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ABSTRACT.   The axiomatic treatment of the computational complexity

of partial recursive functions initiated by Blum is extended to relatively com-

putable functions (as computed, for example, by Turing machines with oracles).

Relativizations of several results of complexity theory are carried out.  A recur-

sive relatedness theorem is proved, showing that any two relative complexity

measures are related by a fixed recursive function.  This theorem allows proofs

of results for all measures to be obtained from proofs for a particular measure.

Complexity-determined reducibilities are studied.  Truth-table and

primitive recursive reducibilities are proved to be reducibilities of this type.

The concept of a set "helping" the computation of a function (by

causing a saving in resource when used as an oracle in the computation of the

function) is formalized.   Basic properties of the helping relation are given, includ-

ing nontransitivity and bounds on the amount of help certain sets can provide.

Several independence results (results about sets that do not help each

other's computation) are proved; they are subrecursive analogs to degrees-of-

unsolvability theorems with proofs using diagonalization and priority arguments.

In particular, the existence of a "universally-helped set" is discussed; partial

results are obtained in both directions.  The deepest result in the paper is a

finite-injury priority argument (without an apparent recursive bound on the

number of injuries) which produces sets preserving an arbitrary lower bound on

the complexity of any given set.

1. Introduction. An axiomatic framework for discussing the complexity

of partial recursive functions of integer variables has been given by Blum [Bl].

We use a similar approach for relatively computable functions (i.e., partial

recursive functions of one integer and one set variable). Our relativization of
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244 N. A. LYNCH, A. R. MEYER AND M. J. FISCHER

Blum's axioms allows us to treat several problems impossible to formulate from

his original set of axioms.

For example, we can model the dependence of a computation on a sub-

routine. We can formalize the idea that knowledge of the values of one function

"helps" us to compute a second function.

Our axioms include as special cases the "natural" measures on relative

computations, such as the time and space measures on oracle Turing machines [D],

[Rol]. Thus, our theorems are also true when interpreted for the specific

measures. We lose a certain amount of precision in determining time and space

bounds by proving results axiomatically rather than for specific measures, but

we gain independence from the definition of any computing machine model as

well as some elegance. Intuitive remarks about time and space are given where-

ever possible.

In §2 we present our axioms for relative complexity and prove some

basic results suggested by theorems of nonrelativized complexity theory.

The first important result is that any two measures satisfying the axioms

are recursively related; the proof is by König's lemma.   This theorem is important

primarily because it provides a method of proof for certain types of theorems;

they may be proved for a particular measure (usually space) and then the

recursive relatedness between the particular measure and other measures can

yield the general result. This method is used occasionally.

We note that the standard results of complexity theory, such as speed-up,

compression and gap theorems [HH], all have full relativizations with proofs

corresponding to the usual proofs. Several partial relativizations are also true;

for instance, we prove a relativization of the combining lemma [HH], which

states that the complexity of a computation is closely related to the complexity

of its subcomputations.  Its proof is an example of our use of a method of proof

which we call the convergence method and which is used in axiomatic proofs

throughout the paper.

The notion of complexity class [McC], [McCMe], i.e., the class of recursive

functions computable within a given time bound, is generalized to a study of

"complexity-determined" reducibilities in §3. To any class C of functions

corresponds {(4, B)\A is computable from B within measure equal to some

function in C} • For certain classes C this defines a natural reducibility. For

example, truth-table reducibility [Rol] and the relation "primitive recursive in"

[K] are examples of reducibilities of this type; other commonly-studied

reducibilities such as many-one and one-one reducibilities [Rol] are not.

We show that neither truth-table reducibility nor primitive recursive

reducibility can be completely specified by a single bound function (i.e., a

singleton class C). However, each may be so specified on any countable class of
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THEORY OF COMPUTATIONAL COMPLEXITY 245

oracle sets by a relativization of the McCreight-Meyer union theorem [McC],

[McCMe].

By selecting special classes of functions C, we define new complexity-

determined reducibilities and discuss some of their properties.

In §4 we establish a formalism within which to discuss questions such

as the following:

(1) Which sets make the computation of a function easier than it would

be without the help of these sets?

(2) How much help (increase in speed) does an oracle for a set provide in

a computation?

We propose several possible definitions of "helping", each of which provides

a reasonable way of discussing the concept.  Briefly, we define helping of the

computation of a function on either an infinite set of arguments or on almost

all (i.e., all but finitely many) arguments. We also discuss helping in the sense

of lowering the complexity of a function below a given lower bound function.

We then present a series of basic results. First, we show that any set

whose complexity is small cannot give much help to the computation of any

function. We then show that any recursive set has arbitrarily complex recursive

sets (with their complexity closely determined) that do help its computation.

Following Trahtenbrot ("autoreducible sets") [Tl], we formalize the idea

of a set which helps its own computation in the sense that values of its

characteristic function at different arguments are strongly interdependent. We

then prove the existence of such sets with complexity approximately equal to

any given monotone running time.

By diagonalization with priorities [Rol], we next construct a set with no

interdependence between the values of its characteristic function at different

arguments. Splitting this set into two pieces, we conclude that neither piece

can help the other's computation.

This result illustrates proof techniques which will be used in a more

complicated fashion in §5. It has several interesting corollaries, including the

fact that "helping" is not a transitive relation.

Since the independent sets are constructed by a diagonalization, it is

difficult to understand much about them. A more interesting result would arise

if we could arbitrarily fix at least one of the sets. Thus, in § §5 and 6 we ask

the following question:

Which is true?

(1) For all recursive sets A, there exist arbitrarily complex recursive sets

B that do not help the computation of A, or

(2) There is a recursive set A whose computation is helped by all suffi-

ciently complex recursive sets B ( a "universally-helped set").
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246 N. A. LYNCH, A. R. MEYER AND M. J. FISCHER

In §5 we produce results partially supporting conjecture (1). We first

note that the complexity axioms are sufficiently general to be satisfied by

various "pathological" measures; specifically, that any recursive set will be a

"universally-helped set" in some relative complexity measure. We use a mech-

anism for eliminating such trivial cases.

Using diagonalizations with priorities, we prove two theorems whose intend-

ed interpretation is that given any recursive set A, there exist arbitrarily complex

recursive sets B which preserve the complexity o{A.

Theorem 5.3 states that, given any recursive function tA such that the

complexity of A exceeds tA infinitely often, there exist arbitrarily complex sets

B such that the complexity of A even given an oracle for B still exceeds tA

infinitely often.

Theorem 5.4 is identical to Theorem 5.3 except that "infinitely often" is

replaced by "almost everywhere". Also, we require in this case that tA be a

running time (cf. §2), rather than an arbitrary recursive function.

This theorem is our deepest result. The diagonalization required is

considerably more complicated than that required for Theorem 5.3, and involves

a finite-injury priority argument in which there is no apparent recursive bound

on the number of times a requirement may be injured.

These independence results might be interpreted as showing that there

exist arbitrarily complex pairs of recursive sets which are complex for "different

reasons".

In Theorems 5.3 and 5.4, the sets B which are constructed depend on the

particular lower bound tA which is to be preserved. They may not preserve all

lower bounds on the complexity of A, however. This might occur if A is a set

for which no single lower bound on its complexity is very good (viz., if A has

speed-up in the sense of Blum [Bl], [B2], so that for every lower bound on the

complexity of A there is another lower bound which is much larger infinitely

often). Thus conjecture (2) remains consistent with these theorems.

In support of conjecture (2), we sketch in Theorem 6.1 the construction

of sets which are helped by all recursive sets whose complexities are compressed

around running times.

2. Notation, axioms and basic results. We assume familiarity with the

basic methods and notation used by Rogers [Rol] for recursive function theory.

Some familiarity with the basic results of complexity theory (as surveyed for

example in [HH] ) will be helpful, but we include proof sketches of the

particular theorems of the unrelativized theory which are required for our

development.

We use (V°°*) and o.e. (x) to mean "for all but a finite number of x".
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THEORY OF COMPUTATIONAL COMPLEXITY 247

When no confusion is likely, we simply write o.e. (almost everywhere).

Similarly, (3°°.*) or i.o. (x) means "for infinitely many x"; we also write

í oí (infinitely often).

We write a - b to mean

a - b   if a > b,

0 ifa<6.

The composition got where t is a function of one variable and g is a

function of two variables, will indicate ~kx\g(x, t(x))]. That is, g o t(x) =

g(x, t(x)).

Rn represents the set of total recursive functions of « integer variables.

RnA' represents the set of total A -recursive functions of n integer

variables.

<p\A *(*) denotes the value at argument x of the ith function partial recur-

sive in the set A in a standard enumeration.

We write t for divergence and I for convergence of computations.

For any /, A, if $A\x) t, we use the convention that <p$A\x) = °°.

By convention, °° < °°, and n < °° for any n EN. (N denotes the nonneg-

ative integers.)

Of, y) will denote a pairing of x and y in some effective manner, such as

<x, y) = H(jc2 + 2xy+y2 + 3x + y).

We also write 7Tj((x, y)) = x and îr2(<x,.>>>) =y- The mapping is a bijection:

x = <7Tj(x), ;r2(x)>. Similarly, we let <xt, . . . , xk) denote a fc-ary combination of

K represents the halting set, {x \ <$\x) •!•}.

If A, B are sets, then A join B = {2x \x £ A} U {2x + 1 \x EB}.

If A is any set, A' represents the jump of A.

The notions of "relative algorithm" and of an enumeration of partial

relatively computable functions (i.e., partial recursive functions of integer and

set variables) are amply described in [Rol, §9.2]. Specifically, we use the

following

Definition 2.1.  A sequence {^ ^} of partial relatively computable

functions of one integer and one set variable is called acceptable if

(1) {$\ ^) includes all partial relatively computable functions,

(2) Universal Property:

(3* E M ^XVf, x, A)[¥A\(L x)) = dA\x)],

(3) s-m-n Property:

(3s E /?2)(V/, x, y, A)y¡f)x)(y) = ¿A\<x, y))].
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We discover by methods analogous to those used in [Ro2] that

Lemma 2.2. Let {y\ ^}and  {$ ^} be any two acceptable enumerations of

partial relatively computable functions.   Then there exists a recursive isomorphism

a such that

Lemma 2.2 will make our theory independent of the particular formalism

chosen. We will generally refer to the notion of an oracle Turing machine when

precision is required.(2)

We now define a relative complexity measure.

Definition 23. A relative complexity measure $^ is a collection of

partial functions from N to N, {$\A^}, one for each (/, A), satisfying the follow-

ing two axioms:

(1) (V/, A) [domain $\A) = domain ®\A>>], and

(2) there exists i// ', a partial relatively computable function, such that

(1    iî <S>\A\x) = y,
(Vi,x,y,A)^A\<i,x,y» = '

( 0   otherwise.

We abbreviate ip^^ as ip., and <I>}0^ as 4>f.  The functions &¡ are referred

to informally as running times. There is no confusion here with usual Gödel

numbering notation, as {<¿>>0)} is an acceptable Gödel numbering for the partial

recursive functions [Ro2].

