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Chapter 1

Propositions

Definition. A proposition is a mathematical statement that is either true or false.

For example, both of the following statements are propositions. The first is true
and the second is false.

Proposition 1.0.1. 2 + 3 =5.
Proposition 1.0.2. 1+1=3.

Being true or false doesn’t sound like much of a limitation, but it does exclude
statements such as, “Wherefore art thou Romeo?” and “Give me an A!”.

Unfortunately it is not always easy to decide if a proposition is true or false, or
even what the proposition means. In part, this is because the English language is
riddled with ambiguities. For example, here are some statements that illustrate the
issue:

1. “You may have cake, or you may have ice cream.”
2. “If pigs can fly, then you can understand the Chebyshev bound.”

3. “If you can solve any problem we come up with, then you get an A for the
course.”

4. “Every American has a dream.”

What precisely do these sentences mean? Can you have both cake and ice cream
or must you choose just one dessert? If the second sentence is true, then is the
Chebyshev bound incomprehensible? If you can solve some problems we come
up with but not all, then do you get an A for the course? And can you still get an A
even if you can’t solve any of the problems? Does the last sentence imply that all
Americans have the same dream or might some of them have different dreams?
Some uncertainty is tolerable in normal conversation. But when we need to
formulate ideas precisely—as in mathematics and programming—the ambiguities
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20 CHAPTER 1. PROPOSITIONS

inherent in everyday language can be a real problem. We can’t hope to make an
exact argument if we’re not sure exactly what the statements mean. So before we
start into mathematics, we need to investigate the problem of how to talk about
mathematics.

To get around the ambiguity of English, mathematicians have devised a spe-
cial mini-language for talking about logical relationships. This language mostly
uses ordinary English words and phrases such as “or”, “implies”, and “for all”.
But mathematicians endow these words with definitions more precise than those
found in an ordinary dictionary. Without knowing these definitions, you might
sometimes get the gist of statements in this language, but you would regularly get
misled about what they really meant.

Surprisingly, in the midst of learning the language of mathematics, we’ll come
across the most important open problem in computer science—a problem whose
solution could change the world.

1.1 Compound Propositions

In English, we can modify, combine, and relate propositions with words such as

“not”, “and”, “or”, “implies”, and “if-then”. For example, we can combine three
propositions into one like this:

If all humans are mortal and all Greeks are human, then all Greeks are mortal.

For the next while, we won’t be much concerned with the internals of propositions—
whether they involve mathematics or Greek mortality—but rather with how propo-
sitions are combined and related. So we’ll frequently use variables such as P and
@ in place of specific propositions such as “All humans are mortal” and “2 + 3 =
5”. The understanding is that these variables, like propositions, can take on only
the values T (true) and F (false). Such true/false variables are sometimes called
Boolean variables after their inventor, George—you guessed it—Boole.

1.1.1 NOT, AND, OR

We can precisely define these special words using truth tables. For example, if P
denotes an arbitrary proposition, then the truth of the proposition “NOT(P)” is
defined by the following truth table:

P | NOT(P)
F
F

The first row of the table indicates that when proposition P is true, the proposition
“NOT(P)” is false. The second line indicates that when P is false, “NOT(P)” is true.
This is probably what you would expect.

In general, a truth table indicates the true/false value of a proposition for each
possible setting of the variables. For example, the truth table for the proposition
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“P AND @Q” has four lines, since the two variables can be set in four different ways:

P Q| PANDQ

F F
F F
F F F

According to this table, the proposition “P AND Q" is true only when P and () are
both true. This is probably the way you think about the word “and.”
There is a subtlety in the truth table for “P OR Q”:

P Q| PORQ
F

F

F F F

The third row of this table says that “P OR Q" is true even if both P and () are true.
This isn’t always the intended meaning of “or” in everyday speech, but this is the
standard definition in mathematical writing. So if a mathematician says, “You may
have cake, or you may have ice cream,” he means that you could have both.
If you want to exclude the possibility of both having and eating, you should
use “exclusive-or” (XOR):
P Q| PXORQ

1.1.2 IMPLIES

The least intuitive connecting word is “implies.” Here is its truth table, with the
lines labeled so we can refer to them later.

P Q| PIMPLIES Q

(tt)

F F (tf)

F (ft)
F F (£f)

Let’s experiment with this definition. For example, is the following proposition
true or false?

“If the Riemann Hypothesis is true, then 2? > 0 for every real number z.”

The Riemann Hypothesis is a famous unresolved conjecture in mathematics (i.e.,
no one knows if it is true or false). But that doesn’t prevent you from answering
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the question! This proposition has the form P — @ where the hypothesis, P, is
“the Riemann Hypothesis is true” and the conclusion, @, is “x2 > 0 for every real
number z”. Since the conclusion is definitely true, we're on either line (tt) or line
(ft) of the truth table. Either way, the proposition as a while is true!

One of our original examples demonstrates an even stranger side of implica-
tions.

“If pigs can fly, then you can understand the Chebyshev bound.”

