Despite her

repeated warnings, Turing carried out chemistry experiments in his own home.

Apparently, her worst fear was realized: by working with potassium cyanide while

eating an apple, he poisoned himself.

However, Turing remained a puzzle to the very end. His mother was a de-

voutly religious woman who considered suicide a sin. And, other biographers

have pointed out, Turing had previously discussed committing suicide by eating

a poisoned apple. Evidently, Alan Turing, who founded computer science and

saved his country, took his own life in the end, and in just such a way that his

mother could believe it was an accident.

Turing’s last project before he disappeared from public view in 1939 involved

208 CHAPTER 4. NUMBER THEORY

the construction of an elaborate mechanical device to test a mathematical conjec-

ture called the Riemann Hypothesis. This conjecture first appeared in a sketchy

paper by Bernhard Riemann in 1859 and is now one of the most famous unsolved

problem in mathematics.

4.6.6 Problems

Class Problems

Homework Problems

4.7 Arithmetic with an Arbitrary Modulus

Turing’s code did not work as he hoped. However, his essential idea—using num-

ber theory as the basis for cryptography—succeeded spectacularly in the decades

after his death.

In 1977, Ronald Rivest, Adi Shamir, and Leonard Adleman at MIT proposed a

highly secure cryptosystem (called RSA) based on number theory. Despite decades

4.7. ARITHMETIC WITH AN ARBITRARY MODULUS 209

The Riemann Hypothesis

The formula for the sum of an infinite geometric series says:

1 + x+ x2 + x3 + · · · = 1
1− x

Substituting x = 1
2s , x = 1

3s , x = 1
5s , and so on for each prime number gives a

sequence of equations:

1 +
1
2s

+
1

22s
+

1
23s

+ · · · = 1
1− 1/2s

1 +
1
3s

+
1

32s
+

1
33s

+ · · · = 1
1− 1/3s

1 +
1
5s

+
1

52s
+

1
53s

+ · · · = 1
1− 1/5s

etc.

Multiplying together all the left sides and all the right sides gives:

∞∑
n=1

1
ns

=
∏

p∈primes

(
1

1− 1/ps

)

The sum on the left is obtained by multiplying out all the infinite series and apply-

ing the Fundamental Theorem of Arithmetic. For example, the term 1/300s in the

sum is obtained by multiplying 1/22s from the first equation by 1/3s in the second

and 1/52s in the third. Riemann noted that every prime appears in the expression

on the right. So he proposed to learn about the primes by studying the equiva-

lent, but simpler expression on the left. In particular, he regarded s as a complex

number and the left side as a function, ζ(s). Riemann found that the distribution

of primes is related to values of s for which ζ(s) = 0, which led to his famous

conjecture:

Definition 4.6.5. The Riemann Hypothesis: Every nontrivial zero of the zeta function

ζ(s) lies on the line s = 1/2 + ci in the complex plane.

A proof would immediately imply, among other things, a strong form of the Prime

Number Theorem.

Researchers continue to work intensely to settle this conjecture, as they have for

over a century. It is another of the Millennium Problems whose solver will earn

$1,000,000 from the Clay Institute.

http://www.claymath.org/millennium/

210 CHAPTER 4. NUMBER THEORY

of attack, no significant weakness has been found. Moreover, RSA has a major

advantage over traditional codes: the sender and receiver of an encrypted mes-

sage need not meet beforehand to agree on a secret key. Rather, the receiver has

both a secret key, which she guards closely, and a public key, which she distributes

as widely as possible. The sender then encrypts his message using her widely-

distributed public key. Then she decrypts the received message using her closely-

held private key. The use of such a public key cryptography system allows you and

Amazon, for example, to engage in a secure transaction without meeting up be-

forehand in a dark alley to exchange a key.

Interestingly, RSA does not operate modulo a prime, as Turing’s scheme may

have, but rather modulo the product of two large primes. Thus, we’ll need to know

a bit about how arithmetic works modulo a composite number in order to under-

stand RSA. Arithmetic modulo an arbitrary positive integer is really only a little

more painful than working modulo a prime—though you may think this is like

the doctor saying, “This is only going to hurt a little,” before he jams a big needle

4.7. ARITHMETIC WITH AN ARBITRARY MODULUS 211

in your arm.

4.7.1 Relative Primality

First, we need a new definition. Integers a and b are relatively prime iff gcd(a, b) = 1.

For example, 8 and 15 are relatively prime, since gcd(8, 15) = 1. Note that, except

for multiples of p, every integer is relatively prime to a prime number p.

Next we’ll need to generalize what we know about arithmetic modulo a prime

to work modulo an arbitrary positive integer n. The basic theme is that arithmetic

modulo n may be complicated, but the integers relatively prime to n remain fairly

well-behaved. For example, the proof of Lemma 4.6.1 of an inverse for k modulo p

extends to an inverse for k relatively prime to n:

Lemma 4.7.1. Let n be a positive integer. If k is relatively prime to n, then there exists

an integer k−1 such that:

k · k−1 ≡ 1 (mod n)

As a consequence of this lemma, we can cancel a multiplicative term from both

212 CHAPTER 4. NUMBER THEORY

sides of a congruence if that term is relatively prime to the modulus:

Corollary 4.7.2. Suppose n is a positive integer and k is relatively prime to n. If

ak ≡ bk (mod n)

then

a ≡ b (mod n)

This holds because we can multiply both sides of the first congruence by k−1

and simplify to obtain the second.

The following lemma is the natural generalization of Corollary 4.7.2.

Lemma 4.7.3. Suppose n is a positive integer and k is relatively prime to n. Let k1, . . . , kr

denote all the integers relatively prime to n in the range 1 to n− 1. Then the sequence:

rem(k1 · k, n), rem(k2 · k, n), rem(k3 · k, n), . . . , rem(kr · k, n)

is a permutation of the sequence:

k1, k2, . . . , kr.

4.7. ARITHMETIC WITH AN ARBITRARY MODULUS 213

Proof. We will show that the remainders in the first sequence are all distinct and

are equal to some member of the sequence of kj ’s. Since the two sequences have

the same length, the first must be a permutation of the second.

First, we show that the remainders in the first sequence are all distinct. Suppose

that rem(kik, n) = rem(kjk, n). This is equivalent to kik ≡ kjk (mod n), which

implies ki ≡ kj (mod n) by Corollary 4.7.2. This, in turn, means that ki = kj

since both are between 1 and n− 1. Thus, none of the remainder terms in the first

sequence is equal to any other remainder term.

Next, we show that each remainder in the first sequence equals one of the ki.

By assumption, gcd(ki, n) = 1 and gcd(k, n) = 1, which means that

gcd(n, rem(kik, n)) = gcd(kik, n) (by part (5) of Lemma 4.2.4)

= 1 (by part (3) of Lemma 4.2.4).

Since rem(kik, n) is in the range from 0 to n − 1 by the definition of remainder,

and since it is relatively prime to n, it must (by definition of the kj ’s) be equal to

some kj . �

214 CHAPTER 4. NUMBER THEORY

4.7.2 Euler’s Theorem

RSA relies heavily on a generalization of Fermat’s Theorem known as Euler’s The-

orem. For both theorems, the exponent of k needed to produce an inverse of k

modulo n depends on the number of integers in the set {1, 2, . . . , n − 1} that are

relatively prime to n. This value is known as Euler’s φ function (a.k.a. Euler’s totient

function) and it is denoted as φ(n). For example, φ(7) = 6 since 1, 2, 3, 4, 5, and 6

are all relatively prime to 7. Similarly, φ(12) = 4 since 1, 5, 7, and 11 are the only

numbers less than 12 that are relatively prime to 12.

If n is prime, then φ(n) = n − 1 since every number less than a prime number

is relatively prime to that prime. When n is composite, however, the φ function

gets a little complicated. The following theorem characterizes the φ function for

composite n. We won’t prove the theorem in its full generality, although we will

give a proof for the special case when n is the product of two primes since that is

the case that matters for RSA.

Theorem 4.7.4. The function φ obeys the following relationships:

4.7. ARITHMETIC WITH AN ARBITRARY MODULUS 215

(a) If a and b are relatively prime, then φ(ab) = φ(a)φ(b).

(b) If p is a prime, then φ(pk) = pk − pk−1 for k ≥ 1.

Corollary 4.7.5. Let pα1
1 pα2

2 · · · p
αj
j be the unique prime factorization of an integer n

where p1 < p2 < · · · < pj for j ≥ 1. Then

φ(n) = (pα1
1 − p

α1−1
1)(pα2

2 − p
α2−1
2) . . . (pαjj − p

αj−1
j)

For example,

φ(300) = φ(22 · 3 · 52)

= (22 − 21)(31 − 30)(52 − 51)

= 2 · 2 · 20

= 80.

Corollary 4.7.6. Let n = pq where p and q are different primes. Then φ(n) = (p−1)(q−

1).

Corollary 4.7.6 follows easily from Corollary 4.7.5 and Theorem 4.7.4, but since

Corollary 4.7.6 is important to RSA and we have not provided a proof of Theo-

216 CHAPTER 4. NUMBER THEORY

rem 4.7.4, we will give a direct proof of Corollary 4.7.6 in what follows.

Proof of 4.7.6. Since p and q are prime, any number that is not relatively prime to

n = pq must be a multiple of p or a multiple of q. Among the numbers 1, 2, . . . ,

pq−1, there are precisely q−1 multiples of p and p−1 multiples of q. Since p and q

are relatively prime and since the numbers under consideration are less than pq,

the q − 1 multiples of p are different than the p− 1 multiples of q. Hence,

φ(n) = (pq − 1)− (q − 1)− (p− 1)

= pq − q − p+ 1

= (p− 1)(q − 1),

as claimed. �

We can now prove Euler’s Theorem:

Theorem 4.7.7 (Euler’s Theorem). Suppose n is a positive integer and k is relatively

prime to n. Then

kφ(n) ≡ 1 (mod n)

4.7. ARITHMETIC WITH AN ARBITRARY MODULUS 217

Proof. Let k1, . . . , kr denote all integers relatively prime to n such that 0 ≤ ki < n.

Then r = φ(n), by the definition of the function φ. The remainder of the proof

mirrors the proof of Fermat’s Theorem. In particular,

k1 · k2 · · · kr

= rem(k1 · k, n) · rem(k2 · k, n) · · · rem(kr · k, n) (by Lemma 4.7.3)

≡ (k1 · k) · (k2 · k) · · · · (kr · k) (mod n) (by Cor 4.5.2)

≡ (k1 · k2 · · · kr) · kr (mod n) (rearranging terms)

Part (3) of Lemma 4.2.4. implies that k1 · k2 · · · kr is relatively prime to n. So by

Corollary 4.7.2, we can cancel this product from the first and last expressions. This

proves the claim. �

We can find multiplicative inverses using Euler’s theorem as we did with Fer-

mat’s theorem: if k is relatively prime to n, then kφ(n)−1 is a multiplicative inverse

of k modulo n. However, this approach requires computing φ(n). Computing φ(n)

(using Corollary 4.7.5) if we know the prime factorization of n. Unfortunately, find-

ing the factors of n can be hard to do when n is large and so the Pulverizer is often

218 CHAPTER 4. NUMBER THEORY

the best approach to computing inverses mod n.

4.8 The RSA Algorithm

Here, then, is the RSA public key encryption scheme:

Beforehand The receiver creates a public key and a secret key as follows.

1. Generate two distinct primes, p and q. Since they can be used to gener-

ate the secret key, they must be kept hidden.

2. Let n = pq.

3. Select an integer e such that gcd(e, (p− 1)(q − 1)) = 1.

The public key is the pair (e, n). This should be distributed widely.

4. Compute d such that de ≡ 1 (mod (p − 1)(q − 1)). This can be done

using the Pulverizer.

The secret key is the pair (d, n). This should be kept hidden!

Encoding Given a message m, the sender first checks that gcd(m,n) = 1.4 The

4It would be very bad if gcd(m,n) equals p or q since then it would be easy for someone to use the

4.8. THE RSA ALGORITHM 219

sender then encrypts message m to produce m′ using the public key:

m′ = rem(me, n).

Decoding The receiver decrypts message m′ back to message m using the secret

key:

m = rem((m′)d, n).

Why does decoding work? We need to show that the decryption rem((m′)d, n)

is indeed equal to the sender’s messagem. Sincem′ = rem(me, n), m′ is congruent

to me modulo n by Corollary 4.5.1. That is,

m′ ≡ me (mod n).

By raising both sides to the power d, we obtain the congruence

(m′)d ≡ med (mod n). (4.8)

encoded message to compute the secret key If gcd(m,n) = n, then the encoded message would be 0,

which is fairly useless.

220 CHAPTER 4. NUMBER THEORY

The encryption exponent e and the decryption exponent d are chosen such that

de ≡ 1 (mod (p − 1)(q − 1)). So, there exists an integer r such that ed = 1 + r(p −

1)(q − 1). By substituting 1 + r(p− 1)(q − 1) for ed in4.8, we obtain

(m′)d ≡ m ·mr(p−1)(q−1) (mod n). (4.9)

By Euler’s Theorem and the assumption that gcd(m,n) = 1, we know that

mφ(n) ≡ 1 (mod n).

From Corollary 4.7.6, we know that φ(n) = (p− 1)(q − 1). Hence,

(m′)d = m ·mr(p−1)(q−1) (mod n)

= m · 1r (mod n)

= m (mod n).

Hence, the decryption process indeed reproduces the original message m.

Is it hard for someone without the secret key to decrypt th message? No one

knows for sure but it is generally believed that if n is a very large number (say,

with a thousand digits), then it is difficult to reverse engineer d from e and n. Of

4.8. THE RSA ALGORITHM 221

course, it is easy to compute d if you know p and q (by using the Pulverizer) but it

is not known how to quickly factor n into p and q when n is very large. Maybe with

a little more studying of number theory, you will be the first to figure out how to

do it. Although, we should warn you that Gauss worked on it for years without a

lot to show for his efforts. And if you do figure it out, you might wind up meeting

some serious-looking fellows in black suits. . . .

4.8.1 Problems

Practice Problems

Class Problems

Homework Problems

Exam Problems

222 CHAPTER 4. NUMBER THEORY

Part II

Mathematical Data Types

223

Chapter 5

Sets and Relations

5.1 Sets

EDITING NOTE: We’ve been assuming that the concepts of sets, sequences, and

functions are already familiar ones, and we’ve mentioned them repeatedly. Now

we’ll do a quick review of the definitions. �

Propositions of the sort we’ve considered so far are good for reasoning about

individual statements, but not so good for reasoning about a collection of objects.

225

226 CHAPTER 5. SETS AND RELATIONS

Let’s first review a couple mathematical tools for grouping objects and then extend

our logical language to cope with such collections.

Informally, a set is a bunch of objects, which are called the elements of the set.

The elements of a set can be just about anything: numbers, points in space, or even

other sets. The conventional way to write down a set is to list the elements inside

curly-braces. For example, here are some sets:

A = {Alex,Tippy, Shells, Shadow} dead pets
B = {red, blue,yellow} primary colors
C = {{a, b} , {a, c} , {b, c}} a set of sets

This works fine for small finite sets. Other sets might be defined by indicating how

to generate a list of them:

D = {1, 2, 4, 8, 16, . . . } the powers of 2

The order of elements is not significant, so {x, y} and {y, x} are the same set

written two different ways. Also, any object is, or is not, an element of a given

5.1. SETS 227

set —there is no notion of an element appearing more than once in a set.1 So

writing {x, x} is just indicating the same thing twice, namely, that x is in the set. In

particular, {x, x} = {x}.

The expression e ∈ S asserts that e is an element of set S. For example, 32 ∈ D

and blue ∈ B, but Tailspin 6∈ A —yet.

Sets are simple, flexible, and everywhere. You’ll find some set mentioned in

nearly every section of this text.

5.1.1 Some Popular Sets

Mathematicians have devised special symbols to represent some common sets.

symbol set elements
∅ the empty set none
N nonnegative integers {0, 1, 2, 3, . . .}
Z integers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
Q rational numbers 1

2 , −
5
3 , 16, etc.

R real numbers π, e, −9,
√

2, etc.
C complex numbers i, 19

2 ,
√

2− 2i, etc.

A superscript “+” restricts a set to its positive elements; for example, R+ denotes

the set of positive real numbers. Similarly, R− denotes the set of negative reals.

1It’s not hard to develop a notion of multisets in which elements can occur more than once, but

multisets are not ordinary sets.

228 CHAPTER 5. SETS AND RELATIONS

5.1.2 Comparing and Combining Sets

The expression S ⊆ T indicates that set S is a subset of set T , which means that

every element of S is also an element of T (it could be that S = T). For example,

N ⊆ Z and Q ⊆ R (every rational number is a real number), but C 6⊆ Z (not every

complex number is an integer).

As a memory trick, notice that the ⊆ points to the smaller set, just like a ≤ sign

points to the smaller number. Actually, this connection goes a little further: there

is a symbol ⊂ analogous to <. Thus, S ⊂ T means that S is a subset of T , but the

two are not equal. So A ⊆ A, but A 6⊂ A, for every set A.

There are several ways to combine sets. Let’s define a couple of sets for use in

examples:

X ::= {1, 2, 3}

Y ::= {2, 3, 4}

• The union of sets X and Y (denoted X ∪ Y) contains all elements appearing

in X or Y or both. Thus, X ∪ Y = {1, 2, 3, 4}.

5.1. SETS 229

• The intersection of X and Y (denoted X ∩ Y) consists of all elements that

appear in both X and Y . So X ∩ Y = {2, 3}.

• The set difference of X and Y (denoted X − Y) consists of all elements that

are in X , but not in Y . Therefore, X − Y = {1} and Y −X = {4}.

5.1.3 Complement of a Set

Sometimes we are focused on a particular domain, D. Then for any subset, A, of

D, we define A to be the set of all elements of D not in A. That is, A ::=D−A. The

set A is called the complement of A.

For example, when the domain we’re working with is the real numbers, the

complement of the positive real numbers is the set of negative real numbers to-

gether with zero. That is,

R+ = R− ∪ {0} .

It can be helpful to rephrase properties of sets using complements. For exam-

ple, two sets, A and B, are said to be disjoint iff they have no elements in common,

230 CHAPTER 5. SETS AND RELATIONS

that is, A ∩ B = ∅. This is the same as saying that A is a subset of the complement

of B, that is, A ⊆ B.

5.1.4 Power Set

The set of all the subsets of a set, A, is called the power set, P(A), of A. So B ∈ P(A)

iff B ⊆ A. For example, the elements of P({1, 2}) are ∅, {1} , {2} and {1, 2}.

More generally, if A has n elements, then there are 2n sets in P(A). For this

reason, some authors use the notation 2A instead of P(A).

5.1.5 Set Builder Notation

An important use of predicates is in set builder notation. We’ll often want to talk

about sets that cannot be described very well by listing the elements explicitly or

by taking unions, intersections, etc., of easily-described sets. Set builder notation

often comes to the rescue. The idea is to define a set using a predicate; in particular,

the set consists of all values that make the predicate true. Here are some examples

of set builder notation:

5.1. SETS 231

A ::= {n ∈ N | n is a prime and n = 4k + 1 for some integer k}

B ::=
{
x ∈ R | x3 − 3x+ 1 > 0

}

C ::=
{
a+ bi ∈ C | a2 + 2b2 ≤ 1

}

The set A consists of all nonnegative integers n for which the predicate

“n is a prime and n = 4k + 1 for some integer k”

is true. Thus, the smallest elements of A are:

5, 13, 17, 29, 37, 41, 53, 57, 61, 73,

Trying to indicate the set A by listing these first few elements wouldn’t work very

well; even after ten terms, the pattern is not obvious! Similarly, the set B consists

of all real numbers x for which the predicate

x3 − 3x+ 1 > 0

is true. In this case, an explicit description of the set B in terms of intervals would

require solving a cubic equation. Finally, set C consists of all complex numbers

232 CHAPTER 5. SETS AND RELATIONS

a+ bi such that:

a2 + 2b2 ≤ 1

This is an oval-shaped region around the origin in the complex plane.

5.1.6 Proving Set Equalities

Two sets are defined to be equal if they contain the same elements. That is, X = Y

means that z ∈ X if and only if z ∈ Y , for all elements, z. (This is actually the

first of the ZFC axioms.) So set equalities can be formulated and proved as “iff”

theorems. For example:

Theorem 5.1.1 (Distributive Law for Sets). Let A, B, and C be sets. Then:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (5.1)

Proof. The equality (5.1) is equivalent to the assertion that

z ∈ A ∩ (B ∪ C) iff z ∈ (A ∩B) ∪ (A ∩ C) (5.2)

for all z. Now we’ll prove (5.2) by a chain of iff’s.

5.1. SETS 233

First we need a rule for distributing a propositional AND operation over an OR

operation. It’s easy to verify by truth-table that

Lemma 5.1.2. The propositional formulas

P AND (Q OR R)

and

(P AND Q) OR (P AND R)

are equivalent.

Now we have

z ∈ A ∩ (B ∪ C)

iff (z ∈ A) AND (z ∈ B ∪ C) (def of ∩)

iff (z ∈ A) AND (z ∈ B OR z ∈ C) (def of ∪)

iff (z ∈ A AND z ∈ B) OR (z ∈ A AND z ∈ C) (Lemma 5.1.2)

iff (z ∈ A ∩B) OR (z ∈ A ∩ C) (def of ∩)

iff z ∈ (A ∩B) ∪ (A ∩ C) (def of ∪)

234 CHAPTER 5. SETS AND RELATIONS

�

5.1.7 Glossary of Symbols

symbol meaning
::= is defined to be
∧ and
∨ or
−→ implies
¬ not
¬P not P
P not P
←→ iff, equivalent
⊕ xor
∃ exists
∀ for all
∈ is a member of, belongs to
⊆ is a subset of, is contained by
⊂ is a proper subset of, is properly contained by
∪ set union
∩ set intersection
A complement of the set A
P(A) powerset of the set A
∅ the empty set, {}
N nonnegative integers
Z integers
Z+ positive integers
Z− negative integers
Q rational numbers
R real numbers
C complex numbers

5.2. THE LOGIC OF SETS 235

5.1.8 Problems

Homework Problems

5.2 The Logic of Sets

5.2.1 Russell’s Paradox

Reasoning naively about sets turns out to be risky. In fact, one of the earliest at-

tempts to come up with precise axioms for sets by a late nineteenth century logican

named Gotlob Frege was shot down by a three line argument known as Russell’s

Paradox:2 This was an astonishing blow to efforts to provide an axiomatic founda-

tion for mathematics.
2Bertrand Russell was a mathematician/logician at Cambridge University at the turn of the Twen-

tieth Century. He reported that when he felt too old to do mathematics, he began to study and write

about philosophy, and when he was no longer smart enough to do philosophy, he began writing about

politics. He was jailed as a conscientious objector during World War I. For his extensive philosophical

and political writing, he won a Nobel Prize for Literature.

236 CHAPTER 5. SETS AND RELATIONS

Let S be a variable ranging over all sets, and define

W ::= {S | S 6∈ S} .

So by definition,

S ∈W iff S 6∈ S,

for every set S. In particular, we can let S be W , and obtain the contra-

dictory result that

W ∈W iff W 6∈W.

A way out of the paradox was clear to Russell and others at the time: it’s un-

justified to assume that W is a set. So the step in the proof where we let S be W has

no justification, because S ranges over sets, and W may not be a set. In fact, the

paradox implies that W had better not be a set!

But denying that W is a set means we must reject the very natural axiom that

every mathematically well-defined collection of elements is actually a set. So the

problem faced by Frege, Russell and their colleagues was how to specify which

5.2. THE LOGIC OF SETS 237

well-defined collections are sets. Russell and his fellow Cambridge University col-

league Whitehead immediately went to work on this problem. They spent a dozen

years developing a huge new axiom system in an even huger monograph called

Principia Mathematica.

5.2.2 The ZFC Axioms for Sets

It’s generally agreed that, using some simple logical deduction rules, essentially

all of mathematics can be derived from some axioms about sets called the Axioms

of Zermelo-Frankel Set Theory with Choice (ZFC).

We’re not going to be working with these axioms in this course, but we thought

you might like to see them –and while you’re at it, get some practice reading quan-

tified formulas:

Extensionality. Two sets are equal if they have the same members. In formal log-

ical notation, this would be stated as:

(∀z. (z ∈ x IFF z ∈ y)) IMPLIES x = y.

238 CHAPTER 5. SETS AND RELATIONS

Pairing. For any two sets x and y, there is a set, {x, y}, with x and y as its only

elements:

∀x, y. ∃u. ∀z. [z ∈ u IFF (z = x OR z = y)]

Union. The union, u, of a collection, z, of sets is also a set:

∀z.∃u∀x. (∃y. x ∈ y AND y ∈ z) IFF x ∈ u.

Infinity. There is an infinite set. Specifically, there is a nonempty set, x, such that

for any set y ∈ x, the set {y} is also a member of x.

EDITING NOTE:

Subset. Given any set, x, and any proposition P (y), there is a set containing

precisely those elements y ∈ x for which P (y) holds.

�

Power Set. All the subsets of a set form another set:

∀x. ∃p. ∀u. u ⊆ x IFF u ∈ p.

5.2. THE LOGIC OF SETS 239

Replacement. Suppose a formula, φ, of set theory defines the graph of a function,

that is,

∀x, y, z. [φ(x, y) AND φ(x, z)] IMPLIES y = z.

Then the image of any set, s, under that function is also a set, t. Namely,

∀s∃t∀y. [∃x. φ(x, y) IFF y ∈ t].

Foundation. There cannot be an infinite sequence

· · · ∈ xn ∈ · · · ∈ x1 ∈ x0

of sets each of which is a member of the previous one. This is equivalent

to saying every nonempty set has a “member-minimal” element. Namely,

define

member-minimal(m,x) ::= [m ∈ x AND ∀y ∈ x. y /∈ m].

Then the Foundation axiom is

∀x. x 6= ∅ IMPLIES ∃m.member-minimal(m,x).

240 CHAPTER 5. SETS AND RELATIONS

EDITING NOTE: If well-founded posets are defined, then rephrase Foun-

dation as The ∈ relation on sets is well-founded. �

Choice. Given a set, s, whose members are nonempty sets no two of which have

any element in common, then there is a set, c, consisting of exactly one ele-

ment from each set in s.

EDITING NOTE:

∃y∀z∀w ((z ∈ w AND w ∈ x)IMPLIES
∃v∃u(∃t((u ∈ wAND w ∈ t) AND(u ∈ t AND t ∈ y))

IFFu = v))

�

5.2.3 Avoiding Russell’s Paradox

These modern ZFC axioms for set theory are much simpler than the system Russell

and Whitehead first came up with to avoid paradox. In fact, the ZFC axioms are

as simple and intuitive as Frege’s original axioms, with one technical addition: the

5.2. THE LOGIC OF SETS 241

Foundation axiom. Foundation captures the intuitive idea that sets must be built

up from “simpler” sets in certain standard ways. And in particular, Foundation

implies that no set is ever a member of itself. So the modern resolution of Russell’s

paradox goes as follows: since S 6∈ S for all sets S, it follows that W , defined

above, contains every set. This means W can’t be a set —or it would be a member

of itself.

5.2.4 Does All This Really Work?

So this is where mainstream mathematics stands today: there is a handful of ZFC

axioms from which virtually everything else in mathematics can be logically de-

rived. This sounds like a rosy situation, but there are several dark clouds, suggest-

ing that the essence of truth in mathematics is not completely resolved.

• The ZFC axioms weren’t etched in stone by God. Instead, they were mostly

made up by some guy named Zermelo. Probably some days he forgot his

house keys.

242 CHAPTER 5. SETS AND RELATIONS

So maybe Zermelo, just like Frege, didn’t get his axioms right and will be

shot down by some successor to Russell who will use Zermelo’s axioms to

prove a proposition P and its negation NOTP . Then math would be broken.

This sounds crazy, but after all, it has happened before.

In fact, while there is broad agreement that the ZFC axioms are capable of

proving all of standard mathematics, the axioms have some further conse-

quences that sound paradoxical. For example, the Banach-Tarski Theorem

says that, as a consequence of the Axiom of Choice, a solid ball can be di-

vided into six pieces and then the pieces can be rigidly rearranged to give

two solid balls, each the same size as the original!

• Georg Cantor was a contemporary of Frege and Russell who first developed

the theory of infinite sizes (because he thought he needed it in his study of

Fourier series). Cantor raised the question whether there is a set whose size

is strictly between the “smallest3” infinite set, N, and P(N); he guessed not:

3See Problem ??

5.2. THE LOGIC OF SETS 243

Cantor’s Continuum Hypothesis: There is no set, A, such that P(N) is strictly

bigger than A and A is strictly bigger than N.

The Continuum Hypothesis remains an open problem a century later. Its

difficulty arises from one of the deepest results in modern Set Theory —

discovered in part by Gödel in the 1930’s and Paul Cohen in the 1960’s —

namely, the ZFC axioms are not sufficient to settle the Continuum Hypoth-

esis: there are two collections of sets, each obeying the laws of ZFC, and in

one collection the Continuum Hypothesis is true, and in the other it is false.

So settling the Continuum Hypothesis requires a new understanding of what

Sets should be to arrive at persuasive new axioms that extend ZFC and are

strong enough to determine the truth of the Continuum Hypothesis one way

or the other.

• But even if we use more or different axioms about sets, there are some un-

avoidable problems. In the 1930’s, Gödel proved that, assuming that an ax-

iom system like ZFC is consistent —meaning you can’t prove both P and

244 CHAPTER 5. SETS AND RELATIONS

NOT(P) for any proposition, P —then the very proposition that the system

is consistent (which is not too hard to express as a logical formula) cannot be

proved in the system. In other words, no consistent system is strong enough

to verify itself.

5.3 Sequences

Sets provide one way to group a collection of objects. Another way is in a sequence,

which is a list of objects called terms or components. Short sequences are commonly

described by listing the elements between parentheses; for example, (a, b, c) is a

sequence with three terms.

While both sets and sequences perform a gathering role, there are several dif-

ferences.

• The elements of a set are required to be distinct, but terms in a sequence can

be the same. Thus, (a, b, a) is a valid sequence of length three, but {a, b, a} is

a set with two elements —not three.

5.3. SEQUENCES 245

• The terms in a sequence have a specified order, but the elements of a set do

not. For example, (a, b, c) and (a, c, b) are different sequences, but {a, b, c}

and {a, c, b} are the same set.

• Texts differ on notation for the empty sequence; we use λ for the empty se-

quence.

The product operation is one link between sets and sequences. A product of sets,

S1×S2×· · ·×Sn, is a new set consisting of all sequences where the first component

is drawn from S1, the second from S2, and so forth. For example, N×{a, b} is the set

of all pairs whose first element is a nonnegative integer and whose second element

is an a or a b:

N× {a, b} = {(0, a), (0, b), (1, a), (1, b), (2, a), (2, b), . . . }

A product of n copies of a set S is denoted Sn. For example, {0, 1}3 is the set of all

3-bit sequences:

{0, 1}3 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}

246 CHAPTER 5. SETS AND RELATIONS

5.4 Functions

A function assigns an element of one set, called the domain, to elements of another

set, called the codomain. The notation

f : A→ B

indicates that f is a function with domain, A, and codomain, B. The familiar

notation “f(a) = b” indicates that f assigns the element b ∈ B to a. Here b would

be called the value of f at argument a.

Functions are often defined by formulas as in:

f1(x) ::=
1
x2

where x is a real-valued variable, or

f2(y, z) ::= y10yz

where y and z range over binary strings, or

f3(x, n) ::= the pair (n, x)

where n ranges over the nonnegative integers.

5.4. FUNCTIONS 247

A function with a finite domain could be specified by a table that shows the

value of the function at each element of the domain. For example, a function

f4(P,Q) where P and Q are propositional variables is specified by:

P Q f4(P,Q)
T T T
T F F
F T T
F F T

Notice that f4 could also have been described by a formula:

f4(P,Q) ::= [P IMPLIES Q].

A function might also be defined by a procedure for computing its value at any

element of its domain, or by some other kind of specification. For example, define

f5(y) to be the length of a left to right search of the bits in the binary string y until

a 1 appears, so

f5(0010) = 3,

f5(100) = 1,

f5(0000) is undefined.

Notice that f5 does not assign a value to any string of just 0’s. This illustrates

248 CHAPTER 5. SETS AND RELATIONS

an important fact about functions: they need not assign a value to every element in

the domain. In fact this came up in our first example f1(x) = 1/x2, which does not

assign a value to 0. So in general, functions may be partial functions, meaning that

there may be domain elements for which the function is not defined. If a function

is defined on every element of its domain, it is called a total function.

It’s often useful to find the set of values a function takes when applied to the

elements in a set of arguments. So if f : A → B, and S is a subset of A, we define

f(S) to be the set of all the values that f takes when it is applied to elements of S.

That is,

f(S) ::= {b ∈ B | f(s) = b for some s ∈ S} .

For example, if we let [r, s] denote the interval from r to s on the real line, then

f1([1, 2]) = [1/4, 1].

For another example, let’s take the “search for a 1” function, f5. If we let X be

the set of binary words which start with an even number of 0’s followed by a 1,

then f5(X) would be the odd nonnegative integers.

5.4. FUNCTIONS 249

Applying f to a set, S, of arguments is referred to as “applying f pointwise to

S”, and the set f(S) is referred to as the image of S under f .4 The set of values that

arise from applying f to all possible arguments is called the range of f . That is,

range (f) ::= f(domain (f)).

Some authors refer to the codomain as the range of a function, but they shouldn’t.

The distinction between the range and codomain will be important in Sections 5.5.4

and 5.6 when we relate sizes of sets to properties of functions between them.

5.4.1 Function Composition

Doing things step by step is a universal idea. Taking a walk is a literal example, but

so is cooking from a recipe, executing a computer program, evaluating a formula,

and recovering from substance abuse.

4There is a picky distinction between the function f which applies to elements ofA and the function

which applies f pointwise to subsets ofA, because the domain of f isA, while the domain of pointwise-

f is P(A). It is usually clear from context whether f or pointwise-f is meant, so there is no harm in

overloading the symbol f in this way.

250 CHAPTER 5. SETS AND RELATIONS

Abstractly, taking a step amounts to applying a function, and going step by

step corresponds to applying functions one after the other. This is captured by the

operation of composing functions. Composing the functions f and g means that

first f applied is to some argument, x, to produce f(x), and then g is applied to

that result to produce g(f(x)).

Definition 5.4.1. For functions f : A→ B and g : B → C, the composition, g ◦ f , of

g with f is defined to be the function h : A→ C defined by the rule:

h(x) ::= (g ◦ f)(x) ::= g(f(x)),

for all x ∈ A.

Function composition is familiar as a basic concept from elementary calculus,

and it plays an equally basic role in discrete mathematics.

5.5 Relations

Relations are another fundamental mathematical data type. Equality and “less-

than” are very familiar examples of mathematical relations. These are called binary

5.5. RELATIONS 251

relations because they apply to a pair (a, b) of objects; the equality relation holds for

the pair when a = b, and less-than holds when a and b are real numbers and a < b.

In this section we’ll define some basic vocabulary and properties of binary re-

lations.

5.5.1 Binary Relations and Functions

Binary relations are far more general than equality or less-than. Here’s the official

definition:

Definition 5.5.1. A binary relation, R, consists of a set, A, called the domain of R, a

set, B, called the codomain of R, and a subset of A×B called the graph of R.

Notice that Definition 5.5.1 is exactly the same as the definition in Section 5.4

of a function, except that it doesn’t require the functional condition that, for each

domain element, a, there is at most one pair in the graph whose first coordinate is

a. So a function is a special case of a binary relation.

A relation whose domain is A and codomain is B is said to be “between A and

252 CHAPTER 5. SETS AND RELATIONS

B”, or “from A to B.” When the domain and codomain are the same set, A, we

simply say the relation is “on A.” It’s common to use infix notation “a R b” to

mean that the pair (a, b) is in the graph of R.

For example, we can define an “in-charge of” relation, T , for MIT in Spring ’10

to have domain equal to the set, F , of names of the faculty and codomain equal to

all the set, N , of subject numbers in the current catalogue. The graph of T contains

precisely the pairs of the form

(〈instructor-name〉 , 〈subject-num〉)

such that the faculty member named 〈instructor-name〉 is in charge of the subject

with number 〈subject-num〉 in Spring ’10. So graph (T) contains pairs like

(A. R. Meyer, 6.042),
(A. R. Meyer, 18.062),
(A. R. Meyer, 6.844),
(T. Leighton, 6.042),
(T. Leighton, 18.062),
(G, Freeman, 6.011),
(G. Freeman, 6.881)
(G. Freeman, 6.882)
(G. Freeman, 6.UAT)
(T. Eng, 6.UAT)
(J. Guttag, 6.00)

...

This is a surprisingly complicated relation: Meyer is in charge of subjects with

5.5. RELATIONS 253

three numbers. Leighton is also in charge of subjects with two of these three num-

bers —because the same subject, Mathematics for Computer Science, has two num-

bers: 6.042 and 18.062, and Meyer and Leighton are co-in-charge of the subject.

Freeman is in-charge of even more subjects numbers (around 20), since as Depart-

ment Education Officer, he is in charge of whole blocks of special subject numbers.

Some subjects, like 6.844 and 6.00 have only one person in-charge. Some faculty,

like Guttag, are in charge of only one subject number, and no one else is co-in-

charge of his subject, 6.00.

Some subjects in the codomain, N , do not appear in the list —that is, they are

not an element of any of the pairs in the graph of T ; these are the Fall term only

subjects. Similarly, there are faculty in the domain, F , who do not appear in the

list because all their in-charge subjects are Fall term only.

5.5.2 Relational Images

The idea of the image of a set under a function extends directly to relations.

254 CHAPTER 5. SETS AND RELATIONS

Definition 5.5.2. The image of a set, Y , under a relation, R, written R(Y), is the set

of elements of the codomain,B, ofR that are related to some element in Y , namely,

R(Y) ::= {b ∈ B | yRb for some y ∈ Y } .

For example, to find the subject numbers that Meyer is in charge of in Spring

’09, we can look for all the pairs of the form

(A. Meyer, 〈subject-number〉)

in the graph of the teaching relation, T , and then just list the right hand sides

of these pairs. These righthand sides are exactly the image T (A. Meyer), which

happens to be {6.042, 18.062, 6.844}. Similarly, to find the subject numbers that

either Freeman or Eng are in charge of, we can collect all the pairs in T of the form

(G. Freeman, 〈subject-number〉)

or

(T. Eng, 〈subject-number〉);

and list their right hand sides. These right hand sides are exactly the image T ({G. Freeman,T. Eng}.

5.5. RELATIONS 255

So the partial list of pairs in T given above implies that

{6.011, 6.881, 6.882, 6.UAT} ⊆ T ({G. Freeman,T. Eng} .

Finally, since the domain, F , is the set of all in-charge faculty, T (F) is exactly the

set of all Spring ’09 subjects being taught.

5.5.3 Inverse Relations and Images

Definition 5.5.3. The inverse, R−1 of a relation R : A→ B is the relation from B to

A defined by the rule

bR−1a IFF a R B.

The image of a set under the relation, R−1, is called the inverse image of the set.

That is, the inverse image of a set, X , under the relation, R, is R−1(X).

Continuing with the in-charge example above, we can find the faculty in charge

of 6.UAT in Spring ’10 can be found by taking the pairs of the form

(〈instructor-name〉 , 6.UAT)

in the graph of the teaching relation, T , and then just listing the left hand sides of

256 CHAPTER 5. SETS AND RELATIONS

these pairs; these turn out to be just Eng and Freeman. These left hand sides are

exactly the inverse image of {6.UAT} under T .

Now let D be the set of introductory course 6 subject numbers. These are the

subject numbers that start with 6.0 . Now we can likewise find out all the instruc-

tors who were in-charge of introductory course 6 subjects in Spring ’09, by taking

all the pairs of the form (〈instructor-name〉 , 6.0 . . .) and list the left hand sides of

these pairs. These left hand sides are exactly the inverse image of of D under T .

From the part of the graph of T shown above, we can see that

{Meyer, Leighton, Freeman, Guttag} ⊆ T−1(D).

That is, Meyer, Leighton, Freeman, and Guttag were among the instructors in

charge of introductory subjects in Spring ’10. Finally, the inverse image under T of

the set, N , of all subject numbers is the set of all instructors who were in charge of

a Spring ’09 subject.

It gets interesting when we write composite expressions mixing images, inverse

images and set operations. For example, T (T−1(D)) is the set of Spring ’09 subjects

5.5. RELATIONS 257

that have an instructor in charge who also is in in charge of an introductory subject.

So T (T−1(D)) −D are the advanced subjects with someone in-charge who is also

in-charge of an introductory subject. Similarly, T−1(D) ∩ T−1(N −D) is the set of

faculty in charge of both an introductory and an advanced subject in Spring ’09.

5.5.4 Surjective and Injective Relations

There are a few properties of relations that will be useful when we take up the topic

of counting because they imply certain relations between the sizes of domains and

codomains. We say a binary relation R : A→ B is:

• surjective when every element of B is mapped to at least once; more concisely,

R is surjective iff R(A) = B.

• total when every element of A is assigned to some element of B; more con-

cisely, R is total iff A = R−1(B).

• injective if every element of B is mapped to at most once, and

258 CHAPTER 5. SETS AND RELATIONS

• bijective if R is total, surjective, and injective function.5

Note that this definition ofR being total agrees with the definition in Section 5.4

when R is a function.

If R is a binary relation from A to B, we define R(A) to to be the range of R. So

a relation is surjective iff its range equals its codomain. Again, in the case that R

is a function, these definitions of “range” and “total” agree with the definitions in

Section 5.4.

5.5.5 Relation Diagrams

We can explain all these properties of a relation R : A → B in terms of a diagram

where all the elements of the domain, A, appear in one column (a very long one if

A is infinite) and all the elements of the codomain, B, appear in another column,

and we draw an arrow from a point a in the first column to a point b in the sec-

5These words “surjective,” “injective,” and “bijective” are not very memorable. Some authors use

the possibly more memorable phrases onto for surjective, one-to-one for injective, and exact correspondence

for bijective.

5.5. RELATIONS 259

ond column when a is related to b by R. For example, here are diagrams for two

functions:

A B

a - 1

b PPPPPPq
2

c PPPPPPq

3

d �
�
�
�
��3

4

e �
�
�
�
��3

A B

a - 1

b PPPPPPq
2

c Q
Q
Q
Q
QQs

3

d �
�
�
�
��3

4

5

Here is what the definitions say about such pictures:

• “R is a function” means that every point in the domain column, A, has at

most one arrow out of it.

• “R is total” means that every point in theA column has at least one arrow out of

it. So if R is a function, being total really means every point in the A column

has exactly one arrow out of it.

• “R is surjective” means that every point in the codomain column, B, has at

least one arrow into it.

• “R is injective” means that every point in the codomain column, B, has at

most one arrow into it.

260 CHAPTER 5. SETS AND RELATIONS

• “R is bijective” means that every point in theA column has exactly one arrow

out of it, and every point in the B column has exactly one arrow into it.

So in the diagrams above, the relation on the left is a total, surjective function

(every element in the A column has exactly one arrow out, and every element in

theB column has at least one arrow in), but not injective (element 3 has two arrows

going into it). The relation on the right is a total, injective function (every element

in theA column has exactly one arrow out, and every element in theB column has

at most one arrow in), but not surjective (element 4 has no arrow going into it).

Notice that the arrows in a diagram for R precisely correspond to the pairs in

the graph of R. But graph (R) does not determine by itself whether R is total or

surjective; we also need to know what the domain is to determine if R is total, and

we need to know the codomain to tell if it’s surjective.

Example 5.5.4. The function defined by the formula 1/x2 is total if its domain is

R+ but partial if its domain is some set of real numbers including 0. It is bijective

if its domain and codomain are both R+, but neither injective nor surjective if its

5.6. CARDINALITY 261

domain and codomain are both R.

5.6 Cardinality

5.6.1 Mappings and Cardinality

The relational properties in Section 5.5 are useful in figuring out the relative sizes

of domains and codomains.

If A is a finite set, we let |A| be the number of elements in A. A finite set may

have no elements (the empty set), or one element, or two elements,. . . or any non-

negative integer number of elements.

Now suppose R : A → B is a function. Then every arrow in the diagram for

R comes from exactly one element of A, so the number of arrows is at most the

number of elements in A. That is, if R is a function, then

|A| ≥ #arrows.

Similarly, if R is surjective, then every element of B has an arrow into it, so there

262 CHAPTER 5. SETS AND RELATIONS

must be at least as many arrows in the diagram as the size of B. That is,

#arrows ≥ |B| .

Combining these inequalities implies that if R is a surjective function, then |A| ≥

|B|. In short, if we write A surj B to mean that there is a surjective function from

A to B, then we’ve just proved a lemma: if A surj B, then |A| ≥ |B|. The following

definition and lemma lists this statement and three similar rules relating domain

and codomain size to relational properties.

Definition 5.6.1. Let A,B be (not necessarily finite) sets. Then

1. A surj B iff there is a surjective function from A to B.

2. A inj B iff there is a total injective relation from A to B.

3. A bij B iff there is a bijection from A to B.

4. A strict B iff A surj B, but not B surj A.

Lemma 5.6.2. [Mapping Rules] Let A and B be finite sets.

1. If A surj B, then |A| ≥ |B|.

5.6. CARDINALITY 263

2. If A inj B, then |A| ≤ |B|.

3. If R bij B, then |A| = |B|.

4. If R strict B, then |A| > |B|.

Mapping rule 2. can be explained by the same kind of “arrow reasoning” we

used for rule 1. Rules 3. and 4. are immediate consequences of these first two

mapping rules.

5.6.2 The sizes of infinite sets

Mapping Rule 1 has a converse: if the size of a finite set, A, is greater than or equal

to the size of another finite set, B, then it’s always possible to define a surjective

function from A to B. In fact, the surjection can be a total function. To see how this

works, suppose for example that

A = {a0, a1, a2, a3, a4, a5}

B = {b0, b1, b2, b3} .

264 CHAPTER 5. SETS AND RELATIONS

Then define a total function f : A→ B by the rules

f(a0) ::= b0, f(a1) ::= b1, f(a2) ::= b2, f(a3) = f(a4) = f(a5) ::= b3.

EDITING NOTE:

f(ai) ::= bmin(i,3),

for i = 0, . . . , 5. Since 5 ≥ 3, this f is a surjection. �

In fact, if A and B are finite sets of the same size, then we could also define a

bijection from A to B by this method.

In short, we have figured out ifA andB are finite sets, then |A| ≥ |B| if and only

if A surj B, and similar iff’s hold for all the other Mapping Rules:

5.6. CARDINALITY 265

Lemma 5.6.3. For finite sets, A,B,

|A| ≥ |B| iff A surj B,

|A| ≤ |B| iff A inj B,

|A| = |B| iff A bij B,

|A| > |B| iff A strict B.

This lemma suggests a way to generalize size comparisons to infinite sets,

namely, we can think of the relation surj as an “at least as big as” relation between

sets, even if they are infinite. Similarly, the relation bij can be regarded as a “same

size” relation between (possibly infinite) sets, and strict can be thought of as a

“strictly bigger than” relation between sets.

Warning: We haven’t, and won’t, define what the “size” of an infinite is. The

definition of infinite “sizes” is cumbersome and technical, and we can get by just

fine without it. All we need are the “as big as” and “same size” relations, surj and

bij, between sets.

266 CHAPTER 5. SETS AND RELATIONS

But there’s something else to watch out for. We’ve referred to surj as an “as

big as” relation and bij as a “same size” relation on sets. Of course most of the “as

big as” and “same size” properties of surj and bij on finite sets do carry over to

infinite sets, but some important ones don’t —as we’re about to show. So you have to

be careful: don’t assume that surj has any particular “as big as” property on infinite

sets until it’s been proved.

Let’s begin with some familiar properties of the “as big as” and “same size”

relations on finite sets that do carry over exactly to infinite sets:

Lemma 5.6.4. For any sets, A,B,C,

1. A surj B and B surj C, implies A surj C.

2. A bij B and B bij C, implies A bij C.

3. A bij B implies B bij A.

Lemma 5.6.4.1 and 5.6.4.2 follow immediately from the fact that compositions

of surjections are surjections, and likewise for bijections, and Lemma 5.6.4.3 fol-

lows from the fact that the inverse of a bijection is a bijection. We’ll leave a proof

5.6. CARDINALITY 267

of these facts to Problem ??.

Another familiar property of finite sets carries over to infinite sets, but this time

it’s not so obvious:

Theorem 5.6.5 (Schröder-Bernstein). For any sets A,B, if A surj B and B surj A,

then A bij B.

That is, the Schröder-Bernstein Theorem says that if A is at least as big as B

and conversely, B is at least as big as A, then A is the same size as B. Phrased

this way, you might be tempted to take this theorem for granted, but that would

be a mistake. For infinite sets A and B, the Schröder-Bernstein Theorem is actually

pretty technical. Just because there is a surjective function f : A → B —which

need not be a bijection —and a surjective function g : B → A —which also need

not be a bijection —it’s not at all clear that there must be a bijection e : A→ B. The

idea is to construct e from parts of both f and g. We’ll leave the actual construction

to Problem ??.

268 CHAPTER 5. SETS AND RELATIONS

5.6.3 Infinity is different

A basic property of finite sets that does not carry over to infinite sets is that adding

something new makes a set bigger. That is, if A is a finite set and b /∈ A, then

|A ∪ {b}| = |A|+ 1, and so A and A ∪ {b} are not the same size. But if A is infinite,

then these two sets are the same size!

Lemma 5.6.6. Let A be a set and b /∈ A. Then A is infinite iff A bij A ∪ {b}.

Proof. SinceA is not the same size asA∪{b}whenA is finite, we only have to show

that A ∪ {b} is the same size as A when A is infinite.

That is, we have to find a bijection between A ∪ {b} and A when A is infinite.

Here’s how: since A is infinite, it certainly has at least one element; call it a0. But

since A is infinite, it has at least two elements, and one of them must not be equal

to a0; call this new element a1. But since A is infinite, it has at least three elements,

one of which must not equal a0 or a1; call this new element a2. Continuing in the

way, we conclude that there is an infinite sequence a0, a1, a2, . . . , an, . . . of different

5.6. CARDINALITY 269

elements of A. Now it’s easy to define a bijection e : A ∪ {b} → A:

e(b) ::= a0,

e(an) ::= an+1 for n ∈ N,

e(a) ::= a for a ∈ A− {b, a0, a1, . . . } .

�

A set, C, is countable iff its elements can be listed in order, that is, the distinct

elements is A are precisely

c0, c1, . . . , cn,

This means that if we defined a function, f , on the nonnegative integers by the rule

that f(i) ::= ci, then f would be a bijection from N to C. More formally,

Definition 5.6.7. A set, C, is countably infinite iff N bij C. A set is countable iff it is

finite or countably infinite.

A small modification6 of the proof of Lemma 5.6.6 shows that countably infinite

sets are the “smallest” infinite sets, namely, if A is a countably infinite set, then
6See Problem ??

270 CHAPTER 5. SETS AND RELATIONS

A surj N.

Since adding one new element to an infinite set doesn’t change its size, it’s

obvious that neither will adding any finite number of elements. It’s a common

mistake to think that this proves that you can throw in countably infinitely many

new elements. But just because it’s ok to do something any finite number of times

doesn’t make it OK to do an infinite number of times. For example, starting from

3, you can add 1 any finite number of times and the result will be some integer

greater than or equal to 3. But if you add add 1 a countably infinite number of

times, you don’t get an integer at all.

It turns out you really can add a countably infinite number of new elements

to a countable set and still wind up with just a countably infinite set, but another

argument is needed to prove this:

Lemma 5.6.8. If A and B are countable sets, then so is A ∪B.

Proof. Suppose the list of distinct elements of A is a0, a1, . . . and the list of B is

5.6. CARDINALITY 271

b0, b1, Then a list of all the elements in A ∪B is just

a0, b0, a1, b1, . . . an, bn, (5.3)

Of course this list will contain duplicates if A and B have elements in common,

but then deleting all but the first occurrences of each element in list (5.3) leaves a

list of all the distinct elements of A and B. �

5.6.4 Power sets are strictly bigger

It turns out that the ideas behind Russell’s Paradox, which caused so much trouble

for the early efforts to formulate Set Theory, also lead to a correct and astonishing

fact discovered by Georg Cantor in the late nineteenth century: infinite sets are not

all the same size.

In particular,

Theorem 5.6.9. For any set, A, the power set, P(A), is strictly bigger than A.

Proof. First of all, P(A) is as big as A: for example, the partial function f : P(A)→

A, where f({a}) ::= a for a ∈ A and f is only defined on one-element sets, is a

272 CHAPTER 5. SETS AND RELATIONS

surjection.

To show that P(A) is strictly bigger than A, we have to show that if g is a func-

tion from A to P(A), then g is not a surjection. So, mimicking Russell’s Paradox,

define

Ag ::= {a ∈ A | a /∈ g(a)} .

Now Ag is a well-defined subset of A, which means it is a member of P(A). But

Ag can’t be in the range of g, because if it were, we would have

Ag = g(a0)

for some a0 ∈ A, so by definition of Ag ,

a ∈ g(a0) iff a ∈ Ag iff a /∈ g(a)

for all a ∈ A. Now letting a = a0 yields the contradiction

a0 ∈ g(a0) iff a0 /∈ g(a0).

So g is not a surjection, because there is an element in the power set of A, namely

the set Ag , that is not in the range of g. �

5.7. INFINITIES IN COMPUTER SCIENCE 273

Larger Infinities

There are lots of different sizes of infinite sets. For example, starting with the infi-

nite set, N, of nonnegative integers, we can build the infinite sequence of sets

N, P(N), P(P(N)), P(P(P(N))),

By Theorem 5.6.9, each of these sets is strictly bigger than all the preceding ones.

But that’s not all: the union of all the sets in the sequence is strictly bigger than each

set in the sequence (see Problem ??). In this way you can keep going, building still

bigger infinities.

So there is an endless variety of different size infinities.

5.7 Infinities in Computer Science

We’ve run into a lot of computer science students who wonder why they should

care about infinite sets. They point out that any data set in a computer memory

is limited by the size of memory, and there is a finite limit on the possible size of

computer memory for the simple reason that the universe is (or at least appears to

274 CHAPTER 5. SETS AND RELATIONS

be) finite.

The problem with this argument is that universe-size bounds on data items are

so big and uncertain (the universe seems to be getting bigger all the time), that it’s

simply not helpful to make use of such bounds. For example, by this argument

the physical sciences shouldn’t assume that measurements might yield arbitrary

real numbers, because there can only be a finite number of finite measurements in

a universe with a finite lifetime. What do you think scientific theories would look

like without using the infinite set of real numbers?

Similarly, in computer science it simply isn’t plausible that writing a program

to add nonnegative integers with up to as many digits as, say, the stars in the sky

(billions of galaxies each with billions of stars), would be any different than writing

a program that would add any two integers no matter how many digits they had.

That’s why basic programming data types like integers or strings, for example,

can be defined without imposing any bound on the sizes of data items. Each datum

of type string has only a finite number of letters, but there are an infinite number

5.7. INFINITIES IN COMPUTER SCIENCE 275

of data items of type string. When we then consider string procedures of type

string-->string, not only are there an infinite number of such procedures, but

each procedure generally behaves differently on different inputs, so that a single

string-->string procedure may embody an infinite number of behaviors. In

short, an educated computer scientist can’t get around having to cope with infinite

sets.

On the other hand, the more exotic theory of different size infinities and contin-

uum hypotheses rarely comes up in mainstream mathematics, and it hardly comes

up at all in computer science, where the focus is mainly on finite sets, and occasion-

allly on countable sets. In practice, only logicians and set theorists have to worry

about collections that are too big to be sets. In fact, at the end of the 19th century,

the general mathematical community doubted the relevance of what they called

“Cantor’s paradise” of unfamiliar sets of arbitrary infinite size. So if the romance

of really big infinities doesn’t appeal to you, be assured that not knowing about

them won’t lower your professional abilities as a computer scientist.

276 CHAPTER 5. SETS AND RELATIONS

Yet the idea behind Russell’s paradox and Cantor’s proof embodies the sim-

plest form of what is known as a “diagonal argument.” Diagonal arguments are

used to prove many fundamental results about the limitations of computation,

such as the undecidability of the Halting Problem for programs (see Problem ??)

and the inherent, unavoidable, inefficiency (exponential time or worse) of proce-

dures for other computational problems. So computer scientists do need to study

diagonal arguments in order to understand the logical limits of computation.

5.7.1 Problems

Practice Problems

Class Problems

EDITING NOTE: Add problem that the 4n time-bounded halting problem re-

quires time 2n. �

Homework Problems

Chapter 6

Recursive Data Types

Recursive data types play a central role in programming. From a mathematical point

of view, recursive data types are what induction is about. Recursive data types are

specified by recursive definitions that say how to build something from its parts.

These definitions have two parts:

• Base case(s) that don’t depend on anything else.

• Constructor case(s) that depend on previous cases.

277

278 CHAPTER 6. RECURSIVE DATA TYPES

6.1 Strings of Brackets

Let brkts be the set of all strings of square brackets. For example, the following

two strings are in brkts:

[]] [[[[[]] and [[[]] []] [] (6.1)

Since we’re just starting to study recursive data, just for practice we’ll formulate

brkts as a recursive data type,

Definition 6.1.1. The data type, brkts, of strings of brackets is defined recur-

sively:

• Base case: The empty string, λ, is in brkts.

• Constructor case: If s ∈ brkts, then s] and s[are in brkts.

Here we’re writing s] to indicate the string that is the sequence of brackets (if

any) in the string s, followed by a right bracket; similarly for s[.

A string, s ∈ brkts, is called a matched string if its brackets “match up” in

the usual way. For example, the left hand string above is not matched because its

6.1. STRINGS OF BRACKETS 279

second right bracket does not have a matching left bracket. The string on the right

is matched.

We’re going to examine several different ways to define and prove properties

of matched strings using recursively defined sets and functions. These properties

are pretty straighforward, and you might wonder whether they have any partic-

ular relevance in computer scientist —other than as a nonnumerical example of

recursion. The honest answer is “not much relevance, any more.” The reason for

this is one of the great successes of computer science.

280 CHAPTER 6. RECURSIVE DATA TYPES

Expression Parsing

During the early development of computer science in the 1950’s and 60’s, creation

of effective programming language compilers was a central concern. A key aspect

in processing a program for compilation was expression parsing. The problem was

to take in an expression like

x+ y ∗ z2 ÷ y + 7

and put in the brackets that determined how it should be evaluated —should it be

[[x+ y] ∗ z2 ÷ y] + 7, or,

x+ [y ∗ z2 ÷ [y + 7]], or,

[x+ [y ∗ z2]]÷ [y + 7],

or . . . ?

The Turing award (the “Nobel Prize” of computer science) was ultimately be-

stowed on Robert Floyd, for, among other things, being discoverer of a simple

program that would insert the brackets properly.

In the 70’s and 80’s, this parsing technology was packaged into high-level

compiler-compilers that automatically generated parsers from expression gram-

mars. This automation of parsing was so effective that the subject needed no longer

demanded attention. It largely disappeared from the computer science curriculum

by the 1990’s.

6.1. STRINGS OF BRACKETS 281

One precise way to determine if a string is matched is to start with 0 and read

the string from left to right, adding 1 to the count for each left bracket and sub-

tracting 1 from the count for each right bracket. For example, here are the counts

for the two strings above

[]] [[[[[]]]]
0 1 0 −1 0 1 2 3 4 3 2 1 0

[[[]] []] []
0 1 2 3 2 1 2 1 0 1 0

A string has a good count if its running count never goes negative and ends with 0.

So the second string above has a good count, but the first one does not because its

count went negative at the third step.

Definition 6.1.2. Let

GoodCount ::= {s ∈ brkts | s has a good count} .

The matched strings can now be characterized precisely as this set of strings

with good counts. But it turns out to be really useful to characterize the matched

strings in another way as well, namely, as a recursive data type:

Definition 6.1.3. Recursively define the set, RecMatch, of strings as follows:

282 CHAPTER 6. RECURSIVE DATA TYPES

• Base case: λ ∈ RecMatch.

• Constructor case: If s, t ∈ RecMatch, then

[s] t ∈ RecMatch.

Here we’re writing [s] t to indicate the string that starts with a left bracket,

followed by the sequence of brackets (if any) in the string s, followed by a right

bracket, and ending with the sequence of brackets in the string t.

Using this definition, we can see that λ ∈ RecMatch by the Base case, so

[λ] λ = [] ∈ RecMatch

by the Constructor case. So now,

[λ] [] = [] [] ∈ RecMatch (letting s = λ, t = [])

[[]] λ = [[]] ∈ RecMatch (letting s = [] , t = λ)

[[]] [] ∈ RecMatch (letting s = [] , t = [])

are also strings in RecMatch by repeated applications of the Constructor case. If

you haven’t seen this kind of definition before, you should try continuing this

6.2. ARITHMETIC EXPRESSIONS 283

example to verify that [[[]] []] [] ∈ RecMatch

Given the way this section is set up, you might guess that RecMatch = GoodCount,

and you’d be right, but it’s not completely obvious. The proof is worked out in

Problem ??.

6.2 Arithmetic Expressions

Expression evaluation is a key feature of programming languages, and recognition

of expressions as a recursive data type is a key to understanding how they can be

processed.

To illustrate this approach we’ll work with a toy example: arithmetic expres-

sions like 3x2 + 2x+ 1 involving only one variable, “x.” We’ll refer to the data type

of such expressions as Aexp. Here is its definition:

Definition 6.2.1. • Base cases:

1. The variable, x, is in Aexp.

2. The arabic numeral, k, for any nonnegative integer, k, is in Aexp.

284 CHAPTER 6. RECURSIVE DATA TYPES

• Constructor cases: If e, f ∈ Aexp, then

3. (e+f) ∈ Aexp. The expression (e+f) is called a sum. The Aexp’s e and

f are called the components of the sum; they’re also called the summands.

4. (e ∗ f) ∈ Aexp. The expression (e ∗ f) is called a product. The Aexp’s

e and f are called the components of the product; they’re also called the

multiplier and multiplicand.

5. −(e) ∈ Aexp. The expression −(e) is called a negative.

Notice that Aexp’s are fully parenthesized, and exponents aren’t allowed. So

the Aexp version of the polynomial expression 3x2 + 2x + 1 would officially be

written as

((3 ∗ (x ∗ x)) + ((2 ∗ x) + 1)). (6.2)

These parentheses and ∗’s clutter up examples, so we’ll often use simpler expres-

sions like “3x2 + 2x + 1” instead of (6.2). But it’s important to recognize that

3x2 + 2x+ 1 is not an Aexp; it’s an abbreviation for an Aexp.

EDITING NOTE:

6.3. STRUCTURAL INDUCTION ON RECURSIVE DATA TYPES 285

Example 6.2.2. The set, List, of pure lists is defined recursively by:

1. The 0-tuple is in List.

2. If `1 and `2 are in List, then the pair (`1, `2) is in List.

In Lisp-like programming languages, the pairing operation is called cons and

the 0-tuple is called nil.

�

6.3 Structural Induction on Recursive Data Types

Structural induction is a method for proving some property, P , of all the elements

of a recursively-defined data type. The proof consists of two steps:

• Prove P for the base cases of the definition.

• Prove P for the constructor cases of the definition, assuming that it is true for

the component data items.

286 CHAPTER 6. RECURSIVE DATA TYPES

A very simple application of structural induction proves that the recursively

defined matched strings always have an equal number of left and right brackets.

To do this, define a predicate, P , on strings s ∈ brkts:

P (s) ::= s has an equal number of left and right brackets.

Proof. We’ll prove that P (s) holds for all s ∈ RecMatch by structural induction on

the definition that s ∈ RecMatch, using P (s) as the induction hypothesis.

Base case: P (λ) holds because the empty string has zero left and zero right

brackets.

Constructor case: For r = [s] t, we must show that P (r) holds, given that P (s)

and P (t) holds. So let ns, nt be, respectively, the number of left brackets in s and t.

So the number of left brackets in r is 1 + ns + nt.

Now from the respective hypotheses P (s) and P (t), we know that the number

of right brackets in s is ns, and likewise, the number of right brackets in t is nt. So

the number of right brackets in r is 1 + ns + nt, which is the same as the number

of left brackets. This proves P (r). We conclude by structural induction that P (s)

6.3. STRUCTURAL INDUCTION ON RECURSIVE DATA TYPES 287

holds for all s ∈ RecMatch. �

6.3.1 Functions on Recursively-defined Data Types

Functions on recursively-defined data types can be defined recursively using the

same cases as the data type definition. Namely, to define a function, f , on a recur-

sive data type, define the value of f for the base cases of the data type definition,

and then define the value of f in each constructor case in terms of the values of f

on the component data items.

For example, from the recursive definition of the set, RecMatch, of strings of

matched brackets, we define:

Definition 6.3.1. The depth, d(s), of a string, s ∈ RecMatch, is defined recursively

by the rules:

• d(λ) ::= 0.

• d([s] t) ::= max {d(s) + 1, d(t)}

288 CHAPTER 6. RECURSIVE DATA TYPES

Warning: When a recursive definition of a data type allows the same element to

be constructed in more than one way, the definition is said to be ambiguous. A

function defined recursively from an ambiguous definition of a data type will not

be well-defined unless the values specified for the different ways of constructing

the element agree.

We were careful to choose an unambiguous definition of RecMatch to ensure

that functions defined recursively on the definition would always be well-defined.

As an example of the trouble an ambiguous definition can cause, let’s consider yet

another definition of the matched strings.

Example 6.3.2. Define the set, M ⊆ brkts recursively as follows:

• Base case: λ ∈M ,

• Constructor cases: if s, t ∈M , then the strings [s] and st are also in M .

Quick Exercise: Give an easy proof by structural induction that M = RecMatch.

Since M = RecMatch, and the definition of M seems more straightforward,

6.3. STRUCTURAL INDUCTION ON RECURSIVE DATA TYPES 289

why didn’t we use it? Because the definition of M is ambiguous, while the trickier

definition of RecMatch is unambiguous. Does this ambiguity matter? Yes it does.

For suppose we defined

f(λ) ::= 1,

f([s]) ::= 1 + f(s),

f(st) ::= (f(s) + 1) · (f(t) + 1) for st 6= λ.

Let a be the string [[]] ∈ M built by two successive applications of the first

M constructor starting with λ. Next let b ::=aa and c ::=bb, each built by successive

applications of the second M constructor starting with a.

Alternatively, we can build ba from the second constructor with s = b and t = a,

and then get to c using the second constructor with s = ba and t = a.

Now by these rules, f(a) = 2, and f(b) = (2 + 1)(2 + 1) = 9. This means that

f(c) = f(bb) = (9 + 1)(9 + 1) = 100.

But also f(ba) = (9+1)(2+1) = 27, so that f(c) = f(ba a) = (27+1)(2+1) = 84.

The outcome is that f(c) is defined to be both 100 and 84, which shows that the

290 CHAPTER 6. RECURSIVE DATA TYPES

rules defining f are inconsistent.

On the other hand, structural induction remains a sound proof method even

for ambiguous recursive definitions, which is why it was easy to prove that M =

RecMatch.

6.3.2 Recursive Functions on Nonnegative Integers

The nonnegative integers can be understood as a recursive data type.

Definition 6.3.3. The set, N, is a data type defined recursivly as:

• 0 ∈ N.

• If n ∈ N, then the successor, n+ 1, of n is in N.

This of course makes it clear that ordinary induction is simply the special case

of structural induction on the recursive Definition 6.3.3, This also justifies the famil-

iar recursive definitions of functions on the nonnegative integers. Here are some

examples.

The Factorial function. This function is often written “n!.” You will see a lot of it

6.3. STRUCTURAL INDUCTION ON RECURSIVE DATA TYPES 291

later in the term. Here we’ll use the notation fac(n):

• fac(0) ::= 1.

• fac(n+ 1) ::= (n+ 1) · fac(n) for n ≥ 0.

The Fibonacci numbers. Fibonacci numbers arose out of an effort 800 years ago

to model population growth. They have a continuing fan club of people

captivated by their extraordinary properties. The nth Fibonacci number, fib,

can be defined recursively by:

fib(0) ::= 0,

fib(1) ::= 1,

fib(n) ::= fib(n− 1) + fib(n− 2) for n ≥ 2.

Here the recursive step starts at n = 2 with base cases for 0 and 1. This is

needed since the recursion relies on two previous values.

What is fib(4)? Well, fib(2) = fib(1) + fib(0) = 1, fib(3) = fib(2) + fib(1) = 2,

so fib(4) = 3. The sequence starts out 0, 1, 1, 2, 3, 5, 8, 13, 21,

292 CHAPTER 6. RECURSIVE DATA TYPES

Sum-notation. Let “S(n)” abbreviate the expression “
∑n
i=1 f(i).” We can recur-

sively define S(n) with the rules

• S(0) ::= 0.

• S(n+ 1) ::= f(n+ 1) + S(n) for n ≥ 0.

EDITING NOTE:

Simultaneous recursive definitions: You can define several things at the same

time, in terms of each other. For example, we may define two functions f

and g from N to N, recursively, by:

• f(0) ::= 1,

• g(0) ::= 1,

• f(n+ 1) ::= f(n) + g(n), for n ≥ 0,

• g(n+ 1) ::= f(n)× g(n), for n ≥ 0.

�

EDITING NOTE:

6.3. STRUCTURAL INDUCTION ON RECURSIVE DATA TYPES 293

Induction on Fibonacci Numbers

We can use the recursive definition of a function to establish its properties by struc-

tural induction.

As an illustration, we’ll prove a cute identity involving Fibonacci numbers.

Fibonacci numbers provide lots of fun for mathematicians because they satisfy

many such identities.

Proposition 6.3.4. ∀n ≥ 0(Σni=0F
2
i = FnFn+1).

Example: n = 4:

02 + 12 + 12 + 22 + 32 = 15 = 3 · 5.

Let’s try a proof by (standard, not strong) induction. The theorem statement sug-

gests trying it with P (n) defined as:

n∑
i=0

F 2
i = FnFn+1.

Base case (n = 0). Σ0
i=0F

2
i ::= (F0)2 = 0 = F0F1 because F0 ::= 0.

Inductive step (n ≥ 0). Now we stare at the gap between P (n) and P (n + 1).

294 CHAPTER 6. RECURSIVE DATA TYPES

P (n+1) is given by a summation that’s obtained from that for P (n) by adding one

term; this suggests that, once again, we subtract. The difference is just the term

F 2
n+1. Now, we are assuming that the original P (n) summation totals FnFn+1 and

want to show that the new P (n+ 1) summation totals Fn+1Fn+2. So we would like

the difference to be

Fn+1Fn+2 − FnFn+1.

So, the actual difference is F 2
n+1 and the difference we want is Fn+1Fn+2 −

FnFn+1. Are these the same? We want to check that:

F 2
n+1 = Fn+1Fn+2 − FnFn+1.

But this is true, because it is really the Fibonacci definition in disguise: to see this,

divide by Fn+1.

�

6.3. STRUCTURAL INDUCTION ON RECURSIVE DATA TYPES 295

Ill-formed Function Definitions

There are some blunders to watch out for when defining functions recursively.

Below are some function specifications that resemble good definitions of functions

on the nonnegative integers, but they aren’t.

f1(n) ::= 2 + f1(n− 1). (6.3)

This “definition” has no base case. If some function, f1, satisfied (6.3), so would a

function obtained by adding a constant to the value of f1. So equation (6.3) does

not uniquely define an f1.

f2(n) ::=

{
0, if n = 0,
f2(n+ 1) otherwise.

(6.4)

This “definition” has a base case, but still doesn’t uniquely determine f2. Any

function that is 0 at 0 and constant everywhere else would satisfy the specification,

so (6.4) also does not uniquely define anything.

In a typical programming language, evaluation of f2(1) would begin with a

296 CHAPTER 6. RECURSIVE DATA TYPES

recursive call of f2(2), which would lead to a recursive call of f2(3), . . . with recur-

sive calls continuing without end. This “operational” approach interprets (6.4) as

defining a partial function, f2, that is undefined everywhere but 0.

f3(n) ::=


0, if n is divisible by 2,
1, if n is divisible by 3,
2, otherwise.

(6.5)

This “definition” is inconsistent: it requires f3(6) = 0 and f3(6) = 1, so (6.5) doesn’t

define anything.

A Mysterious Function

Mathematicians have been wondering about this function specification for a while:

f4(n) ::=


1, if n ≤ 1,
f4(n/2) if n > 1 is even,
f4(3n+ 1) if n > 1 is odd.

(6.6)

For example, f4(3) = 1 because

f4(3) ::= f4(10) ::= f4(5) ::= f4(16) ::= f4(8) ::= f4(4) ::= f4(2) ::= f4(1) ::= 1.

The constant function equal to 1 will satisfy (6.6), but it’s not known if another

function does too. The problem is that the third case specifies f4(n) in terms of

TAGGED DATA 297

f4 at arguments larger than n, and so cannot be justified by induction on N. It’s

known that any f4 satisfying (6.6) equals 1 for all n up to over a billion.

Quick exercise: Why does the constant function 1 satisfy (6.6)?

EDITING NOTE:

Tagged data

Labelling a recursively defined data item with a tag that uniquely determines the

rule used to construct it is a standard approach to avoiding ambiguous recursive

definitions in programming. This amounts to working with data items that are

already parsed, that is, represented as parse trees.

For example, the parse tree for the arithmetic expression

− (a(x · x) + bx) + 1 (6.7)

is shown in Figure 6.1.

In a computer, such a tree would be represented by pairs or triples that begin

with a tag equal to the label of the top node of the parse tree. The general definition

298 CHAPTER 6. RECURSIVE DATA TYPES

sum

int

1sum

minus

prod

x

var

b

varprod

x

var

x

var

prod

a

var

Figure 6.1: Parse tree for −(a(x · x) + bx) + 1.

TAGGED DATA 299

of parse trees for Aexp’s would be:

Definition 6.3.5. The set, Aexp-parse-tree, of parse trees for arithmetic expressions

over a set of variables, V , is defined recursively as follows:

• Base cases:

1. If n ∈ Z, then 〈int, n〉 ∈ Aexp-parse-tree.

2. If v ∈ V , then 〈var, v〉 ∈ Aexp-parse-tree.

• Constructor cases: if e, e′ ∈ Aexp-parse-tree, then

1. 〈sum, e, e′〉 ∈ Aexp-parse-tree,

2. 〈prod, e, e′〉 ∈ Aexp-parse-tree, and

3. 〈minus, e〉 ∈ Aexp-parse-tree.

So the Aexp-parse-tree corresponding to formula 6.7 would be:

〈 sum, 〈 minus, 〈 sum, 〈prod, 〈var, a〉 , 〈prod, 〈var, x〉 , 〈var, x〉〉〉 ,
〈prod, 〈var, b〉 , 〈var, x〉〉〉〉 ,

〈int, 1〉〉〉

(6.8)

300 CHAPTER 6. RECURSIVE DATA TYPES

Now the expression 6.7 is certainly a lot more humanly intelligible than 6.8, but 6.8

is in the representation best suited and commonly used in compiling and process-

ing computer programs.

�

6.3.3 Evaluation and Substitution with Aexp’s

Evaluating Aexp’s

Since the only variable in an Aexp is x, the value of an Aexp is determined by

the value of x. For example, if the value of x is 3, then the value of 3x2 + 2x + 1

is obviously 34. In general, given any Aexp, e, and an integer value, n, for the

variable, x, we can evaluate e to finds its value, eval(e, n). It’s easy, and useful, to

specify this evaluation process with a recursive definition.

Definition 6.3.6. The evaluation function, eval : Aexp×Z→ Z, is defined recursively

on expressions, e ∈ Aexp, as follows. Let n be any integer.

• Base cases:

TAGGED DATA 301

1. Case[e is x]

eval(x, n) ::= n.

(The value of the variable, x, is given to be n.)

2. Case[e is k]

eval(k, n) ::= k.

(The value of the numeral k is the integer k, no matter what value x has.)

• Constructor cases:

3. Case[e is (e1 + e2)]

eval((e1 + e2), n) ::= eval(e1, n) + eval(e2, n).

4. Case[e is (e1 ∗ e2)]

eval((e1 ∗ e2), n) ::= eval(e1, n) · eval(e2, n).

5. Case[e is −(e1)]

eval(−(e1), n) ::=− eval(e1, n).

302 CHAPTER 6. RECURSIVE DATA TYPES

For example, here’s how the recursive definition of eval would arrive at the

value of 3 + x2 when x is 2:

eval((3 + (x ∗ x)), 2) = eval(3, 2) + eval((x ∗ x), 2) (by Def 6.3.6.3)

= 3 + eval((x ∗ x), 2) (by Def 6.3.6.2)

= 3 + (eval(x, 2) · eval(x, 2)) (by Def 6.3.6.4)

= 3 + (2 · 2) (by Def 6.3.6.1)

= 3 + 4 = 7.

Substituting into Aexp’s

Substituting expressions for variables is a standard, important operation. For ex-

ample the result of substituting the expression 3x for x in the (x(x− 1)) would be

(3x(3x− 1). We’ll use the general notation subst(f, e) for the result of substituting

an Aexp, f , for each of the x’s in an Aexp, e. For instance,

subst(3x, x(x− 1)) = 3x(3x− 1).

This substitution function has a simple recursive definition:

TAGGED DATA 303

Definition 6.3.7. The substitution function from Aexp × Aexp to Aexp is defined

recursively on expressions, e ∈ Aexp, as follows. Let f be any Aexp.

• Base cases:

1. Case[e is x]

subst(f, x) ::= f.

(The result of substituting f for the variable, x, is just f .)

2. Case[e is k]

subst(f, k) ::= k.

(The numeral, k, has no x’s in it to substitute for.)

• Constructor cases:

3. Case[e is (e1 + e2)]

subst(f, (e1 + e2))) ::= (subst(f, e1) + subst(f, e2)).

4. Case[e is (e1 ∗ e2)]

subst(f, (e1 ∗ e2))) ::= (subst(f, e1) ∗ subst(f, e2)).

304 CHAPTER 6. RECURSIVE DATA TYPES

5. Case[e is −(e1)]

subst(f,−(e1)) ::=−(subst(f, e1)).

Here’s how the recursive definition of the substitution function would find the

result of substituting 3x for x in the x(x− 1):

subst(3x, (x(x− 1))) = subst(3x, (x ∗ (x+−(1)))) (unabbreviating)

= (subst(3x, x) ∗ subst(3x, (x+−(1)))) (by Def 6.3.7 4)

= (3x ∗ subst(3x, (x+−(1)))) (by Def 6.3.7 1)

= (3x ∗ (subst(3x, x) + subst(3x,−(1)))) (by Def 6.3.7 3)

= (3x ∗ (3x+−(subst(3x, 1)))) (by Def 6.3.7 1 & 5)

= (3x ∗ (3x+−(1))) (by Def 6.3.7 2)

= 3x(3x− 1) (abbreviation)

Now suppose we have to find the value of subst(3x, (x(x − 1))) when x = 2.

There are two approaches.

First, we could actually do the substitution above to get 3x(3x − 1), and then

TAGGED DATA 305

we could evaluate 3x(3x − 1) when x = 2, that is, we could recursively calculate

eval(3x(3x − 1), 2) to get the final value 30. In programming jargon, this would

be called evaluation using the Substitution Model. Tracing through the steps in

the evaluation, we find that the Substitution Model requires two substitutions for

occurrences of x and 5 integer operations: 3 integer multiplications, 1 integer ad-

dition, and 1 integer negative operation. Note that in this Substitution Model the

multiplication 3 · 2 was performed twice to get the value of 6 for each of the two

occurrences of 3x.

The other approach is called evaluation using the Environment Model. Namely,

we evaluate 3x when x = 2 using just 1 multiplication to get the value 6. Then we

evaluate x(x − 1) when x has this value 6 to arrive at the value 6 · 5 = 30. So the

Environment Model requires 2 variable lookups and only 4 integer operations: 1

multiplication to find the value of 3x, another multiplication to find the value 6 · 5,

along with 1 integer addition and 1 integer negative operation.

306 CHAPTER 6. RECURSIVE DATA TYPES

So the Environment Model approach of calculating

eval(x(x− 1), eval(3x, 2))

instead of the Substitution Model approach of calculating

eval(subst(3x, x(x− 1)), 2)

is faster. But how do we know that these final values reached by these two ap-

proaches always agree? We can prove this easily by structural induction on the

definitions of the two approaches. More precisely, what we want to prove is

Theorem 6.3.8. For all expressions e, f ∈ Aexp and n ∈ Z,

eval(subst(f, e), n) = eval(e, eval(f, n)). (6.9)

Proof. The proof is by structural induction on e.1

Base cases:

• Case[e is x]
1This is an example of why it’s useful to notify the reader what the induction variable is—in this

case it isn’t n.

TAGGED DATA 307

The left hand side of equation (6.9) equals eval(f, n) by this base case in Def-

inition 6.3.7 of the substitution function, and the right hand side also equals

eval(f, n) by this base case in Definition 6.3.6 of eval.

• Case[e is k].

The left hand side of equation (6.9) equals k by this base case in Defini-

tions 6.3.7 and 6.3.6 of the substitution and evaluation functions. Likewise,

the right hand side equals k by two applications of this base case in the Defi-

nition 6.3.6 of eval.

Constructor cases:

• Case[e is (e1 + e2)]

By the structural induction hypothesis (6.9), we may assume that for all f ∈

Aexp and n ∈ Z,

eval(subst(f, ei), n) = eval(ei, eval(f, n)) (6.10)

for i = 1, 2. We wish to prove that

308 CHAPTER 6. RECURSIVE DATA TYPES

eval(subst(f, (e1 + e2)), n) = eval((e1 + e2), eval(f, n)) (6.11)

But the left hand side of (6.11) equals

eval((subst(f, e1) + subst(f, e2)), n)

by Definition 6.3.7.3 of substitution into a sum expression. But this equals

eval(subst(f, e1), n) + eval(subst(f, e2), n)

by Definition 6.3.6.3 of eval for a sum expression. By induction hypothe-

sis (6.10), this in turn equals

eval(e1, eval(f, n)) + eval(e2, eval(f, n)).

Finally, this last expression equals the right hand side of (6.11) by Defini-

tion 6.3.6.3 of eval for a sum expression. This proves (6.11) in this case.

• e is (e1 ∗ e2). Similar.

• e is −(e1). Even easier.

TAGGED DATA 309

This covers all the constructor cases, and so completes the proof by structural

induction.

�

EDITING NOTE:

A String Theorem

Here is a more complex proof, illustrating a combination of structural induction

and strengthening the hypothesis.

Theorem 6.3.9. In a string of 0s and 1s, the number of occurrences of the pattern 01 is

less than or equal to the number of occurrences of 10, plus one.

Let’s try to prove this by structural induction. First we must define P (s). Let’s

write num(pat, s) as the number of occurrences of the pattern string pat in s. Now

our inductive hypothesis is

P (s) : num(01, s) ≤ num(10, s) + 1.

If you try to prove this by structural induction, you will get stuck. Why? Consider

310 CHAPTER 6. RECURSIVE DATA TYPES

what happens when you add 1 at the end. This could increase the number of 01s

without increasing the number of 10s.

So, to prove by structural induction on strings, let’s strengthen the hypothesis

by adding another clause. If a string ends in 0 then the number of 01s is less than

or equal to the number of 10s. That solves the problem by weakening what we

have to show when the string ends in 1. But maybe it causes another problem

somewhere else. Let’s give it a try:

Redefine P (s)::=

num(01, s) ≤ num(10, s) + 1, and

If s ends in 0 then

num(01, s) ≤ num(10, s).

This means that, for each inductive step have two things to show.