Thus, for the time measure, where $p \x) is the number of steps required

by machine i on input x with oracle A, axiom (1) says that a computation takes

a finite amount of time if and only if it converges, and axiom (2) says that one

can effectively tell if a computation halts in a given number of steps.

Axiom (1) is established for the space measure (i.e., when &A\x) is the

number of tape squares) by convention, viz., a Turing machine which diverges by

looping forever on a bounded number of tape squares is still said to require

infinite space. With this convention, axiom (2) then says that one can effectively

tell if a computation halts using a given number of tape squares. These axioms

will easily be shown to hold for the particular model of oracle Turing machine

we introduce below.

It follows immediately from axiom (2) that <b$A\x) is a partial relatively

recursive function:

( )It is possible to generalize Definition 2.1, allowing oracles for functions as well as

sets.   A result similar to Lemma 2.2 would still be true in that case.   However, the general-

ization invalidates some of our later proof techniques (e.g. those needed to prove Theorem

2.5) and so we restrict ourselves to set oracles.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



THEORY OF COMPUTATIONAL COMPLEXITY 249

Remark 2.4.

Although our results depend only on these axioms and so are independent

of any particular formalization of relative algorithm, enumeration, and measure,

it is helpful to keep in mind the natural measures of time and space on oracle

Turing machines. The particular oracle Turing machine model we will use is

described informally as follows:

Each Turing machine has four semi-infinite tapes:  an input tape, an output

tape, an oracle tape and a worktape. The first three are marked in binary

notation, with the exception that the input tape has markers to indicate the

beginning and the end of the input. Initially, the binary representation of input

integer x appears on the input tape with the input head scanning the left-most

end marker; all other tapes are blank. The worktape uses k symbols for some

number k which depends on the machine. We assume that the input head

cannot move past the delimiting markers and the output head cannot move left.

Also, the machine cannot write on its input tape or read from its output tape.

There are otherwise no restrictions on the operation of the machine, other than

the usual Turing machine constraints [Rol].

This Turing machine is designed to be used in conjunction with an "oracle"

for any set. (An X-oracle is an unspecified agent having information about set

X.) This is done as follows:

In addition to its other states, the Turing machine has a state called

INTERROGATE.  When the machine enters this state, it asks the oracle whether

the number whose binary representation is currently written on the oracle tape

is a member of the oracle set.  The oracle gives its answer by causing the

machine to enter either of two different states.  The oracle tape is then auto-

matically erased, the oracle tape head reset to the first tape square, and the

computation allowed to continue.

Each oracle Turing machine may be described by a flowchart or some

other finite description. The machine's description is independent of the

particular oracle set used, so the same oracle machine may be used with any

oracle set.   The finite descriptions may be enumerated in a natural way so that

the index of any machine is an upper bound on its number of states and work-

tape symbols. We identify ^ * with the nth machine description in this enumer-

ation; an enumeration of this kind will be "acceptable", and so there is no

notational inconsistency with usage in [Rol].

We now define two measures on this machine model:

7* ', time measure.   For any i, x, A, we define TJA \x) to be the total

number of steps executed in the computation tp¡A\x). Here, each oracle

interrogation counts as a single step.
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It is clear that the axioms for relative complexity are satisfied; for instance,

to discover if T\A\x) = y, one need only construct the machine (¿>> ', then

simulate <p¡A\x) for y steps to see if it converges. This procedure is obviously

uniform in A, i, x, and y, yielding the function i// * of axiom (2).

S* \ space measure.  For any i, x, A, we define S\A\x) to be the maximum

of the number of worktape squares visited and the number of oracle tape squares

visited during the computation ¡pjA\x), provided that y\A\x) I. Otherwise, we

let Sp >(*) = «>.

Axiom (1) is satisfied by definition. To see that axiom (2) is also satisfied,

we note that for any /, x, y and A, if <p¡A\x) operates for (j) (iy) (y) (2y + i)

00 (Llog2JCj + 3) steps without exceeding space y, it must be in an infinite

loop and hence will not converge.(3) This bound arises since if the machine is

ever twice in the same state with the same worktape contents, the same work-

tape head position, the same oracle tape contents, the same oracle tape head

position and the same input tape head position, it must be in an infinite loop.

The six factors in the above expression represent bounds on the number of

different possibilities for each of the six items.

Thus, to see if S^A \x) = y, one need only simulate ipjA \x) for (/) (iy)

(y) (2y+1) iy) (ilogjjrj + 3) steps to see if it converges.

We note that the space measure has the following property, sometimes

called the parallel computation property [LR] :

There exists a recursive function a such that for all i and /",

i*fie)   ifSfic)<Sfic),
Va(//)(*)= {

I <Pj(x)   otherwise,

and Sa(u)(x) = min (Sfie), Sfic)).
This property, which in part formally captures the possibility of reusing

the same tape squares for different portions of a computation, often makes it

easier to prove theorems for the space measure. It also causes some results

for space measure to be sharper than those for other measures. We will point

out such cases where they occur.

Many of the theorems concerning the complexity of partial recursive

functions [B], [HH], [McC] have straightforward full relativizations. More

interesting and useful are partial relativizations of the results on complexity of

partial recursive functions. Following are several examples.

Our first theorem asserts that any two relative complexity measures are

related by a fixed recursive function. Its usefulness lies in enabling us to draw

conclusions about one relative measure from hypotheses about another relative

( )lS] = the greatest integer < 6 for any real number 8.
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measure, as we do in some of the results following the theorem.

Theorem 2.5 (recursive relatedness).  // $( > and 4>( * are two

relative complexity measures on the same acceptable Godel numbering {y\ >1

then there exists rER2 such that

(Vi4, i)[tfA) < r o <^> o.e.], and

(VA,i)[$¡A)<roct>Wa.e.].

Proof. We use a lemma which is a direct consequence of Kbnig's lemma

("Endlichkeitslemma"  [Rol, Example 940]), and which will be used in

several later theorems as well.

Lemma 2.5.1 (implicit in [A] ). Suppose we have a total recursive function

/' of k integer variables and one set variable. If

(Vxp ..., xk) (/(*! ,-..,xk) - max /'(*,.** A)],

thenfERk.

Proof of Lemma 25.1. The computation of f(xlt..., xk) may be

carried out as follows:

Generate a "computation tree" (cf. [Rol, §9.2]) for a Turing machine

computation of the function f'(xl,..   , xk, A) as A ranges over all subsets of

N. Each branch of the tree must terminate, since f(xlt .. . ,xk, A) converges

for all sets .4. Therefore by König's lemma the entire tree is finite and we will

eventually finish generating it. We can then take the maximum of the outputs on all

branches as the value off(x1,. . ., xk).

Proof of Theorem 25, continued. By symmetry, it suffices to obtain

rER2 satisfying the first inequality.

We define r(x, y) = maxACN(maxi<xr'(x, y, i, A)), where:

Í4f°(¡c)   iftyA)(x)=y,
r'(x, y, i, A) = j

'0 otherwise.

The axioms of Definition 2.3 immediately imply that r' is a total recursive

function of three integer variables and one set variable.   Therefore, by Lemma

2.5.1, rER2.

To see that r has the required properties, consider any particular A and /'.

If 0>\A )(jc) diverges, the inequality holds by convention.

If 4>p)(x) converges and x > i, then:

r(x, fyA)(x))>r'(x, ijA)(x), i, A) = ^¡A\x),

as required.   Q.E.D.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



252 N. A. LYNCH, A. R. MEYER AND M. J. FISCHER

Remark 2.5.2.  The recursive isomorphism between any two acceptable

enumerations of relatively computable functions (Lemma 2.2) allows us to

conclude the recursive relatedness of relative complexity measures on two

different enumerations. Thus, if {yj *} and {$ *} are any two acceptable enu-

merations of partial relatively computable functions, with relative complexity

measures 4>* * and & * respectively, and a is the recursive isomorphism in

Lemma 2.2, there exists rGR2 such that

(Via, 0[*f*> < r o *£¿¡  a.e.], and

(VA,i)[&Al<r0*M  a.e.].

The proof is a trivial modification of the proof of Theorem 2.5.

Theorem 2.5 and Remark 2.5.2 provide an alternate method to general

axiomatic proof for certain types of theorems about relative complexity mea-

sures. The method is to prove the theorem for one measure, and then apply

Theorem 2.5 (or Remark 2.5.2) to obtain the result for all measures.

As an example of its use, we give Corollary 2.5.3. The result has two

parts; in part (1) we see that (just as in the nonrelativized case) there exist

arbitrarily complex functions.  However, in contrast to the nonrelativized case,

part (2) shows that inherently complex functions cannot be 0-1 valued.  In

fact, their complexity must result from the size of the function values. That

is, functions must be as complex as their size, but (given the proper oracle) a

function need be no more complex than its size.

First, a definition to simplify notation:

Definition 2.6.   Assume B is a set, /G R^ and g is a total function of

one variable.

Comp(B>/>£ Lo. (a.e.) means (V/)[(vp) =f) ■» (*P° >E i-o. (a.e.))].

Comp(fi)/<# to. (o.e.) means (3/)Mñ) =/and $¡B) <g i.o. (a.e.)].

Comp/>g Lo. means Comp^^f> g i.o., etc.

If/= CA (where CA is the characteristic function of a set A, defined by

f(x) = 1 if x G A, 0 if x £ A), we may write Comp A in place of Comp /, etc.

Corollary 2.5.3. Let & * be any relative complexity measure.   Then

(1) (V/G ÄjXa* G R1)(\/A)[CompMg>fa.e.],

(2) (VA GRjOfGRJiyg)^ < h a.e.) + QAXCom¿A)g <fa.e.)].

Proof.  (1)  Assume our acceptable enumeration of partial relatively

computable functions is the one for oracle Turing machines. Let r be the func-

tion obtained by applying Theorem 2.5 to <ï>* * and 7^ '. We may assume with-

out loss of generality that r is increasing in its second variable.

Given /, let g(x) = 2r<*^<*»+1.

If <pjA) = g, then clearly (\/x)[TjA\x) > r{x, f(x))], since it requires
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r(x, f(x)) + 1 steps merely to write the output in binary notation.

But r(x, $jA\x)) > T)A)(x) a.e., by Theorem 2.5.

Thus, r(x, &jA\x)) > r(x, f(x)) a.e., and since r is increasing, QJA\ x) >

f(x) a.e., as required.

If the relative complexity measure <ï>* ^ is on an enumeration of relatively

computable functions other than that obtained via oracle Turing machines, we

apply Remark 2.5.2 in place of Theorem 2.5 and obtain the same result.

(2) Let r be the function obtained by applying Theorem 2.5 to $* * and

Sr- ', again choosing r to be increasing in its second variable. Assume also that

the pairing function <x, y) is increasing in y, and is computable in space

log2(0f, y)). (The pairing function given at the beginning of this section has

these properties.)

Let h be given.

Define f(x) = r(x, [log20f, «(*)>] + 1).

Now consider any g with g < h a.e.

Ut A = {<x,g(x))\xEN}.