Don’t take this as an insult; we just need to figure out whether this proposition is
true or false. Curiously, the answer has nothing to do with whether or not you can
understand the Chebyshev bound. Pigs cannot fly, so we’re on either line (ft) or
line (ff) of the truth table. In both cases, the proposition is true!

In contrast, here’s an example of a false implication:

“If the moon shines white, then the moon is made of white cheddar.”

Yes, the moon shines white. But, no, the moon is not made of white cheddar cheese.
So we’re on line (tf) of the truth table, and the proposition is false.
The truth table for implications can be summarized in words as follows:

An implication is true exactly when the if-part is false or the then-part is true.

This sentence is worth remembering; a large fraction of all mathematical state-
ments are of the if-then form!

1.1.3 IFF

Mathematicians commonly join propositions in one additional way that doesn’t
arise in ordinary speech. The proposition “P if and only if Q" asserts that P and @
are logically equivalent; that is, either both are true or both are false.

P Q| PIFQ

F F
F F
F F

For example, the following if-and-only-if statement is true for every real number
x:

22 —4>0 iff |x|>2

For some values of x, both inequalities are true. For other values of x, neither in-
equality is true . In every case, however, the proposition as a whole is true.

1.1.4 Notation

Mathematicians have devised symbols to represent words like “AND” and “NOT”.
The most commonly-used symbols are summarized in the table below.
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English Cryptic Notation
NOT(P) —-P (alternatively, P)
P AND Q PAQ

PORQ PVvQ@

PIMPLIESQ P — @
if P then P—Q
P IFF Q P —— (@ (alternatively, P iff Q)

For example, using this notation, “If P AND NOT(Q), then R” would be written:
(PAQ) — R

This symbolic language is helpful for writing complicated logical expressions com-
pactly. But words such as “OR” and “IMPLIES” generally serve just as well as the
cryptic symbols V and —, and their meaning is easy to remember. We will use
them interchangeably and you can feel free to use whichever convention is easiest
for you.

1.1.5 Logically Equivalent Implications

Do these two sentences say the same thing?

If I am hungry, then I am grumpy:.
If I am not grumpy, then I am not hungry.

We can settle the issue by recasting both sentences in terms of propositional logic.!
Let P be the proposition “I am hungry”, and let Q be “I am grumpy”. The first
sentence says “P IMPLIES ()” and the second says “NOT(Q) IMPLIES NOT(P)”. We
can compare these two statements in a truth table:

P | Q | PIMPLIES Q | NOT(Q) IMPLIES NOT(P)

F F F
F
F | F

Sure enough, the columns of truth values under these two statements are the same,
which precisely means they are equivalent. In general, “NOT(Q) IMPLIES NOT(P)”
is called the contrapositive of the implication “P IMPLIES ().” And, as we’ve just
shown, the two are just different ways of saying the same thing.

In contrast, the converse of “ P IMPLIES Q)" is the statement “() IMPLIES P”. In
terms of our example, the converse is:

If I am grumpy, then I am hungry.

This sounds scary, but don’t worry, propositional logic is easy. [Illegible] compound propositions.
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This sounds like a rather different contention, and a truth table confirms this sus-
picion:
P | Q| PIMPLIES Q | Q IMPLIES P

F F
F F
F|F

Thus, an implication is logically equivalent to its contrapositive but is not equiva-
lent to its converse.

One final relationship: an implication and its converse together are equivalent
to an iff statement, specifically, to these two statements together. For example,

If I am grumpy, THEN I am hungry, AND
if  am hungry, THEN I am grumpy.

are equivalent to the single statement:
I am grumpy IFF I am hungry.

Once again, we can verify this with a truth table:

P | Q| (PIMPLIES Q) (QIMPLIES P) | (P IMPLIES Q) AND (Q IMPLIES P) | Q IFF P

F F F F
F F F F
F|F

1.1.6 Problems
Class Problems

Problem 1.1.

When the mathematician says to his student, “If a function is not continuous, then
it is not differentiable,” then letting D stand for “differentiable” and C for contin-
uous, the only proper translation of the mathematician’s statement would be

NOT(C) IMPLIES NOT(D),

or equivalently,
D IMPLIES C.

But when a mother says to her son, “If you don’t do your homework, then
you can’t watch TV,” then letting T stand for “watch TV” and H for “do your
homework,” a reasonable translation of the mother’s statement would be

NOT(H) I1FF NOT(T),

or equivalently,
H 1FF T.
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Explain why it is reasonable to translate these two IF-THEN statements in dif-
ferent ways into propositional formulas.

Problem 1.2.
Prove by truth table that OR distributes over AND:

[P OR (Q AND R)| isequivalentto [(P OR @) AND (P OR R)] (1L.1)

Homework Problems

Problem 1.3.

Describe a simple recursive procedure which, given a positive integer argument,
n, produces a truth table whose rows are all the assignments of truth values to n
propositional variables. For example, for n = 2, the table might look like:

F
F
F|F

Your description can be in English, or a simple program in some familiar lan-
guage (say Scheme or Java), but if you do write a program, be sure to include some
sample output.

