
The complexity of loop programs*

by ALBERT R. MEYER
IBM Watson Research Center
Yorktown Heights, New York

and

DENNIS M. RITCHIE
Harvard University
Cambridge, Massachusetts

INTRODUCTION

Anyone familiar with the theory of computability will
be aware that practical conclusions from the theory
must be drawn with caution. If a problem can theo-
retically be solved by computation, this does not mean
that it is practical to do so. Conversely, if a problem
is formally undecidable, this does not mean that the
subcases of primary interest are impervious to solu-
tion by algorithmic methods.

For example, consider the problem of improving as-
sembly code. Compilers for languages like FOR-
TRAN and MAD typically check the code of an as-
sembled program for obvious inefficiences-say, two
"clear and add" instructions in a r o w - a n d then pro-
duce edited programs which are shorter and faster
than the original. From the theory of computability
one can conclude quite properly that no code improv-
ing algorithm can work all the time. There is always a
program which can be improved in ways that no parti-
cular improvement algorithm can detect, so no such al-
gorithm can be perfect. But the non-existence of a
perfect algorithm is not much of an obstacle in the
practical problem of finding an algorithm to improve
large classes of common programs.

The question of detecting improvable programs will
appear again later in this paper, but our main concern
will be with a related question: can one look at a pro-
gram and determine an upper bound on its running
time? Again, a fundamental theorem in the theory of

*This research was supported in part by NSF GP-2880 under
Professor P. C. Fischer, by the Division of Engineering and Applied
Physics, Harvard University, and by the IBM Watson Research
Center.

computability implies that this cannot be done.*
The theorem does not imply that one cannot bound
the running time of broad categories of interesting
programs, including programs capable of computing
all the arithmetic functions one is likely to encounter
outside the theory of computability itself.

In the next section we describe such a class of pro-
grams, called "Loop programs." Each Loop program
consists only of assignment statements and iteration
(loop) statements, the latter resembling the DO state-
ment of FORTRAN, and special cases of the FOR
and T H R O U G H statements of A L G O L and MAD.
The bound on the running time of a Loop program is
determined essentially by the length of the program
and the depth of nesting of its loops.

Although Loop programs cannot compute all the
computable functions, they can compute all the
primitive recursive functions. The functions comput-
able by Loop programs are, in fact, precisely the
primitive recursive functions. Several of our results
can be regarded as an attempt to make precise the
notion that the complexity of a primitive recursive
function is apparent from its definition or program.
This property is one of the reasons that the primitive
recursive functions are used throughout the theory of
computability, for, as we remarked in the opening
paragraph, knowing that a function is computable is

*Roughly speaking, the undecidability of the halting problem for
Turing machines implies that if a programming language is powerful
enough to describe arbitrarily complex computations, then the
language must inevitably be powerful enough to describe' infinite
computations. Furthermore, descriptions of finite and infinite com-
putations are generally indistinguishable, so there is certainly no
way to choose for each progr~n a function which bounds its
running time.

465

466 Proceedings A.C.M. National Meeting, 1967

not very usei'ul unless one can tell how difficult the
function is to compute. A bound on the running time
of a Loop program provides a rough estimate of the
degree of difficulty of the computation defined by the
program.

Loop programs are so powerful that our bounds
on running time cannot be of practical va lue - fo r
functions computable by Loop programs are almost
wholly beyond the computational capacity of any real
device. Nevertheless they provide a good illustration
of the theoretical issues involved in estimating the
running time of programs, and we believe that readers
with a practical orientation may find some of the
results provocative.

Loop programs

A Loop program is a finite sequence of instructions
for changing non-negative integers stored in registers.
There is no limit to the size of an integer which may
be stored in a register, nor any limit to the number
of registers to which a program may refer, although
any given program will refer to only a fixed number of
registers.

Instructions are of five types: (1) X = Y, (2) X = X
+ 1, (3) X = 0, (4) LOOP X, (5) END, where "X"
and "Y" may be replaced by any names for registers.

The first three types of instructions have the same
interpretation as in several common languages for
programming digital computers. "X ---- Y" means that
the integer contained in Y is to be copied into X;
previous contents of X disappear, but the contents of
Y remain unchanged. "X = X + 1" means that the
integer in X is to be incremented by one. "X = 0"
means that the contents of X are to be set to zero.
These are the only instructions which affect the
registers.