It is straightforward to design a machine tpj * such that yjA * = g and for

which SJA^ < [log2 Of, h(x))\ + 1 a.e. Namely, the machine,on argument*,

operates by successively computing Of, 0>, Of, 1>, Of, 2>,..., and asking if each

is in A. If so, the machine terminates with the appropriate output.

But then

$jA\x) < Hx, SJA\x)) a.e.,   by Theorem 2.5

< r(x,[\og2<x, A(jc)>j + 1) a.e.

So $jA\x) <f(x) a.e., as required.

As in (1), if the relative complexity measure & * is on an enumeration

of relatively computable functions other than oracle Turing machines, we

apply Remark 2.5.2 in place of Theorem 2.5 and obtain the same result.   Q.E.D.

Henceforth, whenever we use this method of proof, we will appeal to

"recursive relatedness"; it should be understood that we intend this to mean we

are applying Theorem 2.5 or Remark 2.5.2, whichever is appropriate, in a

fashion similar to that used in the preceding proof.

In §§4, 5, and 6 we will discover ourselves repeatedly using another

proof technique which we call the convergence method. It is so called because

the basic idea of the constructions involves listing just enough recursive

conditions to guarantee that the computation in question converges, while not

ruling out any cases we wish to consider.  The proof of Theorem 2.5 was a

simple case of this method. Another example of a convergence argument is now
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given in the proof of a relativization of the combining lemma [HH].

As in [Rol, §5.6], we let Dk represent the finite set with canonical index

k. The intended interpretation of the lemma is that if there is a uniform algo-

rithm (with index c(i, j, k)) for combining the results of machine <pj * with the

results of machine (¿y  * , then the complexity of the combined procedure is

not much larger than the complexity of computing the subresults.

Lemma 2.7 (combining lemma).  Let $( > be a relative complexity

measure. Let c be a function in R3 such that

(VÏ, /, k, x, i4)[(fof>(x)l) and G^*^)* ($¿,*)frH)] •

77ie« there exists g ER2 such that for all i, j, k, A,

g(x, max(4P><x), <ïf *>(*))) > *$/,*)(*) o.e. (x).

Proof.   Define g(x, y) = max^ CN(msx.i¡k<xg'(x, y, i, j, k, A)), where:

•8Ü.*)«   if MA)0c) <y and *jD*\x) <y,
g'ix, y, i, j, k, A) =

0 otherwise.

It is easily seen that g' is total recursive in five integer variables and one

set variable. Therefore, by Lemma 2.5.1, g £ R2.

To see that g has the desired properties, we note that if x > max(/, /, k),

then:

g(x, mzx(^A\x), 4>jD*\x)))>g'(x, maxist*), <lf *>(*)), i, /, *. A)

as required.    Q.E.D.

We now establish a strong relativization of Blum's compression theorem

[Bl]. The theorem asserts that for any set B and "honest" function t £ R^\

there is a set A whose complexity relative to B exceeds t a.e., but is not much

more than t. Thus the complexity of A is "compressed" about t. The set A is

constructed by diagonalizing over all 5-oracle machines which run faster than t

i.o.; this guarantees that the complexity of A is as large as required. The time to

carry out the diagonal construction of A is not much more than the time to

compute t.

The hypothesis "Comp(B)r < h o t (a.e.)" in Proposition 2.8 below will be

called an "honesty" condition on t.  It ensures that the time to compute t is

approximately equal to t, so that the time to carry out the diagonal construction

of A may in fact be bounded by t. (The Gap theorem of Borodin [Bo],

Constable [Con] and Trachtenbrot (cf.[HH] ) shows that some such hypothesis is

necessary.) Honesty conditions are extensively studied in [MoMe], [McC].
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Theorem 2.8 (relativized compression theorem). For any relative

complexity measure the following is true:

(VA G R2Xlg G Ä2XVBXVi G R[B\1A)

[(Comp(fl)r < h o t o.e.) =* (Comp(B),4 > t a.e. and

CompiB)A < g o t a.e.)].

Proof. The proof is virtually identical to that of Blum [Bl] and so we

merely sketch the construction informally. (This construction occurs as a special

case in the proof of Theorem 4.7 which is carried out formally in §4.)

Let h, t and B be given. Because t is honest, there is a procedure to

enumerate the graph of t so that Ce, r(x)> turns up in the enumeration after

roughly h(x, t(x)) steps. When <x, t(x)) turns up, we define CA(x) ¥= $B\x)

where i is chosen to be the least index < x (if any) such that $$B\x) < t(x)

and i has not already been "cancelled". If such an i is found it is cancelled

(guaranteeing that CA # <p¡B^); if there is no such i, then CA(x) is defined

arbitrarily.

It is easy to see that if 4>p* < t i.o., then i becomes cancelled and <pjB) #

CA. Hence, Comp^.4 > t a.e. It is also clear (thinking in terms of oracle

Turing machines), that the time to compute CA (x) using this procedure is

dominated by the time to simulate <p^(x), y[B\x), . . . , <p^\x) for t(x)

steps each in order to determine which index to cancel. This simulation can be

performed in g(x, t(x)) steps for some gGR2 which depends on h but not on

t, hence Comp(s)yl < g o t a.e.   Q.E.D.

In subsequent theorems, particularly in §§5 and 6, we shall for simplicity

replace honesty conditions on a function t by the hypothesis that t is a running

time. There is no loss of generality for our purposes since running times and

honest functions are essentially equivalent (cf. [MoMe] ). In particular, running

times satisfy an honesty condition. This follows informally because if t is the

running time of some machine, one can compute t(x) by simulating the machine

on input x and counting how many steps occur in the computation. The

simulation requires little more than t(x) steps. Formally we can state

Lemma 2.8.1. For any measure & * there exists hGR2 such that for

all sets B and *p> G rW

Comp(ß)*p><Ao«I>p>   a.e.

Proof. Let a G a, be the function such that <^ = <í>íB> for all /, B.

Let c(i, j, k) = a(0, so <p\B\x) i implies ̂ f/j,*)(■*) *• Choose /0, k0 such that
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<ï>.    ° ERt and apply the combining lemma to obtain gER2 such that for all

i,%

*omax(3f>,  *£*°)>*8Ä   a*.

Let h(x, y) = g(x, maxi>, *£ *0>(*))).

Hence

*^<Ao<DW   a.e.,

as required.   Q.E.D.

Since the intended interpretation of Theorem 2.8 is that there are

arbitrarily complex sets A, we must include the observation in the following

lemma that there are arbitrarily large running times.

Lemma 2.82. For any measure & \ set B, and function tER^f\ there

is an increasing running time 4>p^ E R^ such that <I>p^ > t.

Proof. By the recursion theorem for acceptable enumerations [Rol],

there is an i such that

10    if x = 0 and tf*\0) > r(0),

0    if x > 0, $B\x - 1) I, and $jB\x) > max(r(x), ^¡B\x - 1)),

00   otherwise.

It is easy to show by induction on x that $¡B\x) has the required

properties.   Q.E.D.

Finally, we note that any total function t is honest with respect to an

appropriate set B. That is, there is a B (namely, the graph of t) such that

Comp(ñV <Aof a.e. for some hER2 independent of B and t. The proof is

similar to that of Corollary 2.5.3(2) and is omitted. Combining this remark

with Theorem 2.8 immediately yields

Corollary 2.8.3. For any complexity measure there is a function gER2

such that for any total function t,

(34, B recursive in /)[Comp(s)i4 > t a.e. and Comp(B)yl <go t a.e.].

3. Complexity-determined reducibilities.  Corresponding to complexity

classes within nonrelativized complexity theory [McC], [McCMe], we may

consider measure-bounded relative computation. A fixed measure bound defines

a kind of "reducibility" as follows:

Definition 3.1.   For any relative complexity measure 4>f ', any sets A

and B, and any total function / of one variable,
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A <fB(& ))   means   Comp(s)/l </a.e.,

where complexity is measured in $* '.

More generally, if C is any class of total functions of one variable,

A <c 5(4>< >)   means   0/e Q[A <fB(^ >)].

We read this notation as "A is /-reducible to B" and "A is C-reducible to

B", respectively. When no confusion is likely, we omit mention of the measure

we are using, and write simply A <^B and A <c B. We note that these reduci-

bilities are not necessarily transitive.

Several commonly-studied reducibilities usually defined via structural

restrictions on the method of computation may be expressed as C-reducibilities

for appropriate choices of the class C, and thus may be regarded as complexity-

determined.  In particular, we shall show that truth-table reducibility [Rol] and

the relation "primitive recursive in" are complexity-determined reducibilities.(4)

We first consider primitive recursive reducibility. We write A <p B to

indicate that A is primitive recursive in B, and / <  B to indicate that / is

primitive recursive in B [K].

Proposition 32. Let 4>( > = 7* * or 5( \ Let C = {primitive recursive

functions of one variable}. Then

(VA, B)[(A <pB)o(A <c *(*< >))].

The proof is a simple relativization of a result of Cobham [C] that a total

recursive function is primitive recursive if and only if it is computable on a

Turing machine in primitive recursive time or space (see also [MeRD] ).  Similar

observations appear in [A], [RD], [RRW], [Par], [Ma2] ; we therefore omit the

details.

We now consider truth-table reducibility [Rol]. Proof methods similar to

those used by Nerode [Rol] combined with recursive relatedness, give the

following complexity-determination result for truth-table reducibility; again we

omit a proof.

Proposition 33. Fix any relative complexity measure. Let C — Rt.

Then (VA, B)[A <ttB<>A <c B].

On the other hand, many-one and one-one reducibilities are not determined by a

complexity restriction, in any relative complexity measure.  The reason is that there are

pairs of sets computable from each other in a very small measure but which are not many-

one reducible to each other (for example, any nonrecursive recursively enumerable set and

its complement).

(4)
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Having noted that primitive recursive and truth-table reducibilities are

complexity-determined, we ask if it is possible to express them even more suc-

cinctly; for instance, is it possible to characterize each by a single resource bound

function rather than a class of functions?

This question immediately suggests that we relativize the union theorem

[McC], [McCMe] ; by a straightforward modification of McCreight's proof, we

obtain the following

Theorem 3.4 (relativized union theorem). Assume there is a se-

quence of total functions {t¡}, such that (Vi, n)[t¡+l(ri) > t¡(n)].

Let Tbea set such that Xz, n[tt(n)] GR2T\

Also assume that there is a sequence {B¡} of sets, and a set D such that

K,n[CBi(n)]GR2D\

Then there exists a function fGR^ 'oln T) such that

(Vi, ñWiBiy <f o.e. * (3*X*iB/) < tk a.e.)].

(This means that for any B G {B}, the class of functions computable with

oracle B within measure fis exactly the union of the classes of functions com-

putable with oracle B within measure tk, the union being taken over all tk.)

Proof. The construction of/ is carried out in stages, with /(«) being

defined at stage n.

We define an auxiliary function g(i, j), whose values may be changed at

successive stages. The significance of g(i, j) is that we "guess" that tfBi\x) <

tg(u)(x) a.e.

Stage n.  (Define/(«).)