1.2 Propositional Logic in Computer Programs

Propositions and logical connectives arise all the time in computer programs. For
example, consider the following snippet, which could be either C, C++, or Java:

if (x>0 || (x <=0 && y > 100) )

(further instructions)

The symbol | | denotes “OR”, and the symbol && denotes “AND”. The further in-
structions are carried out only if the proposition following the word if is true. On
closer inspection, this big expression is built from two simpler propositions. Let A
be the proposition that x > 0, and let B be the proposition that y > 100. Then
we can rewrite the condition “A OR (NOT(A) AND B)”. A truth table reveals that
this complicated expression is logically equivalent to “A OR B”.

A B | AOR(NOT(A) AND B) | AOR B

F
F
F F F F
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This means that we can simplify the code snippet without changing the program’s
behavior:

if (x>0 [ y > 100 )

(further instructions)

Rewriting a logical expression involving many variables in the simplest form
is both difficult and important. Simplifying expressions in software can increase
the speed of your program. Chip designers face a similar challenge—instead of
minimizing && and | | symbols in a program, their job is to minimize the number
of analogous physical devices on a chip. The payoff is potentially enormous: a
chip with fewer devices is smaller, consumes less power, has a lower defect rate,
and is cheaper to manufacture.

1.2.1 Problems
Class Problems

Problem 1.4.
This problem? examines whether the following specifications are satisfiable:

1. If the file system is not locked, then

(a) new messages will be queued.

(b) new messages will be sent to the messages bulffer.

(c) the system is functioning normally, and conversely, if the system is func-
tioning normally, then the file system is not locked.

2. If new messages are not queued, then they will be sent to the messages buffer.

3. New messages will not be sent to the message buffer.

(a) Begin by translating the five specifications into propositional formulas using
four propositional variables:

= file system locked,
= new messages are queued,

= new messages are sent to the message buffer,

2 wo t~

= system functioning normally.

(b) Demonstrate that this set of specifications is satisfiable by describing a single
truth assignment for the variables L, ), B, N and verifying that under this assign-
ment, all the specifications are true.

2From Rosen, 5th edition, Exercise 1.1.36
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(c) Argue that the assignment determined in part (b) is the only one that does the
job.

Problem 1.5.

Propositional logic comes up in digital circuit design using the convention that
corresponds to 1 and F to 0. A simple example is a 2-bit half-adder circuit. This
circuit has 3 binary inputs, a1, ap and b, and 3 binary outputs, ¢, 01, 09. The 2-bit
word ajag gives the binary representation of an integer, k, between 0 and 3. The
3-bit word cs; 50 gives the binary representation of k + b. The third output bit, ¢, is
called the final carry bit.

So if k and b were both 1, then the value of a;ag would be 01 and the value of
the output cs159 would 010, namely, the 3-bit binary representation of 1 + 1.

In fact, the final carry bit equals 1 only when all three binary inputs are 1, that
is, when k = 3 and b = 1. In that case, the value of cs;5¢ is 100, namely, the binary
representation of 3 + 1.

This 2-bit half-adder could be described by the following formulas:

C():b
So = ag XOR c¢g

c1 = ag AND cg the carry into column 1

Ss1 = a1 XOR ¢

co = ay; AND ¢ the carry into column 2
c = co.

(a) Generalize the above construction of a 2-bit half-adder to an n + 1 bit half-
adder with inputs ay,...,a1,a0 and b for arbitrary n > 0. That is, give simple
formulas for s; and ¢; for 0 < i < n + 1, where ¢; is the carry into column ¢ and

C=Cp+1-

(b) Write similar definitions for the digits and carries in the sum of two n + 1-bit
binary numbers a, . ..a1ao and by, . .. by bo.

Visualized as digital circuits, the above adders consist of a sequence of single-
digit half-adders or adders strung together in series. These circuits mimic ordinary
pencil-and-paper addition, where a carry into a column is calculated directly from
the carry into the previous column, and the carries have to ripple across all the
columns before the carry into the final column is determined. Circuits with this
design are called ripple-carry adders. Ripple-carry adders are easy to understand
and remember and require a nearly minimal number of operations. But the higher-
order output bits and the final carry take time proportional to n to reach their final
values.

(c) How many of each of the propositional operations does your adder from
part (b) use to calculate the sum?
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Homework Problems

Problem 1.6.

Considerably faster adder circuits work by computing the values in later columns
for both a carry of 0 and a carry of 1, in parallel. Then, when the carry from the
earlier columns finally arrives, the pre-computed answer can be quickly selected.
We'll illustrate this idea by working out the equations for an n + 1-bit parallel half-
adder.

Parallel half-adders are built out of parallel “add1” modules. An n + 1-bit add1
module takes as input the n + 1-bit binary representation, a,, . . . a1ag, of an integer,
s, and produces as output the binary representation, cp,, . .. p1 po, of s + 1.

(@) A 1-bit add1 module just has input ag. Write propositional formulas for its
outputs c and po.

(b) Explain how to build an n + 1-bit parallel half-adder from an » + 1-bit add1
module by writing a propositional formula for the half-adder output, o;, using
only the variables a;, p;, and b.