Structured proof display commented out here

First let’s consider s1. This is the case that looks dangerous, because it might

increase the number of 01s. We have to prove two statements. The second is easy,

TAGGED DATA 311

because the new string doesn’t end in 0. We say it’s “vacuously true”.

The first statement now takes some work. We might be adding to the num-

ber of 01s. However, if we do, the previous string must have ended with 0. Then

the inductive hypothesis says that the previous string had to satisfy the stronger

inequality in the second statement. Adding one to the LHS of the stronger inequal-

ity yields the weaker inequality we want.

The following proof fragment considers cases based on whether s ends in 0 or

not. If not, it might end in 1, or might be empty (don’t forget this possibility).

Structured proof display commented out here

Of course, you could also expand the step for s ending in 1 into a careful series

of inequalities.

Now consider s0. We hope that what we did to make the s1 case work doesn’t

mess up the s0 case. But we have to check.

The first statement is easy. It follows from the first statement of the inductive

hypothesis for s, because we are not increasing the number of 01s. But now the

312 CHAPTER 6. RECURSIVE DATA TYPES

second statement takes more work. The difficulty is that the new string ends in 0,

which means that we have to show the stronger inequality in the second statement.

But to do this, we might only have the weaker inequality for the previous string.

The argument again depends on what the previous string s ended with. So again,

we consider cases, based on whether s ends in 0 or 1, or is empty. If s ends in 0 we

rely on the second statement of the inductive hypothesis for s (with the stronger

inequality), whereas if s ends in 1 we rely on the first statement (with the weaker

inequality). In this case, we have to “turn the weaker inequality into the stronger

inequality”.

Structured proof display commented out here

If you actually write out all these cases in the proof, you will notice that some

facts are stated repeatedly, e.g., that when you add a 0 to the end of a string you

are not increasing the number of 01s. To avoid having to state these facts several

times, you can move them earlier in the proof.

�

TAGGED DATA 313

EDITING NOTE:

Example.

Definition 6.3.10. Define a set, E, recursively as follows:

• Base case: 0 ∈ E,

• Constructor cases: if n ∈ E, then

1. n+ 2 ∈ E, when n ≥ 0;

2. −n ∈ E, when n > 0.

Using this definition, we can see that 0 ∈ E by the Base case, so 0 + 2 = 2 ∈ E

by Constructor case 1., and so 2 + 2 = 4 ∈ E, 4 + 2 = 6 ∈ E, . . . , and in fact

any nonnegative even number is in E by successive application of case 1. Also, by

case 2., −2,−4,−6, · · · ∈ E. So clearly all the even integers are in E.

Is anything else in E? The definition doesn’t say so explicitly, but an implicit

condition on a recursive definition is that the only way things get into E is as a

consequence of the Base and Constructor cases. In other words, E will be exactly

314 CHAPTER 6. RECURSIVE DATA TYPES

the set of even integers.

A very simple application of structural induction proves that the set E given

by Definition 6.3.10 is exactly the set of even numbers. We already explained why

all the even numbers are in E. So what’s left is to show that:

Lemma. Every number in the set E in Definition 6.3.10 is even.

Proof. The proof is by structural induction on n ∈ E. The induction hypothesis is

Q(n) ::= n is even.

Base case: Q(0) holds since 0 is even.

Constructor cases: assuming n ∈ E and Q(n) holds, prove that

• Q(n + 2) holds. This is immediate, since adding 2 to an even number gives

an even number.

• Q(−n) holds. This is also immediate, since n is even iff −n is even.

This completes the proof of the Constructor cases, and we conclude by struc-

tural induction at Q(n) holds for all n ∈ E. �

TAGGED DATA 315

defining the set, E, of even numbers as in Definitions 6.3.10, but without the

conditions 1. and 2. that restrict application of the rules. Namely,

Definition 6.3.11. Define a set, E′, recursively as follows:

• Base case: 0 ∈ E′,

• Constructor cases: if n ∈ E′, then

1. n+ 2 ∈ E′,

2. −n ∈ E′.

Now Definition 6.3.11 is perfectly legitimate, and we could us it to prove by

structural induction that E′ also is the set of even integers, that is, E′ = E. But

Definition 6.3.11 is ambiguous. For example, 0 ∈ E′ by the base case, but also

0 = −0 ∈ E′ by applying constructor case 2 to the base case. This begins to matter

when we try to define a function, s, from E′ to nonnegative integers based on

316 CHAPTER 6. RECURSIVE DATA TYPES

Definition 6.3.11:

s(0) ::= 1,

s(n+ 2) ::= 1 + s(n),

s(−n) ::= 1 + s(n).

So s(0) ::= 1 by the base case of this definition, and also s(0) = s(−0) ::= 1 +

s(0) = 1 + 1 = 2 by the second constructor case, which shows that these rules are

inconsistent.

On the other hand, using the unambiguous Definition 6.3.10 of E, essentially

the same definition of S works just fine. Namely, define

s(0) ::= 1,

s(n+ 2) ::= 1 + s(n), for n ≥ 0

s(−n) ::= 1 + s(n) for n > 0.

Now s(n) is unambiguously defined, and in fact is precisely the (unique) num-

ber of steps required to construct n ∈ E according to the unambiguous Defini-

6.4. GAMES AS A RECURSIVE DATA TYPE 317

tion 6.3.10 of E.

�

6.3.4 Problems

Practice Problems

Class Problems

Homework Problems

6.4 Games as a Recursive Data Type

Chess, Checkers, and Tic-Tac-Toe are examples of two-person terminating games of

perfect information, —2PTG’s for short. These are games in which two players al-

ternate moves that depend only on the visible board position or state of the game.

“Perfect information” means that the players know the complete state of the game

at each move. (Most card games are not games of perfect information because nei-

ther player can see the other’s hand.) “Terminating” means that play cannot go on

318 CHAPTER 6. RECURSIVE DATA TYPES

forever —it must end after a finite number of moves.2

We will define 2PTG’s as a recursive data type. To see how this will work, let’s

use the game of Tic-Tac-Toe as an example.

6.4.1 Tic-Tac-Toe

Tic-Tac-Toe is a game for young children. There are two players who alternately

write the letters “X” and “O” in the empty boxes of a 3 × 3 grid. Three copies of

the same letter filling a row, column, or diagonal of the grid is called a tic-tac-toe,

and the first player who gets a tic-tac-toe of their letter wins the game.

EDITING NOTE: Children generally don’t take long to figure out an optimal

strategy for playing the game. �

We’re now going give a precise mathematical definition of the Tic-Tac-Toe game

tree as a recursive data type.

2Since board positions can repeat in chess and checkers, termination is enforced by rules that prevent

any position from being repeated more than a fixed number of times. So the “state” of these games is

the board position plus a record of how many times positions have been reached.

6.4. GAMES AS A RECURSIVE DATA TYPE 319

EDITING NOTE: Children of course have no need for such a definition, and it

would be too complicated for them anyway. But if we had to write a Tic-Tac-Toe

playing computer program, we’d need this kind of picky precision. �

Here’s the idea behind the definition: at any point in the game, the “board

position” is the pattern of X’s and O’s on the 3× 3 grid. From any such Tic-Tac-Toe

pattern, there are a number of next patterns that might result from a move. For

example, from the initial empty grid, there are nine possible next patterns, each

with a single X in some grid cell and the other eight cells empty. From any of these

patterns, there are eight possible next patterns gotten by placing an O in an empty

cell. These move possibilities are given by the game tree for Tic-Tac-Toe indicated

in Figure 6.2.

Definition 6.4.1. A Tic-Tac-Toe pattern is a 3×3 grid each of whose 9 cells contains

either the single letter, X, the single letter, O, or is empty.

EDITING NOTE:

Moreover, there must be either

320 CHAPTER 6. RECURSIVE DATA TYPES

X XX X X

X X

X X X

X

X O
…

X O X O
…

O O

O X XX

Figure 6.2: The Top of the Game Tree for Tic-Tac-Toe.

6.4. GAMES AS A RECURSIVE DATA TYPE 321

• one more X than O’s, with at most two tic-tac-toes of X’s, and no tic-tac-toe

of O’s, or

• an equal number of X’s and O’s, with at most one tic-tac-toes of O’s, and no

tic-tac-toe of X’s.

�

A pattern, Q, is a possible next pattern after P , providing P has no tic-tac-toes

and

• if P has an equal number of X’s and O’s, and Q is the same as P except that

a cell that was empty in P has an X in Q, or

• if P has one more X than O’s, and Q is the same as P except that a cell that

was empty in P has an O in Q.

If P is a Tic-Tac-Toe pattern, and P has no next patterns, then the terminated

Tic-Tac-Toe game trees at P are

• 〈P, 〈win〉〉, if P has a tic-tac-toe of X’s.

322 CHAPTER 6. RECURSIVE DATA TYPES

• 〈P, 〈lose〉〉, if P has a tic-tac-toe of O’s.

• 〈P, 〈tie〉〉, otherwise.

The Tic-Tac-Toe game trees starting at P are defined recursively:

Base Case: A terminated Tic-Tac-Toe game tree at P is a Tic-Tac-Toe game tree

starting at P .

Constructor case: If P is a non-terminated Tic-Tac-Toe pattern, then the Tic-

Tac-Toe game tree starting at P consists of P and the set of all game trees starting

at possible next patterns after P .

For example, if

P0 =
O X O
X O X
X

Q1 =
O X O
X O X
X O

Q2 =
O X O
X O X
X O

R =
O X O
X O X
X O X

the game tree starting at P0 is pictured in Figure 6.3.

6.4. GAMES AS A RECURSIVE DATA TYPE 323

EDITING NOTE:

Then,

〈P, {〈Q1, 〈lose〉〉 , 〈Q2, {〈R, 〈tie〉〉}〉}〉 (6.12)

is the tagged recursive datum that corresponds to a Tic-Tac-Toe “end game” that

starts with P . This game is easier to understand by looking at its game tree in

Figure 6.3. Notice that the game tree —which so far we haven’t actually defined

—is simply the parse tree of the tagged datum.

�

Game trees are usually pictured in this way with the starting pattern (referred

to as the “root” of the tree) at the top and lines connecting the root to the game trees

that start at each possible next pattern. The “leaves” at the bottom of the tree (trees

grow upside down in computer science) correspond to terminated games. A path

from the root to a leaf describes a complete play of the game. (In English, “game”

can be used in two senses: first we can say that Chess is a game, and second we

can play a game of Chess. The first usage refers to the data type of Chess game

324 CHAPTER 6. RECURSIVE DATA TYPES

O

X

X X

XO

O

O

X

OO XO O
X O

X X

O

O

O

<lose> XO

O

X

X

X

X

OXO

X

O

X

XO

O

O X

<tie>

X

X

Figure 6.3: Game Tree for the Tic-Tac-Toe game starting at P0.

6.4. GAMES AS A RECURSIVE DATA TYPE 325

trees, and the second usage refers to a “play.”)

6.4.2 Infinite Tic-Tac-Toe Games

At any point in a Tic-Tac-Toe game, there are at most nine possible next patterns,

and no play can continue for more than nine moves. But we can expand Tic-Tac-

Toe into a larger game by running a 5-game tournament: play Tic-Tac-Toe five

times and the tournament winner is the player who wins the most individual

games. A 5-game tournament can run for as many as 45 moves.

It’s not much of generalization to have an n-game Tic-Tac-Toe tournament. But

then comes a generalization that sounds simple but can be mind-boggling: consol-

idate all these different size tournaments into a single game we can call Tournament-

Tic-Tac-Toe (T 4). The first player in a game of T 4 chooses any integer n > 0. Then

the players play an n-game tournament. Now we can no longer say how long a

T 4 play can take. In fact, there are T 4 plays that last as long as you might like: if

you want a game that has a play with, say, nine billion moves, just have the first

player choose n equal to one billion. This should make it clear the game tree for

326 CHAPTER 6. RECURSIVE DATA TYPES

T 4 is infinite.

But still, it’s obvious that every possible T 4 play will stop. That’s because after

the first player chooses a value for n, the game can’t continue for more than 9n

moves. So it’s not possible to keep playing forever even though the game tree is

infinite.

This isn’t very hard to understand, but there is an important difference between

any given n-game tournament and T 4: even though every play of T 4 must come to

an end, there is no longer any initial bound on how many moves it might be before

the game ends —a play might end after 9 moves, or 9(2001) moves, or 9(1010 + 1)

moves. It just can’t continue forever.

EDITING NOTE:

While there is no bound on how long to play, at least after the first move to an

n× n board in meta-Tic-Tac-Toe, we know the game will end with n2 moves.

�

Now that we recognize T 4 as a 2PTG, we can go on to a meta-T 4 game, where

6.4. GAMES AS A RECURSIVE DATA TYPE 327

the first player chooses a number, m > 0, of T 4 games to play, and then the second

player gets the first move in each of the individual T 4 games to be played.

Then, of course, there’s meta-meta-T 4. . . .

EDITING NOTE: Every play of the meta-meta game must still end, but now even

after the first move, there is no bound on how long a game might continue. �

6.4.3 Two Person Terminating Games

Familiar games like Tic-Tac-Toe, Checkers, and Chess can all end in ties, but for

simplicity we’ll only consider win/lose games —no “everybody wins”-type games

at MIT.:-) But everything we show about win/lose games will extend easily to

games with ties, and more generally to games with outcomes that have different

payoffs.

EDITING NOTE:

Of course Tic-Tac-Toe and the other games will fit this set up if we treat a game

that ends in a tie as a loss for the usual first player —White in Chess, Red in Check-

328 CHAPTER 6. RECURSIVE DATA TYPES

ers, the X-player in Tic-Tac-Toe.

�

Like Tic-Tac-Toe, or Tournament-Tic-Tac-Toe, the idea behind the definition of

2PTG’s as a recursive data type is that making a move in a 2PTG leads to the start

of a subgame. In other words, given any set of games, we can make a new game

whose first move is to pick a game to play from the set.

So what defines a game? For Tic-Tac-Toe, we used the patterns and the rules

of Tic-Tac-Toe to determine the next patterns. But once we have a complete game

tree, we don’t really need the pattern labels: the root of a game tree itself can play

the role of a “board position” with its possible “next positions” determined by the

roots of its subtrees. So any game is defined by its game tree. This leads to the

following very simple —perhaps deceptively simple —general definition.

Definition 6.4.2. The 2PTG, game trees for two-person terminating games of perfect

information are defined recursively as follows:

6.4. GAMES AS A RECURSIVE DATA TYPE 329

• Base cases:

〈leaf,win〉 ∈ 2PTG, and

〈leaf,lose〉 ∈ 2PTG.

• Constructor case: If G is a nonempty set of 2PTG’s, then G is a 2PTG, where

G ::= 〈tree,G〉 .

The game trees in G are called the possible next moves from G.

These games are called “terminating” because, even though a 2PTG may be

a (very) infinite datum like Tournament2-Tic-Tac-Toe, every play of a 2PTG must

terminate. This is something we can now prove, after we give a precise definition

of “play”:

Definition 6.4.3. A play of a 2PTG, G, is a (potentially infinite) sequence of 2PTG’s

starting with G and such that if G1 and G2 are consecutive 2PTG’s in the play, then

G2 is a possible next move of G1.

If a 2PTG has no infinite play, it is called a terminating game.

Theorem 6.4.4. Every 2PTG is terminating.

330 CHAPTER 6. RECURSIVE DATA TYPES

Proof. By structural induction on the definition of a 2PTG, G, with induction hy-

pothesis

G is terminating.

Base case: IfG = 〈leaf,win〉 orG = 〈leaf,lose〉 then the only possible play

of G is the length one sequence consisting of G. Hence G terminates.

Constructor case: For G = 〈tree,G〉, we must show that G is terminating,

given the Induction Hypothesis that every G′ ∈ G is terminating.

But any play of G is, by definition, a sequence starting with G and followed by

a play starting with some G0 ∈ G. But G0 is terminating, so the play starting at G0

is finite, and hence so is the play starting at G.

This completes the structural induction, proving that every 2PTG, G, is termi-

nating. �

6.4. GAMES AS A RECURSIVE DATA TYPE 331

6.4.4 Game Strategies

A key question about a game is whether a player has a winning strategy. A strategy

for a player in a game specifies which move the player should make at any point

in the game. A winning strategy ensures that the player will win no matter what

moves the other player makes.

In Tic-Tac-Toe for example, most elementary school children figure out strate-

gies for both players that each ensure that the game ends with no tic-tac-toes, that

is, it ends in a tie. Of course the first player can win if his opponent plays child-

ishly, but not if the second player follows the proper strategy. In more complicated

games like Checkers or Chess, it’s not immediately clear that anyone has a winning

strategy, even if we agreed to count ties as wins for the second player.

But structural induction makes it easy to prove that in any 2PTG, somebody has

the winning strategy!

Theorem 6.4.5. Fundamental Theorem for Two-Person Games: For every two-person

terminating game of perfect information, there is a winning strategy for one of the players.

332 CHAPTER 6. RECURSIVE DATA TYPES

Proof. The proof is by structural induction on the definition of a 2PTG, G. The

induction hypothesis is that there is a winning strategy for G.

Base cases:

1. G = 〈leaf,win〉. Then the first player has the winning strategy: “make the

winning move.”

2. G = 〈leaf,lose〉. Then the second player has a winning strategy: “Let the

first player make the losing move.”

Constructor case: Suppose G = 〈tree,G〉. By structural induction, we may

assume that some player has a winning strategy for each G′ ∈ G. There are two

cases to consider:

• some G0 ∈ G has a winning strategy for its second player. Then the first

player in G has a winning strategy: make the move to G0 and then follow

the second player’s winning strategy in G0.

• every G′ ∈ G has a winning strategy for its first player. Then the second

player inG has a winning strategy: if the first player’s move inG is toG0 ∈ G,

6.4. GAMES AS A RECURSIVE DATA TYPE 333

then follow the winning strategy for the first player in G0.

So in any case, one of the players has a winning strategy for G, which completes

the proof of the constructor case.

It follows by structural induction that there is a winning strategy for every

2PTG, G. �

Notice that although Theorem 6.4.5 guarantees a winning strategy, its proof

gives no clue which player has it. For most familiar 2PTG’s like Chess, Go, . . . , no

one knows which player has a winning strategy.3

3Checkers used to be in this list, but there has been a recent announcement that each player has a

strategy that forces a tie. (reference TBA)

334 CHAPTER 6. RECURSIVE DATA TYPES

6.4.5 Problems

Homework Problems

6.5 Induction in Computer Science

Induction is a powerful and widely applicable proof technique, which is why

we’ve devoted two entire chapters to it. Strong induction and its special case of

ordinary induction are applicable to any kind of thing with nonnegative integer

sizes –which is a awful lot of things, including all step-by-step computational pro-

cesses.

Structural induction then goes beyond natural number counting by offering

a simple, natural approach to proving things about recursive computation and

recursive data types. This makes it a technique every computer scientist should

embrace.

EDITING NOTE:

In many cases a nonnegative integer size can be defined for a recursively de-

6.5. INDUCTION IN COMPUTER SCIENCE 335

fined datum, such as the length of a string, or the number of operations in an

Aexp. It is then possible to prove properties of data by ordinary induction on their

size. But this approach often produces more cumbersome proofs than structural

induction.

In fact, structural induction is theoretically more powerful than ordinary induc-

tion. However, it’s only more powerful when it comes to reasoning about infinite

data types —like infinite trees, for example —so this greater power doesn’t matter

in practice. What does matter is that for recursively defined data types, structural

induction is a simple and natural approach.

�

336 CHAPTER 6. RECURSIVE DATA TYPES

Chapter 7

Simple Graphs

Graphs in which edges are not directed are called simple graphs. They come up in

all sorts of applications, including scheduling, optimization, communications, and

the design and analysis of algorithms. Two Stanford students even used graph

theory to become multibillionaires!

But we’ll start with an application designed to get your attention: we are going

to make a professional inquiry into sexual behavior. Namely, we’ll look at some

data about who, on average, has more opposite-gender partners, men or women.

337

338 CHAPTER 7. SIMPLE GRAPHS

Sexual demographics have been the subject of many studies. In one of the

largest, researchers from the University of Chicago interviewed a random sample

of 2500 people over several years to try to get an answer to this question. Their

study, published in 1994, and entitled The Social Organization of Sexuality found

that on average men have 74% more opposite-gender partners than women.

Other studies have found that the disparity is even larger. In particular, ABC

News claimed that the average man has 20 partners over his lifetime, and the aver-

age woman has 6, for a percentage disparity of 233%. The ABC News study, aired

on Primetime Live in 2004, purported to be one of the most scientific ever done,

with only a 2.5% margin of error. It was called ”American Sex Survey: A peek

between the sheets,” —which raises some question about the seriousness of their

reporting.

EDITING NOTE: The promotion for the study is even better:

A ground breaking ABC News “Primetime Live” survey finds a range

of eye-popping sexual activities, fantasies and attitudes in this country,

339

confirming some conventional wisdom, exploding some myths – and

venturing where few scientific surveys have gone before.

Probably that last part about going where few scientific surveys have gone before

is pretty accurate! �

Yet again, in August, 2007, the N.Y. Times reported on a study by the National

Center for Health Statistics of the U.S. government showing that men had seven

partners while women had four. Anyway, whose numbers do you think are more

accurate, the University of Chicago, ABC News, or the National Center? —don’t

answer; this is a setup question like “When did you stop beating your wife?” Using

a little graph theory, we’ll explain why none of these findings can be anywhere

near the truth.

340 CHAPTER 7. SIMPLE GRAPHS

7.1 Degrees & Isomorphism

7.1.1 Definition of Simple Graph

Informally, a graph is a bunch of dots with lines connecting some of them. Here is

an example:

A

B

C

D

E

F

G

H

I

For many mathematical purposes, we don’t really care how the points and lines

are laid out —only which points are connected by lines. The definition of simple

graphs aims to capture just this connection data.

Definition 7.1.1. A simple graph,G, consists of a nonempty set, V , called the vertices

ofG, and a collection,E, of two-element subsets of V . The members ofE are called

the edges of G.

The vertices correspond to the dots in the picture, and the edges correspond to

7.1. DEGREES & ISOMORPHISM 341

the lines. For example, the connection data given in the diagram above can also be

given by listing the vertices and edges according to the official definition of simple

graph:

V = {A,B,C,D,E, F,G,H, I}

E = {{A,B} , {A,C} , {B,D} , {C,D} , {C,E} , {E,F} , {E,G} , {H, I}} .

It will be helpful to use the notation A—B for the edge {A,B}. Note that A—B

and B—A are different descriptions of the same edge, since sets are unordered.

So the definition of simple graphs is the same as for directed graphs, except

that instead of a directed edge v → w which starts at vertex v and ends at vertex

w, a simple graph only has an undirected edge, v—w, that connects v and w.

Definition 7.1.2. Two vertices in a simple graph are said to be adjacent if they are

joined by an edge, and an edge is said to be incident to the vertices it joins. The

number of edges incident to a vertex is called the degree of the vertex; equivalently,

the degree of a vertex is equals the number of vertices adjacent to it.

For example, in the simple graph above, A is adjacent to B and B is adjacent to

342 CHAPTER 7. SIMPLE GRAPHS

D, and the edge A—C is incident to vertices A and C. Vertex H has degree 1, D

has degree 2, and E has degree 3.

Graph Synonyms

A synonym for “vertices” is “nodes,” and we’ll use these words interchangeably.

Simple graphs are sometimes called networks, edges are sometimes called arcs. We

mention this as a “heads up” in case you look at other graph theory literature; we

won’t use these words.

Some technical consequences of Definition 7.1.1 are worth noting right from the

start:

1. Simple graphs do not have self-loops ({a, a} is not an undirected edge be-

cause an undirected edge is defined to be a set of two vertices.)

2. There is at most one edge between two vertices of a simple graph.

3. Simple graphs have at least one vertex, though they might not have any

edges.

7.1. DEGREES & ISOMORPHISM 343

There’s no harm in relaxing these conditions, and some authors do, but we don’t

need self-loops, multiple edges between the same two vertices, or graphs with no

vertices, and it’s simpler not to have them around.

For the rest of this Chapter we’ll only be considering simple graphs, so we’ll

just call them “graphs” from now on.

7.1.2 Sex in America

Let’s model the question of heterosexual partners in graph theoretic terms. To do

this, we’ll let G be the graph whose vertices, V , are all the people in America.

Then we split V into two separate subsets: M , which contains all the males, and

F , which contains all the females.1 We’ll put an edge between a male and a female

iff they have been sexual partners. This graph is pictured in Figure 7.1 with males

on the left and females on the right.

Actually, this is a pretty hard graph to figure out, let alone draw. The graph

is enormous: the US population is about 300 million, so |V | ≈ 300M . Of these,

1For simplicity, we’ll ignore the possibility of someone being both, or neither, a man and a woman.

344 CHAPTER 7. SIMPLE GRAPHS

M W

Figure 7.1: The sex partners graph

approximately 50.8% are female and 49.2% are male, so |M | ≈ 147.6M , and |F | ≈

152.4M . And we don’t even have trustworthy estimates of how many edges there

are, let alone exactly which couples are adjacent. But it turns out that we don’t

need to know any of this —we just need to figure out the relationship between

the average number of partners per male and partners per female. To do this,

we note that every edge is incident to exactly one M vertex (remember, we’re only

considering male-female relationships); so the sum of the degrees of theM vertices

equals the number of edges. For the same reason, the sum of the degrees of the F

7.1. DEGREES & ISOMORPHISM 345

vertices equals the number of edges. So these sums are equal:

∑
x∈M

deg (x) =
∑
y∈F

deg (y) .

Now suppose we divide both sides of this equation by the product of the sizes of

the two sets, |M | · |F |:

(∑
x∈M deg (x)
|M |

)
· 1
|F |

=
(∑

y∈F deg (y)
|F |

)
· 1
|M |

The terms above in parentheses are the average degree of an M vertex and the average

degree of a F vertex. So we know:

Avg. deg in M =
|F |
|M |
·Avg. deg in F

In other words, we’ve proved that the average number of female partners of

males in the population compared to the average number of males per female is

determined solely by the relative number of males and females in the population.

Now the Census Bureau reports that there are slightly more females than males

in America; in particular |F | / |M | is about 1.035. So we know that on average,

males have 3.5% more opposite-gender partners than females, and this tells us

346 CHAPTER 7. SIMPLE GRAPHS

nothing about any sex’s promiscuity or selectivity. Rather, it just has to do with the

relative number of males and females. Collectively, males and females have the

same number of opposite gender partners, since it takes one of each set for every

partnership, but there are fewer males, so they have a higher ratio. This means

that the University of Chicago, ABC, and the Federal government studies are way

off. After a huge effort, they gave a totally wrong answer.

There’s no definite explanation for why such surveys are consistently wrong.

One hypothesis is that males exaggerate their number of partners —or maybe fe-

males downplay theirs —but these explanations are speculative. Interestingly, the

principal author of the National Center for Health Statistics study reported that

she knew the results had to be wrong, but that was the data collected, and her job

was to report it.

The same underlying issue has led to serious misinterpretations of other survey

data. For example, a couple of years ago, the Boston Globe ran a story on a survey

of the study habits of students on Boston area campuses. Their survey showed

7.1. DEGREES & ISOMORPHISM 347

that on average, minority students tended to study with non-minority students

more than the other way around. They went on at great length to explain why this

“remarkable phenomenon” might be true. But it’s not remarkable at all —using

our graph theory formulation, we can see that all it says is that there are fewer

minority students than non-minority students, which is, of course what “minority”

means.

7.1.3 Handshaking Lemma

The previous argument hinged on the connection between a sum of degrees and

the number edges. There is a simple connection between these in any graph:

Lemma 7.1.3. The sum of the degrees of the vertices in a graph equals twice the number

of edges.

Proof. Every edge contributes two to the sum of the degrees, one for each of its

endpoints. �

348 CHAPTER 7. SIMPLE GRAPHS

Lemma 7.1.3 is sometimes called the Handshake Lemma: if we total up the num-

ber of people each person at a party shakes hands with, the total will be twice the

number of handshakes that occurred.

7.1.4 Some Common Graphs

Some graphs come up so frequently that they have names. The complete graph on n

vertices, also called Kn, has an edge between every two vertices. Here is K5:

The empty graph has no edges at all. Here is the empty graph on 5 vertices:

7.1. DEGREES & ISOMORPHISM 349

Another 5 vertex graph is L4, the line graph of length four:

And here is C5, a simple cycle with 5 vertices:

7.1.5 Isomorphism

Two graphs that look the same might actually be different in a formal sense. For

example, the two graphs below are both simple cycles with 4 vertices:

A B

CD

1 2

34

350 CHAPTER 7. SIMPLE GRAPHS

But one graph has vertex set {A,B,C,D}while the other has vertex set {1, 2, 3, 4}.

If so, then the graphs are different mathematical objects, strictly speaking. But this

is a frustrating distinction; the graphs look the same!

Fortunately, we can neatly capture the idea of “looks the same” by adapting

Definition 9.2.1 of isomorphism of digraphs to handle simple graphs.

Definition 7.1.4. If G1 is a graph with vertices, V1, and edges, E1, and likewise for

G2, then G1 is isomorphic to G2 iff there exists a bijection, f : V1 → V2, such that

for every pair of vertices u, v ∈ V1:

u—v ∈ E1 iff f(u)—f(v) ∈ E2.

The function f is called an isomorphism between G1 and G2.

EDITING NOTE: Graphs G1 and G2 are isomorphic if there exists a bijection be-

tween the vertices in G1 and the vertices in G2 such that there is an edge between

two vertices in G1 if and only if there is an edge between the two corresponding

vertices in G2. �

7.1. DEGREES & ISOMORPHISM 351

For example, here is an isomorphism between vertices in the two graphs above:

A corresponds to 1 B corresponds to 2
D corresponds to 4 C corresponds to 3.

You can check that there is an edge between two vertices in the graph on the left if

and only if there is an edge between the two corresponding vertices in the graph

on the right.

Two isomorphic graphs may be drawn very differently. For example, here are

two different ways of drawing C5:

Isomorphism preserves the connection properties of a graph, abstracting out

what the vertices are called, what they are made out of, or where they appear in a

drawing of the graph. More precisely, a property of a graph is said to be preserved

under isomorphism if whenever G has that property, every graph isomorphic to G

352 CHAPTER 7. SIMPLE GRAPHS

also has that property. For example, since an isomorphism is a bijection between

sets of vertices, isomorphic graphs must have the same number of vertices. What’s

more, if f is a graph isomorphism that maps a vertex, v, of one graph to the ver-

tex, f(v), of an isomorphic graph, then by definition of isomorphism, every vertex

adjacent to v in the first graph will be mapped by f to a vertex adjacent to f(v)

in the isomorphic graph. That is, v and f(v) will have the same degree. So if one

graph has a vertex of degree 4 and another does not, then they can’t be isomorphic.

In fact, they can’t be isomorphic if the number of degree 4 vertices in each of the

graphs is not the same.

Looking for preserved properties can make it easy to determine that two graphs

are not isomorphic, or to actually find an isomorphism between them, if there is

one. In practice, it’s frequently easy to decide whether two graphs are isomorphic.

However, no one has yet found a general procedure for determining whether two

graphs are isomorphic that is guaranteed to run much faster than an exhaustive

(and exhausting) search through all possible bijections between their vertices.

7.2. THE STABLE MARRIAGE PROBLEM 353

Having an efficient procedure to detect isomorphic graphs would, for example,

make it easy to search for a particular molecule in a database given the molecular

bonds. On the other hand, knowing there is no such efficient procedure would

also be valuable: secure protocols for encryption and remote authentication can be

built on the hypothesis that graph isomorphism is computationally exhausting.

7.1.6 Problems

Class Problems

Homework Problems

Exam Problems

7.2 The Stable Marriage Problem

Okay, frequent public reference to derived variables may not help your mating

prospects. But they can help with the analysis!

354 CHAPTER 7. SIMPLE GRAPHS

7.2.1 The Problem

Suppose there are a bunch of boys and an equal number of girls that we want

to marry off. Each boy has his personal preferences about the girls —in fact, we

assume he has a complete list of all the girls ranked according to his preferences,

with no ties. Likewise, each girl has a ranked list of all of the boys.

The preferences don’t have to be symmetric. That is, Jennifer might like Brad

best, but Brad doesn’t necessarily like Jennifer best. The goal is to marry off boys

and girls: every boy must marry exactly one girl and vice-versa—no polygamy.

In mathematical terms, we want the mapping from boys to their wives to be a

bijection or perfect matching. We’ll just call this a “matching,” for short.

Here’s the difficulty: suppose every boy likes Angelina best, and every girl likes

Brad best, but Brad and Angelina are married to other people, say Jennifer and

Billy Bob. Now Brad and Angelina prefer each other to their spouses, which puts their

marriages at risk: pretty soon, they’re likely to start spending late nights is study

sessions together :-) .

7.2. THE STABLE MARRIAGE PROBLEM 355

This situation is illustrated in the following diagram where the digits “1” and

“2” near a boy shows which of the two girls he ranks first and which second, and

similarly for the girls:

Angelina

Jennifer

BillyBob

Brad
2

1 2

1

2

1 2

1

More generally, in any matching, a boy and girl who are not married to each

other and who like each other better than their spouses, is called a rogue couple. In

the situation above, Brad and Angelina would be a rogue couple.

Having a rogue couple is not a good thing, since it threatens the stability of the

marriages. On the other hand, if there are no rogue couples, then for any boy and

girl who are not married to each other, at least one likes their spouse better than

the other, and so won’t be tempted to start an affair.

Definition 7.2.1. A stable matching is a matching with no rogue couples.

The question is, given everybody’s preferences, how do you find a stable set

356 CHAPTER 7. SIMPLE GRAPHS

of marriages? In the example consisting solely of the four people above, we could

let Brad and Angelina both have their first choices by marrying each other. Now

neither Brad nor Angelina prefers anybody else to their spouse, so neither will be

in a rogue couple. This leaves Jen not-so-happily married to Billy Bob, but neither

Jen nor Billy Bob can entice somebody else to marry them.

It is something of a surprise that there always is a stable matching among a

group of boys and girls, but there is, and we’ll shortly explain why. The surprise

springs in part from considering the apparently similar “buddy” matching prob-

lem. That is, if people can be paired off as buddies, regardless of gender, then

a stable matching may not be possible. For example, Figure 7.2 shows a situation

with a love triangle and a fourth person who is everyone’s last choice. In this figure

Mergatoid’s preferences aren’t shown because they don’t even matter.

Let’s see why there is no stable matching:

Lemma. There is no stable buddy matching among the four people in Figure 7.2.

Proof. We’ll prove this by contradiction.

7.2. THE STABLE MARRIAGE PROBLEM 357

BobbyJoeRobin

Alex

2
3

1

3
2 1

1
3

2

Mergatoid

Figure 7.2: Some preferences with no stable buddy matching.

Assume, for the purposes of contradiction, that there is a stable matching. Then

there are two members of the love triangle that are matched. Since preferences in

the triangle are symmetric, we may assume in particular, that Robin and Alex are

matched. Then the other pair must be Bobby-Joe matched with Mergatoid.

But then there is a rogue couple: Alex likes Bobby-Joe best, and Bobby-Joe

prefers Alex to his buddy Mergatoid. That is, Alex and Bobby-Joe are a rogue

couple, contradicting the assumed stability of the matching. �

So getting a stable buddy matching may not only be hard, it may be impossible.

But when boys are only allowed to marry girls, and vice versa, then it turns out

358 CHAPTER 7. SIMPLE GRAPHS

that a stable matching is not hard to find.

7.2.2 The Mating Ritual

The procedure for finding a stable matching involves a Mating Ritual that takes

place over several days. The following events happen each day:

Morning: Each girl stands on her balcony. Each boy stands under the balcony

of his favorite among the girls on his list, and he serenades her. If a boy has no

girls left on his list, he stays home and does his 6.042 homework.

Afternoon: Each girl who has one or more suitors serenading her, says to her

favorite among them, “We might get engaged. Come back tomorrow.” To the other

suitors, she says, “No. I will never marry you! Take a hike!”

Evening: Any boy who is told by a girl to take a hike, crosses that girl off his

list.

Termination condition: When every girl has at most one suitor, the ritual ends

with each girl marrying her suitor, if she has one.

There are a number of facts about this Mating Ritual that we would like to

7.2. THE STABLE MARRIAGE PROBLEM 359

prove:

• The Ritual has a last day.

• Everybody ends up married.

• The resulting marriages are stable.

7.2.3 A State Machine Model

Before we can prove anything, we should have clear mathematical definitions of

what we’re talking about. In this section we sketch how to define a rigorous state

machine model of the Marriage Problem.

So let’s begin by formally defining the problem.

Definition 7.2.2. A Marriage Problem consists of two disjoint sets of the same finite

size, called the-Boys and the-Girls. The members of the-Boys are called boys, and

members of the-Girls are called girls. For each boy, B, there is a strict total order,

<B , on the-Girls, and for each girl, G, there is a strict total order, <G, on the-Boys.

If G1 <B G2 we say B prefers girl G2 to girl G1. Similarly, if B1 <G B2 we say G

360 CHAPTER 7. SIMPLE GRAPHS

prefers boy B2 to boy B1.

A marriage assignment or perfect matching is a bijection, w : the-Boys→ the-Girls.

IfB ∈ the-Boys, thenw(B) is calledB’s wife in the assignment, and ifG ∈ the-Girls,

then w−1(G) is called G’s husband. A rogue couple is a boy, B, and a girl, G, such

that B prefers G to his wife, and G prefers B to her husband. An assignment is

stable if it has no rogue couples. A solution to a marriage problem is a stable perfect

matching.

To model the Mating Ritual with a state machine, we make a key observation:

to determine what happens on any day of the Ritual, all we need to know is which

girls are still on which boys’ lists on the morning of that day. So we define a state

to be some mathematical data structure providing this information. For example,

we could define a state to be the “still-has-on-his-list” relation, R, between boys

and girls, where B R G means girl G is still on boy B’s list.

We start the Mating Ritual with no girls crossed off. That is, the start state is the

complete bipartite relation in which every boy is related to every girl.

7.2. THE STABLE MARRIAGE PROBLEM 361

According to the Mating Ritual, on any given morning, a boy will serenade the

girl he most prefers among those he has not as yet crossed out. Mathematically,

the girl he is serenading is just the maximum among the girls on B’s list, ordered

by <B . (If the list is empty, he’s not serenading anybody.) A girl’s favorite is just

the maximum, under her preference ordering, among the boys serenading her.

Continuing in this way, we could mathematically specify a precise Mating Rit-

ual state machine, but we won’t bother. The intended behavior of the Mating Rit-

ual is clear enough that we don’t gain much by giving a formal state machine, so

we stick to a more memorable description in terms of boys, girls, and their pref-

erences. The point is, though, that it’s not hard to define everything using basic

mathematical data structures like sets, functions, and relations, if need be.

7.2.4 There is a Marriage Day

It’s easy to see why the Mating Ritual has a terminal day when people finally get

married. Every day on which the ritual hasn’t terminated, at least one boy crosses

a girl off his list. (If the ritual hasn’t terminated, there must be some girl serenaded

362 CHAPTER 7. SIMPLE GRAPHS

by at least two boys, and at least one of them will have to cross her off his list).

So starting with n boys and n girls, each of the n boys’ lists initially has n girls

on it, for a total of n2 list entries. Since no girl ever gets added to a list, the total

number of entries on the lists decreases every day that the Ritual continues, and so

the Ritual can continue for at most n2 days.

7.2.5 They All Live Happily Every After...

We still have to prove that the Mating Ritual leaves everyone in a stable marriage.

To do this, we note one very useful fact about the Ritual: if a girl has a favorite

boy suitor on some morning of the Ritual, then that favorite suitor will still be

serenading her the next morning —because his list won’t have changed. So she is

sure to have today’s favorite boy among her suitors tomorrow. That means she will

be able to choose a favorite suitor tomorrow who is at least as desirable to her as

today’s favorite. So day by day, her favorite suitor can stay the same or get better,

never worse. In others words, a girl’s favorite is a weakly increasing variable with

respect to her preference order on the boys.

7.2. THE STABLE MARRIAGE PROBLEM 363

Now we can verify the Mating Ritual using a simple invariant predicate, P ,

that captures what’s going on:

For every girl, G, and every boy, B, if G is crossed off B’s list, then

G has a suitor whom she prefers over B.

Why is P invariant? Well, we know that G’s favorite tomorrow will be at least

as desirable to her as her favorite today, and since her favorite today is more desir-

able than B, tomorrow’s favorite will be too.

Notice that P also holds on the first day, since every girl is on every list. So by

the Invariant Theorem, we know that P holds on every day that the Mating Ritual

runs. Knowing the invariant holds when the Mating Ritual terminates will let us

complete the proofs.

Theorem 7.2.3. Everyone is married by the Mating Ritual.

Proof. Suppose, for the sake of contradiction, that it is the last day of the Mating

Ritual and some boy does not get married. Then he can’t be serenading anybody,

and so his list must be empty. So by invariant P , every girl has a favorite boy

364 CHAPTER 7. SIMPLE GRAPHS

whom she prefers to that boy. In particular, every girl has a favorite boy whom

she marries on the last day. So all the girls are married. What’s more there is no

bigamy: a boy only serenades one girl, so no two girls have the same favorite.

But there are the same number of girls as boys, so all the boys must be married

too. �

Theorem 7.2.4. The Mating Ritual produces a stable matching.

Proof. Let Brad be some boy and Jen be any girl that he is not married to on the last

day of the Mating Ritual. We claim that Brad and Jen are not a rogue couple. Since

Brad is an arbitrary boy, it follows that no boy is part of a rogue couple. Hence the

marriages on the last day are stable.

To prove the claim, we consider two cases:

Case 1. Jen is not on Brad’s list. Then by invariant P , we know that Jen prefers

her husband to Brad. So she’s not going to run off with Brad: the claim holds in

this case.

Case 2. Otherwise, Jen is on Brad’s list. But since Brad is not married to Jen, he

7.2. THE STABLE MARRIAGE PROBLEM 365

must be choosing to serenade his wife instead of Jen, so he must prefer his wife.

So he’s not going to run off with Jen: the claim also holds in this case. �

7.2.6 ...Especially the Boys

Who is favored by the Mating Ritual, the boys or the girls? The girls seem to have

all the power: they stand on their balconies choosing the finest among their suitors

and spurning the rest. What’s more, we know their suitors can only change for

the better as the Ritual progresses. Similarly, a boy keeps serenading the girl he

most prefers among those on his list until he must cross her off, at which point he

serenades the next most preferred girl on his list. So from the boy’s point of view,

the girl he is serenading can only change for the worse. Sounds like a good deal

for the girls.

But it’s not! The fact is that from the beginning, the boys are serenading their

first choice girl, and the desirability of the girl being serenaded decreases only

enough to give the boy his most desirable possible spouse. The mating algorithm

actually does as well as possible for all the boys and does the worst possible job

366 CHAPTER 7. SIMPLE GRAPHS

for the girls.

To explain all this we need some definitions. Let’s begin by observing that

while the mating algorithm produces one stable matching, there may be other sta-

ble matchings among the same set of boys and girls. For example, reversing the

roles of boys and girls will often yield a different stable matching among them.

But some spouses might be out of the question in all possible stable matchings.

For example, Brad is just not in the realm of possibility for Jennifer, since if you

ever pair them, Brad and Angelina will form a rogue couple; here’s a picture:

Angelina

JenniferBrad
2

1

1

1

Definition 7.2.5. Given any marriage problem, one person is in another person’s

realm of possible spouses if there is a stable matching in which the two people are

married. A person’s optimal spouse is their most preferred person within their realm

of possibility. A person’s pessimal spouse is their least preferred person in their

7.2. THE STABLE MARRIAGE PROBLEM 367

realm of possibility.

Everybody has an optimal and a pessimal spouse, since we know there is at

least one stable matching, namely the one produced by the Mating Ritual. Now

here is the shocking truth about the Mating Ritual:

Theorem 7.2.6. The Mating Ritual marries every boy to his optimal spouse.

Proof. Assume for the purpose of contradiction that some boy does not get his

optimal girl. There must have been a day when he crossed off his optimal girl

—otherwise he would still be serenading her or some even more desirable girl.

By the Well Ordering Principle, there must be a first day when a boy, call him

“Keith,” crosses off his optimal girl, Nicole.

According to the rules of the Ritual, Keith crosses off Nicole because Nicole has

a favorite suitor, Tom, and

Nicole prefers Tom to Keith (*)

(remember, this is a proof by contradiction :-)).

Now since this is the first day an optimal girl gets crossed off, we know Tom

368 CHAPTER 7. SIMPLE GRAPHS

hasn’t crossed off his optimal girl. So

Tom ranks Nicole at least as high as his optimal girl. (**)

By the definition of an optimal girl, there must be some stable set of marriages in

which Keith gets his optimal girl, Nicole. But then the preferences given in (*)

and (**) imply that Nicole and Tom are a rogue couple within this supposedly

stable set of marriages (think about it). This is a contradiction. �

Theorem 7.2.7. The Mating Ritual marries every girl to her pessimal spouse.

Proof. Say Nicole and Keith marry each other as a result of the Mating Ritual. By

the previous Theorem 7.2.6, Nicole is Keith’s optimal spouse, and so in any stable

set of marriages,

Keith rates Nicole at least as high as his spouse. (+)

Now suppose for the purpose of contradiction that there is another stable set of

marriages where Nicole does worse than Keith. That is, Nicole is married to Tom,

and

7.2. THE STABLE MARRIAGE PROBLEM 369

Nicole prefers Keith to Tom (++)

Then in this stable set of marriages where Nicole is married to Tom, (+) and (++)

imply that Nicole and Keith are a rogue couple, contradicting stability. We con-

clude that Nicole cannot do worse than Keith. �

7.2.7 Applications

Not surprisingly, a stable matching procedure is used by at least one large dating

agency. But although “boy-girl-marriage” terminology is traditional and makes

some of the definitions easier to remember (we hope without offending anyone),

solutions to the Stable Marriage Problem are widely useful.

The Mating Ritual was first announced in a paper by D. Gale and L.S. Shapley

in 1962, but ten years before the Gale-Shapley paper was appeared, and unknown

by them, the Ritual was being used to assign residents to hospitals by the National

Resident Matching Program (NRMP). The NRMP has, since the turn of the twen-

tieth century, assigned each year’s pool of medical school graduates to hospital

370 CHAPTER 7. SIMPLE GRAPHS

residencies (formerly called “internships”) with hospitals and graduates playing

the roles of boys and girls. (In this case there may be multiple boys married to

one girl, but there’s an easy way to use the Ritual in this situation (see Problem ??).

Before the Ritual was adopted, there were chronic disruptions and awkward coun-

termeasures taken to preserve assignments of graduates to residencies. The Rit-

ual resolved these problems so successfully, that it was used essentially without

change at least through 1989.2

The internet infrastructure company, Akamai, also uses a variation of the Gale-

Shapley procedure to assign web traffic to servers. In the early days, Akamai used

other combinatorial optimization algorithms that got to be too slow as the number

of servers (over 20,000 in 2010) reference needed and traffic increased. Akamai

switched to Gale-Shapley since it is fast and can be run in a distributed manner.

In this case, the web traffic corresponds to the boys and the web servers to the

2Much more about the Stable Marriage Problem can be found in the very readable mathematical

monograph by Dan Gusfield and Robert W. Irving, The Stable Marriage Problem: Structure and Algo-

rithms, MIT Press, Cambridge, Massachusetts, 1989, 240 pp.

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=7676
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=7676

7.2. THE STABLE MARRIAGE PROBLEM 371

girls. The servers have preferences based on latency and packet loss; the traffic has

preferences based on the cost of bandwidth.

7.2.8 Problems

Practice Problems

Class Problems

Homework Problems

EDITING NOTE: Add problem proving that the Mating Ritual need not proceed

in morning/afternoon/evening lock step: a girl can reject nonfavorite suitors one

at a time and at any time, and a rejected boy can change the girl he serenades

without waiting for the other boys to change. The proof uses the fact that single

actions commute, so induction proves that all executions are confluent —which

implies all executions end with the same boy-optimal matching. This lemma can

be cited in the planar graphs section to prove that the edges in an embedding can

be added in any order. �

372 CHAPTER 7. SIMPLE GRAPHS

7.3 Connectedness

7.3.1 Paths and Simple Cycles

Paths in simple graphs are esentially the same as paths in digraphs. We just mod-

ify the digraph definitions using undirected edges instead of directed ones. For

example, the formal definition of a path in a simple graph is a virtually that same

as Definition 8.1.1 of paths in digraphs:

Definition 7.3.1. A path in a graph, G, is a sequence of k ≥ 0 vertices

v0, . . . , vk

such that vi—vi+1 is an edge of G for all i where 0 ≤ i < k . The path is said to start

at v0, to end at vk, and the length of the path is defined to be k.

An edge, u—v, is traversed n times by the path if there are n different values of

i such that vi—vi+1 = u—v. The path is simple3 iff all the vi’s are different, that is,

3Heads up: what we call “paths” are commonly referred to in graph theory texts as “walks,” and

simple paths are referred to as just “paths”. Likewise, what we will call cycles and simple cycles are

commonly called “closed walks” and just “cycles”.

7.3. CONNECTEDNESS 373

if i 6= j implies vi 6= vj .

For example, the graph in Figure 7.3 has a length 6 simple path A,B,C,D,E,F,G.

This is the longest simple path in the graph.

A

B

C

D E

F G
H

Figure 7.3: A graph with 3 simple cycles.

As in digraphs, the length of a path is the total number of times it traverses

edges, which is one less than its length as a sequence of vertices. For example, the

length 6 path A,B,C,D,E,F,G is actually a sequence of seven vertices.

A cycle can be described by a path that begins and ends with the same vertex.

For example, B,C,D,E,C,B is a cycle in the graph in Figure 7.3. This path suggests

that the cycle begins and ends at vertex B, but a cycle isn’t intended to have a

374 CHAPTER 7. SIMPLE GRAPHS

beginning and end, and can be described by any of the paths that go around it. For

example, D,E,C,B,C,D describes this same cycle as though it started and ended at

D, and D,C,B,C,E,D describes the same cycle as though it started and ended at D

but went in the opposite direction. (By convention, a single vertex is a length 0

cycle beginning and ending at the vertex.)

All the paths that describe the same cycle have the same length which is defined

to be the length of the cycle. (Note that this implies that going around the same cycle

twice is considered to be different than going around it once.)

A simple cycle is a cycle that doesn’t cross or backtrack on itself. For exam-

ple, the graph in Figure 7.3 has three simple cycles B,H,E,C,B and C,D,E,C and

B,C,D,E,H,B. More precisely, a simple cycle is a cycle that can be described by a

path of length at least three whose vertices are all different except for the begin-

ning and end vertices. So in contrast to simple paths, the length of a simple cycle is

the same as the number of distinct vertices that appear in it.

From now on we’ll stop being picky about distinguishing a cycle from a path

7.3. CONNECTEDNESS 375

that describes it, and we’ll just refer to the path as a cycle. 4

Simple cycles are especially important, so we will give a proper definition of

them. Namely, we’ll define a simple cycle in G to be a subgraph of G that looks like

a cycle that doesn’t cross itself. Formally:

Definition 7.3.2. A subgraph, G′, of a graph, G, is a graph whose vertices, V ′, are a

subset of the vertices of G and whose edges are a subset of the edges of G.

Notice that since a subgraph is itself a graph, the endpoints of every edge of G′

must be vertices in V ′.

Definition 7.3.3. For n ≥ 3, let Cn be the graph with vertices 1, . . . , n and edges

1—2, 2—3, . . . , (n− 1)—n, n—1.

A graph is a simple cycle of length n iff it is isomorphic to Cn for some n ≥ 3. A

simple cycle of a graph, G, is a subgraph of G that is a simple cycle.

4Technically speaking, we haven’t ever defined what a cycle is, only how to describe it with paths.

But we won’t need an abstract definition of cycle, since all that matters about a cycle is which paths

describe it.

376 CHAPTER 7. SIMPLE GRAPHS

This definition formally captures the idea that simple cycles don’t have direc-

tion or beginnings or ends.

7.3.2 Connected Components

Definition 7.3.4. Two vertices in a graph are said to be connected when there is

a path that begins at one and ends at the other. By convention, every vertex is

considered to be connected to itself by a path of length zero.

EDITING NOTE:

Now if there is a path from vertex u to vertex v, then v is connected to u by the

reverse path, so connectedness is a symmetric relation. Also, if there is a path from

u to v, and also a path from v to w, then these two paths can be combined to form

a path from u to w. So the connectedness relation is transitive. It is also reflexive,

since every vertex is by definition connected to itself by a path of length zero.

�

The diagram in Figure 7.5 looks like a picture of three graphs, but is intended

7.3. CONNECTEDNESS 377

to be a picture of one graph. This graph consists of three pieces (subgraphs). Each

piece by itself is connected, but there are no paths between vertices in different

pieces.

EDITING NOTE:

Figure 7.4: One graph with 3 connected components.

�

Definition 7.3.5. A graph is said to be connected when every pair of vertices are

connected.

These connected pieces of a graph are called its connected components. A rigor-

ous definition is easy: a connected component is the set of all the vertices connected

378 CHAPTER 7. SIMPLE GRAPHS

Figure 7.5: One graph with 3 connected components.

to some single vertex. So a graph is connected iff it has exactly one connected com-

ponent. The empty graph on n vertices has n connected components.

7.3.3 How Well Connected?

If we think of a graph as modelling cables in a telephone network, or oil pipelines,

or electrical power lines, then we not only want connectivity, but we want connec-

tivity that survives component failure. A graph is called k-edge connected if it takes

at least k “edge-failures” to disconnect it. More precisely:

Definition 7.3.6. Two vertices in a graph are k-edge connected if they remain con-

nected in every subgraph obtained by deleting k − 1 edges. A graph with at least

7.3. CONNECTEDNESS 379

two vertices is k-edge connected5 if every two of its vertices are k-edge connected.

So 1-edge connected is the same as connected for both vertices and graphs. An-

other way to say that a graph is k-edge connected is that every subgraph obtained

from it by deleting at most k − 1 edges is connected. For example, in the graph in

Figure 7.3, vertices B and E are 2-edge connected, G and E are 1-edge connected,

and no vertices are 3-edge connected. The graph as a whole is only 1-edge con-

nected. More generally, any simple cycle is 2-edge connected, and the complete

graph, Kn, is (n− 1)-edge connected.

If two vertices are connected by k edge-disjoint paths (that is, no two paths

traverse the same edge), then they are obviously k-edge connected. A fundamental

fact, whose ingenious proof we omit, is Menger’s theorem which confirms that the

converse is also true: if two vertices are k-edge connected, then there are k edge-

disjoint paths connecting them. It even takes some ingenuity to prove this for the

5The corresponding definition of connectedness based on deleting vertices rather than edges is

common in Graph Theory texts and is usually simply called “k-connected” rather than “k-vertex con-

nected.”

380 CHAPTER 7. SIMPLE GRAPHS

case k = 2.

7.3.4 Connection by Simple Path

Where there’s a path, there’s a simple path. This is sort of obvious, but it’s easy

enough to prove rigorously using the Well Ordering Principle.

Lemma 7.3.7. If vertex u is connected to vertex v in a graph, then there is a simple path

from u to v.

Proof. Since there is a path from u to v, there must, by the Well-ordering Principle,

be a minimum length path from u to v. If the minimum length is zero or one, this

minimum length path is itself a simple path from u to v. Otherwise, there is a

minimum length path

v0, v1, . . . , vk

from u = v0 to v = vk where k ≥ 2. We claim this path must be simple. To

prove the claim, suppose to the contrary that the path is not simple, that is, some

vertex on the path occurs twice. This means that there are integers i, j such that

7.3. CONNECTEDNESS 381

0 ≤ i < j ≤ k with vi = vj . Then deleting the subsequence

vi+1, . . . vj

yields a strictly shorter path

v0, v1, . . . , vi, vj+1, vj+2, . . . , vk

from u to v, contradicting the minimality of the given path. �

Actually, we proved something stronger:

Corollary 7.3.8. For any path of length k in a graph, there is a simple path of length at

most k with the same endpoints.

7.3.5 The Minimum Number of Edges in a Connected Graph

The following theorem says that a graph with few edges must have many con-

nected components.

Theorem 7.3.9. Every graph with v vertices and e edges has at least v − e connected

components.

382 CHAPTER 7. SIMPLE GRAPHS

Of course for Theorem 7.3.9 to be of any use, there must be fewer edges than

vertices.

Proof. We use induction on the number of edges, e. Let P (e) be the proposition

that

for every v, every graph with v vertices and e edges has at least v − e

connected components.

Base case:(e = 0). In a graph with 0 edges and v vertices, each vertex is itself a

connected component, and so there are exactly v = v − 0 connected components.

So P (e) holds.

Inductive step: Now we assume that the induction hypothesis holds for every

e-edge graph in order to prove that it holds for every (e + 1)-edge graph, where

e ≥ 0. Consider a graph, G, with e+ 1 edges and k vertices. We want to prove that

G has at least v − (e + 1) connected components. To do this, remove an arbitrary

edge a—b and call the resulting graph G′. By the induction assumption, G′ has

at least v − e connected components. Now add back the edge a—b to obtain the

7.3. CONNECTEDNESS 383

original graph G. If a and b were in the same connected component of G′, then G

has the same connected components as G′, so G has at least v − e > v − (e + 1)

components. Otherwise, if a and b were in different connected components of G′,

then these two components are merged into one in G, but all other components

remain unchanged, reducing the number of components by 1. Therefore, G has at

least (v−e)−1 = v−(e+1) connected components. So in either case, P (e+1) holds.

This completes the Inductive step. The theorem now follows by induction. �

Corollary 7.3.10. Every connected graph with v vertices has at least v − 1 edges.

A couple of points about the proof of Theorem 7.3.9 are worth noticing. First,

we used induction on the number of edges in the graph. This is very common

in proofs involving graphs, and so is induction on the number of vertices. When

you’re presented with a graph problem, these two approaches should be among

the first you consider. The second point is more subtle. Notice that in the inductive

step, we took an arbitrary (n+ 1)-edge graph, threw out an edge so that we could

apply the induction assumption, and then put the edge back. You’ll see this shrink-

384 CHAPTER 7. SIMPLE GRAPHS

down, grow-back process very often in the inductive steps of proofs related to

graphs. This might seem like needless effort; why not start with an n-edge graph

and add one more to get an (n + 1)-edge graph? That would work fine in this

case, but opens the door to a nasty logical error called buildup error, illustrated in

Problems ?? and ??. Always use shrink-down, grow-back arguments, and you’ll

never fall into this trap.

7.3.6 Problems

Class Problems

Homework Problems

Homework Problems

7.4 Trees

Trees are a fundamental data structure in computer science, and there are many

kinds, such as rooted, ordered, and binary trees. In this section we focus on the

7.4. TREES 385

purest kind of tree. Namely, we use the term tree to mean a connected graph with-

out simple cycles.

A graph with no simple cycles is called acyclic; so trees are acyclic connected

graphs.

7.4.1 Tree Properties

Here is an example of a tree:

A vertex of degree at most one is called a leaf. In this example, there are 5 leaves.

Note that the only case where a tree can have a vertex of degree zero is a graph with

a single vertex.

The graph shown above would no longer be a tree if any edge were removed,

because it would no longer be connected. The graph would also not remain a tree

386 CHAPTER 7. SIMPLE GRAPHS

if any edge were added between two of its vertices, because then it would contain

a simple cycle. Furthermore, note that there is a unique path between every pair

of vertices. These features of the example tree are actually common to all trees.

Theorem 7.4.1. Every tree has the following properties:

1. Any connected subgraph is a tree.

2. There is a unique simple path between every pair of vertices.

3. Adding an edge between two vertices creates a cycle.

4. Removing any edge disconnects the graph.

5. If it has at least two vertices, then it has at least two leaves.

6. The number of vertices is one larger than the number of edges.

Proof. 1. A simple cycle in a subgraph is also a simple cycle in the whole graph,

so any subgraph of an acyclic graph must also be acyclic. If the subgraph is

also connected, then by definition, it is a tree.

7.4. TREES 387

2. There is at least one path, and hence one simple path, between every pair of

vertices, because the graph is connected. Suppose that there are two different

simple paths between vertices u and v. Beginning at u, let x be the first vertex

where the paths diverge, and let y be the next vertex they share. Then there

are two simple paths from x to y with no common edges, which defines a

simple cycle. This is a contradiction, since trees are acyclic. Therefore, there

is exactly one simple path between every pair of vertices.

u
x

y
v

3. An additional edge u—v together with the unique path between u and v

forms a simple cycle.

4. Suppose that we remove edge u—v. Since the tree contained a unique path

between u and v, that path must have been u—v. Therefore, when that edge

is removed, no path remains, and so the graph is not connected.

388 CHAPTER 7. SIMPLE GRAPHS

5. Let v1, . . . , vm be the sequence of vertices on a longest simple path in the

tree. Then m ≥ 2, since a tree with two vertices must contain at least one

edge. There cannot be an edge v1—vi for 2 < i ≤ m; otherwise, vertices

v1, . . . , vi would from a simple cycle. Furthermore, there cannot be an edge

u—v1 where u is not on the path; otherwise, we could make the path longer.

Therefore, the only edge incident to v1 is v1—v2, which means that v1 is a

leaf. By a symmetric argument, vm is a second leaf.

6. We use induction on the number of vertices. For a tree with a single vertex,

the claim holds since it has no edges and 0 + 1 = 1 vertex. Now suppose that

the claim holds for all n-vertex trees and consider an (n+1)-vertex tree, T . Let

v be a leaf of the tree. You can verify that deleting a vertex of degree 1 (and its

incident edge) from any connected graph leaves a connected subgraph. So

by 1., deleting v and its incident edge gives a smaller tree, and this smaller

tree has one more vertex than edge by induction. If we re-attach the vertex,

v, and its incident edge, then the equation still holds because the number of

7.4. TREES 389

vertices and number of edges both increase by 1. Thus, the claim holds for T

and, by induction, for all trees.

�

Various subsets of these properties provide alternative characterizations of trees,

though we won’t prove this. For example, a connected graph with a number of ver-

tices one larger than the number of edges is necessarily a tree. Also, a graph with

unique paths between every pair of vertices is necessarily a tree.

7.4.2 Spanning Trees

Trees are everywhere. In fact, every connected graph contains a subgraph that is

a tree with the same vertices as the graph. This is a called a spanning tree for the

graph. For example, here is a connected graph with a spanning tree highlighted.

390 CHAPTER 7. SIMPLE GRAPHS

Theorem 7.4.2. Every connected graph contains a spanning tree.

Proof. Let T be a connected subgraph of G, with the same vertices as G, and with

the smallest number of edges possible for such a subgraph. We show that T is

acyclic by contradiction. So suppose that T has a cycle with the following edges:

v0—v1, v1—v2, . . . , vn—v0

Suppose that we remove the last edge, vn—v0. If a pair of vertices x and y was

joined by a path not containing vn—v0, then they remain joined by that path. On

the other hand, if x and y were joined by a path containing vn—v0, then they re-

main joined by a path containing the remainder of the cycle. So all the vertices of

G are still connected after we remove an edge from T . This is a contradiction, since

T was defined to be a minimum size connected subgraph with all the vertices of

G. So T must be acyclic. �

EDITING NOTE:

7.4. TREES 391

Tree Variations

Trees come up often in computer science. For example, information is often stored

in tree-like data structures and the execution of many recursive programs can be

regarded as a traversal of a tree. There are many varieties of trees. For example, a

rooted tree is a tree with one vertex identified as the root. Let u—v be an edge in a

rooted tree such that u is closer to the root than v. Then u is the parent of v, and v is a

child of u.
A

B
C

D

E

F

In the tree above, suppose that we regard vertex A as the root. Then E and F are

the children of B, and A is the parent of B, C, and D. A binary tree is a rooted tree

in which every vertex has at most two children. Here is an example, where the top-

392 CHAPTER 7. SIMPLE GRAPHS

most vertex is the root.

In an ordered, binary tree, the children of a vertex v are distinguished. One is called

the left child of v, and the other is called the right child. For example, if we regard the

two binary trees below as unordered, then they are equivalent. However, if we re-

gard these trees as ordered, then they are different.

�

EDITING NOTE:

Problem ?? presents most of this as a homework problem.

TRAVERSING A GRAPH 393

Traversing a Graph

Can you walk every hallway in the Museum of Fine Arts exactly once? If we rep-

resent hallways and intersections with edges and vertices, then this reduces to a

question about graphs. For example, could you visit every hallway exactly once in

a museum with this floorplan?

Euler Tours and Hamiltonian Cycles

The entire field of graph theory began when Euler asked whether the seven bridges

of Königsberg could all be traversed exactly once— essentially the same question

we asked about the Museum of Fine Arts. In his honor, an Euler walk is a defined

to be a path that traverses every edge in a graph exactly once. Similarly, an Euler

tour is an Euler walk that starts and finishes at the same vertex, that is a cycle that

394 CHAPTER 7. SIMPLE GRAPHS

traverses every edge exactly once. Graphs with Euler tours and Euler walks both

have simple characterizations.

Theorem 7.4.3. A graph has an Euler tour iff it is connected and every vertex has even

degree.

Proof. Suppose a graph has an Euler tour. Every pair of vertices must appear in

the tour, so the graph is connected. Moreover, a vertex that appears k times in the

tour must have degree 2k, so every vertex of the graph has even degree.

Unconvincing!

Conversely, suppose every vertex in a graph, G, has even degree. Let W =

(v0, . . . , vn) be the longest path in G that traverses every edge at most once. Now

W must traverse every edge incident to vn; otherwise, the path could be extended.

In particular, the W traverses two of these edges each time it passes through vn,

and it traverses vn−1—vn at the end. This accounts for an odd number of edges,

but the degree of vn is even by assumption. Therefore, the W must also begin at

vn; that is, v0 = vn. Suppose that W is not an Euler tour. Because G is a connected

TRAVERSING A GRAPH 395

graph, we can find an edge not in W but incident to some vertex in W . Call this

edge u—vi. But then we can construct a longer walk:

u, u—vi, vi, vi—vi+1, . . . , vn−1—vn, vn, v0—v1, . . . , vi−1—vi, vi

This contradicts the definition of W , so W must be an Euler tour after all. �

Corollary 7.4.4. A connected graph has an Euler walk if and only if either 0 or 2 vertices

have odd degree.

Hamiltonian cycles are the unruly cousins of Euler tours. A Hamiltonian cycle

is walk that starts and ends at the same vertex and visits every vertex in a graph

exactly once. There is no simple characterization of all graphs with a Hamiltonian

cycle. In fact, determining whether a given graph has a Hamiltonian cycle is is

the same category of problem as the SAT problem of Section 1.5: you get a million

dollars for finding an efficient way to determine when a graph has a Hamiltonian

cycle —or for proving that no procedure works efficiently on all graphs.

�

396 CHAPTER 7. SIMPLE GRAPHS

7.4.3 Problems

Class Problems

Homework Problems

7.5 Coloring Graphs

In section 7.1.2, we used edges to indicate an affinity between two nodes, but hav-

ing an edge represent a conflict between two nodes also turns out to be really useful.

7.6 Modelling Scheduling Conflicts

Each term the MIT Schedules Office must assign a time slot for each final exam.

This is not easy, because some students are taking several classes with finals, and

a student can take only one test during a particular time slot. The Schedules Office

wants to avoid all conflicts. Of course, you can make such a schedule by having

every exam in a different slot, but then you would need hundreds of slots for the

hundreds of courses, and exam period would run all year! So, the Schedules Office

7.6. MODELLING SCHEDULING CONFLICTS 397

would also like to keep exam period short. The Schedules Office’s problem is easy

to describe as a graph. There will be a vertex for each course with a final exam, and

two vertices will be adjacent exactly when some student is taking both courses.

For example, suppose we need to schedule exams for 6.041, 6.042, 6.002, 6.003 and

6.170. The scheduling graph might look like this:

002

041 042

003

170

6.002 and 6.042 cannot have an exam at the same time since there are students in

both courses, so there is an edge between their nodes. On the other hand, 6.042 and

6.170 can have an exam at the same time if they’re taught at the same time (which

they sometimes are), since no student can be enrolled in both (that is, no student

should be enrolled in both when they have a timing conflict). Next, identify each

time slot with a color. For example, Monday morning is red, Monday afternoon is

blue, Tuesday morning is green, etc.

398 CHAPTER 7. SIMPLE GRAPHS

Assigning an exam to a time slot is now equivalent to coloring the correspond-

ing vertex. The main constraint is that adjacent vertices must get different colors —

otherwise, some student has two exams at the same time. Furthermore, in order

to keep the exam period short, we should try to color all the vertices using as few

different colors as possible. For our example graph, three colors suffice:

red

green blue

green

blue

This coloring corresponds to giving one final on Monday morning (red), two

Monday afternoon (blue), and two Tuesday morning (green). Can we use fewer

than three colors? No! We can’t use only two colors since there is a triangle in the

graph, and three vertices in a triangle must all have different colors.

This is an example of what is a called a graph coloring problem: given a graph G,

assign colors to each node such that adjacent nodes have different colors. A color

assignment with this property is called a valid coloring of the graph —a “coloring,”

7.6. MODELLING SCHEDULING CONFLICTS 399

for short. A graph G is k-colorable if it has a coloring that uses at most k colors.

Definition 7.6.1. The minimum value of k for which a graph, G, has a valid color-

ing is called its chromatic number, χ(G).

In general, trying to figure out if you can color a graph with a fixed number of

colors can take a long time. It’s a classic example of a problem for which no fast

algorithms are known. In fact, it is easy to check if a coloring works, but it seems

really hard to find it (if you figure out how, then you can get a $1 million Clay

prize).

7.6.1 Degree-bounded Coloring

There are some simple graph properties that give useful upper bounds on color-

ings. For example, if we have a bound on the degrees of all the vertices in a graph,

then we can easily find a coloring with only one more color than the degree bound.

Theorem 7.6.2. A graph with maximum degree at most k is (k + 1)-colorable.

Unfortunately, if you try induction on k, it will lead to disaster. It is not that

400 CHAPTER 7. SIMPLE GRAPHS

it is impossible, just that it is extremely painful and would ruin you if you tried

it on an exam. Another option, especially with graphs, is to change what you are

inducting on. In graphs, some good choices are n, the number of nodes, or e, the

number of edges.

Proof. We use induction on the number of vertices in the graph, which we denote

by n. Let P (n) be the proposition that an n-vertex graph with maximum degree at

most k is (k + 1)-colorable.

Base case: (n = 1) A 1-vertex graph has maximum degree 0 and is 1-colorable,

so P (1) is true.

Inductive step: Now assume that P (n) is true, and let G be an (n + 1)-vertex

graph with maximum degree at most k. Remove a vertex v (and all edges incident

to it), leaving an n-vertex subgraph, H . The maximum degree of H is at most k,

and so H is (k+ 1)-colorable by our assumption P (n). Now add back vertex v. We

can assign v a color different from all its adjacent vertices, since there are at most

k adjacent vertices and k+ 1 colors are available. Therefore, G is (k+ 1)-colorable.

7.6. MODELLING SCHEDULING CONFLICTS 401

This completes the inductive step, and the theorem follows by induction. �

Sometimes k + 1 colors is the best you can do. For example, in the complete

graph, Kn, every one of its n vertices is adjacent to all the others, so all n must

be assigned different colors. Of course n colors is also enough, so χ(Kn) = n.

So Kk+1 is an example where Theorem 7.6.2 gives the best possible bound. This

means that Theorem 7.6.2 also gives the best possible bound for any graph with

degree bounded by k that has Kk+1 as a subgraph.

EDITING NOTE:

The complete graph,Kn, is also called a size n clique, just like a clique of friends,

where nodes represent the people and an edge represents the friendship relation-

ship.6 �

But sometimes k+1 colors is far from the best that you can do. Here’s an exam-

6 When speaking of friends, clique is usually pronounced similar to click. However, for some reason,

graph theorists think that the word clique rhymes with geek.

402 CHAPTER 7. SIMPLE GRAPHS

ple of an n-node star graph for n = 7:

In the n-node star graph, the maximum degree is n − 1, but the star only needs 2

colors!

7.6.2 Why coloring?

One reason coloring problems come all the time is because scheduling conflicts

are so common. For example, at Akamai, a new version of software is deployed

over each of 20,000 servers every few days. The updates cannot be done at the

same time since the servers need to be taken down in order to deploy the software.

Also, the servers cannot be handled one at a time, since it would take forever to

update them all (each one takes about an hour). Moreover, certain pairs of servers

cannot be taken down at the same time since they have common critical functions.

7.6. MODELLING SCHEDULING CONFLICTS 403

This problem was eventually solved by making a 20,000 node conflict graph and

coloring it with 8 colors – so only 8 waves of install are needed! Another example

comes from the need to assign frequencies to radio stations. If two stations have an

overlap in their broadcast area, they can’t be given the same frequency. Frequen-

cies are precious and expensive, so you want to minimize the number handed out.

This amounts to finding the minimum coloring for a graph whose vertices are the

stations and whose edges are between stations with overlapping areas.

Coloring also comes up in allocating registers for program variables. While a

variable is in use, its value needs to be saved in a register, but registers can often be

reused for different variables. But two variables need different registers if they are

referenced during overlapping intervals of program execution. So register alloca-

tion is the coloring problem for a graph whose vertices are the variables; vertices

are adjacent if their intervals overlap, and the colors are registers.

Finally, there’s the famous map coloring problem stated in Propostion 1.3.4.

The question is how many colors are needed to color a map so that adjacent ter-

404 CHAPTER 7. SIMPLE GRAPHS

ritories get different colors? This is the same as the number of colors needed to

color a graph that can be drawn in the plane without edges crossing. A proof that

four colors are enough for the planar graphs was acclaimed when it was discovered

about thirty years ago. Implicit in that proof was a 4-coloring procedure that takes

time proportional to the number of vertices in the graph (countries in the map).

On the other hand, it’s another of those million dollar prize questions to find an

efficient procedure to tell if a planar graph really needs four colors or if three will

actually do the job. But it’s always easy to tell if an arbitrary graph is 2-colorable, as

we show in section 7.7. Finally, in section 7.8, we’ll develop enough planar graph

theory to present an easy proof at least that planar graphs are 5-colorable.

7.7. BIPARTITE MATCHINGS 405

7.6.3 Problems

Class Problems

Homework Problems

Exam Problems

7.7 Bipartite Matchings

7.7.1 Bipartite Graphs

There were two kinds of vertices in the “Sex in America” graph —males and fe-

males, and edges only went between the two kinds. Graphs like this come up so

frequently they have earned a special name —they are called bipartite graphs.

Definition 7.7.1. A bipartite graph is a graph together with a partition of its vertices

into two sets, L and R, such that every edge is incident to a vertex in L and to a

vertex in R.

So every bipartite graph looks something like this:

406 CHAPTER 7. SIMPLE GRAPHS

Now we can immediately see how to color a bipartite graph using only two

colors: let all the L vertices be black and all the R vertices be white. Conversely, if

a graph is 2-colorable, then it is bipartite with L being the vertices of one color and

R the vertices of the other color. In other words,

“bipartite” is a synonym for “2-colorable.”

The following Lemma gives another useful characterization of bipartite graphs.

Theorem 7.7.2. A graph is bipartite iff it has no odd-length cycle.

The proof of Theorem 7.7.2 is left to Problem ??.

7.7. BIPARTITE MATCHINGS 407

7.7.2 Bipartite Matchings

The bipartite matching problem resembles the stable Marriage Problem in that it

concerns a set of girls and a set of at least as many boys. There are no preference

lists, but each girl does have some boys she likes and others she does not like. In

the bipartite matching problem, we ask whether every girl can be paired up with a

boy that she likes. Any particular matching problem can be specified by a bipartite

graph with a vertex for each girl, a vertex for each boy, and an edge between a boy

and a girl iff the girl likes the boy. For example, we might obtain the following

graph:

Martha

Alice

Sarah

Jane
Mergatroid

Chuck

Tom

John

Michael

Now a matching will mean a way of assigning every girl to a boy so that differ-

ent girls are assigned to different boys, and a girl is always assigned to a boy she

408 CHAPTER 7. SIMPLE GRAPHS

likes. For example, here is one possible matching for the girls:

Martha

Alice

Sarah

Jane
Mergatroid

Chuck

Tom

John

Michael

Hall’s Matching Theorem states necessary and sufficient conditions for the ex-

istence of a matching in a bipartite graph. It turns out to be a remarkably useful

mathematical tool.

7.7.3 The Matching Condition

We’ll state and prove Hall’s Theorem using girl-likes-boy terminology. Define the

set of boys liked by a given set of girls to consist of all boys liked by at least one of

those girls. For example, the set of boys liked by Martha and Jane consists of Tom,

Michael, and Mergatroid. For us to have any chance at all of matching up the girls,

the following matching condition must hold:

7.7. BIPARTITE MATCHINGS 409

Every subset of girls likes at least as large a set of boys.

For example, we can not find a matching if some 4 girls like only 3 boys. Hall’s

Theorem says that this necessary condition is actually sufficient; if the matching

condition holds, then a matching exists.

Theorem 7.7.3. A matching for a set of girls G with a set of boys B can be found if and

only if the matching condition holds.

Proof. First, let’s suppose that a matching exists and show that the matching con-

dition holds. Consider an arbitrary subset of girls. Each girl likes at least the boy

she is matched with. Therefore, every subset of girls likes at least as large a set of

boys. Thus, the matching condition holds.

Next, let’s suppose that the matching condition holds and show that a matching

exists. We use strong induction on |G|, the number of girls.

Base Case: (|G| = 1) If |G| = 1, then the matching condition implies that the

lone girl likes at least one boy, and so a matching exists.

Inductive Step: Now suppose that |G| ≥ 2. There are two cases:

410 CHAPTER 7. SIMPLE GRAPHS

Case 1: Every proper subset of girls likes a strictly larger set of boys. In this case, we

have some latitude: we pair an arbitrary girl with a boy she likes and send

them both away. The matching condition still holds for the remaining boys

and girls, so we can match the rest of the girls by induction.

Case 2: Some proper subset of girls X ⊂ G likes an equal-size set of boys Y ⊂ B.

We match the girls in X with the boys in Y by induction and send them all

away. We can also match the rest of the girls by induction if we show that

the matching condition holds for the remaining boys and girls. To check the

matching condition for the remaining people, consider an arbitrary subset of

the remaining girls X ′ ⊆ (G − X), and let Y ′ be the set of remaining boys

that they like. We must show that |X ′| ≤ |Y ′|. Originally, the combined set

of girls X ∪ X ′ liked the set of boys Y ∪ Y ′. So, by the matching condition,

we know:

|X ∪X ′| ≤ |Y ∪ Y ′|

We sent away |X| girls from the set on the left (leaving X ′) and sent away

7.7. BIPARTITE MATCHINGS 411

an equal number of boys from the set on the right (leaving Y ′). Therefore, it

must be that |X ′| ≤ |Y ′| as claimed.

So there is in any case a matching for the girls, which completes the proof of

the Inductive step. The theorem follows by induction. �

The proof of this theorem gives an algorithm for finding a matching in a bipar-

tite graph, albeit not a very efficient one. However, efficient algorithms for finding

a matching in a bipartite graph do exist. Thus, if a problem can be reduced to

finding a matching, the problem is essentially solved from a computational per-

spective.

7.7.4 A Formal Statement

Let’s restate Hall’s Theorem in abstract terms so that you’ll not always be con-

demned to saying, “Now this group of little girls likes at least as many little boys...”

A matching in a graph, G, is a set of edges such that no two edges in the set

share a vertex. A matching is said to cover a set, L, of vertices iff each vertex in L

412 CHAPTER 7. SIMPLE GRAPHS

has an edge of the matching incident to it. In any graph, the set N(S), of neighbors7

of some set, S, of vertices is the set of all vertices adjacent to some vertex in S. That

is,

N(S) ::= {r | s—r is an edge for some s ∈ S} .

S is called a bottleneck if

|S| > |N(S)| .

Theorem 7.7.4 (Hall’s Theorem). Let G be a bipartite graph with vertex partition L,R.

There is matching in G that covers L iff no subset of L is a bottleneck.

An Easy Matching Condition

The bipartite matching condition requires that every subset of girls has a certain

property. In general, verifying that every subset has some property, even if it’s easy

to check any particular subset for the property, quickly becomes overwhelming

because the number of subsets of even relatively small sets is enormous —over a

7An equivalent definition of N(S) uses relational notation: N(S) is simply the image, SR, of S

under the adjacency relation, R, on vertices of the graph.

7.7. BIPARTITE MATCHINGS 413

billion subsets for a set of size 30. However, there is a simple property of vertex

degrees in a bipartite graph that guarantees a match and is very easy to check.

Namely, call a bipartite graph degree-constrained if vertex degrees on the left are at

least as large as those on the right. More precisely,

Definition 7.7.5. A bipartite graphGwith vertex partitionL,R is degree-constrained

if deg (l) ≥ deg (r) for every l ∈ L and r ∈ R.

Now we can always find a matching in a degree-constrained bipartite graph.

Lemma 7.7.6. Every degree-constrained bipartite graph satisifies the matching condition.

Proof. Let S be any set of vertices in L. The number of edges incident to vertices

in S is exactly the sum of the degrees of the vertices in S. Each of these edges is

incident to a vertex in N(S) by definition of N(S). So the sum of the degrees of

the vertices in N(S) is at least as large as the sum for S. But since the degree of

every vertex in N(S) is at most as large as the degree of every vertex in S, there

would have to be at least as many terms in the sum for N(S) as in the sum for S.

So there have to be at least as many vertices in N(S) as in S, proving that S is not a

414 CHAPTER 7. SIMPLE GRAPHS

bottleneck. So there are no bottlenecks, proving that the degree-constrained graph

satisifies the matching condition. �

Of course being degree-constrained is a very strong property, and lots of graphs

that aren’t degree-constrained have matchings. But we’ll see examples of degree-

constrained graphs come up naturally in some later applications.

7.7.5 Problems

Class Problems

Exam Problems

Homework Problems

7.8 Planar Graphs

Drawing Graphs in the Plane

Here are three dogs and three houses.

7.8. PLANAR GRAPHS 415

JJ�� JJ�� JJ��

Dog DogDog

Can you find a path from each dog to each house such that no two paths inter-

sect?

A quadapus is a little-known animal similar to an octopus, but with four arms.

Here are five quadapi resting on the seafloor:

�
 �	
�
 �	 �
 �	

�
 �	

�
 �	...
b
bb%

%JJ

.............
.............
.............
.............
.............
.............
.............
..........!
!!

!!
!
e
e((

�
�
ee��

l
l%

%...
.............
.............
.............
.............
.............
.............
..........!
!!

!!
!
e
e((

�
�
ee��

...

@@
�
�

b
bb%

%JJ�
�
@
@

@@
�
�

b
bb%

%JJ�
�
@
@

 J
J
JJ

�
�
�
�������...

�
��...

.............
.............
.............
.............
.............
.............
.............HH

HHhhhh

Can each quadapus simultaneously shake hands with every other in such a

way that no arms cross?

416 CHAPTER 7. SIMPLE GRAPHS

Informally, a planar graph is a graph that can be drawn in the plane so that no

edges cross, as in a map of showing the borders of countries or states. Thus, these

two puzzles are asking whether the graphs below are planar; that is, whether they

can be redrawn so that no edges cross. The first graph is called the complete bipartite

graph, K3,3, and the second is K5.

f ff

ff f

f
f f

f f�
�
�
�
�
�
�\
\
\
\
\
\
\

�
�
�
�
�
�
�\

\
\
\
\
\
\bb

b
b
b
b
b
b
b
b
bb

�
�

�
�

�
�
�

�
�
��

A
A
A
A
AA �

�
�
�
��
Z

Z
Z
Z

ZZ��
�

�
��

�
�

�
�

�
�
�

���
�
�
�
�
�
�
�
�
� C
C
C
C
C
C
C
C
C
CQ

Q
Q

Q
Q

Q
Q

QQ

In each case, the answer is, “No— but almost!” In fact, each drawing would be

possible if any single edge were removed.