For all (i, /) such that i +j = n, define g(i, j) = n.  Let E = {(/, f)\i + j

<«and*p/>(«)>fitt/)(n)}.
Define:

tn(ri) iîE = 0,

/(») =
( min {tgyjy(ri)\(i, f) G E)    otherwise.

For all (i, f) G E, redefine g(i, j) = n.

Go on to stage n + 1.

END OF CONSTRUCTION

Verification that / has the required properties is as in [McCMe].   Q.E.D.

We now apply Theorem 3.4 to the cases of truth-table reducibility and

primitive recursive reducibility.

Corollary 3.4.1. Consider any countable collection of sets {B¡} with

D as in Theorem 3.4.  There exists /G R ffjoinK) such that
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(\ft ¿)M <«*|*^HI-

PROOF. We define a sequence {r,} as follows:  Let

tfr) =
max {<¿y(x) I ipj(y) I for all y < x}    if this set is nonempty,

0 otherwise.

These ti have the properties required for Theorem 3.4, with T = K.

Also,

(VrEfl1)(3/)[r<r/a.e.]    and   WfXir E Rjlt, < r a*.).

Thus, by Proposition 3.3, if C = {t¡}, then

CyA,B)[A<ttB*A<cB].

Application of Theorem 3.4 now gives the desired result.   Q.E.D.

Corollary 3.4.2. Assume the measure is S^ or 7* \ Consider any

countable collection of sets {B¡}, with D as in Proposition 3.4. There exists

fER[D) suchthat

WAMKpBt + AKfB,).

Proof. Let {p,} be an enumeration of the primitive recursive functions

such that \i, x[p¡(x)] >s recursive. Then define:

t((x) = maxp,(x).

{t¡} satisfies the required properties for Theorem 3.4 with T =0.

Clearly,

(y{)]Pt < t, a.e.],   and   (V/X3/)[/, < p, a.e.].

Applying Proposition 3.2 and Theorem 3.4 gives the desired result.   Q.E.D.

Thus, we see that for any countable collection of oracle sets (e.g. recursive

sets, arithmetical sets), truth-table reducibility is determined by a single resource

bound function on any measure, and primitive recursive reducibility is determined

by a single resource bound function on measures T*- * and S* '.

We note that no single resource bound function can determine either of

these two reducibilities on all pairs of sets; thus, the countability hypothesis

in Corollaries 3.4.1 and 3.4.2 cannot be eliminated:

Theorem 3.5. For no relative complexity measure is there a function f of

one variable such that (VA, B)[A <ttB*A <f B].

Proof.  Assume such a function /exists. We claim that (V E Rt)
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|/>ra.e.]. For if not, then (Ir GRj[r >f i.o.]. But then, by Theorem 2.8

(with B =0), there exists a recursive set A such that Comp A > r a.e. We have

A <ff 0 since A is recursive, but clearly 1(A *C 0), a contradiction.

Now consider the recursive function g whose existence is asserted by

Corollary 2.8.3. We may assume without loss of generality that g is increasing

in both variables.

Define a function t as follows:

!max{y \g(x, y) </(x)}    if the set is nonempty,

0 otherwise.

We claim that (V GR1)[t>r a.e.].  This is easily concluded from the facts

that (Vr G Rt)\f> r a.e.] and that g(x, 1 + t(x)) >f(x) by definition.

We now apply Corollary 2.8.3 to obtain A and B recursive in t such that

(A<gotB)   and   1 (A <t B).

But A ^gotB implies A <* B, since g o t </ a.e. Also, ~\(A <f B)

implies ~\(A <if B) since t is almost everywhere greater than each recursive

function.

Thus, / does not determine truth-table reducibility on all pairs of sets

recursive in t.   Q.E.D.

In an entirely analogous way, we obtain

Remark 3.6. For the space or time measures on oracle Turing machines

there is no function / of one variable such that:

(VA,B)[A<pBoA<fB\.

We have seen that some reducibilities with structural definitions may be

alternatively described by a complexity restriction. Conversely, it is possible to

define new reducibilities by a complexity restriction. We give an example of

such a definition, and note some properties of the resulting reducibilities.

Definition 3.7. For any sets A, B, C, we say A is C-reducible to B

(A <c B) provided: A <   B for C = R[c). We write C-reducibility to indicate

{(A,B)\A<CB).

Thus, any set C determines a new reducibility, namely, the collection of

pairs of sets computable from each other in C-recursive measure. The reducibili-

ties are clearly measure-invariant; they are also transitive:

Lemma 3.8. For any sets A, B, C and D,

[A<   BandB<   D] => [A <   D].

Proof. By measure-invariance of C-reducibility and closure of R\ '
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under finite modification, the hypotheses A <c B and B <c D imply:

(30(3*1 e r(iC))Íca = ¿iB) and 5/(B) < CJ    a««1

(3/)(3c2 E /?<C>)[C5 = ^) and Sf > < c2].

We describe an oracle Turing machine which computes CA using a .D-

oracle.

The Turing machine computes CA according to procedure <p\B\ but a value

about which the 5-oracle is queried is written on a second track of the worktape

instead of the oracle tape. Then, to decide its membership in B, <pjD) is

applied on this second track using the available £)-oracle.

For input x, the machine uses S^B\x) space to carry out the computation

ip^B\x). In addition, the largest argument for which it might need to compute

CB is 2Sp>(x).

Thus, the space needed is bounded above by the maximum of

S¡B\x),S¡D\0),...tS¡D\S¡B\x)),

which in turn is bounded above by the maximum of ct(x), c2(0),..., c2(2Cj(x)).

But this maximum is a function in R[c\ Thus, A <c D. (An axiomatic version

of this argument is given in Theorem 4.2.)   Q.E.D.

The C-reducibilities form a partial ordering of reducibilities, ordered by

containment, between truth-table and Turing reducibilities. We may show that

containment of reducibilities is exactly determined by size of functions. Namely,

Theorem 3.9. For any sets C, D,

(C-reducibility C D-reducibility) o (V/E A(,C)X3¿? ^ ^iD))[f >/]•

Proof. (<=) Obvious.

(=>) If the right-hand side fails to hold, then (3/E R[c)XVs e R[D))

[tT</i.o.].

Then by Lemma 2.8.2 there is a running time $p) >/, so by Lemma

2.8.1 and Theorem 2.8,

(JA, recursive in C)[Comp^A > f a.e.].

Hence A <c C but ~[(A <D C), a contradiction to the left-hand side.

Q.E.D.
Clearly, we have

Corollary 3.9.1. For any sets C, D,
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(C =T D) =* (C-reducibility = D-reducibility).(s)

The converse of Corollary 3.9.1 is true for a large collection of sets C and

D, but not for all sets C and D:

Definition 3.10. A set/I is weakly majoreducible if there exists /G i?^)

such that

(Vît, total functions of one variable) \g > f =» A is recursive in g].

This definition is weaker than, although similar to, the definition of

"majoreducible" used in [J].

Theorem 3.11. If sets C and D are weakly majoreducible, then

(C-reducibility = D-reducibility) => (C =T D).

Proof.   If C-reducibility = D-reducibility, then by Theorem 3.9,

(VfZR(p)OgGRW)\g>f\.

By weak majoreducibility of C, C is recursive in g for the appropriate choice

of/.

Therefore, C is Turing-reducible to D.

Symmetrically, we have D is Turing-reducible to C.   Q.E.D.

Corollary 3.11.1. If sets C and D are recursively enumerable, then

(C-reducibility = D-reducibility) o (C =T D).

Proof. It follows immediately from work in [J] that all recursively

enumerable sets are majoreducible (according to his definition) and hence weakly

majoreducible. The reason is as follows:

If {c,} is an effective enumeration, without repetitions, of an infinite

recursively enumerable set C, and if / is defined by

/(«) = pz [(\/y)(y >z*cy>ri)],

then clearly / G R^f\ and C is recursive in any g > f.   Q.ED.

However, we may obtain the following

Theorem 3.12. Given any set C, there exist two sets A and B such that

A\TB and A-reducibility = B-reducibility = C-reducibility. (6)

Proof. A detailed proof is omitted because it is long and not very differ-

( ) =j. designates Turing equivalence.

( ) Ij. designates incomparability under Turing-reducibility.
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ent from other proofs in the literature. A modified version [Mai] of Spector's

splitting-tree construction of minimal sets [Rol] produces a nonrecursive set A

which is "small" rather than minimal. That is,

(\/fERW)(3gER1)\g>f].

To prove Theorem 3.12, we simultaneously construct two "small" sets,

A and B, by modified splitting-tree constructions, with two added changes:

(1) We encode C into both sets at the beginning of the construction.

(2) We alternate the splitting-tree construction with a diagonalization

making A and B Turing incomparable.

Theorem 3.9 gives the required result.   Q.E.D.

Although pairs of sets can have the same reducibility and still be Turing-

incomparable, there do exist limits on what Turing-reducibility relationships sets

can have and still determine the same reducibility. For example

Theorem 3.13. IfC'is Turing-reducible to D, then C-reducibility ¥=D-

reducibility.

Proof. Define

g(n) = max{^c)(n) 10 < í < n and <pjc)(n) 1} .

ThengER\c'\ so that s eR[d). But clearly (W^R[C))\g>f a.e.].

So by Theorem 3.9, C-reducibility =£Z)-reducibility.   Q.E.D.

4. Helping. Intuitively, it is clear that some sets B help to compute some

functions /. That is, when B is used as an oracle, the complexity of/is smaller

than it was without the oracle for B.

In this section we formalize this observation. We use the word "helping"

in informal discussions only, and give precise meanings to several interpretations.

We also give basic results about the existence of sets which help or do not help

the computation of certain functions.

Definition 4.1. Assume B is a set, /£/?x and s is a total function of two

variables.

B s-improves f i.o. (a.e.) means:

(3r £ R[B))[Comp(B)f < r a.e. and Comp /> s o t i.o. (a.e.)].

We remark that these definitions do not provide us with notions of helping

that are transitive or symmetric, which is perhaps surprising for the case of

improvement a.e. Appropriate counterexamples will be given later in this section.

To place these definitions in some perspective, it is helpful to note a

relationship between "A <_ 5" and "B s-improves A (i.o.)": if A is not primitive
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recursive and A <  B, then B s-improves A i.o. in the space measure for any

primitive recursive function s.

To verify this, note that if A <p B, then by Proposition 3.2 Cornp^5^ <

/ a.e. for some primitive recursive /. If A is not primitive recursive, then

Comp(/4) > g i.o. for any primitive recursive g as we noted following Proposition

3.2. In particular, if s is primitive recursive, so is s o / and therefore Comp A >

So/ i.o. Hence B s-improves A i.o. (This observation is also implicit in [Ma2].)

The amount of help a recursive oracle B is able to give the computation

of a function is restricted by the complexity of B. This is because any program

using B as an oracle may be converted to one not using the 5-oracle, by directly

computing the answers to the oracle queries. The complexity of the new

program is bounded as follows:

Theorem 4.2. There exist gt G R3 and g2 G R2 such that for all recur-

sive sets B and f, t, t' GRV if

Comp^ty" < t o.e.   and   Comp B < t' o.e.,

then

Comp/< Xx [£,(*, t(x), max{t'(y)\y <g2 o t(x)})] o.e.