We can build a double-size add1 module with 2(n 4+ 1) inputs using two single-
size add1 modules with n+1 inputs. Suppose the inputs of the double-size module
are asp+1, - - - , a1, ap and the outputs are ¢, pan+1, - - -, p1, Po- The setup is illustrated
in Figure 1.1.

Namely, the first single size add1 module handles the first n + 1 inputs. The
inputs to this module are the low-order n + 1 input bits a,, ..., a1, ap, and its out-
puts will serve as the first n 4+ 1 outputs py, ..., p1,po of the double-size module.
Let c(1) be the remaining carry output from this module.

The inputs to the second single-size module are the higher-order n + 1 input
bits a2, y1, ..., @nt2, anq1. Callits first n + 1 outputs ry, ..., 71,7 and let c(2) be its
carry.

(c) Write a formula for the carry, ¢, in terms of ¢(;) and ¢y).

(d) Complete the specification of the double-size module by writing propositional
formulas for the remaining outputs, p;, for n + 1 < i < 2n + 1. The formula for p;
should only involve the variables a;, 7;_(,41), and c(y).

(e) Parallel half-adders are exponentially faster than ripple-carry half-adders. Con-
firm this by determining the largest number of propositional operations required
to compute any one output bit of an n-bit add module. (You may assume n is a
power of 2.)

1.2.2 Problems
Class Problems

Problem 1.7. (a) A propositional formula is valid iff it is equivalent to T'. Verify by
truth table that
(P IMPLIES @) OR (@ IMPLIES P)
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Figure 1.1: Structure of a Double-size Add1 Module.
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is valid.

(b) Let P and () be propositional formulas. Describe a single propositional for-
mula, R, involving P and @ such that R is valid iff P and () are equivalent.

(c) A propositional formula is satisfiable iff there is an assignment of truth values
to its variables —an environment —which makes it true. Explain why

P is valid iff NOT(P) is not satisfiable.

(d) A set of propositional formulas P, ..., Py is consistent iff there is an environ-
ment in which they are all true. Write a formula, S, so that the set Py, ..., P}, is not
consistent iff S is valid.

1.3 Predicates and Quantifiers

1.3.1 Propositions with infinitely many cases

Most of the examples of propositions that we have considered thus far have been
nice in the sense that it has been relatively easy to determine if they are true or
false. At worse, there were only a few cases to check in a truth table. Unfortunately,
not all propositions are so easy to check. That is because some propositions may
involve a large or infinite number of possible cases. For example, consider the
following proposition involving prime numbers. (A prime is an integer greater
than 1 that is divisible only by itself and 1. For example, 2, 3, 5, 7, and 11 are
primes, but 4, 6, and 9 are not. A number greater than 1 that is not prime is said to
be composite.)

Proposition 1.3.1. For every nonnegative integer, n, the value of n* + n + 41 is prime.

It is not immediately clear whether this proposition is true or false. In such
circumstances, it is tempting to try to determine its veracity by computing the
value of?

p(n) ==n?+n +41. (1.2)
for several values ofn and then checking to see if they are prime. If any of the
computed values is not prime, then we will know that the proposition is false. If
all the computed values are indeed prime, then we might be tempted to conclude
that the proposition is true.

We begin with p(0) = 41 which is prime. p(1) = 43 is also prime. So is p(2) =
47, p(3) = 53,..., and p(20) = 461. Hmmm... It is starting to look like p(n) is
a prime for every nonnegative integer n. In fact we can keep checking through
n = 39 and confirm that p(39) = 1601 is prime. The proposition certainly does
seem to be true.

But p(40) = 402 + 40 + 41 = 41 - 41, which is not prime. So it’s not true that the
expression is prime for all nonnegative integers, and thus the proposition is false!

_rn

3The symbol ::= means “equal by definition.” It's always ok to simply write “=" instead of ::=, but
reminding the reader that an equality holds by definition can be helpful.
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EDITING NOTE: In fact, it’s not hard to show that no polynomial with integer
coefficients can map all natural numbers into prime numbers, unless it’s a constant.
|

Although surprising, this example is not as contrived or rare as you might sus-
pect. As we will soon see, there are many examples of propositions that seem to
be true when you check a few cases, but which turn out to be false. The key to
remember is that you can’t check a claim about an infinite set by checking a finite
set of its elements, no matter how large the finite set.

Propositions that involve all numbers are so common that there is a special
notation for them. For example, Proposition 1.3.1 can also be written as

Vn € N. p(n) is prime. (1.3)

Here the symbol V is read “for all”. The symbol N stands for the set of nonnegative
integers, namely, 0, 1, 2, 3, ... (ask your instructor for the complete list). The symbol
“€” is read as “is a member of,” or “belongs to,” or simply as “is in”. The period
after the N is just a separator between phrases.

Here is another example of a proposition that, at first, seems to be true but
which turns out to be false.

Proposition 1.3.2. a* + b + ¢! = d* has no solution when a, b, ¢, d are positive integers.