Planar graphs have applications in circuit layout and are helpful in display-

ing graphical data, for example, program flow charts, organizational charts, and

scheduling conflicts. We will treat them as a recursive data type and use structural

induction to establish their basic properties. Then we’ll be able to describe a simple

recursive procedure to color any planar graph with five colors, and also prove that

7.8. PLANAR GRAPHS 417

there is no uniform way to place n satellites around the globe unless n = 4, 6, 8, 12,

or 20.

EDITING NOTE: We will use them to prove a wonderful mathematical fact that

was first proved by the ancient Greeks. �

EDITING NOTE: One is rooted in human pyschology: many kinds of informa-

tion can be presented as a graph (family relations, chemical structures, computer

data structures, contact data for study of disease spread, flow of cash in money

laundering trials, etc.). Big graphs are typically incomprehensible messes, but pla-

nar graphs are relatively easy for humans to grasp since there are no crisscrossing

edges. �

418 CHAPTER 7. SIMPLE GRAPHS

When wires are arranged on a surface, like a circuit board or microchip, crossings

require troublesome three-dimensional structures. When Steve Wozniak designed

the disk drive for the early Apple II computer, he struggled mightly to achieve a

nearly planar design:

For two weeks, he worked late each night to make a satisfactory design.

When he was finished, he found that if he moved a connector he could

cut down on feedthroughs, making the board more reliable. To make

that move, however, he had to start over in his design. This time it only

took twenty hours. He then saw another feedthrough that could be

eliminated, and again started over on his design. ”The final design was

generally recognized by computer engineers as brilliant and was by en-

gineering aesthetics beautiful. Woz later said, ’It’s something you can

only do if you’re the engineer and the PC board layout person yourself.

That was an artistic layout. The board has virtually no feedthroughs.’”a

aFrom apple2history.org which in turn quotes Fire in the Valley by Freiberger and Swaine.

7.8. PLANAR GRAPHS 419

EDITING NOTE: Finally, as we’ll see shortly, planar graphs reveal a fundamen-

tal truth about the structure of our three-dimensional world. �

7.8.1 Continuous & Discrete Faces

Planar graphs are graphs that can be drawn in the plane —like familiar maps of

countries or states. “Drawing” the graph means that each vertex of the graph

corresponds to a distinct point in the plane, and if two vertices are adjacent, their

vertices are connected by a smooth, non-self-intersecting curve. None of the curves

may “cross” —the only points that may appear on more than one curve are the

vertex points. These curves are the boundaries of connected regions of the plane

called the continuous faces of the drawing.

For example, the drawing in Figure 7.6 has four continuous faces. Face IV,

which extends off to infinity in all directions, is called the outside face.

This definition of planar graphs is perfectly precise, but completely unsatis-

fying: it invokes smooth curves and continuous regions of the plane to define a

420 CHAPTER 7. SIMPLE GRAPHS

IV III
II

Figure 7.6: A Planar Drawing with Four Faces.

property of a discrete data type. So the first thing we’d like to find is a discrete

data type that represents planar drawings.

The clue to how to do this is to notice that the vertices along the boundary

of each of the faces in Figure 7.6 form a simple cycle. For example, labeling the

vertices as in Figure 7.7, the simple cycles for the face boundaries are

abca abda bcdb acda.

Since every edge in the drawing appears on the boundaries of exactly two contin-

uous faces, every edge of the simple graph appears on exactly two of the simple

cycles.

7.8. PLANAR GRAPHS 421

a

b

c
d

Figure 7.7: The Drawing with Labelled Vertices.

Vertices around the boundaries of states and countries in an ordinary map are

always simple cycles, but oceans are slightly messier. The ocean boundary is the set

of all boundaries of islands and continents in the ocean; it is a set of simple cycles

(this can happen for countries too —like Bangladesh). But this happens because

islands (and the two parts of Bangladesh) are not connected to each other. So we

can dispose of this complication by treating each connected component separately.

But general planar graphs, even when they are connected, may be a bit more

complicated than maps. For example a planar graph may have a “bridge,” as in

Figure 7.8. Now the cycle around the outer face is

422 CHAPTER 7. SIMPLE GRAPHS

a

d

b
c

g

f

e

Figure 7.8: A Planar Drawing with a Bridge.

abcefgecda.

This is not a simple cycle, since it has to traverse the bridge c—e twice.

Planar graphs may also have “dongles,” as in Figure 7.9. Now the cycle around

r
t

s

u

y x

w
v

Figure 7.9: A Planar Drawing with a Dongle.

7.8. PLANAR GRAPHS 423

the inner face is

rstvxyxvwvtur,

because it has to traverse every edge of the dongle twice —once “coming” and once

“going.”

But bridges and dongles are really the only complications, which leads us to

the discrete data type of planar embeddings that we can use in place of continuous

planar drawings. Namely, we’ll define a planar embedding recursively to be the

set of boundary-tracing cycles we could get drawing one edge after another.

7.8.2 Planar Embeddings

By thinking of the process of drawing a planar graph edge by edge, we can give a

useful recursive definition of planar embeddings.

Definition 7.8.1. A planar embedding of a connected graph consists of a nonempty set

of cycles of the graph called the discrete faces of the embedding. Planar embeddings

are defined recursively as follows:

424 CHAPTER 7. SIMPLE GRAPHS

• Base case: If G is a graph consisting of a single vertex, v, then a planar em-

bedding of G has one discrete face, namely the length zero cycle, v.

• Constructor Case: (split a face) SupposeG is a connected graph with a planar

embedding, and suppose a and b are distinct, nonadjacent vertices of G that

appear on some discrete face, γ, of the planar embedding. That is, γ is a cycle

of the form

a . . . b · · · a.

Then the graph obtained by adding the edge a—b to the edges of G has a

planar embedding with the same discrete faces as G, except that face γ is

7.8. PLANAR GRAPHS 425

replaced by the two discrete faces8

a . . . ba and ab · · · a,

as illustrated in Figure 7.10.

• Constructor Case: (add a bridge) Suppose G and H are connected graphs

with planar embeddings and disjoint sets of vertices. Let a be a vertex on a

discrete face, γ, in the embedding of G. That is, γ is of the form

a . . . a.

Similarly, let b be a vertex on a discrete face, δ, in the embedding of H , so δ is

8 There is one exception to this rule. If G is a line graph beginning with a and ending with b, then

the cycles into which γ splits are actually the same. That’s because adding edge a—b creates a simple

cycle graph, Cn, that divides the plane into an “inner” and an “outer” region with the same border. In

order to maintain the correspondence between continuous faces and discrete faces, we have to allow

two “copies” of this same cycle to count as discrete faces. But since this is the only situation in which

two faces are actually the same cycle, this exception is better explained in a footnote than mentioned

explicitly in the definition.

426 CHAPTER 7. SIMPLE GRAPHS

a

z

y b

x

w

awxbyza → awxba, abyza

Figure 7.10: The Split a Face Case.

of the form

b · · · b.

Then the graph obtained by connecting G and H with a new edge, a—b, has

a planar embedding whose discrete faces are the union of the discrete faces

of G and H , except that faces γ and δ are replaced by one new face

a . . . ab · · · ba.

This is illustrated in Figure 7.11, where the faces of G and H are:

G : {axyza, axya, ayza} H : {btuvwb, btvwb, tuvt} ,

7.8. PLANAR GRAPHS 427

and after adding the bridge a—b, there is a single connected graph with faces

{axyzabtuvwba, axya, ayza, btvwb, tuvt} .

axyza, btuvwb → axyzabtuvwba

y

x

z
a

u
t

b

v
w

Figure 7.11: The Add Bridge Case.

An arbitrary graph is planar iff each of its connected components has a planar

embedding.

428 CHAPTER 7. SIMPLE GRAPHS

7.8.3 What outer face?

Notice that the definition of planar embedding does not distinguish an “outer”

face. There really isn’t any need to distinguish one.

In fact, a planar embedding could be drawn with any given face on the outside.

An intuitive explanation of this is to think of drawing the embedding on a sphere

instead of the plane. Then any face can be made the outside face by “puncturing”

that face of the sphere, stretching the puncture hole to a circle around the rest of

the faces, and flattening the circular drawing onto the plane.

So pictures that show different “outside” boundaries may actually be illustra-

tions of the same planar embedding.

This is what justifies the “add bridge” case in a planar embedding: whatever

face is chosen in the embeddings of each of the disjoint planar graphs, we can draw

a bridge between them without needing to cross any other edges in the drawing,

because we can assume the bridge connects two “outer” faces.

7.8. PLANAR GRAPHS 429

7.8.4 Euler’s Formula

The value of the recursive definition is that it provides a powerful technique for

proving properties of planar graphs, namely, structural induction.

One of the most basic properties of a connected planar graph is that its num-

ber of vertices and edges determines the number of faces in every possible planar

embedding:

Theorem 7.8.2 (Euler’s Formula). If a connected graph has a planar embedding, then

v − e+ f = 2

where v is the number of vertices, e is the number of edges, and f is the number of faces.

For example, in Figure 7.6, |V | = 4, |E| = 6, and f = 4. Sure enough, 4−6+4 =

2, as Euler’s Formula claims.

Proof. The proof is by structural induction on the definition of planar embeddings.

Let P (E) be the proposition that v − e+ f = 2 for an embedding, E .

Base case: (E is the one vertex planar embedding). By definition, v = 1, e = 0,

430 CHAPTER 7. SIMPLE GRAPHS

and f = 1, so P (E) indeed holds.

Constructor case: (split a face) Suppose G is a connected graph with a planar

embedding, and suppose a and b are distinct, nonadjacent vertices ofG that appear

on some discrete face, γ = a . . . b · · · a, of the planar embedding.

Then the graph obtained by adding the edge a—b to the edges ofG has a planar

embedding with one more face and one more edge than G. So the quantity v −

e + f will remain the same for both graphs, and since by structural induction this

quantity is 2 for G’s embedding, it’s also 2 for the embedding of G with the added

edge. So P holds for the constructed embedding.

Constructor case: (add bridge) Suppose G and H are connected graphs with

planar embeddings and disjoint sets of vertices. Then connecting these two graphs

with a bridge merges the two bridged faces into a single face, and leaves all other

faces unchanged. So the bridge operation yields a planar embedding of a con-

nected graph with vG + vH vertices, eG + eH + 1 edges, and fG + fH − 1 faces.

7.8. PLANAR GRAPHS 431

But

(vG + vH)− (eG + eH + 1) + (fG + fH − 1)

= (vG − eG + fG) + (vH − eH + fH)− 2

= (2) + (2)− 2 (by structural induction hypothesis)

= 2.

So v−e+f remains equal to 2 for the constructed embedding. That is, P also holds

in this case.

This completes the proof of the constructor cases, and the theorem follows by

structural induction. �

7.8.5 Number of Edges versus Vertices

Like Euler’s formula, the following lemmas follow by structural induction directly

from the definition of planar embedding.

Lemma 7.8.3. In a planar embedding of a connected graph, each edge is traversed once by

each of two different faces, or is traversed exactly twice by one face.

432 CHAPTER 7. SIMPLE GRAPHS

Lemma 7.8.4. In a planar embedding of a connected graph with at least three vertices,

each face is of length at least three.

Corollary 7.8.5. Suppose a connected planar graph has v ≥ 3 vertices and e edges. Then

e ≤ 3v − 6.

Proof. By definition, a connected graph is planar iff it has a planar embedding. So

suppose a connected graph with v vertices and e edges has a planar embedding

with f faces. By Lemma 7.8.3, every edge is traversed exactly twice by the face

boundaries. So the sum of the lengths of the face boundaries is exactly 2e. Also

by Lemma 7.8.4, when v ≥ 3, each face boundary is of length at least three, so this

sum is at least 3f . This implies that

3f ≤ 2e. (7.1)

7.8. PLANAR GRAPHS 433

But f = e− v + 2 by Euler’s formula, and substituting into (7.1) gives

3(e− v + 2) ≤ 2e

e− 3v + 6 ≤ 0

e ≤ 3v − 6

�

Corollary 7.8.5 lets us prove that the quadapi can’t all shake hands without

crossing. Representing quadapi by vertices and the necessary handshakes by edges,

we get the complete graph,K5. Shaking hands without crossing amounts to show-

ing that K5 is planar. But K5 is connected, has 5 vertices and 10 edges, and

10 > 3 · 5 − 6. This violates the condition of Corollary 7.8.5 required for K5 to

be planar, which proves

Lemma 7.8.6. K5 is not planar.

Another consequence is

Lemma 7.8.7. Every planar graph has a vertex of degree at most five.

434 CHAPTER 7. SIMPLE GRAPHS

Proof. If every vertex had degree at least 6, then the sum of the vertex degrees is

at least 6v, but since the sum equals 2e, we have e ≥ 3v contradicting the fact that

e ≤ 3v − 6 < 3v by Corollary 7.8.5. �

7.8.6 Planar Subgraphs

If you draw a graph in the plane by repeatedly adding edges that don’t cross, you

clearly could add the edges in any other order and still wind up with the same

drawing. This is so basic that we might presume that our recursively defined pla-

nar embeddings have this property. But that wouldn’t be fair: we really need to

prove it. After all, the recursive definition of planar embedding was pretty techni-

cal —maybe we got it a little bit wrong, with the result that our embeddings don’t

have this basic draw-in-any-order property.

Now any ordering of edges can be obtained just by repeatedly switching the

order of successive edges, and if you think about the recursive definition of em-

bedding for a minute, you should realize that you can switch any pair of succes-

sive edges if you can just switch the last two. So it all comes down to the following

7.8. PLANAR GRAPHS 435

lemma.

Lemma 7.8.8. Suppose that, starting from some embeddings of planar graphs with disjoint

sets of vertices, it is possible by two successive applications of constructor operations to

add edges e and then f to obtain a planar embedding, F . Then starting from the same

embeddings, it is also possible to obtain F by adding f and then e with two successive

applications of constructor operations.

We’ll leave the proof of Lemma 7.8.8 to Problem ??.

Corollary 7.8.9. Suppose that, starting from some embeddings of planar graphs with

disjoint sets of vertices, it is possible to add a sequence of edges e0, e1, . . . , en by successive

applications of constructor operations to obtain a planar embedding, F . Then starting

from the same embeddings, it is also possible to obtain F by applications of constructor

operations that successively add any permutation9 of the edges e0, e1, . . . , en.

Corollary 7.8.10. Deleting an edge from a planar graph leaves a planar graph.

9If π : {0, 1, . . . , n} → {0, 1, . . . , n} is a bijection, then the sequence eπ(0), eπ(1), . . . , eπ(n) is called

a permutation of the sequence e0, e1, . . . , en.

436 CHAPTER 7. SIMPLE GRAPHS

Proof. By Corollary 7.8.9, we may assume the deleted edge was the last one added

in constructing an embedding of the graph. So the embedding to which this last

edge was added must be an embedding of the graph without that edge. �

Since we can delete a vertex by deleting all its incident edges, Corollary 7.8.10

immediately implies

Corollary 7.8.11. Deleting a vertex from a planar graph, along with all its incident edges

of course, leaves another planar graph.

A subgraph of a graph, G, is any graph whose set of vertices is a subset of the

vertices of G and whose set of edges is a subset of the set of edges of G. So we can

summarize Corollaries 7.8.10 and 7.8.11 and their consequences in a Theorem.

Theorem 7.8.12. Any subgraph of a planar graph is planar.

7.8.7 Planar 5-Colorability

We need to know one more property of planar graphs in order to prove that planar

graphs are 5-colorable.

7.8. PLANAR GRAPHS 437

n11

n n2
n1 m

n2

Figure 7.12: Merging adjacent vertices n1 and n2 into new vertex, m.

Lemma 7.8.13. Merging two adjacent vertices of a planar graph leaves another planar

graph.

Here merging two adjacent vertices, n1 and n2 of a graph means deleting the

two vertices and then replacing them by a new “merged” vertex, m, adjacent to all

the vertices that were adjacent to either of n1 or n2, as illustrated in Figure 7.12.

438 CHAPTER 7. SIMPLE GRAPHS

Lemma 7.8.13 can be proved by structural induction, but the proof is kind of

boring, and we hope you’ll be relieved that we’re going to omit it. (If you insist,

we can add it to the next problem set.)

Now we’ve got all the simple facts we need to prove 5-colorability.

Theorem 7.8.14. Every planar graph is five-colorable.

Proof. The proof will be by strong induction on the number, v, of vertices, with

induction hypothesis:

Every planar graph with v vertices is five-colorable.

Base cases (v ≤ 5): immediate.

Inductive case: Suppose G is a planar graph with v + 1 vertices. We will de-

scribe a five-coloring of G.

First, choose a vertex, g, of G with degree at most 5; Lemma 7.8.7 guarantees

there will be such a vertex.

Case 1 (deg (g) < 5): Deleting g from G leaves a graph, H , that is planar by

Lemma 7.8.11, and, since H has v vertices, it is five-colorable by induction hypoth-

7.8. PLANAR GRAPHS 439

esis. Now define a five coloring of G as follows: use the five-coloring of H for all

the vertices besides g, and assign one of the five colors to g that is not the same as

the color assigned to any of its neighbors. Since there are fewer than 5 neighbors,

there will always be such a color available for g.

Case 2 (deg (g) = 5): If the five neighbors of g in G were all adjacent to each

other, then these five vertices would form a nonplanar subgraph isomorphic toK5,

contradicting Theorem 7.8.12. So there must be two neighbors, n1 and n2, of g that

are not adjacent. Now merge n1 and g into a new vertex, m, as in Figure 7.12. In

this new graph, n2 is adjacent to m, and the graph is planar by Lemma 7.8.13. So

we can then merge m and n2 into a another new vertex, m′, resulting in a new

graph, G′, which by Lemma 7.8.13 is also planar. Now G′ has v− 1 vertices and so

is five-colorable by the induction hypothesis.

Now define a five coloring of G as follows: use the five-coloring of G′ for all

the vertices besides g, n1 and n2. Next assign the color of m′ in G′ to be the color

of the neighbors n1 and n2. Since n1 and n2 are not adjacent in G, this defines a

440 CHAPTER 7. SIMPLE GRAPHS

proper five-coloring of G except for vertex g. But since these two neighbors of g

have the same color, the neighbors of g have been colored using fewer than five

colors altogether. So complete the five-coloring of G by assigning one of the five

colors to g that is not the same as any of the colors assigned to its neighbors.

�

A graph obtained from a graph, G, be repeatedly deleting vertices, deleting

edges, and merging adjacent vertices is called a minor of G. Since K5 and K3,3 are

not planar, Lemmas 7.8.10, 7.8.11, and 7.8.13 immediately imply:

Corollary 7.8.15. A graph which has K5 or K3,3 as a minor is not planar.

We don’t have time to prove it, but the converse of Corollary 7.8.15 is also true.

This gives the following famous, very elegant, and purely discrete characterization

of planar graphs:

Theorem 7.8.16 (Kuratowksi). A graph is not planar iff it has K5 or K3,3 as a minor.

7.8. PLANAR GRAPHS 441

7.8.8 Classifying Polyhedra

The Pythagoreans had two great mathematical secrets, the irrationality of
√

2 and

a geometric construct that we’re about to rediscover!

A polyhedron is a convex, three-dimensional region bounded by a finite number

of polygonal faces. If the faces are identical regular polygons and an equal number

of polygons meet at each corner, then the polyhedron is regular. Three examples of

regular polyhedra are shown below: the tetrahedron, the cube, and the octahedron.

We can determine how many more regular polyhedra there are by thinking

about planarity. Suppose we took any polyhedron and placed a sphere inside

it. Then we could project the polyhedron face boundaries onto the sphere, which

would give an image that was a planar graph embedded on the sphere, with the

images of the corners of the polyhedron corresponding to vertices of the graph.

442 CHAPTER 7. SIMPLE GRAPHS

But we’ve already observed that embeddings on a sphere are the same as embed-

dings on the plane, so Euler’s formula for planar graphs can help guide our search

for regular polyhedra.

For example, planar embeddings of the three polyhedra above look like this:

�
�
�
�
�
��S
S
S
S
S
SS

�
��T

TT

�
�
��
�
�
��L
L
LL
@
@
@@̀``

`̀

%
%
%
%
%% e

e
e
e
ee

!!!!!

aaaaa

@
@

�
�

@
@

�
�

Let m be the number of faces that meet at each corner of a polyhedron, and let

n be the number of sides on each face. In the corresponding planar graph, there

are m edges incident to each of the v vertices. Since each edge is incident to two

vertices, we know:

mv = 2e

Also, each face is bounded by n edges. Since each edge is on the boundary of two

faces, we have:

nf = 2e

Solving for v and f in these equations and then substituting into Euler’s formula

7.8. PLANAR GRAPHS 443

gives:

2e
m
− e+

2e
n

= 2

which simplifies to

1
m

+
1
n

=
1
e

+
1
2

(7.2)

This last equation (7.2) places strong restrictions on the structure of a polyhedron.

Every nondegenerate polygon has at least 3 sides, so n ≥ 3. And at least 3 polygons

must meet to form a corner, so m ≥ 3. On the other hand, if either n or m were 6

or more, then the left side of the equation could be at most 1/3 + 1/6 = 1/2, which

is less than the right side. Checking the finitely-many cases that remain turns up

only five solutions. For each valid combination of n and m, we can compute the

associated number of vertices v, edges e, and faces f . And polyhedra with these

properties do actually exist:

n m v e f polyhedron
3 3 4 6 4 tetrahedron
4 3 8 12 6 cube
3 4 6 12 8 octahedron
3 5 12 30 20 icosahedron
5 3 20 30 12 dodecahedron

The last polyhedron in this list, the dodecahedron, was the other great mathemat-

444 CHAPTER 7. SIMPLE GRAPHS

ical secret of the Pythagorean sect. These five, then, are the only possible regular

polyhedra.

So if you want to put more than 20 geocentric satellites in orbit so that they

uniformly blanket the globe —tough luck!

7.8.9 Problems

Exam Problems

Class Problems

Homework Problems

Chapter 8

Directed graphs

8.1 Digraphs

A directed graph (digraph for short) is formally the same as a binary relation, R, on

a set, A —that is, a relation whose domain and codomain are the same set, A. But

we describe digraphs as though they were diagrams, with elements of A pictured

as points on the plane and arrows drawn between related points. The elements

of A are referred to as the vertices of the digraph, and the pairs (a, b) ∈ graph (R)

445

446 CHAPTER 8. DIRECTED GRAPHS

are directed edges. Writing a→ b is a more suggestive alternative for the pair (a, b).

Directed edges are also called arrows.

For example, the divisibility relation on {1, 2, . . . , 12} is could be pictured by

the digraph:

12 6 1

824 10

5

7

1193

Figure 8.1: The Digraph for Divisibility on {1, 2, . . . , 12}.

8.1.1 Paths in Digraphs

Picturing digraphs with points and arrows makes it natural to talk about following

a path of successive edges through the graph. For example, in the digraph of Fig-

ure 8.1, a path might start at vertex 1, successively follow the edges from vertex 1

to vertex 2, from 2 to 4, from 4 to 12, and then from 12 to 12 twice (or as many times

8.1. DIGRAPHS 447

as you like). We can represent the path with the sequence of sucessive vertices it

went through, in this case:

1, 2, 4, 12, 12, 12.

So a path is just a sequence of vertices, with consecutive vertices on the path con-

nected by directed edges. Here is a formal definition:

Definition 8.1.1. A path in a digraph is a sequence of vertices a0, . . . , ak with k ≥ 0

such that ai → ai+1 is an edge of the digraph for i = 0, 1, . . . , k−1. The path is said

to start at a0, to end at ak, and the length of the path is defined to be k. The path is

simple iff all the ai’s are different, that is, if i 6= j, then ai 6= aj .

Note that a single vertex counts as length zero path that begins and ends at

itself.

It’s pretty natural to talk about the edges in a path, but technically, paths only

have points, not edges. So to instead, we’ll say a path traverses an edge a→ bwhen

a and b are consecutive vertices in the path.

For any digraph, R, we can define some new relations on vertices based on

448 CHAPTER 8. DIRECTED GRAPHS

paths, namely, the path relation, R∗, and the positive-length path relation, R+:

a R∗ b ::= there is a path in R from a to b,

a R+ b ::= there is a positive length path in R from a to b.

By the definition of path, both R∗ and R+ are transitive. Since edges count as

length one paths, the edges of R+ include all the edges of R. The edges of R∗ in

turn include all the edges of R+ and, in addition include an edge (self-loop) from

each vertex to itself. The self-loops get included in R∗ because of the a length zero

paths in R. So R∗ is reflexive. 1

8.2 Picturing Relational Properties

Many of the relational properties we’ve discussed have natural descriptions in

terms of paths. For example:

Reflexivity: All vertices have self-loops (a self-loop at a vertex is an arrow going

from the vertex back to itself).

1In many texts, R+ is called the transitive closure and R∗ is called the reflexive transitive closure of R.

8.2. PICTURING RELATIONAL PROPERTIES 449

Irreflexivity: No vertices have self-loops.

Antisymmetry: At most one (directed) edge between different vertices.

Asymmetry: No self-loops and at most one (directed) edge between different ver-

tices.

Transitivity: Short-circuits—for any path through the graph, there is an arrow

from the first vertex to the last vertex on the path.

Symmetry: A binary relation R is symmetric iff aRb implies bRa for all a, b in the

domain of R. That is, if there is an edge from a to b, there is also one in the

reverse direction.

EDITING NOTE: The pair of directed edges between two vertices may be

represented by a single undirected edge may as well be represented without

arrows, indicating that they can be followed in either direction. �

450 CHAPTER 8. DIRECTED GRAPHS

8.3 Composition of Relations

There is a simple way to extend composition of functions to composition of rela-

tions, and this gives another way to talk about paths in digraphs.

Let R : B → C and S : A → B be relations. Then the composition of R with S

is the binary relation (R ◦ S) : A→ C defined by the rule

a (R ◦ S) c ::= ∃b ∈ B. (b R c) AND (a S b).

This agrees with the Definition 5.4.1 of composition in the special case whenR and

S are functions.

EDITING NOTE:

2

�

Now when R is a digraph, it makes sense to compose R with itself. Then if we

let Rn denote the composition of R with itself n times, it’s easy to check that Rn is

2Some texts define R ◦ S the other way around, that is, with S applied to the result of applying R

first.

8.4. DIRECTED ACYCLIC GRAPHS 451

the length-n path relation:

a Rn b iff there is a length n path in R from a to b.

This even works for n = 0, if we adopt the convention that R0 is the identity

relation IdA on the set, A, of vertices. That is, (a IdA b) iff a = b.

8.4 Directed Acyclic Graphs

Definition 8.4.1. A cycle in a digraph is defined by a path that begins and ends at

the same vertex. This includes the cycle of length zero that begins and ends at the

vertex. A directed acyclic graph (DAG) is a directed graph with no positive length

cycles.

A simple cycle in a digraph is a cycle whose vertices are distinct except for the

beginning and end vertices.

EDITING NOTE:

In contrast to undirected graphs, a single vertex is considered to be a simple

cycle.

452 CHAPTER 8. DIRECTED GRAPHS

�

DAG’s can be an economical way to represent partial orders. For example, in

Section 9.1 the direct prerequisite relation between MIT subjects was used to de-

termine the partial order of indirect prerequisites on subjects. This indirect pre-

requisite partial order is precisely the positive length path relation of the direct

prerequisites.

Lemma 8.4.2. If D is a DAG, then D+ is a strict partial order.

Proof. We know that D+ is transitive. Also, a positive length path from a vertex to

itself would be a cycle, so there are no such paths. This means D+ is irreflexive,

which implies it is a strict partial order (see problem ??). �

It’s easy to check that conversely, the graph of any strict partial order is a DAG.

The divisibility partial order can also be more economically represented by the

path relation in a DAG. A DAG whose path relation is divisibility on {1, 2, . . . , 12}

is shown in Figure 8.2; the arrowheads are omitted in the Figure, and edges are

understood to point upwards.

8.4. DIRECTED ACYCLIC GRAPHS 453

����1

����4
����8

����5
����10����6

����3

����12

����7����11

����9

����2.
........

........
........

.....

........
........

........
.....

........
........

........
.....

........
........
........
.....

........
........
........
.....

J
J
J
J

Z
Z

Z
Z
Z
Z

�
�
�
�
�
�

Figure 8.2: A DAG whose Path Relation is Divisibility on {1, 2, . . . , 12}.

If we’re using a DAG to represent a partial order —so all we care about is the

the path relation of the DAG —we could replace the DAG with any other DAG

with the same path relation. This raises the question of finding a DAG with the

same path relation but the smallest number of edges. This DAG turns out to be

unique and easy to find (see Problem ??).

454 CHAPTER 8. DIRECTED GRAPHS

8.4.1 Problems

Practice Problems

Class Problems

Homework Problems

EDITING NOTE: * add problem using matrix operations to compute transitive

closure

* add section on shortest paths?

* add section on directed tours and walks? �

8.5 Communication Networks

EDITING NOTE: ADD DISCUSSION of routing problems in general, with defs

of

*“IO-assignments” = specification of sources & destinations of packets,

* “routing” = paths that achieve the IO-assignment,

8.6. COMPLETE BINARY TREE 455

* congestion and latency of a routing.

* Possible latency/congestion tradeoffs

* congestion and latency of a net. �

Modeling communication networks is an important application of digraphs in

computer science. In this such models, vertices represent computers, processors,

and switches; edges will represent wires, fiber, or other transmission lines through

which data flows. For some communication networks, like the internet, the corre-

sponding graph is enormous and largely chaotic. Highly structured networks, by

contrast, find application in telephone switching systems and the communication

hardware inside parallel computers. In this chapter, we’ll look at some of the nicest

and most commonly used structured networks.

8.6 Complete Binary Tree

Let’s start with a complete binary tree. Here is an example with 4 inputs and 4

outputs.

456 CHAPTER 8. DIRECTED GRAPHS

IN OUT IN IN INOUT OUT OUT0 0 1 1 2 2 3 3

The kinds of communication networks we consider aim to transmit packets of

data between computers, processors, telephones, or other devices. The term packet

refers to some roughly fixed-size quantity of data— 256 bytes or 4096 bytes or

whatever. In this diagram and many that follow, the squares represent terminals,

sources and destinations for packets of data. The circles represent switches, which

direct packets through the network. A switch receives packets on incoming edges

and relays them forward along the outgoing edges. Thus, you can imagine a data

packet hopping through the network from an input terminal, through a sequence

of switches joined by directed edges, to an output terminal.

8.7. ROUTING PROBLEMS 457

Recall that there is a unique simple path between every pair of vertices in a tree.

So the natural way to route a packet of data from an input terminal to an output

in the complete binary tree is along the corresponding directed path. For example,

the route of a packet traveling from input 1 to output 3 is shown in bold.

8.7 Routing Problems

Communication networks are supposed to get packets from inputs to outputs,

with each packet entering the network at its own input switch and arriving at its

own output switch. We’re going to consider several different communication net-

work designs, where each network has N inputs and N outputs; for convenience,

we’ll assume N is a power of two.

Which input is supposed to go where is specified by a permutation of {0, 1, . . . , N − 1}.

So a permutation, π, defines a routing problem: get a packet that starts at input i to

output π(i). A routing, P , that solves a routing problem, π, is a set of paths from each

input to its specified output. That is, P is a set of n paths, Pi, for i = 0 . . . , N − 1,

458 CHAPTER 8. DIRECTED GRAPHS

where Pi goes from input i to output π(i).

8.8 Network Diameter

The delay between the time that a packets arrives at an input and arrives at its

designated output is a critical issue in communication networks. Generally this

delay is proportional to the length of the path a packet follows. Assuming it takes

one time unit to travel across a wire,

EDITING NOTE: and that there are no additional delays at switches, �

the delay of a packet will be the number of wires it crosses going from input to

output.

EDITING NOTE:

3

3Latency is often measured as the number of switches that a packet must pass through when trav-

eling between the most distant input and output, since switches usually have the biggest impact on

network speed. For example, in the complete binary tree example, the packet traveling from input 1 to

output 3 crosses 5 switches.

8.8. NETWORK DIAMETER 459

�

Generally packets are routed to go from input to output by the shortest path

possible. With a shortest path routing, the worst case delay is the distance be-

tween the input and output that are farthest apart. This is called the diameter of

the network. In other words, the diameter of a network4 is the maximum length of

any shortest path between an input and an output. For example, in the complete

binary tree above, the distance from input 1 to output 3 is six. No input and output

are farther apart than this, so the diameter of this tree is also six.

More generally, the diameter of a complete binary tree with N inputs and out-

puts is 2 logN+2. (All logarithms in this lecture— and in most of computer science

—are base 2.) This is quite good, because the logarithm function grows very slowly.

We could connect up 210 = 1024 inputs and outputs using a complete binary tree

and the worst input-output delay for any packet would be this diameter, namely,

4The usual definition of diameter for a general graph (simple or directed) is the largest distance be-

tween any two vertices, but in the context of a communication network we’re only interested in the

distance between inputs and outputs, not between arbitrary pairs of vertices.

460 CHAPTER 8. DIRECTED GRAPHS

2 log(210) + 2 = 22.

8.8.1 Switch Size

One way to reduce the diameter of a network is to use larger switches. For exam-

ple, in the complete binary tree, most of the switches have three incoming edges

and three outgoing edges, which makes them 3 × 3 switches. If we had 4 × 4

switches, then we could construct a complete ternary tree with an even smaller di-

ameter. In principle, we could even connect up all the inputs and outputs via a

single monster N ×N switch.

EDITING NOTE:

0
1

N−1

0

1

N−1

... ...
OUTIN

�

This isn’t very productive, however, since we’ve just concealed the original net-

work design problem inside this abstract switch. Eventually, we’ll have to design

the internals of the monster switch using simpler components, and then we’re right

8.9. SWITCH COUNT 461

back where we started. So the challenge in designing a communication network

is figuring out how to get the functionality of an N × N switch using fixed size,

elementary devices, like 3× 3 switches.

8.9 Switch Count

Another goal in designing a communication network is to use as few switches as

possible. The number of switches in a complete binary tree is 1+2+4+8+ · · ·+N ,

since there is 1 switch at the top (the “root switch”), 2 below it, 4 below those, and

so forth. By the formula (??) for geometric sums, the total number of switches is

2N − 1, which is nearly the best possible with 3× 3 switches.

8.10 Network Latency

We’ll sometimes be choosing routings through a network that optimize some quan-

tity besides delay. For example, in the next section we’ll be trying to minimize

packet congestion. When we’re not minimizing delay, shortest routings are not al-

462 CHAPTER 8. DIRECTED GRAPHS

ways the best, and in general, the delay of a packet will depend on how it is routed.

For any routing, the most delayed packet will be the one that follows the longest

path in the routing. The length of the longest path in a routing is called its latency.

The latency of a network depends on what’s being optimized. It is measured

by assuming that optimal routings are always chosen in getting inputs to their

specified outputs. That is, for each routing problem, π, we choose an optimal rout-

ing that solves π. Then network latency is defined to be the largest routing latency

among these optimal routings. Network latency will equal network diameter if

routings are always chosen to optimize delay, but it may be significantly larger if

routings are chosen to optimize something else.

For the networks we consider below, paths from input to output are uniquely

determined (in the case of the tree) or all paths are the same length, so network

latency will always equal network diameter.

8.11. CONGESTION 463

8.11 Congestion

The complete binary tree has a fatal drawback: the root switch is a bottleneck. At

best, this switch must handle an enormous amount of traffic: every packet travel-

ing from the left side of the network to the right or vice-versa. Passing all these

packets through a single switch could take a long time. At worst, if this switch

fails, the network is broken into two equal-sized pieces.

For example, if the routing problem is given by the identity permutation, Id(i)::=

i, then there is an easy routing, P , that solves the problem: let Pi be the path from

input i up through one switch and back down to output i. On the other hand, if

the problem was given by π(i) ::= (N − 1) − i, then in any solution, Q, for π, each

path Qi beginning at input i must eventually loop all the way up through the root

switch and then travel back down to output (N − 1) − i. These two situations are

illustrated below.

464 CHAPTER 8. DIRECTED GRAPHS

IN OUT IN IN INOUT OUT OUT0 0 1 1 2 2 3 3 IN OUT IN IN INOUT OUT OUT0 0 1 1 2 2 3 3

We can distinguish between a “good” set of paths and a “bad” set based on

congestion. The congestion of a routing, P , is equal to the largest number of paths

in P that pass through a single switch. For example, the congestion of the routing

on the left is 1, since at most 1 path passes through each switch. However, the

congestion of the routing on the right is 4, since 4 paths pass through the root

switch (and the two switches directly below the root). Generally, lower congestion

is better since packets can be delayed at an overloaded switch.

By extending the notion of congestion to networks, we can also distinguish be-

tween “good” and “bad” networks with respect to bottleneck problems. For each

routing problem, π, for the network, we assume a routing is chosen that optimizes

congestion, that is, that has the minimum congestion among all routings that solve

8.11. CONGESTION 465

π. Then the largest congestion that will ever be suffered by a switch will be the

maximum congestion among these optimal routings. This “maximin” congestion

is called the congestion of the network.

EDITING NOTE:

You may find it helpful to think about max congestion in terms of a value game.

You design your spiffy, new communication network; this defines the game. Your

opponent makes the first move in the game: she inspects your network and spec-

ifies a permutation routing problem that will strain your network.You move sec-

ond: given her specification, you choose the precise paths that the packets should

take through your network; you’re trying to avoid overloading any one switch.

Then her next move is to pick a switch with as large as possible a number of pack-

ets passing through it; this number is her score in the competition. The max con-

gestion of your network is the largest score she can ensure; in other words, it is

precisely the max-value of this game.

For example, if your enemy were trying to defeat the complete binary tree, she

466 CHAPTER 8. DIRECTED GRAPHS

would choose a permutation like π(i) = (N − 1) − i. Then for every packet i, you

would be forced to select a path Pi,π(i) passing through the root switch. Thus, the

max congestion of the complete binary tree is N— which is horrible!

�

So for the complete binary tree, the worst permutation would be π(i) ::= (N −

1) − i. Then in every possible solution for π, every packet, would have to follow a

path passing through the root switch. Thus, the max congestion of the complete

binary tree is N —which is horrible!

Let’s tally the results of our analysis so far:

network diameter switch size # switches congestion
complete binary tree 2 logN + 2 3× 3 2N − 1 N

8.12 2-D Array

Let’s look at an another communication network. This one is called a 2-dimensional

array or grid.

EDITING NOTE: or crossbar. �

8.12. 2-D ARRAY 467

IN

IN

IN

IN

0

1

2

3

OUT OUT OUT OUT
0 1 2 3

Here there are four inputs and four outputs, so N = 4.

The diameter in this example is 8, which is the number of edges between input

0 and output 3. More generally, the diameter of an array withN inputs and outputs

is 2N , which is much worse than the diameter of 2 logN +2 in the complete binary

tree. On the other hand, replacing a complete binary tree with an array almost

eliminates congestion.

Theorem 8.12.1. The congestion of an N -input array is 2.

Proof. First, we show that the congestion is at most 2. Let π be any permutation.

Define a solution, P , for π to be the set of paths, Pi, where Pi goes to the right from

input i to column π(i) and then goes down to output π(i). Thus, the switch in row

468 CHAPTER 8. DIRECTED GRAPHS

i and column j transmits at most two packets: the packet originating at input i and

the packet destined for output j.

Next, we show that the congestion is at least 2. This follows because in any

routing problem, π, where π(0) = 0 and π(N − 1) = N − 1, two packets must pass

through the lower left switch. �

As with the tree, the network latency when minimizing congestion is the same

as the diameter. That’s because all the paths between a given input and output are

the same length.

Now we can record the characteristics of the 2-D array.

network diameter switch size # switches congestion
complete binary tree 2 logN + 2 3× 3 2N − 1 N

2-D array 2N 2× 2 N2 2

The crucial entry here is the number of switches, which isN2. This is a major defect

of the 2-D array; a network of sizeN = 1000 would require a million 2×2 switches!

Still, for applications where N is small, the simplicity and low congestion of the

array make it an attractive choice.

8.13. BUTTERFLY 469

8.13 Butterfly

The Holy Grail of switching networks would combine the best properties of the

complete binary tree (low diameter, few switches) and of the array (low conges-

tion). The butterfly is a widely-used compromise between the two.

A good way to understand butterfly networks is as a recursive data type. The

recursive definition works better if we define just the switches and their connec-

tions, omitting the terminals. So we recursively define Fn to be the switches and

connections of the butterfly net with N ::= 2n input and output switches.

The base case is F1 with 2 input switches and 2 output switches connected as

in Figure 8.3.

EDITING NOTE:

The butterfly of size 2N consists of two butterflies of size N , which are shown

in dashed boxes below, and one additional level of switches. Each switch in the

new level has directed edges to a pair of corresponding switches in the smaller

butterflies; one example is dashed in the figure.

470 CHAPTER 8. DIRECTED GRAPHS

2 inputs 2 outputs

N = 21N = 21

Figure 8.3: F1, the Butterfly Net switches with N = 21.

001

010

011

100

101

110

111

000

IN

IN

IN

IN

IN

IN

IN

IN

0

1

2

3

4

5

6

7

OUT

OUT

OUT

OUT

OUT

OUT0

1

OUT3

2OUT

4

5

6

7

8.13. BUTTERFLY 471

Despite the relatively complicated structure of the butterfly, there is a simple

way to route packets. In particular, suppose that we want to send a packet from

input x1x2 . . . xlogN to output y1y2 . . . ylogN . (Here we are specifying the input and

output numbers in binary.) Roughly, the plan is to “correct” the first bit by level

1, correct the second bit by level 2, and so forth. Thus, the sequence of switches

visited by the packet is:

(x1, x2, x3, . . . , xlogN , 0)→ (y1, x2, x3, . . . , xlogN , 1)

→ (y1, y2, x3, . . . , xlogN , 2)

→ (y1, y2, y3, . . . , xlogN , 3)

→ . . .

→ (y1, y2, y3, . . . , ylogN , logN)

In fact, this is the only path from the input to the output!

�

472 CHAPTER 8. DIRECTED GRAPHS

In the constructor step, we construct Fn+1 with 2n+1 inputs and outputs out

of two Fn nets connected to a new set of 2n+1 input switches, as shown in as in

Figure 8.4. That is, the ith and 2n + ith new input switches are each connected

to the same two switches, namely, to the ith input switches of each of two Fn

components for i = 1, . . . , 2n. The output switches of Fn+1 are simply the output

switches of each of the Fn copies.

⎧
⎨ F⎨
⎩

2n Fn

2n 1 t t⎩
⎧
⎨ F

2n+1 outputs

⎨
⎩

2n Fn

F
new inputs
⎩

Fn+1

Figure 8.4: Fn+1, the Butterfly Net switches with 2n+1 inputs and outputs.

8.13. BUTTERFLY 473

So Fn+1 is laid out in columns of height 2n+1 by adding one more column of

switches to the columns in Fn. Since the construction starts with two columns

when n = 1, the Fn+1 switches are arrayed in n + 1 columns. The total number

of switches is the height of the columns times the number of columns, namely,

2n+1(n+1). Remembering that n = logN , we conclude that the Butterfly Net with

N inputs has N(logN + 1) switches.

Since every path in Fn+1 from an input switch to an output is the same length,

namely, n+ 1, the diameter of the Butterfly net with 2n+1 inputs is this length plus

two because of the two edges connecting to the terminals (square boxes) —one

edge from input terminal to input switch (circle) and one from output switch to

output terminal.

There is an easy recursive procedure to route a packet through the Butterfly

Net. In the base case, there is obviously only one way to route a packet from one of

the two inputs to one of the two outputs. Now suppose we want to route a packet

from an input switch to an output switch in Fn+1. If the output switch is in the

474 CHAPTER 8. DIRECTED GRAPHS

“top” copy of Fn, then the first step in the route must be from the input switch to

the unique switch it is connected to in the top copy; the rest of the route is deter-

mined by recursively routing the rest of the way in the top copy of Fn. Likewise,

if the output switch is in the “bottom” copy of Fn, then the first step in the route

must be to the switch in the bottom copy, and the rest of the route is determined by

recursively routing in the bottom copy of Fn. In fact, this argument shows that the

routing is unique: there is exactly one path in the Butterfly Net from each input to

each output, which implies that the network latency when minimizing congestion

is the same as the diameter.

The congestion of the butterfly network is about
√
N , more precisely, the con-

gestion is
√
N if N is an even power of 2 and

√
N/2 if N is an odd power of 2. A

simple proof of this appears in Problem??.

Let’s add the butterfly data to our comparison table:

network diameter switch size # switches congestion
complete binary tree 2 logN + 2 3× 3 2N − 1 N

2-D array 2N 2× 2 N2 2
butterfly logN + 2 2× 2 N(log(N) + 1)

√
N or

√
N/2

The butterfly has lower congestion than the complete binary tree. And it uses

8.14. BENES̆ NETWORK 475

fewer switches and has lower diameter than the array. However, the butterfly

does not capture the best qualities of each network, but rather is a compromise

somewhere between the two. So our quest for the Holy Grail of routing networks

goes on.

8.14 Benes̆ Network

In the 1960’s, a researcher at Bell Labs named Benes̆ had a remarkable idea. He

obtained a marvelous communication network with congestion 1 by placing two

butterflies back-to-back. This amounts to recursively growing Benes̆ nets by adding

both inputs and outputs at each stage. Now we recursively define Bn to be the

switches and connections (without the terminals) of the Benes̆ net with N ::= 2n

input and output switches.

The base case, B1, with 2 input switches and 2 output switches is exactly the

same as F1 in Figure 8.3.

In the constructor step, we construct Bn+1 out of two Bn nets connected to a

476 CHAPTER 8. DIRECTED GRAPHS

new set of 2n+1 input switches and also a new set of 2n+1 output switches. This is

illustrated in Figure 8.5.

Namely, the ith and 2n+ ith new input switches are each connected to the same

two switches, namely, to the ith input switches of each of two Bn components for

i = 1, . . . , 2n, exactly as in the Butterfly net. In addition, the ith and 2n + ith new

output switches are connected to the same two switches, namely, to the ith output

switches of each of two Bn components.

Now Bn+1 is laid out in columns of height 2n+1 by adding two more columns

of switches to the columns in Bn. So the Bn+1 switches are arrayed in 2(n + 1)

columns. The total number of switches is the number of columns times the height

of the columns, namely, 2(n+ 1)2n+1.

All paths in Bn+1 from an input switch to an output are the same length,

namely, 2(n + 1) − 1, and the diameter of the Benes̆ net with 2n+1 inputs is this

length plus two because of the two edges connecting to the terminals.

EDITING NOTE:

8.14. BENES̆ NETWORK 477

OUT

OUT

OUT

OUT

OUT

OUT0

1

OUT3

2OUT

4

5

6

7

IN

IN

IN

IN

IN

IN

IN

IN

0

1

2

3

4

5

6

7

This network now has levels labeled 0, . . . , 2 logN + 1. For 1 ≤ k ≤ logN ,

the connections from level k − 1 to level k are just as in the Butterfly network,

the connections based on bit k. The conections from level 2 logN − k + 1 to level

2 logN−k+2 are also the ones based on bit k. (Informally, to make the connections

from level 0 to level 2 logN + 1 one level at a time, use the connections based on

bits 1, 2, 3, . . . , logN − 1, logN, logN − 1, logN − 2, . . . , 3, 2, 1 in that order.)

�

So Benes̆ has doubled the number of switches and the diameter, of course, but

478 CHAPTER 8. DIRECTED GRAPHS

completely eliminates congestion problems! The proof of this fact relies on a clever

induction argument that we’ll come to in a moment. Let’s first see how the Benes̆

network stacks up:

network diameter switch size # switches congestion
complete binary tree 2 logN + 2 3× 3 2N − 1 N

2-D array 2N 2× 2 N2 2
butterfly logN + 2 2× 2 N(log(N) + 1)

√
N or

√
N/2

Benes̆ 2 logN + 1 2× 2 2N logN 1

The Benes̆ network has small size and diameter, and completely eliminates con-

gestion. The Holy Grail of routing networks is in hand!

Theorem 8.14.1. The congestion of the N -input Benes̆ network is 1.

Proof. By induction on n where N = 2n. So the induction hypothesis is

P (n) ::= the congestion of Bn is 1.

Base case (n = 1): B1 = F1 and the unique routings in F1 have congestion 1.

Inductive step: We assume that the congestion of an N = 2n-input Benes̆ net-

work is 1 and prove that the congestion of a 2N -input Benes̆ network is also 1.

Digression. Time out! Let’s work through an example, develop some intu-

ition, and then complete the proof. In the Benes̆ network shown below with N = 8

8.14. BENES̆ NETWORK 479

inputs and outputs, the two 4-input/output subnetworks are in dashed boxes.

OUT

OUT

OUT

OUT

OUT

OUT0

1

OUT3

2OUT

4

5

6

7

IN

IN

IN

IN

IN

IN

IN

IN

0

1

2

3

4

5

6

7

By the inductive assumption, the subnetworks can each route an arbitrary per-

mutation with congestion 1. So if we can guide packets safely through just the first

and last levels, then we can rely on induction for the rest! Let’s see how this works

480 CHAPTER 8. DIRECTED GRAPHS

in an example. Consider the following permutation routing problem:

π(0) = 1 π(4) = 3

π(1) = 5 π(5) = 6

π(2) = 4 π(6) = 0

π(3) = 7 π(7) = 2

We can route each packet to its destination through either the upper subnet-

work or the lower subnetwork. However, the choice for one packet may constrain

the choice for another. For example, we can not route both packet 0 and packet 4

through the same network since that would cause two packets to collide at a single

switch, resulting in congestion. So one packet must go through the upper network

and the other through the lower network. Similarly, packets 1 and 5, 2 and 6, and 3

and 7 must be routed through different networks. Let’s record these constraints in

a graph. The vertices are the 8 packets. If two packets must pass through different

networks, then there is an edge between them. Thus, our constraint graph looks

like this:

8.14. BENES̆ NETWORK 481

1

2

3

4

5

6

7

0

Notice that at most one edge is incident to each vertex.

The output side of the network imposes some further constraints. For example,

the packet destined for output 0 (which is packet 6) and the packet destined for

output 4 (which is packet 2) can not both pass through the same network; that

would require both packets to arrive from the same switch. Similarly, the packets

destined for outputs 1 and 5, 2 and 6, and 3 and 7 must also pass through different

switches. We can record these additional constraints in our graph with gray edges:

1

2

3

4

5

6

7

0

Notice that at most one new edge is incident to each vertex. The two lines

482 CHAPTER 8. DIRECTED GRAPHS

drawn between vertices 2 and 6 reflect the two different reasons why these packets

must be routed through different networks. However, we intend this to be a simple

graph; the two lines still signify a single edge.

Now here’s the key insight: a 2-coloring of the graph corresponds to a solution to

the routing problem. In particular, suppose that we could color each vertex either

red or blue so that adjacent vertices are colored differently. Then all constraints

are satisfied if we send the red packets through the upper network and the blue

packets through the lower network.

The only remaining question is whether the constraint graph is 2-colorable,

which is easy to verify:

Lemma 8.14.2. Prove that if the edges of a graph can be grouped into two sets such that

every vertex has at most 1 edge from each set incident to it, then the graph is 2-colorable.

Proof. Since the two sets of edges may overlap, let’s call an edge that is in both sets

a doubled edge.

We know from Theorem 7.7.2 that all we have to do is show that every cycle

8.14. BENES̆ NETWORK 483

has even length. There are two cases:

Case 1: [The cycle contains a doubled edge.] No other edge can be incident

to either of the endpoints of a doubled edge, since that endpoint would then be

incident to two edges from the same set. So a cycle traversing a doubled edge has

nowhere to go but back and forth along the edge an even number of times.

Case 2: [No edge on the cycle is doubled.] Since each vertex is incident to

at most one edge from each set, any path with no doubled edges must traverse

successive edges that alternate from one set to the other. In particular, a cycle must

traverse a path of alternating edges that begins and ends with edges from different

sets. This means the cycle has to be of even length. �

For example, here is a 2-coloring of the constraint graph:

1

2

3

4

5

6

7

0

redblue

red

red

red

blueblue

blue

484 CHAPTER 8. DIRECTED GRAPHS

The solution to this graph-coloring problem provides a start on the packet rout-

ing problem:

We can complete the routing in the two smaller Benes̆ networks by induction!

Back to the proof. End of Digression.

Let π be an arbitrary permutation of {0, 1, . . . , N − 1}. Let G be the graph

whose vertices are packet numbers 0, 1, . . . , N − 1 and whose edges come from

the union of these two sets:

E1::= {u—v | |u− v| = N/2} , and

E2::= {u—w | |π(u)− π(w)| = N/2} .

Now any vertex, u, is incident to at most two edges: a unique edge u—v ∈ E1 and a

unique edge u—w ∈ E2. So according to Lemma 8.14.2, there is a 2-coloring for the

vertices of G. Now route packets of one color through the upper subnetwork and

packets of the other color through the lower subnetwork. Since for each edge inE1,

one vertex goes to the upper subnetwork and the other to the lower subnetwork,

there will not be any conflicts in the first level. Since for each edge inE2, one vertex

8.14. BENES̆ NETWORK 485

comes from the upper subnetwork and the other from the lower subnetwork, there

will not be any conflicts in the last level. We can complete the routing within each

subnetwork by the induction hypothesis P (n). �

8.14.1 Problems

Exam Problems

Class Problems

Homework Problems

486 CHAPTER 8. DIRECTED GRAPHS

⎧ ⎫⎧
⎨
⎩

2n ⎫
⎪

Bn

⎩
⎧

⎪
⎬
⎪

2n+1

⎧
⎨
⎩

2n ⎪
⎭

Bn

⎩ ⎭
Bnew inputs new outputsBn+1

p p

Figure 8.5: Bn+1, the Benes̆ Net switches with 2n+1 inputs and outputs.

Chapter 9

Partial Orders and Scheduling

EDITING NOTE:

EQUIVALENCE RELATIONS to be added, including SYMMETRY axiom, rep-

resention by functions mapping elements to properties, and partitions

ALL THE MATERIAL BELOW BEFORE the SCHEDULING section WILL

MOVE into sectionRelations of Ch.5 (sets & relations). �

Partial orders are a kind of binary relation that come up a lot. The familiar ≤

487

488 CHAPTER 9. PARTIAL ORDERS AND SCHEDULING

order on numbers is a partial order, but so is the containment relation on sets and

the divisibility relation on integers.

Partial orders have particular importance in computer science because they

capture key concepts used, for example, in solving task scheduling problems, ana-

lyzing concurrency control, and proving program termination.

9.1 Axioms for Partial Orders

The prerequisite structure among MIT subjects provides a nice illustration of par-

tial orders. Here is a table indicating some of the prerequisites of subjects in the

the Course 6 program of Spring ’07:

Direct Prerequisites Subject
18.01 6.042
18.01 18.02
18.01 18.03
8.01 8.02
6.001 6.034
6.042 6.046
18.03, 8.02 6.002
6.001, 6.002 6.004
6.001, 6.002 6.003
6.004 6.033
6.033 6.857
6.046 6.840

9.1. AXIOMS FOR PARTIAL ORDERS 489

Since 18.01 is a direct prerequisite for 6.042, a student must take 18.01 before

6.042. Also, 6.042 is a direct prerequisite for 6.046, so in fact, a student has to take

both 18.01 and 6.042 before taking 6.046. So 18.01 is also really a prerequisite for

6.046, though an implicit or indirect one; we’ll indicate this by writing

18.01→ 6.046.

This prerequisite relation has a basic property known as transitivity: if subject a

is an indirect prerequisite of subject b, and b is an indirect prerequisite of subject c,

then a is also an indirect prerequisite of c.

In this table, a longest sequence of prerequisites is

18.01→ 18.03→ 6.002→ 6.004→ 6.033→ 6.857

so a student would need at least six terms to work through this sequence of sub-

jects. But it would take a lot longer to complete a Course 6 major if the direct

prerequisites led to a situation1 where two subjects turned out to be prerequisites

1MIT’s Committee on Curricula has the responsibility of watching out for such bugs that might

creep into departmental requirements.

490 CHAPTER 9. PARTIAL ORDERS AND SCHEDULING

of each other! So another crucial property of the prerequisite relation is that if a→ b,

then it is not the case that b→ a. This property is called asymmetry.

Another basic example of a partial order is the subset relation, ⊆, on sets. In

fact, we’ll see that every partial order can be represented by the subset relation.

Definition 9.1.1. A binary relation, R, on a set A is:

• transitive iff [a R b and b R c] IMPLIES a R c for every a, b, c ∈ A,

• asymmetric iff a R b IMPLIES NOT(b R a) for all a, b ∈ A,

• a strict partial order iff it is transitive and asymmetric.

So the prerequisite relation,→, on subjects in the MIT catalogue is a strict par-

tial order. More familiar examples of strict partial orders are the relation,<, on real

numbers, and the proper subset relation, ⊂, on sets.

The subset relation, ⊆, on sets and ≤ relation on numbers are examples of re-

flexive relations in which each element is related to itself. Reflexive partial orders

are called weak partial orders. Since asymmetry is incompatible with reflexivity,

the asymmetry property in weak partial orders is relaxed so it applies only to two

9.1. AXIOMS FOR PARTIAL ORDERS 491

different elements. This relaxation of the asymmetry is called antisymmetry:

Definition 9.1.2. A binary relation, R, on a set A, is

• reflexive iff a R a for all a ∈ A,

• antisymmetric iff a R b IMPLIES NOT(b R a) for all a 6= b ∈ A,

• a weak partial order iff it is transitive, reflexive and antisymmetric.

Some authors define partial orders to be what we call weak partial orders, but

we’ll use the phrase “partial order” to mean either a weak or strict one.

For weak partial orders in general, we often write an ordering-style symbol like

� or v instead of a letter symbol like R. (General relations are usually denoted

by a letter like R instead of a cryptic squiggly symbol, so � is kind of like the

musical performer/composer Prince, who redefined the spelling of his name to

be his own squiggly symbol. A few years ago he gave up and went back to the

spelling “Prince.”) Likewise, we generally use ≺ or @ to indicate a strict partial

order.

Two more examples of partial orders are worth mentioning:

492 CHAPTER 9. PARTIAL ORDERS AND SCHEDULING

Example 9.1.3. Let A be some family of sets and define a R b iff a ⊃ b. Then R is a

strict partial order.

For integers, m,n we write m | n to mean that m divides n, namely, there is an

integer, k, such that n = km.

Example 9.1.4. The divides relation is a weak partial order on the nonnegative in-

tegers.

9.2 Representing Partial Orders by Set Containment

Axioms can be a great way to abstract and reason about important properties of

objects, but it helps to have a clear picture of the things that satisfy the axioms.

We’ll show that every partial order can be pictured as a collection of sets related by

containment. That is, every partial order has the “same shape” as such a collection.

The technical word for “same shape” is “isomorphic.”

Definition 9.2.1. A binary relation, R, on a set, A, is isomorphic to a relation, S,

on a set D iff there is a relation-preserving bijection from A to D. That is, there is

9.2. REPRESENTING PARTIAL ORDERS BY SET CONTAINMENT 493

bijection f : A→ D, such that for all a, a′ ∈ A,

a R a′ iff f(a) S f(a′).

Theorem 9.2.2. Every weak partial order, �, is isomorphic to the subset relation, on a

collection of sets.

To picture a partial order, �, on a set, A, as a collection of sets, we simply

represent each element A by the set of elements that are � to that element, that is,

a ←→ {b ∈ A | b � a} .

For example, if � is the divisibility relation on the set of integers, {1, 3, 4, 6, 8, 12},

then we represent each of these integers by the set of integers in A that divides it.

494 CHAPTER 9. PARTIAL ORDERS AND SCHEDULING

So

1 ←→ {1}

3 ←→ {1, 3}

4 ←→ {1, 4}

6 ←→ {1, 3, 6}

8 ←→ {1, 4, 8}

12 ←→ {1, 3, 4, 6, 12}

So, the fact that 3 | 12 corresponds to the fact that {1, 3} ⊆ {1, 3, 4, 6, 12}.

In this way we have completely captured the weak partial order� by the subset

relation on the corresponding sets. Formally, we have

Lemma 9.2.3. Let � be a weak partial order on a set, A. Then � is isomorphic to the

subset relation on the collection of inverse images of elements a ∈ A under the � relation.

We leave the proof to Problem ??. Essentially the same construction shows that

strict partial orders can be represented by set under the proper subset relation, ⊂.

9.3. TOTAL ORDERS 495

9.2.1 Problems

Class Problems

Homework Problems

9.3 Total Orders

The familiar order relations on numbers have an important additional property:

given two different numbers, one will be bigger than the other. Partial orders with

this property are said to be total2 orders.

Definition 9.3.1. Let R be a binary relation on a set, A, and let a, b be elements of

A. Then a and b are comparable with respect to R iff [a R b OR b R a]. A partial

order for which every two different elements are comparable is called a total order.

So < and ≤ are total orders on R. On the other hand, the subset relation is
2“Total” is an overloaded term when talking about partial orders: being a total order is a much

stronger condition than being a partial order that is a total relation. For example, any weak partial

order such as ⊆ is a total relation.

496 CHAPTER 9. PARTIAL ORDERS AND SCHEDULING

not total, since, for example, any two different finite sets of the same size will be

incomparable under ⊆. The prerequisite relation on Course 6 required subjects is

also not total because, for example, neither 8.01 nor 6.001 is a prerequisite of the

other.

9.3.1 Problems

Practice Problems

Class Problems

Homework Problems

Exam Problems

9.4 Product Orders

Taking the product of two relations is a useful way to construct new relations from

old ones.

Definition 9.4.1. The product, R1 ×R2, of relations R1 and R2 is defined to be the

9.4. PRODUCT ORDERS 497

relation with

domain (R1 ×R2) ::= domain (R1)× domain (R2) ,

codomain (R1 ×R2) ::= codomain (R1)× codomain (R2) ,

(a1, a2) (R1 ×R2) (b1, b2) iff [a1R1 b1 and a2R2 b2].

Example 9.4.2. Define a relation, Y , on age-height pairs of being younger and shorter.

This is the relation on the set of pairs (y, h) where y is a nonnegative integer≤ 2400

which we interpret as an age in months, and h is a nonnegative integer ≤ 120 de-

scribing height in inches. We define Y by the rule

(y1, h1)Y (y2, h2) iff y1 ≤ y2 AND h1 ≤ h2.

That is, Y is the product of the ≤-relation on ages and the ≤-relation on heights.

It follows directly from the definitions that products preserve the properties

of transitivity, reflexivity, irreflexivity, and antisymmetry, as shown in Problem ??.

That is, if R1 and R2 both have one of these properties, then so does R1 ×R2. This

implies that if R1 and R2 are both partial orders, then so is R1 ×R2.

498 CHAPTER 9. PARTIAL ORDERS AND SCHEDULING

On the other hand, the property of being a total order is not preserved. For

example, the age-height relation Y is the product of two total orders, but it is not

total: the age 240 months, height 68 inches pair, (240,68), and the pair (228,72) are

incomparable under Y .

9.4.1 Problems

Class Problems

9.5 Scheduling

9.5.1 Scheduling with Constraints

Scheduling problems are a common source of partial orders: there is a set, A, of

tasks and a set of constraints specifying that starting a certain task depends on

other tasks being completed beforehand. We can picture the constraints by draw-

ing labelled boxes corresponding to different tasks, with an arrow from one box to

another if the first box corresponds to a task that must be completed before starting

9.5. SCHEDULING 499

the second one.

Example 9.5.1. Here is a drawing describing the order in which you could put on

clothes. The tasks are the clothes to be put on, and the arrows indicate what should

be put on directly before what.

left sock right sock

left shoe right shoe belt

pants

underwear shirt

sweater

jacket

When we have a partial order of tasks to be performed, it can be useful to have

an order in which to perform all the tasks, one at a time, while respecting the

dependency constraints. This amounts to finding a total order that is consistent

with the partial order. This task of finding a total ordering that is consistent with a

partial order is known as topological sorting.

Definition 9.5.2. A topological sort of a partial order, ≺, on a set, A, is a total order-

500 CHAPTER 9. PARTIAL ORDERS AND SCHEDULING

ing, @, on A such that

a ≺ b IMPLIES a @ b.

For example,

shirt @ sweater @ underwear @ leftsock @ rightsock @ pants

@ leftshoe @ rightshoe @ belt @ jacket,

is one topological sort of the partial order of dressing tasks given by Example 9.5.1;

there are several other possible sorts as well.

Topological sorts for partial orders on finite sets are easy to construct by starting

from minimal elements:

Definition 9.5.3. Let� be a partial order on a set,A. An element a0 ∈ A is minimum

iff it is � every other element of A, that is, a0 � b for all b 6= a0.

The element a0 is minimal iff no other element is � a0, that is, NOT(b � a0) for

all b 6= a0.

There are corresponding definitions for maximum and maximal. Alternatively, a

maximum(al) element for a relation, R, could be defined to be as a minimum(al)

9.5. SCHEDULING 501

element for R−1.

In a total order, minimum and minimal elements are the same thing. But a

partial order may have no minimum element but lots of minimal elements. There

are four minimal elements in the clothes example: leftsock, rightsock, underwear,

and shirt.

To construct a total ordering for getting dressed, we pick one of these minimal

elements, say shirt. Next we pick a minimal element among the remaining ones.

For example, once we have removed shirt, sweater becomes minimal. We con-

tinue in this way removing successive minimal elements until all elements have

been picked. The sequence of elements in the order they were picked will be a

topological sort. This is how the topological sort above for getting dressed was

constructed.

EDITING NOTE: pedantic lemma

For this method of topological sorting to work, we need to be sure there is

always a minimal element. This is sort of obvious, but it depends crucially on

502 CHAPTER 9. PARTIAL ORDERS AND SCHEDULING

the partial order being finite —there is no mimimal element among the negative

integers for example. So we’ll practice doing an elementary proof about partial

orders by proving that minimal elements exist.

Lemma 9.5.4. Every partial order on a nonempty finite set has a minimal element.

Proof. Let R be a strict partial order on a set, A. Define the weight of an element

a ∈ A to be |R {a}|—the number of elements in the set R {a}. Since A is finite, the

weights of all elements in A are nonnegative integers, so by well ordering, there

must be an a0 ∈ A with the smallest weight.

Now suppose |R {a0}| 6= 0. Then there is an element a1 ∈ R {a0}, which implies

(by transitivity ofR) thatR {a1} ⊆ R {a0}, and hence |R {a1}| ≤ |R {a0}|. But since

R is strict, a1 ∈ R {a0} − R {a1}, so in fact |R {a1}| < |R {a0}|, contradicting the

fact the a0 has the smallest weight.

This contradiction implies that |R {a0}| = 0, which means that no element is

related by R to a0, that is, a0 is minimal.

A similar argument works in the case that R is a weak partial order.

9.5. SCHEDULING 503

�

�

So our construction shows:

Theorem 9.5.5. Every partial order on a finite set has a topological sort.

There are many other ways of constructing topological sorts. For example, in-

stead of starting “from the bottom” with minimal elements, we could build a total

starting anywhere and simply keep putting additional elements into the total order

wherever they will fit. In fact, the domain of the partial order need not even be

finite: we won’t prove it, but all partial orders, even infinite ones, have topological

sorts.

9.5.2 Parallel Task Scheduling

For a partial order of task dependencies, topological sorting provides a way to

execute tasks one after another while respecting the dependencies. But what if we

have the ability to execute more than one task at the same time? For example, say

504 CHAPTER 9. PARTIAL ORDERS AND SCHEDULING

tasks are programs, the partial order indicates data dependence, and we have a

parallel machine with lots of processors instead of a sequential machine with only

one. How should we schedule the tasks? Our goal should be to minimize the total

time to complete all the tasks. For simplicity, let’s say all the tasks take one unit of

time, and all the processors are identical.

So, given a finite partially ordered set of tasks, how long does it take to do

them all, in an optimal parallel schedule? We can also use partial order concepts

to analyze this problem.

In the clothes example, we could do all the minimal elements first (leftsock,

rightsock, underwear, shirt), remove them and repeat. We’d need lots of hands,

or maybe dressing servants. We can do pants and sweater next, and then leftshoe,

rightshoe, and belt, and finally jacket.

In general, a schedule for performing tasks specifies which tasks to do at succes-

sive steps. Every task, a, has be scheduled at some step, and all the tasks that have

to be completed before task a must be scheduled for an earlier step.

9.5. SCHEDULING 505

Definition 9.5.6. A parallel schedule for a strict partial order, ≺, on a set, A, is a

partition3 of A into sets A0, A1, . . . , such that for all a, b ∈ A, k ∈ N,

[a ∈ Ak AND b ≺ a] IMPLIES b ∈ Aj for some j < k.

The set Ak is called the set of elements scheduled at step k, and the length of the

schedule is the number of sets Ak in the partition. The maximum number of el-

ements scheduled at any step is called the number of processors required by the

schedule.
3Partitioning a set, A, means “cutting it up” into non-overlapping, nonempty pieces. The pieces are

called the blocks of the partition. More precisely, a partition ofA is a setBwhose elements are nonempty

subsets of A such that

• if B,B′ ∈ B are different sets, then B ∩B′ = ∅, and

•
S
B∈B B = A.

506 CHAPTER 9. PARTIAL ORDERS AND SCHEDULING

So the schedule we chose above for clothes has four steps

A0 = {leftsock, rightsock, underwear, shirt} ,

A1 = {pants, sweater} ,

A2 = {leftshoe, rightshoe, belt} ,

A3 = {jacket} .

and requires four processors (to complete the first step).

Because you have to put on your underwear before your pants, your pants

before your belt, and your belt before your jacket, at least four steps are needed in

every schedule for getting dressed —if we used fewer than four steps, two of these

tasks would have to be scheduled at the same time. A set of tasks that must be

done in sequence like this is called a chain.

Definition 9.5.7. A chain in a partial order is a set of elements such that any two

different elements in the set are comparable. A chain is said to end at an its maxi-

mum element.

In general, the earliest step at which a task, a, can ever be scheduled must be

9.5. SCHEDULING 507

at least as large as any chain that ends at a. A largest chain ending at a is called a

critical path to a, and the size of the critical path is called the depth of a. So in any

possible parallel schedule, it takes at least depth (a) steps to complete task a.

There is a very simple schedule that completes every task in this minimum

number of steps. Just use a “greedy” strategy of performing tasks as soon as pos-

sible. Namely, schedule all the elements of depth k at step k. That’s how we found

the schedule for getting dressed given above.

EDITING NOTE:

For getting dressed, here is a picture of the schedule obtained in this way:

left sock right sock

left shoe right shoe belt

pants

underwear shirt

sweater

jacket

B1

B2

B3

B4

�

Theorem 9.5.8. Let ≺ be a strict partial order on a set, A. A minimum length schedule

508 CHAPTER 9. PARTIAL ORDERS AND SCHEDULING

for ≺ consists of the sets A0, A1, . . . , where

Ak ::= {a | depth (a) = k} .

We’ll leave to Problem ?? the proof that the sets Ak are a parallel schedule ac-

cording to Definition 9.5.6.

The minimum number of steps needed to schedule a partial order, ≺, is called

the parallel time required by ≺, and a largest possible chain in ≺ is called a critical

path for ≺. So we can summarize the story above by this way: with an unlimited

number of processors, the minimum parallel time to complete all tasks is simply

the size of a critical path:

Corollary 9.5.9. Parallel time = length of critical path.

9.6 Dilworth’s Lemma

Definition 9.6.1. An antichain in a partial order is a set of elements such that any

two elements in the set are incomparable.

For example, it’s easy to verify that each setAk is an antichain (see Problem ??).

9.6. DILWORTH’S LEMMA 509

So our conclusions about scheduling also tell us something about antichains.

Corollary 9.6.2. If the largest chain in a partial order on a set, A, is of size t, then A can

be partitioned into t antichains.

Proof. Let the antichains be the sets A2, A2, . . . , At. �

Corollary 9.6.2 implies a famous result4 about partially ordered sets:

Lemma 9.6.3 (Dilworth). For all t > 0, every partially ordered set with n elements must

have either a chain of size greater than t or an antichain of size at least n/t.

Proof. Suppose the largest chain is of size ≤ t. Then by Corollary 9.6.2, the n ele-

ments can be partitioned into at most t antichains. Let ` be the size of the largest

antichain. Since every element belongs to exactly one antichain, and there are at

most t antichains, there can’t be more than `t elements, namely, `t ≥ n. So there is

an antichain with at least ` ≥ n/t elements. �

4Lemma 9.6.3 also follows from a more general result known as Dilworth’s Theorem which we will

not discuss.

510 CHAPTER 9. PARTIAL ORDERS AND SCHEDULING

Corollary 9.6.4. Every partially ordered set with n elements has a chain of size greater

than
√
n or an antichain of size at least

√
n.

Proof. Set t =
√
n in Lemma 9.6.3. �

Example 9.6.5. In the dressing partially ordered set, n = 10.

Try t = 3. There is a chain of size 4.

Try t = 4. There is no chain of size 5, but there is an antichain of size 4 ≥ 10/4.

Example 9.6.6. Suppose we have a class of 101 students. Then using the product

partial order, Y , from Example 9.4.2, we can apply Dilworth’s Lemma to conclude

that there is a chain of 11 students who get taller as they get older, or an antichain

of 11 students who get taller as they get younger, which makes for an amusing

in-class demo.

9.6. DILWORTH’S LEMMA 511

9.6.1 Problems

Practice Problems

Class Problems

Homework Problems

512 CHAPTER 9. PARTIAL ORDERS AND SCHEDULING

Chapter 10

State Machines

State machines are an abstract model of step-by-step processes, and accordingly,

they come up in many areas of computer science. You may already have seen

them in a digital logic course, a compiler course, or a probability course.

513

514 CHAPTER 10. STATE MACHINES

10.1 Basic definitions

A state machine is really nothing more than a binary relation on a set, except that

the elements of the set are called “states,” the relation is called the transition relation,

and a pair (p, q) in the graph of the transition relation is called a transition. The

transition from state p to state q will be written p −→ q. The transition relation is

also called the state graph of the machine. A state machine also comes equipped

with a designated start state.

State machines used in digital logic and compilers usually have only a finite

number of states, but machines that model continuing computations typically have

an infinite number of states. In many applications, the states, and/or the transi-

tions have labels indicating input or output values, costs, capacities, or probabili-

ties, but for our purposes, unlabelled states and transitions are all we need.1

Example 10.1.1. A bounded counter, which counts from 0 to 99 and overflows at

1We do name states, as in Figure 10.1, so we can talk about them, but the names aren’t part of the

state machine.

10.1. BASIC DEFINITIONS 515

0 1 2 99 overflow

start
state

Figure 10.1: State transitions for the 99-bounded counter.

100. The transitions are pictured in Figure 10.1, with start state zero. This machine

isn’t much use once it overflows, since it has no way to get out of its overflow state.

Example 10.1.2. An unbounded counter is similar, but has an infinite state set. This

is harder to draw :-) .

Example 10.1.3. In the movie Die Hard 3: With a Vengeance, the characters played by

Samuel L. Jackson and Bruce Willis have to disarm a bomb planted by the diaboli-

cal Simon Gruber:

516 CHAPTER 10. STATE MACHINES

Simon: On the fountain, there should be 2 jugs, do you see them? A 5-

gallon and a 3-gallon. Fill one of the jugs with exactly 4 gallons of water

and place it on the scale and the timer will stop. You must be precise;

one ounce more or less will result in detonation. If you’re still alive in 5

minutes, we’ll speak.

Bruce: Wait, wait a second. I don’t get it. Do you get it?

Samuel: No.

Bruce: Get the jugs. Obviously, we can’t fill the 3-gallon jug with 4 gallons

of water.

Samuel: Obviously.

Bruce: All right. I know, here we go. We fill the 3-gallon jug exactly to the

top, right?

Samuel: Uh-huh.

Bruce: Okay, now we pour this 3 gallons into the 5-gallon jug, giving us

exactly 3 gallons in the 5-gallon jug, right?

Samuel: Right, then what?

Bruce: All right. We take the 3-gallon jug and fill it a third of the way...

Samuel: No! He said, “Be precise.” Exactly 4 gallons.

Bruce: Sh - -. Every cop within 50 miles is running his a - - off and I’m out

here playing kids games in the park.

Samuel: Hey, you want to focus on the problem at hand?

10.1. BASIC DEFINITIONS 517

Fortunately, they find a solution in the nick of time. We’ll let the reader work

out how.

The Die Hard series is getting tired, so we propose a final Die Hard Once and For

All. Here Simon’s brother returns to avenge him, and he poses the same challenge,

but with the 5 gallon jug replaced by a 9 gallon one.

We can model jug-filling scenarios with a state machine. In the scenario with a

3 and a 5 gallon water jug, the states will be pairs, (b, l) of real numbers such that

0 ≤ b ≤ 5, 0 ≤ l ≤ 3. We let b and l be arbitrary real numbers. (We can prove that

the values of b and l will only be nonnegative integers, but we won’t assume this.)

The start state is (0, 0), since both jugs start empty.

Since the amount of water in the jug must be known exactly, we will only con-

sider moves in which a jug gets completely filled or completely emptied. There are

several kinds of transitions:

1. Fill the little jug: (b, l) −→ (b, 3) for l < 3.

2. Fill the big jug: (b, l) −→ (5, l) for b < 5.

518 CHAPTER 10. STATE MACHINES

3. Empty the little jug: (b, l) −→ (b, 0) for l > 0.

4. Empty the big jug: (b, l) −→ (0, l) for b > 0.

5. Pour from the little jug into the big jug: for l > 0,

(b, l) −→


(b+ l, 0) if b+ l ≤ 5,

(5, l − (5− b)) otherwise.

6. Pour from big jug into little jug: for b > 0,

(b, l) −→


(0, b+ l) if b+ l ≤ 3,

(b− (3− l), 3) otherwise.

Note that in contrast to the 99-counter state machine, there is more than one

possible transition out of states in the Die Hard machine. Machines like the 99-

counter with at most one transition out of each state are called deterministic. The

Die Hard machine is nondeterministic because some states have transitions to sev-

eral different states.

Quick exercise: Which states of the Die Hard 3 machine have direct transitions

to exactly two states?

10.2. REACHABILITY AND PRESERVED INVARIANTS 519

10.2 Reachability and Preserved Invariants

The Die Hard 3 machine models every possible way of pouring water among the

jugs according to the rules. Die Hard properties that we want to verify can now

be expressed and proved using the state machine model. For example, Bruce’s

character will disarm the bomb if he can get to some state of the form (4, l).

A (possibly infinite) path through the state graph beginning at the start state

corresponds to a possible system behavior; such a path is called an execution of the

state machine. A state is called reachable if it appears in some execution. The bomb

in Die Hard 3 gets disarmed successfully because the state (4,3) is reachable.

A useful approach in analyzing state machine is to identify properties of states

that are preserved by transitions.

Definition 10.2.1. A preserved invariant of a state machine is a predicate, P , on

states, such that whenever P (q) is true of a state, q, and q −→ r for some state, r,

then P (r) holds.

520 CHAPTER 10. STATE MACHINES

The Invariant Principle

If a preserved invariant of a state machine is true for the start state,

then it is true for all reachable states.

The Invariant Principle is nothing more than the Induction Principle reformu-

lated in a convenient form for state machines. Showing that a predicate is true in

the start state is the base case of the induction, and showing that a predicate is a

preserved invariant is the inductive step.2

2Preserved invariants are commonly just called “invariants” in the literature on program correct-

ness, but we decided to throw in the extra adjective to avoid confusion with other definitions. For

example, another subject at MIT uses “invariant” to mean “predicate true of all reachable states.” Let’s

call this definition “invariant-2.” Now invariant-2 seems like a reasonable definition, since unreachable

states by definition don’t matter, and all we want to show is that a desired property is invariant-2. But

this confuses the objective of demonstrating that a property is invariant-2 with the method for show-

ing that it is. After all, if we already knew that a property was invariant-2, we’d have no need for an

Invariant Principle to demonstrate it.

10.2. REACHABILITY AND PRESERVED INVARIANTS 521

10.2.1 Die Hard Once and For All

Now back to Die Hard Once and For All. This time there is a 9 gallon jug instead

of the 5 gallon jug. We can model this with a state machine whose states and

transitions are specified the same way as for the Die Hard 3 machine, with all

occurrences of “5” replaced by “9.”

Now reaching any state of the form (4, l) is impossible. We prove this using the

Invariant Principle. Namely, we define the preserved invariant predicate, P (b, l),

to be that b and l are nonnegative integer multiples of 3. So P obviously holds for

the state state (0, 0).

To prove that P is a preserved invariant, we assume P (b, l) holds for some state

(b, l) and show that if (b, l) −→ (b′, l′), then P (b′, l′). The proof divides into cases,

according to which transition rule is used. For example, suppose the transition

followed from the “fill the little jug” rule. This means (b, l) −→ (b, 3). But P (b, l)

implies that b is an integer multiple of 3, and of course 3 is an integer multiple of

3, so P still holds for the new state (b, 3). Another example is when the transition

522 CHAPTER 10. STATE MACHINES

rule used is “pour from big jug into little jug” for the subcase that b + l > 3. Then

state is (b, l) −→ (b − (3 − l), 3). But since b and l are integer multiples of 3, so is

b− (3− l). So in this case too, P holds after the transition.

We won’t bother to crank out the remaining cases, which can all be checked

just as easily. Now by the Invariant Principle, we conclude that every reachable

state satisifies P . But since no state of the form (4, l) satisifies P , we have proved

rigorously that Bruce dies once and for all!

By the way, notice that the state (1,0), which satisfies NOT(P), has a transition to

(0,0), which satisfies P . So it’s wrong to assume that the complement of a preserved

invariant is also a preserved invariant.

10.2.2 A Robot on a Grid

There is a robot. It walks around on a grid, and at every step it moves diagonally

in a way that changes its position by one unit up or down and one unit left or right.

The robot starts at position (0, 0). Can the robot reach position (1, 0)?

To get some intuition, we can simulate some robot moves. For example, start-

10.2. REACHABILITY AND PRESERVED INVARIANTS 523

ing at (0,0) the robot could move northeast to (1,1), then southeast to (2,0), then

southwest to (1,-1), then southwest again to (0,-2).

Let’s model the problem as a state machine and then find a suitable invariant.

A state will be a pair of integers corresponding to the coordinates of the robot’s

position. State (i, j) has transitions to four different states: (i± 1, j ± 1).

The problem is now to choose an appropriate preserved invariant, P , that is

true for the start state (0, 0) and false for (1, 0). The Invariant Theorem then will

imply that the robot can never reach (1, 0). A direct attempt for a preserved invari-

ant is the predicate P (q) that q 6= (1, 0).

Unfortunately, this is not going to work. Consider the state (2, 1). Clearly

P (2, 1) holds because (2, 1) 6= (1, 0). And of course P (1, 0) does not hold. But

(2, 1) −→ (1, 0), so this choice of P will not yield a preserved invariant.

We need a stronger predicate. Looking at our example execution you might be

able to guess a proper one, namely, that the sum of the coordinates is even! If we

can prove that this is a preserved invariant, then we have proven that the robot

524 CHAPTER 10. STATE MACHINES

never reaches (1, 0) —because the sum 1 + 0 of its coordinates is odd, while the

sum 0 + 0 of the coordinates of the start state is even.

Theorem 10.2.2. The sum of the robot’s coordinates is always even.

Proof. The proof uses the Invariant Principle.

Let P (i, j) be the predicate that i+ j is even.

