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INTRODUCTION 

Anyone familiar with the theory of computability will 
be aware that practical conclusions from the theory 
must be drawn with caution. If a problem can theo- 
retically be solved by computation, this does not mean 
that it is practical to do so. Conversely, if a problem 
is formally undecidable, this does not mean that the 
subcases of primary interest are impervious to solu- 
tion by algorithmic methods. 

For example, consider the problem of improving as- 
sembly code. Compilers for languages like FOR- 
TRAN and MAD typically check the code of an as- 
sembled program for obvious inefficiences-say, two 
"clear and add" instructions in a r o w - a n d  then pro- 
duce edited programs which are shorter and faster 
than the original. From the theory of computability 
one can conclude quite properly that no code improv- 
ing algorithm can work all the time. There is always a 
program which can be improved in ways that no parti- 
cular improvement algorithm can detect, so no such al- 
gorithm can be perfect. But the non-existence of a 
perfect algorithm is not much of an obstacle in the 
practical problem of finding an algorithm to improve 
large classes of common programs. 

The question of detecting improvable programs will 
appear again later in this paper, but our main concern 
will be with a related question: can one look at a pro- 
gram and determine an upper bound on its running 
time? Again, a fundamental theorem in the theory of 
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computability implies that this cannot be done.* 
The theorem does not imply that one cannot bound 
the running time of broad categories of interesting 
programs, including programs capable of computing 
all the arithmetic functions one is likely to encounter 
outside the theory of computability itself. 

In the next section we describe such a class of pro- 
grams, called "Loop programs." Each Loop program 
consists only of assignment statements and iteration 
(loop) statements, the latter resembling the DO state- 
ment of FORTRAN, and special cases of the FOR 
and T H R O U G H  statements of A L G O L  and MAD. 
The bound on the running time of a Loop program is 
determined essentially by the length of the program 
and the depth of nesting of its loops. 

Although Loop programs cannot compute all the 
computable functions, they can compute all the 
primitive recursive functions. The functions comput- 
able by Loop programs are, in fact, precisely the 
primitive recursive functions. Several of our results 
can be regarded as an attempt to make precise the 
notion that the complexity of a primitive recursive 
function is apparent from its definition or program. 
This property is one of the reasons that the primitive 
recursive functions are used throughout the theory of 
computability, for, as we remarked in the opening 
paragraph, knowing that a function is computable is 

*Roughly speaking, the undecidability of the halting problem for 
Turing machines implies that if a programming language is powerful 
enough to describe arbitrarily complex computations, then the 
language must inevitably be powerful enough to describe' infinite 
computations. Furthermore, descriptions of finite and infinite com- 
putations are generally indistinguishable, so there is certainly no 
way to choose for each progr~n a function which bounds its 
running time. 
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not very usei'ul unless one can tell how difficult the 
function is to compute. A bound on the running time 
of a Loop program provides a rough estimate of the 
degree of difficulty of the computation defined by the 
program. 

Loop programs are so powerful that our bounds 
on running time cannot be of practical va lue - fo r  
functions computable by Loop programs are almost 
wholly beyond the computational capacity of any real 
device. Nevertheless they provide a good illustration 
of the theoretical issues involved in estimating the 
running time of programs, and we believe that readers 
with a practical orientation may find some of the 
results provocative. 

Loop programs 

A Loop program is a finite sequence of instructions 
for changing non-negative integers stored in registers. 
There is no limit to the size of an integer which may 
be stored in a register, nor any limit to the number 
of registers to which a program may refer, although 
any given program will refer to only a fixed number of 
registers. 

Instructions are of five types: (1) X = Y, (2) X = X 
+ 1, (3) X = 0, (4) LOOP X, (5) END, where "X"  
and "Y"  may be replaced by any names for registers. 

The first three types of instructions have the same 
interpretation as in several common languages for 
programming digital computers. "X ---- Y" means that 
the integer contained in Y is to be copied into X; 
previous contents of X disappear, but the contents of 
Y remain unchanged. "X = X + 1" means that the 
integer in X is to be incremented by one. "X = 0" 
means that the contents of X are to be set to zero. 
These are the only instructions which affect the 
registers. 

A sequence of instructions is a Loop program pro- 
viding that type (4) and type (5) instructions are 
matched like left and right parentheses. The instruc- 
tions in a Loop program are normally executed 
sequentially in the order in which they occur in the 
program. Type (4) and (5) instructions affect the nor- 
mal order by indicating that a block of instructions 
is to be repeated. Specifically if P is a Loop program, 
and the integer in X is x, then "LOOP X, P, E N D "  
means that P is to be performed x times in succession 
before the next instruction, if any, after the END is 
executed; changes in the contents of X while P is 
being repeated do not alter the number of times P is 
to be repeated. The final clause is needed to ensure 
that executions of Loop programs always terminate. 
For example, the program 

LOOP X (2.!) 
X = X + I  
END 

is a program for doubling the contents of X, rather 
than an infinite loop. Note that when X initially con- 
tains zero, the second instruction is not executed. 