Euler (pronounced “oiler”) conjectured proposition to be true this in 1769. Ul-
timately the proposition was proven false in 1987 by Noam Elkies. The solution he
found was a = 95800, b = 217519, ¢ = 414560, d = 422481. No wonder it took 218
years to show the proposition is false!

In logical notation, Proposition 1.3.2 could be written,

Ya € ZTVb € ZY Ve € ZPVd € ZF. a* 4+ b 4 ¢t £ d*.

Here, Z is a symbol for the positive integers. Strings of V's are usually abbreviated
for easier reading, as follows:

Va,b,c,d € Zt. a* + b* + ¢* £ d*.
The following proposition is even nastier.
Proposition 1.3.3. 313(x3 + y3) = 23 has no solution when x,y,z € Z*.

This proposition is also false, but the smallest counterexample values for z, y,
and z have more than 1000 digits! Even the world’s largest computers would not
be able to get that far with brute force. Of course, you may be wondering why
anyone would care whether or not there is a solution to 313(z? + y3) = 23 where
z, y, and z are positive integers. It turns out that finding solutions to such equa-
tions is important in the field of elliptic curves, which turns out to be important
to the study of factoring large integers, which turns out (as we will see in Chap-
ter 4) to be important in cracking commonly-used cryptosystems, which is why
mathematicians went to the effort to find the solution with thousands of digits.

[Illegible] that have infinitely many cases to check turn out to be false. The
following proposition (known as the “Four-Color Theorem”) turns out to be true.
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Proposition 1.3.4. Every map can be colored with 4 colors so that adjacent* regions have
different colors.

The proof of this proposition is difficult and took over a century to perfect.
Alon the way, many incorrect proofs were proposed, including one that stood for
10 years in the late 19th century before the mistake was found. An extremely labo-
rious proof was finally found in 1976 by mathematicians Appel and Haken, who
used a complex computer program to categorize the four-colorable maps; the pro-
gram left a few thousand maps uncategorized, and these were checked by hand
by Haken and his assistants—including his 15-year-old daughter. There was a lot
of debate about whether this was a legitimate proof: the proof was too big to be
checked without a computer, and no one could guarantee that the computer cal-
culated correctly, nor did anyone have the energy to recheck the four-colorings of
the thousands of maps that were done by hand. Within the past decade, a mostly
intelligible proof of the Four-Color Theorem was found, though a computer is still
needed to check the colorability of several hundred special maps.”

In some cases, we do not know whether or not a proposition is true. For exam-
ple, the following simple proposition (known as Goldbach’s Conjecture) has been
heavily studied since 1742 but we still do not know if it is true. Of course, it has
been checked by computer for many values of n, but as we have seen, that is not
sufficient to conclude that it is true.

Proposition 1.3.5 (Goldbach). Every even integer greater than 2 is the sum of two
primes.

While the preceding propositions are important in mathematics, computer sci-
entists are often interested in propositions concerning the “correctness” of pro-
grams and systems, to determine whether a program or system does what it’s
supposed to. Programs are notoriously buggy, and there’s a growing community
of researchers and practitioners trying to find ways to prove program correctness.
These efforts have been successful enough in the case of CPU chips that they are
now routinely used by leading chip manufacturers to prove chip correctness and
avoid mistakes like the notorious Intel division bug in the 1990’s.

EDITING NOTE: ref needed [ |

Developing mathematical methods to verify programs and systems remains an
active research area. We’ll consider some of these methods later in the text.

1.3.2 Predicates

A predicate is a proposition whose truth depends on the value of one or more vari-
ables. Most of the propositions above were defined in terms of predicates. For

4Two regions are adjacent only when they share a boundary segment of positive length. They are
not considered to be adjacent if their boundaries meet only at a few points.

5See http://www.math.gatech.edu/ thomas/FC/fourcolor.html

The story of the Four-Color Proof is told in a well-reviewed popular (non-technical) book: “Four
Colors Suffice. How the Map Problem was Solved.” Robin Wilson. Princeton Univ. Press, 2003, 276pp.
ISBN 0-691-11533-8.
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example,
“n is a perfect square”

is a predicate whose truth depends on the value of n. The predicate is true for
n = 4 since four is a perfect square, but false for n = 5 since five is not a perfect
square.

Like other propositions, predicates are often named with a letter. Furthermore,
a function-like notation is used to denote a predicate supplied with specific vari-
able values. For example, we might name our earlier predicate P:

P(n) == “nis a perfect square”

Now P(4) is true, and P(5) is false.

This notation for predicates is confusingly similar to ordinary function nota-
tion. If P is a predicate, then P(n) is either true or false, depending on the value
of n. On the other hand, if p is an ordinary function, like n? + n, then p(n) is a
numerical quantity. Don’t confuse these two!

1.3.3 Quantifiers

There are a couple of assertions commonly made about a predicate: that it is some-
times true and that it is always true. For example, the predicate

“ .'I/'Q Z Orl
is always true when z is a real number. On the other hand, the predicate
“5 xQ —7=0"

is only sometimes true; specifically, when = = +./7/5.