A sequence of instructions is a Loop program pro-
viding that type (4) and type (5) instructions are
matched like left and right parentheses. The instruc-
tions in a Loop program are normally executed
sequentially in the order in which they occur in the
program. Type (4) and (5) instructions affect the nor-
mal order by indicating that a block of instructions
is to be repeated. Specifically if P is a Loop program,
and the integer in X is x, then "LOOP X, P, E N D "
means that P is to be performed x times in succession
before the next instruction, if any, after the END is
executed; changes in the contents of X while P is
being repeated do not alter the number of times P is
to be repeated. The final clause is needed to ensure
that executions of Loop programs always terminate.
For example, the program

LOOP X (2.!)
X = X + I
END

is a program for doubling the contents of X, rather
than an infinite loop. Note that when X initially con-
tains zero, the second instruction is not executed.

Since LOOP's and END's appear in paris like left
and right parentheses, the block of instructions af-
fected by a LOOP instruction is itself a Loop program
and is uniquely determined by the matching END in-
struction. Ln is defined as the class of programs with
LOOP-END pairs nested to a depth of at most n;
depth zero means the program has no LOOP's.

For example, (2.2) is an Lz program in which type
(4) and (5) instructions are paired as indicated by the
indentations.

LOOP Y (2.2)

A = 0
LOOP X

X = A
A = A + I

END
END

If X and Y initially contain x and y, execution of (2.2)
would leave x --" y in X, where x -- 'y equals x - y
ifx/> y, and is zero otherwise.

We say that a Loop program computes a function
as soon as some of the registers are designated for
input and output. If f is a function (from non-negative
integers into non-negative integers) of m-variables,
then a Loop program P with input registers X1
Xm and output register F computes f providing that,
when registers X1 , Xm initially contain integers
x~ xm and all other registers initially contain
zero, then the integer left in F after P has been
executed is f(xt Xm). Thus, program (2.1) with
X serving as both input and output register computes
the function 2x. For each n >/ 0, ~n is defined as the
set of functions computable by a program in Ln.

Primitive recursive functions

Loop programs are extremely powerful despite their
simple definition. Addition, multiplication, expo-
nentiation, the x th digit in the decimal expansion of sin
(½), the x th prime number, etc., are all functions com-
putable by Loop programs. In fact, a fairly careful
analysis of the definition of Loop programs is re-
quired in order to discover a function which they can-
not compute.

These properties are weU-known for the class of
computable functions known as the primitive recursive
functions. They apply to Loop programs as well by
Theorem 1.

Theorem 1. Every primitive recursive function is com-
puted by some Loop program.

Complexi ty of Loop Programs 467

Thorough treatments of the primitive recursive
functions can be found in many elementary texts on
logic and computability. ~,2 For the reader 's con-
venience we provide a definition of th primitive re-
cursive functions. It is fairly easy to translate a def-
inition by primitive recursions into a Loop program,
and thereby prove Theorem 1.
Definition 1. The primitive recursive functions are the
smallest class of functions#satisfying

(1) the functions s(x) = x + 1, p~z(X,y) = are in

(2)9~ is closed under the operations of substitu-
tion: substituting constants, permuting variables

(obtaining the function h from f where h(x,y)
= fly,x)), identifying variables (obtaining h(x)
= f(x,x) from f(y,z)), and composing functions.

(3) # is closed under the scheme of primitive re-
cursion: if g,h eg~, then f eg~ where f is defined
as f(xl, • •. ,Xm,0) = g(xl, • • • ,Xm)

f (x l , . . . ,'Xm,y+l) = h(xl Xm,y,f(xl ,- . . ,
Xm,y)).

Bounding the running time

Given a Loop program and the integers initially in
its registers, the running time of a program is defined
as the number o f individual instruction executions
required to execute the entire program. Thus each
Loop program, P, has an associated running time, Tp,
which is a function of as many variables as there are
registers in P.

Hopeful ly Section 2 makes it obvious how to count
the number of individual executions of type (1), (2),
and (3) instructions in any particular computation.
The number of executions of L O O P and E N D in-
structions can be counted in several ways, but the
simplest course is to ignore them. For example, the
running time function of an L0 program (a program
with no loops) is a constant function equal to the
length of the program; the running time function of
program (2.1) is the identity function f(x) = x.

This definition of running time has the advantage
that it leads to a trivial proof of
Theorem 2. If P is a Loop program in Ln, then the run-
ning time function Tp is in ¢'n-

The proof consists of the observation that if P' is
the program obtained by inserting the instruction " T
= T + 1" after each type (1), (2) and (3) instruction
on P, then P', computes T , when all registers of P'
except for T are designated as input registers, and T is
designated as output register. We assume that " T "
itself does not already occur in P. Clearly if P is in
Ln, then so is P', and therefore Tpee.,.

Now this argument depends heavily on our conven-
tions for measuring running time, and these con-

ventions may seem arbitrary. Actually, Theorem 2
remains true under a wide variety of definitions of
running time, as does the following
Corollary. I f a Loop program computes a function
f, then f is totally defined and is effectively com-
putable.