First, we must show that the predicate holds for the start state (0, 0). Clearly,

P (0, 0) is true because 0 + 0 is even.

Next, we must show that P is a preserved invariant. That is, we must show

that for each transition (i, j) −→ (i′, j′), if i + j is even, then i′ + j′ is even. But

i′ = i ± 1 and j′ = j ± 1 by definition of the transitions. Therefore, i′ + j′ is equal

to i+ j or i+ j ± 2, all of which are even. �

Corollary 10.2.3. The robot cannot reach (1, 0).

10.2. REACHABILITY AND PRESERVED INVARIANTS 525

Robert W. Floyd

The Invariant Principle was formulated by Robert Floyd at Carnegie Techa in 1967.

Floyd was already famous for work on formal grammars which transformed the

field of programming language parsing; that was how he got to be a professor

even though he never got a Ph.D. (He was admitted to a PhD program as a teenage

prodigy, but flunked out and never went back.)

In that same year, Albert R. Meyer was appointed Assistant Professor in the

Carnegie Tech Computer Science Department where he first met Floyd. Floyd and

Meyer were the only theoreticians in the department, and they were both delighted

to talk about their shared interests. After just a few conversations, Floyd’s new ju-

nior colleague decided that Floyd was the smartest person he had ever met.

Naturally, one of the first things Floyd wanted to tell Meyer about was his new,

as yet unpublished, Invariant Principle. Floyd explained the result to Meyer, and

Meyer wondered (privately) how someone as brilliant as Floyd could be excited

by such a trivial observation. Floyd had to show Meyer a bunch of examples be-

fore Meyer understood Floyd’s excitement —not at the truth of the utterly obvious

Invariant Principle, but rather at the insight that such a simple theorem could be

so widely and easily applied in verifying programs.

Floyd left for Stanford the following year. He won the Turing award —the “Nobel

prize” of computer science— in the late 1970’s, in recognition both of his work

on grammars and on the foundations of program verification. He remained at

Stanford from 1968 until his death in September, 2001. You can learn more about

Floyd’s life and work by reading the eulogy written by his closest colleague, Don

Knuth.

aThe following year, Carnegie Tech was renamed Carnegie-Mellon Univ.

http://courses.csail.mit.edu/6.042/spring10/floyd-eulogy-by-knuth.pdf

526 CHAPTER 10. STATE MACHINES

10.3 Sequential algorithm examples

10.3.1 Proving Correctness

Robert Floyd, who pioneered modern approaches to program verification, distin-

guished two aspects of state machine or process correctness:

1. The property that the final results, if any, of the process satisfy system re-

quirements. This is called partial correctness.

You might suppose that if a result was only partially correct, then it might

also be partially incorrect, but that’s not what he meant. The word “partial”

comes from viewing a process that might not terminate as computing a partial

function. So partial correctness means that when there is a result, it is correct,

but the process might not always produce a result, perhaps because it gets

stuck in a loop.

2. The property that the process always finishes, or is guaranteed to produce

some legitimate final output. This is called termination.

10.3. SEQUENTIAL ALGORITHM EXAMPLES 527

Partial correctness can commonly be proved using the Invariant Principle. Ter-

mination can commonly be proved using the Well Ordering Principle. We’ll illus-

trate Floyd’s ideas by verifying the Euclidean Greatest Common Divisor (GCD)

Algorithm.

10.3.2 The Euclidean Algorithm

The Euclidean algorithm is a three-thousand-year-old procedure to compute the

greatest common divisor, gcd(a, b) of integers a and b. We can represent this al-

gorithm as a state machine. A state will be a pair of integers (x, y) which we can

think of as integer registers in a register program. The state transitions are defined

by the rule

(x, y) −→ (y, remainder(x, y))

for y 6= 0. The algorithm terminates when no further transition is possible, namely

when y = 0. The final answer is in x.

We want to prove:

528 CHAPTER 10. STATE MACHINES

1. Starting from the state with x = a and y = b > 0, if we ever finish, then we

have the right answer. That is, at termination, x = gcd(a, b). This is a partial

correctness claim.

2. We do actually finish. This is a process termination claim.

Partial Correctness of GCD First let’s prove that if GCD gives an answer, it is a

correct answer. Specifically, let d ::= gcd(a, b). We want to prove that if the proce-

dure finishes in a state (x, y), then x = d.

Proof. Define the state predicate

P (x, y) ::= [gcd(x, y) = d and (x > 0 or y > 0)].

P holds for the start state (a, b), by definition of d and the requirement that b is

positive. Also, the preserved invariance of P follows immediately from

Lemma 10.3.1. For all m,n ∈ N such that n 6= 0,

gcd(m,n) = gcd(n, remainder(m,n)). (10.1)

10.3. SEQUENTIAL ALGORITHM EXAMPLES 529

Lemma 10.3.1 is easy to prove: let q be the quotient and r be the remainder of

m divided by n. Then m = qn+ r by definition. So any factor of both r and n will

be a factor of m, and similarly any factor of both m and n will be a factor of r. So

r, n and m,n have the same common factors and therefore the same gcd. Now by

the Invariant Principle, P holds for all reachable states.

Since the only rule for termination is that y = 0, it follows that if (x, y) is a

terminal state, then y = 0. If this terminal state is reachable, then the preserved

invariant holds for (x, y). This implies that gcd(x, 0) = d and that x > 0. We

conclude that x = gcd(x, 0) = d. �

Termination of GCD Now we turn to the second property, that the procedure

must terminate. To prove this, notice that y gets strictly smaller after any one tran-

sition. That’s because the value of y after the transition is the remainder of x di-

vided by y, and this remainder is smaller than y by definition. But the value of y is

always a nonnegative integer, so by the Well Ordering Principle, it reaches a mini-

mum value among all its values at reachable states. But there can’t be a transition

530 CHAPTER 10. STATE MACHINES

from a state where y has its minimum value, because the transition would decrease

y still further. So the reachable state where y has its minimum value is a state at

which no further step is possible, that is, at which the procedure terminates.

Note that this argument does not prove that the minimum value of y is zero,

only that the minimum value occurs at termination. But we already noted that the

only rule for termination is that y = 0, so it follows that the minimum value of y

must indeed be zero.

EDITING NOTE:

The Extended Euclidean Algorithm

An important fact about the gcd(a, b) is that it equals an integer linear combination

of a and b, that is,

gcd(a, b) = sa+ tb (10.2)

for some s, t ∈ Z. We’ll see some nice proofs of (10.2) later when we study Number

Theory, but now we’ll look at an extension of the Euclidean Algorithm that effi-

10.3. SEQUENTIAL ALGORITHM EXAMPLES 531

ciently, if obscurely, produces the desired s and t. It is presented here simply as

another example of application of the Invariant Method (plus, we’ll need a proce-

dure like this when we take up number theory based cryptography in a couple of

weeks).

Don’t worry if you find this Extended Euclidean Algorithm hard to follow, and you

can’t imagine where it came from. In fact, that’s good, because this will illustrate an im-

portant point: given the right preserved invariant, you can verify programs you don’t

understand.

In particular, given nonnegative integers x and y, with y > 0, we claim the

following procedure3 halts with registers S and T containing integers s and t satis-

fying (10.2).

Inputs: a, b ∈ N, b > 0.

Registers: X,Y,S,T,U,V,Q.

Extended Euclidean Algorithm:

X := a; Y := b; S := 0; T := 1; U := 1; V := 0;

3This procedure is adapted from Aho, Hopcroft, and Ullman’s text on algorithms.

532 CHAPTER 10. STATE MACHINES

loop:

if Y divides X, then halt

else

Q := quotient(X,Y);

;;the following assignments in braces are SIMULTANEOUS

{X := Y,

Y := remainder(X,Y);

U := S,

V := T,

S := U - Q * S,

T := V - Q * T};

goto loop;

Note that X,Y behave exactly as in the Euclidean GCD algorithm in Section 10.3.2,

except that this extended procedure stops one step sooner, ensuring that gcd(x, y)

is in Y at the end. So for all inputs x, y, this procedure terminates for the same

10.3. SEQUENTIAL ALGORITHM EXAMPLES 533

reason as the Euclidean algorithm: the contents, y, of register Y is a nonnegative

integer-valued variable that strictly decreases each time around the loop.

The following properties are preserved invariants that imply partial correct-

ness:

gcd(X,Y) = gcd(a, b), (10.3)

Sa+ Tb = Y, and (10.4)

Ua+ V b = X. (10.5)

To verify that these are preserved invariants, note that (10.3) is the same one

we observed for the Euclidean algorithm. To check the other two properties, let

x, y, s, t, u, v be the contents of registers X,Y,S,T,U,V at the start of the loop and

assume that all the properties hold for these values. We must prove that (10.4)

and (10.5) hold (we already know (10.3) does) for the new contents x′, y′, s′, t′, u′, v′

of these registers at the next time the loop is started.

Now according to the procedure, u′ = s, v′ = t, x′ = y, so (10.5) holds for

534 CHAPTER 10. STATE MACHINES

u′, v′, x′ because of (10.4) for s, t, y. Also,

s′ = u− qs, t′ = v − qt, y′ = x− qy

where q = quotient(x, y), so

s′a+ t′b = (u− qs)a+ (v − qt)b = ua+ vb− q(sa+ tb) = x− qy = y′,

and therefore (10.4) holds for s′, t′, y′.

Also, it’s easy to check that all three preserved invariants are true just before

the first time around the loop. Namely, at the start:

X = a, Y = b, S = 0, T = 1 so

Sa+ Tb = 0a+ 1b = b = Y confirming (10.4).

Also,

U = 1, V = 0, so

Ua+ V b = 1a+ 0b = a = X confirming (10.5).

Now by the Invariant Principle, they are true at termination. But at termination,

the contents, Y , of register Y divides the contents, X , of register X, so preserved

10.3. SEQUENTIAL ALGORITHM EXAMPLES 535

invariants (10.3) and (10.4) imply

gcd(a, b) = gcd(X,Y) = Y = Sa+ Tb.

So we have the gcd in register Y and the desired coefficients in S, T.

Now we don’t claim that this verification offers much insight. In fact, if you’re

not wondering how somebody came up with this concise program and invariant,

you:

• are blessed with an inspired intellect allowing you to see how this program

and its invariant were devised,

• have lost interest in the topic, or

• haven’t read this far.

If none of the above apply to you, we can offer some reassurance by repeating that

you’re not expected to understand this program. �

We’ve already observed that a preserved invariant is really just an induction

hypothesis. As with induction, finding the right hypothesis is usually the hard

536 CHAPTER 10. STATE MACHINES

part. We repeat:

Given the right preserved invariant, it can be easy to verify a program

even if you don’t understand it.

We expect that the Extended Euclidean Algorithm presented above illustrates this

point.

10.4 Derived Variables

The preceding termination proofs involved finding a nonnegative integer-valued

measure to assign to states. We might call this measure the “size” of the state.

We then showed that the size of a state decreased with every state transition. By

the Well Ordering Principle, the size can’t decrease indefinitely, so when a mini-

mum size state is reached, there can’t be any transitions possible: the process has

terminated.

More generally, the technique of assigning values to states —not necessarily

nonnegative integers and not necessarily decreasing under transitions— is often

10.4. DERIVED VARIABLES 537

useful in the analysis of algorithms. Potential functions play a similar role in physics.

In the context of computational processes, such value assignments for states are

called derived variables.

For example, for the Die Hard machines we could have introduced a derived

variable, f : states → R, for the amount of water in both buckets, by setting

f((a, b))::=a+b. Similarly, in the robot problem, the position of the robot along the

x-axis would be given by the derived variable x-coord, where x-coord((i, j)) ::= i.

We can formulate our general termination method as follows:

Definition 10.4.1. Let ≺ be a strict partial order on a set, A. A derived variable

f : states → A is strictly decreasing iff

q −→ q′ implies f(q′) ≺ f(q).

We confirmed termination of the GCD and Extended GCD procedures by find-

ing derived variables, y and Y, respectively, that were nonnegative integer-valued

and strictly decreasing. We can summarize this approach to proving termination

as follows:

538 CHAPTER 10. STATE MACHINES

Theorem 10.4.2. If f is a strictly decreasing N-valued derived variable of a state machine,

then the length of any execution starting at state q is at most f(q).

Of course we could prove Theorem 10.4.2 by induction on the value of f(q), but

think about what it says: “If you start counting down at some nonnegative integer

f(q), then you can’t count down more than f(q) times.” Put this way, it’s obvious.

10.4.1 Weakly Decreasing Variables

In addition being strictly decreasing, it will be useful to have derived variables

with some other, related properties.

Definition 10.4.3. Let � be a weak partial order on a set, A. A derived variable

f : Q→ A is weakly decreasing iff

q −→ q′ implies f(q′) � f(q).

Strictly increasing and weakly increasing derived variables are defined similarly.4

4Weakly increasing variables are often also called nondecreasing. We will avoid this terminology to

prevent confusion between nondecreasing variables and variables with the much weaker property of

not being a decreasing variable.

10.4. DERIVED VARIABLES 539

EDITING NOTE:

Well-founded termination

There are cases where it’s easier to prove termination based on more general par-

tial orders than “less-than” on N. Termination is guaranteed whenever there is a

derived variable that strictly decreases with respect to any well-founded partial

order.

We now define some other useful flavors of derived variables taking values

over partial ordered sets. We’ll use the notational convention that when≺ denotes

a strict partial order on some set, then � is the corresponding weak partial order

a � a′ ::= a ≺ a′ ∨ a = a′.

Definition 10.4.4. Let ≺ be a strict partial order on a set, A. A derived variable

f : Q→ A is strictly decreasing with respect to ≺ iff

q −→ q′ implies f(q′) ≺ f(q).

540 CHAPTER 10. STATE MACHINES

Also, f is weakly decreasing iff

q −→ q′ implies f(q′) � f(q).

where � is the weak partial order corresponding to ≺, namely,

[a1 � a2] ::= [(a1 ≺ a2) or (a1 = a2)].

Strictly increasing and weakly increasing derived variables are defined similarly.5

Theorem 10.4.5. If there exists a derived variable for a state machine that is strictly de-

creasing with respect to some well-founded partial order, then every execution terminates.

Theorem 10.4.5 follows immediately from the observation in Notes 3 that a

well-founded partial order has no infinite decreasing sequences.

Note that the existence of a nonnegative integer-valued weakly decreasing de-

rived variable does not guarantee that every execution terminates. That’s because

an infinite execution could proceed through states in which a weakly decreasing

5Weakly increasing variables are often also called nondecreasing. We will avoid this terminology to

prevent confusion between nondecreasing variables and variables with the much weaker property of

not being a decreasing variable.

http://courses.csail.mit.edu/6.042/spring08/ln3.pdf#infinite.decreasing

10.4. DERIVED VARIABLES 541

variable remained constant.

A Southeast Jumping Robot

Here’s a contrived but simple example of proving termination based on a variable

that is strictly decreasing over a well-founded order. Let’s think about a robot

positioned at an integer lattice-point in the Northeast quadrant of the plane, that

is, at (x, y) ∈ N2.

At every second when it is away from the origin, (0, 0), the robot must make a

move, which may be

• a unit distance West when it is not at the boundary of the Northeast quadrant

(that is, (x, y) −→ (x− 1, y) for x > 0), or

• a unit distance South combined with an arbitrary jump East (that is, (x, y) −→

(z, y − 1) for z ≥ x).

Claim 10.4.6. The robot will always get stuck at the origin.

If we think of the robot as a nondeterministic state machine, then Claim 10.4.6 is

542 CHAPTER 10. STATE MACHINES

a termination assertion. The Claim may seem obvious, but it really has a different

character than termination based on nonnegative integer-valued variables. That’s

because, even knowing that the robot is at position (0, 1), for example, there is no

way to bound the time it takes for the robot to get stuck. It can delay getting stuck

for as many seconds as it wants by making its next move to a distant point in the

Far East. This rules out proving termination using Theorem 10.4.2.

So does Claim 10.4.6 still seem obvious?

Well it is if you see the trick: if we reverse the coordinates, then every robot

move goes to a position that is smaller under lexicographic order. More pre-

cisely, let f : N2 → N2 be the derived variable mapping a robot state —its posi-

tion (x, y) —to (y, x) ∈ N2. Now (x, y) −→ (x′, y′) is a legitimate robot move iff

f((x′, y′)) ≺lex f((x, y)). In particular, f is a strictly ≺lex-decreasing derived vari-

able, so Theorem 10.4.5 proves that the robot always get stuck as claimed. �

10.5. THE ALTERNATING BIT PROTOCOL 543

10.4.2 Problems

Homework Problems

Class Problems

10.5 The Alternating Bit Protocol

EDITING NOTE: Lynch Notes S07.H11-sm �

The Alternating Bit Protocol is a well-known two-process communication pro-

tocol that achieves reliable FIFO communication over unreliable channels. The un-

reliable channels may lose or duplicate messages, but are assumed not to reorder

them. We’ll use the Invariant Method to verify that the Protocol

The Protocol allows a Sender process to send a sequence of messages from a

message alphabet, M , to a Receiver process. It works as follows.

Sender repeatedly sends the rightmost message in its outgoing-queue of mes-

sages, tagged with a tagbit that is initially 1. When Receiver receives this tagged

message, it sets its ackbit to be the message tag 1, and adds the message to the

544 CHAPTER 10. STATE MACHINES

lefthand end of its received-msgs list. Then as an acknowledgement, Receiver

sends back ackbit 1 repeatedly. When Sender gets this acknowledgement bit, it

deletes the rightmost outgoing message in its queue, sets its tagbit to 0, and begins

sending the new rightmost outgoing message, tagged with tagbit.

Receiver, having already accepted the message tagged with ackbit 1, ignores

subsequent messages with tag 1, and waits until it sees the first message with tag

0; it adds this message to the lefthand side of its received-msgs list, sets ackbit to

0 and acknowledges repeatedly with with ackbit 0. Sender now waits till it gets

acknowledgement bit 0, then goes on to send the next outgoing message with tag

1. In this way, it alternates use of the tags 1 and 0 for successive messages.

We claim that this causes Sender to receive suffix original outgoing-msgs queue.

That is, at any stage in the process when the the outgoing-msgs

(The fact that Sender actually outputs the entire outgoing queuee is a liveness

claim —liveness properties are a generalization of termination properties. We’ll

ignore this issue for now.)

10.5. THE ALTERNATING BIT PROTOCOL 545

We formalize the description above as a state whose states consist of:

outgoing-msgs, a finite sequence of M , whose initial value is called all-msgs

tagbit ∈ {0, 1}, initially 1

received-msgs, a finite sequence of M , initially empty

ackbit(∈ {0, 1}, initially 0

msg-channel, a finite sequence of M × {0, 1}, initially empty,

ack-channel, a finite sequence of {0, 1}, initially empty

The transitions are:

SEND: (a) action: send-msg(m, b)

precondition: m = rightend(outgoing-msgs) AND b = tagbit

effect: add (m, b) to the lefthand end of msg-channel, any number ≥ 0

of times

(b) action: send-ack(b)

546 CHAPTER 10. STATE MACHINES

precondition: b = ackbit

effect: add b to the righthand end of ack-channel, any number ≥ 0 of

times

RECEIVE: (a) action: receive-msg(m, b)

precondition: (m, b) = rightend(msg-channel)

effect: remove rightend of msg-channel;

if b 6= ackbit, then [addm to the lefthand end of receive-msgs; ackbit :=

b.]

(b) action: receive-ack(b)

precondition: b = leftend(ack-channel()

effect: remove leftend of ack-channel.

if b = tagbit, then [remove rightend of outgoing-msgs (if nonempty);

tagbit := tagbit]

10.5. THE ALTERNATING BIT PROTOCOL 547

Our goal is to show that when tagbit 6= ackbit, then

outgoing-queue · received-msgs = all-msgs. (10.6)

This requires three auxiliary invariants. For the first of these, we need a defini-

tion.

Let tag-sequence be the sequence consisting of bits in ack-channel, in right-to-

left order, followed by tagbit, followed by the tag components of the elements of

msg-channel, in left-to-right order, followed by ackbit.

Property 2: tag-sequence consists of one of the following:

1. All 0’s.

2. All 1’s.

3. A positive number of 0’s followed by a positive number of 1’s.

4. A positive number of 1’s followed by a positive number of 0’s.

548 CHAPTER 10. STATE MACHINES

What is being ruled out by these four cases is the situation where the sequence

contains more than one switch of tag value.

The fact that Property 2 is an invariant can be proved easily by induction. We

also need:

Property 3: If (m, tag) is in msg-channel then m = rightend(outgoing-queue).

Proof. (That Property 3 is an invariant)

By induction, using Property 2.

Base: Obvious, since no message is in the channel initially.

Inductive step: It is easy to see that the property is preserved by sendm,b, which

adds new messages to channel1,2. The only other case that could cause a problem

is receive(b)2,1, which could cause tag1 to change when there is another message

already in channel1,2 with the same tag. But this can’t happen, by Property 2

applied before the step – since the incoming tag g must be equal to tag1 in this

case, all the tags in tag-sequence must be the same. �

10.5. THE ALTERNATING BIT PROTOCOL 549

Finally, we need that the following counterpart to (10.6): when tagbit = ackbit,

then

lefttail(outgoing-queue) · received-msgs = all-msgs, (10.7)

where lefttail(outgoing-queue) all but the rightmost message, if any, in outgoing-

queue.

Property 4, part 2, easily implies the goal Property 1. It also implies that work-buf2

is always nonempty when receive(b)2,1 occurs with equal tags; therefore, the par-

enthetical check in the code always works out to be true.

Proof. (That Property 4 is an invariant)

By induction. Base: In an initial state, the tags are unequal, work-buf1 = buf1

and buf2 is empty. This suffices to show part 1. part 2 is vacuous.

Inductive step: When a send occurs, the tags and buffers are unchanged, so the

truth of the invariants must be preserved. It remains to consider receive events.

receive(m, b)1,2:

If b = tag2, nothing happens, so the invariants are preserved. So suppose that

550 CHAPTER 10. STATE MACHINES

b 6= tag2. Then Property 2 implies that b = tag1, and then Property 3 implies that

m is the first message on work-buf1. The effect of the transition is to change tag2

to make it equal to tag1, and to replicate the first element of work-buf221 at the

end of buf2.

The inductive hypothesis implies that, before the step, buf2 · work-buf1 =

buf1. The changes caused by the step imply that, after the step, tag1 = tag2,

work-buf1 and buf2 are nonempty, head(work-buf1) = last(buf2), and buf2 ·

tail(work-buf1) = buf1. This is as needed.

receive(b)2,1:

The argument is similar to the one for receive(m, b)1,2. If b 6= tag1, nothing hap-

pens so the invariants are preserved. So suppose that b = tag1. Then Property 2

implies that b = tag2, and the step changes tag1 to make it unequal to tag442. The

step also removes the first element of work-buf1. The inductive hypothesis im-

plies that, before the step, work-buf1 and buf2 are nonempty, head(work-buf1) =

last(buf2), and buf2 · tail(work-buf1) = buf1. The changes caused by the step

10.6. REASONING ABOUT WHILE PROGRAMS 551

imply that, after the step, tag1 6= tag2 and buf2 · work-buf1 = buf1. This is as

needed. �

10.6 Reasoning About While Programs

Real programs and programming languages are often huge and complicated, mak-

ing them hard to model and even harder to reason about. Still, making programs

“reasonable” is a crucial aspect of software engineering. In this section we’ll illus-

trate what it means to have a clean mathematical model of a simple programming

language and reasoning principles that go with it —if only real programming lan-

guages allowed for such simple, accurate modeling.

10.6.1 While Programs

The programs we’ll study are called “while programs.” We can define them as a

recursive data type:

Definition 10.6.1.

552 CHAPTER 10. STATE MACHINES

base cases:

• x :=e is a while program, called an assignment statement, where x is a variable

and e is an expression.

• Done is a while program.

constructor cases: If C and D are while programs, and T is a test, then the

following are also while programs:

• C;D —called the sequencing of C and D,

• if T then C else D —called a conditional with test, T , and branches, C and D,

• while T do C od —called a while loop with test, T , and body, C.

For simplicity we’ll stick to while programs operating on integers. So by ex-

pressions we’ll mean any of the familiar integer valued expressions involving in-

teger constants and operations such as addition, multiplication, exponentiation,

quotient or remainder. As tests, we’ll allow propositional formulas built from ba-

sic formulas of the form e ≤ f where e and f are expressions. For example, here is

10.6. REASONING ABOUT WHILE PROGRAMS 553

the Euclidean algorithm for gcd(a, b) expressed as a while program.

x := a;

y := b;

while y 6= 0 do

t := y;

y := rem(x, y);

x := t od

10.6.2 The While Program State Machine

A while program acts as a pure command: it is run solely for its side effects on

stored data and it doesn’t return a value. The data consists of integers stored as

the values of variables, namely environments:

Definition 10.6.2. An environment is a total function from variables to integers. Let

Env be set of all environments.

554 CHAPTER 10. STATE MACHINES

So if ρ is an environment and x is a variable, then ρ(x) is an integer. More

generally, the environment determines the integer value of each expression, e, and

the truth value of each test, T . We can think of an expression, e as defining a

function [[e]] : Env → Z, and refer to this function, [[e]] as the meaning of e, and

likewise for tests.

It’s standard in programming language theory to write [[e]]ρ as shorthand for

[[e]](ρ), that is, applying the meaning, [[e]], of e to ρ. For example, if ρ(x) = 4, and

ρ(y) = −2, then

[[x2 + y− 3]]ρ = ρ(x)2 + ρ(y)− 3 = 11. (10.8)

Executing a program causes a succession of changes to the environment6 which

may continue until the program halts. Actually the only command which immedi-

ately alters the environment is an assignment command. Namely, the effect of the

command

x := e

6More sophisticated programming models distinguish the environment from a store which is af-

fected by commands, but this distinction is unnecessary for our purposes.

10.6. REASONING ABOUT WHILE PROGRAMS 555

on an environment is that the value assigned to the variable x is changed to the

value of e in the original environment. We can say this precisely and concisely

using the following notation: f [a← b] is a function that is the same as the function,

f , except that when applied to element a its value is b. Namely,

Definition 10.6.3. If f : A→ B is a function and a, b are arbitrary elements, define

f [a← b]

to be the function g such that

g(u) =


b if u = a.

f(u) otherwise.

Now we can specify the step-by-step execution of a while program as a state

machine, where the states of the machine consist of a while program paired with

an environment. The transitions of this state machine are defined recursively on

the definition of while programs.

Definition 10.6.4. The transitions 〈C, ρ〉 −→ 〈D, ρ′〉 of the while program state

machine are defined as follows:

556 CHAPTER 10. STATE MACHINES

base cases:

〈x := e, ρ〉 −→ 〈Done, ρ[x← [[e]]ρ]〉

constructor cases: If C and D are while programs, and T is a test, then:

• if 〈C, ρ〉 −→ 〈C ′, ρ′〉, then

〈C;D, ρ〉 −→ 〈C ′;D, ρ′〉 .

Also,

〈Done;D, ρ〉 −→ 〈D, ρ〉 .

• if [[T]]ρ = T, then

〈if T then C else D, ρ〉 −→ 〈C, ρ〉 ,

or if [[T]]ρ = F, then

〈if T then C else D, ρ〉 −→ 〈D, ρ〉 .

• if [[T]]ρ = T, then

〈while T do C od, ρ〉 −→ 〈C;while T do C od, ρ〉

10.6. REASONING ABOUT WHILE PROGRAMS 557

or if [[T]]ρ = F, then

〈while T do C od, ρ〉 −→ 〈Done, ρ〉 .

Now while programs are probably going to be the simplest kind of programs

you will ever see, but being condescending about them would be a mistake. It

turns that every function on nonnegative integers that can be computed by any program

on any machine whatsoever can also be computed by while programs (maybe

more slowly). We can’t take the time to explain how such a sweeping claim can be

justified, but you can find out by taking a course in computability theory such as

6.045 or 6.840.

10.6.3 Denotational Semantics

The net effect of starting a while program in some environment is reflected in the

final environment when the program halts. So we can think of a while program,

C, aas defining a function, [[C]] : Env→ Env, from initial environments to environ-

ments at halting. The function [[C]] is called the meaning of C.

558 CHAPTER 10. STATE MACHINES

[[C]] of a while program, C to be a partial function from Env to Env mapping

an initial environment to the final halting environment.

We’ll need one bit of notation first. For any function f : S → S, let f (n) be the

composition of f with itself n times where n ∈ N. Namely,

f (0) ::= IdS

f (n+1) ::= f ◦ f (n),

where “◦” denotes functional composition.

The recursive definition of the meaning of a program follows the definition of

the while program recursive data type.

Definition 10.6.5. base cases:

• [[x := e]] is the function from Env to Env defined by the rule:

[[x := e]]ρ ::= ρ[x← [[e]]ρ].

•

[[Done]] ::= IdEnv

10.6. REASONING ABOUT WHILE PROGRAMS 559

where IdEnv is the identity function on Env. In other words, [[Done]]ρ ::= ρ.

constructor cases: If C and D are while programs, and T is a test, then:

•

[[C;D]] ::= [[D]] ◦ [[C]]

That is,

[[C;D]]ρ ::= [[D]]([[C]]ρ).

•

[[if T then C else D]]ρ ::=


[[C]]ρ if [[T]]ρ = T

[[D]]ρ if [[T]]ρ = F.

•

[[while T do C od]]ρ ::= [[C]](n)ρ

where n is the least nonnegative integer such that [[T]]([[C]](n)ρ) = F. (If there

is no such n, then [[while T do C od]]ρ is undefined.)

We can use the denotational semantics of while programs to reason about

while programs using structural induction on programs, and this is often much

560 CHAPTER 10. STATE MACHINES

simpler than reasoning about them using induction on the number of steps in an

execution. This is OK as long as the denotational semantics accurately captures

the state machine behavior. In particular, using the notation −→∗ for the transitive

closure of the transition relation:

Theorem 10.6.6.

〈C, ρ〉 −→∗ 〈Done, ρ′〉 iff [[C]]ρ = ρ′

Theorem 10.6.6 can be proved easily by induction; it appear in Problem??.

10.6.4 Problems

Homework Problems

10.6.5 Logic of Programs

A typical program specification describes the kind of inputs and environments the

program should handle, and then describes what should result from an execution.

The specification of the inputs or initial environment is called the precondition for

program execution, and the prescription of what the result of execution should be

10.6. REASONING ABOUT WHILE PROGRAMS 561

is called the postcondition. So if P is a logical formula expressing the precondition

for a program, C, and likewise Q expresses the postcondition, the specification

requires that

If P holds when C is started, then Q will hold if and when C halts.

We’ll express this requirement as a formula

P {C} Q

called a partial correctness assertion.

For example, ifE is while program above for the Euclidean algorithm, then the

partial correctness of E can be expressed as

(a, b ∈ N AND x 6= 0) {C} (x = gcd(a, b)) . (10.9)

More precisely, notice that just as the value of an expression in an environment

is an integer, the value of a logical formula in an environment is a truth value. For

562 CHAPTER 10. STATE MACHINES

example, if ρ(x) = 4, and ρ(y) = −2, then by (10.8), [[x2 + y− 3]]ρ = 11, so

[[∃z. z > 4 AND x2 + y− 3 = z]]ρ = T,

[[∃z. z > 13 AND x2 + y− 3 = z]]ρ = F.

Definition 10.6.7. For logical formulas P andQ, and while program, C, the partial

correctness assertion

P {C} Q

is true proving that for all environments, rho, if [[P]]ρ is true, and 〈C, ρ〉 −→∗

〈Done, ρ′〉 for some ρ′, then [[Q]]ρ′ is true.

In the 1970’, Univ. Dublin formulated a set of inference rules for proving partial

correctness formulas. These rules are known as Hoare Logic.

The first rule captures the fact that strengthening the preconditions and weak-

ening the postconditions makes a partial correctness specification easier to satisfy:

P IMPLIES R, R {C} S, S IMPLIES Q
P {C} Q

10.6. REASONING ABOUT WHILE PROGRAMS 563

The rest of the logical rules follow the recursive definition of while programs.

There are axioms for the base case commands:

P (x) {x := e} P (e)
P {Done} P,

and proof rules for the constructor cases:

•

P {C} Q AND Q {D} R
P {C;D} R

•

P AND T {C} Q
P AND T {if T then C else D} Q AND T

•

P AND T {C} P
P {while T do C od} P AND NOT(T)

Example 10.6.8. Proof of partial correctness (10.9) for the Euclidean algorithm.

EDITING NOTE: TBA - Brief discussion of “relative completeness”. �

564 CHAPTER 10. STATE MACHINES

Part III

Counting

565

Chapter 11

Sums & Asymptotics

EDITING NOTE:

Closed Forms and Approximations

Sums and products arise regularly in the analysis of algorithms and in other tech-

nical areas such as finance and probabilistic systems. For example, we used Well

Ordering to prove in Theorem 3.2.1 that

567

568 CHAPTER 11. SUMS & ASYMPTOTICS

n∑
i=1

i =
n(n+ 1)

2
. (11.1)

The simple closed form expression n(n + 1)/2 makes the sum a lot easier to under-

stand and evaluate. But the proof of equation (11.1) by Well Ordering does not

explain where it came from in the first place. In Section 11.3, we’ll discuss ways

to find such closed forms. Even when there are no closed forms exactly equal to a

sum, we may still be able to find a closed form that approximates a sum with useful

accuracy.

The product we focus on in this chapter is the familiar factorial:

n! ::= 1 · 2 · · · (n− 1) · n =
n∏
i=1

i.

We’ll describe a closed form approximation for it called Stirling’s Formula.

Finally, when there isn’t a good closed form approximation for some expres-

sion, there may still be a closed form that characterizes its growth rate. We’ll intro-

duce asymptotic notation, such as “big Oh”, to describe growth rates. �

11.1. THE VALUE OF AN ANNUITY 569

11.1 The Value of an Annuity

Would you prefer a million dollars today or $50,000 a year for the rest of your life?

On the one hand, instant gratification is nice. On the other hand, the total dollars

received at $50K per year is much larger if you live long enough.

Formally, this is a question about the value of an annuity. An annuity is a finan-

cial instrument that pays out a fixed amount of money at the beginning of every

year for some specified number of years. In particular, an n-year, m-payment an-

nuity pays m dollars at the start of each year for n years. In some cases, n is finite,

but not always. Examples include lottery payouts, student loans, and home mort-

gages. There are even Wall Street people who specialize in trading annuities.

A key question is what an annuity is worth. For example, lotteries often pay

out jackpots over many years. Intuitively, $50, 000 a year for 20 years ought to be

worth less than a million dollars right now. If you had all the cash right away, you

could invest it and begin collecting interest. But what if the choice were between

$50, 000 a year for 20 years and a half million dollars today? Now it is not clear

570 CHAPTER 11. SUMS & ASYMPTOTICS

which option is better.

In order to answer such questions, we need to know what a dollar paid out

in the future is worth today. To model this, let’s assume that money can be in-

vested at a fixed annual interest rate p. We’ll assume an 8% rate1 for the rest of the

discussion.

Here is why the interest rate p matters. Ten dollars invested today at interest

rate p will become (1 + p) · 10 = 10.80 dollars in a year, (1 + p)2 · 10 ≈ 11.66 dollars

in two years, and so forth. Looked at another way, ten dollars paid out a year from

now are only really worth 1/(1+p)·10 ≈ 9.26 dollars today. The reason is that if we

had the $9.26 today, we could invest it and would have $10.00 in a year anyway.

Therefore, p determines the value of money paid out in the future.

1U.S. interest rates have dropped steadily for several years, and ordinary bank deposits now earn

around 1.5%. But just a few years ago the rate was 8%; this rate makes some of our examples a little

more dramatic. The rate has been as high as 17% in the past thirty years.

In Japan, the standard interest rate is near zero%, and on a few occasions in the past few years has

even been slightly negative. It’s a mystery why the Japanese populace keeps any money in their banks.

11.1. THE VALUE OF AN ANNUITY 571

11.1.1 The Future Value of Money

So for an n-year, m-payment annuity, the first payment of m dollars is truly worth

m dollars. But the second payment a year later is worth only m/(1 + p) dollars.

Similarly, the third payment is worth m/(1 + p)2, and the n-th payment is worth

only m/(1 + p)n−1. The total value, V , of the annuity is equal to the sum of the

payment values. This gives:

V =
n∑
i=1

m

(1 + p)i−1

= m ·
n−1∑
j=0

(
1

1 + p

)j
(substitute j ::= i− 1)

= m ·
n−1∑
j=0

xj (substitute x =
1

1 + p
). (11.2)

The summation in (11.2) is a geometric sum that has a closed form, making the

evaluation a lot easier, namely2,

n−1∑
i=0

xi =
1− xn

1− x
. (11.3)

(The phrase “closed form” refers to a mathematical expression without any sum-

mation or product notation.)
2To make this equality hold for x = 0, we adopt the convention that 00 ::= 1.

572 CHAPTER 11. SUMS & ASYMPTOTICS

Equation (11.3) was proved by induction in Problem ??, but, as is often the case,

the proof by induction gave no hint about how the formula was found in the first

place. So we’ll take this opportunity to explain where it comes from. The trick is

to let S be the value of the sum and then observe what −xS is:

S = 1 +x +x2 +x3 + · · · +xn−1

−xS = −x −x2 −x3 − · · · −xn−1 − xn.

Adding these two equations gives:

S − xS = 1− xn,

so

S =
1− xn

1− x
.

We’ll look further into this method of proof in a few weeks when we introduce

generating functions in Chapter 16.

11.1. THE VALUE OF AN ANNUITY 573

11.1.2 Closed Form for the Annuity Value

So now we have a simple formula for V , the value of an annuity that paysm dollars

at the start of each year for n years.

V = m
1− xn

1− x
(by (11.2) and (11.3)) (11.4)

= m
1 + p− (1/(1 + p))n−1

p
(x = 1/(1 + p)). (11.5)

The formula (11.5) is much easier to use than a summation with dozens of terms.

For example, what is the real value of a winning lottery ticket that pays $50, 000

per year for 20 years? Plugging in m = $50, 000, n = 20, and p = 0.08 gives

V ≈ $530, 180. So because payments are deferred, the million dollar lottery is

really only worth about a half million dollars! This is a good trick for the lottery

advertisers!

11.1.3 Infinite Geometric Series

The question we began with was whether you would prefer a million dollars today

or $50, 000 a year for the rest of your life. Of course, this depends on how long you

574 CHAPTER 11. SUMS & ASYMPTOTICS

live, so optimistically assume that the second option is to receive $50, 000 a year

forever. This sounds like infinite money! But we can compute the value of an

annuity with an infinite number of payments by taking the limit of our geometric

sum in (11.3) as n tends to infinity.

Theorem 11.1.1. If |x| < 1, then

∞∑
i=0

xi =
1

1− x
.

Proof.

∞∑
i=0

xi ::= lim
n→∞

n−1∑
i=0

xi

= lim
n→∞

1− xn

1− x
(by (11.3))

=
1

1− x
.

The final line follows from that fact that limn→∞ xn = 0 when |x| < 1. �

11.1. THE VALUE OF AN ANNUITY 575

In our annuity problem, x = 1/(1 + p) < 1, so Theorem 11.1.1 applies, and we

get

V = m ·
∞∑
j=0

xj (by (11.2))

= m · 1
1− x

(by Theorem 11.1.1)

= m · 1 + p

p
(x = 1/(1 + p)).

Plugging in m = $50, 000 and p = 0.08, the value, V , is only $675, 000. Amazingly,

a million dollars today is worth much more than $50, 000 paid every year forever!

Then again, if we had a million dollars today in the bank earning 8% interest, we

could take out and spend $80, 000 a year forever. So on second thought, this answer

really isn’t so amazing.

EDITING NOTE:

Examples

We now have closed form formulas for geometric sums and series. Some exam-

ples are given below. In each case, the solution follows immediately from either

576 CHAPTER 11. SUMS & ASYMPTOTICS

equation (11.3) (for finite sums) or Theorem 11.1.1 (for infinite series).

1 + 1/2 + 1/4 + 1/8 + · · · =
∞∑
i=0

(1/2)i =
1

1− (1/2)
= 2 (11.6)

0.999999999 . . . = 0.9
∞∑
i=0

(1/10)i = 0.9
1

1− 1/10
= 0.9

10
9

= 1 (11.7)

1− 1/2 + 1/4− 1/8 + · · · =
∞∑
i=0

(−1/2)i =
1

1− (−1/2)
= 2/3 (11.8)

1 + 2 + 4 + 8 + · · ·+ 2n−1 =
n−1∑
i=0

2i =
1− 2n

1− 2
= 2n − 1 (11.9)

1 + 3 + 9 + 27 + · · ·+ 3n−1 =
n−1∑
i=0

3i =
1− 3n

1− 3
=

3n − 1
2

(11.10)

If the terms in a geometric sum or series grow smaller, as in equation (11.6), then

the sum is said to be geometrically decreasing. If the terms in a geometric sum grow

progressively larger, as in (11.9) and (11.10), then the sum is said to be geometrically

increasing.

Here is a good rule of thumb: a geometric sum or series is approximately equal to

the term with greatest absolute value. In equations (11.6) and (11.8), the largest term is

equal to 1 and the sums are 2 and 2/3, both relatively close to 1. In equation (11.9),

the sum is about twice the largest term. In the final equation (11.10), the largest

term is 3n−1 and the sum is (3n − 1)/2, which is only about a factor of 1.5 greater.

11.1. THE VALUE OF AN ANNUITY 577

Related Sums

We now know all about geometric sums. But in practice one often encounters sums

that cannot be transformed by simple variable substitutions to the form
∑
xi.

A non-obvious, but useful way to obtain new summation formulas from old

is by differentiating or integrating with respect to x. As an example, consider the

following sum:

n∑
i=1

ixi = x+ 2x2 + 3x3 + · · ·+ nxn

This is not a geometric sum, since the ratio between successive terms is not con-

stant. Our formula for the sum of a geometric sum cannot be directly applied. But

suppose that we differentiate that formula:

d

dx

n∑
i=0

xi =
d

dx

1− xn+1

1− x

n∑
i=1

ixi−1 =
−(n+ 1)xn(1− x)− (−1)(1− xn+1)

(1− x)2

=
−(n+ 1)xn + (n+ 1)xn+1 + 1− xn+1

(1− x)2

=
1− (n+ 1)xn + nxn+1

(1− x)2
.

578 CHAPTER 11. SUMS & ASYMPTOTICS

Often differentiating or integrating messes up the exponent of x in every term. In

this case, we now have a formula for a sum of the form
∑
ixi−1, but we want a

formula for the series
∑
ixi. The solution is simple: multiply by x. This gives:

n∑
i=1

ixi =
x− (n+ 1)xn+1 + nxn+2

(1− x)2

Since we could easily have made a mistake, it is a good idea to go back and validate

a formula obtained this way with a proof by induction.

Notice that if |x| < 1, then this series converges to a finite value even if there

are infinitely many terms. Taking the limit as n tends infinity gives the following

theorem:

Theorem 11.1.2. If |x| < 1, then

∞∑
i=1

ixi =
x

(1− x)2
.

As a consequence, suppose there is an annuity that pays im dollars at the end of

each year i forever. For example, if m = $50, 000, then the payouts are $50, 000 and

then $100, 000 and then $150, 000 and so on. It is hard to believe that the value of

11.1. THE VALUE OF AN ANNUITY 579

this annuity is finite! But we can use the preceding theorem to compute the value:

V =
∞∑
i=1

im

(1 + p)i

= m ·
1

1+p

(1− 1
1+p)2

= m · 1 + p

p2
.

The second line follows by an application of Theorem 11.1.2. The third line is

obtained by multiplying the numerator and denominator by (1 + p)2.

For example, if m = $50, 000, and p = 0.08 as usual, then the value of the an-

nuity is V = $8, 437, 500. Even though payments increase every year, the increase

is only additive with time; by contrast, dollars paid out in the future decrease in

value exponentially with time. The geometric decrease swamps out the additive

increase. Payments in the distant future are almost worthless, so the value of the

annuity is finite.

The important thing to remember is the trick of taking the derivative (or inte-

gral) of a summation formula. Of course, this technique requires one to compute

nasty derivatives correctly, but this is at least theoretically possible!

580 CHAPTER 11. SUMS & ASYMPTOTICS

�

11.1.4 Problems

Class Problems

Homework Problems

11.2 Book Stacking

Suppose you have a pile of books and you want to stack them on a table in some

off-center way so the top book sticks out past books below it. How far past the

edge of the table do you think you could get the top book to go without having the

stack fall over? Could the top book stick out completely beyond the edge of table?

Most people’s first response to this question—sometimes also their second and

third responses—is “No, the top book will never get completely past the edge of

the table.” But in fact, you can get the top book to stick out as far as you want: one

booklength, two booklengths, any number of booklengths!

11.2. BOOK STACKING 581

11.2.1 Formalizing the Problem

We’ll approach this problem recursively. How far past the end of the table can we

get one book to stick out? It won’t tip as long as its center of mass is over the table,

so we can get it to stick out half its length, as shown in Figure 11.1.

table

1

2

center of mass
of book

Figure 11.1: One book can overhang half a book length.

Now suppose we have a stack of books that will stick out past the table edge

without tipping over—call that a stable stack. Let’s define the overhang of a stable

stack to be the largest horizontal distance from the center of mass of the stack to

the furthest edge of a book. If we place the center of mass of the stable stack at the

edge of the table as in Figure 11.2, that’s how far we can get a book in the stack to

stick out past the edge.

582 CHAPTER 11. SUMS & ASYMPTOTICS

table

center of mass
of the whole stack

overhang

Figure 11.2: Overhanging the edge of the table.

So we want a formula for the maximum possible overhang,Bn, achievable with

a stack of n books.

We’ve already observed that the overhang of one book is 1/2 a book length.

That is,

B1 =
1
2
.

Now suppose we have a stable stack of n+ 1 books with maximum overhang.

If the overhang of the n books on top of the bottom book was not maximum, we

could get a book to stick out further by replacing the top stack with a stack of n

books with larger overhang. So the maximum overhang, Bn+1, of a stack of n + 1

books is obtained by placing a maximum overhang stable stack of n books on top

11.2. BOOK STACKING 583

of the bottom book. And we get the biggest overhang for the stack of n + 1 books

by placing the center of mass of the n books right over the edge of the bottom book

as in Figure 11.3.

So we know where to place the n + 1st book to get maximum overhang, and

all we have to do is calculate what it is. The simplest way to do that is to let the

center of mass of the top n books be the origin. That way the horizontal coordinate

of the center of mass of the whole stack of n + 1 books will equal the increase

in the overhang. But now the center of mass of the bottom book has horizontal

coordinate 1/2, so the horizontal coordinate of center of mass of the whole stack of

n+ 1 books is

0 · n+ (1/2) · 1
n+ 1

=
1

2(n+ 1)
.

In other words,

Bn+1 = Bn +
1

2(n+ 1)
, (11.11)

as shown in Figure 11.3.

584 CHAPTER 11. SUMS & ASYMPTOTICS

table

}

2(n+1)

1

ntop books}center of mass
of top booksn

center of mass
of all +1 booksn

Figure 11.3: Additional overhang with n+ 1 books.

Expanding equation (11.11), we have

Bn+1 = Bn−1 +
1

2n
+

1
2(n+ 1)

= B1 +
1

2 · 2
+ · · ·+ 1

2n
+

1
2(n+ 1)

=
1
2

n+1∑
i=1

1
i
. (11.12)

The nth Harmonic number, Hn, is defined to be

Definition 11.2.1.

Hn ::=
n∑
i=1

1
i
.

11.2. BOOK STACKING 585

So (11.12) means that

Bn =
Hn

2
.

The first few Harmonic numbers are easy to compute. For example, H4 =

1 + 1
2 + 1

3 + 1
4 = 25

12 . The fact that H4 is greater than 2 has special significance; it

implies that the total extension of a 4-book stack is greater than one full book! This

is the situation shown in Figure 11.4.

Table

1/2

1/4

1/6

1/8

Figure 11.4: Stack of four books with maximum overhang.

11.2.2 Evaluating the Sum—The Integral Method

It would be nice to answer questions like, “How many books are needed to build a

stack extending 100 book lengths beyond the table?” One approach to this question

would be to keep computing Harmonic numbers until we found one exceeding

586 CHAPTER 11. SUMS & ASYMPTOTICS

200. However, as we will see, this is not such a keen idea.

Such questions would be settled if we could express Hn in a closed form. Un-

fortunately, no closed form is known, and probably none exists. As a second best,

however, we can find closed forms for very good approximations to Hn using the

Integral Method. The idea of the Integral Method is to bound terms of the sum

above and below by simple functions as suggested in Figure 11.5. The integrals of

these functions then bound the value of the sum above and below.

The Integral Method gives the following upper and lower bounds on the har-

monic number Hn:

Hn ≤ 1 +
∫ n

1

1
x
dx = 1 + lnn (11.13)

Hn ≥
∫ n

0

1
x+ 1

dx =
∫ n+1

1

1
x
dx = ln(n+ 1). (11.14)

These bounds imply that the harmonic number Hn is around lnn.

But lnn grows —slowly —but without bound. That means we can get books to

overhang any distance past the edge of the table by piling them high enough! For

example, to build a stack extending three book lengths beyond the table, we need

11.2. BOOK STACKING 587

1

0 1 2 3 4 5 6 7 8

1 / x

1 / (x + 1)

Figure 11.5: This figure illustrates the Integral Method for bounding a sum. The area

under the “stairstep” curve over the interval [0, n] is equal to Hn =
∑n
i=1 1/i. The

function 1/x is everywhere greater than or equal to the stairstep and so the integral of 1/x

over this interval is an upper bound on the sum. Similarly, 1/(x + 1) is everywhere less

than or equal to the stairstep and so the integral of 1/(x+ 1) is a lower bound on the sum.

588 CHAPTER 11. SUMS & ASYMPTOTICS

a number of books n so that Hn ≥ 6. By inequality (11.14), this means we want

Hn ≥ ln(n+ 1) ≥ 6,

so n ≥ e6− 1 books will work, that is, 403 books will be enough to get a three book

overhang. Actual calculation of H6 shows that 227 books is the smallest number

that will work.

11.2.3 More about Harmonic Numbers

In the preceding section, we showed that Hn is about lnn. An even better approx-

imation is known:

Hn = lnn+ γ +
1

2n
+

1
12n2

+
ε(n)

120n4

Here γ is a value 0.577215664 . . . called Euler’s constant, and ε(n) is between 0 and

1 for all n. We will not prove this formula.

11.2. BOOK STACKING 589

Asymptotic Equality

The shorthand Hn ∼ lnn is used to indicate that the leading term of Hn is lnn.

More precisely:

Definition 11.2.2. For functions f, g : R → R, we say f is asymptotically equal to g,

in symbols,

f(x) ∼ g(x)

iff

lim
x→∞

f(x)/g(x) = 1.

It’s tempting to might write Hn ∼ lnn + γ to indicate the two leading terms,

but it is not really right. According to Definition 11.2.2, Hn ∼ lnn + c where c

is any constant. The correct way to indicate that γ is the second-largest term is

Hn − lnn ∼ γ.

The reason that the∼ notation is useful is that often we do not care about lower

order terms. For example, if n = 100, then we can compute H(n) to great precision

590 CHAPTER 11. SUMS & ASYMPTOTICS

using only the two leading terms:

|Hn − lnn− γ| ≤
∣∣∣∣ 1
200
− 1

120000
+

1
120 · 1004

∣∣∣∣ < 1
200

.

11.2.4 Problems

Class Problems

Homework Problems

11.3 Finding Summation Formulas

The Integral Method offers a way to derive formulas like

EDITING NOTE: equation (11.1) �

for the sum of consecutive integers,

n∑
i=1

i = n(n+ 1)/2,

11.3. FINDING SUMMATION FORMULAS 591

or for the sum of squares,

n∑
i=1

i2 =
(2n+ 1)(n+ 1)n

6

=
n3

3
+
n2

2
+
n

6
. (11.15)

These equations appeared in Chapter 3.1 as equations (3.1) and (??) where they

were proved using the Well-ordering Principle. But those proofs did not explain

how someone figured out in the first place that these were the formulas to prove.

Here’s how the Integral Method leads to the sum-of-squares formula, for ex-

ample. First, get a quick estimate of the sum:

∫ n

0

x2 dx ≤
n∑
i=1

i2 ≤
∫ n

0

(x+ 1)2 dx,

so

n3/3 ≤
n∑
i=1

i2 ≤ (n+ 1)3/3− 1/3. (11.16)

and the upper and lower bounds (11.16) imply that

n∑
i=1

i2 ∼ n3/3.

592 CHAPTER 11. SUMS & ASYMPTOTICS

To get an exact formula, we then guess the general form of the solution. Where we

are uncertain, we can add parameters a, b, c, For example, we might make the

guess:

n∑
i=1

i2 = an3 + bn2 + cn+ d.

If the guess is correct, then we can determine the parameters a, b, c, and d by

plugging in a few values for n. Each such value gives a linear equation in a, b,

c, and d. If we plug in enough values, we may get a linear system with a unique

solution. Applying this method to our example gives:

n = 0 implies 0 = d

n = 1 implies 1 = a+ b+ c+ d

n = 2 implies 5 = 8a+ 4b+ 2c+ d

n = 3 implies 14 = 27a+ 9b+ 3c+ d.

Solving this system gives the solution a = 1/3, b = 1/2, c = 1/6, d = 0. Therefore,

if our initial guess at the form of the solution was correct, then the summation is

equal to n3/3 + n2/2 + n/6, which matches equation (11.15).

11.3. FINDING SUMMATION FORMULAS 593

The point is that if the desired formula turns out to be a polynomial, then once

you get an estimate of the degree of the polynomial —by the Integral Method or

any other way —all the coefficients of the polynomial can be found automatically.

Be careful! This method let’s you discover formulas, but it doesn’t guarantee

they are right! After obtaining a formula by this method, it’s important to go back

and prove it using induction or some other method, because if the initial guess at

the solution was not of the right form, then the resulting formula will be com-

pletely wrong!

11.3.1 Double Sums

Sometimes we have to evaluate sums of sums, otherwise known as double sum-

mations. This can be easy: evaluate the inner sum, replace it with a closed form,

and then evaluate the outer sum which no longer has a summation inside it. For

594 CHAPTER 11. SUMS & ASYMPTOTICS

example,

∞∑
n=0

(
yn

n∑
i=0

xi

)

=
∞∑
n=0

(
yn

1− xn+1

1− x

)
(geometric sum formula (11.3))

=
∑∞
n=0 y

n

1− x
−
∑∞
n=0 y

nxn+1

1− x

=
1

(1− y)(1− x)
−
x
∑∞
n=0 (xy)n

1− x
(infinite geometric sum, Theorem 11.1.1)

=
1

(1− y)(1− x)
− x

(1− xy)(1− x)
(infinite geometric sum, Theorem 11.1.1)

=
(1− xy)− x(1− y)

(1− xy)(1− y)(1− x)

=
1− x

(1− xy)(1− y)(1− x)

=
1

(1− xy)(1− y)
.

When there’s no obvious closed form for the inner sum, a special trick that is

often useful is to try exchanging the order of summation. For example, suppose we

want to compute the sum of the harmonic numbers

n∑
k=1

Hk =
n∑
k=1

k∑
j=1

1/j

11.3. FINDING SUMMATION FORMULAS 595

For intuition about this sum, we can try the integral method:

n∑
k=1

Hk ≈
∫ n

1

lnx dx ≈ n lnn− n.

Now let’s look for an exact answer. If we think about the pairs (k, j) over which

we are summing, they form a triangle:

j
1 2 3 4 5 . . . n

k 1 1
2 1 1/2
3 1 1/2 1/3
4 1 1/2 1/3 1/4

. . .
n 1 1/2 . . . 1/n

The summation above is summing each row and then adding the row sums. In-

stead, we can sum the columns and then add the column sums. Inspecting the

596 CHAPTER 11. SUMS & ASYMPTOTICS

table we see that this double sum can be written as

n∑
k=1

Hk =
n∑
k=1

k∑
j=1

1/j

=
n∑
j=1

n∑
k=j

1/j

=
n∑
j=1

1/j
n∑
k=j

1

=
n∑
j=1

1
j

(n− j + 1)

=
n∑
j=1

n− j + 1
j

=
n∑
j=1

n+ 1
j
−

n∑
j=1

j

j

= (n+ 1)
n∑
j=1

1
j
−

n∑
j=1

1

= (n+ 1)Hn − n. (11.17)

11.4 Stirling’s Approximation

The familiar factorial notation, n!, is an abbreviation for the product

n∏
i=1

i.

11.4. STIRLING’S APPROXIMATION 597

This is by far the most common product in discrete mathematics. In this section we

describe a good closed-form estimate of n! called Stirling’s Approximation. Unfor-

tunately, all we can do is estimate: there is no closed form for n! —though proving

so would take us beyond the scope of this text.

11.4.1 Products to Sums

A good way to handle a product is often to convert it into a sum by taking the

logarithm. In the case of factorial, this gives

ln(n!) = ln(1 · 2 · 3 · · · (n− 1) · n)

= ln 1 + ln 2 + ln 3 + · · ·+ ln(n− 1) + lnn

=
n∑
i=1

ln i.

We’ve not seen a summation containing a logarithm before! Fortunately, one tool

that we used in evaluating sums is still applicable: the Integral Method. We can

bound the terms of this sum with lnx and ln(x + 1) as shown in Figure 11.6. This

598 CHAPTER 11. SUMS & ASYMPTOTICS

gives bounds on ln(n!) as follows:

∫ n

1

lnx dx ≤
∑n
i=1 ln i ≤

∫ n

0

ln(x+ 1) dx

n ln(
n

e
) + 1 ≤

∑n
i=1 ln i ≤ (n+ 1) ln

(
n+ 1
e

)
+ 1

(n
e

)n
e ≤ n! ≤

(
n+ 1
e

)n+1

e.

The second line follows from the first by completing the integrations. The third

line is obtained by exponentiating.

ln(x + 1)

ln(x)

Figure 11.6: This figure illustrates the Integral Method for bounding the sum
∑n
i=1 ln i.

So n! behaves something like the closed form formula (n/e)n. A more careful

analysis yields an unexpected closed form formula that is asymptotically exact:

11.4. STIRLING’S APPROXIMATION 599

Lemma (Stirling’s Formula).

n! ∼
(n
e

)n√
2πn, (11.18)

Stirling’s Formula describes how n! behaves in the limit, but to use it effec-

tively, we need to know how close it is to the limit for different values of n. That

information is given by the bounding formulas:

Fact (Stirling’s Approximation).

√
2πn

(n
e

)n
e1/(12n+1) ≤ n! ≤

√
2πn

(n
e

)n
e1/12n.

Stirling’s Approximation implies the asymptotic formula (11.18), since e1/(12n+1)

and e1/12n both approach 1 as n grows large. These inequalities can be verified by

induction, but the details are nasty.

The bounds in Stirling’s formula are very tight. For example, if n = 100, then

Stirling’s bounds are:

100! ≥
√

200π
(

100
e

)100

e1/1201

100! ≤
√

200π
(

100
e

)100

e1/1200

600 CHAPTER 11. SUMS & ASYMPTOTICS

The only difference between the upper bound and the lower bound is in the

final term. In particular e1/1201 ≈ 1.00083299 and e1/1200 ≈ 1.00083368. As a

result, the upper bound is no more than 1 + 10−6 times the lower bound. This is

amazingly tight! Remember Stirling’s formula; we will use it often.

EDITING NOTE:

Bounds by Double Summing

Another way to derive Stirling’s approximation is to remember that lnn is roughly

the same as Hn. This lets us use the result we derived before for
∑
Hk via double

summation. Our approximation for Hk told us that ln(k + 1) ≤ Hk ≤ 1 + ln k.

Rewriting, we find that Hk−1 ≤ ln k ≤ Hk−1. It follows that (leaving out the i = 1

11.5. ASYMPTOTIC NOTATION 601

term in the sum, which contributes 0),

n∑
i=2

ln i ≤
n∑
i=2

Hi−1

=
n−1∑
i=1

Hi

= nHn−1 − (n− 1) by (11.17)

≤ n(1 + ln(n− 1))− (n− 1) by (11.13)

= n ln(n− 1) + 1,

roughly the same bound as we proved before via the integral method. We can

derive a similar lower bound.

�

11.5 Asymptotic Notation

Asymptotic notation is a shorthand used to give a quick measure of the behavior

of a function f(n) as n grows large.

602 CHAPTER 11. SUMS & ASYMPTOTICS

11.5.1 Little Oh

The asymptotic notation, ∼, of Definition 11.2.2 is a binary relation indicating that

two functions grow at the same rate. There is also a binary relation indicating that

one function grows at a significantly slower rate than another. Namely,

Definition 11.5.1. For functions f, g : R → R, with g nonnegative, we say f is

asymptotically smaller than g, in symbols,

f(x) = o(g(x)),

iff

lim
x→∞

f(x)/g(x) = 0.

For example, 1000x1.9 = o(x2), because 1000x1.9/x2 = 1000/x0.1 and since x0.1

goes to infinity with x and 1000 is constant, we have limx→∞ 1000x1.9/x2 = 0. This

argument generalizes directly to yield

Lemma 11.5.2. xa = o(xb) for all nonnegative constants a < b.

Using the familiar fact that log x < x for all x > 1, we can prove

11.5. ASYMPTOTIC NOTATION 603

Lemma 11.5.3. log x = o(xε) for all ε > 0 and x > 1.

Proof. Choose ε > δ > 0 and let x = zδ in the inequality log x < x. This implies

log z < zδ/δ = o(zε) by Lemma 11.5.2. (11.19)

�

Corollary 11.5.4. xb = o(ax) for any a, b ∈ R with a > 1.

Proof. From (11.19),

log z < zδ/δ

for all z > 1, δ > 0. Hence

(eb)log z < (eb)z
δ/δ

zb <
(
elog a(b/ log a)

)zδ/δ

= a(b/δ log a)zδ

< az

for all z such that

(b/δ log a)zδ < z.

604 CHAPTER 11. SUMS & ASYMPTOTICS

But choosing δ < 1, we know zδ = o(z), so this last inequality holds for all large

enough z. �

Lemma 11.5.3 and Corollary 11.5.4 can also be proved easily in several other

ways, for example, using L’Hopital’s Rule or the McLaurin Series for log x and ex.

Proofs can be found in most calculus texts.

11.5.2 Big Oh

Big Oh is the most frequently used asymptotic notation. It is used to give an upper

bound on the growth of a function, such as the running time of an algorithm.

Definition 11.5.5. Given nonnegative functions f, g : R→ R, we say that

f = O(g)

iff

lim sup
x→∞

f(x)/g(x) <∞.

This definition3 makes it clear that
3We can’t simply use the limit as x → ∞ in the definition of O(), because if f(x)/g(x) oscil-

11.5. ASYMPTOTIC NOTATION 605

Lemma 11.5.6. If f = o(g) or f ∼ g, then f = O(g).

Proof. lim f/g = 0 or lim f/g = 1 implies lim f/g <∞. �

It is easy to see that the converse of Lemma 11.5.6 is not true. For example,

2x = O(x), but 2x 6∼ x and 2x 6= o(x).

The usual formulation of Big Oh spells out the definition of lim sup without

mentioning it. Namely, here is an equivalent definition:

Definition 11.5.7. Given functions f, g : R→ R, we say that

f = O(g)

iff there exists a constant c ≥ 0 and an x0 such that for all x ≥ x0, |f(x)| ≤ cg(x).

lates between, say, 3 and 5 as x grows, then f = O(g) because f ≤ 5g, but limx→∞ f(x)/g(x)

does not exist. So instead of limit, we use the technical notion of lim sup. In this oscillating case,

lim supx→∞ f(x)/g(x) = 5.

The precise definition of lim sup is

lim sup
x→∞

h(x) ::= lim
x→∞

luby≥xh(y),

where “lub” abbreviates “least upper bound.”

606 CHAPTER 11. SUMS & ASYMPTOTICS

This definition is rather complicated, but the idea is simple: f(x) = O(g(x))

means f(x) is less than or equal to g(x), except that we’re willing to ignore a con-

stant factor, namely, c, and to allow exceptions for small x, namely, x < x0.

We observe,

Lemma 11.5.8. If f = o(g), then it is not true that g = O(f).

Proof.

lim
x→∞

g(x)
f(x)

=
1

limx→∞ f(x)/g(x)
=

1
0

=∞,

so g 6= O(f).

�

Proposition 11.5.9. 100x2 = O(x2).

Proof. Choose c = 100 and x0 = 1. Then the proposition holds, since for all x ≥ 1,

∣∣100x2
∣∣ ≤ 100x2. �

Proposition 11.5.10. x2 + 100x+ 10 = O(x2).

Proof. (x2 + 100x + 10)/x2 = 1 + 100/x + 10/x2 and so its limit as x approaches

11.5. ASYMPTOTIC NOTATION 607

infinity is 1+0+0 = 1. So in fact, x2+100x+10 ∼ x2, and therefore x2+100x+10 =

O(x2). Indeed, it’s conversely true that x2 = O(x2 + 100x+ 10). �

Proposition 11.5.10 generalizes to an arbitrary polynomial:

Proposition 11.5.11. For ak 6= 0, akxk + ak−1x
k−1 + · · ·+ a1x+ a0 = O(xk).

We’ll omit the routine proof.

Big Oh notation is especially useful when describing the running time of an al-

gorithm. For example, the usual algorithm for multiplying n×n matrices requires

proportional to n3 operations in the worst case. This fact can be expressed con-

cisely by saying that the running time is O(n3). So this asymptotic notation allows

the speed of the algorithm to be discussed without reference to constant factors

or lower-order terms that might be machine specific. In this case there is another,

ingenious matrix multiplication procedure that requires O(n2.55) operations. This

procedure will therefore be much more efficient on large enough matrices. Un-

fortunately, the O(n2.55)-operation multiplication procedure is almost never used

because it happens to be less efficient than the usual O(n3) procedure on matrices

608 CHAPTER 11. SUMS & ASYMPTOTICS

of practical size.

EDITING NOTE: It is even conceivable that there is an O(n2) matrix multiplica-

tion procedure, but none is known. �

11.5.3 Theta

Definition 11.5.12.

f = Θ(g) iff f = O(g) and g = O(f).

The statement f = Θ(g) can be paraphrased intuitively as “f and g are equal to

within a constant factor.”

The value of these notations is that they highlight growth rates and allow sup-

pression of distracting factors and low-order terms. For example, if the running

time of an algorithm is

T (n) = 10n3 − 20n2 + 1,

then

T (n) = Θ(n3).

11.5. ASYMPTOTIC NOTATION 609

In this case, we would say that T is of order n3 or that T (n) grows cubically.

Another such example is

π23x−7 +
(2.7x113 + x9 − 86)4√

x
− 1.083x = Θ(3x).

Just knowing that the running time of an algorithm is Θ(n3), for example, is

useful, because if n doubles we can predict that the running time will by and large4

increase by a factor of at most 8 for large n. In this way, Theta notation preserves in-

formation about the scalability of an algorithm or system. Scalability is, of course,

a big issue in the design of algorithms and systems.

EDITING NOTE:

Figure 11.7 illustrates the relationships among the asymptotic growth notations

we have considered.

�

4Since Θ(n3) only implies that the running time, T (n), is between cn3 and dn3 for constants 0 <

c < d, the time T (2n) could regularly exceed T (n) by a factor as large as 8d/c. The factor is sure to be

close to 8 for all large n only if T (n) ∼ n3.

610 CHAPTER 11. SUMS & ASYMPTOTICS

Θ
Θ

Figure 11.7: Venn Diagram describing Asymptotic Relations

11.5.4 Pitfalls with Big Oh

There is a long list of ways to make mistakes with Big Oh notation. This section

presents some of the ways that Big Oh notation can lead to ruin and despair.

11.5. ASYMPTOTIC NOTATION 611

The Exponential Fiasco

Sometimes relationships involving Big Oh are not so obvious. For example, one

might guess that 4x = O(2x) since 4 is only a constant factor larger than 2. This

reasoning is incorrect, however; actually 4x grows much faster than 2x.

Proposition 11.5.13. 4x 6= O(2x)

Proof. 2x/4x = 2x/(2x2x) = 1/2x. Hence, limx→∞ 2x/4x = 0, so in fact 2x = o(4x).

We observed earlier that this implies that 4x 6= O(2x). �

Constant Confusion

Every constant is O(1). For example, 17 = O(1). This is true because if we let

f(x) = 17 and g(x) = 1, then there exists a c > 0 and an x0 such that |f(x)| ≤ cg(x).

In particular, we could choose c = 17 and x0 = 1, since |17| ≤ 17 · 1 for all x ≥ 1.

We can construct a false theorem that exploits this fact.

False Theorem 11.5.14.

n∑
i=1

i = O(n)

612 CHAPTER 11. SUMS & ASYMPTOTICS

False proof. Define f(n) =
∑n
i=1 i = 1 + 2 + 3 + · · ·+ n. Since we have shown that

every constant i is O(1), f(n) = O(1) +O(1) + · · ·+O(1) = O(n). �

Of course in reality
∑n
i=1 i = n(n+ 1)/2 6= O(n).

The error stems from confusion over what is meant in the statement i = O(1).

For any constant i ∈ N it is true that i = O(1). More precisely, if f is any constant

function, then f = O(1). But in this False Theorem, i is not constant but ranges

over a set of values 0,1,. . . ,n that depends on n.

And anyway, we should not be adding O(1)’s as though they were numbers.

We never even defined what O(g) means by itself; it should only be used in the

context “f = O(g)” to describe a relation between functions f and g.

Lower Bound Blunder

Sometimes people incorrectly use Big Oh in the context of a lower bound. For

example, they might say, “The running time, T (n), is at least O(n2),” when they

probably mean something like “O(T (n)) = n2,” or more properly, “n2 = O(T (n)).”

11.5. ASYMPTOTIC NOTATION 613

Equality Blunder

The notation f = O(g) is too firmly entrenched to avoid, but the use of “=” is really

regrettable. For example, if f = O(g), it seems quite reasonable to write O(g) = f .

But doing so might tempt us to the following blunder: because 2n = O(n), we can

say O(n) = 2n. But n = O(n), so we conclude that n = O(n) = 2n, and therefore

n = 2n. To avoid such nonsense, we will never write “O(f) = g.”

11.5.5 Problems

Practice Problems

Homework Problems

Class Problems

614 CHAPTER 11. SUMS & ASYMPTOTICS

Chapter 12

Counting

12.1 Why Count?

Are there two different subsets of the ninety 25-digit numbers shown below that

have the same sum —for example, maybe the sum of the numbers in the first col-

umn is equal to the sum of the numbers in the second column?

615

616 CHAPTER 12. COUNTING

0020480135385502964448038 3171004832173501394113017

5763257331083479647409398 8247331000042995311646021

0489445991866915676240992 3208234421597368647019265

5800949123548989122628663 8496243997123475922766310

1082662032430379651370981 3437254656355157864869113

6042900801199280218026001 8518399140676002660747477

1178480894769706178994993 3574883393058653923711365

6116171789137737896701405 8543691283470191452333763

1253127351683239693851327 3644909946040480189969149

6144868973001582369723512 8675309258374137092461352

1301505129234077811069011 3790044132737084094417246

6247314593851169234746152 8694321112363996867296665

1311567111143866433882194 3870332127437971355322815

6814428944266874963488274 8772321203608477245851154

1470029452721203587686214 4080505804577801451363100

6870852945543886849147881 8791422161722582546341091

1578271047286257499433886 4167283461025702348124920

6914955508120950093732397 9062628024592126283973285

1638243921852176243192354 4235996831123777788211249

6949632451365987152423541 9137845566925526349897794

1763580219131985963102365 4670939445749439042111220

7128211143613619828415650 9153762966803189291934419

1826227795601842231029694 4815379351865384279613427

7173920083651862307925394 9270880194077636406984249

1843971862675102037201420 4837052948212922604442190

7215654874211755676220587 9324301480722103490379204

2396951193722134526177237 5106389423855018550671530

7256932847164391040233050 9436090832146695147140581

2781394568268599801096354 5142368192004769218069910

7332822657075235431620317 9475308159734538249013238

2796605196713610405408019 5181234096130144084041856

7426441829541573444964139 9492376623917486974923202

2931016394761975263190347 5198267398125617994391348

7632198126531809327186321 9511972558779880288252979

2933458058294405155197296 5317592940316231219758372

7712154432211912882310511 9602413424619187112552264

3075514410490975920315348 5384358126771794128356947

12.1. WHY COUNT? 617

7858918664240262356610010 9631217114906129219461111

8149436716871371161932035 3157693105325111284321993

3111474985252793452860017 5439211712248901995423441

7898156786763212963178679 9908189853102753335981319

3145621587936120118438701 5610379826092838192760458

8147591017037573337848616 9913237476341764299813987

3148901255628881103198549 5632317555465228677676044

5692168374637019617423712 8176063831682536571306791

Finding two subsets with the same sum may seem like an silly puzzle, but

solving problems like this turns out to be useful, for example in finding good ways

to fit packages into shipping containers and in decoding secret messages.

The answer to the question turns out to be “yes.” Of course this would be easy

to confirm just by showing two subsets with the same sum, but that turns out to be

kind of hard to do. So before we put a lot of effort into finding such a pair, it would

be nice to be sure there were some. Fortunately, it is very easy to see why there is

such a pair —or at least it will be easy once we have developed a few simple rules

for counting things.

618 CHAPTER 12. COUNTING

The Contest to Find Two Sets with the Same Sum

One term one of us authors offered a $100 prize to the first student to actually find

two different subsets of the above ninety 25-digit numbers that have the same sum.

We didn’t expect to have to pay off this bet, but we underestimated the ingenuity

and initiative of the students. One computer science major wrote a program that

cleverly searched only among a reasonably small set of “plausible” sets, sorted

them by their sums, and actually found a couple with the same sum. He won the

prize. A few days later, a math major figured out how to reformulate the sum

problem as a “lattice basis reduction” problem; then he found a software package

implementing an efficient basis reduction procedure, and using it, he very quickly

found lots of pairs of subsets with the same sum. He didn’t win the prize, but he

got a standing ovation from the class —staff included.

12.1. WHY COUNT? 619

Counting seems easy enough: 1, 2, 3, 4, etc. This direct approach works well for

counting simple things —like your toes —and may be the only approach for ex-

tremely complicated things with no identifiable structure. However, subtler meth-

ods can help you count many things in the vast middle ground, such as:

• The number of different ways to select a dozen doughnuts when there are

five varieties available.

• The number of 16-bit numbers with exactly 4 ones.

Counting is useful in computer science for several reasons:

• Determining the time and storage required to solve a computational problem

—a central objective in computer science —often comes down to solving a

counting problem.

• Counting is the basis of probability theory, which plays a central role in all

sciences, including computer science.

• Two remarkable proof techniques, the “pigeonhole principle” and “combi-

620 CHAPTER 12. COUNTING

natorial proof,” rely on counting. These lead to a variety of interesting and

useful insights.

We’re going to present a lot of rules for counting. These rules are actually the-

orems, but most of them are pretty obvious anyway, so we’re not going to focus

on proving them. Our objective is to teach you simple counting as a practical skill,

like integration.

12.2 Counting One Thing by Counting Another

How do you count the number of people in a crowded room? You could count

heads, since for each person there is exactly one head. Alternatively, you could

count ears and divide by two. Of course, you might have to adjust the calculation

if someone lost an ear in a pirate raid or someone was born with three ears. The

point here is that you can often count one thing by counting another, though some

fudge factors may be required.

EDITING NOTE: This is a central theme of counting, from the easiest problems

12.2. COUNTING ONE THING BY COUNTING ANOTHER 621

to the hardest. �

In more formal terms, every counting problem comes down to determining the

size of some set. The size or cardinality of a finite set, S, is the number of elements

in it and is denoted |S|. In these terms, we’re claiming that we can often find the

size of one set by finding the size of a related set. We’ve already seen a general

statement of this idea in the Mapping Rule of Lemma 5.6.2.

12.2.1 The Bijection Rule

We’ve already implicitly used the Bijection Rule of Lemma 3 a lot. For example,

when we studied Stable Marriage and Bipartite Matching, we assumed the obvious

fact that if we can pair up all the girls at a dance with all the boys, then there must

be an equal number of each. If we needed to be explicit about using the Bijection

Rule, we could say that A was the set of boys, B was the set of girls, and the

bijection between them was how they were paired.

The Bijection Rule acts as a magnifier of counting ability; if you figure out the

622 CHAPTER 12. COUNTING

size of one set, then you can immediately determine the sizes of many other sets

via bijections. For example, let’s return to two sets mentioned earlier:

A = all ways to select a dozen doughnuts when five varieties are available

B = all 16-bit sequences with exactly 4 ones

Let’s consider a particular element of set A:

0 0︸︷︷︸
chocolate

︸︷︷︸
lemon-filled

0 0 0 0 0 0︸ ︷︷ ︸
sugar

0 0︸︷︷︸
glazed

0 0︸︷︷︸
plain

We’ve depicted each doughnut with a 0 and left a gap between the different vari-

eties. Thus, the selection above contains two chocolate doughnuts, no lemon-filled,

six sugar, two glazed, and two plain. Now let’s put a 1 into each of the four gaps:

0 0︸︷︷︸
chocolate

1 ︸︷︷︸
lemon-filled

1 0 0 0 0 0 0︸ ︷︷ ︸
sugar

1 0 0︸︷︷︸
glazed

1 0 0︸︷︷︸
plain

We’ve just formed a 16-bit number with exactly 4 ones— an element of B!

This example suggests a bijection from set A to set B: map a dozen doughnuts

consisting of:

c chocolate, l lemon-filled, s sugar, g glazed, and p plain

12.2. COUNTING ONE THING BY COUNTING ANOTHER 623

to the sequence:

0 . . . 0︸ ︷︷ ︸
c

1 0 . . . 0︸ ︷︷ ︸
l

1 0 . . . 0︸ ︷︷ ︸
s

1 0 . . . 0︸ ︷︷ ︸
g

1 0 . . . 0︸ ︷︷ ︸
p

The resulting sequence always has 16 bits and exactly 4 ones, and thus is an

element of B. Moreover, the mapping is a bijection; every such bit sequence is

mapped to by exactly one order of a dozen doughnuts. Therefore, |A| = |B| by the

Bijection Rule!

This demonstrates the magnifying power of the bijection rule. We managed

to prove that two very different sets are actually the same size— even though we

don’t know exactly how big either one is. But as soon as we figure out the size of

one set, we’ll immediately know the size of the other.

This particular bijection might seem frighteningly ingenious if you’ve not seen

it before. But you’ll use essentially this same argument over and over, and soon

you’ll consider it routine.

624 CHAPTER 12. COUNTING

12.2.2 Counting Sequences

The Bijection Rule lets us count one thing by counting another. This suggests a

general strategy: get really good at counting just a few things and then use bijec-

tions to count everything else. This is the strategy we’ll follow. In particular, we’ll

get really good at counting sequences. When we want to determine the size of some

other set T , we’ll find a bijection from T to a set of sequences S. Then we’ll use our

super-ninja sequence-counting skills to determine |S|, which immediately gives us

|T |. We’ll need to hone this idea somewhat as we go along, but that’s pretty much

the plan!

12.2.3 The Sum Rule

Linus allocates his big sister Lucy a quota of 20 crabby days, 40 irritable days, and

60 generally surly days. On how many days can Lucy be out-of-sorts one way

or another? Let set C be her crabby days, I be her irritable days, and S be the

generally surly. In these terms, the answer to the question is |C ∪ I ∪ S|. Now

12.2. COUNTING ONE THING BY COUNTING ANOTHER 625

assuming that she is permitted at most one bad quality each day, the size of this

union of sets is given by the Sum Rule:

Rule 1 (Sum Rule). If A1, A2, . . . , An are disjoint sets, then:

|A1 ∪A2 ∪ . . . ∪An| = |A1|+ |A2|+ . . .+ |An|

Thus, according to Linus’ budget, Lucy can be out-of-sorts for:

|C ∪ I ∪ S| = |C|+ |I|+ |S|

= 20 + 40 + 60

= 120 days

Notice that the Sum Rule holds only for a union of disjoint sets. Finding the

size of a union of intersecting sets is a more complicated problem that we’ll take

up later.

626 CHAPTER 12. COUNTING

12.2.4 The Product Rule

The Product Rule gives the size of a product of sets. Recall that if P1, P2, . . . , Pn are

sets, then

P1 × P2 × . . .× Pn

is the set of all sequences whose first term is drawn from P1, second term is drawn

from P2 and so forth.

Rule 2 (Product Rule). If P1, P2, . . . Pn are sets, then:

|P1 × P2 × . . .× Pn| = |P1| · |P2| · · · |Pn|

Unlike the sum rule, the product rule does not require the sets P1, . . . , Pn to be

disjoint. For example, suppose a daily diet consists of a breakfast selected from set

B, a lunch from set L, and a dinner from set D:

B = {pancakes, bacon and eggs, bagel,Doritos}

L = {burger and fries,garden salad,Doritos}

D = {macaroni,pizza, frozen burrito,pasta,Doritos}

12.2. COUNTING ONE THING BY COUNTING ANOTHER 627

ThenB×L×D is the set of all possible daily diets. Here are some sample elements:

(pancakes, burger and fries,pizza)

(bacon and eggs,garden salad,pasta)

(Doritos,Doritos, frozen burrito)

The Product Rule tells us how many different daily diets are possible:

|B × L×D| = |B| · |L| · |D|

= 4 · 3 · 5

= 60

12.2.5 Putting Rules Together

Few counting problems can be solved with a single rule. More often, a solution

is a flurry of sums, products, bijections, and other methods. Let’s look at some

examples that bring more than one rule into play.

628 CHAPTER 12. COUNTING

Counting Passwords

The sum and product rules together are useful for solving problems involving

passwords, telephone numbers, and license plates. For example, on a certain com-

puter system, a valid password is a sequence of between six and eight symbols.

The first symbol must be a letter (which can be lowercase or uppercase), and the

remaining symbols must be either letters or digits. How many different passwords

are possible?

Let’s define two sets, corresponding to valid symbols in the first and subse-

quent positions in the password.

F = {a, b, . . . , z, A,B, . . . , Z}

S = {a, b, . . . , z, A,B, . . . , Z, 0, 1, . . . , 9}

In these terms, the set of all possible passwords is:

(F × S5) ∪ (F × S6) ∪ (F × S7)

Thus, the length-six passwords are in set F×S5, the length-seven passwords are in

12.2. COUNTING ONE THING BY COUNTING ANOTHER 629

F ×S6, and the length-eight passwords are in F ×S7. Since these sets are disjoint,

we can apply the Sum Rule and count the total number of possible passwords as

follows:

∣∣(F × S5) ∪ (F × S6) ∪ (F × S7)
∣∣ =

∣∣F × S5
∣∣+
∣∣F × S6

∣∣+
∣∣F × S7

∣∣ Sum Rule

= |F | · |S|5 + |F | · |S|6 + |F | · |S|7 Product Rule

= 52 · 625 + 52 · 626 + 52 · 627

≈ 1.8 · 1014 different passwords

Subsets of an n-element Set

How many different subsets of an n-element set X are there? For example, the set

X = {x1, x2, x3} has eight different subsets:

∅ {x1} {x2} {x1, x2}
{x3} {x1, x3} {x2, x3} {x1, x2, x3}

There is a natural bijection from subsets ofX to n-bit sequences. Let x1, x2, . . . , xn

be the elements ofX . Then a particular subset ofX maps to the sequence (b1, . . . , bn)

where bi = 1 if and only if xi is in that subset. For example, if n = 10, then the

630 CHAPTER 12. COUNTING

subset {x2, x3, x5, x7, x10}maps to a 10-bit sequence as follows:

subset: { x2, x3, x5, x7, x10 }
sequence: (0, 1, 1, 0, 1, 0, 1, 0, 0, 1)

We just used a bijection to transform the original problem into a question about

sequences —exactly according to plan! Now if we answer the sequence question,

then we’ve solved our original problem as well.