Since LOOP's and END's appear in paris like left 
and right parentheses, the block of instructions af- 
fected by a LOOP instruction is itself a Loop program 
and is uniquely determined by the matching END in- 
struction. Ln is defined as the class of programs with 
LOOP-END pairs nested to a depth of at most n; 
depth zero means the program has no LOOP's. 

For example, (2.2) is an Lz program in which type 
(4) and (5) instructions are paired as indicated by the 
indentations. 

LOOP Y (2.2) 

A = 0  
LOOP X 

X = A  
A = A + I  

END 
END 

If X and Y initially contain x and y, execution of (2.2) 
would leave x --" y in X, where x -- 'y  equals x - y 
ifx/> y, and is zero otherwise. 

We say that a Loop program computes a function 
as soon as some of the registers are designated for 
input and output. If f is a function (from non-negative 
integers into non-negative integers) of m-variables, 
then a Loop program P with input registers X1 . . . . . .  
Xm and output register F computes f providing that, 
when registers X1 . . . .  , Xm initially contain integers 
x~ . . . . .  xm and all other registers initially contain 
zero, then the integer left in F after P has been 
executed is f(xt . . . . . .  Xm). Thus, program (2.1) with 
X serving as both input and output register computes 
the function 2x. For each n >/ 0, ~n is defined as the 
set of functions computable by a program in Ln. 

Primitive recursive functions 

Loop programs are extremely powerful despite their 
simple definition. Addition, multiplication, expo- 
nentiation, the x th digit in the decimal expansion of sin 
(½), the x th prime number, etc., are all functions com- 
putable by Loop programs. In fact, a fairly careful 
analysis of the definition of Loop programs is re- 
quired in order to discover a function which they can- 
not compute. 

These properties are weU-known for the class of 
computable functions known as the primitive recursive 
functions. They apply to Loop programs as well by 
Theorem 1. 

Theorem 1. Every primitive recursive function is com- 
puted by some Loop program. 
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Thorough treatments of  the primitive recursive 
functions can be found in many elementary texts on 
logic and computability. ~,2 For  the reader 's  con- 
venience we provide a definition of  th primitive re- 
cursive functions. It is fairly easy to translate a def- 
inition by primitive recursions into a Loop program, 
and thereby prove Theorem 1. 
Definition 1. The primitive recursive functions are the 
smallest class of  functions#satisfying 

(1) the functions s(x) = x + 1, p~z(X,y) = are in 
# 

(2)9~ is closed under the operations of substitu- 
tion: substituting constants,  permuting variables 

(obtaining the function h from f where h(x,y) 
= fly,x)), identifying variables (obtaining h(x) 
= f(x,x) from f(y,z)), and composing functions. 

( 3 ) #  is closed under the scheme of  primitive re- 
cursion: if g,h eg~, then f eg~ where f is defined 
as f(xl, • •. ,Xm,0) = g(xl, • • • ,Xm) 

f ( x l , . . .  ,'Xm,y+l) = h(xl . . . . .  Xm,y,f(xl ,- . . ,  
Xm,y)). 

Bounding the running time 

Given a Loop program and the integers initially in 
its registers, the running time of a program is defined 
as the number o f  individual instruction executions 
required to execute  the entire program. Thus each 
Loop program, P, has an associated running time, Tp, 
which is a function of as many variables as there are 
registers in P. 

Hopeful ly Section 2 makes it obvious how to count 
the number of  individual executions of  type (1), (2), 
and (3) instructions in any particular computation. 
The number of  executions of L O O P  and E N D  in- 
structions can be counted in several ways, but the 
simplest course is to ignore them. For  example, the 
running time function of an L0 program (a program 
with no loops) is a constant function equal to the 
length of  the program; the running time function of 
program (2.1) is the identity function f(x) = x. 

This definition of  running time has the advantage 
that it leads to a trivial proof  of  
Theorem 2. If  P is a Loop program in Ln, then the run- 
ning time function Tp is in ¢'n- 

The proof consists of the observation that if P'  is 
the program obtained by inserting the instruction " T  
= T + 1" after each type (1), (2) and (3) instruction 
on P, then P', computes T ,  when all registers of P' 
except  for T are designated as input registers, and T is 
designated as output register. We assume that " T "  
itself does not already occur  in P. Clearly if P is in 
Ln, then so is P', and therefore Tpee.,. 

Now this argument depends heavily on our conven- 
tions for measuring running time, and these con- 

ventions may seem arbitrary. Actually, Theorem 2 
remains true under a wide variety of  definitions of 
running time, as does the following 
Corollary. I f  a Loop program computes a function 
f, then f is totally defined and is effectively com- 
putable. 