This amounts to saying that computations defined
by Loop programs are always finite no matter what the
initial contents of the registers may be, i,e., Loop pro-
grams always halt.

As a result of this theorem and corollary, the claim
that the running time of Loop programs can be
bounded a priori by inspection of the program be-
comes trivial. After all, Tp certainly bounds the run-
ning time since by definition it is the running time,
Tp is totally defined and effectively computable, and
moreover given P one can effectively describe how to
compute Tp. Therefore , one can bound the running
time of P by Tp.

Of course, bounding P by T, gives absolutely no
new information. It amounts to "predict ing" that the
program P will run as long as it runs, which is not
much of an answer to the question, " H o w long does
my program run?"

A proper answer should be in terms of familiar
bounding functions whose properties are simple and
understandable. For example, the running time of a
typical program computing f(x) = "the x th digit in the
decimal expansion of ~ is bounded by xZ; for any
context-free language there is a recognition algorithm
whose running time is bounded by a constant times the
cube of the length of an input word; for context-
sensitive languages the bound is an exponential of an
exponential of the length of an input word, etc.

The functions we use to bound the running time of
Loop programs are given in
Definition 2. For a function g of one variable, let

gtY) (z) = g(g(. . .g (z) . . .)) ,
the composition being taken y,times. By convention,
g~O~ (z) = z. For n i> O, the functions fn are defined by:

f0(x)= ~ x + l if x = 0 , 1

l x + 2 if x~>2,

fn+,(X) = fn ~x) (1).

We will say that a function f of one variable bounds
a function g of several variables if g(xl Xm)
< f(max{xl Xm}) for all integers x~ Xm;
max{x1 Xm} is the largest member of {xl
Xm}.
Theorem 3. Bounding Theorem. If P is in L,, then
TD is bounded by fn ~k) where k is the length (number
of instructions) of P.

Theorem 3 at least provides a particular class of
bounding functions which are reasonably simple and

468 Proceedings A.C.M. National Meeting, 1967

well-behaved. The first few functions f, are familiar,
viz., f,(x) -- 2x for x > 0, and f2(x) = 2 x. The function
f3 is also easy to describe: ..2 }

f3(x) = 2 2. height x.

Fur thermore, f(k) (x) is strictly increasing in n, k,
and x whenever x ~> 2, and in fact fn+, grows more
rapidly than f(k) for any fixed value of k. The latter
property implies that fn+l majorizes fn (k) for any fixed
values of n and k, i.e., fn+l(x) > fn (k) (x) for all values
of x larger than some bound which depends on n and k,

The definition of fn+l from fn is by a special case of
primitive recursion. Translating this definition into
a Loop program, it is easy to show that for n /> 1,
fn is in (n" The majorizing property and the fact that
the running time of a program for any function g(x) is
at least g(x) - x (it requires this many steps just to
leave the answer in the output register), may be com-
bined to prove

Lemma. For all n/> 0,fn+le(n+l--dn.
Theorem 4. For all n,k /> 0, there are functions in
(n+l, which cannot be computed by any Loop program
whose running time is bounded by fn (k).

One can still question whether a bound on running
time of 1'7, for example, is any better than no bound at
all. In practice it probably is not, since the under-
lying practical question is always whether a program
runs in a reasonable amount of time on a reasonable
finite domain of inputs. If a program's running time
could not be bounded by a function smaller than fT,
the program might just as well contain an infinite
loop. In both cases, computation for inputs larger
than two would not terminate during the lifetime of
the Milky Way galaxy. Of course similar objections
can be raised against a bound of x 7, or even 107.x.

Complexity classes
The sequence [o, (, , (z is, by Theorem 4, a

strictly increasing sequence of sets which provide
an infinite number of categories for classifying func-
tions. Although the sets d~ were defined syntactically,
by depth of loops, the Bounding Theorem implies
that classification by position in the sequence relates
to classification by running time or computational
complexity. If we define complexity classes Co,
C,, C2 by letting Cn be precisely the functions
computable by programs with running time bounded
by f~K) for any fixed k >/0, then the results of Section
4 imply that Cn D [n , and fn+a E/n+l--Cn"

The fact that Cn = / n is still something of a surprise.
Theorem 5. For n 1> 2, a function is in {'n if and only
if it can be computed by a Loop program whose run-
ning time is bounded by fn (k) for some k.

The "only if" part of the theorem is simply the
Bounding Theorem. The reverse implication can be
proved by showing that if the running time of a pro-
gram P is bounded by fn (k), then regardless of the actual
d ep th o f loops, P can be rewritten as a program with
loops nested to depth n (providing n >~ 2).