There are several ways to express the notions of “always true” and “sometimes
true” in English. The table below gives some general formats on the left and spe-
cific examples using those formats on the right. You can expect to see such phrases
hundreds of times in mathematical writing!

Always True
For all n, P(n) is true. Forallz € R, 2% > 0.
P(n) is true for every n. z? > 0 forevery z € R.

Sometimes True

There exists an n such that P(n) is true. There exists an = € R such that 522 — 7 = 0.
P(n) is true for some n. 522 — 7 = 0 for some = € R.
P(n) is true for at least one n. 52% — 7 = 0 for at least one = € R.

All these sentences quantify how often the predicate is true. Specifically, an
assertion that a predicate is always true, is called a universally quantified statement.
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An assertion that a predicate is sometimes true, is called an existentially quantified
statement.
Sometimes English sentences are unclear about quantification:

“If you can solve any problem we come up with, then you get an A for the
course.”

The phrase “you can solve any problem we can come up with” could reasonably
be interpreted as either a universal or existential statement. It might mean:

“You can solve every problem we come up with,”
or maybe
“You can solve at least one problem we come up with.”

In the preceding example, the quantified phrase appears inside a larger if-then
statement. This is quite normal; quantified statements are themselves propositions
and can be combined with AND, OR, IMPLIES, etc., just like any other proposition.

1.3.4 Notation

There are symbols to represent universal and existential quantification, just as
there are symbols for “AND” (A), “IMPLIES” (—), and so forth. In particular, to
say that a predicate, P(x), is true for all values of x in some set, D, we write:

Vo € D. P(x) (1.4)

The universal quantifier symbol V is read “for all,” so this whole expression (1.4) is
read “For all z in D, P(x) is true.” Remember that upside-down “A” stands for
I/All'll

To say that a predicate P(z) is true for at least one value of = in D, we write:

Jz € D. P(x) (1.5)

The existential quantifier symbol 3, is read “there exists.” So expression (1.5) is read,
“There exists an z in D such that P(z) is true.” Remember that backward “E”
stands for “Exists.”

The symbols V and 3 are always followed by a variable—typically with an in-
dication of the set the variable ranges over—and then a predicate, as in the two
examples above.

As an example, let Probs be the set of problems we come up with, Solves(z) be
the predicate “You can solve problem 2”, and G be the proposition, “You get an A
for the course.” Then the two different interpretations of

“If you can solve any problem we come up with, then you get an A for
the course.”
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can be written as follows:
(Vx € Probs. Solves(z)) IMPLIES G,

or maybe
(3x € Probs. Solves(x)) IMPLIES G.

1.3.5 Mixing Quantifiers

Many mathematical statements involve several quantifiers. For example, Gold-
bach’s Conjecture states:

“Every even integer greater than 2 is the sum of two primes.”
Let’s write this more verbosely to make the use of quantification clearer:

For every even integer n greater than 2, there exist primes p and ¢ such
thatn =p +q.

Let Evens be the set of even integers greater than 2, and let Primes be the set of
primes. Then we can write Goldbach’s Conjecture in logic notation as follows:

Vn € Evens Jp € Primes dq € Primes. n =p +gq.
N————

for every even there exist primes
integer n > 2 p and q such that

The proposition can also be written more simply as

Vn € Evens dp, q € Primes. p + ¢ = n.

1.3.6 Order of Quantifiers

Swapping the order of different kinds of quantifiers (existential or universal) usu-
ally changes the meaning of a proposition. For example, let’s return to one of our
initial, confusing statements:

“Every American has a dream.”

This sentence is ambiguous because the order of quantifiers is unclear. Let A be
the set of Americans, let D be the set of dreams, and define the predicate H(a, d) to
be “American a has dream d.” Now the sentence could mean that there is a single
dream that every American shares:

3d € DVa € A. H(a,d)

For example, it might be that every American shares the dream of owning their
own home.
Or it could mean that every American has a personal dream:

Va€ A3de D. H(a,d)
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For example, some Americans may dream of a peaceful retirement, while others
dream of continuing practicing their profession as long as they live, and still others
may dream of being so rich they needn’t think at all about work.

Swapping quantifiers in Goldbach’s Conjecture creates a patently false state-
ment; namely that every even number > 2 is the sum of the same two primes:

dp,q € Primes Vn € Evens. n =p+gq.
—_—

there exist primes ifor every even
p and g such that integer n > 2

1.3.7 Variables Over One Domain

When all the variables in a formula are understood to take values from the same
nonempty set, D, it’s conventional to omit mention of D. For example, instead of
Ve € D Jy € D. Q(z,y) we'd write VzIy. Q(z,y). The unnamed nonempty set
that = and y range over is called the domain of discourse, or just plain domain, of the
formula.

It’s easy to arrange for all the variables to range over one domain. For exam-
ple, Goldbach’s Conjecture could be expressed with all variables ranging over the
domain N as

Vn.(n € Evens) IMPLIES (Jp3q. p € Primes AND ¢ € Primes AND n = p + q).

1.3.8 Negating Quantifiers

There is a simple relationship between the two kinds of quantifiers. The following
two sentences mean the same thing:

It is not the case that everyone likes to snowboard.