Proof. The proof is a convergence argument.

We use the following general lemma which provides a bound on the portion

of the oracle on which a computation and its measure may depend:

Lemma 4.2.1 (implicit in [A]). Fix any acceptable enumeration of rela-

tive algorithms {y\ *} and any relative complexity measure & '. Then

(1hGR3Mi,x,y,A,B)

[(A n {0.h(i, x,y)} = Bn{0,..., Aft x, y)} and $¡A\x) <y) +

(*\A)(x) = <P¡B\x) and tfA)(x) m <*><*)(»)].

Proof of Lemma 4.2.1. Let 0- *} be the enumeration of relatively

computable functions arising from oracle Turing machines.

Choose a G Rl (by Lemma 2.2) so that íp^^ = <p\ ',

Choose ß G Rl (by Lemma 2.2 and remarks following Definition 2.3) so

that $(>.) = *( ).

Define Aft x, y) — mnxXCNh'(i, x, y, X), where

0     \ÎQX)(X)>y,

the largest number whose membership in A" is questioned

in either computation i£j$(x) or ty$¡](x),   otherwise.

A'ft x, y, X) =
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h' is total recursive since any convergent oracle Turing machine computation is

determined by answers to a finite set of questions, so that « E R3 by Lemma

2.5.1.

We leave to the reader the verification that h has the required properties.

Proof of Theorem 4.2, continued. If B is a recursive set, then B-

oracle machines can be transformed effectively into equivalent machines with-

out oracles. Formally, there is a y E R2 such that

(Va, b, B)yb = CB* tpW = ^{atb)].

Namely, for any z let zv z2, z3, z4 be such that z = (zv z2, z3, z4>, let hER3

be the function given in Lemma 4.2.1, and obtain y by the s-m-n theorem such

that

(°zJ (Dz )
*l(a,b)(x) = ^lU^l^a        (*) = z3 and *a        (*) = zl and

(Vw < h(a, x, z3))[®b(w) < z4 and

(w£i)Z20^(vv)=l)]]).

Now define a function g' such that

*T(a.w(x)   if *W(x) = y and (Vw < h(a, x, y))

[<ï>È(w) < x and (w £ B o <pb(w) = 1)],

0 otherwise.

Clearly g is recursive, so letting g(x, y, z) = m&xab<xBCNg'(x, y, z, a, b, B),

we conclude by Lemma 2.5.1 that g E R3.

Now let B, f, t, t' be as in the hypotheses, and let a, b be indices such that

<^s) = /and $<s) < / a.e.,   and   «pô = CB and i>0 < t' a.e.

Then by definition of y, V7(a>&) =/and by definition of g,

*y(a,b)(x) < &. *?Hx), maxi^O) \y < h(a, x, ¥B\x))})

for almost all x.

Let i\ (x, y, z) = max{g(u, v, w ) | u, v, w < maxfc y, z}} and let

Í2(x, y) = max{Ä(«, v, w)\u,v,w< max {x, j'}}. Then

%(a,bp) <Si{x, t(x), Tcax{t'(y) \y<g2o t(x)})

for almost all x. Hence, Comp /is bounded a.e. as required.   Q.E.D.

We next note that for any sufficiently complex recursive set A, there exist

arbitrarily complex recursive sets B that do help the computation of CA ; in fact,

Comp*ß).4 can be reduced below a small bound. We may further specify that

the set B be "compressed" (i.e., J5's complexity is very closely determined, to

g'(x, y, z, a, b, B) =
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within a fixed amount g depending on the measure only).

Theorem 4.3. Let q>^ * be any relative complexity measure.  There is a

function gGR2 with the following property:

Let t be any total, unbounded, monotone nondecreasing running time.C)

Let A be any recursive set such that Comp A < t a.e.

Then there exists a recursive set B with

Comp B > t a.e.,      Comp B < g o t a.e., and A <p B.

Proof. The proof is a convergence argument. The construction is

carried out in stages, using a diagonal construction similar to that of Theorem

2.8 with one modification:  a smaller number of indices are tested for cancella-

tion at each stage in constructing B, so most values of B are not used for

cancelling indices. We use the remaining arguments to encode A in a primitive

recursive way.

We define a function / as follows:

/(0) = 0,

/(«)=lv^J-l    for all m >1.

By the s-m-n theorem, we can define a partial recursive function ipa,a b^

where aGR2 according to the following construction in stages:

Stage n: (Define <Pa(llib)(n).)

Find the smallest uncancelled / < f(n) such that *,(«) < $¡,(n).

(Diverge if $b(n) t.)

If no such i exists, define ^a(aft)(") = fa(f(n))-

If i exists, define fara¡b^(n) = 1 - <pfii) and cancel i.

Go on to stage n + 1.

END OF CONSTRUCTION

We define g(x, y) - ma\a b<xg'(x, y, a, b), where

g'(x, y, a, b) =

*a(«,*)W   if (Vw <x)[%(w) <yand $» <y],

otherwise.

If A and t are as in the hypotheses, and we choose a*,b* with 4>ö« =

t, <pa* = CA and i>a, < t a.e., then we claim that Cs = </>a(fl«(ft*) has the

desired properties.

(7) As mentioned in the remark following Lemma 2.7, we use the simplifying

assumption that t is a running time in place of a general honesty hypothesis.
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For example, A <  B since for any n,

CA(n) =

(n + 2)2-l

1    if     £       CB(x)>n + 2,
x=(n+iy

0   otherwise.

The remaining properties are left for the reader to verify.    Q.E.D.

If we relax the upper bound on Comp B in Theorem 4.3 a much simpler

construction suffices:

Definition 4.4. For any sets X, Y, we define X © Y to be the

symmetric difference (X-Y)U(Y-X).

For any functions /, g, we define fjoin g by

/join g(2x) = /0),     /join g(2x + 1) = g(x).

Then if we take t' ERt with t'(x) sufficiently larger (depending on the

measure) than t(2x) and t(2x + 1), we may choose any recursive set C with

Comp Or' a.e. and let B = C join (A © C). This set B has the properties

A< B and Comp 5 > / a.e. This second property is easily shown for space

measure using the parallel computation property, and recursive relatedness gives

the result for general measures; we omit the details.

Results in this section have so far been rather intuitive; less so are results

stating "independence" of sets (for example, demonstrating the existence of

pairs of recursive sets which do not help each other's computation).

Our solutions to problems of this latter type are analogous to work on

degrees of unsolvability [Sa], [Rol, §10.2, Chapter 13] in the following sense:

Independence proofs proceed by a diagonalization (the only general tool

we have thus far for proving such results). We require a countable sequence of

conditions, or perhaps two different countable sequences of conditions, to be

satisfied. Satisfaction of these various conditions may cause conflict. To

ensure that each condition gets satisfied, we establish before the construction

a "priority ordering" of conditions; in our theorems, this is a simple numerical

ordering in which lower numbered conditions are given higher priority.

We allow the satisfaction of a condition to be interrupted only by switch-

ing to an attempt to satisfy a higher-priority (lower numbered) condition. It

follows that once we begin trying to satisfy some condition, we must thereafter

succeed in satisfying either that condition or one of higher priority; thus, all

conditions will eventually become satisfied.

Our arguments are more complex than the "initial segment" constructions

in [Rol, Chapter 13] ; we do construct our sets by determining values first on
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initial segments, but we also carry with us "tentative commitments" to definition

of the set at arguments a finite distance beyond the defined initial segment.

Our constructions differ from those in [Sa] and [Rol], however; we

are constructing recursive sets and our constructions are always effective.

After a degree-of-unsolvability priority construction, the oracles used

in the construction are usually pinpointed, thereby placing the constructed set

in its proper Turing degree. We are working with a subrecursive analog of these

constructions and are generally interested in the complexity of the resulting set.

Thus, we follow our constructions with arguments showing what subcomputa-

tions were used in the computation constructing our set, thereby placing the

set in its proper complexity class.

We now prove an independence theorem. In order to make the proof as

compact as possible, we first introduce definitions designed to allow us to dis-

cuss the independence of the values of a 0-1 valued function at its different

arguments. In Theorem 4.6 we give an example of a simple theorem using this

definition. Theorem 4.7 shows the existence of a 0-1 valued recursive function,

i.e. a set, whose values at its different arguments are independent, while

Theorem 4.8 shows how to split this type of set into two sets which do not

help each other's computation, thus giving a complexity-theoretic analog to the

Friedberg-Muchnik theorem [Rol, §10.2].

Theorem 4.7 was announced by Trahtenbrot [Tl], and easily implies

Theorem 4.8 which was discovered independently and announced by the second two

authors [MeF2]. The proofs given here are our own.

Definition 4.5. Assume A is a recursive set and g is a total function of

one variable. Then:

Comp^-d > g a.e. means:

(V0KV*X*f*~{*})C*) = cA(x)) ■* (v-JtXsp-fc^Cx) >¿r(*))]

Compel A <ga.e. means:

(m(VxXdA-{x})(x) = CA(x)) and (V°°x)(^A-^\x) <g(x))].

The following theorem pointed out to us by M. Paterson shows the abundance

of 0-1 valued functions whose values at different arguments are strongly depen-

dent. This essentially settles a question raised by Trahtenbrot [Tl] .(8)

( ) Trahtenbrot asked whether Theorem 4.6 held for the space measure with g

approximately linear.  A positive solution follows by a straightforward implementation on

a Turing machine of the axiomatic construction given above.
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Theorem 4.6 (Paterson).  There exists rERvgER2 with the following

property:

Whenever t is an increasing running time, there exists a recursive set A such

that

Comp A > t o.e.,      Comp A < g o t a.e.,  and Comp'"1 ̂ A < r a.e.

Proof. We define the set A, depending on r; we indicate how to con-

struct r and g afterwards.

We define A by a construction in stages. Indices / are cancelled as the

construction ensures that <pf =£ CA.

Let/0) = LW4j.

Stage x.   (Define CA(x).)

See if there exists an uncancelled / </(*) such that $fx) < t(x).

1. If so, choose the least such i and define CA(x) = 1 - <¿y(x).

Cancel L

Go on to stage x + 1. (In this case we say that x was used to cancel

index /'.)

If no such /' exists,

2.1. If | {y \y < x and y E A] I is even, we define CA (x) = 0.

Go on to stage* + 1.

2.2. Otherwise, define CA(x) = 1.

Go on to stage* + 1.

(In case 2, we say that x was used to maintain parity.)

END OF CONSTRUCTION

A is clearly recursive. Substage 1 ensures that Comp A > t a.e. as follows:

Assume for some index / that <P¡ < t i.o. There exists a stage x0 in the

construction of A after which all indices smaller than /' which are ever cancelled have

already been cancelled. Thereafter, when it happens for some x > max {jf0, 4/},

that $((x) < t(x), the procedure defines CA(x) ¥= tf¡(x).

Verification of the second claim depends on the construction of the

proper g, which may be done as in previous proofs by a convergence argument.