But how many different n-bit sequences are there? For example, there are 8

different 3-bit sequences:

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1)
(1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

Well, we can write the set of all n-bit sequences as a product of sets:

{0, 1} × {0, 1} × . . .× {0, 1}︸ ︷︷ ︸
n terms

= {0, 1}n

Then Product Rule gives the answer:

|{0, 1}n| = |{0, 1}|n

= 2n

This means that the number of subsets of an n-element set X is also 2n. We’ll

12.3. THE PIGEONHOLE PRINCIPLE 631

put this answer to use shortly.

12.2.6 Problems

Practice Problems

Class Problems

Homework Problems

12.3 The Pigeonhole Principle

Here is an old puzzle:

A drawer in a dark room contains red socks, green socks, and blue

socks. How many socks must you withdraw to be sure that you have a

matching pair?

For example, picking out three socks is not enough; you might end up with one

red, one green, and one blue. The solution relies on the Pigeonhole Principle, which

is a friendly name for the contrapositive of the injective case 2 of the Mapping Rule

632 CHAPTER 12. COUNTING

of Lemma 5.6.2. Let’s write it down:

If |X| > |Y |, then no total function1 f : X → Y is injective.

And now rewrite it again to eliminate the word “injective.”

Rule 3 (Pigeonhole Principle). If |X| > |Y |, then for every total function f : X → Y ,

there exist two different elements of X that are mapped to the same element of Y .

What this abstract mathematical statement has to do with selecting footwear

under poor lighting conditions is maybe not obvious. However, let A be the set

of socks you pick out, let B be the set of colors available, and let f map each sock

to its color. The Pigeonhole Principle says that if |A| > |B| = 3, then at least two

elements of A (that is, at least two socks) must be mapped to the same element of

B (that is, the same color). For example, one possible mapping of four socks to

three colors is shown below.
1This Mapping Rule actually applies even if f is a total injective relation.

12.3. THE PIGEONHOLE PRINCIPLE 633

A f B

1st sock

2nd sock

3rd sock

4th sock

red

green

blue

-

-

-

�
�
�
�
�
�3

Therefore, four socks are enough to ensure a matched pair.

Not surprisingly, the pigeonhole principle is often described in terms of pi-

geons:

If there are more pigeons than holes they occupy, then at least two pigeons

must be in the same hole.

In this case, the pigeons form set A, the pigeonholes are set B, and f describes

which hole each pigeon flies into.

Mathematicians have come up with many ingenious applications for the pi-

geonhole principle. If there were a cookbook procedure for generating such argu-

ments, we’d give it to you. Unfortunately, there isn’t one. One helpful tip, though:

when you try to solve a problem with the pigeonhole principle, the key is to clearly

634 CHAPTER 12. COUNTING

identify three things:

1. The set A (the pigeons).

2. The set B (the pigeonholes).

3. The function f (the rule for assigning pigeons to pigeonholes).

12.3.1 Hairs on Heads

There are a number of generalizations of the pigeonhole principle. For example:

Rule 4 (Generalized Pigeonhole Principle). If |X| > k · |Y |, then every total function

f : X → Y maps at least k + 1 different elements of X to the same element of Y .

For example, if you pick two people at random, surely they are extremely un-

likely to have exactly the same number of hairs on their heads. However, in the

remarkable city of Boston, Massachusetts there are actually three people who have

exactly the same number of hairs! Of course, there are many bald people in Boston,

and they all have zero hairs. But we’re talking about non-bald people; say a person

is non-bald if they have at least ten thousand hairs on their head.

12.3. THE PIGEONHOLE PRINCIPLE 635

Boston has about 500,000 non-bald people, and the number of hairs on a per-

son’s head is at most 200,000. Let A be the set of non-bald people in Boston, let

B = {10, 000, 10, 001, . . . , 200, 000}, and let f map a person to the number of hairs

on his or her head. Since |A| > 2 |B|, the Generalized Pigeonhole Principle implies

that at least three people have exactly the same number of hairs. We don’t know

who they are, but we know they exist!

12.3.2 Subsets with the Same Sum

We asserted that two different subsets of the ninety 25-digit numbers listed on the

first page have the same sum. This actually follows from the Pigeonhole Principle.

Let A be the collection of all subsets of the 90 numbers in the list. Now the sum of

any subset of numbers is at most 90·1025, since there are only 90 numbers and every

25-digit number is less than 1025. So letB be the set of integers
{

0, 1, . . . , 90 · 1025
}

,

and let f map each subset of numbers (in A) to its sum (in B).

636 CHAPTER 12. COUNTING

We proved that an n-element set has 2n different subsets. Therefore:

|A| = 290

≥ 1.237× 1027

On the other hand:

|B| = 90 · 1025 + 1

≤ 0.901× 1027

Both quantities are enormous, but |A| is a bit greater than |B|. This means that f

maps at least two elements of A to the same element of B. In other words, by the

Pigeonhole Principle, two different subsets must have the same sum!

Notice that this proof gives no indication which two sets of numbers have the

same sum. This frustrating variety of argument is called a nonconstructive proof.

12.3. THE PIGEONHOLE PRINCIPLE 637

Sets with Distinct Subset Sums

How can we construct a set of n positive integers such that all its subsets have

distinct sums? One way is to use powers of two:

{1, 2, 4, 8, 16}

This approach is so natural that one suspects all other such sets must involve larger

numbers. (For example, we could safely replace 16 by 17, but not by 15.) Remark-

ably, there are examples involving smaller numbers. Here is one:

{6, 9, 11, 12, 13}

One of the top mathematicans of the Twentieth Century, Paul Erdős, conjectured

in 1931 that there are no such sets involving significantly smaller numbers. More

precisely, he conjectured that the largest number must be > c2n for some constant

c > 0. He offered $500 to anyone who could prove or disprove his conjecture, but

the problem remains unsolved.

638 CHAPTER 12. COUNTING

12.3.3 Problems

Class Problems

Homework Problems

12.4 The Generalized Product Rule

We realize everyone has been working pretty hard this term, and we’re considering

awarding some prizes for truly exceptional coursework. Here are some possible

categories:

Best Administrative Critique We asserted that the quiz was closed-book. On the

cover page, one strong candidate for this award wrote, “There is no book.”

Awkward Question Award “Okay, the left sock, right sock, and pants are in an

antichain, but how— even with assistance— could I put on all three at once?”

Best Collaboration Statement Inspired by a student who wrote “I worked alone”

on Quiz 1.

12.4. THE GENERALIZED PRODUCT RULE 639

In how many ways can, say, three different prizes be awarded to n people? This

is easy to answer using our strategy of translating the problem about awards into

a problem about sequences. Let P be the set of n people taking the course. Then

there is a bijection from ways of awarding the three prizes to the set P 3::=P×P×P .

In particular, the assignment:

“person x wins prize #1, y wins prize #2, and z wins prize #3”

maps to the sequence (x, y, z). By the Product Rule, we have
∣∣P 3
∣∣ = |P |3 = n3, so

there are n3 ways to award the prizes to a class of n people.

But what if the three prizes must be awarded to different students? As before,

we could map the assignment

“person x wins prize #1, y wins prize #2, and z wins prize #3”

to the triple (x, y, z) ∈ P 3. But this function is no longer a bijection. For example, no

valid assignment maps to the triple (Dave, Dave, Becky) because Dave is not al-

lowed to receive two awards. However, there is a bijection from prize assignments

640 CHAPTER 12. COUNTING

to the set:

S =
{

(x, y, z) ∈ P 3 | x, y, and z are different people
}

This reduces the original problem to a problem of counting sequences. Unfortu-

nately, the Product Rule is of no help in counting sequences of this type because the

entries depend on one another; in particular, they must all be different. However,

a slightly sharper tool does the trick.

Rule 5 (Generalized Product Rule). Let S be a set of length-k sequences. If there are:

• n1 possible first entries,

• n2 possible second entries for each first entry,

• n3 possible third entries for each combination of first and second entries, etc.

then:

|S| = n1 · n2 · n3 · · ·nk

In the awards example, S consists of sequences (x, y, z). There are n ways to

choose x, the recipient of prize #1. For each of these, there are n−1 ways to choose

12.4. THE GENERALIZED PRODUCT RULE 641

y, the recipient of prize #2, since everyone except for person x is eligible. For each

combination of x and y, there are n− 2 ways to choose z, the recipient of prize #3,

because everyone except for x and y is eligible. Thus, according to the Generalized

Product Rule, there are

|S| = n · (n− 1) · (n− 2)

ways to award the 3 prizes to different people.

12.4.1 Defective Dollars

A dollar is defective if some digit appears more than once in the 8-digit serial num-

ber. If you check your wallet, you’ll be sad to discover that defective dollars are

all-too-common. In fact, how common are nondefective dollars? Assuming that

the digit portions of serial numbers all occur equally often, we could answer this

question by computing:

fraction dollars that are nondefective =
of serial #’s with all digits different

total # of serial #’s

642 CHAPTER 12. COUNTING

Let’s first consider the denominator. Here there are no restrictions; there are are 10

possible first digits, 10 possible second digits, 10 third digits, and so on. Thus, the

total number of 8-digit serial numbers is 108 by the Product Rule.

Next, let’s turn to the numerator. Now we’re not permitted to use any digit

twice. So there are still 10 possible first digits, but only 9 possible second digits,

8 possible third digits, and so forth. Thus, by the Generalized Product Rule, there

are

10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 =
10!
2

= 1, 814, 400

serial numbers with all digits different. Plugging these results into the equation

above, we find:

fraction dollars that are nondefective =
1, 814, 400

100, 000, 000

= 1.8144%

12.4. THE GENERALIZED PRODUCT RULE 643

12.4.2 A Chess Problem

In how many different ways can we place a pawn (p), a knight (k), and a bishop

(b) on a chessboard so that no two pieces share a row or a column? A valid config-

uration is shown below on the left, and an invalid configuration is shown on the

right.

k

b

p

p

b k

valid invalid

First, we map this problem about chess pieces to a question about sequences. There

is a bijection from configurations to sequences

(rp, cp, rk, ck, rb, cb)

where rp, rk, and rb are distinct rows and cp, ck, and cb are distinct columns. In

particular, rp is the pawn’s row, cp is the pawn’s column, rk is the knight’s row, etc.

Now we can count the number of such sequences using the Generalized Product

Rule:

644 CHAPTER 12. COUNTING

• rp is one of 8 rows
• cp is one of 8 columns
• rk is one of 7 rows (any one but rp)
• ck is one of 7 columns (any one but cp)
• rb is one of 6 rows (any one but rp or rk)
• cb is one of 6 columns (any one but cp or ck)

Thus, the total number of configurations is (8 · 7 · 6)2.

12.4.3 Permutations

A permutation of a set S is a sequence that contains every element of S exactly once.

For example, here are all the permutations of the set {a, b, c}:

(a, b, c) (a, c, b) (b, a, c)
(b, c, a) (c, a, b) (c, b, a)

How many permutations of an n-element set are there? Well, there are n choices

for the first element. For each of these, there are n − 1 remaining choices for the

second element. For every combination of the first two elements, there are n − 2

ways to choose the third element, and so forth. Thus, there are a total of

n · (n− 1) · (n− 2) · · · 3 · 2 · 1 = n!

permutations of an n-element set. In particular, this formula says that there are

3! = 6 permuations of the 3-element set {a, b, c}, which is the number we found

12.5. THE DIVISION RULE 645

above.

Permutations will come up again in this course approximately 1.6 bazillion

times. In fact, permutations are the reason why factorial comes up so often and

why we taught you Stirling’s approximation:

n! ∼
√

2πn
(n
e

)n

12.5 The Division Rule

Counting ears and dividing by two is a silly way to count the number of people in

a room, but this approach is representative of a powerful counting principle.

A k-to-1 function maps exactly k elements of the domain to every element of the

codomain. For example, the function mapping each ear to its owner is 2-to-1:

ear 1

ear 2

ear 3

ear 4

ear 5

ear 6

person A

person B

person C

-

PPPPPPq�
�
�
�
��3

PPPPPPq-

�
�
�
�
�
��

646 CHAPTER 12. COUNTING

Similarly, the function mapping each finger to its owner is 10-to-1, and the func-

tion mapping each finger and toe to its owner is 20-to-1. The general rule is:

Rule 6 (Division Rule). If f : A→ B is k-to-1, then |A| = k · |B|.

For example, suppose A is the set of ears in the room and B is the set of people.

There is a 2-to-1 mapping from ears to people, so by the Division Rule |A| = 2 · |B|

or, equivalently, |B| = |A| /2, expressing what we knew all along: the number

of people is half the number of ears. Unlikely as it may seem, many counting

problems are made much easier by initially counting every item multiple times and

then correcting the answer using the Division Rule. Let’s look at some examples.

12.5.1 Another Chess Problem

In how many different ways can you place two identical rooks on a chessboard so

that they do not share a row or column? A valid configuration is shown below on

12.5. THE DIVISION RULE 647

the left, and an invalid configuration is shown on the right.

r

r

r

r

valid invalid

Let A be the set of all sequences

(r1, c1, r2, c2)

where r1 and r2 are distinct rows and c1 and c2 are distinct columns. Let B be

the set of all valid rook configurations. There is a natural function f from set A to

set B; in particular, f maps the sequence (r1, c1, r2, c2) to a configuration with one

rook in row r1, column c1 and the other rook in row r2, column c2.

But now there’s a snag. Consider the sequences:

(1, 1, 8, 8) and (8, 8, 1, 1)

The first sequence maps to a configuration with a rook in the lower-left corner and

a rook in the upper-right corner. The second sequence maps to a configuration with

a rook in the upper-right corner and a rook in the lower-left corner. The problem is

648 CHAPTER 12. COUNTING

that those are two different ways of describing the same configuration! In fact, this

arrangement is shown on the left side in the diagram above.

More generally, the function f maps exactly two sequences to every board con-

figuration; that is f is a 2-to-1 function. Thus, by the quotient rule, |A| = 2 · |B|.

Rearranging terms gives:

|B| = |A|
2

=
(8 · 7)2

2

On the second line, we’ve computed the size of A using the General Product Rule

just as in the earlier chess problem.

12.5.2 Knights of the Round Table

In how many ways can King Arthur seat n different knights at his round table?

Two seatings are considered equivalent if one can be obtained from the other by

rotation. For example, the following two arrangements are equivalent:

12.5. THE DIVISION RULE 649

"!
k1

k2

k3

k4 "!
k3

k4

k1

k2

Let A be all the permutations of the knights, and let B be the set of all possible

seating arrangements at the round table. We can map each permutation in set A to

a circular seating arrangement in set B by seating the first knight in the permuta-

tion anywhere, putting the second knight to his left, the third knight to the left of

the second, and so forth all the way around the table. For example:

(k2, k4, k1, k3) −→ "!
k2

k4

k1

k3

This mapping is actually an n-to-1 function from A to B, since all n cyclic shifts of

the original sequence map to the same seating arrangement. In the example, n = 4

different sequences map to the same seating arrangement:

650 CHAPTER 12. COUNTING

(k2, k4, k1, k3)

(k4, k1, k3, k2)

(k1, k3, k2, k4)

(k3, k2, k4, k1)

−→ "!
k2

k4

k1

k3

Therefore, by the division rule, the number of circular seating arrangements is:

|B| = |A|
n

=
n!
n

= (n− 1)!

Note that |A| = n! since there are n! permutations of n knights.

12.6. COUNTING SUBSETS 651

12.5.3 Problems

Class Problems

Exam Problems

12.6 Counting Subsets

How many k-element subsets of an n-element set are there? This question arises

all the time in various guises:

• In how many ways can I select 5 books from my collection of 100 to bring on

vacation?

• How many different 13-card Bridge hands can be dealt from a 52-card deck?

• In how many ways can I select 5 toppings for my pizza if there are 14 avail-

able toppings?

This number comes up so often that there is a special notation for it:

(
n

k

)
::= the number of k-element subsets of an n-element set.

652 CHAPTER 12. COUNTING

The expression
(
n

k

)
is read “n choose k.” Now we can immediately express

the answers to all three questions above:

• I can select 5 books from 100 in
(

100
5

)
ways.

• There are
(

52
13

)
different Bridge hands.

• There are
(

14
5

)
different 5-topping pizzas, if 14 toppings are available.

12.6.1 The Subset Rule

We can derive a simple formula for the n-choose-k number using the Division

Rule. We do this by mapping any permutation of an n-element set {a1, . . . , an}

into a k-element subset simply by taking the first k elements of the permutation.

That is, the permutation a1a2 . . . an will map to the set {a1, a2, . . . , ak}.

Notice that any other permutation with the same first k elements a1, . . . , ak

in any order and the same remaining elements n − k elements in any order will

also map to this set. What’s more, a permutation can only map to {a1, a2, . . . , ak}

if its first k elements are the elements a1, . . . , ak in some order. Since there are

12.6. COUNTING SUBSETS 653

k! possible permutations of the first k elements and (n − k)! permutations of the

remaining elements, we conclude from the Product Rule that exactly k!(n − k)!

permutations of the n-element set map to the the particular subset, S. In other

words, the mapping from permutations to k-element subsets is k!(n− k)!-to-1.

But we know there are n! permutations of an n-element set, so by the Division

Rule, we conclude that

n! = k!(n− k)!
(
n

k

)

which proves:

Rule 7 (Subset Rule). The number,

(
n

k

)
,

of k-element subsets of an n-element set is

n!
k! (n− k)!

.

Notice that this works even for 0-element subsets: n!/0!n! = 1. Here we use the

fact that 0! is a product of 0 terms, which by convention equals 1. (A sum of zero

terms equals 0.)

654 CHAPTER 12. COUNTING

12.6.2 Bit Sequences

How many n-bit sequences contain exactly k ones? We’ve already seen the straight-

forward bijection between subsets of an n-element set and n-bit sequences. For

example, here is a 3-element subset of {x1, x2, . . . , x8} and the associated 8-bit se-

quence:

{ x1, x4, x5 }
(1, 0, 0, 1, 1, 0, 0, 0)

Notice that this sequence has exactly 3 ones, each corresponding to an element

of the 3-element subset. More generally, the n-bit sequences corresponding to a

k-element subset will have exactly k ones. So by the Bijection Rule,

The number of n-bit sequences with exactly k ones is
(
n

k

)
.

12.7. SEQUENCES WITH REPETITIONS 655

12.7 Sequences with Repetitions

12.7.1 Sequences of Subsets

Choosing a k-element subset of an n-element set is the same as splitting the set

into a pair of subsets: the first subset of size k and the second subset consisting of

the remaining n − k elements. So the Subset Rule can be understood as a rule for

counting the number of such splits into pairs of subsets.

We can generalize this to splits into more than two subsets. Namely, let A be

an n-element set and k1, k2, . . . , km be nonnegative integers whose sum is n. A

(k1, k2, . . . , km)-split of A is a sequence

(A1, A2, . . . , Am)

where the Ai are pairwise disjoint2 subsets of A and |Ai| = ki for i = 1, . . . ,m.

The same reasoning used to explain the Subset Rule extends directly to a rule

for counting the number of splits into subsets of given sizes.

2That is Ai ∩ Aj = ∅ whenever i 6= j. Another way to say this is that no element appears in more

than one of the Ai’s.

656 CHAPTER 12. COUNTING

Rule 8 (Subset Split Rule). The number of (k1, k2, . . . , km)-splits of an n-element set is

(
n

k1, . . . , km

)
::=

n!
k1! k2! · · · km!

The proof of this Rule is essentially the same as for the Subset Rule. Namely,

we map any permutation a1a2 . . . an of an n-element set, A, into a (k1, k2, . . . , km)-

split by letting the 1st subset in the split be the first k1 elements of the permutation,

the 2nd subset of the split be the next k2 elements, . . . , and the mth subset of the

split be the final km elements of the permutation. This map is a k1! k2! · · · km!-to-1

from the n! permutations to the (k1, k2, . . . , km)-splits of A, and the Subset Split

Rule now follows from the Division Rule.

12.7.2 The Bookkeeper Rule

We can also generalize our count of n-bit sequences with k-ones to counting length

n sequences of letters over an alphabet with more than two letters. For example,

how many sequences can be formed by permuting the letters in the 10-letter word

BOOKKEEPER?

12.7. SEQUENCES WITH REPETITIONS 657

Notice that there are 1 B, 2 O’s, 2 K’s, 3 E’s, 1 P, and 1 R in BOOKKEEPER. This

leads to a straightforward bijection between permutations of BOOKKEEPER and

(1,2,2,3,1,1)-splits of {1, . . . , n}. Namely, map a permutation to the sequence of sets

of positions where each of the different letters occur.

For example, in the permutation BOOKKEEPER itself, the B is in the 1st posi-

tion, the O’s occur in the 2nd and 3rd positions, K’s in 4th and 5th, the E’s in the

6th, 7th and 9th, P in the 8th, and R is in the 10th position, so BOOKKEEPER maps

to

({1} , {2, 3} , {4, 5} , {6, 7, 9} , {8} , {10}).

From this bijection and the Subset Split Rule, we conclude that the number of ways

to rearrange the letters in the word BOOKKEEPER is:

total letters︷︸︸︷
10!

1!︸︷︷︸
B’s

2!︸︷︷︸
O’s

2!︸︷︷︸
K’s

3!︸︷︷︸
E’s

1!︸︷︷︸
P’s

1!︸︷︷︸
R’s

This example generalizes directly to an exceptionally useful counting principle

which we will call the

Rule 9 (Bookkeeper Rule). Let l1, . . . , lm be distinct elements. The number of sequences

658 CHAPTER 12. COUNTING

with k1 occurrences of l1, and k2 occurrences of l2, . . . , and km occurrences of lm is

(k1 + k2 + . . .+ km)!
k1! k2! . . . km!

Example. 20-Mile Walks.

I’m planning a 20-mile walk, which should include 5 northward miles, 5 east-

ward miles, 5 southward miles, and 5 westward miles. How many different walks

are possible?

There is a bijection between such walks and sequences with 5 N’s, 5 E’s, 5 S’s,

and 5 W’s. By the Bookkeeper Rule, the number of such sequences is:

20!
5!4

12.7.3 A Word about Words

Someday you might refer to the Subset Split Rule or the Bookkeeper Rule in front

of a roomful of colleagues and discover that they’re all staring back at you blankly.

This is not because they’re dumb, but rather because we made up the name “Book-

keeper Rule”. However, the rule is excellent and the name is apt, so we suggest

12.7. SEQUENCES WITH REPETITIONS 659

that you play through: “You know? The Bookkeeper Rule? Don’t you guys know

anything???”

The Bookkeeper Rule is sometimes called the “formula for permutations with

indistinguishable objects.” The size k subsets of an n-element set are sometimes

called k-combinations. Other similar-sounding descriptions are “combinations with

repetition, permutations with repetition, r-permutations, permutations with indis-

tinguishable objects,” and so on. However, the counting rules we’ve taught you

are sufficient to solve all these sorts of problems without knowing this jargon, so

we won’t burden you with it.

660 CHAPTER 12. COUNTING

12.7.4 Problems

Class Problems

12.8 Magic Trick

There is a Magician and an Assistant. The Assistant goes into the audience with a

deck of 52 cards while the Magician looks away.3

Five audience members each select one card from the deck. The Assistant then

gathers up the five cards and holds up four of them so the Magician can see them.

The Magician concentrates for a short time and then correctly names the secret,

fifth card!

Since we don’t really believe the Magician can read minds, we know the As-

3 There are 52 cards in a standard deck. Each card has a suit and a rank. There are four suits:

♠(spades) ♥(hearts) ♣(clubs) ♦(diamonds)

And there are 13 ranks, listed here from lowest to highest:

Ace
A , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ,

Jack
J ,

Queen
Q ,

King
K

Thus, for example, 8♥ is the 8 of hearts and A♠ is the ace of spades.

12.8. MAGIC TRICK 661

sistant has somehow communicated the secret card to the Magician. Since real

Magicians and Assistants are not to be trusted, we can expect that the Assistant

would illegitimately signal the Magician with coded phrases or body language,

but they don’t have to cheat in this way. In fact, the Magician and Assistant could

be kept out of sight of each other while some audience member holds up the 4

cards designated by the Assistant for the Magician to see.

Of course, without cheating, there is still an obvious way the Assistant can

communicate to the Magician: he can choose any of the 4! = 24 permutations of

the 4 cards as the order in which to hold up the cards. However, this alone won’t

quite work: there are 48 cards remaining in the deck, so the Assistant doesn’t have

enough choices of orders to indicate exactly what the secret card is (though he

could narrow it down to two cards).

12.8.1 The Secret

The method the Assistant can use to communicate the fifth card exactly is a nice

application of what we know about counting and matching.

662 CHAPTER 12. COUNTING

The Assistant really has another legitimate way to communicate: he can choose

which of the five cards to keep hidden. Of course, it’s not clear how the Magician could

determine which of these five possibilities the Assistant selected by looking at the

four visible cards, but there is a way, as we’ll now explain.

The problem facing the Magician and Assistant is actually a bipartite matching

problem. Put all the sets of 5 cards in a collection, X , on the left. And put all the

sequences of 4 distinct cards in a collection, Y , on the right. These are the two sets

of vertices in the bipartite graph. There is an edge between a set of 5 cards and

a sequence of 4 if every card in the sequence is also in the set. In other words, if

the audience selects a set of cards, then the Assistant must reveal a sequence of

cards that is adjacent in the bipartite graph. Some edges are shown in the diagram

below.

12.8. MAGIC TRICK 663

X =
all sets of

5 cards

•

•

•

•

{8♥,K♠, Q♠, 2♦, 6♦}

•

•

{8♥,K♠, Q♠, 9♣, 6♦}

•

Y = all
sequences of 4

distinct cards

•

•

•

(8♥,K♠, Q♠, 2♦)

(K♠, 8♥, Q♠, 2♦)

(K♠, 8♥, 6♦, Q♠)

•

•

•

��
��

��

hhhhhhhhhhhhh

PPPPPP

��
��

��

((((
((((

(((

For example,

{8♥,K♠, Q♠, 2♦, 6♦} (12.1)

is an element of X on the left. If the audience selects this set of 5 cards, then

there are many different 4-card sequences on the right in set Y that the Assis-

tant could choose to reveal, including (8♥,K♠, Q♠, 2♦), (K♠, 8♥, Q♠, 2♦), and

(K♠, 8♥, 6♦, Q♠).

What the Magician and his Assistant need to perform the trick is a matching for

theX vertices. If they agree in advance on some matching, then when the audience

selects a set of 5 cards, the Assistant reveals the matching sequence of 4 cards. The

Magician uses the reverse of the matching to find the audience’s chosen set of 5

664 CHAPTER 12. COUNTING

cards, and so he can name the one not already revealed.

For example, suppose the Assistant and Magician agree on a matching contain-

ing the two bold edges in the diagram above. If the audience selects the set

{8♥,K♠, Q♠, 9♣, 6♦} , (12.2)

then the Assistant reveals the corresponding sequence

(K♠, 8♥, 6♦, Q♠). (12.3)

Using the matching, the Magician sees that the hand (12.2) is matched to the se-

quence (12.3), so he can name the one card in the corresponding set not already

revealed, namely, the 9♣. Notice that the fact that the sets are matched, that is, that

different sets are paired with distinct sequences, is essential. For example, if the

audience picked the previous hand (12.1), it would be possible for the Assistant

to reveal the same sequence (12.3), but he better not do that: if he did, then the

Magician would have no way to tell if the remaining card was the 9♣ or the 2♦.

So how can we be sure the needed matching can be found? The reason is that

each vertex on the left has degree 5 · 4! = 120, since there are five ways to select

12.8. MAGIC TRICK 665

the card kept secret and there are 4! permutations of the remaining 4 cards. In

addition, each vertex on the right has degree 48, since there are 48 possibilities for

the fifth card. So this graph is degree-constrained according to Definition 7.7.5, and

therefore satisfies Hall’s matching condition.

In fact, this reasoning show that the Magician could still pull off the trick if 120

cards were left instead of 48, that is, the trick would work with a deck as large as

124 different cards —without any magic!

12.8.2 The Real Secret

But wait a minute! It’s all very well in principle to have the Magician and his

Assistant agree on a matching, but how are they supposed to remember a matching

with
(
52
5

)
= 2, 598, 960 edges? For the trick to work in practice, there has to be a

way to match hands and card sequences mentally and on the fly.

We’ll describe one approach. As a running example, suppose that the audience

selects:

10♥ 9♦ 3♥ Q♠ J♦

666 CHAPTER 12. COUNTING

• The Assistant picks out two cards of the same suit. In the example, the assis-

tant might choose the 3♥ and 10♥.

• The Assistant locates the ranks of these two cards on the cycle shown below:

A 2

3

4

5

6
78

9

10

J

Q

K

For any two distinct ranks on this cycle, one is always between 1 and 6 hops

clockwise from the other. For example, the 3♥ is 6 hops clockwise from the

10♥.

• The more counterclockwise of these two cards is revealed first, and the other

becomes the secret card. Thus, in our example, the 10♥ would be revealed,

and the 3♥would be the secret card. Therefore:

– The suit of the secret card is the same as the suit of the first card revealed.

12.8. MAGIC TRICK 667

– The rank of the secret card is between 1 and 6 hops clockwise from the

rank of the first card revealed.

• All that remains is to communicate a number between 1 and 6. The Magician

and Assistant agree beforehand on an ordering of all the cards in the deck

from smallest to largest such as:

A♣ A♦ A♥ A♠ 2♣ 2♦ 2♥ 2♠ . . . K♥K♠

The order in which the last three cards are revealed communicates the num-

ber according to the following scheme:

(small, medium, large) = 1
(small, large, medium) = 2
(medium, small, large) = 3
(medium, large, small) = 4
(large, small, medium) = 5
(large, medium, small) = 6

In the example, the Assistant wants to send 6 and so reveals the remaining

three cards in large, medium, small order. Here is the complete sequence that

the Magician sees:

10♥ Q♠ J♦ 9♦

• The Magician starts with the first card, 10♥, and hops 6 ranks clockwise to

668 CHAPTER 12. COUNTING

reach 3♥, which is the secret card!

So that’s how the trick can work with a standard deck of 52 cards. On the

other hand, Hall’s Theorem implies that the Magician and Assistant can in principle

perform the trick with a deck of up to 124 cards. It turns out that there is a method

which they could actually learn to use with a reasonable amount of practice for a

124 card deck (see The Best Card Trick by Michael Kleber).

12.8.3 Same Trick with Four Cards?

Suppose that the audience selects only four cards and the Assistant reveals a se-

quence of three to the Magician. Can the Magician determine the fourth card?

Let X be all the sets of four cards that the audience might select, and let Y be

all the sequences of three cards that the Assistant might reveal. Now, on one hand,

we have

|X| =
(

52
4

)
= 270, 725

http://courses.csail.mit.edu/6.042/spring10/cardTrick.pdf

12.8. MAGIC TRICK 669

by the Subset Rule. On the other hand, we have

|Y | = 52 · 51 · 50 = 132, 600

by the Generalized Product Rule. Thus, by the Pigeonhole Principle, the Assistant

must reveal the same sequence of three cards for at least

⌈
270, 725
132, 600

⌉
= 3

different four-card hands. This is bad news for the Magician: if he sees that se-

quence of three, then there are at least three possibilities for the fourth card which

he cannot distinguish. So there is no legitimate way for the Assistant to communi-

cate exactly what the fourth card is!

670 CHAPTER 12. COUNTING

12.8.4 Problems

Class Problems

Homework Problems

12.9 Counting Practice: Poker Hands

Five-Card Draw is a card game in which each player is initially dealt a hand, a

subset of 5 cards. (Then the game gets complicated, but let’s not worry about

that.) The number of different hands in Five-Card Draw is the number of 5-element

subsets of a 52-element set, which is 52 choose 5:

total # of hands =
(

52
5

)
= 2, 598, 960

Let’s get some counting practice by working out the number of hands with various

special properties.

12.9. COUNTING PRACTICE: POKER HANDS 671

12.9.1 Hands with a Four-of-a-Kind

A Four-of-a-Kind is a set of four cards with the same rank. How many different

hands contain a Four-of-a-Kind? Here are a couple examples:

{ 8♠, 8♦, Q♥, 8♥, 8♣ }
{ A♣, 2♣, 2♥, 2♦, 2♠ }

As usual, the first step is to map this question to a sequence-counting problem. A

hand with a Four-of-a-Kind is completely described by a sequence specifying:

1. The rank of the four cards.

2. The rank of the extra card.

3. The suit of the extra card.

Thus, there is a bijection between hands with a Four-of-a-Kind and sequences con-

sisting of two distinct ranks followed by a suit. For example, the three hands above

are associated with the following sequences:

(8, Q,♥) ↔ { 8♠, 8♦, 8♥, 8♣, Q♥ }
(2, A,♣) ↔ { 2♣, 2♥, 2♦, 2♠, A♣ }

672 CHAPTER 12. COUNTING

Now we need only count the sequences. There are 13 ways to choose the first rank,

12 ways to choose the second rank, and 4 ways to choose the suit. Thus, by the

Generalized Product Rule, there are 13 · 12 · 4 = 624 hands with a Four-of-a-Kind.

This means that only 1 hand in about 4165 has a Four-of-a-Kind; not surprisingly,

this is considered a very good poker hand!

12.9.2 Hands with a Full House

A Full House is a hand with three cards of one rank and two cards of another rank.

Here are some examples:

{ 2♠, 2♣, 2♦, J♣, J♦ }
{ 5♦, 5♣, 5♥, 7♥, 7♣ }

Again, we shift to a problem about sequences. There is a bijection between Full

Houses and sequences specifying:

1. The rank of the triple, which can be chosen in 13 ways.

2. The suits of the triple, which can be selected in
(
4
3

)
ways.

3. The rank of the pair, which can be chosen in 12 ways.

12.9. COUNTING PRACTICE: POKER HANDS 673

4. The suits of the pair, which can be selected in
(
4
2

)
ways.

The example hands correspond to sequences as shown below:

(2, {♠,♣,♦} , J, {♣,♦}) ↔ { 2♠, 2♣, 2♦, J♣, J♦ }
(5, {♦,♣,♥} , 7, {♥,♣}) ↔ { 5♦, 5♣, 5♥, 7♥, 7♣ }

By the Generalized Product Rule, the number of Full Houses is:

13 ·
(

4
3

)
· 12 ·

(
4
2

)

We’re on a roll— but we’re about to hit a speedbump.

12.9.3 Hands with Two Pairs

How many hands have Two Pairs; that is, two cards of one rank, two cards of

another rank, and one card of a third rank? Here are examples:

{ 3♦, 3♠, Q♦, Q♥, A♣ }
{ 9♥, 9♦, 5♥, 5♣, K♠ }

Each hand with Two Pairs is described by a sequence consisting of:

1. The rank of the first pair, which can be chosen in 13 ways.

2. The suits of the first pair, which can be selected
(
4
2

)
ways.

674 CHAPTER 12. COUNTING

3. The rank of the second pair, which can be chosen in 12 ways.

4. The suits of the second pair, which can be selected in
(
4
2

)
ways.

5. The rank of the extra card, which can be chosen in 11 ways.

6. The suit of the extra card, which can be selected in
(
4
1

)
= 4 ways.

Thus, it might appear that the number of hands with Two Pairs is:

13 ·
(

4
2

)
· 12 ·

(
4
2

)
· 11 · 4

Wrong answer! The problem is that there is not a bijection from such sequences to

hands with Two Pairs. This is actually a 2-to-1 mapping. For example, here are the

pairs of sequences that map to the hands given above:

(3, {♦,♠} , Q, {♦,♥} , A,♣) ↘
{ 3♦, 3♠, Q♦, Q♥, A♣ }

(Q, {♦,♥} , 3, {♦,♠} , A,♣) ↗

(9, {♥,♦} , 5, {♥,♣} ,K,♠) ↘
{ 9♥, 9♦, 5♥, 5♣, K♠ }

(5, {♥,♣} , 9, {♥,♦} ,K,♠) ↗

The problem is that nothing distinguishes the first pair from the second. A pair of

5’s and a pair of 9’s is the same as a pair of 9’s and a pair of 5’s. We avoided this

difficulty in counting Full Houses because, for example, a pair of 6’s and a triple

12.9. COUNTING PRACTICE: POKER HANDS 675

of kings is different from a pair of kings and a triple of 6’s.

We ran into precisely this difficulty last time, when we went from counting

arrangements of different pieces on a chessboard to counting arrangements of two

identical rooks. The solution then was to apply the Division Rule, and we can do the

same here. In this case, the Division rule says there are twice as many sequences

as hands, so the number of hands with Two Pairs is actually:

13 ·
(
4
2

)
· 12 ·

(
4
2

)
· 11 · 4

2

Another Approach

The preceding example was disturbing! One could easily overlook the fact that the

mapping was 2-to-1 on an exam, fail the course, and turn to a life of crime. You

can make the world a safer place in two ways:

1. Whenever you use a mapping f : A → B to translate one counting problem

to another, check that the same number elements in A are mapped to each

element in B. If k elements of A map to each of element of B, then apply the

676 CHAPTER 12. COUNTING

Division Rule using the constant k.

2. As an extra check, try solving the same problem in a different way. Multiple

approaches are often available— and all had better give the same answer!

(Sometimes different approaches give answers that look different, but turn

out to be the same after some algebra.)

We already used the first method; let’s try the second. There is a bijection be-

tween hands with two pairs and sequences that specify:

1. The ranks of the two pairs, which can be chosen in
(
13
2

)
ways.

2. The suits of the lower-rank pair, which can be selected in
(
4
2

)
ways.

3. The suits of the higher-rank pair, which can be selected in
(
4
2

)
ways.

4. The rank of the extra card, which can be chosen in 11 ways.

5. The suit of the extra card, which can be selected in
(
4
1

)
= 4 ways.

For example, the following sequences and hands correspond:

({3, Q} , {♦,♠} , {♦,♥} , A,♣) ↔ { 3♦, 3♠, Q♦, Q♥, A♣ }
({9, 5} , {♥,♣} , {♥,♦} ,K,♠) ↔ { 9♥, 9♦, 5♥, 5♣, K♠ }

12.9. COUNTING PRACTICE: POKER HANDS 677

Thus, the number of hands with two pairs is:

(
13
2

)
·
(

4
2

)
·
(

4
2

)
· 11 · 4

This is the same answer we got before, though in a slightly different form.

12.9.4 Hands with Every Suit

How many hands contain at least one card from every suit? Here is an example of

such a hand:

{ 7♦, K♣, 3♦, A♥, 2♠ }

Each such hand is described by a sequence that specifies:

1. The ranks of the diamond, the club, the heart, and the spade, which can be

selected in 13 · 13 · 13 · 13 = 134 ways.

2. The suit of the extra card, which can be selected in 4 ways.

3. The rank of the extra card, which can be selected in 12 ways.

678 CHAPTER 12. COUNTING

For example, the hand above is described by the sequence:

(7,K,A, 2,♦, 3) ↔ { 7♦, K♣, A♥, 2♠, 3♦ }

Are there other sequences that correspond to the same hand? There is one more!

We could equally well regard either the 3♦ or the 7♦ as the extra card, so this

is actually a 2-to-1 mapping. Here are the two sequences corresponding to the

example hand:

(7,K,A, 2,♦, 3) ↘
{ 7♦, K♣, A♥, 2♠, 3♦ }

(3,K,A, 2,♦, 7) ↗

Therefore, the number of hands with every suit is:

134 · 4 · 12
2

12.10. INCLUSION-EXCLUSION 679

12.9.5 Problems

Class Problems

Exam Problems

12.10 Inclusion-Exclusion

How big is a union of sets? For example, suppose there are 60 math majors, 200

EECS majors, and 40 physics majors. How many students are there in these three

departments? Let M be the set of math majors, E be the set of EECS majors, and P

be the set of physics majors. In these terms, we’re asking for |M ∪ E ∪ P |.

The Sum Rule says that the size of union of disjoint sets is the sum of their sizes:

|M ∪ E ∪ P | = |M |+ |E|+ |P | (if M , E, and P are disjoint)

However, the sets M , E, and P might not be disjoint. For example, there might be

a student majoring in both math and physics. Such a student would be counted

twice on the right side of this equation, once as an element of M and once as an

680 CHAPTER 12. COUNTING

element of P . Worse, there might be a triple-major4 counted three times on the right

side!

Our last counting rule determines the size of a union of sets that are not neces-

sarily disjoint. Before we state the rule, let’s build some intuition by considering

some easier special cases: unions of just two or three sets.

12.10.1 Union of Two Sets

For two sets, S1 and S2, the Inclusion-Exclusion Rule is that the size of their union

is:

|S1 ∪ S2| = |S1|+ |S2| − |S1 ∩ S2| (12.4)

Intuitively, each element of S1 is accounted for in the first term, and each element

of S2 is accounted for in the second term. Elements in both S1 and S2 are counted

twice— once in the first term and once in the second. This double-counting is

corrected by the final term.

We can capture this double-counting idea in a precise way by decomposing the

4. . . though not at MIT anymore.

12.10. INCLUSION-EXCLUSION 681

union of S1 and S2 into three disjoint sets, the elements in each set but not the

other, and the elements in both:

S1 ∪ S2 = (S1 − S2) ∪ (S2 − S1) ∪ (S1 ∩ S2). (12.5)

Similarly, we can decompose each of S1 and S2 into the elements exclusively in

each set and the elements in both:

S1 = (S1 − S2) ∪ (S1 ∩ S2), (12.6)

S2 = (S2 − S1) ∪ (S1 ∩ S2). (12.7)

Now we have from (12.6) and (12.7)

|S1|+ |S2| = (|S1 − S2|+ |S1 ∩ S2|) + (|S2 − S1|+ |S1 ∩ S2|)

= |S1 − S2|+ |S2 − S1|+ 2 |S1 ∩ S2| , (12.8)

which shows the double-counting of S1 ∩ S2 in the sum. On the other hand, we

have from (12.5)

|S1 ∪ S2| = |S1 − S2|+ |S2 − S1|+ |S1 ∩ S2| . (12.9)

682 CHAPTER 12. COUNTING

Subtracting (12.9) from (12.8), we get

(|S1|+ |S2|)− |S1 ∪ S2| = |S1 ∩ S2|

which proves (12.4).

12.10.2 Union of Three Sets

So how many students are there in the math, EECS, and physics departments? In

other words, what is |M ∪ E ∪ P | if:

|M | = 60

|E| = 200

|P | = 40

12.10. INCLUSION-EXCLUSION 683

The size of a union of three sets is given by a more complicated Inclusion-Exclusion

formula:

|S1 ∪ S2 ∪ S3| = |S1|+ |S2|+ |S3|

− |S1 ∩ S2| − |S1 ∩ S3| − |S2 ∩ S3|

+ |S1 ∩ S2 ∩ S3|

Remarkably, the expression on the right accounts for each element in the union of

S1, S2, and S3 exactly once. For example, suppose that x is an element of all three

sets. Then x is counted three times (by the |S1|, |S2|, and |S3| terms), subtracted off

three times (by the |S1 ∩ S2|, |S1 ∩ S3|, and |S2 ∩ S3| terms), and then counted once

more (by the |S1 ∩ S2 ∩ S3| term). The net effect is that x is counted just once.

So we can’t answer the original question without knowing the sizes of the var-

ious intersections. Let’s suppose that there are:

4 math - EECS double majors
3 math - physics double majors

11 EECS - physics double majors
2 triple majors

Then |M ∩ E| = 4 + 2, |M ∩ P | = 3 + 2, |E ∩ P | = 11 + 2, and |M ∩ E ∩ P | = 2.

684 CHAPTER 12. COUNTING

Plugging all this into the formula gives:

|M ∪ E ∪ P | = |M |+ |E|+ |P | − |M ∩ E| − |M ∩ P | − |E ∩ P |+ |M ∩ E ∩ P |

= 60 + 200 + 40− 6− 5− 13 + 2

= 278

Sequences with 42, 04, or 60

In how many permutations of the set {0, 1, 2, . . . , 9} do either 4 and 2, 0 and 4, or 6

and 0 appear consecutively? For example, none of these pairs appears in:

(7, 2, 9, 5, 4, 1, 3, 8, 0, 6)

The 06 at the end doesn’t count; we need 60. On the other hand, both 04 and 60

appear consecutively in this permutation:

(7, 2, 5, 6, 0, 4, 3, 8, 1, 9)

Let P42 be the set of all permutations in which 42 appears; define P60 and P04

similarly. Thus, for example, the permutation above is contained in both P60 and

P04. In these terms, we’re looking for the size of the set P42 ∪ P04 ∪ P60.

12.10. INCLUSION-EXCLUSION 685

First, we must determine the sizes of the individual sets, such as P60. We can

use a trick: group the 6 and 0 together as a single symbol. Then there is a natural

bijection between permutations of {0, 1, 2, . . . 9} containing 6 and 0 consecutively

and permutations of:

{60, 1, 2, 3, 4, 5, 7, 8, 9}

For example, the following two sequences correspond:

(7, 2, 5, 6, 0, 4, 3, 8, 1, 9) ↔ (7, 2, 5, 60, 4, 3, 8, 1, 9)

There are 9! permutations of the set containing 60, so |P60| = 9! by the Bijection

Rule. Similarly, |P04| = |P42| = 9! as well.

Next, we must determine the sizes of the two-way intersections, such as P42 ∩

P60. Using the grouping trick again, there is a bijection with permutations of the

set:

{42, 60, 1, 3, 5, 7, 8, 9}

Thus, |P42 ∩ P60| = 8!. Similarly, |P60 ∩ P04| = 8! by a bijection with the set:

{604, 1, 2, 3, 5, 7, 8, 9}

686 CHAPTER 12. COUNTING

And |P42 ∩ P04| = 8! as well by a similar argument. Finally, note that |P60 ∩ P04 ∩ P42| =

7! by a bijection with the set:

{6042, 1, 3, 5, 7, 8, 9}

Plugging all this into the formula gives:

|P42 ∪ P04 ∪ P60| = 9! + 9! + 9!− 8!− 8!− 8! + 7!

12.10.3 Union of n Sets

The size of a union of n sets is given by the following rule.

Rule 10 (Inclusion-Exclusion).

|S1 ∪ S2 ∪ · · · ∪ Sn| =

the sum of the sizes of the individual sets

minus the sizes of all two-way intersections

plus the sizes of all three-way intersections

minus the sizes of all four-way intersections

plus the sizes of all five-way intersections, etc.

12.10. INCLUSION-EXCLUSION 687

The formulas for unions of two and three sets are special cases of this general

rule.

This way of expressing Inclusion-Exclusion is easy to understand and nearly

as precise as expressing it in mathematical symbols, but we’ll need the symbolic

version below, so let’s work on deciphering it now.

We already have a standard notation for the sum of sizes of the individual sets,

namely,

n∑
i=1

|Si| .

A “two-way intersection” is a set of the form Si ∩ Sj for i 6= j. We regard Sj ∩ Si

as the same two-way intersection as Si ∩ Sj , so we can assume that i < j. Now we

can express the sum of the sizes of the two-way intersections as

∑
1≤i<j≤n

|Si ∩ Sj | .

Similarly, the sum of the sizes of the three-way intersections is

∑
1≤i<j<k≤n

|Si ∩ Sj ∩ Sk| .

These sums have alternating signs in the Inclusion-Exclusion formula, with the

688 CHAPTER 12. COUNTING

sum of the k-way intersections getting the sign (−1)k−1. This finally leads to a

symbolic version of the rule:

Rule (Inclusion-Exclusion).

∣∣∣∣∣
n⋃
i=1

Si

∣∣∣∣∣ =
n∑
i=1

|Si|

−
∑

1≤i<j≤n

|Si ∩ Sj |

+
∑

1≤i<j<k≤n

|Si ∩ Sj ∩ Sk|+ · · ·

+ (−1)n−1

∣∣∣∣∣
n⋂
i=1

Si

∣∣∣∣∣ .

EDITING NOTE:

(covered in Problem ?? PS inclusion-exclusion primes)

Counting Primes

How many of the numbers 1, 2, . . . , 100 are prime?

12.10. INCLUSION-EXCLUSION 689

Counting Primes

How many of the numbers 1, 2, . . . , 100 are prime? One way to answer this ques-

tion is to test each number up to 100 for primality and keep a count. This requires

considerable effort. (Is 57 prime? How about 67?)

Another approach is to use the Inclusion-Exclusion Principle. This requires one

trick: to determine the number of primes, we will first count the number of non-

primes. By the Sum Rule, we can then find the number of primes by subtraction

from 100. This trick of “counting the complement” is a good one to remember.

Reduction to a Union of Four Sets

The set of non-primes in the range 1, . . . , 100 consists of the set, C, of compos-

ite numbers in this range: 4, 6, 8, 9, . . . , 99, 100 and the number 1, which is neither

prime nor composite. The main job is to determine the size of the set C of com-

posite numbers. For this purpose, define Am to be the set of numbers in the range

690 CHAPTER 12. COUNTING

m+ 1, . . . , 100 that are divisible by m:

Am ::= {x ≤ 100 | x > m and (m | x)}

For example, A2 is all the even numbers from 4 to 100. The following Lemma

will now allow us to compute the cardinality of C by using Inclusion-Exclusion for

the union of four sets:

Lemma 12.10.1.

C = A2 ∪A3 ∪A5 ∪A7.

Proof. We prove the two sets equal by showing that each contains the other.

To show that A2 ∪A3 ∪A5 ∪A7 ⊆ C, let n be an element of A2 ∪A3 ∪A5 ∪A7.

Then n ∈ Am for m = 2, 3, 5 or 7. This implies that n is in the range 1, . . . , 100 and

is composite because it has m as a factor. That is, n ∈ C.

Conversely, to show that C ⊆ A2 ∪A3 ∪A5 ∪A7, let n be an element of C. Then

n is a composite number in the range 1, . . . , 100. This means that n has at least two

prime factors. Now if both prime factors are > 10, then their product would be

a number > 100 which divided n, contradicting the fact that n < 100. So n must

12.10. INCLUSION-EXCLUSION 691

have a prime factor ≤ 10. But 2, 3, 5, and 7 are the only primes ≤ 10. This means

that n is an element of A2, A3, A5, or A7, and so n ∈ A2 ∪A3 ∪A5 ∪A7. �

Computing the Cardinality of the Union

Now it’s easy to find the cardinality of each set Am: every mth integer is divisible

by m, so the number of integers in the range 1, . . . , 100 that are divisible by m is

simply b100/mc. So

|Am| =
⌊

100
m

⌋
− 1,

where the−1 arises because we definedAm to excludem itself. This formula gives:

|A2| = b 1002 c − 1 = 49

|A3| = b 1003 c − 1 = 32

|A5| = b 1005 c − 1 = 19

|A7| = b 1007 c − 1 = 13

Notice that these sets A2, A3, A5, and A7 are not disjoint. For example, 6 is

692 CHAPTER 12. COUNTING

in both A2 and A3. Since the sets intersect, we must use the Inclusion-Exclusion

Principle:

|C| = |A2 ∪A3 ∪A5 ∪A7|

= |A2|+ |A3|+ |A5|+ |A7|

− |A2 ∩A3| − |A2 ∩A5| − |A2 ∩A7| − |A3 ∩A5| − |A3 ∩A7| − |A5 ∩A7|

+ |A2 ∩A3 ∩A5|+ |A2 ∩A3 ∩A7|+ |A2 ∩A5 ∩A7|+ |A3 ∩A5 ∩A7|

− |A2 ∩A3 ∩A5 ∩A7|

There are a lot of terms here! Fortunately, all of them are easy to evaluate. For

example, |A3 ∩A7| is the number of multiples of 3 · 7 = 21 in the range 1 to 100,

12.10. INCLUSION-EXCLUSION 693

which is b100/21c = 4. Substituting such values for all of the terms above gives:

|C| =49 + 32 + 19 + 13

− 16− 10− 7− 6− 4− 2

+ 3 + 2 + 1 + 0

− 0

=74

This calculation shows that there are 74 composite numbers in the range 1 to

100. Since the number 1 is neither composite nor prime, there are 100−74−1 = 25

primes in this range.

At this point it may seem that checking each number from 1 to 100 for primal-

ity and keeping a count of primes might have been easier than using Inclusion-

Exclusion. However, the Inclusion-Exclusion approach used here is asymptotically

faster as the range of numbers grows large.

The naive strategy requires n runs of a primality test if the upper bound is n.

The Inclusion-Exclusion approach seems to require summing an immense number

694 CHAPTER 12. COUNTING

of terms, but fewer than n of these are non-zero and the rest can be ignored. �

12.10.4 Computing Euler’s Function

We will now use Inclusion-Exclusion to calculate Euler’s function, φ(n). By defini-

tion, φ(n) is the number of nonnegative integers less than a positive integer n that

are relatively prime to n. But the set, S, of nonnegative integers less than n that are

not relatively prime to n will be easier to count.

Suppose the prime factorization of n is pe11 · · · pemm for distinct primes pi. This

means that the integers in S are precisely the nonnegative integers less than n that

are divisible by at least one of the pi’s. So, letting Ci be the set of nonnegative

integers less than n that are divisible by pi, we have

S =
m⋃
i=1

Ci.

We’ll be able to find the size of this union using Inclusion-Exclusion because

the intersections of the Ci’s are easy to count. For example, C1 ∩ C2 ∩ C3 is the

set of nonnegative integers less than n that are divisible by each of p1, p2 and p3.

12.10. INCLUSION-EXCLUSION 695

But since the pi’s are distinct primes, being divisible by each of these primes is that

same as being divisible by their product. Now observe that if r is a positive divisor

of n, then exactly n/r nonnegative integers less than n are divisible by r, namely,

0, r, 2r, . . . , ((n/r) − 1)r. So exactly n/p1p2p3 nonnegative integers less than n are

divisible by all three primes p1, p2, p3. In other words,

|C1 ∩ C2 ∩ C3| =
n

p1p2p3
.

So reasoning this way about all the intersections among the Ci’s and applying

Inclusion-Exclusion, we get

|S| =

∣∣∣∣∣
m⋃
i=1

Ci

∣∣∣∣∣
=

m∑
i=1

|Ci| −
∑

1≤i<j≤m

|Ci ∩ Cj |+
∑

1≤i<j<k≤m

|Ci ∩ Cj ∩ Ck| − · · ·+ (−1)m−1

∣∣∣∣∣
m⋂
i=1

Ci

∣∣∣∣∣
=

m∑
i=1

n

pi
−

∑
1≤i<j≤m

n

pipj
+

∑
1≤i<j<k≤m

n

pipjpk
− · · ·+ (−1)m−1 n

p1p2 · · · pn

= n

 m∑
i=1

1
pi
−

∑
1≤i<j≤m

1
pipj

+
∑

1≤i<j<k≤m

1
pipjpk

− · · ·+ (−1)m−1 1
p1p2 · · · pn



696 CHAPTER 12. COUNTING

But φ(n) = n− |S| by definition, so

φ(n) = n

1−
m∑
i=1

1
pi

+
∑

1≤i<j≤m

1
pipj

−
∑

1≤i<j<k≤m

1
pipjpk

+ · · ·+ (−1)m
1

p1p2 · · · pn


= n

m∏
i=1

(
1− 1

pi

)
. (12.10)

Notice that in case n = pk for some prime, p, then (12.10) simplifies to

φ(pk) = pk
(

1− 1
p

)
= pk − pk−1

as claimed in chapter 4.

Quick Question: Why does equation (12.10) imply that

φ(ab) = φ(a)φ(b)

for relatively prime integers a, b > 1, as claimed in Theorem 4.7.4.(a)?

12.11. BINOMIAL THEOREM 697

12.10.5 Problems

Practice Problems

Class Problems

Homework Problems

12.11 Binomial Theorem

Counting gives insight into one of the basic theorems of algebra. A binomial is a

sum of two terms, such as a+ b. Now consider its 4th power, (a+ b)4.

If we multiply out this 4th power expression completely, we get

(a+ b)4 = aaaa + aaab + aaba + aabb
+ abaa + abab + abba + abbb
+ baaa + baab + baba + babb
+ bbaa + bbab + bbba + bbbb

Notice that there is one term for every sequence of a’s and b’s. So there are 24

terms, and the number of terms with k copies of b and n− k copies of a is:

n!
k! (n− k)!

=
(
n

k

)

by the Bookkeeper Rule. Now let’s group equivalent terms, such as aaab = aaba =

698 CHAPTER 12. COUNTING

abaa = baaa. Then the coefficient of an−kbk is
(
n
k

)
. So for n = 4, this means:

(a+ b)4 =
(

4
0

)
· a4b0 +

(
4
1

)
· a3b1 +

(
4
2

)
· a2b2 +

(
4
3

)
· a1b3 +

(
4
4

)
· a0b4

In general, this reasoning gives the Binomial Theorem:

Theorem 12.11.1 (Binomial Theorem). For all n ∈ N and a, b ∈ R:

(a+ b)n =
n∑
k=0

(
n

k

)
an−kbk

The expression
(
n

k

)
is often called a “binomial coefficient” in honor of its ap-

pearance here.

This reasoning about binomials extends nicely to multinomials, which are sums

of two or more terms. For example, suppose we wanted the coefficient of

bo2k2e3pr

in the expansion of (b+o+k+e+p+r)10. Each term in this expansion is a product

of 10 variables where each variable is one of b, o, k, e, p, or r. Now, the coefficient

of bo2k2e3pr is the number of those terms with exactly 1 b, 2 o’s, 2 k’s, 3 e’s, 1 p, and

1 r. And the number of such terms is precisely the number of rearrangments of the

12.11. BINOMIAL THEOREM 699

word BOOKKEEPER:

(
10

1, 2, 2, 3, 1, 1

)
=

10!
1! 2! 2! 3! 1! 1!

.

The expression on the left is called a “multinomial coefficient.” This reasoning

extends to a general theorem.

Definition 12.11.2. For n, k1, . . . , km ∈ naturals, such that k1 + k2 + · · ·+ km = n,

define the multinomial coefficient

(
n

k1, k2, . . . , km

)
::=

n!
k1! k2! . . . km!

.

Theorem 12.11.3 (Multinomial Theorem). For all n ∈ N and z1, . . . zm ∈ R:

(z1 + z2 + · · ·+ zm)n =
∑

k1,...,km∈N
k1+···+km=n

(
n

k1, k2, . . . , km

)
zk11 zk22 · · · zkmm

You’ll be better off remembering the reasoning behind the Multinomial Theo-

rem rather than this ugly formal statement.

700 CHAPTER 12. COUNTING

12.11.1 Problems

Practice Problems

Class Problems

Homework Problems

12.12 Combinatorial Proof

Suppose you have n different T-shirts, but only want to keep k. You could equally

well select the k shirts you want to keep or select the complementary set of n − k

shirts you want to throw out. Thus, the number of ways to select k shirts from

among n must be equal to the number of ways to select n− k shirts from among n.

Therefore:

(
n

k

)
=
(

n

n− k

)

This is easy to prove algebraically, since both sides are equal to:

n!
k! (n− k)!

12.12. COMBINATORIAL PROOF 701

But we didn’t really have to resort to algebra; we just used counting principles.

Hmm.

12.12.1 Boxing

Jay, famed Math for Computer Science Teaching Assistant, has decided to try out

for the US Olympic boxing team. After all, he’s watched all of the Rocky movies

and spent hours in front of a mirror sneering, “Yo, you wanna piece a’ me?!” Jay

figures that n people (including himself) are competing for spots on the team and

only k will be selected. As part of maneuvering for a spot on the team, he needs to

work out how many different teams are possible. There are two cases to consider:

• Jay is selected for the team, and his k−1 teammates are selected from among

the other n−1 competitors. The number of different teams that can be formed

in this way is:

(
n− 1
k − 1

)

• Jay is not selected for the team, and all k team members are selected from

702 CHAPTER 12. COUNTING

among the other n− 1 competitors. The number of teams that can be formed

this way is:

(
n− 1
k

)

All teams of the first type contain Jay, and no team of the second type does;

therefore, the two sets of teams are disjoint. Thus, by the Sum Rule, the total num-

ber of possible Olympic boxing teams is:

(
n− 1
k − 1

)
+
(
n− 1
k

)

Jeremy, equally-famed Teaching Assistant, thinks Jay isn’t so tough and so he

might as well also try out. He reasons that n people (including himself) are trying

out for k spots. Thus, the number of ways to select the team is simply:

(
n

k

)

Jeremy and Jay each correctly counted the number of possible boxing teams;

thus, their answers must be equal. So we know:

(
n− 1
k − 1

)
+
(
n− 1
k

)
=
(
n

k

)

12.12. COMBINATORIAL PROOF 703

This is called Pascal’s Identity. And we proved it without any algebra! Instead, we

relied purely on counting techniques.

12.12.2 Finding a Combinatorial Proof

A combinatorial proof is an argument that establishes an algebraic fact by relying on

counting principles. Many such proofs follow the same basic outline:

1. Define a set S.

2. Show that |S| = n by counting one way.

3. Show that |S| = m by counting another way.

4. Conclude that n = m.

In the preceding example, S was the set of all possible Olympic boxing teams. Jay

computed

|S| =
(
n− 1
k − 1

)
+
(
n− 1
k

)

704 CHAPTER 12. COUNTING

by counting one way, and Jeremy computed

|S| =
(
n

k

)

by counting another. Equating these two expressions gave Pascal’s Identity.

More typically, the set S is defined in terms of simple sequences or sets rather

than an elaborate story. Here is less colorful example of a combinatorial argument.

Theorem 12.12.1.

n∑
r=0

(
n

r

)(
2n
n− r

)
=
(

3n
n

)

Proof. We give a combinatorial proof. Let S be all n-card hands that can be dealt

from a deck containing n red cards (numbered 1, . . . , n) and 2n black cards (num-

bered 1, . . . , 2n). First, note that every 3n-element set has

|S| =
(

3n
n

)

n-element subsets.

From another perspective, the number of hands with exactly r red cards is

(
n

r

)(
2n
n− r

)

12.12. COMBINATORIAL PROOF 705

since there are
(
n
r

)
ways to choose the r red cards and

(
2n
n−r
)

ways to choose the

n− r black cards. Since the number of red cards can be anywhere from 0 to n, the

total number of n-card hands is:

|S| =
n∑
r=0

(
n

r

)(
2n
n− r

)

Equating these two expressions for |S| proves the theorem. �

Combinatorial proofs are almost magical. Theorem 12.12.1 looks pretty scary,

but we proved it without any algebraic manipulations at all. The key to construct-

ing a combinatorial proof is choosing the set S properly, which can be tricky. Gen-

erally, the simpler side of the equation should provide some guidance. For exam-

ple, the right side of Theorem 12.12.1 is
(
3n
n

)
, which suggests choosing S to be all

n-element subsets of some 3n-element set.

12.12.3 Problems

Class Problems

Homework Problems

706 CHAPTER 12. COUNTING

Chapter 13

Generating Functions

Generating Functions are one of the most surprising and useful inventions in Dis-

crete Math. Roughly speaking, generating functions transform problems about

sequences into problems about functions. This is great because we’ve got piles of

mathematical machinery for manipulating functions. Thanks to generating func-

tions, we can apply all that machinery to problems about sequences. In this way,

we can use generating functions to solve all sorts of counting problems. There is a

huge chunk of mathematics concerning generating functions, so we will only get a

707

708 CHAPTER 13. GENERATING FUNCTIONS

taste of the subject.

In this chapter, we’ll put sequences in angle brackets to more clearly distinguish

them from the many other mathematical expressions floating around.

The ordinary generating function for 〈g0, g1, g2, g3 . . . 〉 is the power series:

G(x) = g0 + g1x+ g2x
2 + g3x

3 + · · · .

There are a few other kinds of generating functions in common use, but ordinary

generating functions are enough to illustrate the power of the idea, so we’ll stick

to them. So from now on generating function will mean the ordinary kind.

A generating function is a “formal” power series in the sense that we usually

regard x as a placeholder rather than a number. Only in rare cases will we actu-

ally evaluate a generating function by letting x take a real number value, so we

generally ignore the issue of convergence.

Throughout this chapter, we’ll indicate the correspondence between a sequence

and its generating function with a double-sided arrow as follows:

〈g0, g1, g2, g3, . . . 〉 ←→ g0 + g1x+ g2x
2 + g3x

3 + · · ·

709

For example, here are some sequences and their generating functions:

〈0, 0, 0, 0, . . . 〉 ←→ 0 + 0x+ 0x2 + 0x3 + · · · = 0

〈1, 0, 0, 0, . . . 〉 ←→ 1 + 0x+ 0x2 + 0x3 + · · · = 1

〈3, 2, 1, 0, . . . 〉 ←→ 3 + 2x+ 1x2 + 0x3 + · · · = 3 + 2x+ x2

The pattern here is simple: the ith term in the sequence (indexing from 0) is the

coefficient of xi in the generating function.

Recall that the sum of an infinite geometric series is:

1 + z + z2 + z3 + · · · = 1
1− z

This equation does not hold when |z| ≥ 1, but as remarked, we don’t worry about

convergence issues. This formula gives closed form generating functions for a

whole range of sequences. For example:

〈1, 1, 1, 1, . . . 〉 ←→ 1 + x+ x2 + x3 + · · · =
1

1− x

〈1,−1, 1,−1, . . . 〉 ←→ 1− x+ x2 − x3 + x4 − · · · =
1

1 + x〈
1, a, a2, a3, . . .

〉
←→ 1 + ax+ a2x2 + a3x3 + · · · =

1
1− ax

〈1, 0, 1, 0, 1, 0, . . . 〉 ←→ 1 + x2 + x4 + x6 + · · · =
1

1− x2

710 CHAPTER 13. GENERATING FUNCTIONS

13.1 Operations on Generating Functions

The magic of generating functions is that we can carry out all sorts of manipu-

lations on sequences by performing mathematical operations on their associated

generating functions. Let’s experiment with various operations and characterize

their effects in terms of sequences.

13.1.1 Scaling

Multiplying a generating function by a constant scales every term in the associated

sequence by the same constant. For example, we noted above that:

〈1, 0, 1, 0, 1, 0, . . . 〉 ←→ 1 + x2 + x4 + x6 + · · · = 1
1− x2

Multiplying the generating function by 2 gives

2
1− x2

= 2 + 2x2 + 2x4 + 2x6 + · · ·

which generates the sequence:

〈2, 0, 2, 0, 2, 0, . . . 〉

13.1. OPERATIONS ON GENERATING FUNCTIONS 711

Rule 11 (Scaling Rule). If

〈f0, f1, f2, . . . 〉 ←→ F (x),

then

〈cf0, cf1, cf2, . . . 〉 ←→ c · F (x).

The idea behind this rule is that:

〈cf0, cf1, cf2, . . . 〉 ←→ cf0 + cf1x+ cf2x
2 + · · ·

= c · (f0 + f1x+ f2x
2 + · · ·)

= cF (x)

13.1.2 Addition

Adding generating functions corresponds to adding the two sequences term by

term. For example, adding two of our earlier examples gives:

〈 1, 1, 1, 1, 1, 1, . . . 〉 ←→ 1
1− x

+ 〈 1, −1, 1, −1, 1, −1, . . . 〉 ←→ 1
1 + x

〈 2, 0, 2, 0, 2, 0, . . . 〉 ←→ 1
1− x

+
1

1 + x

712 CHAPTER 13. GENERATING FUNCTIONS

We’ve now derived two different expressions that both generate the sequence 〈2, 0, 2, 0, . . . 〉.

They are, of course, equal:

1
1− x

+
1

1 + x
=

(1 + x) + (1− x)
(1− x)(1 + x)

=
2

1− x2

Rule 12 (Addition Rule). If

〈f0, f1, f2, . . . 〉 ←→ F (x), and

〈g0, g1, g2, . . . 〉 ←→ G(x),

then

〈f0 + g0, f1 + g1, f2 + g2, . . . 〉 ←→ F (x) +G(x).

The idea behind this rule is that:

〈f0 + g0, f1 + g1, f2 + g2, . . . 〉 ←→
∞∑
n=0

(fn + gn)xn

=

(∞∑
n=0

fnx
n

)
+

(∞∑
n=0

gnx
n

)

= F (x) +G(x)

13.1. OPERATIONS ON GENERATING FUNCTIONS 713

13.1.3 Right Shifting

Let’s start over again with a simple sequence and its generating function:

〈1, 1, 1, 1, . . . 〉 ←→ 1
1− x

Now let’s right-shift the sequence by adding k leading zeros:

〈0, 0, . . . , 0︸ ︷︷ ︸
k zeroes

, 1, 1, 1, . . . 〉 ←→ xk + xk+1 + xk+2 + xk+3 + · · ·

= xk · (1 + x+ x2 + x3 + · · ·)

=
xk

1− x

Evidently, adding k leading zeros to the sequence corresponds to multiplying the

generating function by xk. This holds true in general.

Rule 13 (Right-Shift Rule). If 〈f0, f1, f2, . . . 〉 ←→ F (x), then:

〈0, 0, . . . , 0︸ ︷︷ ︸
k zeroes

, f0, f1, f2, . . . 〉 ←→ xk · F (x)

714 CHAPTER 13. GENERATING FUNCTIONS

The idea behind this rule is that:

〈
k zeroes︷ ︸︸ ︷

0, 0, . . . , 0, f0, f1, f2, . . . 〉 ←→ f0x
k + f1x

k+1 + f2x
k+2 + · · ·

= xk · (f0 + f1x+ f2x
2 + f3x

3 + · · ·)

= xk · F (x)

13.1.4 Differentiation

What happens if we take the derivative of a generating function? As an example,

let’s differentiate the now-familiar generating function for an infinite sequence of

1’s.

d

dx
(1 + x+ x2 + x3 + x4 + · · ·) =

d

dx

(
1

1− x

)

1 + 2x+ 3x2 + 4x3 + · · · =
1

(1− x)2
(13.1)

〈1, 2, 3, 4, . . . 〉 ←→ 1
(1− x)2

We found a generating function for the sequence 〈1, 2, 3, 4, . . . 〉 of positive integers!

In general, differentiating a generating function has two effects on the corre-

sponding sequence: each term is multiplied by its index and the entire sequence is

13.1. OPERATIONS ON GENERATING FUNCTIONS 715

shifted left one place.

Rule 14 (Derivative Rule). If

〈f0, f1, f2, f3, . . . 〉 ←→ F (x),

then

〈f1, 2f2, 3f3, . . . 〉 ←→ F ′(x).

The idea behind this rule is that:

〈f1, 2f2, 3f3, . . . 〉 ←→ f1 + 2f2x+ 3f3x2 + · · ·

=
d

dx
(f0 + f1x+ f2x

2 + f3x
3 + · · ·)

=
d

dx
F (x)

The Derivative Rule is very useful. In fact, there is frequent, independent need

for each of differentiation’s two effects, multiplying terms by their index and left-

shifting one place. Typically, we want just one effect and must somehow cancel out

the other. For example, let’s try to find the generating function for the sequence of

squares, 〈0, 1, 4, 9, 16, . . . 〉. If we could start with the sequence 〈1, 1, 1, 1, . . . 〉 and

716 CHAPTER 13. GENERATING FUNCTIONS

multiply each term by its index two times, then we’d have the desired result:

〈0 · 0, 1 · 1, 2 · 2, 3 · 3, . . . 〉 = 〈0, 1, 4, 9, . . . 〉

A challenge is that differentiation not only multiplies each term by its index, but

also shifts the whole sequence left one place. However, the Right-Shift Rule 13 tells

how to cancel out this unwanted left-shift: multiply the generating function by x.

Our procedure, therefore, is to begin with the generating function for 〈1, 1, 1, 1, . . . 〉,

differentiate, multiply by x, and then differentiate and multiply by x once more.

〈1, 1, 1, 1, . . . 〉 ←→ 1
1− x

〈1, 2, 3, 4, . . . 〉 ←→ d

dx

1
1− x

=
1

(1− x)2

〈0, 1, 2, 3, . . . 〉 ←→ x · 1
(1− x)2

=
x

(1− x)2

〈1, 4, 9, 16, . . . 〉 ←→ d

dx

x

(1− x)2
=

1 + x

(1− x)3

〈0, 1, 4, 9, . . . 〉 ←→ x · 1 + x

(1− x)3
=
x(1 + x)
(1− x)3

Thus, the generating function for squares is:

x(1 + x)
(1− x)3

(13.2)

13.1. OPERATIONS ON GENERATING FUNCTIONS 717

13.1.5 Products

Rule 15 (Product Rule). If

〈a0, a1, a2, . . . 〉 ←→ A(x), and 〈b0, b1, b2, . . . 〉 ←→ B(x),

then

〈c0, c1, c2, . . . 〉 ←→ A(x) ·B(x),

where

cn ::= a0bn + a1bn−1 + a2bn−2 + · · ·+ anb0.

To understand this rule, let

C(x) ::=A(x) ·B(x) =
∞∑
n=0

cnx
n.

We can evaluate the product A(x) · B(x) by using a table to identify all the

718 CHAPTER 13. GENERATING FUNCTIONS

cross-terms from the product of the sums:

b0x
0 b1x

1 b2x
2 b3x

3 . . .

a0x
0 a0b0x

0 a0b1x
1 a0b2x

2 a0b3x
3 . . .

a1x
1 a1b0x

1 a1b1x
2 a1b2x

3 . . .

a2x
2 a2b0x

2 a2b1x
3 . . .

a3x
3 a3b0x

3 . . .

... . . .

Notice that all terms involving the same power of x lie on a /-sloped diagonal.

Collecting these terms together, we find that the coefficient of xn in the product is

the sum of all the terms on the (n+ 1)st diagonal, namely,

a0bn + a1bn−1 + a2bn−2 + · · ·+ anb0. (13.3)

This expression (13.3) may be familiar from a signal processing course; the se-

quence 〈c0, c1, c2, . . . 〉 is called the convolution of sequences 〈a0, a1, a2, . . . 〉 and 〈b0, b1, b2, . . . 〉.

13.2. THE FIBONACCI SEQUENCE 719

13.2 The Fibonacci Sequence

Sometimes we can find nice generating functions for more complicated sequences.

For example, here is a generating function for the Fibonacci numbers:

〈0, 1, 1, 2, 3, 5, 8, 13, 21, . . . 〉 ←→ x

1− x− x2

The Fibonacci numbers may seem like a fairly nasty bunch, but the generating

function is simple!

We’re going to derive this generating function and then use it to find a closed

form for the nth Fibonacci number. The techniques we’ll use are applicable to a

large class of recurrence equations.

720 CHAPTER 13. GENERATING FUNCTIONS

13.2.1 Finding a Generating Function

Let’s begin by recalling the definition of the Fibonacci numbers:

f0 = 0

f1 = 1

fn = fn−1 + fn−2 (for n ≥ 2)

We can expand the final clause into an infinite sequence of equations. Thus, the

Fibonacci numbers are defined by:

f0 =0

f1 =1

f2 =f1 + f0

f3 =f2 + f1

f4 =f3 + f2

...

Now the overall plan is to define a function F (x) that generates the sequence on

13.2. THE FIBONACCI SEQUENCE 721

the left side of the equality symbols, which are the Fibonacci numbers. Then we

derive a function that generates the sequence on the right side. Finally, we equate

the two and solve for F (x). Let’s try this. First, we define:

F (x) = f0 + f1x+ f2x
2 + f3x

3 + f4x
4 + · · ·

Now we need to derive a generating function for the sequence:

〈0, 1, f1 + f0, f2 + f1, f3 + f2, . . . 〉

One approach is to break this into a sum of three sequences for which we know

generating functions and then apply the Addition Rule:

〈 0, 1, 0, 0, 0, . . . 〉 ←→ x
〈 0, f0, f1, f2, f3, . . . 〉 ←→ xF (x)

+ 〈 0, 0, f0, f1, f2, . . . 〉 ←→ x2F (x)
〈 0, 1 + f0, f1 + f0, f2 + f1, f3 + f2, . . . 〉 ←→ x+ xF (x) + x2F (x)

This sequence is almost identical to the right sides of the Fibonacci equations. The

one blemish is that the second term is 1 + f0 instead of simply 1. However, this

amounts to nothing, since f0 = 0 anyway.

Now if we equate F (x) with the new function x+ xF (x) + x2F (x), then we’re

implicitly writing down all of the equations that define the Fibonacci numbers in

722 CHAPTER 13. GENERATING FUNCTIONS

one fell swoop:

F (x) = f0 + f1 x + f2 x2 + f3 x3 + · · ·
q q q q q

x+ xF (x) + x2F (x) = 0 + (1 + f0) x + (f1 + f0) x2 + (f2 + f1) x3 + · · ·

Solving for F (x) gives the generating function for the Fibonacci sequence:

F (x) = x+ xF (x) + x2F (x)

so

F (x) =
x

1− x− x2
.

Sure enough, this is the simple generating function we claimed at the outset.

13.2.2 Finding a Closed Form

Why should one care about the generating function for a sequence? There are sev-

eral answers, but here is one: if we can find a generating function for a sequence,

then we can often find a closed form for the nth coefficient— which can be pretty

useful! For example, a closed form for the coefficient of xn in the power series for

x/(1− x− x2) would be an explicit formula for the nth Fibonacci number.

So our next task is to extract coefficients from a generating function. There are

13.2. THE FIBONACCI SEQUENCE 723

several approaches. For a generating function that is a ratio of polynomials, we

can use the method of partial fractions, which you learned in calculus. Just as the

terms in a partial fraction expansion are easier to integrate, the coefficients of those

terms are easy to compute.

Let’s try this approach with the generating function for Fibonacci numbers.

First, we factor the denominator:

1− x− x2 = (1− α1x)(1− α2x)

where α1 = 1
2 (1+

√
5) and α2 = 1

2 (1−
√

5). Next, we find A1 and A2 which satisfy:

x

1− x− x2
=

A1

1− α1x
+

A2

1− α2x

We do this by plugging in various values of x to generate linear equations in A1

and A2. We can then find A1 and A2 by solving a linear system. This gives:

A1 =
1

α1 − α2
=

1√
5

A2 =
−1

α1 − α2
= − 1√

5

Substituting into the equation above gives the partial fractions expansion of

724 CHAPTER 13. GENERATING FUNCTIONS

F (x):

x

1− x− x2
=

1√
5

(
1

1− α1x
− 1

1− α2x

)

Each term in the partial fractions expansion has a simple power series given by the

geometric sum formula:

1
1− α1x

= 1 + α1x+ α2
1x

2 + · · ·

1
1− α2x

= 1 + α2x+ α2
2x

2 + · · ·

Substituting in these series gives a power series for the generating function:

F (x) =
1√
5

(
1

1− α1x
− 1

1− α2x

)

=
1√
5

(
(1 + α1x+ α2

1x
2 + · · ·)− (1 + α2x+ α2

2x
2 + · · ·)

)
,

so

fn =
αn1 − αn2√

5

=
1√
5

((
1 +
√

5
2

)n
−

(
1−
√

5
2

)n)

This formula may be scary and astonishing —it’s not even obvious that its

value is an integer —but it’s very useful. For example, it provides (via the re-

13.3. COUNTING WITH GENERATING FUNCTIONS 725

peated squaring method) a much more efficient way to compute Fibonacci num-

bers than crunching through the recurrence, and it also clearly reveals the expo-

nential growth of these numbers.

13.2.3 Problems

Class Problems

Homework Problems

Exam Problems

13.3 Counting with Generating Functions

Generating functions are particularly useful for solving counting problems. In par-

ticular, problems involving choosing items from a set often lead to nice generating

functions by letting the coefficient of xn be the number of ways to choose n items.

726 CHAPTER 13. GENERATING FUNCTIONS

13.3.1 Choosing Distinct Items from a Set

The generating function for binomial coefficients follows directly from the Bino-

mial Theorem:

〈(
k

0

)
,

(
k

1

)
,

(
k

2

)
, . . . ,

(
k

k

)
, 0, 0, 0, . . .

〉
←→

(
k

0

)
+
(
k

1

)
x+

(
k

2

)
x2 + · · ·+

(
k

k

)
xk

= (1 + x)k

Thus, the coefficient of xn in (1+x)k is
(
k
n

)
, the number of ways to choose n dis-

tinct items from a set of size k. For example, the coefficient of x2 is
(
k
2

)
, the number

of ways to choose 2 items from a set with k elements. Similarly, the coefficient of

xk+1 is the number of ways to choose k + 1 items from a size k set, which is zero.

(Watch out for this reversal of the roles that k and n played in earlier examples;

we’re led to this reversal because we’ve been using n to refer to the power of x in

a power series.)

13.3. COUNTING WITH GENERATING FUNCTIONS 727

13.3.2 Building Generating Functions that Count

Often we can translate the description of a counting problem directly into a gen-

erating function for the solution. For example, we could figure out that (1 + x)k

generates the number of ways to select n distinct items from a k-element set with-

out resorting to the Binomial Theorem or even fussing with binomial coefficients!

Here is how. First, consider a single-element set {a1}. The generating function

for the number of ways to select n elements from this set is simply 1+x: we have 1

way to select zero elements, 1 way to select one element, and 0 ways to select more

than one element. Similarly, the number of ways to select n elements from the set

{a2} is also given by the generating function 1+x. The fact that the elements differ

in the two cases is irrelevant.

Now here is the main trick: the generating function for choosing elements from a

union of disjoint sets is the product of the generating functions for choosing from each set.

We’ll justify this in a moment, but let’s first look at an example. According to this

principle, the generating function for the number of ways to select n elements from

728 CHAPTER 13. GENERATING FUNCTIONS

the {a1, a2} is:

(1 + x)︸ ︷︷ ︸
gen func for

selecting an a1

· (1 + x)︸ ︷︷ ︸
gen func for

selecting an a2

= (1 + x)2︸ ︷︷ ︸
gen func for

selecting from
{a1, a2}

= 1 + 2x+ x2

Sure enough, for the set {a1, a2}, we have 1 way to select zero elements, 2 ways to

select one element, 1 way to select two elements, and 0 ways to select more than

two elements.

Repeated application of this rule gives the generating function for selecting n

items from a k-element set {a1, a2, . . . , ak}:

(1 + x)︸ ︷︷ ︸
gen func for

selecting an a1

· (1 + x)︸ ︷︷ ︸
gen func for

selecting an a2

· · · (1 + x)︸ ︷︷ ︸
gen func for

selecting an ak

= (1 + x)k︸ ︷︷ ︸
gen func for

selecting from
{a1, a2, . . . , ak}

This is the same generating function that we obtained by using the Binomial Theo-

rem. But this time around we translated directly from the counting problem to the

generating function.

We can extend these ideas to a general principle:

Rule 16 (Convolution Rule). Let A(x) be the generating function for selecting items

13.3. COUNTING WITH GENERATING FUNCTIONS 729

from set A, and let B(x) be the generating function for selecting items from set B. If A

and B are disjoint, then the generating function for selecting items from the union A ∪ B

is the product A(x) ·B(x).

This rule is rather ambiguous: what exactly are the rules governing the selec-

tion of items from a set? Remarkably, the Convolution Rule remains valid under

many interpretations of selection. For example, we could insist that distinct items

be selected or we might allow the same item to be picked a limited number of

times or any number of times. Informally, the only restrictions are that (1) the or-

der in which items are selected is disregarded and (2) restrictions on the selection

of items from sets A and B also apply in selecting items from A ∪ B. (Formally,

there must be a bijection between n-element selections from A ∪ B and ordered

pairs of selections from A and B containing a total of n elements.)

To count the number of ways to select n items from A ∪ B, we observe that we

can select n items by choosing j items from A and n − j items from B, where j is

any number from 0 to n. This can be done in ajbn−j ways. Summing over all the

730 CHAPTER 13. GENERATING FUNCTIONS

possible values of j gives a total of

a0bn + a1bn−1 + a2bn−2 + · · ·+ anb0

ways to select n items from A∪ B. By the Product Rule, this is precisely the coeffi-

cient of xn in the series for A(x)B(x).