There exists someone who does not like to snowboard.

In terms of logic notation, this follows from a general property of predicate formu-
las:
NOT (Vz. P(x)) isequivalentto 3Jz. NOT(P(z)).

Similarly, these sentences mean the same thing:

There does not exist anyone who likes skiing over magma.

Everyone dislikes skiing over magma.

We can express the equivalence in logic notation this way:

NOT (Jz. P(x)) IFF Vz. NOT(P(x)). (1.6)

1

The general principle is that moving a
quantifier.

‘not” across a quantifier changes the kind of
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1.4 Validity

A propositional formula is called valid when it evaluates to T' no matter what truth
values are assigned to the individual propositional variables. For example, the
propositional version of the Distributive Law is that P AND () OR R) is equivalent
to (P AND Q) OR (P AND R). This is the same as saying that

[P AND (Q OR R)] IFF [(P AND Q) OR (P AND R)]

is valid.

The same idea extends to predicate formulas, but to be valid, a formula now
must evaluate to true no matter what values its variables may take over any un-
specified domain, and no matter what interpretation a predicate variable may be
given. For example, we already observed that the rule for negating a quantifier is
captured by the valid assertion (1.6).

Another useful example of a valid assertion is

JaVy. P(z,y) IMPLIES Vy3z. P(z,y). (1.7)
Here’s an explanation why this is valid:

Let D be the domain for the variables and P, be some binary predicate®
on D. We need to show that if

Jz € DVy € D. Py(z,y) (1.8)
holds under this interpretation, then so does
Yy € D 3x € D. Py(z,y). (1.9

So suppose (1.8) is true. Then by definition of 3, this means that some
element dy € D has the property that

Vy € D. Py(do,y)-
By definition of V, this means that
Py (do, d)

is true for all d € D. So given any d € D, there is an element in D,
namely, dy, such that Py(do,d) is true. But that’s exactly what (1.9)
means, so we've proved that (1.9) holds under this interpretation, as
required.

We hope this is helpful as an explanation, although purists would not really
want to call it a “proof.” The problem is that with something as basic as (1.7), it’s
hard to see what more elementary axioms are ok to use in proving it. What the

®That is, a predicate that depends on two variables.
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explanation above did was translate the logical formula (1.7) into English and then
appeal to the meaning, in English, of “for all” and “there exists” as justification.
In contrast to (1.7), the formula

Vy3dz. P(z,y) IMPLIES daVy. P(z,y). (1.10)

is not valid. We can prove this by describing an interpretation where the hypothe-
sis, Vy3x. P(x,y), is true but the conclusion, 3zVy. P(x,y), is not true. For exam-
ple, let the domain be the integers and P(z,y) mean x > y. Then the hypothesis
would be true because, given a value, n, for y we could, for example, choose the
value of z to be n+1. But under this interpretation the conclusion asserts that there
is an integer that is bigger than all integers, which is certainly false. An interpreta-
tion like this which falsifies an assertion is called a counter model to the assertion.

1.5 Satisfiability

A proposition is satisfiable if some setting of the variables makes the proposition
true. For example, P AND () is satisfiable because the expression is true if P is true
or Q is false. On the other hand, P AND P is not satisfiable because the expression
as a whole is false for both settings of P. But determining whether or not a more
complicated proposition is satisfiable is not so easy. How about this one?

(PORQ OR R) AND (P OR Q) AND (P OR R) AND (R OR Q)

The general problem of deciding whether a proposition is satisfiable is called
SAT. One approach to SAT is to construct a truth table and check whether or not
a T ever appears. But this approach is not very efficient; a proposition with n
variables has a truth table with 2" lines, so the effort required to decide about a
proposition grows exponentially with the number of variables. For a proposition
with just 30 variables, that’s already over a billion lines to check!

Is there a more efficient solution to SAT? In particular, is there some, presum-
ably very ingenious, procedure that determines in a number of steps that grows
polynomially—like n? or n'*—instead of exponentially, whether any given propo-
sition is satisfiable or not? No one knows. And an awful lot hangs on the answer.
An efficient solution to SAT would immediately imply efficient solutions to many,
many other important problems involving packing, scheduling, routing, and cir-
cuit verification, among other things. This would be wonderful, but there would
also be worldwide chaos. Decrypting coded messages would also become an easy
task (for most codes). Online financial transactions would be insecure and secret
communications could be read by everyone.

Recently there has been exciting progress on sat-solvers for practical applica-
tions like digital circuit verification. These programs find satisfying assignments
with amazing efficiency even for formulas with millions of variables. Unfortu-
nately, it’s hard to predict which kind of formulas are amenable to sat-solver meth-
ods, and for formulas that are NOT satisfiable, sat-solvers generally take exponen-
tial time to verify that.
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So no one has a good idea how to solve SAT in polynomial time, or how to
prove that it can’t be done—researchers are completely stuck. The problem of de-
termining whether or not SAT has a polynomial time solution is known as the “P
vs. NP” problem. It is the outstanding unanswered question in theoretical com-
puter science. It is also one of the seven Millenium Problems: the Clay Institute
will award you $1,000,000 if you solve the P vs. NP problem.