The rewriting of P proceeds roughly as follows:
if P is a sequence of instructions I,,I2 Ik, then a
sequence of L, program I,,I2 Ik is constructed.
Each program I~ has a flag which it tests. I f its flag is
off, Ij has no effect. I f its flag is on, Ii has the same
effect on the registers of P as execut ion of the in-
struction Ii, and Ii also sets a flag for the next in-
struction which would be executed in a computat ion
of P. Let M be the program " L O O P T, I1, I ~ , . . . ,
Ik, E N D " where T is a new register name. Given the
integers x, Xm initially in the registers of P, if an
integer larger than Tp (Xl Xm) is initially in regis-
ter T, then M will simulate the computat ion of P.

Since Tp is bounded by fn (k), one need only construct
an Ln program Mn which leaves fn (k) in register T.
Then Mn followed by the L2 program M together form
a program in Ln which computes the same functions
as P. This composite program is the " rewri t ten"
version of P.

Theorem 5 would be trivial if every program not in
Ln took more time than fn, for in that case rewriting
would never be possible. So far we have shown that
some programs in Ln do run as long as fn, but an ob-
vious flaw in our Bounding Theorem remains: there
are programs in L~ with running times which can be
bounded by functions smaller than fn- For example,
a program of the form

T = 0 (5.1)
L O O P T
P
E N D

has running time equal to one for all inputs and all
possible programs P. Hence , our procedure for
bounding running time can certainly be improved
somewhat. This naturally suggests the question: can
one tell if a program runs more rapidly than its loop
structure indicates? In general, the answer is no.
Definition 3. The complexity problem for Ln is: given
a program P in Ln determine whether Tp is bounded by
f,_l (k) for any integer k.
Theorem 6. For each n ~ 3, the complexity problem
for Ln is effectively undecidable.

One of the implications of Theorem 6 is that any
procedure for bounding the running time of Loop
programs can be supplemented to cover special cases
of the sort illustrated by (5.1). There cannot be a
perfect bounding procedure. Yet no matter how many
special cases are treated, there remain an infinite num-

Complexity of Loop Programs 469

ber of cases for which any procedure must reduce to
essentially the one given by the Bounding Theorem.
It is in this, admittedly weak, sense that we claim the
Bounding Theorem is best possible.

If an "improvement" of the code of a program is
defined as a reduction in depth of loops or number of
instructions (without an increase in running time),
then the proof of Theorem 6 also reveals that there
can be no perfect code improvement algorithm. Thus
the code improvement problem, which we noted in
the introduction was undecidable for programs in
general, is still undecidable for the more restricted
class of Loop programs.

Primitive recursive classes.

Loop programs were devised specifically as a pro-
gramming language for primitive recursive functions,
so of course we have: Theorem 7. The functions com-
putable by Loop programs are precisely the primitive
recursive functions.

Half of Theorem 7 already follows from Theorem 1,
and the other half can be proved in much the same way
as Theorem 1. Parallel to the definition of Ln, one can
define*~h as the set of functions definable using
primitive recursions nested to depth at most n. The
computation defined by a LOOP-END pair is slightly
more general than that defined by a single primitive
recursion, so thatL~ D ~ andLz D~2 ~0 =L0 by def-
inition), but for n ~> 4 , ~ , = Ln. The simplest proof of
this fact, however, seems to depend on Theorem 5
rather than the translation of Loop programs into
primitive recursive definitions used in Theorem 7.

Another sequence ~0,~l,~Z of sets of primitive
recursive functions has been defined by Grzegorczyk 4
using closure properties rather than programs. For
example, (3 is the class of elementary functions

defined as the closure of the function x "-- y under
substitution and functional operations which trans-

form f(x,y) into ~ = o f(x,i) or into HYl=o f(x,i). Our

class L2 equals the elementary functions; in fact for
n ~> 2,~ :n+l =Ln.

The proofs of most of the theorem in this paper
appear in [5]. The Axt and Grzegorczyk classes
are treated in detail in [6].

REFERENCES

1 M DAVIS
Computability and unsolvability
McGraw-Hill Book Company Inc New York 1958

S C KLEENE
Introduction to metamathematics
Van Nostrand New York 1952

P AXT
Iteration of primitive recursion
Abstract 597-182 Notices Amer Math Soc Jan. 1963

A GRZEGORCZYK
Some classes of recursive functions
Rozprawy Matematyczne, Warsaw, 1953

A R MEYER andD M RITCHIE
Computational Complexity and Program Structure
IBM Research Research Report, RC- 1817.

6 A R MEYER and D M RITCHIE
Hierarchies of primitive recursive functions, in preparation

A COBHAM
The intrinsic computational difficulty of functions
Proc of the 1964 Cong for Logic Meth and Phil of Science
North-Holland, Amsterdam 1964

R W RITCHIE
Classes of predictably computable functions
Trans Amer Math Soc Vo1106 Jan 1963 pp 139-173.

*The definition is due to Axt 3.