This amounts to saying that computations defined 
by Loop programs are always finite no matter  what the 
initial contents of the registers may be, i,e., Loop pro- 
grams always halt. 

As a result of  this theorem and corollary, the claim 
that the running time of  Loop programs can be 
bounded a priori by inspection of  the program be- 
comes trivial. After all, Tp certainly bounds the run- 
ning time since by definition it is the running time, 
Tp is totally defined and effectively computable,  and 
moreover  given P one can effectively describe how to 
compute Tp. Therefore ,  one can bound the running 
time of  P by Tp. 

Of  course, bounding P by T,  gives absolutely no 
new information. It amounts to "predict ing" that the 
program P will run as long as it runs, which is not 
much of an answer to the question, " H o w  long does 
my program run?"  

A proper  answer should be in terms of  familiar 
bounding functions whose properties are simple and 
understandable. For  example, the running time of a 
typical program computing f(x) = "the x th digit in the 
decimal expansion of  ~ is bounded by xZ; for any 
context-free language there is a recognition algorithm 
whose running time is bounded by a constant times the 
cube of  the length of an input word; for context- 
sensitive languages the bound is an exponential of an 
exponential of the length of  an input word, etc. 

The  functions we use to bound the running time of 
Loop programs are given in 
Definition 2. For  a function g of  one variable, let 

gtY) (z) = g(g( . . .g (z ) . . . ) ) ,  
the composition being taken y,times. By convention, 
g~O~ (z) = z. For  n i> O, the functions fn are defined by: 

f0(x)= ~ x + l  if x = 0 , 1  

l x + 2  if x~>2, 

fn+,(X) = fn ~x) (1). 

We will say that a function f of  one variable bounds 
a function g of several variables if g(xl . . . . .  Xm) 
< f(max{xl . . . . .  Xm}) for all integers x~ . . . . .  Xm; 
max{x1 . . . . .  Xm} is the largest member of  {xl . . . . .  
Xm}. 
Theorem 3. Bounding Theorem.  If P is in L,,  then 
TD is bounded by fn ~k) where k is the length (number 
of  instructions) of  P. 

Theorem 3 at least provides a particular class of 
bounding functions which are reasonably simple and 
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well-behaved. The  first few functions f,  are familiar, 
viz., f,(x) -- 2x for x > 0, and f2(x) = 2 x. The  function 
f3 is also easy to describe: ..2 } 

f3(x) = 2 2. height x. 

Fur thermore,  f(k) (x) is strictly increasing in n, k, 
and x whenever  x ~> 2, and in fact fn+, grows more 
rapidly than f(k) for any fixed value of  k. The  latter 
property implies that fn+l majorizes fn (k) for any fixed 
values of  n and k, i.e., fn+l(x) > fn (k) (x) for all values 
of x larger than some bound which depends on n and k, 

The definition of  fn+l from fn is by a special case of  
primitive recursion. Translating this definition into 
a Loop program, it is easy to show that for n /> 1, 
fn is in (n" The  majorizing property and the fact that 
the running time of a program for any function g(x) is 
at least g(x) - x (it requires this many steps just  to 
leave the answer in the output register), may be com- 
bined to prove 

Lemma. For  all n/> 0,fn+le(n+l--dn. 
Theorem 4. For  all n,k /> 0, there are functions in 
(n+l, which cannot be computed by any Loop program 
whose running time is bounded by fn (k). 

One can still question whether  a bound on running 
time of 1'7, for example, is any better  than no bound at 
all. In practice it probably is not, since the under- 
lying practical question is always whether  a program 
runs in a reasonable amount  of time on a reasonable 
finite domain of inputs. If a program's running time 
could not be bounded by a function smaller than fT, 
the program might just as well contain an infinite 
loop. In both cases, computation for inputs larger 
than two would not terminate during the lifetime of  
the Milky Way galaxy. Of  course similar objections 
can be raised against a bound of x 7, or even 107.x. 

Complexity classes 
The  sequence [o, ( , ,  (z . . . .  is, by Theorem 4, a 

strictly increasing sequence of sets which provide 
an infinite number of categories for classifying func- 
tions. Although the sets d~ were defined syntactically, 
by depth of loops, the Bounding Theorem implies 
that classification by position in the sequence relates 
to classification by running time or computational 
complexity.  If we define complexity classes Co, 
C,, C2 . . . .  by letting Cn be precisely the functions 
computable by programs with running time bounded 
by f~K) for any fixed k >/0, then the results of Section 
4 imply that Cn D [ n ,  and fn+a E/n+l--Cn" 

The  fact that Cn = / n  is still something of a surprise. 
Theorem 5. For  n 1> 2, a function is in {'n if and only 
if it can be computed by a Loop program whose run- 
ning time is bounded by fn (k) for some k. 