To verify the third claim, we use the following procedure for obtaining

CA(x) from CA on other arguments:

Let / be chosen so that for all x, B,

4BKx) =

0 if there are more integers y, x + 1 < y < 2x for which

|({0, . . . , y} - {x}) n B | is even than for which

l({0.;>}-{x})n5|isodd,

1 otherwise.
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Then we have that ipjA~^\x) = CA(x) for all x. This follows from the

fact that among arguments y with x + 1 <y <2x, fewer than f(2x) were used

to cancel indices, so more than half were used to maintain parity.

From this procedure, it is easy to construct the function r, namely r(x) =

rnaxßCJV(4f >(*)).   Q.E.D.

Theorem 4.7 (Trahtenbrot [Tl] ). There exists gGR2 with the follow-

ing property: For any total running time t, there exists a recursive set A with

Comp A<go t a.e.,   and   Comp1"4^A > t a.e.

Proof.   We would like to ensure

(VÍ)[(*¡A-{x})(x) < t(x) i.o.) => O/Xv,04-W>00 * CA(y))].

As before, we use cancellation; an index i is cancelled when the construction

has ensured that

(iyMA~b))<y)*cA(y)).

In addition, at any time during the construction, a single index may be

"tentatively cancelled".  If an index i is tentatively cancelled, it means that the

process of attempting to cancel / by defining A according to an appropriate

"tentative commitment" is underway. If the process succeeds in defining A in

this way, then i will be cancelled; otherwise, the tentative cancellation of i will

be removed.

We construct A in stages beginning at stage 0. A parameter "a" is used

effectively in the construction, so by the s-m-n theorem there is a recursive

function a such that Va(a) is the function defined by the construction. For

4>a = t, the function Va(a) will turn out to be the CA of our theorem. (We use

the parameter "a" to allow us later to obtain the desired recursive function g by

a convergence argument.)

If m = vi, \(n)), then at stage m we will define <Pa(a)(n).   This

guarantees that, for any n, the value ¥>a(a)(") is defined at most at one stage, and

that if *a(«) I, then *Pa(a)(n) will be defined.

Stage m.  Let n = n^m); if 3>a(n) =£ n2(m), go to stage m + 1. Otherwise,

define f>a(a)(n) as follows:

Find the smallest i<n that is not yet cancelled and such that

(a) if some index / is tentatively cancelled, then / < /, and

(b) there exists E such that

(bl) E C {x \x < Aft n, $a(n)) or <patafic) has already been defined},

where A is the function whose existence is asserted by Lemma 4.2.1,

(b2) (V* IVa(a)(x) has already been defined)[xGE<> Vtt(a)(*) " 1]•

(b3) n g E, and
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(b4)  *p)(«)<*a(n).

1. If such an i, E exist, remove any previous tentative cancellation and

tentative commitment. (There can only be one.)

Define va,a\(n) = 1 - <pjE\n). Tentatively cancel i and let (E, n) be a

tentative commitment (the aim will be to define <pa^ so that

(V* I* < h(i, n, *») and x ¥= n)[paia)(x) = CE(x)].

Go on to stage m + 1.

2. If no such i exists,

2.1. If some index/ is tentatively cancelled, let (Ë, n) be the

associated tentative commitment.

Define Va(a)(«) = CE-(n).

2.1.1. If (V* < h(j, n, <¡>a(n'))) [<Pa(a)(x) has already been defined],

then remove ft tentative commitment. Change /'s tentative cancellation to a

cancellation. Go on to stage m + 1.

2.1.2. Otherwise, just go on to stage m + 1.

2.2. If no index / is tentatively cancelled, just define fa^(n) = 0.

Go on to stage m + 1.

END OF CONSTRUCTION

Now assume we have t as in the hypotheses. If we choose a* with 4>a« =

t, then we claim that CA = <fata*\ has the desired properties:

A is a recursive set.   Since i>fl» is total, all stages are executed. The defini-

tion of each stage is clearly effective.

Comp''4 ^A > t a.e.  We make an observation about cancellations which

may be proved by induction:  If an integer k is tentatively cancelled at some

stage, then at that stage or later, some integer < k will become cancelled.

Now for any index i, suppose that (Vx)[<p¡A~íx"(x) = CA(x)].

Then we observe that i is never cancelled. For if i were cancelled, there

was some last stage m = <n, 4>a»(n)> at which some tentative commitment (E, n)

for i was made. At stage m, substage 1 defines CA(n) ¥= ip\E\n). Moreover, by

Lemma 4.2.1, the definition of E, and the fact that only substage 2 can be

performed between stage m and the stage at which i is finally cancelled, we can

conclude that A will be defined so that <pjE\n) = <^"'"•"(«), hence CA(n)

+ tpjA~'-"s\n). Thus, / can never be cancelled.

Hence, there is some stage in the construction such that all cancellations of

indices smaller than i that will ever occur have already occurred by that stage.

By the observation above about cancellations, it follows that i satisfies condition

(a) so that at all subsequent stages numbered Of, $a*(x)) for some x, condition

(b4) must fail to be satisfied for index /. But then Lemma 4.2.1 implies that

<J?(A-{x})(x)>t(x) a.e.
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Comp A<go t o.e.  We see that (Va, x)[¡pa(x) I => ¥>a(a)(x) i].

Thus, by the combining lemma, an appropriate function g exists.   Q.E.D.

As a result of Theorem 4.7, we now obtain the desired independence

result:

Theorem 4.8. There exists A G R2 with the following property: For

any total running times tB and tc, there exist recursive sets B and C with

Comp B < A o tB o.e.,   Comp C < A o tc a.e„

Comp(c)5 > tB o.e.,      Comp(s)C > tc a.e.

Proof. We prove the theorem for space measure on oracle Turing ma-

chines; recursive relatedness will then give the general result.

If tB and tc are space functions, then tB join tc may also easily be shown

to be a space function. We may apply Theorem 4.7 to tB join tc and obtain a

recursive set A with

Comp A < g o (tB join tc) a.e.,   and   Comp Ia ^A > tB join tc a.e.

We choose B, Cso that A =B join C, and define h(x, y) = g(2x, y) +

g(2x + 1, y). We claim that B, C and A have the required properties, and

leave the verification to the reader.    Q.ED.

The earliest independence result in the literature which can be stated in

terms of existence of two recursive sets not helping each other is due to Axt

[A]. Axt states the existence of recursive sets A and B such that neither is

primitive recursive in the other.  His proof does not use the complexity formula-

tion of "primitive recursive in"; it is an initial segment diagonal construction

similar to Theorem IV in [Rol, Chapter 13]. With the complexity formulation

(Proposition 3.2) we immediately obtain Axt's result as a corollary of Theorem

4.8.

By methods similar to those above, and using the concept of a "complexity

sequence" [MeFl], we may obtain the following related result announced in

[MeF2]. This result is also claimed by M. K. Vasilyev [T2].  We omit the

proof.

Proposition 4.8.1. (Vf G R j)(3 recursive A, B) such that

Comp A > t o.e.,      Comp B > t a.e„

"1 (A s-improves B. i.o.),   and   ~1 (B s-improves A i.o.)

where s = \x, y\y].

We now use Theorem 4.8 to obtain counterexamples to transitivity and

symmetry of helping.

Corollary 4.8.2.  For any measure 4>* * there exists gGR2 such that
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for any function k> g the relations "k-improvement a.e." and "k-improvement

i.o." are neither transitive nor symmetric on the recursive sets.

Proof. We outline the construction of three sets which provide counter-

examples to all four properties.

We choose running times tB and tc with tB much larger than tc and with

tc much larger than k. The precise definition of "much larger" is implicit in the

argument below.

By Theorem 4.8, we may obtain B, C and h. We then consider the three

sets B, B join (B © C), and C. We note the following relationships between the

sets, providing k ER2 is sufficiently large:

(1) "1(5 ^-improves C i.o.).

(2) ~\(C ̂ -improves B i.o.).

(3) B ^-improves B join (B © C) a.e.

(4) B join (B © C) ^-improves B a.e.

(5) B join (B © C) ̂ -improves C a.e.

(6) 1(C ^-improves B join (5©C) i.o.).

(1) and (2) are clear by Theorem 4.8, if k > h.

(3) is true because a 5-oracle machine reduces the complexity of B join

(B © C) on even arguments to triviality, and on odd arguments to the complexity

of C. Since tB is much larger than tc and the complexity of B join (B © C) is

compressed around tB([x/2\), this is a large reduction in the complexity of B

join (B © C) a.e.

(4) is clear since tB is much larger than k, and an oracle for B join (B®C)

reduces the complexity of B to triviality.

(5) is true since tc is much larger than k, and an oracle for B join (B © C)

reduces the complexity of C to triviality because Cc(x) equals the mod two sum

of CBjoin(ßec)(^) and Cejoinrseoi2* + 0-

(6) If C fc-improves B join (B © C) i.o., then either C ^-improves B join

(B © C) on infinitely many even arguments or infinitely many odd arguments.

Theorem 4.8 rules out the first possibility (if k is sufficiently large), so improve-

ment must occur on infinitely many odd arguments.

It then follows that C ^'-improves (B © C) i.o. for some k' which is only

slightly smaller than k.

But from an i.o. "fast" program for B © C using oracle C, it is easy to see

how to construct an i.o. "fast" program for B using oracle C, so again C k"-

improves B i.o. for some k" only slightly smaller than k, contradicting Theorem 4.8.

These arguments may conveniently be proved formally for the space

measure and shown to hold for all measures by recursive relatedness. We omit

the details.
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The following diagram summarizes our results and exhibits the needed

counterexamples:

no ¿-improvement

B join (B 0 Q

no A:-improvement

fc-improves a.e

no ¿-improvement

5. Sets that do not help.  In this and the next section, we ask if it is

possible to improve Theorem 4.8, which proves the existence of two independent

recursive sets by diagonalization. Perhaps independent sets are pathological; we

would like to obtain a stronger result which fixes one of the two sets arbitrarily.

Therefore, we ask the following (informal) question: Which is true?

(1) For any recursive set A, there exist arbitrarily complex recursive sets

B that do not help the computation of A.

(2) There is a recursive set A whose computation is helped by all sufficient-

ly complex recursive sets B (a "universally-helped set").

Remark 5.1. We first note that any recursive set B will be universally-

helped in a contrived measure: fix g G R2, increasing in both variables, such that

with respect to the space measure Comp B < Xx\g(x, 0] a.e. Define a measure

& ) as follows:

<t>¡A\x) =
S¡A)(x) if(ly<x)\yGA],

1 + g o g o S\A \x)   otherwise.

It is easy to show that in measure & ', B is ̂ -improved a.e. by any set

A±0.
In fact, any set B such that for some tGRi Comp B > t a.e. and Comp B

<g o t a.e. with respect to the space measure is also ̂ -improved a.e. in measure

d>( ) by any set A ¥= 0.

This observation indicates that a certain reduction in complexity less than

some recursive function g depending only on the measure should not properly

be interpreted as helping. Thus, if a reduction in the complexity of a set B

using an oracle for A, when compared to the complexity of B without an oracle,

is less than g, then the intended interpretation is that B does not help A.