1.6 Problems

1.6.1 Problems

Class Problems

Problem 1.8.

A media tycoon has an idea for an all-news television network called LNN: The
Logic News Network. Each segment will begin with a definition of the domain of
discourse and a few predicates. The day’s happenings can then be communicated
concisely in logic notation. For example, a broadcast might begin as follows:

“THIS IS LNN. The domain of discourse is { Albert, Ben, Claire, David, Emily}.
Let D(x) be a predicate that s true if « is deceitful. Let L(x, y) be a pred-

icate that is true if x likes y. Let G(z,y) be a predicate that is true if =

gave gifts to y.”

Translate the following broadcasted logic notation into (English) statements.
€Y
(=(D(Ben) vV D(David))) — (L(Albert, Ben) A L(Ben, Albert))

(b)
Va (z = Claire A =L(z, Emily)) V (z # Claire A L(z, Emily)) A
Va (x = David A L(z, Claire)) V (x # David A =L(z, Claire))
(c)
—D(Claire) — (G(Albert, Ben) A 3 G (Ben, z))
(d)

VaIy3z (y # z) A L(z,y) A —L(x, 2)

(e) How could you express “Everyone except for Claire likes Emily” using just
propositional connectives without using any quantifiers (v, 3)? Can you generalize
to explain how any logical formula over this domain of discourse can be expressed
without quantifiers? How big would the formula in the previous part be if it was
expressed this way?


http://www.claymath.org/millennium/
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Problem 1.9.

The goal of this problem is to translate some assertions about binary strings into
logic notation. The domain of discourse is the set of all finite-length binary strings:
A, 0, 1,00, 01, 10, 11, 000, 001, .... (Here A denotes the empty string.) In your
translations, you may use all the ordinary logic symbols (including =), variables,
and the binary symbols 0, 1 denoting 0, 1.

A string like 0120y of binary symbols and variables denotes the concatenation
of the symbols and the binary strings represented by the variables. For example,
if the value of z is 011 and the value of y is 1111, then the value of 01z0y is the
binary string 0101101111.

Here are some examples of formulas and their English translations. Names for
these predicates are listed in the third column so that you can reuse them in your
solutions (as we do in the definition of the predicate NO-1s below).

Meaning Formula Name

x is a prefix of y dz (xz = y) PREFIX(x, y)

x is a substring of y FuTv (uzv = y) SUBSTRING(x, y)
x is empty or a string of 0’s NOT(SUBSTRING(1,x)) NO-1s(z)

(a) z consists of three copies of some string.
(b) zis an even-length string of 0’s.
(c) = does not contain both a0 and a 1.
(d) z is the binary representation of 2* + 1 for some integer k > 0.
(e) An elegant, slightly trickier way to define NO-1S(x) is:
PREFIX(z, Ox). *

Explain why (*) is true only when z is a string of 0’s.

Problem 1.10.

For each of the logical formulas, indicate whether or not it is true when the do-
main of discourse is N, (the nonnegative integers 0, 1, 2, ...), Z (the integers), Q
(the rationals), R (the real numbers), and C (the complex numbers). Add a brief
explanation to the few cases that merit one.

Jz (22 = 2)

vz Jy (z* = y)

Yy Fx (22 = y)

Ve £0 Ty (xy = 1)
Jr Jy (x+2y = 2)AN(2z+4y=05)
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Problem 1.11.
Show that
(Vz3y. P(z,y)) — Vz. P(z, %)

is not valid by describing a counter-model.

Homework Problems

Problem 1.12.

Express each of the following predicates and propositions in formal logic notation.
The domain of discourse is the nonnegative integers, N. Moreover, in addition to
the propositional operators, variables and quantifiers, you may define predicates
using addition, multiplication, and equality symbols, but no constants (like 0, 1,...)
and no exponentiation (like ). For example, the proposition “n is an even number”
could be written

Im. (m+m =n).
(@) n is the sum of two fourth-powers (a fourth-power is k* for some integer k).

Since the constant 0 is not allowed to appear explicitly, the predicate “= = 0”
can’t be written directly, but note that it could be expressed in a simple way as:

T+T =2
Then the predicate « > y could be expressed
Jw. (y+w=2x) A (w #0).

Note that we’ve used “w # 0” in this formula, even though it’s technically not
allowed. But since “w # 0” is equivalent to the allowed formula “—(w + w = w),”
we can use “w # 0” with the understanding that it abbreviates the real thing. And
now that we’ve shown how to express “z > y,” it’s ok to use it too.

(b) = =1.
(c) m is a divisor of n (notation: m | n)
(d) nis a prime number (hint: use the predicates from the previous parts)

(e) nis a power of 3.

Problem 1.13.
Translate the following sentence into a predicate formula:

There is a student who has emailed exactly two other people in the
class, besides possibly herself.

The domain of discourse should be the set of students in the class; in addition,
the only predicates that you may use are
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¢ equality, and

* E(z,y), meaning that “z has sent e-mail to y.”
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