The  "only if" part of the theorem is simply the 
Bounding Theorem.  The reverse implication can be 
proved by showing that if the running time of a pro- 
gram P is bounded by fn (k), then regardless of the actual 
d ep th o f  loops, P can be rewritten as a program with 
loops nested to depth n (providing n >~ 2). 

The  rewriting of P proceeds roughly as follows: 
if P is a sequence of instructions I,,I2 . . . . .  Ik, then a 
sequence of  L, program I,,I2 . . . . .  Ik is constructed.  
Each program I~ has a flag which it tests. I f  its flag is 
off, Ij has no effect. I f  its flag is on, Ii has the same 
effect on the registers of P as execut ion of  the in- 
struction Ii, and Ii also sets a flag for the next  in- 
struction which would be executed in a computat ion 
of P. Let  M be the program " L O O P  T, I1, I ~ , . . . ,  
Ik, E N D "  where T is a new register name. Given the 
integers x, . . . . .  Xm initially in the registers of P, if an 
integer larger than Tp (Xl . . . . .  Xm) is initially in regis- 
ter T, then M will simulate the computat ion of  P. 

Since Tp is bounded by fn (k), one need only construct  
an Ln program Mn which leaves fn (k) in register T. 
Then  Mn followed by the L2 program M together form 
a program in Ln which computes  the same functions 
as P. This composite program is the " rewri t ten"  
version of P. 

Theorem 5 would be trivial if every  program not in 
Ln took more time than fn, for in that case rewriting 
would never  be possible. So far we have shown that 
some programs in Ln do run as long as fn, but an ob- 
vious flaw in our Bounding Theorem remains: there 
are programs in L~ with running times which can be 
bounded by functions smaller than fn- For  example,  
a program of  the form 

T = 0  (5.1) 
L O O P  T 
P 
E N D  

has running time equal to one for all inputs and all 
possible programs P. Hence ,  our procedure  for 
bounding running time can certainly be improved 
somewhat.  This naturally suggests the question: can 
one tell if a program runs more rapidly than its loop 
structure indicates? In general, the answer is no. 
Definition 3. The  complexity problem for Ln is: given 
a program P in Ln determine whether  Tp is bounded by 
f,_l (k) for any integer k. 
Theorem 6. For  each n ~ 3, the complexity problem 
for Ln is effectively undecidable. 

One of the implications of Theorem 6 is that any 
procedure for bounding the running time of Loop 
programs can be supplemented to cover  special cases 
of the sort illustrated by (5.1). There  cannot  be a 
perfect  bounding procedure.  Yet  no matter how many 
special cases are treated, there remain an infinite num- 
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ber of cases for which any procedure must reduce to 
essentially the one given by the Bounding Theorem. 
It is in this, admittedly weak, sense that we claim the 
Bounding Theorem is best possible. 

If an "improvement" of the code of a program is 
defined as a reduction in depth of loops or number of 
instructions (without an increase in running time), 
then the proof of Theorem 6 also reveals that there 
can be no perfect code improvement algorithm. Thus 
the code improvement problem, which we noted in 
the introduction was undecidable for programs in 
general, is still undecidable for the more restricted 
class of Loop programs. 

Primitive recursive classes. 

Loop programs were devised specifically as a pro- 
gramming language for primitive recursive functions, 
so of course we have: Theorem 7. The functions com- 
putable by Loop programs are precisely the primitive 
recursive functions. 

Half of Theorem 7 already follows from Theorem 1, 
and the other half can be proved in much the same way 
as Theorem 1. Parallel to the definition of Ln, one can 
define*~h as the set of functions definable using 
primitive recursions nested to depth at most n. The 
computation defined by a LOOP-END pair is slightly 
more general than that defined by a single primitive 
recursion, so thatL~ D ~  andLz D~2 ~0 =L0 by def- 
inition), but for n ~> 4 , ~ ,  = Ln. The simplest proof of 
this fact, however, seems to depend on Theorem 5 
rather than the translation of Loop programs into 
primitive recursive definitions used in Theorem 7. 

Another sequence ~0,~l,~Z . . . .  of sets of primitive 
recursive functions has been defined by Grzegorczyk 4 
using closure properties rather than programs. For 
example, (3 is the class of elementary functions 

defined as the closure of the function x "-- y under 
substitution and functional operations which trans- 

form f(x,y) into ~ = o  f(x,i) or into HYl=o f(x,i). Our 

class L2 equals the elementary functions; in fact for 
n ~> 2,~ :n+l =Ln. 

The proofs of most of the theorem in this paper 
appear in [5]. The Axt and Grzegorczyk classes 
are treated in detail in [6]. 
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