Definition 5.2. We say that a property holds "for arbitrarily complex

recursive sets" if

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



THEORY OF COMPUTATIONAL COMPLEXITY 275

(Vr ERt)(lB recursive)[Comp B > r a.e. and B has the desired property].

We now present two theorems which support the first of the above con-

jectures about helping. Both theorems begin with an arbitrary recursive set A

and a given lower bound tA on the complexity of A, and then establish the

existence of arbitrarily complex sets B that "preserve"^ as a lower bound even

in the presence of 5-oracles. The first theorem covers the case when tA is an i.o.

lower bound.

The method of proof is similar to that used by Machtey and this result was

also observed by Machtey [Ma2, pp.621-622]. (In [Ma3] a similarly motivated

but technically distinct notion of (not) helping by preserving i.o. lower bounds is

considered.)

Theorem 5.3. There exists g £ R2 with the following property: For any

tA ERV and any recursive set A with Comp A >g o tA to., there exist

arbitrarily complex recursive sets B with Comp*ß)j4 > tA Lo.

Proof. We obtain g from the following

Lemma 5.3.1. There exists gER2 with the following property: IfB is

a finite set, rERv and ^jB* = r o.e., then Comp r < g o $JB* o.e.

Proof of Lemma 5.3.1. Follows from a convergence argument, using the

combining lemma.

Proof of Theorem 5.3, continued.  We choose tBER1 arbitrarily.

tB will be a lower bound on 5's complexity.

We will define B in stages, with CB(x) being defined at stage x. During the

construction, we cancel indices of programs we know to differ from CB. In the

course of the construction, integers a, b and c will be defined and changed from

stage to stage, where:

a keeps count of how many conditions of a certain type have so far been

satisfied;

b = 7Tj(fl) indicates which 5-oracle program is currently being examined; and

c keeps track of a tentative commitment to an extension of the already-

defined initial segment of B.

We let 5* = {y<x\yEB}.

Stage 0 begins with a = b = 0, c undefined.

Stage x.  See if there exists / < a such that i is not yet cancelled and $¡(x)

<tB(x).

1. If so, choose the smallest such /'.

Let CB(x) = 1 - </y(x), and cancel L

Let c become undefined.

Go on to stage x + 1.
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2.  If no such i exists, define CB(x) = 0.

See if c is defined.

2.1. If so, see if c <*.

2.1.1. If c < x, redefine a = a + 1, b = 7Tj (a), c = undefined,

and go on to stage x + 1.

2.1.2. If c > x, just go on to stage x + 1.

2.2. If c is not defined, see if there exists an argument y such that

a <y < x and e/rAer *^ß*V) > (¿00 or

(*«»*>G0 < tA(y) and ̂ B*>(y) # Ç»).

2.2.1. If so, let A be the function whose existence is asserted in

Lemma 4.2.1 and define c = h(b, y, tA(y)).

Go on to stage x + 1.

2.2.2. If no such argument y exists, just retain the values of a

and b and go to stage x + 1.

END OF CONSTRUCTION

Verification. The key technical remark is that the variable a in the

construction must increase without bound. Suppose it does not. Then the

reader may verify that if a0 is the maximum value achieved by a and b0 =

7ri(a0), then B is finite and ipbB) = CA a.e. and &bB^ < tA a.e.

But then (assuming without loss of generality that g(x, y) is increasing in

y) Lemma 5.3.1 implies Comp A <¡g o tA a.e., contradicting the hypothesis of

the theorem.

Now, given that a grows unboundedly, part 1 of the procedure ensures

that Comp B> tB a.e. by an argument similar to that of Theorem 4.6.

It remains to show that Comp^.4 > tA i.o.:

Assume the contrary:  (3/)[(^ß) = CA) and (*p> < tA a.e.)].

Then there exists some integer a0 such that ^(a,,) = i and (Vy > a0)

[tfB)(y)<tA(y)].
When a is first set equal to a0 at some stage, c is undefined by 2.1.1.

Since a grows without bound, it follows that eventually at some later stage x.

part 2.1.1 must change a from a0 to a0 + 1.

But this implies that c must have been last defined at part 2.2.1 of some

interim stage z < x, so there is a y, a0 < y < z, such that

*jB*>00 > tA (v)    or    [<S><¡B¿(y) < tA (y) and *Pz)00 ¥> CA (y)].

But then part 2 defines CB = 0 from stages z through x, so 5^ = Bz, and

the definition of c at stage z ensures that

*\B)(y)>tA(y)   or   v>P>(y)*C»
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which contradicts the definition of a0.   Q.E.D.

We note that, for the space measure S^ \ g = Xx, y\y] will suffice to

satisfy Lemma 5.3.1 and hence Theorem 5.3.

We remark that if in Theorem 5.3 we assume that tB is chosen to be a

running time, and that tB is increasing and much larger than both the complexity

of tA and the complexity of A, we could prove that the set B has its complexity

"compressed" around the function tB.

Corollary 5.3.2 (implicit in [Ma2]). For any nonprimitive recursive

but recursive set A, there exist arbitrarily complex recursive sets B such that

A^pBandBtfpA.

Proof. By Corollary 3.4.2 with ({B¡} = {0}), there is an /£ Rt such

that A is primitive recursive iff Comp A </a.e. in the space measure. The

compression Theorem 2.8 applied to the space measure implies that for every

primitive recursive function t, there is a primitive recursive set P such that

Comp P > t a.e.; this implies that /> t a.e. for every primitive recursive function

r.

Let A be a recursive set which is not primitive recursive; so Comp A>f

i.o. Use Theorem 5.3 for the space measure to obtain an arbitrarily complex

recursive set B such that Comp^-d >/i.o. Hence Comp^A > t i.o. for any

primitive recursive t, and so A *j£   B by Proposition 3.2.

Theorem 4.2 implies that Comp^i? >/a.e. for all sufficiently complex

recursive sets B, so B «^ A also.   Q.E.D.

The next theorem is similar to Theorem 5.3, but the lower bound tA is

now assumed to be an a.e. lower bound instead of an i.o. lower bound; we also

require the additional assumption that tA is a running time.

Theorem 5.4. There exists gER2 with the following property: For

any total running time tA and any recursive set A with Comp A > g o tA o.e.,

there exist arbitrarily complex recursive sets B with Comp^5^ > tA o.e.

Proof. We assume for simplicity that tA(x) > \x[x]. There is no loss

of generality in this assumption as the reader may verify by slightly modifying

the function g in the statement of the theorem.

We choose a function tB to be an a.e. lower bound on 2?'s complexity. By

Lemma 2.8.2 we may assume without loss of generality that tB is an increasing

running time.

We describe a construction which will give us the required set B, working

from tA, tB and A. We use the s-m-n theorem to obtain a function ßER3.

The parameters a, b, and c in the construction are to be thought of as follows:

4>a will be tA,   $ö will be tB,   <pc will be CA.
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For this choice of a, b, c, the function <fy(a&c) will be the desired function CB.

Definition of <Pß(atbiCy fß(a,b,c)wül be defined in stages, with <Pß(aibtC)(n)

being defined at stage n.

Stages are executed in numerical order beginning at stage 0. As in earlier

constructions, we maintain the tacit convention that results in the computation

of <Pß(a>b,c)(m) for m < n may be used effectively at stage n, and that ^a bc\(n)

diverges if >Pß(aibiC)(m) diverges for any m<n.

During the construction, two types of cancellation occur, which we call 1-

cancellation and 2-cancellation. An index i is 1-cancelled when \p»,a b cj has

been defined in such a way that

0*, y)(VC)[(Cc r {0,... ,y} = %a>6>c) r {0, ...,y}) => fof>fr) * CA(x))] .(>)

These 1-cancellations will help to ensure Comp^0^ > tA a.e.

An index i is 2-cancelled when it has been ensured that <p¡ =É <fy(a>6 cy

Indices i are 2-cancelled when *f is less than tB sufficiently many times. This

will ensure Comp B> tB a.e.

Once an index is 1-cancelled or 2-cancelled, it remains so at all later stages.

Also, at any particular time during the construction, there may be some

"tentatively 1-cancelled" indices. If an index i is tentatively 1-cancelled, a pair

of integers (x¡, y¡) will be defined such that if it is ever discovered that CA (x¡)

^y¡, then i will become 1-cancelled. If it is ever discovered that CA(x¡) = y¡,

then the tentative 1-cancellation will be removed.

The same index may become tentatively 1-cancelled and lose its tentative

1-cancellation repeatedly, the values of (x¡, y¡) changing with each tentative 1-

cancellation, but we will show that (in the cases of interest) any index can only

become tentatively 1-cancelled finitely often.

Finally, at any time during the construction there may be a "tentative

commitment for (an index) i". A tentative commitment for i is a quadruple

ft Xp y¡, z¡), where z¡ is the canonical index of a 0-1 valued function Fz with

finite domain such that

(VC)[(CC r domain Fz¡ = Fz¡) => (^C\X¡) = y,)),

and Fz is an extension of the finite portion of Vprabc) defined at the time the

tentative commitment to i is made. The tentative commitment is designed to

allow subsequent tentative 1-cancellation of /', if possible.

The tentative commitment for i will eventually be fulfilled, at which time

i becomes tentatively 1-cancelled, unless it is interrupted by the 2-cancellation of

an index smaller than (i.e., of higher priority than) /, or by a new tentative

commitment for an index smaller than i.

( )/ t B denotes the function /restricted to domain B.
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In both the following constructions, we will speak of the "first" member

of a certain collection of finite sets, it is to be understood that the lexicograph-

ically first set in the collection is to be chosen.

At the beginning of stage 0, there are no 1-cancellations, tentative 1-

cancellations, 2-cancellations, or tentative commitments.

Stage n. (Define fy(afô>c)(n)-)

1. (Make tentative commitments.) Compute $b(n) and $b(n - 1). (If

either diverges, then <fy(a>6>c) will diverge.)

Let X = {x < *,,(«) | *ft'(B - 1) < *B(x) < *»}.

See if either of the following, (a) or (b), holds:

(a) there exist i, x, E such that:

(al) i < n, i is neither 1-cancelled nor tentatively 1-cancelled,

and if there is a tentative commitment for some /, then

(a2) xEX,

(a3) E C {y \y < max(«, h(i, x, 3>a(x)))} (where h is the

function whose existence asserted in Lemma 4.2.1), and

(VJ < n - l)b £ E o <pPiatbiC)(y) = 1], and

(a4) *p)(x)<*fl(x).

(b) There exists i < n, where / is not 2-cancelled, and if there is a

current tentative commitment for some /, then i < /, and $,(«)

< **(«).

1.1. If neither (a) nor (b) holds,

1.1.1. If there is no current tentative commitment, define

<Pß(aib,c)(n) = 0 and go on to substage 2.

1.1.2. If there is a tentative commitment (j, x» y¡, zj), let

^(fl>ô,c)(") = Fz.(")- Go on to substage 2.

1.2. If either (a) or (b) does hold, fix i to be the smallest index for

which either (a) or (b) is true.