13.3.3 Choosing Items with Repetition

The first counting problem we considered was the number of ways to select a

dozen doughnuts when five flavors were available. We can generalize this ques-

tion as follows: in how many ways can we select n items from a k-element set if

we’re allowed to pick the same item multiple times? In these terms, the doughnut

problem asks in how many ways we can select n = 12 doughnuts from the set of

k = 5 flavors

{chocolate, lemon-filled, sugar,glazed,plain}

where, of course, we’re allowed to pick several doughnuts of the same flavor. Let’s

approach this question from a generating functions perspective.

13.3. COUNTING WITH GENERATING FUNCTIONS 731

Suppose we make n choices (with repetition allowed) of items from a set con-

taining a single item. Then there is one way to choose zero items, one way to

choose one item, one way to choose two items, etc. Thus, the generating function

for choosing n elements with repetition from a 1-element set is:

〈1, 1, 1, 1, . . . 〉 ←→ 1 + x+ x2 + x3 + · · ·

=
1

1− x

The Convolution Rule says that the generating function for selecting items from

a union of disjoint sets is the product of the generating functions for selecting items

from each set:

1
1− x︸ ︷︷ ︸

gen func for
choosing a1’s

· 1
1− x︸ ︷︷ ︸

gen func for
choosing a2’s

· · · 1
1− x︸ ︷︷ ︸

gen func for
choosing ak’s

=
1

(1− x)k︸ ︷︷ ︸
gen func for

repeated choice from
{a1, a2, . . . , ak}

Therefore, the generating function for choosing items from a k-element set with

repetition allowed is 1/(1− x)k.

Now the Bookkeeper Rule tells us that the number of ways to choose n items

732 CHAPTER 13. GENERATING FUNCTIONS

with repetition from an k element set is

(
n+ k − 1

n

)
,

so this is the coefficient of xn in the series expansion of 1/(1− x)k.

On the other hand, it’s instructive to derive this coefficient algebraically, which

we can do using Taylor’s Theorem:

Theorem 13.3.1 (Taylor’s Theorem).

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)
3!

x3 + · · ·+ f (n)(0)
n!

xn + · · · .

This theorem says that the nth coefficient of 1/(1−x)k is equal to its nth deriva-

tive evaluated at 0 and divided by n!. Computing the nth derivative turns out not

to be very difficult (Problem ??).

EDITING NOTE:

Let

G(x) ::=
1

(1− x)k
= (1− x)−k.

13.3. COUNTING WITH GENERATING FUNCTIONS 733

Then we have:

G′(x) = k(1− x)−(k+1)

G′′(x) = k(k + 1)(1− x)−(k+2)

G′′′(x) = k(k + 1)(k + 2)(1− x)−(k+3)

G(n)(x) = k(k + 1) · · · (k + n− 1)(1− x)−(k+n)

Thus, the coefficient of xn in the generating function is:

G(n)(0)/n! =
k(k + 1) · · · (k + n− 1)

n!

=
(k + n− 1)!
(k − 1)! n!

=
(
n+ k − 1

n

)
.

�

734 CHAPTER 13. GENERATING FUNCTIONS

13.3.4 Problems

Practice Problems

Class Problems

Homework Problems

Exam Problems

13.3.5 An “Impossible” Counting Problem

EDITING NOTE: Not so impossible. From Rebecca Freund, F09:

Note that the fruits can be divided into two groups, the apples-and-pears and

the bananas-and-oranges. Once you know how many are apples-and-pears, there’s

only one way to distribute them: Use a pear if the number is odd, otherwise don’t.

Make the rest apples. Similarly, once you’ve decided on the number of bananas-

and-oranges, you have to throw in the-greatest-multiple-of-five-less-than-or-equal-

to-that bananas and add oranges as needed. So the number of apples-and-pears

exactly determines the arrangement. You can have 0-n apples-and-pears, so there

13.3. COUNTING WITH GENERATING FUNCTIONS 735

are n+1 possibilities. �

So far everything we’ve done with generating functions we could have done

another way. But here is an absurd counting problem —really over the top! In

how many ways can we fill a bag with n fruits subject to the following constraints?

• The number of apples must be even.

• The number of bananas must be a multiple of 5.

• There can be at most four oranges.

• There can be at most one pear.

For example, there are 7 ways to form a bag with 6 fruits:

Apples 6 4 4 2 2 0 0
Bananas 0 0 0 0 0 5 5
Oranges 0 2 1 4 3 1 0

Pears 0 0 1 0 1 0 1

These constraints are so complicated that the problem seems hopeless! But let’s

see what generating functions reveal.

Let’s first construct a generating function for choosing apples. We can choose a

set of 0 apples in one way, a set of 1 apple in zero ways (since the number of apples

736 CHAPTER 13. GENERATING FUNCTIONS

must be even), a set of 2 apples in one way, a set of 3 apples in zero ways, and so

forth. So we have:

A(x) = 1 + x2 + x4 + x6 + · · · = 1
1− x2

Similarly, the generating function for choosing bananas is:

B(x) = 1 + x5 + x10 + x15 + · · · = 1
1− x5

Now, we can choose a set of 0 oranges in one way, a set of 1 orange in one way,

and so on. However, we can not choose more than four oranges, so we have the

generating function:

O(x) = 1 + x+ x2 + x3 + x4 =
1− x5

1− x

Here we’re using the geometric sum formula. Finally, we can choose only zero or

one pear, so we have:

P (x) = 1 + x

The Convolution Rule says that the generating function for choosing from among

13.3. COUNTING WITH GENERATING FUNCTIONS 737

all four kinds of fruit is:

A(x)B(x)O(x)P (x) =
1

1− x2

1
1− x5

1− x5

1− x
(1 + x)

=
1

(1− x)2

= 1 + 2x+ 3x2 + 4x3 + · · ·

Almost everything cancels! We’re left with 1/(1 − x)2, which we found a power

series for earlier: the coefficient of xn is simply n+ 1. Thus, the number of ways to

form a bag of n fruits is just n+ 1. This is consistent with the example we worked

out, since there were 7 different fruit bags containing 6 fruits. Amazing!

13.3.6 Problems

Practice Problems

Homework Problems

Exam Problems

738 CHAPTER 13. GENERATING FUNCTIONS

Part IV

Probability

739

Chapter 14

Introduction to Probability

Probability plays a key role in the sciences —”hard” and social —including com-

puter science. Many algorithms rely on randomization. Investigating their cor-

rectness and performance requires probability theory. Moreover, computer sys-

tems designs, such as memory management, branch prediction, packet routing,

and load balancing are based on probabilistic assumptions and analyses. Probabil-

ity is central as well in related subjects such as information theory, cryptography,

artificial intelligence, and game theory. But we’ll start with a more down-to-earth

741

742 CHAPTER 14. INTRODUCTION TO PROBABILITY

application: getting a prize in a game show.

14.1 Monty Hall

In the September 9, 1990 issue of Parade magazine, the columnist Marilyn vos Sa-

vant responded to this letter:

Suppose you’re on a game show, and you’re given the choice of three doors.

Behind one door is a car, behind the others, goats. You pick a door, say number

1, and the host, who knows what’s behind the doors, opens another door, say

number 3, which has a goat. He says to you, ”Do you want to pick door

number 2?” Is it to your advantage to switch your choice of doors?

Craig. F. Whitaker

Columbia, MD

The letter describes a situation like one faced by contestants on the 1970’s game

show Let’s Make a Deal, hosted by Monty Hall and Carol Merrill. Marilyn replied

that the contestant should indeed switch. She explained that if the car was behind

14.1. MONTY HALL 743

either of the two unpicked doors —which is twice as likely as the the car being

behind the picked door —the contestant wins by switching. But she soon received

a torrent of letters, many from mathematicians, telling her that she was wrong. The

problem generated thousands of hours of heated debate.

This incident highlights a fact about probability: the subject uncovers lots of

examples where ordinary intuition leads to completely wrong conclusions. So un-

til you’ve studied probabilities enough to have refined your intuition, a way to

avoid errors is to fall back on a rigorous, systematic approach such as the Four

Step Method.

14.1.1 The Four Step Method

Every probability problem involves some sort of randomized experiment, process,

or game. And each such problem involves two distinct challenges:

1. How do we model the situation mathematically?

2. How do we solve the resulting mathematical problem?

744 CHAPTER 14. INTRODUCTION TO PROBABILITY

In this section, we introduce a four step approach to questions of the form, “What

is the probability that —– ?” In this approach, we build a probabilistic model

step-by-step, formalizing the original question in terms of that model. Remark-

ably, the structured thinking that this approach imposes provides simple solutions

to many famously-confusing problems. For example, as you’ll see, the four step

method cuts through the confusion surrounding the Monty Hall problem like a

Ginsu knife. However, more complex probability questions may spin off chal-

lenging counting, summing, and approximation problems— which, fortunately,

you’ve already spent weeks learning how to solve.

14.1.2 Clarifying the Problem

Craig’s original letter to Marilyn vos Savant is a bit vague, so we must make some

assumptions in order to have any hope of modeling the game formally:

1. The car is equally likely to be hidden behind each of the three doors.

2. The player is equally likely to pick each of the three doors, regardless of the

14.1. MONTY HALL 745

car’s location.

3. After the player picks a door, the host must open a different door with a goat

behind it and offer the player the choice of staying with the original door or

switching.

4. If the host has a choice of which door to open, then he is equally likely to

select each of them.

In making these assumptions, we’re reading a lot into Craig Whitaker’s letter.

Other interpretations are at least as defensible, and some actually lead to differ-

ent answers. But let’s accept these assumptions for now and address the question,

“What is the probability that a player who switches wins the car?”

14.1.3 Step 1: Find the Sample Space

Our first objective is to identify all the possible outcomes of the experiment. A

typical experiment involves several randomly-determined quantities. For exam-

ple, the Monty Hall game involves three such quantities:

746 CHAPTER 14. INTRODUCTION TO PROBABILITY

1. The door concealing the car.

2. The door initially chosen by the player.

3. The door that the host opens to reveal a goat.

Every possible combination of these randomly-determined quantities is called an

outcome. The set of all possible outcomes is called the sample space for the experi-

ment.

A tree diagram is a graphical tool that can help us work through the four step

approach when the number of outcomes is not too large or the problem is nicely

structured. In particular, we can use a tree diagram to help understand the sam-

ple space of an experiment. The first randomly-determined quantity in our ex-

periment is the door concealing the prize. We represent this as a tree with three

branches:

14.1. MONTY HALL 747

car
location

C

A

B

In this diagram, the doors are called A, B, and C instead of 1, 2, and 3 because

we’ll be adding a lot of other numbers to the picture later.

Now, for each possible location of the prize, the player could initially choose

any of the three doors. We represent this in a second layer added to the tree. Then a

third layer represents the possibilities of the final step when the host opens a door

to reveal a goat:

EDITING NOTE:

748 CHAPTER 14. INTRODUCTION TO PROBABILITY

car
location

player’s
initial
guess

C

C

A

B

A

B

C

A

B

C

A

B

�

14.1. MONTY HALL 749

car
location

player’s
initial
guess

door
revealed

C

C

C

A

B

A

B

A

B

C

A

B

C

A

B

A

C

A

C
C

B

A

B

outcome

B

(A,A,B)

(A,A,C)

(A,B,C)

(B,A,C)

(B,B,A)

(B,B,C)

(B,C,A)

(C,A,B)

(C,B,A)

(C,C,A)

(C,C,B)

(A,C,B)

Notice that the third layer reflects the fact that the host has either one choice

or two, depending on the position of the car and the door initially selected by the

player. For example, if the prize is behind door A and the player picks door B, then

the host must open door C. However, if the prize is behind door A and the player

picks door A, then the host could open either door B or door C.

750 CHAPTER 14. INTRODUCTION TO PROBABILITY

Now let’s relate this picture to the terms we introduced earlier: the leaves of the

tree represent outcomes of the experiment, and the set of all leaves represents the

sample space. Thus, for this experiment, the sample space consists of 12 outcomes.

For reference, we’ve labeled each outcome with a triple of doors indicating:

(door concealing prize, door initially chosen, door opened to reveal a goat)

In these terms, the sample space is the set:

{
(A,A,B), (A,A,C), (A,B,C), (A,C,B), (B,A,C), (B,B,A),
(B,B,C), (B,C,A), (C,A,B), (C,B,A), (C,C,A), (C,C,B)

}

The tree diagram has a broader interpretation as well: we can regard the whole

experiment as following a path from the root to a leaf, where the branch taken at

each stage is “randomly” determined. Keep this interpretation in mind; we’ll use

it again later.

14.1.4 Step 2: Define Events of Interest

Our objective is to answer questions of the form “What is the probability that . . . ?”,

where the missing phrase might be “the player wins by switching”, “the player

14.1. MONTY HALL 751

initially picked the door concealing the prize”, or “the prize is behind door C”,

for example. Each of these phrases characterizes a set of outcomes: the outcomes

specified by “the prize is behind door C” is:

{(C,A,B), (C,B,A), (C,C,A), (C,C,B)}

A set of outcomes is called an event. So the event that the player initially picked

the door concealing the prize is the set:

{(A,A,B), (A,A,C), (B,B,A), (B,B,C), (C,C,A), (C,C,B)}

And what we’re really after, the event that the player wins by switching, is the set

of outcomes:

{(A,B,C), (A,C,B), (B,A,C), (B,C,A), (C,A,B), (C,B,A)}

Let’s annotate our tree diagram to indicate the outcomes in this event.

752 CHAPTER 14. INTRODUCTION TO PROBABILITY

car
location

player’s
initial
guess

door
revealed

switch
wins?

C

C

C

A

B

A

B

A

B

C

A

B

C

A

B

A

C

A

C
C

B

A

B

outcome

X

X

X

X

X

X

B

(A,A,B)

(A,A,C)

(A,B,C)

(B,A,C)

(B,B,A)

(B,B,C)

(B,C,A)

(C,A,B)

(C,B,A)

(C,C,A)

(C,C,B)

(A,C,B)

Notice that exactly half of the outcomes are marked, meaning that the player wins

by switching in half of all outcomes. You might be tempted to conclude that a

player who switches wins with probability 1/2. This is wrong. The reason is that

these outcomes are not all equally likely, as we’ll see shortly.

14.1. MONTY HALL 753

14.1.5 Step 3: Determine Outcome Probabilities

So far we’ve enumerated all the possible outcomes of the experiment. Now we

must start assessing the likelihood of those outcomes. In particular, the goal of this

step is to assign each outcome a probability, indicating the fraction of the time this

outcome is expected to occur. The sum of all outcome probabilities must be one,

reflecting the fact that there always is an outcome.

Ultimately, outcome probabilities are determined by the phenomenon we’re

modeling and thus are not quantities that we can derive mathematically. How-

ever, mathematics can help us compute the probability of every outcome based on

fewer and more elementary modeling decisions. In particular, we’ll break the task of

determining outcome probabilities into two stages.

Step 3a: Assign Edge Probabilities

First, we record a probability on each edge of the tree diagram. These edge-probabilities

are determined by the assumptions we made at the outset: that the prize is equally

754 CHAPTER 14. INTRODUCTION TO PROBABILITY

likely to be behind each door, that the player is equally likely to pick each door,

and that the host is equally likely to reveal each goat, if he has a choice. Notice

that when the host has no choice regarding which door to open, the single branch

is assigned probability 1.

car
location

player’s
initial
guess

door
revealed

switch
wins?

C

C

C

A

B

A

B

A

B

C

A

B

C

A

B

A

C

A

C
C

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1

1

1

1

1

1

1/2 B

1/2

1/2

1/2

A

B

1/2

1/2

outcome

X

X

X

X

X

X

B

(A,A,B)

(A,A,C)

(A,B,C)

(B,A,C)

(B,B,A)

(B,B,C)

(B,C,A)

(C,A,B)

(C,B,A)

(C,C,A)

(C,C,B)

(A,C,B)

14.1. MONTY HALL 755

Step 3b: Compute Outcome Probabilities

Our next job is to convert edge probabilities into outcome probabilities. This is a

purely mechanical process: the probability of an outcome is equal to the product of the

edge-probabilities on the path from the root to that outcome. For example, the probability

of the topmost outcome, (A,A,B) is

1
3
· 1

3
· 1

2
=

1
18
.

There’s an easy, intuitive justification for this rule. As the steps in an experi-

ment progress randomly along a path from the root of the tree to a leaf, the proba-

bilities on the edges indicate how likely the walk is to proceed along each branch.

For example, a path starting at the root in our example is equally likely to go down

each of the three top-level branches.

Now, how likely is such a walk to arrive at the topmost outcome, (A,A,B)?

Well, there is a 1-in-3 chance that a walk would follow the A-branch at the top

level, a 1-in-3 chance it would continue along the A-branch at the second level,

and 1-in-2 chance it would follow the B-branch at the third level. Thus, it seems

756 CHAPTER 14. INTRODUCTION TO PROBABILITY

that about 1 walk in 18 should arrive at the (A,A,B) leaf, which is precisely the

probability we assign it.

Anyway, let’s record all the outcome probabilities in our tree diagram.

car
location

player’s
initial
guess

door
revealed

switch
wins?

C

C

C

A

B

A

B

A

B

C

A

B

C

A

B

A

C

A

C
C

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1/3

1

1

1

1

1

1

1/2 B

1/2

1/2

1/2

A

B

1/2

1/2

outcome

X

X

X

X

X

X

probability

1/18

1/18

1/9

1/9

1/9

1/18

1/18

1/9

1/9

1/9

1/18

1/18

B

(A,A,B)

(A,A,C)

(A,B,C)

(B,A,C)

(B,B,A)

(B,B,C)

(B,C,A)

(C,A,B)

(C,B,A)

(C,C,A)

(C,C,B)

(A,C,B)

Specifying the probability of each outcome amounts to defining a function that

maps each outcome to a probability. This function is usually called Pr. In these

14.1. MONTY HALL 757

terms, we’ve just determined that:

Pr {(A,A,B)} =
1
18

Pr {(A,A,C)} =
1
18

Pr {(A,B,C)} =
1
9

etc.

14.1.6 Step 4: Compute Event Probabilities

We now have a probability for each outcome, but we want to determine the prob-

ability of an event which will be the sum of the probabilities of the outcomes in it.

The probability of an event, E, is written Pr {E}. For example, the probability of

the event that the player wins by switching is:

Pr {switching wins} = Pr {(A,B,C)}+ Pr {(A,C,B)}+ Pr {(B,A,C)}+

Pr {(B,C,A)}+ Pr {(C,A,B)}+ Pr {(C,B,A)}

=
1
9

+
1
9

+
1
9

+
1
9

+
1
9

+
1
9

=
2
3

758 CHAPTER 14. INTRODUCTION TO PROBABILITY

It seems Marilyn’s answer is correct; a player who switches doors wins the car

with probability 2/3! In contrast, a player who stays with his or her original door

wins with probability 1/3, since staying wins if and only if switching loses.

We’re done with the problem! We didn’t need any appeals to intuition or inge-

nious analogies. In fact, no mathematics more difficult than adding and multiply-

ing fractions was required. The only hard part was resisting the temptation to leap

to an “intuitively obvious” answer.

14.1.7 An Alternative Interpretation of the Monty Hall Problem

Was Marilyn really right? Our analysis suggests she was. But a more accurate

conclusion is that her answer is correct provided we accept her interpretation of the

question. There is an equally plausible interpretation in which Marilyn’s answer

is wrong. Notice that Craig Whitaker’s original letter does not say that the host

is required to reveal a goat and offer the player the option to switch, merely that

he did these things. In fact, on the Let’s Make a Deal show, Monty Hall sometimes

simply opened the door that the contestant picked initially. Therefore, if he wanted

14.2. SET THEORY AND PROBABILITY 759

to, Monty could give the option of switching only to contestants who picked the

correct door initially. In this case, switching never works!

14.1.8 Problems

Class Problems

Homework Problems

14.2 Set Theory and Probability

Let’s abstract what we’ve just done in this Monty Hall example into a general

mathematical definition of probability. In the Monty Hall example, there were

only finitely many possible outcomes. Other examples in this course will have a

countably infinite number of outcomes.

General probability theory deals with uncountable sets like the set of real num-

bers, but we won’t need these, and sticking to countable sets lets us define the

probability of events using sums instead of integrals. It also lets us avoid some

760 CHAPTER 14. INTRODUCTION TO PROBABILITY

distracting technical problems in set theory like the Banach-Tarski “paradox” men-

tioned in Chapter 5.2.4.

14.2.1 Probability Spaces

Definition 14.2.1. A countable sample space, S, is a nonempty countable set. An

element w ∈ S is called an outcome. A subset of S is called an event.

Definition 14.2.2. A probability function on a sample space, S, is a total function

Pr {} : S → R such that

• Pr {w} ≥ 0 for all w ∈ S, and

•
∑
w∈S Pr {w} = 1.

The sample space together with a probability function is called a probability space.

For any event, E ⊆ S, the probability of E is defined to be the sum of the proba-

bilities of the outcomes in E:

Pr {E} ::=
∑
w∈E

Pr {w} .

14.2. SET THEORY AND PROBABILITY 761

An immediate consequence of the definition of event probability is that for dis-

joint events, E,F ,

Pr {E ∪ F} = Pr {E}+ Pr {F} .

This generalizes to a countable number of events. Namely, a collection of sets is

pairwise disjoint when no element is in more than one of them —formally,A∩B = ∅

for all sets A 6= B in the collection.

Rule (Sum Rule). If {E0, E1, . . . } is collection of pairwise disjoint events, then

Pr

{⋃
n∈N

En

}
=
∑
n∈N

Pr {En} .

The Sum Rule1 lets us analyze a complicated event by breaking it down into

simpler cases. For example, if the probability that a randomly chosen MIT student
1If you think like a mathematician, you should be wondering if the infinite sum is really necessary.

Namely, suppose we had only used finite sums in Definition 14.2.2 instead of sums over all natural

numbers. Would this imply the result for infinite sums? It’s hard to find counterexamples, but there are

some: it is possible to find a pathological “probability” measure on a sample space satisfying the Sum

Rule for finite unions, in which the outcomesw0, w1, . . . each have probability zero, and the probability

assigned to any event is either zero or one! So the infinite Sum Rule fails dramatically, since the whole

space is of measure one, but it is a union of the outcomes of measure zero.

762 CHAPTER 14. INTRODUCTION TO PROBABILITY

is native to the United States is 60%, to Canada is 5%, and to Mexico is 5%, then

the probability that a random MIT student is native to North America is 70%.

Another consequence of the Sum Rule is that Pr {A} + Pr
{
A
}

= 1, which fol-

lows because Pr {S} = 1 and S is the union of the disjoint sets A and A. This

equation often comes up in the form

Rule (Complement Rule).

Pr
{
A
}

= 1− Pr {A} .

Sometimes the easiest way to compute the probability of an event is to compute

the probability of its complement and then apply this formula.

Some further basic facts about probability parallel facts about cardinalities of

The construction of such weird examples is beyond the scope of this text. You can learn more about

this by taking a course in Set Theory and Logic that covers the topic of “ultrafilters.”

14.2. SET THEORY AND PROBABILITY 763

finite sets. In particular:

Pr {B −A} = Pr {B} − Pr {A ∩B} , (Difference Rule)

Pr {A ∪B} = Pr {A}+ Pr {B} − Pr {A ∩B} , (Inclusion-Exclusion)

Pr {A ∪B} ≤ Pr {A}+ Pr {B} . (Boole’s Inequality)

The Difference Rule follows from the Sum Rule because B is the union of the dis-

joint sets B − A and A ∩ B. Inclusion-Exclusion then follows from the Sum and

Difference Rules, becauseA∪B is the union of the disjoint setsA andB−A. Boole’s

inequality is an immediate consequence of Inclusion-Exclusion since probabilities

are nonnegative.

The two event Inclusion-Exclusion equation above generalizes to n events in

the same way as the corresponding Inclusion-Exclusion rule for n sets. Boole’s

inequality also generalizes to

Pr {E1 ∪ · · · ∪ En} ≤ Pr {E1}+ · · ·+ Pr {En} . (Union Bound)

This simple Union Bound is actually useful in many calculations. For example,

suppose that Ei is the event that the i-th critical component in a spacecraft fails.

764 CHAPTER 14. INTRODUCTION TO PROBABILITY

ThenE1∪· · ·∪En is the event that some critical component fails. The Union Bound

can give an adequate upper bound on this vital probability.

Similarly, the Difference Rule implies that

If A ⊆ B, then Pr {A} ≤ Pr {B} . (Monotonicity)

14.2.2 An Infinite Sample Space

Suppose two players take turns flipping a fair coin. Whoever flips heads first is

declared the winner. What is the probability that the first player wins? A tree

diagram for this problem is shown below:

1/2
1/2

1/2
1/2

1/2
1/2

1/2
1/2

etc.

H
H

H
HT

T
T

T

first
player

second
player

first
player

second
player

1/2
1/4

1/8
1/16

The event that the first player wins contains an infinite number of outcomes,

14.2. SET THEORY AND PROBABILITY 765

but we can still sum their probabilities:

Pr {first player wins} =
1
2

+
1
8

+
1
32

+
1

128
+ · · ·

=
1
2

∞∑
n=0

(
1
4

)n

=
1
2

(
1

1− 1/4

)
=

2
3
.

Similarly, we can compute the probability that the second player wins:

Pr {second player wins} =
1
4

+
1
16

+
1
64

+
1

256
+ · · ·

=
1
3
.

To be formal about this, sample space is the infinite set

S ::= {TnH | n ∈ N}

where Tn stands for a length n string of T’s. The probability function is

Pr {TnH} ::=
1

2n+1
.

Since this function is obviously nonnegative, To verify that this is a probability

space, we just have to check that all the probabilities sum to 1. But this follows

766 CHAPTER 14. INTRODUCTION TO PROBABILITY

directly from the formula for the sum of a geometric series:

∑
TnH∈S

Pr {TnH} =
∑
n∈N

1
2n+1

=
1
2

∑
n∈N

1
2n

= 1.

Notice that this model does not have an outcome corresponding to the possi-

bility that both players keep flipping tails forever —in the diagram, flipping for-

ever corresponds to following the infinite path in the tree without ever reaching

a leaf/outcome. If leaving this possibility out of the model bothers you, you’re

welcome to fix it by adding another outcome, wforever, to indicate that that’s what

happened. Of course since the probabililities of the other outcomes already sum to

1, you have to define the probability of wforever to be 0. Now outcomes with prob-

ability zero will have no impact on our calculations, so there’s no harm in adding

it in if it makes you happier. On the other hand, there’s also no harm in simply

leaving it out as we did, since it has no impact.

The mathematical machinery we’ve developed is adequate to model and ana-

lyze many interesting probability problems with infinite sample spaces. However,

some intricate infinite processes require uncountable sample spaces along with

14.3. CONDITIONAL PROBABILITY 767

more powerful (and more complex) measure-theoretic notions of probability. For

example, if we generate an infinite sequence of random bits b1, b2, b3, . . ., then what

is the probability that

b1
21

+
b2
22

+
b3
23

+ · · ·

is a rational number? Fortunately, we won’t have any need to worry about such

things.

14.2.3 Problems

Class Problems

14.3 Conditional Probability

Suppose that we pick a random person in the world. Everyone has an equal chance

of being selected. Let A be the event that the person is an MIT student, and let B

be the event that the person lives in Cambridge. What are the probabilities of these

events? Intuitively, we’re picking a random point in the big ellipse shown below

768 CHAPTER 14. INTRODUCTION TO PROBABILITY

and asking how likely that point is to fall into region A or B:

A
B

set of all people
in the world

set of people who
live in Cambridge

set of MIT
students

The vast majority of people in the world neither live in Cambridge nor are MIT

students, so events A and B both have low probability. But what is the probability

that a person is an MIT student, given that the person lives in Cambridge? This

should be much greater— but what is it exactly?

What we’re asking for is called a conditional probability; that is, the probability

that one event happens, given that some other event definitely happens. Questions

about conditional probabilities come up all the time:

• What is the probability that it will rain this afternoon, given that it is cloudy

this morning?

14.3. CONDITIONAL PROBABILITY 769

• What is the probability that two rolled dice sum to 10, given that both are

odd?

• What is the probability that I’ll get four-of-a-kind in Texas No Limit Hold

’Em Poker, given that I’m initially dealt two queens?

There is a special notation for conditional probabilities. In general, Pr {A | B}

denotes the probability of eventA, given that eventB happens. So, in our example,

Pr {A | B} is the probability that a random person is an MIT student, given that

he or she is a Cambridge resident.

How do we compute Pr {A | B}? Since we are given that the person lives in

Cambridge, we can forget about everyone in the world who does not. Thus, all

outcomes outside event B are irrelevant. So, intuitively, Pr {A | B} should be the

fraction of Cambridge residents that are also MIT students; that is, the answer

should be the probability that the person is in set A ∩ B (darkly shaded) divided

by the probability that the person is in set B (lightly shaded). This motivates the

definition of conditional probability:

770 CHAPTER 14. INTRODUCTION TO PROBABILITY

Definition 14.3.1.

Pr {A | B} ::=
Pr {A ∩B}

Pr {B}

If Pr {B} = 0, then the conditional probability Pr {A | B} is undefined.

Pure probability is often counterintuitive, but conditional probability is worse!

Conditioning can subtly alter probabilities and produce unexpected results in ran-

domized algorithms and computer systems as well as in betting games. Yet, the

mathematical definition of conditional probability given above is very simple and

should give you no trouble— provided you rely on formal reasoning and not intu-

ition.

14.3.1 The “Halting Problem”

The Halting Problem was the first example of a property that could not be tested

by any program. It was introduced by Alan Turing in his seminal 1936 paper.

The problem is to determine whether a Turing machine halts on a given . . . yadda

yadda yadda . . . what’s much more important, it was the name of the MIT EECS

14.3. CONDITIONAL PROBABILITY 771

department’s famed C-league hockey team.

In a best-of-three tournament, the Halting Problem wins the first game with

probability 1/2. In subsequent games, their probability of winning is determined

by the outcome of the previous game. If the Halting Problem won the previous

game, then they are invigorated by victory and win the current game with proba-

bility 2/3. If they lost the previous game, then they are demoralized by defeat and

win the current game with probablity only 1/3. What is the probability that the

Halting Problem wins the tournament, given that they win the first game?

This is a question about a conditional probability. Let A be the event that the

Halting Problem wins the tournament, and let B be the event that they win the

first game. Our goal is then to determine the conditional probability Pr {A | B}.

We can tackle conditional probability questions just like ordinary probability

problems: using a tree diagram and the four step method. A complete tree diagram

is shown below, followed by an explanation of its construction and use.

772 CHAPTER 14. INTRODUCTION TO PROBABILITY

2/3

L
1/2

W
1/2

W 1/3

L
2/3

L 1/3

W
2/3

L
L 1/3

W
2/3

W
1/3

1st game
outcome 2nd game

outcome
3rd game
outcome probability

outcome

1/3

1/18

1/9

1/9

1/18

1/3

event B:
win the

1st game?

event A:
win the
series?

WW

WLW

WLL

LWW

LWL

LL

outcome

Step 1: Find the Sample Space

Each internal vertex in the tree diagram has two children, one corresponding to a

win for the Halting Problem (labeled W) and one corresponding to a loss (labeled

L). The complete sample space is:

S = {WW, WLW, WLL, LWW, LWL, LL}

14.3. CONDITIONAL PROBABILITY 773

Step 2: Define Events of Interest

The event that the Halting Problem wins the whole tournament is:

T = {WW, WLW, LWW}

And the event that the Halting Problem wins the first game is:

F = {WW,WLW,WLL}

The outcomes in these events are indicated with checkmarks in the tree diagram.

Step 3: Determine Outcome Probabilities

Next, we must assign a probability to each outcome. We begin by labeling edges

as specified in the problem statement. Specifically, The Halting Problem has a 1/2

chance of winning the first game, so the two edges leaving the root are each as-

signed probability 1/2. Other edges are labeled 1/3 or 2/3 based on the outcome

of the preceding game. We then find the probability of each outcome by multiply-

ing all probabilities along the corresponding root-to-leaf path. For example, the

774 CHAPTER 14. INTRODUCTION TO PROBABILITY

probability of outcome WLL is:

1
2
· 1

3
· 2

3
=

1
9

Step 4: Compute Event Probabilities

We can now compute the probability that The Halting Problem wins the tourna-

ment, given that they win the first game:

Pr {A | B} =
Pr {A ∩B}

Pr {B}

=
Pr {{WW,WLW}}

Pr {{WW,WLW,WLL}}

=
1/3 + 1/18

1/3 + 1/18 + 1/9

=
7
9

We’re done! If the Halting Problem wins the first game, then they win the whole

tournament with probability 7/9.

14.3. CONDITIONAL PROBABILITY 775

14.3.2 Why Tree Diagrams Work

We’ve now settled into a routine of solving probability problems using tree dia-

grams. But we’ve left a big question unaddressed: what is the mathematical justi-

fication behind those funny little pictures? Why do they work?

The answer involves conditional probabilities. In fact, the probabilities that

we’ve been recording on the edges of tree diagrams are conditional probabilities.

For example, consider the uppermost path in the tree diagram for the Halting Prob-

lem, which corresponds to the outcome WW . The first edge is labeled 1/2, which

is the probability that the Halting Problem wins the first game. The second edge

is labeled 2/3, which is the probability that the Halting Problem wins the second

game, given that they won the first— that’s a conditional probability! More gener-

ally, on each edge of a tree diagram, we record the probability that the experiment

proceeds along that path, given that it reaches the parent vertex.

So we’ve been using conditional probabilities all along. But why can we mul-

tiply edge probabilities to get outcome probabilities? For example, we concluded

776 CHAPTER 14. INTRODUCTION TO PROBABILITY

that:

Pr {WW} =
1
2
· 2

3

=
1
3

Why is this correct?

The answer goes back to Definition 14.3.1 of conditional probability which

could be written in a form called the Product Rule for probabilities:

Rule (Product Rule for 2 Events). If Pr {E1} 6= 0, then:

Pr {E1 ∩ E2} = Pr {E1} · Pr {E2 | E1}

Multiplying edge probabilities in a tree diagram amounts to evaluating the

right side of this equation. For example:

Pr {win first game ∩win second game}

= Pr {win first game} · Pr {win second game | win first game}

=
1
2
· 2

3

So the Product Rule is the formal justification for multiplying edge probabilities to

14.3. CONDITIONAL PROBABILITY 777

get outcome probabilities! Of course to justify multiplying edge probabilities along

longer paths, we need a Product Rule for n events. The pattern of the n event rule

should be apparent from

Rule (Product Rule for 3 Events).

Pr {E1 ∩ E2 ∩ E3} = Pr {E1} · Pr {E2 | E1} · Pr {E3 | E2 ∩ E1}

providing Pr {E1 ∩ E2} 6= 0.

This rule follows from the definition of conditional probability and the trivial

identity

Pr {E1 ∩ E2 ∩ E3} = Pr {E1} ·
Pr {E2 ∩ E1}

Pr {E1}
· Pr {E3 ∩ E2 ∩ E1}

Pr {E2 ∩ E1}

14.3.3 The Law of Total Probability

Breaking a probability calculation into cases simplifies many problems. The idea

is to calculate the probability of an event A by splitting into two cases based on

whether or not another event E occurs. That is, calculate the probability of A ∩ E

and A∩E. By the Sum Rule, the sum of these probabilities equals Pr {A}. Express-

778 CHAPTER 14. INTRODUCTION TO PROBABILITY

ing the intersection probabilities as conditional probabilities yields

Rule (Total Probability).

Pr {A} = Pr {A | E} · Pr {E}+ Pr
{
A
∣∣ E} · Pr

{
E
}
.

For example, suppose we conduct the following experiment. First, we flip a

coin. If heads comes up, then we roll one die and take the result. If tails comes up,

then we roll two dice and take the sum of the two results. What is the probability

that this process yields a 2? Let E be the event that the coin comes up heads,

and let A be the event that we get a 2 overall. Assuming that the coin is fair,

Pr {E} = Pr
{
E
}

= 1/2. There are now two cases. If we flip heads, then we roll

a 2 on a single die with probabilty Pr {A | E} = 1/6. On the other hand, if we

flip tails, then we get a sum of 2 on two dice with probability Pr
{
A
∣∣ E} = 1/36.

Therefore, the probability that the whole process yields a 2 is

Pr {A} =
1
2
· 1

6
+

1
2
· 1

36
=

7
72
.

There is also a form of the rule to handle more than two cases.

14.3. CONDITIONAL PROBABILITY 779

Rule (Multicase Total Probability). If E1, . . . , En are pairwise disjoint events whose

union is the whole sample space, then:

Pr {A} =
n∑
i=1

Pr {A | Ei} · Pr {Ei} .

EDITING NOTE:

A Coin Problem

Someone hands you either a fair coin or a trick coin with heads on both sides.

You flip the coin 100 times and see heads every time. What can you say about the

probability that you flipped the fair coin? Remarkably— nothing!

In order to make sense out of this outrageous claim, let’s formalize the problem.

The sample space is worked out in the tree diagram below. We do not know the

probability that you were handed the fair coin initially— you were just given one

coin or the other— so let’s call that p.

780 CHAPTER 14. INTRODUCTION TO PROBABILITY

result of
100 flips

1 100

1/2100

1001−1/2

event A:
given fair

coin?

event B:
flipped

all heads?
coin given

to you

fair coin

trick coin

all heads

some tails

all heads
probability

X

X

X

X 1−p

p / 2

p − p / 2

100

100

p

1−p

Let A be the event that you were handed the fair coin, and let B be the event that

you flipped 100 heads. Now, we’re looking for Pr {A | B}, the probability that

you were handed the fair coin, given that you flipped 100 heads. The outcome

probabilities are worked out in the tree diagram. Plugging the results into the

definition of conditional probability gives:

Pr {A | B} =
Pr {A ∩B}

Pr {B}

=
p/2100

1− p+ p/2100

=
p

2100(1− p) + p

This expression is very small for moderate values of p because of the 2100 term in

14.3. CONDITIONAL PROBABILITY 781

the denominator. For example, if p = 1/2, then the probability that you were given

the fair coin is essentially zero.

But we do not know the probability p that you were given the fair coin. And

perhaps the value of p is not moderate; in fact, maybe p = 1 − 2−100. Then there

is nearly an even chance that you have the fair coin, given that you flipped 100

heads. In fact, maybe you were handed the fair coin with probability p = 1. Then

the probability that you were given the fair coin is, well, 1!

A similar problem arises in polling before an election. A pollster picks a ran-

dom American and asks his or her party affiliation. If this process is repeated many

times, what can be said about the population as a whole? To clarify the analogy,

suppose that the country contains only two people. There is either one Republi-

can and one Democrat (like the fair coin), or there are two Republicans (like the

trick coin). The pollster picks a random citizen 100 times, which is analogous to

flipping the coin 100 times. Suppose that he picks a Republican every single time.

However, even given this polling data, the probability that there is one citizen in

782 CHAPTER 14. INTRODUCTION TO PROBABILITY

each party could still be anywhere between 0 and 1!

What the pollster can say is that either:

1. Something earth-shatteringly unlikely happened during the poll.

2. There are two Republicans.

This is as far as probability theory can take us; from here, you must draw your own

conclusions. Based on life experience, many people would consider the second

possibility more plausible. However, if you are just convinced that the country isn’t

entirely Republican (say, because you’re a citizen and a Democrat), then you might

believe that the first possibility is actually more likely.

�

14.3.4 Medical Testing

There is an unpleasant condition called BO suffered by 10% of the population.

There are no prior symptoms; victims just suddenly start to stink. Fortunately,

there is a test for latent BO before things start to smell. The test is not perfect,

14.3. CONDITIONAL PROBABILITY 783

however:

• If you have the condition, there is a 10% chance that the test will say you do

not. (These are called “false negatives”.)

• If you do not have the condition, there is a 30% chance that the test will say

you do. (These are “false positives”.)

Suppose a random person is tested for latent BO. If the test is positive, then

what is the probability that the person has the condition?

Step 1: Find the Sample Space

The sample space is found with the tree diagram below.

784 CHAPTER 14. INTRODUCTION TO PROBABILITY

person
has BO?

test result outcome
probability event A B?

yes

no

pos

neg

pos

neg

.1

.9

.9

.1

.3

.7

.09

.01

.27

.63
event A: event B:

has
BO?

test
positive?

Step 2: Define Events of Interest

Let A be the event that the person has BO. Let B be the event that the test was

positive. The outcomes in each event are marked in the tree diagram. We want

to find Pr {A | B}, the probability that a person has BO, given that the test was

positive.

14.3. CONDITIONAL PROBABILITY 785

Step 3: Find Outcome Probabilities

First, we assign probabilities to edges. These probabilities are drawn directly from

the problem statement. By the Product Rule, the probability of an outcome is the

product of the probabilities on the corresponding root-to-leaf path. All probabili-

ties are shown in the figure.

Step 4: Compute Event Probabilities

p

Pr {A | B} =
Pr {A ∩B}

Pr {B}

=
0.09

0.09 + 0.27

=
1
4

If you test positive, then there is only a 25% chance that you have the condition!

This answer is initially surprising, but makes sense on reflection. There are

two ways you could test positive. First, it could be that you are sick and the test

is correct. Second, it could be that you are healthy and the test is incorrect. The

786 CHAPTER 14. INTRODUCTION TO PROBABILITY

problem is that almost everyone is healthy; therefore, most of the positive results

arise from incorrect tests of healthy people!

We can also compute the probability that the test is correct for a random person.

This event consists of two outcomes. The person could be sick and the test positive

(probability 0.09), or the person could be healthy and the test negative (probability

0.63). Therefore, the test is correct with probability 0.09 + 0.63 = 0.72. This is a

relief; the test is correct almost three-quarters of the time.

But wait! There is a simple way to make the test correct 90% of the time: always

return a negative result! This “test” gives the right answer for all healthy people

and the wrong answer only for the 10% that actually have the condition. The best

strategy is to completely ignore the test result!

There is a similar paradox in weather forecasting. During winter, almost all

days in Boston are wet and overcast. Predicting miserable weather every day may

be more accurate than really trying to get it right!

14.3. CONDITIONAL PROBABILITY 787

14.3.5 Conditional Identities

The probability rules above extend to probabilities conditioned on the same event.

For example, the Inclusion-Exclusion formula for two sets holds when all proba-

bilities are conditioned on an event C:

Pr {A ∪B | C} = Pr {A | C}+ Pr {B | C} − Pr {A ∩B | C} .

This follows from the fact that if Pr {C} 6= 0 and we define

PrC {A} ::= Pr {A | C}

then PrC {} satisfies the definition of being probability function.

It is important not to mix up events before and after the conditioning bar. For

example, the following is not a valid identity:

False Claim.

Pr {A | B ∪ C} = Pr {A | B}+ Pr {A | C} − Pr {A | B ∩ C} . (14.1)

A counterexample is shown below. In this case, Pr {A | B} = 1, Pr {A | C} = 1,

and Pr {A | B ∪ C} = 1. However, since 1 6= 1 + 1, the equation above does not

788 CHAPTER 14. INTRODUCTION TO PROBABILITY

hold.

sample space

A

B
C

So you’re convinced that this equation is false in general, right? Let’s see if you

really believe that.

14.3.6 Discrimination Lawsuit

Several years ago there was a sex discrimination lawsuit against Berkeley. A female

professor was denied tenure, allegedly because she was a woman. She argued that

in every one of Berkeley’s 22 departments, the percentage of male applicants ac-

cepted was greater than the percentage of female applicants accepted. This sounds

very suspicious!

However, Berkeley’s lawyers argued that across the whole university the per-

centage of male tenure applicants accepted was actually lower than the percentage

14.3. CONDITIONAL PROBABILITY 789

of female applicants accepted. This suggests that if there was any sex discrimi-

nation, then it was against men! Surely, at least one party in the dispute must be

lying.

Let’s simplify the problem and express both arguments in terms of conditional

probabilities. Suppose that there are only two departments, EE and CS, and con-

sider the experiment where we pick a random applicant. Define the following

events:

• Let A be the event that the applicant is accepted.

• Let FEE the event that the applicant is a female applying to EE.

• Let FCS the event that the applicant is a female applying to CS.

• Let MEE the event that the applicant is a male applying to EE.

• Let MCS the event that the applicant is a male applying to CS.

Assume that all applicants are either male or female, and that no applicant applied

to both departments. That is, the events FEE , FCS , MEE , and MCS are all disjoint.

790 CHAPTER 14. INTRODUCTION TO PROBABILITY

In these terms, the plaintiff is make the following argument:

Pr {A | FEE} < Pr {A | MEE}

Pr {A | FCS} < Pr {A | MCS}

That is, in both departments, the probability that a woman is accepted for tenure is

less than the probability that a man is accepted. The university retorts that overall

a woman applicant is more likely to be accepted than a man:

Pr {A | FEE ∪ FCS} > Pr {A | MEE ∪MCS}

It is easy to believe that these two positions are contradictory. In fact, we might

even try to prove this by adding the plaintiff’s two inequalities and then arguing

as follows:

Pr {A | FEE}+ Pr {A | FCS} < Pr {A | MEE}+ Pr {A | MCS}

⇒ Pr {A | FEE ∪ FCS} < Pr {A | MEE ∪MCS}

The second line exactly contradicts the university’s position! But there is a big

problem with this argument; the second inequality follows from the first only if

14.3. CONDITIONAL PROBABILITY 791

we accept the false identity (14.1). This argument is bogus! Maybe the two parties

do not hold contradictory positions after all!

In fact, the table below shows a set of application statistics for which the asser-

tions of both the plaintiff and the university hold:

CS 0 females accepted, 1 applied 0%
50 males accepted, 100 applied 50%

EE 70 females accepted, 100 applied 70%
1 male accepted, 1 applied 100%

Overall 70 females accepted, 101 applied ≈ 70%
51 males accepted, 101 applied ≈ 51%

In this case, a higher percentage of males were accepted in both departments, but

overall a higher percentage of females were accepted! Bizarre!

14.3.7 A Posteriori Probabilities

Suppose that we turn the hockey question around: what is the probability that the

Halting Problem won their first game, given that they won the series?

This seems like an absurd question! After all, if the Halting Problem won the

series, then the winner of the first game has already been determined. Therefore,

who won the first game is a question of fact, not a question of probability. How-

ever, our mathematical theory of probability contains no notion of one event pre-

792 CHAPTER 14. INTRODUCTION TO PROBABILITY

ceding another— there is no notion of time at all. Therefore, from a mathemati-

cal perspective, this is a perfectly valid question. And this is also a meaningful

question from a practical perspective. Suppose that you’re told that the Halting

Problem won the series, but not told the results of individual games. Then, from

your perspective, it makes perfect sense to wonder how likely it is that The Halting

Problem won the first game.

A conditional probability Pr {B | A} is called a posteriori if event B precedes

event A in time. Here are some other examples of a posteriori probabilities:

• The probability it was cloudy this morning, given that it rained in the after-

noon.

• The probability that I was initially dealt two queens in Texas No Limit Hold

’Em poker, given that I eventually got four-of-a-kind.

Mathematically, a posteriori probabilities are no different from ordinary probabil-

ities; the distinction is only at a higher, philosophical level. Our only reason for

drawing attention to them is to say, “Don’t let them rattle you.”

14.3. CONDITIONAL PROBABILITY 793

Let’s return to the original problem. The probability that the Halting Problem

won their first game, given that they won the series is Pr {B | A}. We can compute

this using the definition of conditional probability and our earlier tree diagram:

Pr {B | A} =
Pr {B ∩A}

Pr {A}

=
1/3 + 1/18

1/3 + 1/18 + 1/9

=
7
9

This answer is suspicious! In the preceding section, we showed that Pr {A | B}

was also 7/9. Could it be true that Pr {A | B} = Pr {B | A} in general? Some

reflection suggests this is unlikely. For example, the probability that I feel uneasy,

given that I was abducted by aliens, is pretty large. But the probability that I was

abducted by aliens, given that I feel uneasy, is rather small.

Let’s work out the general conditions under which Pr {A | B} = Pr {B | A}.

By the definition of conditional probability, this equation holds if an only if:

Pr {A ∩B}
Pr {B}

=
Pr {A ∩B}

Pr {A}

This equation, in turn, holds only if the denominators are equal or the numerator

794 CHAPTER 14. INTRODUCTION TO PROBABILITY

is 0:

Pr {B} = Pr {A} or Pr {A ∩B} = 0

The former condition holds in the hockey example; the probability that the Halting

Problem wins the series (event A) is equal to the probability that it wins the first

game (event B). In fact, both probabilities are 1/2.

Such pairs of probabilities are related by Bayes’ Rule:

Theorem 14.3.2 (Bayes’ Rule). If Pr {A} and Pr {B} are nonzero, then:

Pr {A | B} · Pr {B}
Pr {A}

= Pr {B | A} (14.2)

Proof. When Pr {A} and Pr {B} are nonzero, we have

Pr {A | B} · Pr {B} = Pr {A ∩B} = Pr {B | A} · Pr {A}

by definition of conditional probability. Dividing by Pr {A} gives (14.2).

�

In the hockey problem, the probability that the Halting Problem wins the first

game is 1/2 and so is the probability that the Halting Problem wins the series.

14.4. INDEPENDENCE 795

Therefore, Pr {A} = Pr {B} = 1/2. This, together with Bayes’ Rule, explains why

Pr {A | B} and Pr {B | A} turned out to be equal in the hockey example.

14.3.8 Problems

Practice Problems

Class Problems

Homework Problems

14.4 Independence

Suppose that we flip two fair coins simultaneously on opposite sides of a room.

Intuitively, the way one coin lands does not affect the way the other coin lands.

The mathematical concept that captures this intuition is called independence:

Definition. Events A and B are independent if and only if:

Pr {A ∩B} = Pr {A} · Pr {B}

Generally, independence is something you assume in modeling a phenomenon—

796 CHAPTER 14. INTRODUCTION TO PROBABILITY

or wish you could realistically assume. Many useful probability formulas only

hold if certain events are independent, so a dash of independence can greatly sim-

plify the analysis of a system.

14.4.1 Examples

Let’s return to the experiment of flipping two fair coins. Let A be the event that

the first coin comes up heads, and let B be the event that the second coin is heads.

If we assume that A and B are independent, then the probability that both coins

come up heads is:

Pr {A ∩B} = Pr {A} · Pr {B}

=
1
2
· 1

2

=
1
4

On the other hand, let C be the event that tomorrow is cloudy and R be the

event that tomorrow is rainy. Perhaps Pr {C} = 1/5 and Pr {R} = 1/10 around

here. If these events were independent, then we could conclude that the probabil-

14.4. INDEPENDENCE 797

ity of a rainy, cloudy day was quite small:

Pr {R ∩ C} = Pr {R} · Pr {C}

=
1
5
· 1

10

=
1
50

Unfortunately, these events are definitely not independent; in particular, every

rainy day is cloudy. Thus, the probability of a rainy, cloudy day is actually 1/10.

14.4.2 Working with Independence

There is another way to think about independence that you may find more intu-

itive. According to the definition, events A and B are independent if and only if

Pr {A ∩B} = Pr {A}·Pr {B}. This equation holds even if Pr {B} = 0, but assuming

it is not, we can divide both sides by Pr {B} and use the definition of conditional

probability to obtain an alternative formulation of independence:

Proposition. If Pr {B} 6= 0, then events A and B are independent if and only if

Pr {A | B} = Pr {A} . (14.3)

798 CHAPTER 14. INTRODUCTION TO PROBABILITY

Equation (14.3) says that eventsA andB are independent if the probability ofA

is unaffected by the fact that B happens. In these terms, the two coin tosses of the

previous section were independent, because the probability that one coin comes

up heads is unaffected by the fact that the other came up heads. Turning to our

other example, the probability of clouds in the sky is strongly affected by the fact

that it is raining. So, as we noted before, these events are not independent.

Warning: Students sometimes get the idea that disjoint events are independent.

The opposite is true: if A ∩ B = ∅, then knowing that A happens means you know

that B does not happen. So disjoint events are never independent —unless one of

them has probability zero.

EDITING NOTE:

Some Intuition

Suppose that A and B are disjoint events, as shown in the figure below.

14.4. INDEPENDENCE 799

A
B

Are these events independent? Let’s check. On one hand, we know

Pr {A ∩B} = 0

because A ∩B contains no outcomes. On the other hand, we have

Pr {A} · Pr {B} > 0

except in degenerate cases where A or B has zero probability. Thus, disjointness

and independence are very different ideas.

Here’s a better mental picture of what independent events look like.

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

�����������������������
�����������������������
�����������������������
�����������������������

���������
���������
���������
���������

A

B

800 CHAPTER 14. INTRODUCTION TO PROBABILITY

The sample space is the whole rectangle. Event A is a vertical stripe, and event B

is a horizontal stripe. Assume that the probability of each event is proportional to

its area in the diagram. Now if A covers an α-fraction of the sample space, and

B covers a β-fraction, then the area of the intersection region is α · β. In terms of

probability:

Pr {A ∩B} = Pr {A} · Pr {B}

�

14.4.3 Mutual Independence

We have defined what it means for two events to be independent. But how can we

talk about independence when there are more than two events? For example, how

can we say that the orientations of n coins are all independent of one another?

Events E1, . . . , En are mutually independent if and only if for every subset of the

events, the probability of the intersection is the product of the probabilities. In

14.4. INDEPENDENCE 801

other words, all of the following equations must hold:

Pr {Ei ∩ Ej} = Pr {Ei} · Pr {Ej} for all distinct i, j

Pr {Ei ∩ Ej ∩ Ek} = Pr {Ei} · Pr {Ej} · Pr {Ek} for all distinct i, j, k

Pr {Ei ∩ Ej ∩ Ek ∩ El} = Pr {Ei} · Pr {Ej} · Pr {Ek} · Pr {El} for all distinct i, j, k, l

. . .

Pr {E1 ∩ · · · ∩ En} = Pr {E1} · · ·Pr {En}

As an example, if we toss 100 fair coins and let Ei be the event that the ith coin

lands heads, then we might reasonably assume that E1, . . . , E100 are mutually in-

dependent.

EDITING NOTE:

DNA Testing

This is testimony from the O. J. Simpson murder trial on May 15, 1995:

802 CHAPTER 14. INTRODUCTION TO PROBABILITY

MR. CLARKE: When you make these estimations of frequency— and I believe

you touched a little bit on a concept called independence?

DR. COTTON: Yes, I did.

MR. CLARKE: And what is that again?

DR. COTTON: It means whether or not you inherit one allele that you have is

not— does not affect the second allele that you might get. That is, if you

inherit a band at 5,000 base pairs, that doesn’t mean you’ll automatically or

with some probability inherit one at 6,000. What you inherit from one parent

is what you inherit from the other. (Got that? – EAL)

MR. CLARKE: Why is that important?

DR. COTTON: Mathematically that’s important because if that were not the case,

it would be improper to multiply the frequencies between the different ge-

netic locations.

MR. CLARKE: How do you— well, first of all, are these markers independent

that you’ve described in your testing in this case?

14.4. INDEPENDENCE 803

The jury was told that genetic markers in blood found at the crime scene matched

Simpson’s. Furthermore, the probability that the markers would be found in a

randomly-selected person was at most 1 in 170 million. This astronomical figure

was derived from statistics such as:

• 1 person in 100 has marker A.

• 1 person in 50 marker B.

• 1 person in 40 has marker C.

• 1 person in 5 has marker D.

• 1 person in 170 has marker E.

Then these numbers were multiplied to give the probability that a randomly-selected

person would have all five markers:

Pr {A ∩B ∩ C ∩D ∩ E} = Pr {A} · Pr {B} · Pr {C} · Pr {D} · Pr {E}

=
1

100
· 1

50
· 1

40
· 1

5
· 1

170

=
1

170, 000, 000

804 CHAPTER 14. INTRODUCTION TO PROBABILITY

The defense pointed out that this assumes that the markers appear mutually inde-

pendently. Furthermore, all the statistics were based on just a few hundred blood

samples. The jury was widely mocked for failing to “understand” the DNA evi-

dence. If you were a juror, would you accept the 1 in 170 million calculation?

�

14.4.4 Pairwise Independence

The definition of mutual independence seems awfully complicated— there are so

many conditions! Here’s an example that illustrates the subtlety of independence

when more than two events are involved and the need for all those conditions.

Suppose that we flip three fair, mutually-independent coins. Define the following

events:

• A1 is the event that coin 1 matches coin 2.

• A2 is the event that coin 2 matches coin 3.

• A3 is the event that coin 3 matches coin 1.

14.4. INDEPENDENCE 805

Are A1, A2, A3 mutually independent?

The sample space for this experiment is:

{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

Every outcome has probability (1/2)3 = 1/8 by our assumption that the coins are

mutually independent.

To see if events A1, A2, and A3 are mutually independent, we must check a

sequence of equalities. It will be helpful first to compute the probability of each

event Ai:

Pr {A1} = Pr {HHH}+ Pr {HHT}+ Pr {TTH}+ Pr {TTT}

=
1
8

+
1
8

+
1
8

+
1
8

=
1
2

806 CHAPTER 14. INTRODUCTION TO PROBABILITY

By symmetry, Pr {A2} = Pr {A3} = 1/2 as well. Now we can begin checking all

the equalities required for mutual independence.

Pr {A1 ∩A2} = Pr {HHH}+ Pr {TTT}

=
1
8

+
1
8

=
1
4

=
1
2
· 1

2

= Pr {A1}Pr {A2}

By symmetry, Pr {A1 ∩A3} = Pr {A1} · Pr {A3} and Pr {A2 ∩A3} = Pr {A2} ·

Pr {A3}must hold also. Finally, we must check one last condition:

Pr {A1 ∩A2 ∩A3} = Pr {HHH}+ Pr {TTT}

=
1
8

+
1
8

=
1
4

6= Pr {A1}Pr {A2}Pr {A3} =
1
8

14.4. INDEPENDENCE 807

The three events A1, A2, and A3 are not mutually independent even though any

two of them are independent! This not-quite mutual independence seems weird at

first, but it happens. It even generalizes:

Definition 14.4.1. A set A0, A1, . . . of events is k-way independent iff every set of

k of these events is mutually independent. The set is pairwise independent iff it is

2-way independent.

So the sets A1, A2, A3 above are pairwise independent, but not mutually in-

dependent. Pairwise independence is a much weaker property than mutual in-

dependence, but it’s all that’s needed to justify a standard approach to making

probabilistic estimates that will come up later.

EDITING NOTE:

For example, suppose that the prosecutors in the O. J. Simpson trial were wrong

and markers A, B, C, D, and E appear only pairwise independently. Then the

808 CHAPTER 14. INTRODUCTION TO PROBABILITY

probability that a randomly-selected person has all five markers is no more than:

Pr {A ∩B ∩ C ∩D ∩ E} ≤ Pr {A ∩ E}

= Pr {A} · Pr {E}

=
1

100
· 1

170

=
1

17, 000

The first line uses the fact thatA∩B∩C∩D∩E is a subset ofA∩E. (We picked out

theA andE markers because they’re the rarest.) We use pairwise independence on

the second line. Now the probability of a random match is 1 in 17,000— a far cry

from 1 in 170 million! And this is the strongest conclusion we can reach assuming

only pairwise independence.

�

14.5. THE BIRTHDAY PRINCIPLE 809

14.4.5 Problems

Class Problems

14.5 The Birthday Principle

There are 85 students in a class. What is the probability that some birthday is

shared by two people? Comparing 85 students to the 365 possible birthdays, you

might guess the probability lies somewhere around 1/4 —but you’d be wrong: the

probability that there will be two people in the class with matching birthdays is

actually more than 0.9999.

To work this out, we’ll assume that the probability that a randomly chosen stu-

dent has a given birthday is 1/d, where d = 365 in this case. We’ll also assume

that a class is composed of n randomly and independently selected students, with

n = 85 in this case. These randomness assumptions are not really true, since more

babies are born at certain times of year, and students’ class selections are typi-

cally not independent of each other, but simplifying in this way gives us a start

810 CHAPTER 14. INTRODUCTION TO PROBABILITY

on analyzing the problem. More importantly, these assumptions are justifiable in

important computer science applications of birthday matching. For example, the

birthday matching is a good model for collisions between items randomly inserted

into a hash table. So we won’t worry about things like Spring procreation prefer-

ences that make January birthdays more common, or about twins’ preferences to

take classes together (or not).

EDITING NOTE: or that fact that a student can’t be selected twice in making up

a class list. �

Selecting a sequence of n students for a class yields a sequence of n birthdays.

Under the assumptions above, the dn possible birthday sequences are equally

likely outcomes. Let’s examine the consequences of this probability model by fo-

cussing on the ith and jth elements in a birthday sequence, where 1 ≤ i 6= j ≤ n.

It makes for a better story if we refer to the ith birthday as “Alice’s” and the jth as

“Bob’s.”

Now since Bob’s birthday is assumed to be independent of Alice’s, it follows

14.5. THE BIRTHDAY PRINCIPLE 811

that whichever of the d birthdays Alice’s happens to be, the probability that Bob

has the same birthday 1/d. Next, If we look at two other birthdays —call them

“Carol’s” and “Don’s” —then whether Alice and Bob have matching birthdays

has nothing to do with whether Carol and Don have matching birthdays. That

is, the event that Alice and Bob have matching birthdays is independent of the

event that Carol and Don have matching birthdays. In fact, for any set of non-

overlapping couples, the events that a couple has matching birthdays are mutually

independent.

In fact, it’s pretty clear that the probability that Alice and Bob have matching

birthdays remains 1/d whether or not Carol and Alice have matching birthdays.

That is, the event that Alice and Bob match is also independent of Alice and Carol

matching. In short, the set of all events in which a couple has macthing birthdays

is pairwise independent, despite the overlapping couples. This will be important

in Chapter 17 because pairwise independence will be enough to justify some con-

clusions about the expected number of matches. However, it’s obvious that these

812 CHAPTER 14. INTRODUCTION TO PROBABILITY

matching birthday events are not mutually independent, not even 3-way indepen-

dent: if Alice and Bob match and also Alice and Carol match, then Bob and Carol

will match.

We could justify all these assertions of independence routinely using the four

step method, but it’s pretty boring, and we’ll skip it.

It turns out that as long as the number of students is noticeably smaller than

the number of possible birthdays, we can get a pretty good estimate of the birth-

day matching probabilities by pretending that the matching events are mutually

independent. (An intuitive justification for this is that with only a small number

of matching pairs, it’s likely that none of the pairs overlap.) Then the probability

of no matching birthdays would be the same as rth power of the probability that a

couple does not have matching birthdays, where r ::=
(
n
2

)
is the number of couples.

That is, the probability of no matching birthdays would be

(1− 1/d)(
n
2). (14.4)

Using the fact that ex > 1 + x for all x,2 we would conclude that the probability of
2This approximation is obtained by truncating the Taylor series e−x = 1− x+ x2/2!− x3/3! + · · · .

14.5. THE BIRTHDAY PRINCIPLE 813

no matching birthdays is at most

e
−

(
n
2

)
d . (14.5)

The matching birthday problem fits in here so far as a nice example illustrat-

ing pairwise and mutual independence. But it’s actually not hard to justify the

bound (14.5) without any pretence or any explicit consideration of independence.

Namely, there are d(d − 1)(d − 2) · · · (d − (n − 1)) length n sequences of distinct

birthdays. So the probability that everyone has a different birthday is:

d(d− 1)(d− 2) · · · (d− (n− 1))
dn

=
d

d
· d− 1

d
· d− 2

d
· · · d− (n− 1)

d

=
(

1− 0
d

)(
1− 1

d

)(
1− 2

d

)
· · ·
(

1− n− 1
d

)

< e0 · e−1/d · e−2/d · · · e−(n−1)/d (since 1 + x < ex)

= e−(Pn−1
i=1 i/d)

= e−(n(n−1)/2d)

= the bound (14.5).

The approximation e−x ≈ 1− x is pretty accurate when x is small.

814 CHAPTER 14. INTRODUCTION TO PROBABILITY

For n = 85 and d = 365, (14.5) is less than 1/17, 000, which means the probabil-

ity of having some pair of matching birthdays actually is more than 1−1/17, 000 >

0.9999. So it would be pretty astonishing if there were no pair of students in the

class with matching birthdays.

For d ≤ n2/2, the probability of no match turns out to be asymptotically equal

to the upper bound (14.5). For d = n2/2 in particular, the probability of no match is

asymptotically equal to 1/e. This leads to a rule of thumb which is useful in many

contexts in computer science:

The Birthday Principle

If there are d days in a year and
√

2d people in a room, then the probability that

two share a birthday is about 1− 1/e ≈ 0.632.

For example, the Birthday Principle says that if you have
√

2 · 365 ≈ 27 people

in a room, then the probability that two share a birthday is about 0.632. The actual

probability is about 0.626, so the approximation is quite good.

14.5. THE BIRTHDAY PRINCIPLE 815

Among other applications, the Birthday Principle famously comes into play as

the basis of “birthday attacks” that crack certain cryptographic systems.

816 CHAPTER 14. INTRODUCTION TO PROBABILITY

Chapter 15

Random Processes

Random Walks are used to model situations in which an object moves in a sequence

of steps in randomly chosen directions. For example in Physics, three-dimensional

random walks are used to model Brownian motion and gas diffusion. In this chap-

ter we’ll examine two examples of random walks. First, we’ll model gambling as

a simple 1-dimensional random walk —a walk along a straight line. Then we’ll

explain how the Google search engine used random walks through the graph of

world-wide web links to determine the relative importance of websites.

817

818 CHAPTER 15. RANDOM PROCESSES

15.1 Gamblers’ Ruin

EDITING NOTE: In the Mathematical literature, random walks are for some rea-

son traditionally discussed in the context of some social vice. A one-dimensional

random walk is often described as the path of a drunkard who randomly staggers

left or right at each step. We’ll examine one-dimensional random walks using the

language of gambling. �

a Suppose a gambler starts with an initial stake of n dollars and makes a sequence

of $1 bets. If he wins an individual bet, he gets his money back plus another $1. If

he loses, he loses the $1.

We can model this scenario as a random walk between integer points on the

reall line. The position on the line at any time corresponds to the gambler’s cash-

on-hand or capital. Walking one step to the right (left) corresponds to winning

(losing) a $1 bet and thereby increasing (decreasing) his capital by $1. The gambler

plays until either he is bankrupt or increases his capital to a target amount of T

dollars. If he reaches his target, then he is called an overall winner, and his profit,

15.1. GAMBLERS’ RUIN 819

m, will be T − n dollars. If his capital reaches zero dollars before reaching his

target, then we say that he is “ruined” or goes broke. We’ll assume that the gambler

has the same probability, p, of winning each individual $1 bet and that the bets are

mutually independent. We’d like to find the probability that the gambler wins.

The gambler’s situation as he proceeds with his $1 bets is illustrated in Fig-

ure 15.1. The random walk has boundaries at 0 and T . If the random walk ever

reaches either of these boundary values, then it terminates.

In a fair game, the gambler is equally likely to win or lose each bet, that is p =

1/2. The corresponding random walk is called unbiased. The gambler is more likely

to win if p > 1/2 and less likely to win if p < 1/2; these random walks are called

biased. We want to determine the probability that the walk terminates at boundary

T , namely, the probability that the gambler is a winner. We’ll do this by showing

that the probability satisfies a simple linear recurrence and solving the recurrence,

but before we derive the probability, let’s just look at what it turns out to be.

EDITING NOTE:

820 CHAPTER 15. RANDOM PROCESSES

capital
gambler’s

n

T = n + m

time

bet outcomes:
WLLWLWWLLL

Figure 15.1: This is a graph of the gambler’s capital versus time for one possible sequence

of bet outcomes. At each time step, the graph goes up with probability p and down with

probability 1− p. The gambler continues betting until the graph reaches either 0 or T .

15.1. GAMBLERS’ RUIN 821

Make this a pset problem

The Probability Space

Each random-walk game corresponds to a path like the one in Figure 15.1 that

starts at the point (n, 0). A winning path never touches the x axis and ends when

it first touches the line y = T . Likewise, a losing path never touches the line y = T

and ends when it first touches the x axis.

figure causing errors omitted here

Any length k path can be characterized by the history of wins and losses on

individual $1 bets, so we use a length k string of W ’s and L’s to model a path,

and assign probability prqk−r to a string that contains r W ’s. The outcomes in our

sample space will be precisely those string corresponding to winning or losing

walks, that is, when r = 2k.

What about the infinite walks in which the gambler plays forever, neither reach-

ing his target nor going bankrupt? A recitation problem will show the probability

of playing forever is zero, so we don’t need to include any such outcomes in our

822 CHAPTER 15. RANDOM PROCESSES

sample space.

As a sanity check on this definition of the probability space, we should verify

that the sum of the outcome probabilities is one, but we omit this calculation.

�

Let’s begin by supposing the coin is fair, the gambler starts with 100 dollars,

and he wants to double his money. That is, he plays until he goes broke or reaches

a target of 200 dollars. Since he starts equidistant from his target and bankruptcy,

it’s clear by symmetry that his probability of winning in this case is 1/2.

We’ll show below that starting with n dollars and aiming for a target of T ≥ n

dollars, the probability the gambler reaches his target before going broke is n/T .

For example, suppose he want to win the same $100, but instead starts out with

$500. Now his chances are pretty good: the probability of his making the 100

dollars is 5/6. And if he started with one million dollars still aiming to win $100

dollars he almost certain to win: the probability is 1M/(1M + 100) > .9999.

15.1. GAMBLERS’ RUIN 823

So in the fair game, the larger the initial stake relative to the target, the higher

the probability the gambler will win, which makes some intuitive sense. But note

that although the gambler now wins nearly all the time, the game is still fair. When

he wins, he only wins $100; when he loses, he loses big: $1M. So the gambler’s

average win is actually zero dollars.

EDITING NOTE:

Example 15.1.1. Suppose Albert starts with $100, and Eric starts with $10. They

flip a fair coin, and every time a Head appears, Albert wins $1 from Eric, and vice

versa for Tails. They play this game until one person goes bankrupt. What is the

probability of Albert winning?

This problem is identical to the Gambler’s Ruin problem with n = 100 and

T = 100 + 10 = 110. The probability of Albert winning is 100/110 = 10/11,

namely, the ratio of his wealth to the combined wealth. Eric’s chances of winnning

are 1/11.

�

824 CHAPTER 15. RANDOM PROCESSES

Now suppose instead that the gambler chooses to play roulette in an American

casino, always betting $1 on red. A roulette wheel has 18 black numbers, 18 red

numbers, and 2 green numbers, designed so that each number is equally likely

to appear. So this game is slightly biased against the gambler: the probability

of winning a single bet is p = 18/38 ≈ 0.47. It’s the two green numbers that

slightly bias the bets and give the casino an edge. Still, the bets are almost fair, and

you might expect that starting with $500, the gambler has a reasonable chance of

winning $100 —the 5/6 probability of winning in the unbiased game surely gets

reduced, but perhaps not too drastically.

Not so! The gambler’s odds of winning $100 making one dollar bets against the

“slightly” unfair roulette wheel are less than 1 in 37,000. If that seems surprising,

listen to this: no matter how much money the gambler has to start —$5000, $50,000,

$5 · 1012 —his odds are still less than 1 in 37,000 of winning a mere 100 dollars!

Moral: Don’t play!

15.1. GAMBLERS’ RUIN 825

The theory of random walks is filled with such fascinating and counter-intuitive

conclusions.

15.1.1 A Recurrence for the Probability of Winning

The probability the gambler wins is a function of his initial capital, n, his target,

T ≥ n, and the probability, p, that he wins an individual one dollar bet. Let’s let p

and T be fixed, and letwn be the gambler’s probabiliity of winning when his initial

capital is n dollars. For example, w0 is the probability that the gambler will win

given that he starts off broke and wT is the probability he will win if he starts off

with his target amount, so clearly

w0 = 0, (15.1)

wT = 1. (15.2)

Otherwise, the gambler starts with n dollars, where 0 < n < T . Consider the

outcome of his first bet. The gambler wins the first bet with probability p. In this

case, he is left with n+ 1 dollars and becomes a winner with probability wn+1. On

826 CHAPTER 15. RANDOM PROCESSES

the other hand, he loses the first bet with probability q ::=1−p. Now he is left with

n−1 dollars and becomes a winner with probability wn−1. By the Total Probability

Rule, he wins with probability wn = pwn+1 + qwn−1. Solving for wn+1 we have

wn+1 =
wn
p
− rwn−1 (15.3)

where

r ::=
q

p
.

This recurrence holds only for n+ 1 ≤ T , but there’s no harm in using (15.3) to

define wn+1 for all n+ 1 > 1. Now, letting

W (x) ::= w0 + w1x+ w2x
2 + · · ·

be the generating function for the wn, we derive from (15.3) and (15.1) using our

generating function methods that

xW (x) =
w1x

(1− x)(1− rx)
, (15.4)

so if p 6= q, then using partial fractions we can calculate that

15.1. GAMBLERS’ RUIN 827

EDITING NOTE:

W (x) =
A

1− x
+

B

1− (q/p)x
. (15.5)

where A = w1/(1− (q/p))

From (15.4) and (15.5), we have

w1x = A(1− (q/p)x) +B(1− x).

Letting x = 1, we get A = w1/(1 − (q/p)), and letting x = p/q, we get B =

−w1/(1− (q/p)), so

�

W (x) =
w1

r − 1

(
1

1− rx
− 1

1− x

)
,

which implies

wn = w1
rn − 1
r − 1

. (15.6)

Now we can use (15.6) to solve for w1 by letting n = T to get

EDITING NOTE:

828 CHAPTER 15. RANDOM PROCESSES

1 = wT =
w1

(q/p)− 1

((
q

p

)T
− 1

)

so �

w1 =
r − 1
rT − 1

.

Plugging this value of w1 into (15.6), we finally arrive at the solution:

wn =
rn − 1
rT − 1

. (15.7)

The expression (15.7) for the probability that the Gambler wins in the biased

game is a little hard to interpret. There is a simpler upper bound which is nearly

tight when the gambler’s starting capital is large and the game is biased against the

gambler. Then both the numerator and denominator in the quotient in (15.7) are

positive, and the quotient is less than one. This implies that

wn <
rn

rT
= rT−n,

which proves:

15.1. GAMBLERS’ RUIN 829

Corollary 15.1.2. In the Gambler’s Ruin game with probability p < 1/2 of winning each

individual bet, with initial capital, n, and target, T ,

Pr {the gambler is a winner} <
(
p

q

)T−n
(15.8)

The amount T − n is called the Gambler’s intended profit. So the gambler gains

his intended profit before going broke with probability at most p/q raised to the

intended-profit power. Notice that this upper bound does not depend on the gam-

bler’s starting capital, but only on his intended profit. This has the amazing conse-

quence we announced above: no matter how much money he starts with, if he makes

$1 bets on red in roulette aiming to win $100, the probability that he wins is less

than

(
18/38
20/38

)100

=
(

9
10

)100

<
1

37, 648
.

The bound (15.8) is exponential in the intended profit. So, for example, dou-

bling his intended profit will square his probability of winning. In particular, the

probability that the gambler’s stake goes up 200 dollars before he goes broke play-

830 CHAPTER 15. RANDOM PROCESSES

ing roulette is at most

(9/10)200 = ((9/10)100)2 =
(

1
37, 648

)2

,

which is about 1 in 70 billion.

EDITING NOTE:

The odds of winning a little money are not so bad. Applying the exact for-

mula (15.7), we find that the probability of winning $10 before losing $10 is

(
20/38
18/38

)10

− 1(
20/38
18/38

)20

− 1
= 0.2585

This is somewhat worse than the 1 in 2 chance in the fair game, but not dramati-

cally so.

�

The solution (15.7) only applies to biased walks, but the method above works

just as well in getting a formula for the unbiased case (except that the partial frac-

tions involve a repeated root). But it’s simpler settle the fair case simply by taking

the limit as r approaches 1 of (15.7). By L’Hopital’s Rule this limit is n/T , as we

15.1. GAMBLERS’ RUIN 831

claimed above.

15.1.2 Intuition

Why is the gambler so unlikely to make money when the game is slightly biased

against him? Intuitively, there are two forces at work. First, the gambler’s capi-

tal has random upward and downward swings due to runs of good and bad luck.

Second, the gambler’s capital will have a steady, downward drift, because the neg-

ative bias means an average loss of a few cents on each $1 bet. The situation is

shown in Figure 15.2.

EDITING NOTE:

For example, in roulette the gambler wins a dollar with probability 9/19 and

loses a dollar with probability 10/19. Therefore, his average return on each bet is

9/10 − 10/19 = −1/19 ≈ −0.053 dollars. That is, on each bet his capital is can be

expected to drift downward by a little over 5 cents.

�

832 CHAPTER 15. RANDOM PROCESSES

Our intuition is that if the gambler starts with, say, a billion dollars, then he is

sure to play for a very long time, so at some point there should be a lucky, upward

swing that puts him $100 ahead. The problem is that his capital is steadily drifting

downward. If the gambler does not have a lucky, upward swing early on, then he is

doomed. After his capital drifts downward a few hundred dollars, he needs a huge

upward swing to save himself. And such a huge swing is extremely improbable.

As a rule of thumb, drift dominates swings in the long term.

EDITING NOTE:

We can quantify these drifts and swings. After k rounds for k ≤ min(m,n), the

number of wins by our player has a binomial distribution with parameters p < 1/2

and k. His expected win on any single bet is p− q = 2p− 1 dollars, so his expected

capital is n − k(1 − 2p). Now to be a winner, his actual number of wins must

exceed the expected number bym+k(1−2p). But we saw before that the binomial

distribution has a standard deviation of only
√
kp(1− p). So for the gambler to

15.1. GAMBLERS’ RUIN 833

T = n + m

time

gambler’s
capital

n

downward
drift

swing
upward

(too late!)

Figure 15.2: In an unfair game, the gambler’s capital swings randomly up and down, but

steadily drifts downward. If the gambler does not have a winning swing early on, then his

capital drifts downward, and later upward swings are insufficient to make him a winner.

834 CHAPTER 15. RANDOM PROCESSES

win, he needs his number of wins to deviate by

m+ k(1− 2p)√
kp(1− 2p)

= Θ(
√
k)

times its standard deviation. In our study of binomial tails we saw that this was

extremely unlikely.

In a fair game, there is no drift; swings are the only effect. In the absence of

downward drift, our earlier intuition is correct. If the gambler starts with a trillion

dollars then almost certainly there will eventually be a lucky swing that puts him

$100 ahead.

If we start with $10 and play to win only $10 more, then the difference between

the fair and unfair games is relatively small. We saw that the probability of win-

ning is 1/2 versus about 1/4. Since swings of $10 are relatively common, the game

usually ends before the gambler’s capital can drift very far. That is, the game does

not last long enough for drift to dominate the swings.

15.1. GAMBLERS’ RUIN 835

How Long a Walk?

Now that we know the probability, wn, that the gambler is a winner in both fair

and unfair games, we consider how many bets he needs on average to either win

or go broke.

Duration of a Biased Walk

Let Q be the number of bets the gambler makes until the game ends. Since the

gambler’s expected win on any bet is 2p − 1, Wald’s Theorem should tell us that

his game winnings, G, will have expectation E [Q] (2p− 1). That is,

E [G] = (2p− 1) E [Q] , (15.9)

In an unbiased game (15.9) is trivially true because both 2p−1 and the expected

overall winnings, E [G], are zero. On the other hand, in the unfair case, 2p− 1 6= 0.

Also, we know that

E [G] = wn(T − n)− (1− wn)n = wnT − n.

So assuming (15.9), we conclude

836 CHAPTER 15. RANDOM PROCESSES

Theorem 15.1.3. In the biased Gambler’s Ruin game with initial capital, n, target, T , and

probability, p 6= 1/2, of winning each bet,

E [number of bets till game ends] =
Pr {gambler is a winner}T − n

2p− 1
. (15.10)

The only problem is that (15.9) is not a special case of Wald’s Theorem because

G =
∑Q
i=1Gi is not a sum of nonnegative variables: when the gambler loses the ith

bet, the random variable Gi equals −1. However, this is easily dealt with.1

Example 15.1.4. If the gambler aims to profit $100 playing roulette with n dollars

1The random variable Gi + 1 is nonnegative, and E [Gi + 1 | Q ≥ i] = E [Gi | Q ≥ i] + 1 = 2p, so

by Wald’s Theorem

E

24 QX
i=1

(Gi + 1)

35 = 2pE [Q] . (15.11)

But

q1 E

24 QX
i=1

(Gi + 1)

35 = E

24 QX
i=1

Gi +

QX
i=1

1

35
= E

24(

QX
i=1

Gi) +Q

35
= E

24 QX
i=1

Gi

35 + E [Q]

= E [G] + E [Q] . (15.12)

Now combining (15.11) and (15.12) confirms the truth of our assumption (15.9).

15.1. GAMBLERS’ RUIN 837

to start, he can expect to make ((n + 100)/37, 648 − n)/(2(18/38) − 1) ≈ 19n bets

before the game ends. So he can enjoy playing for a good while before almost

surely going broke.

Duration of an Unbiased Walk

This time, we need the more general approach of recurrences to handle the unbi-

ased case. We consider the expected number of bets as a function of the gambler’s

initial capital. That is, for fixed p and T , let en be the expected number of bets until

the game ends when the gambler’s initial capital is n dollars. Since the game is

over in no steps if n = 0 or T , the boundary conditions this time are e0 = eT = 0.

Otherwise, the gambler starts with n dollars, where 0 < n < T . Now by the

conditional expectation rule, the expected number of steps can be broken down

into the expected number of steps given the outcome of the first bet weighted by

the probability of that outcome. That is,

en = pE [Q | gambler wins first bet] + q E [Q | gambler loses first bet] .

838 CHAPTER 15. RANDOM PROCESSES

But after the gambler wins the first bet, his capital is n+1, so he can expect to make

another en+1 bets. That is,

E [Q | gambler wins first bet] = 1 + en+1,

and similarly,

E [Q | gambler loses first bet] = 1 + en−1.

So we have

en = p(1 + en+1) + q(1 + en−1) = pen+1 + qen−1 + 1,

which yields the linear recurrence

en+1 =
en
p
− q

p
en−1 −

1
p
.

For p = q = 1/2, this equation simplifies to

en+1 = 2en − en−1 − 2. (15.13)

There is a general theory for solving linear recurrences like (15.13) in which the

value at n+ 1 is a linear combination of values at some arguments k < n+ 1 plus

15.1. GAMBLERS’ RUIN 839

another simple term—in this case plus the constant −2. This theory implies that

en = (T − n)n. (15.14)

Fortunately, we don’t need the general theory to verify this solution. Equation (15.14)

can be verified routinely from the boundary conditions and (15.13) using strong in-

duction on n.

So we have shown

Theorem 15.1.5. In the unbiased Gambler’s Ruin game with initial capital, n, and target,

T , and probability, p = 1/2, of winning each bet,

E [number of bets till game ends] = n(T − n). (15.15)

Another way to phrase Theorem 15.1.5 is

E [number of bets till game ends] = initial capital · intended profit. (15.16)

Now for example, we can conclude that if the gambler starts with $10 dollars

and plays until he is broke or ahead $10, then 10 · 10 = 100 bets are required on

average. If he starts with $500 and plays until he is broke or ahead $100, then the

840 CHAPTER 15. RANDOM PROCESSES

expected number of bets until the game is over is 500× 100 = 50, 000.

Notice that (15.16) is a very simple answer that cries out for an intuitive proof,

but we have not found one.

�

EDITING NOTE:

Quit While You Are Ahead

Suppose that the gambler never quits while he is ahead. That is, he starts with

n > 0 dollars, ignores any target T , but plays until he is flat broke. Then it turns

out that if the game is not favorable, i.e., p ≤ 1/2, the gambler is sure to go broke.

In particular, he is even sure to go broke in a “fair” game with p = 1/2.

If the game is favorable to the gambler, i.e., p > 1/2, then there is a posi-

tive probability that the gambler will play forever. We’ll leave a proof of this to

Problem??.

Lemma 15.1.6. If the gambler starts with one or more dollars and plays a fair game until

15.1. GAMBLERS’ RUIN 841

he is broke, then he will go broke with probability 1.

Proof. If the gambler has initial capital n and goes broke in a game without reach-

ing a target T , then he would also go broke if he were playing and ignored the

target. So the probability that he will lose if he keeps playing without stopping at

any target T must be at least as large as the probability that he loses when he has a

target T > n.

But we know that in a fair game, the probability that he loses is 1 − n/T . This

number can be made arbitrarily close to 1 by choosing a sufficiently large value

of T . Hence, the probability of his losing while playing without any target has a

lower bound arbitrarily close to 1, which means it must in fact be 1. �

So even if the gambler starts with a million dollars and plays a perfectly fair

game, he will eventually lose it all with probability 1. In fact, if the game is unfa-

vorable, then Theorem 15.1.3 and Corollary 15.1.2 imply that his expected time to

go broke is essentially proportional to his initial capital, i.e., Θ(n).

But there is good news: if the game is fair, he can “expect” to play for a very

842 CHAPTER 15. RANDOM PROCESSES

long time before going broke; in fact, he can expect to play forever!

Lemma 15.1.7. If the gambler starts with one or more dollars and plays a fair game until

he goes broke, then his expected number of plays is infinite.

Proof. Consider the gambler’s ruin game where the gambler starts with initial cap-

ital n, and let un be the expected number of bets for the unbounded game to end.

Also, choose any T ≥ n, and as above, let en be the expected number of bets for

the game to end when the gambler’s target is T .

The unbounded game will have a larger expected number of bets compared

to the bounded game because, in addition to the possibility that the gambler goes

broke, in the bounded game there is also the possibility that the game will end

when the gambler reaches his target, T . That is,

un ≥ en.

So by (15.14),

un ≥ n(T − n).

But n ≥ 1, and T can be any number greater than or equal to n, so this lower bound

15.1. GAMBLERS’ RUIN 843

on un can be arbitrarily large. This implies that un must be infinite.

Now by Lemma 15.1.6, with probability 1, the unbounded game ends when the

gambler goes broke. So the expected time for the unbounded game to end is the

same as the expected time for the gambler to go broke. Therefore, the expected time

to go broke is infinite. �

In particular, even if the gambler starts with just one dollar, his expected num-

ber of plays before going broke is infinite! Of course, this does not mean that it

is likely he will play for long. For example, there is a 50% chance he will lose the

very first bet and go broke right away.

Lemma 15.1.7 says that the gambler can “expect” to play forever, while Lemma 15.1.6

says that with probability 1 he will go broke. These Lemmas sound contradictory,

but our analysis showed that they are not. A moral is that naive intuition about

“expectation” is misleading when we consider limiting behavior according to the

technical mathematical definition of expectation.

�

844 CHAPTER 15. RANDOM PROCESSES

15.1.3 Problems

Class Problems

Homework Problems

15.2 Random Walks on Graphs

EDITING NOTE:

Random walks on graphs arise in all sorts of applications. One interesting ex-

ample is Google and page rank, which we’ll explore in this section.

�

The hyperlink structure of the World Wide Web can be described as a digraph.

The vertices are the web pages with a directed edge from vertex x to vertex y

if x has a link to y. For example, in the following graph the vertices x1, . . . , xn

correspond to web pages and xi → xj is a directed edge when page xi contains a

hyperlink to page xj .

15.2. RANDOM WALKS ON GRAPHS 845

x1

x3 x4

x7

x6

x2
x5

The web graph is an enormous graph with many billions and probably even

trillions of vertices. At first glance, this graph wouldn’t seem to be very inter-

esting. But in 1995, two students at Stanford, Larry Page and indexBrin, Sergey

Sergey Brin realized that the structure of this graph could be very useful in build-

ing a search engine. Traditional document searching programs had been around

for a long time and they worked in a fairly straightforward way. Basically, you

would enter some search terms and the searching program would return all doc-

uments containing those terms. A relevance score might also be returned for each

document based on the frequency or position that the search terms appeared in

the document. For example, if the search term appeared in the title or appeared

846 CHAPTER 15. RANDOM PROCESSES

100 times in a document, that document would get a higher score. So if an author

wanted a document to get a higher score for certain keywords, he would put the

keywords in the title and make it appear in lots of places. You can even see this

today with some bogus web sites.

This approach works fine if you only have a few documents that match a search

term. But on the web, there are billions of documents and millions of matches to a

typical search.

For example, a few years ago a search on Google for “Math for Computer Sci-

ence notes” gave 378,000 hits! How does Google decide which 10 or 20 to show

first? It wouldn’t be smart to pick a page that gets a high keyword score because it

has “Math Math . . . Math” across the front of the document.

One way to get placed high on the list is to pay Google an advertising fees

—and Google gets an enormous revenue stream from these fees. Of course an

early listing is worth a fee only if an advertiser’s target audience is attracted to the

listing. But an audience does get attracted to Google listings because its ranking

15.2. RANDOM WALKS ON GRAPHS 847

method is really good at determining the most relevant web pages. For example,

Google demonstrated its accuracy in our case by giving first rank to our Fall 2002

Math for Computer Science notes on the MIT Open Courseware webpage :-) . So

how did Google know to pick our class webage to be first out of 378, 000?

Well back in 1995, Larry and Sergey got the idea to allow the digraph structure

of the web to determine which pages are likely to be the most important.

15.2.1 A First Crack at Page Rank

Looking at the web graph, any idea which vertex/page might be the best to rank

1st? Assume that all the pages match the search terms for now. Well, intuitively,

we should choose x2, since lots of other pages point to it. This leads us to their first

idea: try defining the page rank of x to be the number of links pointing to x, that

is, indegree(x). The idea is to think of web pages as voting for the most important

page —the more votes, the better rank.

Of course, there are some problems with this idea. Suppose you wanted to have

your page get a high ranking. One thing you could do is to create lots of dummy

848 CHAPTER 15. RANDOM PROCESSES

pages with links to your page.

+n

There is another problem —a page could become unfairly influential by having

lots of links to other pages it wanted to hype.

+1

+1

+1

+1

+1

So this strategy for high ranking would amount to, “vote early, vote often,”

which is no good if you want to build a search engine that’s worth paying fees for.

So, admittedly, their original idea was not so great. It was better than nothing, but

certainly not worth billions of dollars.

15.2. RANDOM WALKS ON GRAPHS 849

15.2.2 Random Walk on the Web Graph

But then Sergey and Larry thought some more and came up with a couple of im-

provements. Instead of just counting the indegree of a vertex, they considered the

probability of being at each page after a long random walk on the web graph. In

particular, they decided to model a user’s web experience as following each link

on a page with uniform probability. That is, they assigned each edge x → y of the

web graph with a probability conditioned on being on page x:

Pr {follow link x→ y | at page x} ::=
1

outdegree(x)
.

The user experience is then just a random walk on the web graph.

For example, if the user is at page x, and there are three links from page x, then

each link is followed with probability 1/3.

We can also compute the probability of arriving at a particular page, y, by sum-

850 CHAPTER 15. RANDOM PROCESSES

ming over all edges pointing to y. We thus have

Pr {go to y} =
∑

edges x→y

Pr {follow link x→ y | at page x} · Pr {at page x}

=
∑

edges x→y

Pr {at x}
outdegree(x)

(15.17)

For example, in our web graph, we have

Pr {go to x4} =
Pr {at x7}

2
+

Pr {at x2}
1

.

One can think of this equation as x7 sending half its probability to x2 and the other

half to x4. The page x2 sends all of its probability to x4.

There’s one aspect of the web graph described thus far that doesn’t mesh with

the user experience —some pages have no hyperlinks out. Under the current

model, the user cannot escape these pages. In reality, however, the user doesn’t

fall off the end of the web into a void of nothingness. Instead, he restarts his web

journey.

To model this aspect of the web, Sergey and Larry added a supervertex to the

web graph and had every page with no hyperlinks point to it. Moreover, the su-

pervertex points to every other vertex in the graph, allowing you to restart the

15.2. RANDOM WALKS ON GRAPHS 851

walk from a random place. For example, below left is a graph and below right is

the same graph after adding the supervertex xN+1.

x1

x2

x3

1
1/2

1/2

xN+1

x1

x2

x3

The addition of the supervertex also removes the possibility that the value

1/outdegree(x) might involve a division by zero.

15.2.3 Stationary Distribution & Page Rank

The basic idea of page rank is just a stationary distribution over the web graph,

EDITING NOTE: (there are some more details, but this is the main idea) �

so let’s define a stationary distribution.

Suppose each vertex is assigned a probability that corresponds, intuitively, to

the likelihood that a random walker is at that vertex at a randomly chosen time.

852 CHAPTER 15. RANDOM PROCESSES

We assume that the walk never leaves the vertices in the graph, so we require that

∑
vertices x

Pr {at x} = 1. (15.18)

Definition 15.2.1. An assignment of probabililties to vertices in a digraph is a sta-

tionary distribution if for all vertices x

Pr {at x} = Pr {go to x at next step}

Sergey and Larry defined their page ranks to be a stationary distribution. They

did this by solving the following system of linear equations: find a nonnegative

number, PR(x), for each vertex, x, such that

PR(x) =
∑

edges y→x

PR(y)
outdegree(y)

, (15.19)

corresponding to the intuitive equations given in (15.17). These numbers must also

satisfy the additional constraint corresponding to (15.18):

∑
vertices x

PR(x) = 1. (15.20)

15.2. RANDOM WALKS ON GRAPHS 853

So if there are n vertices, then equations (15.19) and (15.20) provide a system

of n + 1 linear equations in the n variables, PR(x). Note that constraint (15.20)

is needed because the remaining constraints (15.19) could be satisfied by letting

PR(x) ::= 0 for all x, which is useless.

Sergey and Larry were smart fellows, and they set up their page rank algorithm

so it would always have a meaningful solution. Their addition of a supervertex

ensures there is always a unique stationary distribution. Moreover, starting from

any vertex and taking a sufficiently long random walk on the graph, the probability

of being at each page will get closer and closer to the stationary distribution. Note

that general digraphs without supervertices may have neither of these properties:

there may not be a unique stationary distribution, and even when there is, there

may be starting points from which the probabilities of positions during a random

walk do not converge to the stationary distribution.

EDITING NOTE: Here’s a note on solving the system of linear constraints, for

the interested reader.

854 CHAPTER 15. RANDOM PROCESSES

Let W be the n× n with the entry wij (in row i and column j) having the value

wij = 1/outdegree(xi) if edge xi → xj exists, and wij = 0 otherwise. For example,

in our last example with the 4-vertex graph (including the supervertex), we have

W given by: 
0 1 0 0
1
2 0 1

2 0
0 0 0 1
1
3

1
3

1
3 0


The system of linear equations can now be described by a single matrix vector

product equation WT ~P = ~P , where WT denotes the transpose of W , and ~P is the

column vector of page probabilities (ranks):

~P ::=


PR(x1)
PR(x2)

...
PR(xn)


So the jth entry of the solultion vector, ~P , is

∑
1≤i≤n

wij · PR(xi) =
∑

i|xi→xj

PR(xi)
outdegree(xi)

,

which is exactly the constraint corresponding to vertex xj in (15.19).

If you have taken a linear algebra or numerical analysis course, you realize that

the vector of page ranks is just the principle eigenvector of the matrix, W , of the

web graph! Once you’ve had such a course, these values are easy to compute. Of

15.2. RANDOM WALKS ON GRAPHS 855

course, when you are dealing with matrices of this size, the problem gets a little

more interesting.

�

Now just keeping track of the digraph whose vertices are billions of web pages

is a daunting task. That’s why Google is building power plants. Indeed, Larry

and Sergey named their system Google after the number 10100 —which called a

“googol” —to reflect the fact that the web graph is so enormous.

Anyway, now you can see how our Math for Computer Science notes ranked

first out of 378,000 matches. Lots of other universities used our notes and presum-

ably have links to the notes on the Open Courseware site, and the university sites

themselves are legitimate, which ultimately leads to our notes getting a high page

rank in the web graph.

856 CHAPTER 15. RANDOM PROCESSES

15.2.4 Problems

Class Problems

Homework Problems

Exam Problems

Chapter 16

Random Variables

So far we focused on probabilities of events —that you win the Monty Hall game;

that you have a rare medical condition, given that you tested positive; Now

we focus on quantitative questions: How many contestants must play the Monty

Hall game until one of them finally wins? . . . How long will this condition last?

How much will I lose playing silly Math games all day? Random variables are the

mathematical tool for addressing such questions, and in this chapter we work out

their basic properties, especially properties of their mean or expected value.

857

858 CHAPTER 16. RANDOM VARIABLES

16.1 Random Variable Examples

Definition 16.1.1. A random variable, R, on a probability space is a total function

whose domain is the sample space.

The codomain of R can be anything, but will usually be a subset of the real

numbers. Notice that the name “random variable” is a misnomer; random vari-

ables are actually functions!

For example, suppose we toss three independent, unbiased coins. Let C be the

number of heads that appear. Let M = 1 if the three coins come up all heads or all

tails, and letM = 0 otherwise. Now every outcome of the three coin flips uniquely

determines the values of C and M . For example, if we flip heads, tails, heads, then

C = 2 and M = 0. If we flip tails, tails, tails, then C = 0 and M = 1. In effect, C

counts the number of heads, and M indicates whether all the coins match.

Since each outcome uniquely determines C and M , we can regard them as

functions mapping outcomes to numbers. For this experiment, the sample space

16.1. RANDOM VARIABLE EXAMPLES 859

is:

S = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT} .

Now C is a function that maps each outcome in the sample space to a number as

follows:

C(HHH) = 3 C(THH) = 2
C(HHT) = 2 C(THT) = 1
C(HTH) = 2 C(TTH) = 1
C(HTT) = 1 C(TTT) = 0.

Similarly, M is a function mapping each outcome another way:

M(HHH) = 1 M(THH) = 0
M(HHT) = 0 M(THT) = 0
M(HTH) = 0 M(TTH) = 0
M(HTT) = 0 M(TTT) = 1.

So C and M are random variables.

16.1.1 Indicator Random Variables

An indicator random variable is a random variable that maps every outcome to ei-

ther 0 or 1. These are also called Bernoulli variables. The random variable M is an

example. If all three coins match, then M = 1; otherwise, M = 0.

Indicator random variables are closely related to events. In particular, an in-

dicator partitions the sample space into those outcomes mapped to 1 and those

860 CHAPTER 16. RANDOM VARIABLES

outcomes mapped to 0. For example, the indicator M partitions the sample space

into two blocks as follows:

HHH TTT︸ ︷︷ ︸
M = 1

HHT HTH HTT THH THT TTH︸ ︷︷ ︸
M = 0

.

In the same way, an event, E, partitions the sample space into those outcomes

in E and those not in E. So E is naturally associated with an indicator random

variable, IE , where IE(p) = 1 for outcomes p ∈ E and IE(p) = 0 for outcomes

p /∈ E. Thus, M = IF where F is the event that all three coins match.

16.1.2 Random Variables and Events

There is a strong relationship between events and more general random variables

as well. A random variable that takes on several values partitions the sample space

into several blocks. For example, C partitions the sample space as follows:

TTT︸ ︷︷ ︸
C = 0

TTH THT HTT︸ ︷︷ ︸
C = 1

THH HTH HHT︸ ︷︷ ︸
C = 2

HHH︸ ︷︷ ︸
C = 3

.

Each block is a subset of the sample space and is therefore an event. Thus, we

can regard an equation or inequality involving a random variable as an event. For

16.1. RANDOM VARIABLE EXAMPLES 861

example, the event that C = 2 consists of the outcomes THH , HTH , and HHT .

The event C ≤ 1 consists of the outcomes TTT , TTH , THT , and HTT .

Naturally enough, we can talk about the probability of events defined by prop-

erties of random variables. For example,

Pr {C = 2} = Pr {THH}+ Pr {HTH}+ Pr {HHT}

=
1
8

+
1
8

+
1
8

=
3
8
.

EDITING NOTE:

As another example:

Pr {M = 1} = Pr {TTT}+ Pr {HHH}

=
1
8

+
1
8

=
1
4
.

Conditional Probability

Mixing conditional probabilities and events involving random variables creates no

new difficulties. For example, Pr {C ≥ 2 | M = 0} is the probability that at least

two coins are heads (C ≥ 2), given that not all three coins are the same (M = 0).

862 CHAPTER 16. RANDOM VARIABLES

We can compute this probability using the definition of conditional probability:

Pr {C ≥ 2 | M = 0} =
Pr {[C ≥ 2] ∩ [M = 0]}

Pr {M = 0}

=
Pr {{THH,HTH,HHT}}

Pr {{THH,HTH,HHT,HTT, THT, TTH}}

=
3/8
6/8

=
1
2
.

The expression [C ≥ 2] ∩ [M = 0] on the first line may look odd; what is the set

operation ∩ doing between an inequality and an equality? But recall that, in this

context, [C ≥ 2] and [M = 0] are events, namely, sets of outcomes.

�

16.1.3 Independence

The notion of independence carries over from events to random variables as well.

Random variables R1 and R2 are independent iff for all x1 in the codomain of R1,

and x2 in the codomain of R2, we have:

Pr {R1 = x1 AND R2 = x2} = Pr {R1 = x1} · Pr {R2 = x2} .

16.1. RANDOM VARIABLE EXAMPLES 863

As with events, we can formulate independence for random variables in an equiv-

alent and perhaps more intuitive way: random variables R1 and R2 are indepen-

dent if for all x1 and x2

Pr {R1 = x1 | R2 = x2} = Pr {R1 = x1} .

whenever the lefthand conditional probability is defined, that is, whenever Pr {R2 = x2} >

0.

As an example, are C and M independent? Intuitively, the answer should be

“no”. The number of heads, C, completely determines whether all three coins

match; that is, whether M = 1. But, to verify this intuition, we must find some

x1, x2 ∈ R such that:

Pr {C = x1 AND M = x2} 6= Pr {C = x1} · Pr {M = x2} .

One appropriate choice of values is x1 = 2 and x2 = 1. In this case, we have:

Pr {C = 2 AND M = 1} = 0 6= 1
4
· 3

8
= Pr {M = 1} · Pr {C = 2} .

The first probability is zero because we never have exactly two heads (C = 2) when

864 CHAPTER 16. RANDOM VARIABLES

all three coins match (M = 1). The other two probabilities were computed earlier.

On the other hand, let H1 be the indicator variable for event that the first flip is

a Head, so

[H1 = 1] = {HHH,HTH,HHT,HTT} .

Then H1 is independent of M , since

Pr {M = 1} = 1/4 = Pr {M = 1 | H1 = 1} = Pr {M = 1 | H1 = 0}

Pr {M = 0} = 3/4 = Pr {M = 0 | H1 = 1} = Pr {M = 0 | H1 = 0}

This example is an instance of a simple lemma:

Lemma 16.1.2. Two events are independent iff their indicator variables are independent.

As with events, the notion of independence generalizes to more than two ran-

dom variables.

Definition 16.1.3. Random variables R1, R2, . . . , Rn are mutually independent iff

Pr {R1 = x1 AND R2 = x2 AND · · · AND Rn = xn}

= Pr {R1 = x1} · Pr {R2 = x2} · · ·Pr {Rn = xn} .

16.2. PROBABILITY DISTRIBUTIONS 865

for all x1, x2, . . . , xn.

It is a simple exercise to show that the probability that any subset of the variables

takes a particular set of values is equal to the product of the probabilities that the

individual variables take their values. Thus, for example, if R1, R2, . . . , R100 are

mutually independent random variables, then it follows that:

Pr {R1 = 7 AND R7 = 9.1 AND R23 = π} = Pr {R1 = 7}·Pr {R7 = 9.1}·Pr {R23 = π} .

16.2 Probability Distributions

A random variable maps outcomes to values, but random variables that show up

for different spaces of outcomes wind up behaving in much the same way because

they have the same probability of taking any given value. Namely, random vari-

ables on different probability spaces may wind up having the same probability

density function.

Definition 16.2.1. Let R be a random variable with codomain V . The probability

866 CHAPTER 16. RANDOM VARIABLES

density function (pdf) of R is a function PDFR : V → [0, 1] defined by:

PDFR(x) ::=


Pr {R = x} if x ∈ range (R) ,

0 if x /∈ range (R) .

A consequence of this definition is that

∑
x∈range(R)

PDFR(x) = 1.

This follows becauseR has a value for each outcome, so summing the probabilities

over all outcomes is the same as summing over the probabilities of each value in

the range of R.

As an example, let’s return to the experiment of rolling two fair, independent

dice. As before, let T be the total of the two rolls. This random variable takes on

values in the set V = {2, 3, . . . , 12}. A plot of the probability density function is

shown below:

-

66/36

3/36
PDFR(x)

x ∈ V

2 3 4 5 6 7 8 9 10 11 12

16.2. PROBABILITY DISTRIBUTIONS 867

The lump in the middle indicates that sums close to 7 are the most likely. The total

area of all the rectangles is 1 since the dice must take on exactly one of the sums in

V = {2, 3, . . . , 12}.

A closely-related idea is the cumulative distribution function (cdf) for a random

variable R whose codomain is real numbers. This is a function CDFR : R → [0, 1]

defined by:

CDFR(x) = Pr {R ≤ x}

As an example, the cumulative distribution function for the random variable T is

shown below:

-

61

1/2

0

CDFR(x)

x ∈ V

2 3 4 5 6 7 8 9 10 11 12

The height of the i-th bar in the cumulative distribution function is equal to the

sum of the heights of the leftmost i bars in the probability density function. This

868 CHAPTER 16. RANDOM VARIABLES

follows from the definitions of pdf and cdf:

CDFR(x) = Pr {R ≤ x}

=
∑
y≤x

Pr {R = y}

=
∑
y≤x

PDFR(y)

In summary, PDFR(x) measures the probability that R = x and CDFR(x) mea-

sures the probability that R ≤ x. Both the PDFR and CDFR capture the same

information about the random variable R— you can derive one from the other

—but sometimes one is more convenient. The key point here is that neither the

probability density function nor the cumulative distribution function involves the

sample space of an experiment.

EDITING NOTE: Thus, through these functions, we can study random variables

without reference to a particular experiment.

�

We’ll now look at three important distributions and some applications.

16.2. PROBABILITY DISTRIBUTIONS 869

16.2.1 Bernoulli Distribution

Indicator random variables are perhaps the most common type because of their

close association with events. The probability density function of an indicator ran-

dom variable, B, is always

PDFB(0) = p

PDFB(1) = 1− p

where 0 ≤ p ≤ 1. The corresponding cumulative distribution function is:

CDFB(0) = p

CDFB(1) = 1

16.2.2 Uniform Distribution

A random variable that takes on each possible value with the same probability is

called uniform. For example, the probability density function of a random variable

870 CHAPTER 16. RANDOM VARIABLES

U that is uniform on the set {1, 2, . . . , N} is:

PDFU (k) =
1
N

And the cumulative distribution function is:

CDFU (k) =
k

N

Uniform distributions come up all the time. For example, the number rolled on a

fair die is uniform on the set {1, 2, . . . , 6}.

16.2.3 The Numbers Game

Let’s play a game! I have two envelopes. Each contains an integer in the range

0, 1, . . . , 100, and the numbers are distinct. To win the game, you must determine

which envelope contains the larger number. To give you a fighting chance, I’ll let

you peek at the number in one envelope selected at random. Can you devise a

strategy that gives you a better than 50% chance of winning?

For example, you could just pick an envelope at random and guess that it con-

tains the larger number. But this strategy wins only 50% of the time. Your challenge

16.2. PROBABILITY DISTRIBUTIONS 871

is to do better.

So you might try to be more clever. Suppose you peek in the left envelope and

see the number 12. Since 12 is a small number, you might guess that that other

number is larger. But perhaps I’m sort of tricky and put small numbers in both

envelopes. Then your guess might not be so good!

An important point here is that the numbers in the envelopes may not be ran-

dom. I’m picking the numbers and I’m choosing them in a way that I think will

defeat your guessing strategy. I’ll only use randomization to choose the numbers

if that serves my end: making you lose!

Intuition Behind the Winning Strategy

Amazingly, there is a strategy that wins more than 50% of the time, regardless of

what numbers I put in the envelopes!

Suppose that you somehow knew a number x between my lower number and

higher numbers. Now you peek in an envelope and see one or the other. If it is

bigger than x, then you know you’re peeking at the higher number. If it is smaller

872 CHAPTER 16. RANDOM VARIABLES

than x, then you’re peeking at the lower number. In other words, if you know a

number x between my lower and higher numbers, then you are certain to win the

game.

The only flaw with this brilliant strategy is that you do not know x. Oh well.

But what if you try to guess x? There is some probability that you guess cor-

rectly. In this case, you win 100% of the time. On the other hand, if you guess

incorrectly, then you’re no worse off than before; your chance of winning is still

50%. Combining these two cases, your overall chance of winning is better than

50%!

Informal arguments about probability, like this one, often sound plausible, but

do not hold up under close scrutiny. In contrast, this argument sounds completely

implausible— but is actually correct!

Analysis of the Winning Strategy

For generality, suppose that I can choose numbers from the set {0, 1, . . . , n}. Call

the lower number L and the higher number H .

16.2. PROBABILITY DISTRIBUTIONS 873

Your goal is to guess a number x between L andH . To avoid confusing equality

cases, you select x at random from among the half-integers:

{
1
2
, 1

1
2
, 2

1
2
, . . . , n− 1

2

}

But what probability distribution should you use?

The uniform distribution turns out to be your best bet. An informal justification

is that if I figured out that you were unlikely to pick some number— say 50 1
2—

then I’d always put 50 and 51 in the evelopes. Then you’d be unlikely to pick an x

between L and H and would have less chance of winning.

After you’ve selected the number x, you peek into an envelope and see some

number p. If p > x, then you guess that you’re looking at the larger number. If

p < x, then you guess that the other number is larger.

All that remains is to determine the probability that this strategy succeeds. We

can do this with the usual four step method and a tree diagram.

Step 1: Find the sample space. You either choose x too low (< L), too high (> H),

or just right (L < x < H). Then you either peek at the lower number (p = L) or the

874 CHAPTER 16. RANDOM VARIABLES

higher number (p = H). This gives a total of six possible outcomes.

x just right

1/2

1/2

1/2

1/2

1/2

1/2

L/n

(H−L)/n

(n−H)/n

choice of x

peeked at result probability

win

win

x too high

x too low
win

lose

win

lose

L/2n

L/2n

(H−L)/2n

(H−L)/2n

(n−H)/2n

(n−H)/2n

p=H

p=L

p=H

p=L

p=H

p=L

Step 2: Define events of interest. The four outcomes in the event that you win

are marked in the tree diagram.

Step 3: Assign outcome probabilities. First, we assign edge probabilities. Your

guess x is too low with probability L/n, too high with probability (n−H)/n, and

just right with probability (H −L)/n. Next, you peek at either the lower or higher

number with equal probability. Multiplying along root-to-leaf paths gives the out-

come probabilities.

Step 4: Compute event probabilities. The probability of the event that you win

16.2. PROBABILITY DISTRIBUTIONS 875

is the sum of the probabilities of the four outcomes in that event:

Pr {win} =
L

2n
+
H − L

2n
+
H − L

2n
+
n−H

2n

=
1
2

+
H − L

2n

≥ 1
2

+
1

2n

The final inequality relies on the fact that the higher number H is at least 1 greater

than the lower number L since they are required to be distinct.

Sure enough, you win with this strategy more than half the time, regardless

of the numbers in the envelopes! For example, if I choose numbers in the range

0, 1, . . . , 100, then you win with probability at least 1
2 + 1

200 = 50.5%. Even better, if

I’m allowed only numbers in the range 0, . . . , 10, then your probability of winning

rises to 55%! By Las Vegas standards, those are great odds!

16.2.4 Binomial Distribution

The binomial distribution plays an important role in Computer Science as it does in

most other sciences. The standard example of a random variable with a binomial

876 CHAPTER 16. RANDOM VARIABLES

distribution is the number of heads that come up in n independent flips of a coin;

call this random variable Hn. If the coin is fair, then Hn has an unbiased binomial

density function:

PDFHn(k) =
(
n

k

)
2−n.

This follows because there are
(
n
k

)
sequences of n coin tosses with exactly k heads,

and each such sequence has probability 2−n.

Here is a plot of the unbiased probability density function PDFHn(k) corre-

sponding to n = 20 coins flips. The most likely outcome is k = 10 heads, and the

probability falls off rapidly for larger and smaller values of k. These falloff regions

to the left and right of the main hump are usually called the tails of the distribution.

16.2. PROBABILITY DISTRIBUTIONS 877

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5 10 15 20

In many fields, including Computer Science, probability analyses come down to

getting small bounds on the tails of the binomial distribution. In the context of a

problem, this typically means that there is very small probability that something

bad happens, which could be a server or communication link overloading or a

randomized algorithm running for an exceptionally long time or producing the

wrong result.

As an example, we can calculate the probability of flipping at most 25 heads in

100 tosses of a fair coin and see that it is very small, namely, less than 1 in 3,000,000.

878 CHAPTER 16. RANDOM VARIABLES

EDITING NOTE: Add calculation that the ratio of the k − 1st and kth terms for

k ≤ 25 is less than 1/4(?), so the probability of < k heads is less than 1/2 the prob

of exactly k heads. �

In fact, the tail of the distribution falls off so rapidly that the probability of

flipping exactly 25 heads is nearly twice the probability of flipping fewer than 25

heads! That is, the probability of flipping exactly 25 heads —small as it is —is

still nearly twice as large as the probability of flipping exactly 24 heads plus the

probability of flipping exactly 23 heads plus . . . the probability of flipping no heads.

The General Binomial Distribution

Now let J be the number of heads that come up on n independent coins, each of

which is heads with probability p. Then J has a general binomial density function:

PDFJ(k) =
(
n

k

)
pk(1− p)n−k.

As before, there are
(
n
k

)
sequences with k heads and n− k tails, but now the prob-

ability of each such sequence is pk(1− p)n−k.

16.2. PROBABILITY DISTRIBUTIONS 879

As an example, the plot below shows the probability density function PDFJ(k)

corresponding to flipping n = 20 independent coins that are heads with probabilty

p = 0.75. The graph shows that we are most likely to get around k = 15 heads,

as you might expect. Once again, the probability falls off quickly for larger and

smaller values of k.

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20

EDITING NOTE:

880 CHAPTER 16. RANDOM VARIABLES

Approximating the Binomial Density Function

Computing the general binomial density function is daunting if not impossible

when n is up in the thousands. Fortunately, there is an approximate closed-form

formula for this function based on an approximation for the binomial coefficient.

In the formula, k is replaced by αn where α is a number between 0 and 1.

Lemma 16.2.2.

(
n

αn

)
≤ 2nH(α)√

2πα(1− α)n

where H(α) is the famous entropy function:

H(α) ::= α log2

1
α

+ (1− α) log2

1
1− α

The graph of H is shown in Figure 16.1.

The upper bound(16.2.2) on the binomial coefficient is tight enough to serve as

an excellent approximation. We’ll skip its derivation, which consists of plugging in

Stirling’s formula for the factorials in the binomial coefficient and then simplifying.

Now let’s plug this formula into the general binomial density function. The

16.2. PROBABILITY DISTRIBUTIONS 881

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

H(α)

α

Figure 16.1: The Entropy Function

probability of flipping αn heads in n tosses of a coin that comes up heads with

probability p is:

PDFJ(αn) ≤ 2nH(α)√
2πα(1− α)n

· pαn(1− p)(1−α)n (16.1)

This formula is ugly as a bowling shoe, but is useful because it’s easy to evaluate.

For example, suppose we flip a fair coin n times. What is the probability of getting

882 CHAPTER 16. RANDOM VARIABLES

exactly 1
2n heads? Plugging α = 1/2 and p = 1/2 and H(1/2) = 1 into (16.1) gives:

PDFJ(αn) ≤ 2nH(1/2)√
2π(1/2)(1− (1/2))n

· 2−n

=

√
2
πn

Thus, for example, if we flip a fair coin 100 times, the probability of getting exactly

50 heads is about 1/
√

50π ≈ 0.079 or around 8%.

Approximating the Cumulative Binomial Distribution Function

Suppose a coin comes up heads with probability p. As before, let the random

variable J be the number of heads that come up on n independent flips. Then

the probability of getting at most αn heads is given by the cumulative binomial

distribution function:

CDFJ(αn) = Pr {J ≤ αn} =
αn∑
i=0

PDFJ(i) (16.2)

We can bound this sum by bounding the ratio of successive terms. This yields a

geometric sum from 0 to PDFJ(αn) that bounds (16.2). Then applying the formula

16.2. PROBABILITY DISTRIBUTIONS 883

for a geometric sum gives

CDFJ(αn) ≤ 1− α
1− α/p

· PDFJ(αn), (16.3)

which holds providing α < p. This is all we need, since we already have the

bound (16.1) for PDFJ(αn).

It would be awkward to evaluate (16.3) with a calculator, but it’s easy to write

a program to do it. So don’t look gift blessings in the mouth before they hatch. Or

something.

As an example, the probability of flipping at most 25 heads in 100 tosses of a

fair coin is obtained by setting α = 1/4, p = 1/2 and n = 100:

CDFJ
(n

4

)
≤ 1− (1/4)

1− (1/4)/(1/2)
· PDFJ

(n
4

)
≤ 3

2
· 1.913 · 10−7.

This says that flipping 25 or fewer heads is extremely unlikely, which is consistent

with our earlier claim that the tails of the binomial distribution are very small. In

fact, notice that the probability of flipping 25 or fewer heads is only 50% more than

the probability of flipping exactly 25 heads. Thus, flipping exactly 25 heads is twice

as likely as flipping any number between 0 and 24!

884 CHAPTER 16. RANDOM VARIABLES

Caveat: The upper bound on CDFJ(αn) holds only if α < p. If this is not the

case in your problem, then try thinking in complementary terms; that is, look at

the number of tails flipped instead of the number of heads. In our example, the

probability of flipping 75 or more heads is the same as the probability of flipping

25 or fewer tails. By the above analysis, this is also extremely small.

�

16.2.5 Problems

Class Problems

Homework Problems

16.3 Average & Expected Value

The expectation of a random variable is its average value, where each value is

weighted according to the probability that it comes up. The expectation is also

called the expected value or the mean of the random variable.

16.3. AVERAGE & EXPECTED VALUE 885

For example, suppose we select a student uniformly at random from the class,

and let R be the student’s quiz score. Then E [R] is just the class average —the first

thing everyone wants to know after getting their test back! For similar reasons,

the first thing you usually want to know about a random variable is its expected

value.

Definition 16.3.1.

E [R] ::=
∑

x∈range(R)

x · Pr {R = x} (16.4)

=
∑

x∈range(R)

x · PDFR(x).

Let’s work through an example. Let R be the number that comes up on a fair,

six-sided die. Then by (16.4), the expected value of R is:

E [R] =
6∑
k=1

k · 1
6

= 1 · 1
6

+ 2 · 1
6

+ 3 · 1
6

+ 4 · 1
6

+ 5 · 1
6

+ 6 · 1
6

=
7
2

This calculation shows that the name “expected value” is a little misleading; the

886 CHAPTER 16. RANDOM VARIABLES

random variable might never actually take on that value. You don’t ever expect to

roll a 3 1
2 on an ordinary die!

There is an even simpler formula for expectation:

Theorem 16.3.2. If R is a random variable defined on a sample space, S, then

E [R] =
∑
ω∈S

R(ω) Pr {ω} (16.5)

The proof of Theorem 16.3.2, like many of the elementary proofs about expec-

tation in this chapter, follows by judicious regrouping of terms in the defining

sum (16.4):

16.3. AVERAGE & EXPECTED VALUE 887

Proof.

E [R] ::=
∑

x∈range(R)

x · Pr {R = x} (Def 16.3.1 of expectation)

=
∑

x∈range(R)

x

 ∑
ω∈[R=x]

Pr {ω}

 (def of Pr {R = x})

=
∑

x∈range(R)

∑
ω∈[R=x]

xPr {ω} (distributing x over the inner sum)

=
∑

x∈range(R)

∑
ω∈[R=x]

R(ω) Pr {ω} (def of the event [R = x])

=
∑
ω∈S

R(ω) Pr {ω}

The last equality follows because the events [R = x] for x ∈ range (R) partition the

sample space, S, so summing over the outcomes in [R = x] for x ∈ range (R) is the

same as summing over S. �

In general, the defining sum (16.4) is better for calculating expected values and

has the advantage that it does not depend on the sample space, but only on the

density function of the random variable. On the other hand, the simpler sum over

all outcomes (16.5)is sometimes easier to use in proofs about expectation.

888 CHAPTER 16. RANDOM VARIABLES

16.3.1 Expected Value of an Indicator Variable

The expected value of an indicator random variable for an event is just the proba-

bility of that event.

Lemma 16.3.3. If IA is the indicator random variable for event A, then

E [IA] = Pr {A} .

Proof.

E [IA] = 1 · Pr {IA = 1}+ 0 · Pr {IA = 0}

= Pr {IA = 1}

= Pr {A} . (def of IA)

�

For example, if A is the event that a coin with bias p comes up heads, E [IA] =

Pr {IA = 1} = p.

16.3. AVERAGE & EXPECTED VALUE 889

16.3.2 Conditional Expectation

Just like event probabilities, expectations can be conditioned on some event.

Definition 16.3.4. The conditional expectation, E [R | A], of a random variable, R,

given event, A, is:

E [R | A] ::=
∑

r∈range(R)

r · Pr {R = r | A} . (16.6)

In other words, it is the average value of the variableRwhen values are weighted

by their conditional probabilities given A.

For example, we can compute the expected value of a roll of a fair die, given,

for example, that the number rolled is at least 4. We do this by letting R be the

outcome of a roll of the die. Then by equation (16.6),

E [R | R ≥ 4] =
6∑
i=1

i ·Pr {R = i | R ≥ 4} = 1 ·0 + 2 ·0 + 3 ·0 + 4 · 13 + 5 · 13 + 6 · 13 = 5.

The power of conditional expectation is that it lets us divide complicated ex-

pectation calculations into simpler cases. We can find the desired expectation by

calculating the conditional expectation in each simple case and averaging them,

890 CHAPTER 16. RANDOM VARIABLES

weighing each case by its probability.

For example, suppose that 49.8% of the people in the world are male and the

rest female —which is more or less true. Also suppose the expected height of a

randomly chosen male is 5′ 11′′, while the expected height of a randomly chosen

female is 5′ 5′′. What is the expected height of a randomly chosen individual? We

can calculate this by averaging the heights of men and women. Namely, let H be

the height (in feet) of a randomly chosen person, and let M be the event that the

person is male and F the event that the person is female. We have

E [H] = E [H |M] Pr {M}+ E [H | F] Pr {F}

= (5 + 11/12) · 0.498 + (5 + 5/12) · 0.502

= 5.665

which is a little less that 5’ 8”.

The Law of Total Expectation justifies this method.

Theorem 16.3.5. Let A1, A2, . . . be a partition of the sample space. Then

16.3. AVERAGE & EXPECTED VALUE 891

Rule (Law of Total Expectation).

E [R] =
∑
i

E [R | Ai] Pr {Ai} .

Proof.

E [R] ::=
∑

r∈range(R)

r · Pr {R = r} (Def 16.3.1 of expectation)

=
∑
r

r ·
∑
i

Pr {R = r | Ai}Pr {Ai} (Law of Total Probability)

=
∑
r

∑
i

r · Pr {R = r | Ai}Pr {Ai} (distribute constant r)

=
∑
i

∑
r

r · Pr {R = r | Ai}Pr {Ai} (exchange order of summation)

=
∑
i

Pr {Ai}
∑
r

r · Pr {R = r | Ai} (factor constant Pr {Ai})

=
∑
i

Pr {Ai}E [R | Ai] . (Def 16.3.4 of cond. expectation)

�

16.3.3 Mean Time to Failure

A computer program crashes at the end of each hour of use with probability p, if it

has not crashed already. What is the expected time until the program crashes?

892 CHAPTER 16. RANDOM VARIABLES

If we let C be the number of hours until the crash, then the answer to our

problem is E [C]. Now the probability that, for i > 0, the first crash occurs in the

ith hour is the probability that it does not crash in each of the first i − 1 hours

and it does crash in the ith hour, which is (1 − p)i−1p. So from formula (16.4) for

expectation, we have

E [C] =
∑
i∈N

i · Pr {R = i}

=
∑
i∈N+

i(1− p)i−1p

= p
∑
i∈N+

i(1− p)i−1

= p
1

(1− (1− p))2
(by (13.1))

=
1
p

A simple alternative derivation that does not depend on the formula (13.1)

(which you remembered, right?) is based on conditional expectation. Given that

the computer crashes in the first hour, the expected number of hours to the first

crash is obviously 1! On the other hand, given that the computer does not crash

in the first hour, then the expected total number of hours till the first crash is the

16.3. AVERAGE & EXPECTED VALUE 893

expectation of one plus the number of additional hours to the first crash. So,

E [C] = p · 1 + (1− p) E [C + 1] = p+ E [C]− pE [C] + 1− p,

from which we immediately calculate that E [C] = 1/p.

EDITING NOTE: There is a useful trick for calculating expectations of nonega-

tive integer valued variables:

Lemma 16.3.6. If R is a nonegative integer-valued random variable, then:

E [R] =
∑
i∈N

Pr {R > i} (16.7)

Proof. Consider the sum:

Pr {R = 1} + Pr {R = 2} + Pr {R = 3} + · · ·

+ Pr {R = 2} + Pr {R = 3} + · · ·

+ Pr {R = 3} + · · ·

+ · · ·

The successive columns sum to 1 · Pr {R = 1}, 2 · Pr {R = 2}, 3 · Pr {R = 3},

894 CHAPTER 16. RANDOM VARIABLES

Thus, the whole sum is equal to:

∑
i∈N

i · Pr {R = i}

which equals E [R] by (16.4). On the other hand, the successive rows sum to

Pr {R > 0}, Pr {R > 1}, Pr {R > 2}, Thus, the whole sum is also equal to:

∑
i∈N

Pr {R > i} ,

which therefore must equal E [R] as well. �

Now Pr {C > i} is easy to evaluate: a crash happens later than the ith hour iff

the system did not crash during the first i hours, which happens with probability

(1− p)i. Plugging this into (16.7) gives:

E [C] =
∑
i∈N

(1− p)i

=
1

1− (1− p)
(sum of geometric series)

=
1
p

The general principle here is well-worth remembering: if a system fails at each

time step with probability p, then the expected number of steps up to the first

16.3. AVERAGE & EXPECTED VALUE 895

failure is 1/p.

�

So, for example, if there is a 1% chance that the program crashes at the end of

each hour, then the expected time until the program crashes is 1/0.01 = 100 hours.

As a further example, suppose a couple really wants to have a baby girl. For

simplicity assume there is a 50% chance that each child they have is a girl, and the

genders of their children are mutually independent. If the couple insists on having

children until they get a girl, then how many baby boys should they expect first?

This is really a variant of the previous problem. The question, “How many

hours until the program crashes?” is mathematically the same as the question,

“How many children must the couple have until they get a girl?” In this case, a

crash corresponds to having a girl, so we should set p = 1/2. By the preceding

analysis, the couple should expect a baby girl after having 1/p = 2 children. Since

the last of these will be the girl, they should expect just one boy.

Something to think about: If every couple follows the strategy of having chil-

896 CHAPTER 16. RANDOM VARIABLES

dren until they get a girl, what will eventually happen to the fraction of girls born

in this world?

16.3.4 Linearity of Expectation

Expected values obey a simple, very helpful rule called Linearity of Expectation. Its

simplest form says that the expected value of a sum of random variables is the sum

of the expected values of the variables.

Theorem 16.3.7. For any random variables R1 and R2,

E [R1 +R2] = E [R1] + E [R2] .

Proof. Let T ::=R1 +R2. The proof follows straightforwardly by rearranging terms

16.3. AVERAGE & EXPECTED VALUE 897

in the sum (16.5)

E [T] =
∑
ω∈S

T (ω) · Pr {ω} (Theorem 16.3.2)

=
∑
ω∈S

(R1(ω) +R2(ω)) · Pr {ω} (def of T)

=
∑
ω∈S

R1(ω) Pr {ω}+
∑
ω∈S

R2(ω) Pr {ω} (rearranging terms)

= E [R1] + E [R2] . (Theorem 16.3.2)

�

A small extension of this proof, which we leave to the reader, implies

Theorem 16.3.8 (Linearity of Expectation). For random variablesR1,R2 and constants

a1, a2 ∈ R,

E [a1R1 + a2R2] = a1 E [R1] + a2 E [R2] .

In other words, expectation is a linear function. A routine induction extends

the result to more than two variables:

Corollary 16.3.9. For any random variables R1, . . . , Rk and constants a1, . . . , ak ∈ R,

E

[
k∑
i=1

aiRi

]
=

k∑
i=1

ai E [Ri] .

898 CHAPTER 16. RANDOM VARIABLES

The great thing about linearity of expectation is that no independence is required.

This is really useful, because dealing with independence is a pain, and we often

need to work with random variables that are not independent.

EDITING NOTE: Even when the random variables are independent, we know

from previous experience that proving independence requires a lot of work. �

Expected Value of Two Dice

What is the expected value of the sum of two fair dice?

Let the random variable R1 be the number on the first die, and let R2 be the

number on the second die. We observed earlier that the expected value of one die

is 3.5. We can find the expected value of the sum using linearity of expectation:

E [R1 +R2] = E [R1] + E [R2] = 3.5 + 3.5 = 7.

Notice that we did not have to assume that the two dice were independent.

The expected sum of two dice is 7, even if they are glued together (provided each

individual die remainw fair after the gluing). Proving that this expected sum is

16.3. AVERAGE & EXPECTED VALUE 899

7 with a tree diagram would be a bother: there are 36 cases. And if we did not

assume that the dice were independent, the job would be really tough!

The Hat-Check Problem

There is a dinner party where nmen check their hats. The hats are mixed up during

dinner, so that afterward each man receives a random hat. In particular, each man

gets his own hat with probability 1/n. What is the expected number of men who

get their own hat?

Letting G be the number of men that get their own hat, we want to find the

expectation of G. But all we know about G is that the probability that a man gets

his own hat back is 1/n. There are many different probability distributions of hat

permutations with this property, so we don’t know enough about the distribution

of G to calculate its expectation directly. But linearity of expectation makes the

problem really easy.

The trick is to express G as a sum of indicator variables. In particular, let Gi be

an indicator for the event that the ith man gets his own hat. That is, Gi = 1 if he

900 CHAPTER 16. RANDOM VARIABLES

gets his own hat, and Gi = 0 otherwise. The number of men that get their own hat

is the sum of these indicators:

G = G1 +G2 + · · ·+Gn. (16.8)

These indicator variables are not mutually independent. For example, if n− 1 men

all get their own hats, then the last man is certain to receive his own hat. But, since

we plan to use linearity of expectation, we don’t have worry about independence!

Now sinceGi is an indicator, we know 1/n = Pr {Gi = 1} = E [Gi] by Lemma 16.3.3.

Now we can take the expected value of both sides of equation (16.8) and apply lin-

earity of expectation:

E [G] = E [G1 +G2 + · · ·+Gn]

= E [G1] + E [G2] + · · ·+ E [Gn]

=
1
n

+
1
n

+ · · ·+ 1
n

= n

(
1
n

)
= 1.

So even though we don’t know much about how hats are scrambled, we’ve figured

out that on average, just one man gets his own hat back!

16.3. AVERAGE & EXPECTED VALUE 901

Expectation of a Binomial Distribution

Suppose that we independently flip n biased coins, each with probability p of com-

ing up heads. What is the expected number that come up heads?

Let J be the number of heads after the flips, so J has the (n, p)-binomial dis-

tribution. Now let Ik be the indicator for the kth coin coming up heads. By

Lemma 16.3.3, we have

E [Ik] = p.

But

J =
n∑
k=1

Ik,

so by linearity

E [J] = E

[
n∑
k=1

Ik

]
=

n∑
k=1

E [Ik] =
n∑
k=1

p = pn.

In short, the expectation of an (n, p)-binomially distributed variable is pn.

902 CHAPTER 16. RANDOM VARIABLES

The Coupon Collector Problem

Every time I purchase a kid’s meal at Taco Bell, I am graciously presented with

a miniature “Racin’ Rocket” car together with a launching device which enables

me to project my new vehicle across any tabletop or smooth floor at high velocity.

Truly, my delight knows no bounds.

There are n different types of Racin’ Rocket car (blue, green, red, gray, etc.). The

type of car awarded to me each day by the kind woman at the Taco Bell register

appears to be selected uniformly and independently at random. What is the ex-

pected number of kid’s meals that I must purchase in order to acquire at least one

of each type of Racin’ Rocket car?

The same mathematical question shows up in many guises: for example, what

is the expected number of people you must poll in order to find at least one person

with each possible birthday? Here, instead of collecting Racin’ Rocket cars, you’re

collecting birthdays. The general question is commonly called the coupon collector

problem after yet another interpretation.

16.3. AVERAGE & EXPECTED VALUE 903

A clever application of linearity of expectation leads to a simple solution to the

coupon collector problem. Suppose there are five different types of Racin’ Rocket,

and I receive this sequence:

blue green green red blue orange blue orange gray

Let’s partition the sequence into 5 segments:

blue︸︷︷︸
X0

green︸ ︷︷ ︸
X1

green red︸ ︷︷ ︸
X2

blue orange︸ ︷︷ ︸
X3

blue orange gray︸ ︷︷ ︸
X4

The rule is that a segment ends whenever I get a new kind of car. For example, the

middle segment ends when I get a red car for the first time. In this way, we can

break the problem of collecting every type of car into stages. Then we can analyze

each stage individually and assemble the results using linearity of expectation.

Let’s return to the general case where I’m collecting n Racin’ Rockets. Let Xk

be the length of the kth segment. The total number of kid’s meals I must purchase

to get all n Racin’ Rockets is the sum of the lengths of all these segments:

T = X0 +X1 + · · ·+Xn−1

904 CHAPTER 16. RANDOM VARIABLES

Now let’s focus our attention on Xk, the length of the kth segment. At the

beginning of segment k, I have k different types of car, and the segment ends when

I acquire a new type. When I own k types, each kid’s meal contains a type that I

already have with probability k/n. Therefore, each meal contains a new type of car

with probability 1 − k/n = (n − k)/n. Thus, the expected number of meals until

I get a new kind of car is n/(n − k) by the “mean time to failure” formula. So we

have:

E [Xk] =
n

n− k

Linearity of expectation, together with this observation, solves the coupon col-

16.3. AVERAGE & EXPECTED VALUE 905

lector problem:

E [T] = E [X0 +X1 + · · ·+Xn−1]

= E [X0] + E [X1] + · · ·+ E [Xn−1]

=
n

n− 0
+

n

n− 1
+ · · ·+ n

3
+
n

2
+
n

1

= n

(
1
n

+
1

n− 1
+ · · ·+ 1

3
+

1
2

+
1
1

)

n

(
1
1

+
1
2

+
1
3

+ · · ·+ 1
n− 1

+
1
n

)

= nHn ∼ n lnn.

Let’s use this general solution to answer some concrete questions. For example,

the expected number of die rolls required to see every number from 1 to 6 is:

6H6 = 14.7 . . .

And the expected number of people you must poll to find at least one person with

each possible birthday is:

365H365 = 2364.6 . . .

EDITING NOTE: unedited from F02

906 CHAPTER 16. RANDOM VARIABLES

Let Ai be the event that coin i comes up heads. Since the coin is fair, Pr {Ai} =

1/2. Since there are N coins in all, there are N such events. By linearity of expecta-

tion (Theorem 16.3.9), the expected number of events that occur —the number of

coins that come up heads —is N(1/2) = N/2.

Let’s try to solve the same problem the hard way. In this case, assume that the

coins are fair. Let the random variable R be the number of heads. We want to

compute the expected value of R.

E [R] =
N∑
i=0

i · Pr {R = i}

=
N∑
i=0

i

(
N

i

)
2−N

The first equation follows from the definition of expectation. In the second step,

we evaluate Pr {R = i}. An outcome of tossing the N coins can be represented by

a length N sequence of H’s and T ’s. An H in position i indicates that the ith coin

is heads, and a T indicates that the ith coin is tails. The sample space consists of all

2N such sequences. The outcomes are equiprobable, and so each has probability

16.3. AVERAGE & EXPECTED VALUE 907

2−N . The number of outcomes with exactly i heads is the number of length N

sequences with i H’s, which is
(
N
i

)
. Therefore, Pr {R = i} =

(
N
i

)
2−N .

The answer from linearity of expectation and from the hard way must be the

same, so we can equate the two results to obtain a neat identity.1

N∑
i=0

i

(
N

i

)
2−N =

N

2

N∑
i=0

i

(
N

i

)
= N2N−1

The expected number of heads is N/2, even if some coins are glued together.

We can extend this reasoning to n tosses of a coin with probability p of a head,

rather than 1/2. If we do this, we get the generalized combinatorial identity:

N∑
i=0

i

(
N

i

)
pi(1− p)N−i = Np

Here, the pi factor gives the probabilities for the heads and the (1 − p)N−i factor

gives the probabilities for the tails. The right-hand side is the sum ofN terms, each

giving the probability of a particular Ai, which is p. The total is Np. For example,

1The identity also has a simple combinatorial proof given in Problem ??.

908 CHAPTER 16. RANDOM VARIABLES

consider an ordinary die. Let A1 be the event that the value is odd, A2 the event

that the value is 1, 2, or 3, and A3 the event that the value is 4, 5, or 6. These events

are not mutually independent. However, the expected number of these events that

occur is still obtainable by adding Pr {A1}+ Pr {A2}+ Pr {A3}, which yields 3/2.

The Number-Picking Game

Here is a game that you and I could play that reveals a strange property of expec-

tation.

First, you think of a probability density function on the natural numbers. Your

distribution can be absolutely anything you like. For example, you might choose

a uniform distribution on 1, 2, . . . , 6, like the outcome of a fair die roll. Or you

might choose a binomial distribution on 0, 1, . . . , n. You can even give every nat-

ural number a non-zero probability, provided that the sum of all probabilities is

1.

Next, I pick a random number z according to your distribution. Then, you pick

a random number y1 according to the same distribution. If your number is bigger

16.3. AVERAGE & EXPECTED VALUE 909

than mine (y1 > z), then the game ends. Otherwise, if our numbers are equal or

mine is bigger (z ≥ y1), then you pick a new number y2 with the same distribution,

and keep picking values y3, y4, etc. until you get a value that is strictly bigger than

my number, z. What is the expected number of picks that you must make?

Certainly, you always need at least one pick, so the expected number is greater

than one. An answer like 2 or 3 sounds reasonable, though one might suspect that

the answer depends on the distribution. Let’s find out whether or not this intuition

is correct.

The number of picks you must make is a natural-valued random variable, so

from formula (16.7) we have:

E [# picks by you] =
∑
k∈N

Pr {(# picks by you) > k} (16.9)

Suppose that I’ve picked my number z, and you have picked k numbers y1, y2, . . . , yk.

There are two possibilities:

• If there is a unique largest number among our picks, then my number is as

likely to be it as any one of yours. So with probability 1/(k + 1) my number

910 CHAPTER 16. RANDOM VARIABLES

is larger than all of yours, and you must pick again.

• Otherwise, there are several numbers tied for largest. My number is as likely

to be one of these as any of your numbers, so with probability greater than

1/(k + 1) you must pick again.

In both cases, with probability at least 1/(k + 1), you need more than k picks to

beat me. In other words:

Pr {(# picks by you) > k} ≥ 1
k + 1

(16.10)

This suggests that in order to minimize your rolls, you should choose a distri-

bution such that ties are very rare. For example, you might choose the uniform

distribution on
{

1, 2, . . . , 10100
}

. In this case, the probability that you need more

than k picks to beat me is very close to 1/(k + 1) for moderate values of k. For

example, the probability that you need more than 99 picks is almost exactly 1%.

This sounds very promising for you; intuitively, you might expect to win within a

reasonable number of picks on average!

Unfortunately for intuition, there is a simple proof that the expected number

16.3. AVERAGE & EXPECTED VALUE 911

of picks that you need in order to beat me is infinite, regardless of the distribution!

Let’s plug (16.10) into (16.9):

E [# picks by you] =
∑
k∈N

1
k + 1

=∞

This phenomenon can cause all sorts of confusion! For example, suppose you

have a communication network where each packet of data has a 1/k chance of

being delayed by k or more steps. This sounds good; there is only a 1% chance of

being delayed by 100 or more steps. But the expected delay for the packet is actually

infinite!

There is a larger point here as well: not every random variable has a well-

defined expectation. This idea may be disturbing at first, but remember that an

expected value is just a weighted average. And there are many sets of numbers

that have no conventional average either, such as:

{1,−2, 3,−4, 5,−6, . . . }

Strictly speaking, we should qualify virtually all theorems involving expectation

912 CHAPTER 16. RANDOM VARIABLES

with phrases such as “...provided all expectations exist.” But we’re going to leave

that assumption implicit.

Random variables with infinite or ill-defined expectations are more the excep-

tion than the rule, but they do creep in occasionally.

�

16.4 Expectation of a Quotient

16.4.1 A RISC Paradox

The following data is taken from a paper by some famous professors. They wanted

to show that programs on a RISC processor are generally shorter than programs

on a CISC processor. For this purpose, they applied a RISC compiler and then a

CISC compiler to some benchmark source programs and made a table of compiled

16.4. EXPECTATION OF A QUOTIENT 913

program lengths.

Benchmark RISC CISC CISC/RISC
E-string search 150 120 0.8
F-bit test 120 180 1.5
Ackerman 150 300 2.0
Rec 2-sort 2800 1400 0.5
Average 1.2

Each row contains the data for one benchmark. The numbers in the second and

third columns are program lengths for each type of compiler. The fourth column

contains the ratio of the CISC program length to the RISC program length. Av-

eraging this ratio over all benchmarks gives the value 1.2 in the lower right. The

authors conclude that “CISC programs are 20% longer on average”.

However, some critics of their paper took the same data and argued this way:

redo the final column, taking the other ratio, RISC/CISC instead of CISC/RISC.

Benchmark RISC CISC RISC/CISC
E-string search 150 120 1.25
F-bit test 120 180 0.67
Ackerman 150 300 0.5
Rec 2-sort 2800 1400 2.0
Average 1.1

From this table, we would conclude that RISC programs are 10% longer than CISC

programs on average! We are using the same reasoning as in the paper, so this

conclusion is equally justifiable— yet the result is opposite! What is going on?

914 CHAPTER 16. RANDOM VARIABLES

16.4.2 A Probabilistic Interpretation

To resolve these contradictory conclusions, we can model the RISC vs. CISC debate

with the machinery of probability theory.

Let the sample space be the set of benchmark programs. Let the random vari-

able R be the length of the compiled RISC program, and let the random variable

C be the length of the compiled CISC program. We would like to compare the

average length, E [R], of a RISC program to the average length, E [C], of a CISC

program.

To compare average program lengths, we must assign a probability to each

sample point; in effect, this assigns a “weight” to each benchmark. One might like

to weigh benchmarks based on how frequently similar programs arise in practice.

Lacking such data, however, we will assign all benchmarks equal weight; that is,

our sample space is uniform.

In terms of our probability model, the paper computes C/R for each sample

point, and then averages to obtain E [C/R] = 1.2. This much is correct. The au-

16.4. EXPECTATION OF A QUOTIENT 915

thors then conclude that “CISC programs are 20% longer on average”; that is, they

conclude that E [C] = 1.2 E [R].

Similarly, the critics calculation correctly showed that E [R/C] = 1.1. They then

concluded that E [R] = 1.1 E [C], that is, a RISC program is 10% longer than a CISC

program on average.

These arguments make a natural assumption, namely, that

False Claim 16.4.1. If S and T are independent random variables with T > 0, then

E
[
S

T

]
=

E [S]
E [T]

.

In other words False Claim 16.4.1 simply generalizes the rule for expectation of

a product to a rule for the expectation of a quotient. But the rule for requires inde-

pendence, and we surely don’t expect C and R to be independent: large source

programs will lead to large compiled programs, so when the RISC program is

large, so the CISC would be too.

However, we can easily compensate for this kind of dependence: we should

compare the lengths of the programs relative to the size of the source code. While the

916 CHAPTER 16. RANDOM VARIABLES

lengths of C andR are dependent, it’s more plausible that their relative lengths will

be independent. So we really want to divide the second and third entries in each

row of the table by a “normalizing factor” equal to the length of the benchmark

program in the first entry of the row.

But note that normalizing this way will have no effect on the fourth column!

That’s because the normalizing factors applied to the second and and third entries

of the rows will cancel. So the independence hypothesis of False Claim 16.4.1 may

be justified, in which case the authors’ conclusions would be justified. But then,

so would the contradictory conclusions of the critics. Something must be wrong!

Maybe it’s False Claim 16.4.1 (duh!), so let’s try and prove it.

16.4. EXPECTATION OF A QUOTIENT 917

False proof.

E
[
S

T

]
= E

[
S · 1

T

]

= E [S] · E
[

1
T

]
(independence of S and T) (16.11)

= E [S] · 1
E [T]

. (16.12)

=
E [S]
E [T]

.

Note that line (16.11) uses the fact that if S and T are independent, then so are

S and 1/T . This holds because functions of independent random variables yield

independent random variables, as shown in Problem ??.

�

But this proof is bogus! The bug is in line (16.12), which assumes

False Theorem 16.4.2.

E
[

1
T

]
=

1
E [T]

.

Here is a counterexample:

Example. Suppose T = 1 with probability 1/2 and T = 2 with probability 1/2.

918 CHAPTER 16. RANDOM VARIABLES

Then

1
E [T]

=
1

1 · 1
2 + 2 · 1

2

=
2
3

6= 3
4

=
1
1
· 1

2
+

1
2
· 1

2

= E
[

1
T

]
.

The two quantities are not equal, so False Claim 16.4.2 really is false.

Unfortunately, the fact that Claim 16.4.1 and 16.4.2 are false does not mean that

they are never used!

16.4. EXPECTATION OF A QUOTIENT 919

16.4.3 The Proper Quotient

We can compute E [R] and E [C] as follows:

E [R] =
∑

i∈Range(R)

i · Pr {R = i}

=
150
4

+
120
4

+
150
4

+
2800

4

= 805

E [C] =
∑

i∈Range(C)

i · Pr {C = i}

=
120
4

+
180
4

+
300
4

+
1400

4

= 500

Now since E [R] /E [C] = 1.61, we conclude that the average RISC program is

61% longer than the average CISC program. This is a third answer, completely

different from the other two! Furthermore, this answer makes RISC look really

bad in terms of code length. This one is the correct conclusion, under our assump-

tion that the benchmarks deserve equal weight. Neither of the earlier results were

920 CHAPTER 16. RANDOM VARIABLES

correct—not surprising since both were based on the same false Claim.

16.4.4 A Simpler Example

The source of the problem is clearer in the following, simpler example. Suppose

the data were as follows.

Benchmark Processor A Processor B B/A A/B
Problem 1 2 1 1/2 2
Problem 2 1 2 2 1/2
Average 1.25 1.25

Now the data for the processors A and B is exactly symmetric; the two proces-

sors are equivalent. Yet, from the third column we would conclude that Processor

B programs are 25% longer on average, and from the fourth column we would

conclude that Processor A programs are 25% longer on average. Both conclusions

are obviously wrong.

The moral is that one must be very careful in summarizing data, we must not

take an average of ratios blindly!

EDITING NOTE:

INFINITE LINEARITY OF EXPECTATION 921

Infinite Linearity of Expectation

We know that expectation is linear over finite sums. It’s useful to extend this result

to infinite summations. This works as long as we avoid sums whose values may

depend on the order of summation.

Convergence Conditions for Infinite Linearity

Theorem 16.4.3. [Linearity of Expectation] Let R0, R1, . . . , be random variables such

that

∞∑
i=0

E [|Ri|]

converges. Then

E

[∞∑
i=0

Ri

]
=
∞∑
i=0

E [Ri] .

Proof. Let T ::=
∑∞
i=0Ri.

We leave it to the reader to verify that, under the given convergence hypothesis,

all the sums in the following derivation are absolutely convergent, which justifies

922 CHAPTER 16. RANDOM VARIABLES

rearranging them as follows:

∞∑
i=0

E [Ri] =
∞∑
i=0

∑
s∈S

Ri(s) · Pr {s} (Def. 16.5)

=
∑
s∈S

∞∑
i=0

Ri(s) · Pr {s} (exchanging order of summation)

=
∑
s∈S

[∞∑
i=0

Ri(s)

]
· Pr {s} (factoring out Pr {s})

=
∑
s∈S

T (s) · Pr {s} (Def. of T)

= E [T] (Def. 16.5)

= E

[∞∑
i=0

Ri

]
. (Def. of T).

�

Note that the finite linearity of expectation we established in Corollary 16.3.9

follows as a special case of Theorem 16.4.3: since E [Ri] is finite, so is E [|Ri|], and

therefore so is their sum for 0 ≤ i ≤ n. Hence the convergence hypothesis of

Theorem 16.4.3 is trivially satisfied if there are only finitely many Ri’s.

Exercise: Show that linearity of expectation fails for the sum of two variables,

one with expectation +∞ and the other with −∞.

INFINITE LINEARITY OF EXPECTATION 923

A Paradox

One of the simplest casino bets is on “red” or “black” at the roulette table. In each

play at roulette, a small ball is set spinning around a roulette wheel until it lands

in a red, black, or green colored slot. The payoff for a bet on red or black matches

the bet; for example, if you bet $10 on red and the ball lands in a red slot, you get

back your original $10 bet plus another matching $10.

In the US, a roulette wheel has 2 green slots among 18 black and 18 red slots, so

the probability of red is p ::= 18/38 ≈ 0.473. In Europe, where roulette wheels have

only 1 green slot, the odds for red are a little better —that is, p = 18/37 ≈ 0.486—

but still less than even. To make the game fair, we might agree to ignore green, so

that p = 1/2.

There is a notorious gambling strategy which seems to guarantee a profit at

roulette: bet $10 on red, and keep doubling the bet until a red comes up. This

strategy implies that a player will leave the game as a net winner of $10 as soon as

the red first appears. Of course the player may need an awfully large bankroll to

924 CHAPTER 16. RANDOM VARIABLES

avoid going bankrupt before red shows up—but we know that the mean time until

a red occurs is 1/p, so it seems possible that a moderate bankroll might actually

work out. (In this setting, a “win” on red corresponds to a “failure” in a mean-

time-to-failure situation.)

Suppose we have the good fortune to gamble against a fair roulette wheel. In

this case, our expected win on any spin is zero, since at the ith spin we are equally

likely to win or lose 10 · 2i−1 dollars. So our expected win after any finite number

of spins remains zero, and therefore our expected win using this gambling strategy

is zero. This is just what we should have anticipated in a fair game.

But wait a minute. As long as there is a fixed, positive probability of red ap-

pearing on each spin of the wheel—even if the wheel is unfair—it’s certain that red

will eventually come up. So with probability one, we leave the casino having won

$10, and our expected dollar win is obviously $10, not zero!

Something’s wrong here. What?

INFINITE LINEARITY OF EXPECTATION 925

Solution to the Paradox

The expected amount won is indeed $10.

The argument claiming the expectation is zero is flawed by an invalid use of

linearity of expectation for an infinite sum. To pinpoint this flaw, let’s first make

the sample space explicit: a sample point is a sequence BnR representing a run of

n ≥ 0 black spins terminated by a red spin. Since the wheel is fair, the probability

of BnR is 2−(n+1).

Let Ci be the number of dollars won on the ith spin. So Ci = 10 · 2i−1 when red

comes up for the first time on the ith spin, that is, at precisely one sample point,

namely Bi−1R. Similarly, Ci = −10 · 2i−1 when the first red spin comes up after

the ith spin, namely, at the sample points BnR for n ≥ i. Finally, we will define Ci

by convention to be zero at sample points in which the session ends before the ith

spin, that is, at points BnR for n < i− 1.

The dollar amount won in any gambling session is the value of the sum
∑∞
i=1 Ci.

926 CHAPTER 16. RANDOM VARIABLES

At any sample point BnR, the value of this sum is

10 · −(1 + 2 + 22 + · · ·+ 2n−1) + 10 · 2n = 10,

which trivially implies that its expectation is 10 as well. That is, the amount we

are certain to leave the casino with, as well as expectation of the amount we win, is

$10.

Moreover, our reasoning that E [Ci] = 0 is sound, so

∞∑
i=1

E [Ci] =
∞∑
i=1

0 = 0.

The flaw in our argument is the claim that, since the expectation at each spin

was zero, therefore the final expectation would also be zero. Formally, this corre-

sponds to concluding that

E [amount won] = E

[∞∑
i=1

Ci

]
=
∞∑
i=1

E [Ci] = 0.

The flaw lies exactly in the second equality. This is a case where linearity of ex-

pectation fails to hold—even though both
∑∞
i=1 E [Ci] and E [

∑∞
i=1 Ci] are finite—

INFINITE LINEARITY OF EXPECTATION 927

because the convergence hypothesis needed for linearity is false. Namely, the sum

∞∑
i=1

E [|Ci|]

does not converge. In fact, the expected value of |Ci| is 10 because |Ci| = 10 · 2i

with probability 2−i and otherwise is zero, so this sum rapidly approaches infinity.

Probability theory truly leads to this apparently paradoxical conclusion: a game

allowing an unbounded—even though always finite—number of “fair” moves

may not be fair in the end. In fact, our reasoning leads to an even more startling

conclusion: even against an unfair wheel, as long as there is some fixed positive

probability of red on each spin, we are certain to win $10!

This is clearly a case where naive intuition is unreliable: we don’t expect to beat

a fair game, and we do expect to lose when the odds are against us. Nevertheless,

the “paradox” that in fact we always win by bet-doubling cannot be denied.

But remember that from the start we chose to assume that no one goes bankrupt

while executing our bet-doubling strategy. This assumption is crucial, because

the expected loss while waiting for the strategy to produce its ten dollar profit is

928 CHAPTER 16. RANDOM VARIABLES

actually infinite! So it’s not surprising, after all, that we arrived at an apparently

paradoxical conclusion from an unrealistic assumption.

This example also serves a warning that in making use of infinite linearity of

expectation, the convergence hypothesis which justifies it had better be checked.

For WALD’S theorem see F02 ln11-12.

�

16.4.5 The Expected Value of a Product

While the expectation of a sum is the sum of the expectations, the same is usually

not true for products. But it is true in an important special case, namely, when the

random variables are independent.

For example, suppose we throw two independent, fair dice and multiply the

numbers that come up. What is the expected value of this product?

Let random variables R1 and R2 be the numbers shown on the two dice. We

INFINITE LINEARITY OF EXPECTATION 929

can compute the expected value of the product as follows:

E [R1 ·R2] = E [R1] · E [R2] = 3.5 · 3.5 = 12.25. (16.13)

Here the first equality holds because the dice are independent.

At the other extreme, suppose the second die is always the same as the first.

Now R1 = R2, and we can compute the expectation, E
[
R2

1

]
, of the product of the

dice explicitly, confirming that it is not equal to the product of the expectations.

E [R1 ·R2] = E
[
R2

1

]

=
6∑
i=1

i2 · Pr
{
R2

1 = i2
}

=
6∑
i=1

i2 · Pr {R1 = i}

=
12

6
+

22

6
+

32

6
+

42

6
+

52

6
+

62

6

= 15 1/6

6= 12 1/4

= E [R1] · E [R2] .

930 CHAPTER 16. RANDOM VARIABLES

Theorem 16.4.4. For any two independent random variables R1, R2,

E [R1 ·R2] = E [R1] · E [R2] .

Proof. The event [R1 · R2 = r] can be split up into events of the form [R1 =

r1 and R2 = r2] where r1 · r2 = r. So

E [R1 ·R2]

::=
∑

r∈range(R1·R2)

r · Pr {R1 ·R2 = r}

=
∑

ri∈range(Ri)

r1r2 · Pr {R1 = r1 and R2 = r2}

=
∑

r1∈range(R1)

∑
r2∈range(R2)

r1r2 · Pr {R1 = r1 and R2 = r2} (ordering terms in the sum)

=
∑

r1∈range(R1)

∑
r2∈range(R2)

r1r2 · Pr {R1 = r1} · Pr {R2 = r2} (indep. of R1, R2)

=
∑

r1∈range(R1)

r1 Pr {R1 = r1} ·
∑

r2∈range(R2)

r2 Pr {R2 = r2}

 (factoring out r1 Pr {R1 = r1})

=
∑

r1∈range(R1)

r1 Pr {R1 = r1} · E [R2] (def of E [R2])

= E [R2] ·
∑

r1∈range(R1)

r1 Pr {R1 = r1} (factoring out E [R2])

= E [R2] · E [R1] . (def of E [R1])

INFINITE LINEARITY OF EXPECTATION 931

�

Theorem 16.4.4 extends routinely to a collection of mutually independent vari-

ables.

Corollary 16.4.5. If random variables R1, R2, . . . , Rk are mutually independent, then

E

[
k∏
i=1

Ri

]
=

k∏
i=1

E [Ri] .

16.4.6 Problems

Practice Problems

Class Problems

Homework Problems

932 CHAPTER 16. RANDOM VARIABLES

Chapter 17

Deviation from the Mean

17.1 Why the Mean?

In the previous chapter we took it for granted that expectation is important, and

we developed a bunch of techniques for calculating expected (mean) values. But

why should we care about the mean? After all, a random variable may never take

a value anywhere near its expected value.

The most important reason to care about the mean value comes from its con-

933

934 CHAPTER 17. DEVIATION FROM THE MEAN

nection to estimation by sampling. For example, suppose we want to estimate the

average age, income, family size, or other measure of a population. To do this, we

determine a random process for selecting people —say throwing darts at census

lists. This process makes the selected person’s age, income, and so on into a ran-

dom variable whose mean equals the actual average age or income of the population.

So we can select a random sample of people and calculate the average of people

in the sample to estimate the true average in the whole population. Many fun-

damental results of probability theory explain exactly how the reliability of such

estimates improves as the sample size increases, and in this chapter we’ll examine

a few such results.

In particular, when we make an estimate by repeated sampling, we need to

know how much confidence we should have that our estimate is OK. Technically,

this reduces to finding the probability that an estimate deviates a lot from its ex-

pected value. This topic of deviation from the mean is the focus of this final chapter.

The first technical result about deviation will be Markov’s Theorem, which

17.1. WHY THE MEAN? 935

gives a simple, but typically coarse, upper bound on the probability that the value

of a random variable is more than a certain multiple of its mean. Markov’s result

holds if we know nothing about a random variable except what its mean is and

that its values are nonnegative. Accordingly, Markov’s Theorem is very general,

but also is much weaker than results which take into account more information

about the distribution of the variable.

In many situations, we not only know the mean, but also another numerical

quantity called the variance of the random variable. The second basic result is

Chebyshev’s Theorem, which combines Markov’s Theorem and information about

the variance to give more refined bounds.

The final result we obtain about deviation is Chernoff’s bound. Chernoff’s

bound applies to a random variable that is a sum of bounded independent ran-

dom variables. Its bound is exponentially tighter than the other two.

EDITING NOTE: A random variable may never take a value anywhere near its

expected value, so why is its expected value important? The reason is suggested

936 CHAPTER 17. DEVIATION FROM THE MEAN

by a property of gambling games that most people recognize intuitively. Suppose

your gamble hinges on the roll of two dice, where you win if the sum of the dice

is seven. If the dice are fair, the probabilty you win is 1/6, which is also your

expected number of wins in one roll. Of course there’s no such thing as 1/6 of a

win in one roll, since either you win or you don’t. But if you play many times, you

would expect that the fraction of times you win would be close to 1/6. In fact, if

you played a lot of times and found that your fraction of wins wasn’t pretty close

to 1/6, you would become pretty sure that the dice weren’t fair. �

17.2 Markov’s Theorem

Markov’s theorem is an easy result that gives a generally rough estimate of the

probability that a random variable takes a value much larger than its mean.

The idea behind Markov’s Theorem can be explained with a simple example of

intelligence quotient, IQ. This quantity was devised so that the average IQ measure-

ment would be 100. Now from this fact alone we can conclude that at most 1/3 the

17.2. MARKOV’S THEOREM 937

population can have an IQ of 300 or more, because if more than a third had an IQ

of 300, then the average would have to be more than (1/3)300 = 100, contradicting

the fact that the average is 100. So the probability that a randomly chosen person

has an IQ of 300 or more is at most 1/3. Of course this is not a very strong con-

clusion; in fact no IQ of over 300 has ever been recorded. But by the same logic,

we can also conclude that at most 2/3 of the population can have an IQ of 150 or

more. IQ’s of over 150 have certainly been recorded, though again, a much smaller

fraction than 2/3 of the population actually has an IQ that high.

But although these conclusions about IQ are weak, they are actually the strongest

general conclusions that can be reached about a random variable using only the fact

that it is nonnegative and its mean is 100. For example, if we choose a random vari-

able equal to 300 with probability 1/3, and 0 with probability 2/3, then its mean is

100, and the probability of a value of 300 or more really is 1/3. So we can’t hope to

get a better upper bound based solely on this limited amount of information.

EDITING NOTE:

938 CHAPTER 17. DEVIATION FROM THE MEAN

Note that very different distributions can still have the same mean.

Example 17.2.1. Suppose that we roll a fair die. This gives a random variable uni-

formly distributed on 1, 2, . . . 6. The mean, or expected value, is 3.5. Of course, this

random variable never takes on exactly the expected value; in fact, the outcome

deviates from the mean by at least 0.5 with probability 1. Furthermore, there is a 2
3

probability that the outcome deviates from the mean by at least 1.5 (roll 1, 2, 5, or

6), a 1
3 probability that the outcome deviates by at least 2.5 (roll 1 or 6), and zero

probability that the outcome deviates by more than 2.5.

Example 17.2.2. A random variable with the binomial distribution is much less

likely to deviate far from the mean. For example, suppose we flip 100 fair, mu-

tually independent coins and count the number of heads. The expected number

of heads is 50. There is an 8% chance that the outcome is exactly the mean, and

the probability of flipping more than 75 heads or fewer than 25 is less than 1 in a

billion.

The probability distribution functions for the two preceding examples are graphed

17.2. MARKOV’S THEOREM 939

mean

3.51 6

Figure 17.1: This is a graph of the uniform distribution arising from rolling a fair

die. Outcomes within the range of the distribution are equally likely, regardless of

distance from the mean.

in Figure 17.1 and Figure 17.2. There is a big difference! For the uniform distribu-

tion, the graph is flat; that is, outcomes far from the mean are as likely as outcomes

close to the mean. However, the binomial distribution has a peak centered on the

expected value and the tails fall off rapidly. This shape implies that outcomes close

to the expected value are vastly more likely than outcomes far from the expected

value. In other words, a random variable with the binomial distribution rarely

deviates far from the mean.

940 CHAPTER 17. DEVIATION FROM THE MEAN

mean

0 50 100

Figure 17.2: This is a rough graph of the binomial distribution given by the num-

ber of heads that come up when we flip 100 fair, mutually independent coins. Out-

comes close to the mean are much more likely than outcomes far from the mean.

On the other hand, we can define a random variable that always deviates sub-

stantially from its expected value. Suppose that we glue 100 coins together, so that

with probability 1/2 all are heads and with probability 1/2 all are tails. The graph

of the probability distribution function for the number of heads is shown in Fig-

ure 17.3. While the expected value of this random variable is 50, the actual value

is always 0 or 100.

Even in this last example, however, the random variable is twice the mean with

17.2. MARKOV’S THEOREM 941

mean

100500

Figure 17.3: This is the nasty distribution corresponding to the number of heads

that come up when we flip 100 coins that are all glued together. The outcome

always differs from the mean by at least 50.

probability only 1/2. In fact, we will see that this is a worst-case distribution with

respect to deviation from the mean.

Theorem Statement and Some Applications

�

Theorem 17.2.3 (Markov’s Theorem). If R is a nonnegative random variable, then for

942 CHAPTER 17. DEVIATION FROM THE MEAN

all x > 0

Pr {R ≥ x} ≤ E [R]
x

.

EDITING NOTE:

Before we prove Markov’s Theorem, let’s apply it to the three examples in the

preceding subsection. First, let the random variable R be the number that comes

up when we roll a fair die. By Markov’s Theorem, the probability of rolling a 6 is

at most:

Pr {R ≥ 6} ≤ E [R]
6

=
3.5
6

= 0.583 . . .

This conclusion is true, but weak. The actual probability of rolling a 6 is 1/6 =

0.166

This is typical of Markov’s Theorem. The theorem is easy to apply because

it requires so little information about a random variable, only the expected value

and nonnegativity. But as a consequence, Markov’s Theorem often leads to weak

conclusions like the one above.

Suppose that we flip 100 mutually independent, fair coins. Markov’s Theorem

17.2. MARKOV’S THEOREM 943

says that the probability of throwing 75 or more heads is at most:

Pr {heads ≥ 75} ≤ E [heads]
75

=
50
75

=
2
3
.

Markov’s Theorem says that the probability of 75 or more heads is at most 2/3, but

the actual probability is less than 1 in a billion!

These two examples show that Markov’s Theorem gives weak results for well-

behaved random variables; however, the theorem is actually tight for some nasty

examples. Suppose we flip 100 fair coins and use Markov’s Theorem to compute

the probability of getting all heads:

Pr {heads ≥ 100} ≤ E [heads]
100

=
50
100

=
1
2
.

If the coins are mutually independent, then the actual probability of getting all

heads is a miniscule 1 in 2100. In this case, Markov’s Theorem looks very weak.

However, in applying Markov’s Theorem, we made no independence assump-

tions. In fact, if all the coins are glued together, then probability of throwing all

heads is exactly 1/2. In this nasty case, Markov’s Theorem is actually tight!

944 CHAPTER 17. DEVIATION FROM THE MEAN

Proof of Markov’s Theorem

Let R be the weight of a person selected randomly and uniformly. Suppose that

an average person weighs 100 pounds; that is, E [R] = 100. What is the probability

that a random person weighs at least 200 pounds?

There is insufficient information for an exact answer. However, we can safely

say that the probability that R ≥ 200 is most 1/2. If more than half of the people

weigh 200 pounds or more, then the average weight would exceed 100 pounds,

even if everyone else weighed zero! Markov’s Theorem gives the same result:

Pr {R ≥ 200} ≤ E [R]
200

=
100
200

=
1
2
.

Reasoning similar to that above underlies the proof of Markov’s Theorem. Since

expectation is a weighted average of all the outcomes of the random variable, that

is, a sum over all the variables the random variable can assume, we can give a

lower bound on the expectation by removing some of the terms from the sum

defining the expectation; this new sum can then be modified into an expression

involving the probability of an event in the tail [R ≥ x].

17.2. MARKOV’S THEOREM 945

�

Proof. For any x > 0

E [R] ::=
∑

y∈range(R)

y Pr {R = y}

≥
∑
y≥x,

y∈range(R)

y Pr {R = y} (because R ≥ 0)

≥
∑
y≥x,

y∈range(R)

xPr {R = y}

= x
∑
y≥x,

y∈range(R)

Pr {R = y}

= xPr {R ≥ x} . (17.1)

Dividing the first and last expression (17.1) by x gives the desired result. �

Our focus is deviation from the mean, so it’s useful to rephrase Markov’s The-

orem this way:

Corollary 17.2.4. If R is a nonnegative random variable, then for all c ≥ 1

Pr {R ≥ c · E [R]} ≤ 1
c
. (17.2)

946 CHAPTER 17. DEVIATION FROM THE MEAN

This Corollary follows immediately from Markov’s Theorem(17.2.3) by letting

x be c · E [R].

17.2.1 Applying Markov’s Theorem

Let’s consider the Hat-Check problem again. Now we ask what the probability is

that x or more men get the right hat, this is, what the value of Pr {G ≥ x} is.

We can compute an upper bound with Markov’s Theorem. Since we know

E [G] = 1, Markov’s Theorem implies

Pr {G ≥ x} ≤ E [G]
x

=
1
x
.

For example, there is no better than a 20% chance that 5 men get the right hat,

regardless of the number of people at the dinner party.

The Chinese Appetizer problem is similar to the Hat-Check problem. In this

case, n people are eating appetizers arranged on a circular, rotating Chinese ban-

quet tray. Someone then spins the tray so that each person receives a random

appetizer. What is the probability that everyone gets the same appetizer as before?

17.2. MARKOV’S THEOREM 947

There are n equally likely orientations for the tray after it stops spinning. Ev-

eryone gets the right appetizer in just one of these n orientations. Therefore, the

correct answer is 1/n.

But what probability do we get from Markov’s Theorem? Let the random vari-

able, R, be the number of people that get the right appetizer. Then of course

E [R] = 1 (right?), so applying Markov’s Theorem, we find:

Pr {R ≥ n} ≤ E [R]
n

=
1
n
.

So for the Chinese appetizer problem, Markov’s Theorem is tight!

On the other hand, Markov’s Theorem gives the same 1/n bound for the prob-

ability everyone gets their hat in the Hat-Check problem in the case that all per-

mutations are equally likely. But the probability of this event is 1/(n!). So for this

case, Markov’s Theorem gives a probability bound that is way off.

948 CHAPTER 17. DEVIATION FROM THE MEAN

17.2.2 Markov’s Theorem for Bounded Variables

Suppose we learn that the average IQ among MIT students is 150 (which is not

true, by the way). What can we say about the probability that an MIT student has

an IQ of more than 200? Markov’s theorem immediately tells us that no more than

150/200 or 3/4 of the students can have such a high IQ. Here we simply applied

Markov’s Theorem to the random variable, R, equal to the IQ of a random MIT

student to conclude:

Pr {R > 200} ≤ E [R]
200

=
150
200

=
3
4
.

But let’s observe an additional fact (which may be true): no MIT student has an

IQ less than 100. This means that if we let T ::=R− 100, then T is nonnegative and

E [T] = 50, so we can apply Markov’s Theorem to T and conclude:

Pr {R > 200} = Pr {T > 100} ≤ E [T]
100

=
50
100

=
1
2
.

So only half, not 3/4, of the students can be as amazing as they think they are. A

bit of a relief!

More generally, we can get better bounds applying Markov’s Theorem to R− l

17.2. MARKOV’S THEOREM 949

instead of R for any lower bound l > 0 on R.

Similarly, if we have any upper bound, u, on a random variable, S, then u − S

will be a nonnegative random variable, and applying Markov’s Theorem to u− S

will allow us to bound the probability that S is much less than its expectation.

EDITING NOTE:

Why R Must be Nonnegative

Remember that Markov’s Theorem applies only to nonnegative random variables!

The following example shows that the theorem is false if this restriction is re-

moved. Let R be -10 with probability 1/2 and 10 with probability 1/2. Then we

have:

E [R] = −10 · 1
2

+ 10 · 1
2

= 0

Suppose that we now tried to compute Pr {R ≥ 5} using Markov’s Theorem:

Pr {R ≥ 5} ≤ E [R]
5

=
0
5

= 0.

This is the wrong answer! Obviously, R is at least 5 with probability 1/2.

950 CHAPTER 17. DEVIATION FROM THE MEAN

On the other hand, we can still apply Markov’s Theorem indirectly to derive a

bound on the probability that an arbitrary variable like R is 5 more. Namely, given

any random variable, R with expectation 0 and values ≥ −10, we can conclude

that Pr {R ≥ 5} ≤ 2/3.

Proof. Let T ::= R + 10. Now T is a nonnegative random variable with expec-

tation E [R+ 10] = E [R] + 10 = 10, so Markov’s Theorem applies and tells us

that Pr {T ≥ 15} ≤ 10/15 = 2/3. But T ≥ 15 iff R ≥ 5, so Pr {R ≥ 5} ≤ 2/3, as

claimed. �

Deviation Below the Mean

Markov’s Theorem says that a random variable is unlikely to greatly exceed the

mean. Correspondingly, there is a theorem that says a random variable is unlikely

to be much smaller than its mean.

Theorem 17.2.5. Let l be a real number and let R be a random variable such that R ≤ l.

17.2. MARKOV’S THEOREM 951

For all x < l, we have:

Pr {R ≤ x} ≤ l − E [R]
l − x

.

Proof. The event that R ≤ x is the same as the event that l −R ≥ l − x. Therefore:

Pr {R ≤ x} = Pr {l −R ≥ l − x}

≤ E [l −R]
l − x

. (by Markov’ Theorem) (17.3)

Applying Markov’s Theorem in line (17.3) is permissible since l −R is a nonnega-

tive random variable and l − x > 0. �

For example, suppose that the class average on a midterm was 75/100. What

fraction of the class scored below 50?

There is not enough information here to answer the question exactly, but The-

orem 17.2.5 gives an upper bound. Let R be the score of a random student. Since

100 is the highest possible score, we can set L = 100 to meet the condition in the

theorem that R ≤ L. Applying Theorem 17.2.5, we find:

Pr {R ≤ 50} ≤ 100− 75
100− 50

=
1
2
.

952 CHAPTER 17. DEVIATION FROM THE MEAN

That is, at most half of the class scored 50 or worse. This makes sense; if more

than half of the class scored 50 or worse, then the class average could not be 75,

even if everyone else scored 100. As with Markov’s Theorem, Theorem 17.2.5 often

gives weak results. In fact, based on the data given, the entire class could have

scored above 50.

�

EDITING NOTE:

Using Markov To Analyze Non-Random Events

In the previous examples, we used a theorem about a random variable to conclude

facts about non-random data. For example, we concluded that if the average score

on a test is 75, then at most 1/2 the class scored 50 or worse. There is no random-

ness in this problem, so how can we apply Theorem 17.2.5 to reach this conclusion?

The explanation is not difficult. For any set of scores S = {s1, s2, . . . , sn}, we

17.2. MARKOV’S THEOREM 953

introduce a random variable, R, such that

Pr {R = si} =
(# of students with score si)

n

We then use Theorem 17.2.5 to conclude that Pr {R ≤ 50} ≤ 1/2. To see why this

means (with certainty) that at most 1/2 of the students scored 50 or less, we observe

that

Pr {R ≤ 50} =
∑
si≤50

Pr {R = si}

=
∑
si≤50

(# of students with score si)
n

=
1
n

(# of students with score 50 or less).

So, if Pr {R ≤ 50} ≤ 1/2, then the number of students with score 50 or less is at

most n/2.

�

954 CHAPTER 17. DEVIATION FROM THE MEAN

17.2.3 Problems

Class Problems

17.3 Chebyshev’s Theorem

There’s a really good trick for getting more mileage out of Markov’s Theorem:

instead of applying it to the variable, R, apply it to some function of R. One useful

choice of functions to use turns out to be taking a power of |R|.

In particular, since |R|α is nonnegative, Markov’s inequality also applies to the

event [|R|α ≥ xα]. But this event is equivalent to the event [|R| ≥ x], so we have:

Lemma 17.3.1. For any random variable R, α ∈ R+, and x > 0,

Pr {|R| ≥ x} ≤ E [|R|α]
xα

.

Rephrasing (17.3.1) in terms of the random variable, |R− E [R]|, that measures

R’s deviation from its mean, we get

Pr {|R− E [R]| ≥ x} ≤ E [(R− E [R])α]
xα

. (17.4)

17.3. CHEBYSHEV’S THEOREM 955

The case when α = 2 is turns out to be so important that numerator of the right

hand side of (17.4) has been given a name:

Definition 17.3.2. The variance, Var [R], of a random variable, R, is:

Var [R] ::= E
[
(R− E [R])2

]
.

The restatement of (17.4) for α = 2 is known as Chebyshev’s Theorem.

Theorem 17.3.3 (Chebyshev). Let R be a random variable and x ∈ R+. Then

Pr {|R− E [R]| ≥ x} ≤ Var [R]
x2

.

The expression E
[
(R− E [R])2

]
for variance is a bit cryptic; the best approach

is to work through it from the inside out. The innermost expression, R − E [R], is

precisely the deviation of R above its mean. Squaring this, we obtain, (R−E [R])2.

This is a random variable that is near 0 when R is close to the mean and is a large

positive number when R deviates far above or below the mean. So if R is always

close to the mean, then the variance will be small. If R is often far from the mean,

then the variance will be large.

956 CHAPTER 17. DEVIATION FROM THE MEAN

17.3.1 Variance in Two Gambling Games

The relevance of variance is apparent when we compare the following two gam-

bling games.

Game A: We win $2 with probability 2/3 and lose $1 with probability 1/3.

Game B: We win $1002 with probability 2/3 and lose $2001 with probability

1/3.

Which game is better financially? We have the same probability, 2/3, of win-

ning each game, but that does not tell the whole story. What about the expected

return for each game? Let random variables A and B be the payoffs for the two

games. For example, A is 2 with probability 2/3 and -1 with probability 1/3. We

can compute the expected payoff for each game as follows:

E [A] = 2 · 2
3

+ (−1) · 1
3

= 1,

E [B] = 1002 · 2
3

+ (−2001) · 1
3

= 1.

The expected payoff is the same for both games, but they are obviously very

different! This difference is not apparent in their expected value, but is captured

17.3. CHEBYSHEV’S THEOREM 957

by variance. We can compute the Var [A] by working “from the inside out” as

follows:

A− E [A] =
{

1 with probability 2
3

−2 with probability 1
3

(A− E [A])2 =
{

1 with probability 2
3

4 with probability 1
3

E
[
(A− E [A])2

]
= 1 · 2

3
+ 4 · 1

3

Var [A] = 2.

Similarly, we have for Var [B]:

B − E [B] =
{

1001 with probability 2
3

−2002 with probability 1
3

(B − E [B])2 =
{

1, 002, 001 with probability 2
3

4, 008, 004 with probability 1
3

E
[
(B − E [B])2

]
= 1, 002, 001 · 2

3
+ 4, 008, 004 · 1

3

Var [B] = 2, 004, 002.

The variance of Game A is 2 and the variance of Game B is more than two

million! Intuitively, this means that the payoff in Game A is usually close to the

expected value of $1, but the payoff in Game B can deviate very far from this

958 CHAPTER 17. DEVIATION FROM THE MEAN

expected value.

High variance is often associated with high risk. For example, in ten rounds

of Game A, we expect to make $10, but could conceivably lose $10 instead. On

the other hand, in ten rounds of game B, we also expect to make $10, but could

actually lose more than $20,000!

17.3.2 Standard Deviation

Because of its definition in terms of the square of a random variable, the variance of

a random variable may be very far from a typical deviation from the mean. For ex-

ample, in Game B above, the deviation from the mean is 1001 in one outcome and

-2002 in the other. But the variance is a whopping 2,004,002. From a dimensional

analysis viewpoint, the “units” of variance are wrong: if the random variable is in

dollars, then the expectation is also in dollars, but the variance is in square dollars.

For this reason, people often describe random variables using standard deviation

instead of variance.

17.3. CHEBYSHEV’S THEOREM 959

Definition 17.3.4. The standard deviation, σR, of a random variable, R, is the square

root of the variance:

σR ::=
√

Var [R] =
√

E [(R− E [R])2].

So the standard deviation is the square root of the mean of the square of the

deviation, or the root mean square for short. It has the same units —dollars in our

example —as the original random variable and as the mean. Intuitively, it mea-

sures the average deviation from the mean, since we can think of the square root

on the outside as canceling the square on the inside.

Example 17.3.5. The standard deviation of the payoff in Game B is:

σB =
√

Var [B] =
√

2, 004, 002 ≈ 1416.

The random variable B actually deviates from the mean by either positive 1001

or negative 2002; therefore, the standard deviation of 1416 describes this situation

reasonably well.

Intuitively, the standard deviation measures the “width” of the “main part” of

the distribution graph, as illustrated in Figure 17.4.

960 CHAPTER 17. DEVIATION FROM THE MEAN

mean

0 100stdev

Figure 17.4: The standard deviation of a distribution indicates how wide the “main

part” of it is.

It’s useful to rephrase Chebyshev’s Theorem in terms of standard deviation.

Corollary 17.3.6. Let R be a random variable, and let c be a positive real number.

Pr {|R− E [R]| ≥ cσR} ≤
1
c2
.

Here we see explicitly how the “likely” values of R are clustered in an O(σR)-

sized region around E [R], confirming that the standard deviation measures how

spread out the distribution of R is around its mean.

17.3. CHEBYSHEV’S THEOREM 961

Proof. Substituting x = cσR in Chebyshev’s Theorem gives:

Pr {|R− E [R]| ≥ cσR} ≤
Var [R]
(cσR)2

=
σ2
R

(cσR)2
=

1
c2
.

�

The IQ Example

Suppose that, in addition to the national average IQ being 100, we also know the

standard deviation of IQ’s is 10. How rare is an IQ of 300 or more?

Let the random variable, R, be the IQ of a random person. So we are sup-

posing that E [R] = 100, σR = 10, and R is nonnegative. We want to compute

Pr {R ≥ 300}.

We have already seen that Markov’s Theorem 17.2.3 gives a coarse bound,

namely,

Pr {R ≥ 300} ≤ 1
3
.

Now we apply Chebyshev’s Theorem to the same problem:

Pr {R ≥ 300} = Pr {|R− 100| ≥ 200} ≤ Var [R]
2002

=
102

2002
=

1
400

.

962 CHAPTER 17. DEVIATION FROM THE MEAN

So Chebyshev’s Theorem implies that at most one person in four hundred has

an IQ of 300 or more. We have gotten a much tighter bound using the additional

information, namely the variance of R, than we could get knowing only the expec-

tation.

17.4 Properties of Variance

The definition of variance of R as E
[
(R− E [R])2

]
may seem rather arbitrary.

EDITING NOTE:

The variance is the average of the square of the deviation from the mean. For

this reason, variance is sometimes called the “mean squared deviation.” But why

bother squaring? Why not simply compute the average deviation from the mean?

That is, why not define variance to be E [R− E [R]]?

The problem with this definition is that the positive and negative deviations

from the mean exactly cancel. By linearity of expectation, we have:

E [R− E [R]] = E [R]− E [E [R]] .

17.4. PROPERTIES OF VARIANCE 963

Since E [R] is a constant, its expected value is itself. Therefore

E [R− E [R]] = E [R]− E [R] = 0.

By this definition, every random variable has zero variance. That is not useful!

Because of the square in the conventional definition, both positive and negative

deviations from the mean increase the variance; positive and negative deviations

do not cancel.

Of course, we could also prevent positive and negative deviations from cancel-

ing by taking an absolute value. �

A direct measure of average deviation would be E [|R− E [R]|]. But the direct

measure doesn’t have the many useful properties that variance has, which is what

this section is about.

17.4.1 A Formula for Variance

Applying linearity of expectation to the formula for variance yields a convenient

alternative formula.

964 CHAPTER 17. DEVIATION FROM THE MEAN

Lemma 17.4.1.

Var [R] = E
[
R2
]
− E2 [R] ,

for any random variable, R.

Here we use the notation E2 [R] as shorthand for (E [R])2.

EDITING NOTE: Remember that E
[
R2
]

is generally not equal to E2 [R]. We

know the expected value of a product is the product of the expected values for

independent variables, but not in general. And R is not independent of itself un-

less it is constant.

�

17.4. PROPERTIES OF VARIANCE 965

Proof. Let µ = E [R]. Then

Var [R] = E
[
(R− E [R])2

]
(Def 17.3.2 of variance)

= E
[
(R− µ)2

]
(def of µ)

= E
[
R2 − 2µR+ µ2

]

= E
[
R2
]
− 2µE [R] + µ2 (linearity of expectation)

= E
[
R2
]
− 2µ2 + µ2 (def of µ)

= E
[
R2
]
− µ2

= E
[
R2
]
− E2 [R] . (def of µ)

�

For example, if B is a Bernoulli variable where p ::= Pr {B = 1}, then

Lemma 17.4.2.

Var [B] = p− p2 = p(1− p). (17.5)

Proof. By Lemma 16.3.3, E [B] = p. But since B only takes values 0 and 1, B2 = B.

So Lemma 17.4.2 follows immediately from Lemma 17.4.1. �

966 CHAPTER 17. DEVIATION FROM THE MEAN

17.4.2 Variance of Time to Failure

According to section 16.3.3, the mean time to failure is 1/p for a process that fails

during any given hour with probability p. What about the variance? That is, let

C be the hour of the first failure, so Pr {C = i} = (1 − p)i−1p. We’d like to find a

formula for Var [C].

By Lemma 17.4.1,

Var [C] = E
[
C2
]
− (1/p)2 (17.6)

so all we need is a formula for E
[
C2
]
:

E
[
C2
]

::=
∑
i≥1

i2(1− p)i−1p

= p
∑
i≥1

i2xi−1 (where x = 1− p). (17.7)

But (13.2) gives the generating function x(1+x)/(1−x)3 for the nonnegative integer

squares, and this implies that the generating function for the sum in (17.7) is (1 +

17.4. PROPERTIES OF VARIANCE 967

x)/(1− x)3. So,

E
[
C2
]

= p
(1 + x)
(1− x)3

(where x = 1− p)

= p
2 + p

p3

=
1− p
p2

+
1
p2
, (17.8)

Combining (17.6) and (17.8) gives a simple answer:

Var [C] =
1− p
p2

. (17.9)

It’s great to be able to apply generating function expertise to knock off equa-

tion (17.9) mechanically just from the definition of variance, but there’s a more

elementary, and memorable, alternative. In section 16.3.3 we used conditional ex-

pectation to find the mean time to failure, and a similar approach works for the

variance. Namely, the expected value of C2 is the probability, p, of failure in the

first hour times 12, plus (1− p) times the expected value of (C + 1)2. So

E
[
C2
]

= p · 12 + (1− p) E
[
(C + 1)2

]

= p+ (1− p)
(

E
[
C2
]

+
2
p

+ 1
)
,

968 CHAPTER 17. DEVIATION FROM THE MEAN

which directly simplifies to (17.8).

EDITING NOTE:

Lemma 17.4.1 gives a convenient way to compute the variance of a random

variable: find the expected value of the square and subtract the square of the ex-

pected value. For example, we can compute the variance of the outcome of a fair

die as follows:

E
[
R2
]

=
1
6

(12 + 22 + 32 + 42 + 52 + 62) =
91
6
,

E2 [R] =
(

3
1
2

)2

=
49
4
,

Var [R] = E
[
R2
]
− E2 [R] =

91
6
− 49

4
=

35
12
.

This result is particularly useful when we want to estimate the variance of a

random variable from a sequence x1, x2, . . . , xn, of sample values of the variable.

Definition. For any sequence of real numbers x1, x2, . . . , xn, define the sample

17.4. PROPERTIES OF VARIANCE 969

mean, µn, and the sample variance, vn, of the sequence to be:

µn ::=
∑n
i=1 xi
n

,

vn ::=
∑n
i=1(xi − µn)2

n
.

Notice that if we define a random variable, R, which is equally likely to take

each of the values in the sequence, that is Pr {R = xi} = 1/n for i = 1, . . . , n, then

µn = E [R] and vn = Var [R]. So Lemma 17.4.1 applies to R and lets us conclude

that

vn =
∑n
i=1 x

2
i

n
−
(∑n

i=1 xi
n

)2

. (17.10)

This leads to a simple procedure for computing the sample mean and variance

while reading the sequence x1, . . . , xn from left to right. Namely, maintain a sum

of all numbers seen and also maintain a sum of the squares of all numbers seen.

That is, we store two values, starting with the values x1 and x2
1. Then, as we get to

the next number, xi, we add it to the first sum and add its square, x2
i , to the second

sum. After a single pass through the sequence x1, . . . , xn, we wind up with the

values of the two sums
∑n
i=1 xi and

∑n
i=1 x

2
i . Then we just plug these two values

970 CHAPTER 17. DEVIATION FROM THE MEAN

into (17.10) to find the sample variance.

�

EDITING NOTE:

Expectation Squared

The alternate definition of variance given in Lemma 17.4.1 has a cute implication:

Corollary 17.4.3. If R is a random variable, then E
[
R2
]
≥ E2 [R].

Proof. We first defined Var [R] as an average of a squared expression, so Var [R] is

nonnegative. Then we proved that Var [R] = E
[
R2
]
− E2 [R]. This implies that

E
[
R2
]
− E2 [R] is nonnegative. Therefore, E

[
R2
]
≥ E2 [R]. �

In words, the expectation of a square is at least the square of the expectation.

The two are equal exactly when the variance is zero:

E
[
R2
]

= E2 [R] iff E
[
R2
]
− E2 [R] = 0 iff Var [R] = 0.

�

17.4. PROPERTIES OF VARIANCE 971

EDITING NOTE:

Zero Variance

When does a random variable,R, have zero variance?. . . when the random variable

never deviates from the mean!

Lemma. The variance of a random variable, R, is zero if and only if Pr {R = E [R]} = 1.

So saying that Var [R] = 0 is almost the same as saying that R is constant.

Namely, it takes the constant value equal to its expectation on all sample points

with nonzero probability. (It can take on any finite values on sample points with

zero probability without affecting the variance.)

Proof. By the definition of variance,

Var [R] = 0 iff E
[
(R− E [R])2

]
= 0.

The inner expression on the right, (R − E [R])2, is always nonnegative because of

the square. As a result, E
[
(R− E [R])2

]
= 0 if and only if Pr

{
(R− E [R])2 6= 0

}
is

972 CHAPTER 17. DEVIATION FROM THE MEAN

zero, which is the same as saying that Pr
{

(R− E [R])2 = 0
}

is one. That is,

Var [R] = 0 IFF Pr
{

(R− E [R])2 = 0
}

= 1.

But the (R−E [R])2 = 0 and R = E [R] are different descriptions of the same event.

Therefore,

Var [R] = 0 iff Pr {R = E [R]} = 1.

�

�

17.4.3 Dealing with Constants

It helps to know how to calculate the variance of aR+ b:

Theorem 17.4.4. Let R be a random variable, and a a constant. Then

Var [aR] = a2 Var [R] . (17.11)

Proof. Beginning with the definition of variance and repeatedly applying linearity

17.4. PROPERTIES OF VARIANCE 973

of expectation, we have:

Var [aR] ::= E
[
(aR− E [aR])2

]

= E
[
(aR)2 − 2aRE [aR] + E2 [aR]

]

= E
[
(aR)2

]
− E [2aRE [aR]] + E2 [aR]

= a2 E
[
R2
]
− 2 E [aR] E [aR] + E2 [aR]

= a2 E
[
R2
]
− a2E2 [R]

= a2
(
E
[
R2
]
− E2 [R]

)

= a2 Var [R] (by Lemma 17.4.1)

�

It’s even simpler to prove that adding a constant does not change the variance,

as the reader can verify:

Theorem 17.4.5. Let R be a random variable, and b a constant. Then

Var [R+ b] = Var [R] . (17.12)

974 CHAPTER 17. DEVIATION FROM THE MEAN

Recalling that the standard deviation is the square root of variance, this implies

that the standard deviation of aR + b is simply |a| times the standard deviation of

R:

Corollary 17.4.6.

σaR+b = |a|σR.

17.4.4 Variance of a Sum

In general, the variance of a sum is not equal to the sum of the variances, but

variances do add for independent variables. In fact, mutual independence is not

necessary: pairwise independence will do. This is useful to know because there are

some important situations involving variables that are pairwise independent but

not mutually independent.

Theorem 17.4.7. If R1 and R2 are independent random variables, then

Var [R1 +R2] = Var [R1] + Var [R2] . (17.13)

Proof. We may assume that E [Ri] = 0 for i = 1, 2, since we could always replace

17.4. PROPERTIES OF VARIANCE 975

Ri by Ri−E [Ri] in equation (17.13). This substitution preserves the independence

of the variables, and by Theorem 17.4.5, does not change the variances.

Now by Lemma 17.4.1, Var [Ri] = E
[
R2
i

]
and Var [R1 +R2] = E

[
(R1 +R2)2

]
,

so we need only prove

E
[
(R1 +R2)2

]
= E

[
R2

1

]
+ E

[
R2

2

]
. (17.14)

But (17.17) follows from linearity of expectation and the fact that

E [R1R2] = E [R1] E [R2] (17.15)

since R1 and R2 are independent:

E
[
(R1 +R2)2

]
= E

[
R2

1 + 2R1R2 +R2
2

]

= E
[
R2

1

]
+ 2 E [R1R2] + E

[
R2

2

]

= E
[
R2

1

]
+ 2 E [R1] E [R2] + E

[
R2

2

]
(by (17.18))

= E
[
R2

1

]
+ 2 · 0 · 0 + E

[
R2

2

]

= E
[
R2

1

]
+ E

[
R2

2

]

�

976 CHAPTER 17. DEVIATION FROM THE MEAN

An independence condition is necessary. If we ignored independence, then we

would conclude that Var [R+R] = Var [R] + Var [R]. However, by Theorem 17.4.4,

the left side is equal to 4 Var [R], whereas the right side is 2 Var [R]. This implies that

Var [R] = 0, which, by the Lemma above, essentially only holds if R is constant.

The proof of Theorem 17.4.7 carries over straightforwardly to the sum of any

finite number of variables. So we have:

Theorem 17.4.8. [Pairwise Independent Additivity of Variance] If R1, R2, . . . , Rn are

pairwise independent random variables, then

Var [R1 +R2 + · · ·+Rn] = Var [R1] + Var [R2] + · · ·+ Var [Rn] . (17.16)

EDITING NOTE:

Proof. We may assume that E [Ri] = 0 for i = 1, . . . , n, since we could always re-

place Ri by (Ri − E [Ri]) in equation (17.16). This substitution preserves the inde-

pendence of the variables, and by Theorem 17.4.5, does not change the variances.

17.4. PROPERTIES OF VARIANCE 977

Now by Lemma 17.4.1, Var [Ri] = E
[
R2
i

]
and

Var [R1 +R2 + · · ·+Rn] = E
[
(R1 +R2 + · · ·+Rn)2

]
,

so we need only prove

E
[
(R1 +R2 + · · ·+Rn)2

]
= E

[
R2

1

]
+ E

[
R2

2

]
+ · · ·+ E

[
R2
n

]
(17.17)

But (17.17) follows from linearity of expectation and the fact that

E [RiRj] = E [Ri] E [Rj] = 0 · 0 = 0 (17.18)

for i 6= j, since Ri and Rj are independent. Namely,

E
[
(R1 +R2 + · · ·+Rn)2

]
= E

 ∑
1≤i,j≤n

RiRj



=
∑

1≤i,j≤n

E [RiRj] linearity of E []

=
∑

1≤i≤n

E
[
R2
i

]
+

∑
1≤i6=j≤n

E [RiRj] (rearranging the sum)

=
∑

1≤i≤n

E
[
R2
i

]
+

∑
1≤i6=j≤n

0 (by (17.18))

= E
[
R2

1

]
+ E

[
R2

2

]
+ · · ·+ E

[
R2
n

]
.

�

978 CHAPTER 17. DEVIATION FROM THE MEAN

�

Now we have a simple way of computing the variance of a variable, J , that

has an (n, p)-binomial distribution. We know that J =
∑n
k=1 Ik where the Ik are

mutually independent indicator variables with Pr {Ik = 1} = p. The variance of

each Ik is p(1− p) by Lemma 17.4.2, so by linearity of variance, we have

Lemma (Variance of the Binomial Distribution). If J has the (n, p)-binomial distribu-

tion, then

Var [J] = nVar [Ik] = np(1− p). (17.19)

17.5. ESTIMATION BY RANDOM SAMPLING 979

17.4.5 Problems

Practice Problems

Class Problems

Homework Problems

17.5 Estimation by Random Sampling

Polling again

EDITING NOTE:

This paragraph reflects an alternative exposition where polling estimation and

confidence were based only on binomial distribution properties, even before ex-

pectation was introduced.

In Chapter [none], we used bounds on the binomial distribution to determine

confidence levels for a poll of voter preferences of Franken vs. Coleman. Now

that we know the variance of the binomial distribution, we can use Chebyshev’s

980 CHAPTER 17. DEVIATION FROM THE MEAN

Theorem as an alternative approach to calculate poll size.

The setup is the same as in Chapter [none] �

Suppose we had wanted an advance estimate of the fraction of the Massachusetts

voters who favored Scott Brown over everyone else in the recent Democratic pri-

mary election to fill Senator Edward Kennedy’s seat.

Let p be this unknown fraction, and let’s suppose we have some random pro-

cess —say throwing darts at voter registration lists —which will select each voter

with equal probability. We can define a Bernoulli variable, K, by the rule that

K = 1 if the random voter most prefers Brown, and K = 0 otherwise.

Now to estimate p, we take a large number, n, of random choices of voters1

and count the fraction who favor Brown. That is, we define variables K1,K2, . . . ,

where Ki is interpreted to be the indicator variable for the event that the ith cho-

1We’re choosing a random voter n times with replacement. That is, we don’t remove a chosen voter

from the set of voters eligible to be chosen later; so we might choose the same voter more than once in

n tries! We would get a slightly better estimate if we required n different people to be chosen, but doing

so complicates both the selection process and its analysis, with little gain in accuracy.

17.5. ESTIMATION BY RANDOM SAMPLING 981

sen voter prefers Brown. Since our choices are made independently, the Ki’s are

independent. So formally, we model our estimation process by simply assuming

we have mutually independent Bernoulli variablesK1,K2, . . . , each with the same

probability, p, of being equal to 1. Now let Sn be their sum, that is,

Sn ::=
n∑
i=1

Ki. (17.20)

So Sn has the binomial distribution with parameter n, which we can choose, and

unknown parameter p.

The variable Sn/n describes the fraction of voters we will sample who favor

Scott Brown. Most people intuitively expect this sample fraction to give a useful

approximation to the unknown fraction, p —and they would be right. So we will

use the sample value, Sn/n, as our statistical estimate of p and use the Pairwise

Independent Sampling Theorem 17.5.1 to work out how good an estinate this is.

982 CHAPTER 17. DEVIATION FROM THE MEAN

17.5.1 Sampling

Suppose we want our estimate to be within 0.04 of the Brown favoring fraction, p,

at least 95% of the time. This means we want

Pr
{∣∣∣∣Snn − p

∣∣∣∣ ≤ 0.04
}
≥ 0.95 . (17.21)

So we better determine the number, n, of times we must poll voters so that inequal-

ity (17.21) will hold.

EDITING NOTE: the value, Sn/n, of our estimate will, with probability at least

1− δ, be within ε of the actual fraction in the nation favoring Brown.

We let ε be the margin of error we can tolerate, and let δ be the probability that

our result lies outside this margin, so in this case we’d have ε = 0.04 and δ ≤ 0.05.

We want to determine the number, n, of times we must poll voters so that the

value, Sn/n, of our estimate will, with probability at least 1 − δ, be within ε of the

actual fraction in the nation favoring Brown. �

17.5. ESTIMATION BY RANDOM SAMPLING 983

Now Sn is binomially distributed, so from (17.19) we have

Var [Sn] = n(p(1− p)) ≤ n · 1
4

=
n

4

The bound of 1/4 follows from the fact that p(1− p) is maximized when p = 1− p,

that is, when p = 1/2 (check this yourself!).

Next, we bound the variance of Sn/n:

Var
[
Sn
n

]
=
(

1
n

)2

Var [Sn] (by (17.11))

≤
(

1
n

)2
n

4
(by (17.5.1))

=
1

4n
(17.22)

Now from Chebyshev and (17.22) we have:

Pr
{∣∣∣∣Snn − p

∣∣∣∣ ≥ 0.04
}
≤ Var [Sn/n]

(0.04)2
=

1
4n(0.04)2

=
156.25
n

(17.23)

To make our our estimate with 95% confidence, we want the righthand side

of (17.23) to be at most 1/20. So we choose n so that

156.25
n

≤ 1
20
,

984 CHAPTER 17. DEVIATION FROM THE MEAN

that is,

n ≥ 3, 125.

A more exact calculation of the tail of this binomial distribution shows that the

above sample size is about four times larger than necessary, but it is still a feasible

size to sample. The fact that the sample size derived using Chebyshev’s Theorem

was unduly pessimistic should not be surprising. After all, in applying the Cheby-

shev Theorem, we only used the variance of Sn. It makes sense that more detailed

information about the distribution leads to better bounds. But working through

this example using only the variance has the virtue of illustrating an approach to

estimation that is applicable to arbitrary random variables, not just binomial vari-

ables.

17.5.2 Matching Birthdays

There are important cases where the relevant distributions are not binomial be-

cause the mutual independence properties of the voter preference example do not

17.5. ESTIMATION BY RANDOM SAMPLING 985

hold. In these cases, estimation methods based on the Chebyshev bound may

be the best approach. Birthday Matching is an example. We already saw in Sec-

tion 14.5 that in a class of 85 students it is virtually certain that two or more stu-

dents will have the same birthday. This suggests that quite a few pairs of students

are likely to have the same birthday. How many?

So as before, suppose there are n students and d days in the year, and let D be

the number of pairs of students with the same birthday. Now it will be easy to

calculate the expected number of pairs of students with matching birthdays. Then

we can take the same approach as we did in estimating voter preferences to get

an estimate of the probability of getting a number of pairs close to the expected

number.

Unlike the situation with voter preferences, having matching birthdays for dif-

ferent pairs of students are not mutually independent events, but the matchings

are pairwise independent, as explained in Section 14.5. as we did for voter preference.

Namely, letB1, B2, . . . , Bn be the birthdays of n independently chosen people, and

986 CHAPTER 17. DEVIATION FROM THE MEAN

let Ei,j be the indicator variable for the event that the ith and jth people chosen

have the same birthdays, that is, the event [Bi = Bj]. So our probability model,

the Bi’s are mutually independent variables, the Ei,j ’s are pairwise independent.

Also, the expectations of Ei,j for i 6= j equals the probability that Bi = Bj , namely,

1/d.

Now, D, the number of matching pairs of birthdays among the n choices is

simply the sum of the Ei,j ’s:

D ::=
∑

1≤i<j≤n

Ei,j . (17.24)

So by linearity of expectation

E [D] = E

 ∑
1≤i<j≤n

Ei,j

 =
∑

1≤i<j≤n

E [Ei,j] =
(
n

2

)
· 1
d
.

Similarly,

Var [D] = Var

 ∑
1≤i<j≤n

Ei,j


=

∑
1≤i<j≤n

Var [Ei,j] (by Theorem 17.4.8)

=
(
n

2

)
· 1
d

(
1− 1

d

)
. (byLemma 17.4.2)

17.5. ESTIMATION BY RANDOM SAMPLING 987

In particular, for a class of n = 85 students with d = 365 possible birthdays, we

have E [D] ≈ 9.7 and Var [D] < 9.7(1− 1/365) < 9.7. So by Chebyshev’s Theorem

Pr {|D − 9.7| ≥ x} < 9.7
x2
.

Letting x = 5, we conclude that there is a better than 50% chance that in a

class of 85 students, the number of pairs of students with the same birthday will

be between 5 and 14.

17.5.3 Pairwise Independent Sampling

The reasoning we used above to analyze voter polling and matching birthdays is

very similar. We summarize it in slightly more general form with a basic result we

call the Pairwise Independent Sampling Theorem. In particular, we do not need

to restrict ourselves to sums of zero-one valued variables, or to variables with the

same distribution. For simplicity, we state the Theorem for pairwise independent

variables with possibly different distributions but with the same mean and vari-

ance.

988 CHAPTER 17. DEVIATION FROM THE MEAN

Theorem 17.5.1 (Pairwise Independent Sampling). Let G1, . . . , Gn be pairwise inde-

pendent variables with the same mean, µ, and deviation, σ. Define

Sn ::=
n∑
i=1

Gi. (17.25)

Then

Pr
{∣∣∣∣Snn − µ

∣∣∣∣ ≥ x} ≤ 1
n

(σ
x

)2

.

Proof. We observe first that the expectation of Sn/n is µ:

E
[
Sn
n

]
= E

[∑n
i=1Gi
n

]
(def of Sn)

=
∑n
i=1 E [Gi]
n

(linearity of expectation)

=
∑n
i=1 µ

n

=
nµ

n
= µ.

The second important property of Sn/n is that its variance is the variance of Gi

17.5. ESTIMATION BY RANDOM SAMPLING 989

divided by n:

Var
[
Sn
n

]
=
(

1
n

)2

Var [Sn] (by (17.11))

=
1
n2

Var

[
n∑
i=1

Gi

]
(def of Sn)

=
1
n2

n∑
i=1

Var [Gi] (pairwise independent additivity)

=
1
n2
· nσ2 =

σ2

n
. (17.26)

This is enough to apply Chebyshev’s Theorem and conclude:

Pr
{∣∣∣∣Snn − µ

∣∣∣∣ ≥ x} ≤ Var [Sn/n]
x2

. (Chebyshev’s bound)

=
σ2/n

x2
(by (17.26))

=
1
n

(σ
x

)2

.

�

The Pairwise Independent Sampling Theorem provides a precise general state-

ment about how the average of independent samples of a random variable ap-

proaches the mean. In particular, it proves what is known as the Law of Large

990 CHAPTER 17. DEVIATION FROM THE MEAN

Numbers2 : by choosing a large enough sample size, we can get arbitrarily accu-

rate estimates of the mean with confidence arbitrarily close to 100%.

Corollary 17.5.2. [Weak Law of Large Numbers] LetG1, . . . , Gn be pairwise independent

variables with the same mean, µ, and the same finite deviation, and let

Sn ::=
∑n
i=1Gi
n

.

Then for every ε > 0,

lim
n→∞

Pr {|Sn − µ| ≤ ε} = 1.

17.6 Confidence versus Probability

So Chebyshev’s Bound implies that sampling 3,125 voters will yield a fraction that,

95% of the time, is within 0.04 of the actual fraction of the voting population who

prefer Brown.

EDITING NOTE: Estimates of the binomial distribution show that a sample size

2This is the Weak Law of Large Numbers. As you might suppose, there is also a Strong Law, but it’s

outside the scope of this text.

17.6. CONFIDENCE VERSUS PROBABILITY 991

around 664 would do. �

Notice that the actual size of the voting population was never considered be-

cause it did not matter. People who have not studied probability theory often insist

that the population size should matter. But our analysis shows that polling a little

over 3000 people people is always sufficient, whether there are ten thousand, or

million, or billion . . . voters. You should think about an intuitive explanation that

might persuade someone who thinks population size matters.

Now suppose a pollster actually takes a sample of 3,125 random voters to es-

timate the fraction of voters who prefer Brown, and the pollster finds that 1250 of

them prefer Brown. It’s tempting, but sloppy, to say that this means:

False Claim. With probability 0.95, the fraction, p, of voters who prefer Brown is 1250/3125±

0.04. Since 1250/3125− 0.04 > 1/3, there is a 95% chance that more than a third of the

voters prefer Brown to all other candidates.

What’s objectionable about this statement is that it talks about the probability

or “chance” that a real world fact is true, namely that the actual fraction, p, of

992 CHAPTER 17. DEVIATION FROM THE MEAN

voters favoring Brown is more than 1/3. But p is what it is, and it simply makes no

sense to talk about the probability that it is something else. For example, suppose

p is actually 0.3; then it’s nonsense to ask about the probability that it is within 0.04

of 1250/3125 —it simply isn’t.

This example of voter preference is typical: we want to estimate a fixed, un-

known real-world quantity. But being unknown does not make this quantity a random

variable, so it makes no sense to talk about the probability that it has some property.

A more careful summary of what we have accomplished goes this way:

We have described a probabilistic procedure for estimating the value of

the actual fraction, p. The probability that our estimation procedure will

yield a value within 0.04 of p is 0.95.

This is a bit of a mouthful, so special phrasing closer to the sloppy language is

commonly used. The pollster would describe his conclusion by saying that

At the 95% confidence level, the fraction of voters who prefer Brown is

1250/3125± 0.04.

17.7. THE CHERNOFF BOUND 993

So confidence levels refer to the results of estimation procedures for real-world

quantities. The phrase “confidence level” should be heard as a reminder that some

statistical procedure was used to obtain an estimate, and in judging the credibility

of the estimate, it may be important to learn just what this procedure was.

EDITING NOTE: Maybe include example from CP drug confidence here. �

17.6.1 Problems

Practice Problems

Class Problems

Exam Problems

17.7 The Chernoff Bound

Fussbook is a new social networking site oriented toward unpleasant people.

Like all major web services, Fussbook has a load balancing problem. Specif-

ically, Fussbook receives 24,000 forum posts every 10 minutes. Each post is as-

994 CHAPTER 17. DEVIATION FROM THE MEAN

signed to one of m computers for processing, and each computer works sequen-

tially through its assigned tasks. Processing an average post takes a computer 1/4

second. Some posts, such as pointless grammar critiques and snide witticisms, are

easier. But the most protracted harangues require 1 full second.

Balancing the work load across the m computers is vital; if any computer is

assigned more than 10 minutes of work in a 10-minute interval, then that com-

puter is overloaded and system performance suffers. That would be bad, because

Fussbook users are not a tolerant bunch.

An early idea was to assign each computer an alphabetic range of forum topics.

(“That oughta work!”, one programmer said.) But after the computer handling the

“privacy” and “preferred text editor” threads melted, the drawback of an ad hoc

approach was clear: there are no guarantees.

If the length of every task were known in advance, then finding a balanced

distribution would be a kind of “bin packing” problem. Such problems are hard

to solve exactly, though approximation algorithms can come close. But in this case

17.7. THE CHERNOFF BOUND 995

task lengths are not known in advance, which is typical for workload problems.

So the load balancing problem seems sort of hopeless, because there is no data

available to guide decisions. Heck, we might as well assign tasks to computers at

random!

As it turns out, random assignment not only balances load reasonably well, but

also permits provable performance guarantees in place of “That oughta work!” as-

sertions. In general, a randomized approach to a problem is worth considering

when a deterministic solution is hard to compute or requires unavailable informa-

tion.

Some arithmetic shows that Fussbook’s traffic is sufficient to keepm = 10 com-

puters running at 100% capacity with perfect load balancing. Surely, more than 10

servers are needed to cope with random fluctuations in task length and imperfect

load balance. But how many is enough? 11? 15? 20? We’ll answer that question

with a new mathematical tool.

996 CHAPTER 17. DEVIATION FROM THE MEAN

17.7.1 The Chernoff Bound

The Chernoff bound is a hammer that you can use to nail a great many problems.

Roughly, the Chernoff bound says that certain random variables are very unlikely

to significantly exceed their expectation. For example, if the expected load on a

computer is just a bit below its capacity, then that computer is unlikely to be over-

loaded, provided the conditions of the Chernoff bound are satisfied.

More precisely, the Chernoff Bound says that the sum of lots of little, indepen-

dent random variables is unlikely to significantly exceed the mean. The Markov and

Chebychev bounds lead to the same kind of conclusion but typically provide much

weaker conclusions.

EDITING NOTE: In particular, the Markov and Chebychev bounds are polyno-

mial, while the Chernoff bound is exponential. �

Here is the theorem. The proof is at the end of the chapter.

Theorem 17.7.1 (Chernoff Bound). Let T1, . . . Tn be mutually independent random

17.7. THE CHERNOFF BOUND 997

variables such that 0 ≤ Ti ≤ 1 for all i. Let T = T1 + · · ·+ Tn. Then for all c ≥ 1,

Pr {T ≥ cE [T]} ≤ e−k E[T] (17.27)

where k = c ln c− c+ 1.

The Chernoff bound applies only to distributions of sums of independent ran-

dom variables that take on values in the interval [0, 1]. The binomial distribution is

of course such a distribution, but are lots of other distributions because the Cher-

noff bound allows the variables in the sum to have differing, arbitrary, and even

unknown distributions over the range [0, 1]. Furthermore, there is no direct de-

pendence on the number of random variables in the sum or their expectations. In

short, the Chernoff bound gives strong results for lots of problems based on little

information —no wonder it is widely used!

A Simple Example

The Chernoff bound is pretty easy to apply, though the details can be daunting at

first. Let’s walk through a simple example to get the hang of it.

998 CHAPTER 17. DEVIATION FROM THE MEAN

What are the odds that the number of heads that come up in 1000 independent

tosses of a fair coin exceeds the expectation by 20% or more? Let Ti be an indicator

variable for the event that the i-th coin is heads. Then the total number of heads is

T = T1 + · · ·+ T1000. The Chernoff bound requires that the random variables Ti be

mututally independent and take on values in the range [0, 1]. Both conditions hold

here. In fact, this example is similar to many applications of the Chernoff bound in

that every Ti is either 0 or 1, since they’re indicators.

The goal is to bound the probability that the number of heads exceeds its ex-

pectation by 20% or more; that is, to bound Pr {T ≥ cE [T]} where c = 1.2. To that

end, we compute k as defined in the theorem:

k = c ln c− c+ 1 = 0.0187 . . .

Plugging this value into the Chernoff bound gives:

Pr {T ≥ 1.2 E [T]} ≤ e−k E[T]

= e−(0.0187...)·500

< 0.0000834

17.7. THE CHERNOFF BOUND 999

So the probability of getting 20% or more extra heads on 1000 coins is less than 1

in 10,000.

The bound becomes much stronger as the number of coins increases, because

the expected number of heads appears in the exponent of the upper bound. For

example, the probability of getting at least 20% extra heads on a million coins is at

most

e−(0.0187...)·500000 < e−9392

which is pretty darn small.

Alternatively, the bound also becomes stronger for larger deviations. For ex-

ample, suppose we’re interested in the odds of getting 30% or more extra heads

in 1000 tosses, rather than 20%. In that case, c = 1.3 instead of 1.2. Consequently,

the parameter k rises from 0.0187 to about 0.0410, which may seem insignificant.

But because k appears in the exponent of the upper bound, the final probability

decreases from around 1 in 10,000 to about 1 in a billion!

1000 CHAPTER 17. DEVIATION FROM THE MEAN

Pick-4

Pick-4 is a lottery game where you pick a 4-digit number between 0000 and 9999.

If your number comes up in a random drawing, then you win. Your chance of

winning is 1 in 10,000. And if 10 million people play, then the expected number of

winners is 1000. The lottery operator’s nightmare is that the number of winners is

much greater; say, 2000 or more. What are the odds of that?

Let Ti be an indicator for the event that the i-th player wins. Then T = T1 +

· · · + Tn is the total number of winners. If we assume that the players’ picks and

the winning number are independent and uniform, then the indicators Ti are in-

dependent, as required by the Chernoff bound.

EDITING NOTE: Add comment about how unrealistic these assumptions are

because people frequently play a few favorite numbers.

The assumptions would be plausible for a version where people buy tickets

with randomly assigned numbers, so they can’t pick their own number. �

Now, 2000 winners would be twice the expected number. So we choose c = 2,

17.7. THE CHERNOFF BOUND 1001

compute k = c ln c − c + 1 = 0.386 . . . , and plug these values into the Chernoff

bound:

Pr {T ≥ 2000} = Pr {T ≥ 2 E [T]}

≤ e−k E[T]

= e−(0.386...)·1000

< e−386

So there is almost no chance that the lottery operator pays out double. In fact, the

number of winners won’t even be 10% higher than expected very often. To prove

that, let c = 1.1, compute k = c ln c− c+ 1 = 0.00484 . . . , and plug in again:

Pr {T ≥ 1.1 E [T]} ≤ e−k E[T]

= e−0.00484 · · · ∗ 1000

< 0.01

So the Pick-4 lottery may be exciting for the players, but the lottery operator has

little doubt about the outcome!

1002 CHAPTER 17. DEVIATION FROM THE MEAN

17.7.2 Randomized Load Balancing

Now let’s return to Fussbook and its load balancing problem. Specifically, we need

to determine how many machines suffice to ensure that no server is overloaded;

that is, assigned to do more than 10 minutes of work in a 10-minute interval.

To begin, let’s find the probability that the first server is overloaded. Let Ti be

the number of seconds that the first server spends on the i-th task. So Ti is zero if

the task is assigned to another machine, and otherwise Ti is the length of the task.

Then T =
∑
Ti is the total length of tasks assigned to the server. We need to upper

bound Pr {T ≥ 600}; that is, the probability that the first server is assigned more

than 600 seconds (or, equivalently, 10 minutes) of work.

The Chernoff bound is applicable only if the Ti are mutually independent and

take on values in the range [0, 1]. The first condition is satisfied if we assume that

tasks lengths and assignments are independent. And the second condition is sat-

isfied because processing even the most interminable harangue takes at most 1

second.

17.7. THE CHERNOFF BOUND 1003

In all, there are 24,000 tasks each with an expected length of 1/4 second. Since

tasks are assigned to computers at random, the expected load on the first server is:

E [T] =
24, 000 tasks · 1/4 second per task

m machines

= 6000/m seconds

For example, if there are m = 10 machines, then the expected load on the first

server is 600 seconds, which is 100% of its capacity.

Now we can use the Chernoff bound to upper bound the probability that the

first server is overloaded:

Pr {T ≥ 600} = Pr {T ≥ cE [T]}

≤ e−(c ln c−c+1)·6000/m

Equality holds on the first line when c = m/10, since cE [T] = (m/10) · (6000/m) =

600. The probability that some server is overloaded is at most m times the proba-

bility that the first server is overloaded:

Pr {some server is overloaded} ≤ me−(c ln c−c+1)·6000/m

1004 CHAPTER 17. DEVIATION FROM THE MEAN

Some values of this upper bound are tabulated below:

m = 11 : 0.784 . . .
m = 12 : 0.000999 . . .
m = 13 : 0.0000000760 . . .

These values suggest that a system with m = 11 machines might suffer immediate

overload, m = 12 machines could fail in a few days, but m = 13 should be fine for

a century or two!

17.7.3 Proof of the Chernoff Bound

The proof of the Chernoff bound is somewhat involved. Heck, even Chernoff didn’t

come up with it! His friend, Herman Rubin, showed him the argument. Thinking

the bound not very significant, Chernoff did not credit Rubin in print. He felt

pretty bad when it became famous!

EDITING NOTE: References: “A Conversation with Herman Chernoff” Statisti-

cal Science 1996, Vol 11, No 4, pp 335-350.

Here is the theorem again, for reference:

Theorem 17.7.2 (Chernoff Bound). Let T1, . . . Tn be mutually independent random

17.7. THE CHERNOFF BOUND 1005

variables such that 0 ≤ Ti ≤ 1 for all i. Let T = T1 + · · ·+ Tn. Then for all c ≥ 1,

Pr {T ≥ cE [T]} ≤ e−k E[T]

where k = c ln c− c+ 1.

�

For clarity, we’ll go through the proof ”top down”; that is, we’ll use facts that

are proved immediately afterward.

Proof. The key step is to exponentiate both sides of the inequality T > cE [T] and

then apply the Markov bound.

Pr {T ≥ cE [T]} = Pr
{
cT ≥ cc E[T]

}

≤
E
[
cT
]

cc E[T]
(by Markov)

≤ e(c−1) E[T]

cc E[T]

= e−(c ln c−c+1) E[T]

In the third step, the numerator is rewritten using the inequality

E
[
cT
]
≤ e(c−1) E[T]

1006 CHAPTER 17. DEVIATION FROM THE MEAN

which is proved below in Lemma 17.7.3. The final step is simplification. (Recall

that cc is equal to ec ln c.) �

Algebra aside, there is a brilliant idea in this proof: in this context, exponenti-

ating somehow supercharges the Markov bound. This is not true in general! One

unfortunate side-effect is that we have to bound some nasty expectations involv-

ing exponentials in order to complete the proof. This is done in the two lemmas

below, where variables take on values as in Theorem 17.7.1.

Lemma 17.7.3.

E
[
cT
]
≤ e(c−1) E[T]

17.7. THE CHERNOFF BOUND 1007

Proof.

E
[
cT
]

= E
[
cT1+···+Tn

]

= E
[
cT1 · · · cTn

]

= E
[
cT1
]
· · ·E

[
cTn
]

≤ e(c−1) E[T1] · · · e(c−1) E[Tn]

= e(c−1)(E[T1]+···+E[Tn])

= e(c−1) E[T1+···+Tn]

= e(c−1) E[T]

The first step uses the definition of T , and the second is just algegra. The third step

uses the fact that the expectation of a product of independent random variables

is the product of the expectations. (This is where the requirement that the Ti be

independent is used.) Then we bound each term using the inquality

E
[
cTi
]
≤ e(c−1) E[Ti]

1008 CHAPTER 17. DEVIATION FROM THE MEAN

which is proved in Lemma 17.7.4. The last steps are simplifications using algebra

and linearity of expectation. �

Lemma 17.7.4.

E
[
cTi
]
≤ e(c−1) E[Ti]

Proof. All summations below range over values v taken on by the random variable

Ti, which are all required to be in the interval [0, 1].

E
[
cTi
]

=
∑

cv Pr {Ti = v}

≤
∑

(1 + (c− 1)v) Pr {Ti = v}

=
∑

Pr {Ti = v}+ (c− 1)v Pr {Ti = v}

=
∑

Pr {Ti = v}+
∑

(c− 1)v Pr {Ti = v}

= 1 + (c− 1)
∑

v Pr {Ti = v}

= 1 + (c− 1) E [Ti]

≤ e(c−1) E[Ti]

The first step uses the definition of expectation. The second step relies on the in-

17.7. THE CHERNOFF BOUND 1009

equality cv ≤ 1 + (c − 1)v, which holds for all v in [0, 1] and c ≥ 1. This follows

from the general principle that a convex function, namely cv , is less than the linear

function, 1 + (c − 1)v, between their points of intersection, namely v = 0 and 1.

This inequality is why the variables Ti are restricted to the interval [0, 1]. We then

multiply out inside the summation and split into two sums. The first sum adds the

probabilities of all possible outcomes, so it is equal to 1. After pulling the constant

c − 1 out of the second sum, we’re left with the definition of E [Ti]. The final step

uses the standard inequality 1 + z ≤ ez , which holds for all real z. �

EDITING NOTE: Add problems �

Index

−, set difference, 124

(k1, k2, . . . , km)-split of A, 391

<B , 201

<G, 201

Cn, 210

IE , indicator for event E, 516

K3,3, 240, 252

K5, 240, 249, 252

Kn, 191

Θ(), 363

bij, 139

|S| (size of set S), 371

C, 124

| (divides relation), 83

∅, 124

::=, 30

≡ (mod n), 103

∃, 34

E [R], expectation of R, 530

E2 [R], 571

∀, 31

Done, 333

∈, 31

inj, 139, 145

1010

INDEX 1011

Z, 124

∩, 124

λ, 132

N, 31, 124

A, 125

Z+, 31

P(A), 125

Q, 124

R, 124

R−, 124

R+, 124

∼, 360

∼ (asymptotic equality), 352

strict, 139

⊂, 124

⊆, 124

surj, 139

∪, 124

k-coloring, 231

k-combinations, 393

k-to-1 function, 385

k-way independent, 488

n+ 1-bit adder, 80

r-permutation, 389

IQ, 558, 569

while programs, 332

2-D Array, 283

2-Layer Array, 283

2-colorable, 233

2-dimensional array, 270

1012 INDEX

5-Colorability, 250

acyclic, 219

Addition Rule (for generating func-

tions), 427

adjacent, 189

Adleman, 113

Agrawal, 86

annuity, 342

antecedents, 44

antichain, 293, 295, 300

a posteriori, 479

approximations, 351

arrows, 259

assignment statement, 333

asymmetry, 288

asymptotically equal, 352

asymptotically smaller, 360

asymptotic relations, 365

average, 557

average degree, 190, 225

axiomatic method, 43

Axiom of Choice, 131

axioms, 17, 43

Banach-Tarski, 131

base case, 67

basis step, 67

Bayes’ Rule, 479

Benes̆ nets, 274

Bernoulli variable, 571

Bernoulli variables, 516

INDEX 1013

biased, 494

Big Oh, 364

bijection, 418

Bijection Rule, 371

bijective, 137

binary, 222

binary predicate, 37

binary relation, 134

binary relations, 134

binary trees, 174

binomial, 416

binomial coefficient, 417

binomial coefficients, 378

binomial distribution, 523, 537, 577

Binomial Theorem, 417, 438

bin packing, 589

bipartite graph, 232, 233, 240

bipartite matching, 233

birthday principle, 491

body, 333

Bookkeeper Rule, 442

Book Stacking, 348

Boole’s inequality, 464

Boolean variables, 20

bottleneck, 236

branches, 333

bridge, 243

buildup error, 214

busy, 550

butterfly, 271

1014 INDEX

butterfly net, 286

Cancellation, 108

Cantor, 131

Cantor’s paradise, 144

cardinality, 371

carry bit, 27

chain, 294, 299

chain of “iff”, 50

Chebyshev’s bound, 578

Chebyshev’s Theorem, 558, 567, 581,

583

Chebyshev bound, 578

Chernoff’s bound, 558

Chernoff Bound, 590

child, 222

Chinese Appetizer problem, 563

Choice axiom, 130

chromatic number, 227

Church-Turing thesis, 100

clique, 228

closed form, 343, 351, 426, 432

CML, 284, 285

codomain, 132, 134

Cohen, 131

colorable, 227

coloring, 227, 231

combinatorial proof, 371, 420, 423

complement, 125

Complement Rule, 464

complete binary tree, 265

INDEX 1015

complete bipartite, 201

complete bipartite graph, 240

complete digraph, 264

complete graph, 191

components, 131

composing, 134

composition, 134, 261, 293

conclusion, 44

conditional, 333

conditional expectation, 532, 533

conditional probability, 468

confidence level, 584

congestion, 269, 286

congestion for min-latency, 284, 285

congestion of the network, 269

congruence, 102

congruent, 103

connected, 210, 212, 215

connected components, 212

consequent, 44

consistent, 131

Continuum Hypothesis, 131

contrapositive, 23, 49

convergence, 425

converse, 23

convex function, 595

convolution, 430

Convolution Counting Principle, 442

Convolution Rule, 439

corollary, 43

1016 INDEX

countable, 142, 144

countably infinite, 142

counter model, 38

coupon collector problem, 538

cover, 262

covering edge, 262

critical path, 299, 300

crossbar, 270

cumulative distribution function (cdf),

519

cycle, 209, 261

DAG, 263

degree, 189

degree-constrained, 236, 396, 399

degree sequence, 418

depth, 299

derivative, 428

Derivative Rule, 429

describable, 149

deviation from the mean, 557

diagonal argument, 144

diameter, 266

Difference Rule, 464

digraph, 259

directed acyclic graph (DAG), 262

directed edges, 259

directed graph, 259

discrete faces, 245

disjoint, 125

Distributive Law, 37, 126

INDEX 1017

divides, 83

Division Rule, 386

Division Theorem, 87

domain, 36, 132, 134

domain of discourse, 36

dongles, 244

double summations, 356

edge connected, 212

edges, 188

elements, 123

Elkies, 31

empty graph, 192

empty relation, 291, 292, 304

empty sequence, 132

empty string, 40, 153

end of chain, 299

end of path, 208

Enigma, 105

entropy function, 526

environment, 333

erasable, 172

Euclid, 43, 84, 96

Euclidean algorithm, 313

Euler, 31, 96

Euler’s constant, 352

Euler’s Formula, 247

Euler’s formula, 253

Euler’s Theorem, 116

Euler’s theorem, 120

Euler circuits, 216

1018 INDEX

Euler tour, 223

Euler walk, 223

evaluation function, 164

event, 456, 463

events, 515

execution, 309

existentially quantified, 34

existential quantifier, 34

expectation, 530

expected value, 515, 530, 531

exponentially, 38

exponential time, 144

Extensionality, 129

face-down four-card trick, 399

factorial, 358

factorials, 378

Factoring, 86

fair game, 494

fast exponentiation, 325

father, 377

favorite, 202

Fermat’s Last Theorem, 86

Fermat’s Little Theorem, 109

Fermat’s theorem, 113

Fibonacci, 430

Fifteen Puzzle, 324

formal proof, 17

Foundation, 129

four-step method, 480

Frege, 128, 130, 131

INDEX 1019

function, 132

Fundamental Theorem of Arithmetic,

97

Gödel, 131

Gale, 205

game tree, 177

Gauss, 86, 102

GCD, 90

GCD algorithm, 313

Generalized Pigeonhole Principle, 380

Generalized Product Rule, 383

generating function, 434, 441

Generating Functions, 425

geometric series, 426

geometric sum, 343

Goldbach’s Conjecture, 35, 36

Goldbach Conjecture, 86

good count, 155, 175, 436, 447

Google, 493

graph coloring problem, 227

graph of R, 134

Greatest Common Divisor, 92

grid, 270

half-adder, 27

Hall’s matching condition, 396

Hall’s Matching Theorem, 234

Hall’s Theorem, 236, 399

Hall’s theorem, 240

Halting Problem, 144

Hamiltonian cycle, 224

1020 INDEX

Handshake Lemma, 191

Hardy, 83, 100

Harmonic number, 350

Hat-Check problem, 563

Herman Rubin, 593

Hoare Logic, 337

identity relation, 292

image, 133, 136

implications, 47

incident, 189

Inclusion-Exclusion, 407, 409

inclusion-exclusion for probabilities,

464

Inclusion-Exclusion Principle, 410

Inclusion-Exclusion Rule, 406

increasing subsequence, 305

independence, 483

independent, 575

independent random variables, 517

indicator random variable, 516

indicator variable, 520, 531, 577

indicator variables, 518

indirect proof, 51

Induction, 64

Induction Axiom, 72

induction hypothesis, 67

inductive step, 67

inefficiency, 144

inference rules, 44

Infinity axiom, 129

INDEX 1021

infix notation, 135

injection relation, 145

injective, 137

integer linear combination, 89

Integral Method, 350, 358

interest rate, 348

intersection, 124

Invariant, 89

inverse, 136

inverse image, 136

isomorphic, 193, 289

isomorphism, 193

Kayal, 86

known-plaintext attack, 110

Kuratowksi, 252

latency, 268

latency for min-congestion, 284, 285

Latin square, 237

lattice basis reduction, 370

Law of Large Numbers, 583

leaf, 219

left child, 222

lemma, 43

length of path, 208

length of the cycle, 209

linear combination, 89

Linear Combinations, 90

Linearity of Expectation, 535

line graph, 192

literal, 554

1022 INDEX

LMC, 284, 285

load balancing, 589, 592

logarithm, 358

logical deductions, 17

lowest terms, 59

Mapping Rule, 371, 379

Markov’s bound, 578

Markov’s Theorem, 557, 558, 561

Markov bound, 594

marriage assignment, 201

Marriage Problem, 201

matched string, 153

matching, 234, 236

matching birthdays, 581

matching condition, 234

matrix multiplication, 363

maximal, 297

maximum, 297

maximum dilation, 512

mean, 50, 515, 530, 557

meaning, 333, 335

Menger, 212

minimal, 297

minimum, 297

minor, 252

modulo, 103

modus ponens, 44

multinomial coefficient, 417

multinomials, 417

Multinomial Theorem, 423

INDEX 1023

multiple, 83

multiplicative inverse, 107

Multiplicative Inverses, 107

multisets, 123

mutual independence, 575

mutually independent, 485, 490, 518,

581

mutually recursive, 435

mututally independent, 590

neighbors, 195, 236

network latency, 268

nodes, 189

nonconstructive proof, 381

numbered tree, 376

numbered trees, 418

number of processors, 298

Number theory, 83

o(), asymptotically smaller, 360

O(), big oh, 361

o(), little oh, 360

one-sided Chebyshev bound, 578

onto, 137

optimal spouse, 204

ordered, binary, 222

ordinary generating function, 425

ordinary induction, 66

outcome, 453, 463

outer face, 246

outside face, 242

overhang, 348

1024 INDEX

packet, 265

Page, Larry, 506

page rank, 506, 508

Pairing, 129

pairwise disjoint, 463

pairwise independence, 575

pairwise independent, 488, 490, 576,

581

Pairwise Independent Additivity, 576

Pairwise Independent Sampling, 582,

587

parallel schedule, 298

parallel time, 300

parent, 222

parity, 325

parsed, 162

parse trees, 162

partial correctness assertion, 337

partial fractions, 432

partial functions, 133

Pascal’s Identity, 420

path, 208, 217, 260, 504, 529

perfect matching, 201

perfect number, 84, 96

permutation, 108, 249, 378, 385

pessimal spouse, 204

Pick-4, 591

Pigeonhole Principle, 379

pigeonhole principle, 371

planar, 246

INDEX 1025

planar embedding, 245

planar embeddings, 244

planar graph, 240

planar subgraph, 250

pointwise, 133

Polyhedra, 252

polyhedron, 252

population size, 584

potential, 79

power set, 125, 142

Power Set axiom, 129

Power sets, 142

precondition, 336

predicate, 32

prefers, 201

preserved invariant, 310

preserved under isomorphism, 194

Primality Testing, 86

prime, 410

prime factorization, 97

Prime Factorization Theorem, 62

Prime Number Theorem, 112

probability density function (pdf), 519

probability function, 463, 467

probability of an event, 463

probability space, 463

product of sets, 132

Product Rule, 373, 472

Product Rule (for generating functions),

430

1026 INDEX

proof, 43

proof by contradiction, 51

proposition, 17, 19

public key, 113

public key cryptography, 113

Pulverizer, 96, 113

Pythagoreans, 252

quotient, 87

random variable, 515

random variables, 516

random walk, 504, 507, 529

Random Walks, 493

range, 133

rank, 378

rational, 51

reachable, 309

recognizer, 147

recognizes, 147

Recursive data types, 153

recursive definitions, 153

reflexive transitive closure, 260

regular polyhedron, 252

relation on a set, 135

Relations, 134

relatively prime, 114

relaxed, 550

remainder, 87

Replacement axiom, 129

Riemann Hypothesis, 112

right child, 222

INDEX 1027

right-shift, 428

Right-Shift Rule, 428

ripple-carry, 27

ripple-carry circuit, 80

Rivest, 113

rogue couple, 201

root, 222

rooted tree, 222

root mean square, 568

routing, 266

routing problem, 266

RSA, 113, 119

RSA public key encryption scheme,

116

Russell, 128, 130, 131

Russell’s Paradox, 128, 130, 142

same size, 140

sample space, 453, 463

SAT, 38

satisfiable, 26, 555

sat-solvers, 38

Saxena, 86

Scaling Rule, 427

scheduled at step k, 298

Schröder-Bernstein, 141

secret key, 113

sequence, 131

sequencing, 333

serenade, 201

set, 123

1028 INDEX

set difference, 124

Shamir, 113

Shapley, 205

simple, 209

simple cycle, 192, 209, 210, 262

simple cycle of a graph, 210

simple graph, 188

simple graphs, 187

size, 371

smallest counterexample, 61

solution, 201

solves, 266

sound, 44

spanning tree, 221

St. Petersberg paradox, 555

stable, 201

stable matching, 199

standard deviation, 568, 569, 575

start of path, 208

state graph, 307

stationary distribution, 509

Stirling’s Approximation, 358, 359

Stirling’s Formula, 358

store, 334

strictly bigger, 131, 140, 142, 147

string, 144

string-->string, 144

string procedure, 147

strong induction, 73

strongly connected, 512

INDEX 1029

subgraph, 210, 250

subsequence, 304

subset, 124

substitution function, 165

suit, 378

summation notation, 61

Sum Rule, 373, 463

surjection relation, 145

surjective, 137

switches, 266

symmetric, 261, 512

tails, 524

tails of the distribution, 524

terminals, 265

terms, 131

test, 333

tests, 333

theorems, 43

The Riemann Hypothesis, 112

topological sort, 296

total, 137

Total Expectation, 532

total function, 133

Towers of Hanoi, 434

transition, 307

transition relation, 307

transitive closure, 260

transitivity, 288

Traveling Salesman Problem, 217

traversed, 209

1030 INDEX

traverses, 260

tree, 219

tree diagram, 453, 480

truth tables, 20

Turing, 99, 100, 111

Turing’s code, 101, 105, 110

Twin Prime Conjecture, 86

unbiased, 494

undirected edge, 261

uniform, 521

union, 124

Union axiom, 129

Union Bound, 464

unique factorization, 97

universally quantified, 33

universal quantifier, 34

unlucky, 550

valid, 28, 37

valid coloring, 227

value of an annuity, 343

variance, 566, 581

vertices, 188

Weak Law of Large Numbers, 583, 587

Well Ordering, 73

Well Ordering Principle, 59, 66, 72,

212

while loop, 333

width, 231

wrap, 437, 447

Zermelo, 130

INDEX 1031

Zermelo-Frankel, 43

Zermelo-Frankel Set Theory, 128

ZFC, 43, 128, 131

ZFC axioms, 130

	I Proofs
	1 Propositions
	1.1 Compound Propositions
	1.1.1 not, and, or
	1.1.2 IMPLIES
	1.1.3 IFF
	1.1.4 Notation
	1.1.5 Logically Equivalent Implications
	1.1.6 Problems

	1.2 Propositional Logic in Computer Programs
	1.2.1 Problems
	1.2.2 Problems

	1.3 Predicates and Quantifiers
	1.3.1 Propositions with infinitely many cases
	1.3.2 Predicates
	1.3.3 Quantifiers
	1.3.4 Notation
	1.3.5 Mixing Quantifiers
	1.3.6 Order of Quantifiers
	1.3.7 Variables Over One Domain
	1.3.8 Negating Quantifiers

	1.4 Validity
	1.5 Satisfiability
	1.6 Problems
	1.6.1 Problems

	2 Patterns of Proof
	2.1 The Axiomatic Method
	2.2 Proof Templates
	2.2.1 Proof by Cases
	2.2.2 Proving an Implication
	2.2.3 Proving an ``If and Only If''
	2.2.4 Proof by Contradiction

	2.3 Good Proofs in Practice
	2.3.1 Problems

	3 Induction
	3.1 The Well Ordering Principle
	3.1.1 Well Ordering Proofs
	3.1.2 Template for Well Ordering Proofs
	3.1.3 Summing the Integers
	3.1.4 Factoring into Primes
	3.1.5 Problems

	3.2 Induction
	3.2.1 Ordinary Induction
	3.2.2 Strong Induction
	3.2.3 Strong Induction versus Induction
	3.2.4 Problems

	4 Number Theory
	4.1 Divisibility
	4.1.1 Facts about Divisibility
	4.1.2 When Divisibility Goes Bad
	4.1.3 Die Hard

	4.2 The Greatest Common Divisor
	4.2.1 Linear Combinations and the GCD
	4.2.2 Properties of the Greatest Common Divisor
	4.2.3 Euclid's Algorithm
	4.2.4 One Solution for All Water Jug Problems
	4.2.5 The Pulverizer
	4.2.6 Problems

	4.3 The Fundamental Theorem of Arithmetic
	4.3.1 Problems

	4.4 Alan Turing
	4.4.1 Turing's Code (Version 1.0)
	4.4.2 Breaking Turing's Code

	4.5 Modular Arithmetic
	4.5.1 Turing's Code (Version 2.0)
	4.5.2 Problems

	4.6 Arithmetic with a Prime Modulus
	4.6.1 Multiplicative Inverses
	4.6.2 Cancellation
	4.6.3 Fermat's Little Theorem
	4.6.4 Breaking Turing's Code—Again
	4.6.5 Turing Postscript
	4.6.6 Problems

	4.7 Arithmetic with an Arbitrary Modulus
	4.7.1 Relative Primality
	4.7.2 Euler's Theorem

	4.8 The RSA Algorithm
	4.8.1 Problems

	II Mathematical Data Types
	5 Sets and Relations
	5.1 Sets
	5.1.1 Some Popular Sets
	5.1.2 Comparing and Combining Sets
	5.1.3 Complement of a Set
	5.1.4 Power Set
	5.1.5 Set Builder Notation
	5.1.6 Proving Set Equalities
	5.1.7 Glossary of Symbols
	5.1.8 Problems

	5.2 The Logic of Sets
	5.2.1 Russell's Paradox
	5.2.2 The ZFC Axioms for Sets
	5.2.3 Avoiding Russell's Paradox
	5.2.4 Does All This Really Work?

	5.3 Sequences
	5.4 Functions
	5.4.1 Function Composition

	5.5 Relations
	5.5.1 Binary Relations and Functions
	5.5.2 Relational Images
	5.5.3 Inverse Relations and Images
	5.5.4 Surjective and Injective Relations
	5.5.5 Relation Diagrams

	5.6 Cardinality
	5.6.1 Mappings and Cardinality
	5.6.2 The sizes of infinite sets
	5.6.3 Infinity is different
	5.6.4 Power sets are strictly bigger

	5.7 Infinities in Computer Science
	5.7.1 Problems

	6 Recursive Data Types
	6.1 Strings of Brackets
	6.2 Arithmetic Expressions
	6.3 Structural Induction on Recursive Data Types
	6.3.1 Functions on Recursively-defined Data Types
	6.3.2 Recursive Functions on Nonnegative Integers
	6.3.3 Evaluation and Substitution with Aexp's
	6.3.4 Problems

	6.4 Games as a Recursive Data Type
	6.4.1 Tic-Tac-Toe
	6.4.2 Infinite Tic-Tac-Toe Games
	6.4.3 Two Person Terminating Games
	6.4.4 Game Strategies
	6.4.5 Problems

	6.5 Induction in Computer Science

	7 Simple Graphs
	7.1 Degrees & Isomorphism
	7.1.1 Definition of Simple Graph
	7.1.2 Sex in America
	7.1.3 Handshaking Lemma
	7.1.4 Some Common Graphs
	7.1.5 Isomorphism
	7.1.6 Problems

	7.2 The Stable Marriage Problem
	7.2.1 The Problem
	7.2.2 The Mating Ritual
	7.2.3 A State Machine Model
	7.2.4 There is a Marriage Day
	7.2.5 They All Live Happily Every After...
	7.2.6 ...Especially the Boys
	7.2.7 Applications
	7.2.8 Problems

	7.3 Connectedness
	7.3.1 Paths and Simple Cycles
	7.3.2 Connected Components
	7.3.3 How Well Connected?
	7.3.4 Connection by Simple Path
	7.3.5 The Minimum Number of Edges in a Connected Graph
	7.3.6 Problems

	7.4 Trees
	7.4.1 Tree Properties
	7.4.2 Spanning Trees
	7.4.3 Problems

	7.5 Coloring Graphs
	7.6 Modelling Scheduling Conflicts
	7.6.1 Degree-bounded Coloring
	7.6.2 Why coloring?
	7.6.3 Problems

	7.7 Bipartite Matchings
	7.7.1 Bipartite Graphs
	7.7.2 Bipartite Matchings
	7.7.3 The Matching Condition
	7.7.4 A Formal Statement
	7.7.5 Problems

	7.8 Planar Graphs
	7.8.1 Continuous & Discrete Faces
	7.8.2 Planar Embeddings
	7.8.3 What outer face?
	7.8.4 Euler's Formula
	7.8.5 Number of Edges versus Vertices
	7.8.6 Planar Subgraphs
	7.8.7 Planar 5-Colorability
	7.8.8 Classifying Polyhedra
	7.8.9 Problems

	8 Directed graphs
	8.1 Digraphs
	8.1.1 Paths in Digraphs

	8.2 Picturing Relational Properties
	8.3 Composition of Relations
	8.4 Directed Acyclic Graphs
	8.4.1 Problems

	8.5 Communication Networks
	8.6 Complete Binary Tree
	8.7 Routing Problems
	8.8 Network Diameter
	8.8.1 Switch Size

	8.9 Switch Count
	8.10 Network Latency
	8.11 Congestion
	8.12 2-D Array
	8.13 Butterfly
	8.14 Benes Network
	8.14.1 Problems

	9 Partial Orders and Scheduling
	9.1 Axioms for Partial Orders
	9.2 Representing Partial Orders by Set Containment
	9.2.1 Problems

	9.3 Total Orders
	9.3.1 Problems

	9.4 Product Orders
	9.4.1 Problems

	9.5 Scheduling
	9.5.1 Scheduling with Constraints
	9.5.2 Parallel Task Scheduling

	9.6 Dilworth's Lemma
	9.6.1 Problems

	10 State Machines
	10.1 Basic definitions
	10.2 Reachability and Preserved Invariants
	10.2.1 Die Hard Once and For All
	10.2.2 A Robot on a Grid

	10.3 Sequential algorithm examples
	10.3.1 Proving Correctness
	10.3.2 The Euclidean Algorithm

	10.4 Derived Variables
	10.4.1 Weakly Decreasing Variables
	10.4.2 Problems

	10.5 The Alternating Bit Protocol
	10.6 Reasoning About While Programs
	10.6.1 While Programs
	10.6.2 The While Program State Machine
	10.6.3 Denotational Semantics
	10.6.4 Problems
	10.6.5 Logic of Programs

	III Counting
	11 Sums & Asymptotics
	11.1 The Value of an Annuity
	11.1.1 The Future Value of Money
	11.1.2 Closed Form for the Annuity Value
	11.1.3 Infinite Geometric Series
	11.1.4 Problems

	11.2 Book Stacking
	11.2.1 Formalizing the Problem
	11.2.2 Evaluating the Sum—The Integral Method
	11.2.3 More about Harmonic Numbers
	11.2.4 Problems

	11.3 Finding Summation Formulas
	11.3.1 Double Sums

	11.4 Stirling's Approximation
	11.4.1 Products to Sums

	11.5 Asymptotic Notation
	11.5.1 Little Oh
	11.5.2 Big Oh
	11.5.3 Theta
	11.5.4 Pitfalls with Big Oh
	11.5.5 Problems

	12 Counting
	12.1 Why Count?
	12.2 Counting One Thing by Counting Another
	12.2.1 The Bijection Rule
	12.2.2 Counting Sequences
	12.2.3 The Sum Rule
	12.2.4 The Product Rule
	12.2.5 Putting Rules Together
	12.2.6 Problems

	12.3 The Pigeonhole Principle
	12.3.1 Hairs on Heads
	12.3.2 Subsets with the Same Sum
	12.3.3 Problems

	12.4 The Generalized Product Rule
	12.4.1 Defective Dollars
	12.4.2 A Chess Problem
	12.4.3 Permutations

	12.5 The Division Rule
	12.5.1 Another Chess Problem
	12.5.2 Knights of the Round Table
	12.5.3 Problems

	12.6 Counting Subsets
	12.6.1 The Subset Rule
	12.6.2 Bit Sequences

	12.7 Sequences with Repetitions
	12.7.1 Sequences of Subsets
	12.7.2 The Bookkeeper Rule
	12.7.3 A Word about Words
	12.7.4 Problems

	12.8 Magic Trick
	12.8.1 The Secret
	12.8.2 The Real Secret
	12.8.3 Same Trick with Four Cards?
	12.8.4 Problems

	12.9 Counting Practice: Poker Hands
	12.9.1 Hands with a Four-of-a-Kind
	12.9.2 Hands with a Full House
	12.9.3 Hands with Two Pairs
	12.9.4 Hands with Every Suit
	12.9.5 Problems

	12.10 Inclusion-Exclusion
	12.10.1 Union of Two Sets
	12.10.2 Union of Three Sets
	12.10.3 Union of n Sets
	12.10.4 Computing Euler's Function
	12.10.5 Problems

	12.11 Binomial Theorem
	12.11.1 Problems

	12.12 Combinatorial Proof
	12.12.1 Boxing
	12.12.2 Finding a Combinatorial Proof
	12.12.3 Problems

	13 Generating Functions
	13.1 Operations on Generating Functions
	13.1.1 Scaling
	13.1.2 Addition
	13.1.3 Right Shifting
	13.1.4 Differentiation
	13.1.5 Products

	13.2 The Fibonacci Sequence
	13.2.1 Finding a Generating Function
	13.2.2 Finding a Closed Form
	13.2.3 Problems

	13.3 Counting with Generating Functions
	13.3.1 Choosing Distinct Items from a Set
	13.3.2 Building Generating Functions that Count
	13.3.3 Choosing Items with Repetition
	13.3.4 Problems
	13.3.5 An ``Impossible'' Counting Problem
	13.3.6 Problems

	IV Probability
	14 Introduction to Probability
	14.1 Monty Hall
	14.1.1 The Four Step Method
	14.1.2 Clarifying the Problem
	14.1.3 Step 1: Find the Sample Space
	14.1.4 Step 2: Define Events of Interest
	14.1.5 Step 3: Determine Outcome Probabilities
	14.1.6 Step 4: Compute Event Probabilities
	14.1.7 An Alternative Interpretation of the Monty Hall Problem
	14.1.8 Problems

	14.2 Set Theory and Probability
	14.2.1 Probability Spaces
	14.2.2 An Infinite Sample Space
	14.2.3 Problems

	14.3 Conditional Probability
	14.3.1 The ``Halting Problem''
	14.3.2 Why Tree Diagrams Work
	14.3.3 The Law of Total Probability
	14.3.4 Medical Testing
	14.3.5 Conditional Identities
	14.3.6 Discrimination Lawsuit
	14.3.7 A Posteriori Probabilities
	14.3.8 Problems

	14.4 Independence
	14.4.1 Examples
	14.4.2 Working with Independence
	14.4.3 Mutual Independence
	14.4.4 Pairwise Independence
	14.4.5 Problems

	14.5 The Birthday Principle

	15 Random Processes
	15.1 Gamblers' Ruin
	15.1.1 A Recurrence for the Probability of Winning
	15.1.2 Intuition
	15.1.3 Problems

	15.2 Random Walks on Graphs
	15.2.1 A First Crack at Page Rank
	15.2.2 Random Walk on the Web Graph
	15.2.3 Stationary Distribution & Page Rank
	15.2.4 Problems

	16 Random Variables
	16.1 Random Variable Examples
	16.1.1 Indicator Random Variables
	16.1.2 Random Variables and Events
	16.1.3 Independence

	16.2 Probability Distributions
	16.2.1 Bernoulli Distribution
	16.2.2 Uniform Distribution
	16.2.3 The Numbers Game
	16.2.4 Binomial Distribution
	16.2.5 Problems

	16.3 Average & Expected Value
	16.3.1 Expected Value of an Indicator Variable
	16.3.2 Conditional Expectation
	16.3.3 Mean Time to Failure
	16.3.4 Linearity of Expectation

	16.4 Expectation of a Quotient
	16.4.1 A RISC Paradox
	16.4.2 A Probabilistic Interpretation
	16.4.3 The Proper Quotient
	16.4.4 A Simpler Example
	16.4.5 The Expected Value of a Product
	16.4.6 Problems

	17 Deviation from the Mean
	17.1 Why the Mean?
	17.2 Markov's Theorem
	17.2.1 Applying Markov's Theorem
	17.2.2 Markov's Theorem for Bounded Variables
	17.2.3 Problems

	17.3 Chebyshev's Theorem
	17.3.1 Variance in Two Gambling Games
	17.3.2 Standard Deviation

	17.4 Properties of Variance
	17.4.1 A Formula for Variance
	17.4.2 Variance of Time to Failure
	17.4.3 Dealing with Constants
	17.4.4 Variance of a Sum
	17.4.5 Problems

	17.5 Estimation by Random Sampling
	17.5.1 Sampling
	17.5.2 Matching Birthdays
	17.5.3 Pairwise Independent Sampling

	17.6 Confidence versus Probability
	17.6.1 Problems

	17.7 The Chernoff Bound
	17.7.1 The Chernoff Bound
	17.7.2 Randomized Load Balancing
	17.7.3 Proof of the Chernoff Bound

	Index