1.2.1. If / arises from (a), choose the x such that $a(x) is

smallest (if two are equal, choose the smaller x), and

for this x choose the first set E such that (i, x, E)

satisfy (a). Remove any current tentative commitment,

and make a new tentative commitment for i, (i, x,

<p\E\x), z¡), where zi is the canonical index of the

function

Fzt = CE t {y \y < max(n, h(i, x, *a(x)))}

(h as in Lemma 4.2.1).

Define <fy(a>6>c)(rt) = Fz (n), and go on to substage 2.
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1.2.2.  If /' arises from (b) but not from (a), define

<Pß(a>btC)(n) = 1 - ¡pfii), and 2<ancel L  Remove any

current tentative commitment and go on to substage 2.

2. (Convert tentative commitments to tentative 1-cancellations.) See if

there is a current tentative commitment ft x¡, y¡, z¡) such that n >

max(domain Fz ).

2.1. If so, tentatively l-cancel i, associating (x¡, y¡) with the tentative

1-cancellation. Remove the tentative commitment and go on to

substage 3.

2.2. If not, then just go on to substage 3.

3. (Convert tentative 1-cancellations to 1-cancellations.) For each tenta-

tively 1-cancelled index i with an associated pair of integers (x¡, y¡),

see if %(x¡) < $b(n).

3.1. If not, go to stage n + 1.

3.2. If so, then

3.2.1. If <pc(x¡) —y¡, remove fs tentative 1-cancellation.

3.2.2. If <pc(x¡) =£.)>,•, remove fs tentative 1-cancellation and

\<ancel L

Go to stage n + 1.

END OF CONSTRUCTION

It is easy to verify that if 4>ö is total, then for any indices a,c, it is the

case that fy(a>ô>c) GÄj and <P0(atbtC) is 0-1 valued.

Now choose a*, b* and c* such that i»a» = tA, *ft« = tB and <pc, = CA.
t  * r   def
Let LB = <fy(a»>ft«>c*).

We claim that this set B has the required properties. The key fact in the

proof is the claim that no index is tentatively 1-cancelled i.o. If we assume this

for the moment, the rest of the proof can be completed as follows:

It is easy to see that Comp B> tB a.e., as in earlier proofs: if $f < tB

i.o., then i will be 2-cancelled once all the finitely many higher priority indices

which are ever going to be 2-cancelled are so cancelled, and once all the (finitely

many) tentative 1-cancellations of higher priority indices have been made. When

i is 2-cancelled, clause 1.2.2 guarantees that <pt ¥* CB.

We also claim that Comp*5^ > tA a.e.

For if not, then there is an index i such that <¿B>> = CA and *JB* < tA i.o.

Such an i could never be 1-cancelled during the construction of B, for this

would mean that for some finite set E and some argument x,

CA(x) # <p\E\x)   by the 1-cancellation,

but <pjE\x) = <p\B\x) according to Lemma 4.2.1. and the tentative 1-cancellation

which must have preceded the 1-cancellation.
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Therefore, each tentative 1-cancellation of /' will eventually be removed by

clause 3.2.1.

We will eventually reach some stage e in the construction of B such that

after stage e, no / < i becomes tentatively 1-cancelled or 2-cancelled.  Beyond

stage e, clauses (a), (b) and 1.2 ensure that no index smaller than i can prevent

a tentative commitment for i from being made, nor can an index smaller than i

interrupt such a tentative commitment for /.

Thus, whenever i satisfies clause (a) at some stage n > e, and i is not already

tentatively 1-cancelled at stage n, i will become tentatively 1-cancelled at stage n.

But by Lemma 4.2.1, &¡B\x) < tA(x) implies the existence of a set E such

that (/, x, E) satisfies clause (a). Since $$B\x) < tA(x) i.o., /' will satisfy clause

(a) i.o., and so must become tentatively 1-cancelled i.o.

But we have assumed that no index i is tentatively 1-cancelled i.o.

Thus, Comp(B)yá > t a.e.

It remains only to verify the fact that no index can become tentatively 1-

cancelled infinitely often. In order to do this, we construct (by the s-m-n

theorem) a function y £ Rs such that if a, b, c, d, e are chosen so that:

*a = *A'       *b=tB>    *c = CA>

d = the least index which becomes tentiatively 1-cancelled

infinitely many times,

e > d, and

e = the number of a stage beyond which no index smaller than

d ever becomes tentatively 1-cancelled or 2-cancelled,

then <Ay(a,ft,c,d,e) wu^ represent a program for CA requiring measure <g o tA

i.o. (for an appropriate function g). We will let this be the g in the hypothesis

of the theorem, so that we obtain here a contradiction to "Comp A > g o tA

a.e."

Definition of Vy(a¡b>c>d>ey To compute fy(a>bfC)dfe)(x), proceed as

follows:  If *,(*) t or (Vn) [*„(*) > *ft(n)], then <Py(aib,e,d,e)(x) t.

Otherwise, let n = jum [3>a(jf) < $b(m)].

1. If n < e, let <Py,atbtCtd>e)(x) = <peQc).

2. If n > e, then perform stages 0 through n - 1 in the construction of

fß(a,b,cy (tf the computation of any of these stages diverges, then

^7(a,6,c,</,e)(*) diverges.) At the point immediately after completing

stage n - 1, see if either there is a tentative commitment (d, xd, yd, zd)

or d is tentatively 1-cancelled.

2.1. If either condition is true, let f>y(aibiCid>e)(x) = <pc(x).

2.2. Otherwise, see if some tentative commitment (d, x', y, z), for
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x+x' would be made at clause 1.2.1 of stage n in the construc-

tion of B. That is, see if

(3x' < *B(x))

[((*>(/! - 1) < W) < *4(x)) or (*a(x) = *a(x') and x' < x))

and (3£ C {w \ w < max(«, h(d, x, $a(x')))} )

[(Vw <n- l)[wGEo <Pß(atbiC)(w) = 1] and <ï>f >(*') < 4>a(jc')]].

(Note that since a tentative commitment to x' instead of x would be made only

if *a(x') < $a(x), and since it is assumed that 4>a = tA > Xy\y] and so x' <

*a(jc'), it follows that the existential quantifier may be limited to x' < *a0c).)

2.2.1. If so, let ^iaibtCtdte)(x) - <pc(x).

2.2.2. If not, then see if some tentative commitment (d, x, y,

z) would be made at stage « in the construction of B.

That is, see if

QE C {w | w < max(/i, h(d, x, %(x)))})

[(Vw <n- \)\w GEo *ß(atbtC)(w) = 1] and 4>dE\x) < $a(x)].

2.2.2.1. If not, let <¿>7(a>&fC></ie)(*) = <Pc(x).

2.2.2.2. If so, consider the first such E and let:

END OF CONSTRUCTION

We now assume, as indicated before the construction of ^7(í(¡,i(.i(f>{),

that a*, b*, c*, d* and e* are fixed as follows:

*a'=tA>     */,•='£>   *.*-Çâi

d* = the least index which becomes tentatively 1-cancelled

infinitely many times during the construction of

fß(a*,b*,c*)>

e*> d*,and

e* =  the number of a stage in the construction of ^a*,b*^*)

after which no index smaller than d* ever becomes

tentatively 1-cancelled or 2-cancelled.

We claim <p7(a*>ft.jC.>d«>e.) = C^.

For all clauses except 2.2.2.2, VT(a»,f,»iC»>d»)e») = <PC» " CA. We must

check what happens if clause 2.2.2.2 defines <Py/„* b* c» <,•,<.•)(*) to be

*fXx).
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If 2.2.2.2 is executed in defining some <Ay(a*<b*>c*td*>e*)(*)> then there is

a stage n > e* in the construction of <Pß(a* tb* tC*) at which d*, x and some set

E satisfy the conditions in 1(a) of that construction. Now d* must be the

smallest index for which either (a) or (b) is satisfied at stage n because we are

already past stage e*.

Thus, in stage n of the construction of fß(a*,b*^*)> c'ause L2.1 must be

executed for /' = d*.

But since clause 2.2.1 of the construction of V7(a»iô*)C*,d*,e-*)(•*) was

not executed, it must be the case that no other argument x could interfere with

a tentative commitment (d*, x, yd*, zd,) being made at stage n in the definition

of <P$(a*tb*<c*y and so some tentative commitment (d*, x, <pdEXx), zd») will be

made.

Eventually, this tentative commitment for d* will cause d* to become

tentatively 1-cancelled, since n > e*. When d* becomes tentatively 1-cancelled,

it will be associated with the pair of integers (x, ipdEJ(x)).

Since d* becomes tentatively 1-cancelled infinitely often during the con-

struction of <fy(a•,&»,<;•)> this tentative cancellation must eventually be removed.

This can only happen because of clause 3.2.1 at some stage m > n in the con-

struction of <Pß(a*,b*,c*y ̂ ut 3-2.1 is executed only if CA (x) = ipdE\x), so

^7(a*,b*,c*,d*,e*)(x) = CA(x ) even if <py is defined by clause 2.2.2.2.

This establishes the claim that CA = *Py(a*ib*¿*¿*¿*y

Finally, we would like to show that

%(a*,b',c*,d*,e*) <Í°*a* (= * • *A) io'

To do this, we must first define g.

Letg(x,y) = maxa b cd>e<xg'(x,y, a, b,c, d, e), whereg' is given below.

The idea behind the definition of g is the following: we list enough conditions,

each recursive assuming the preceding ones are satisfied, to ensure that

<Py(a,b,c,d,e)(x)> and hence $y(a,b,c,d,e)(x), converges. On the other hand, we keep

the conditions weak enough so as to be satisfied in the cases of interest (i.e., we only

list properties actually satisfied by a*,b*, c*,d* and e*).

Here, we basically follow the construction of <Py(atbiCtd¡e)(x) and select

which of the conditions on a*, b*, c*, d* and e* were needed for the comer-

&enceo{,Py(a*,b*,c*,d',e*)(x)-

We define g'(x, y, a, b, c, d, e) = $y(atb>Cidte)(x) provided all the follow-

ing conditions are satisfied:

1. e>d;

2.y = $a(x);

3. *b(y)>*a(x);

4. Utn = vm[$a(x)<<Pb(m)]. Then:
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4.1. n>e,

4.2. Immediately after performing stage n - 1 in the construction of

fß(a b cohere *s no tentative commitment(d,xd,yd, zd),and

d is not tentatively 1-cancelled.

(Note. This is an effective test since we know for any m < n

that $b(m) < $a(x)> so that ipb(m)i. This suffices to insure

that<fy(a,&>c)(w)4..)

4.3. The condition stated under part 2.2 of the definition of

V7(a>&,c,d,e)(*)is/a/s<?-

4.4. The condition stated under part 2.2.2 of the definition of

Vy(a,b,c,d,e)(x)ist™e-

If one of the conditions fails to be satisfied, we define g'(x, y, a, b, c, d, e) =

0.
Now these conditions are effective, so g' is partial recursive. Moreover, if

all the conditions on x,y, a, b, c, d, and e are satisfied, then </>7(a b Ct<¡tey{x)\ so

that g is total. Therefore,gGR2.

Now by definition,

g(x, $a.(x))>g'(x, *a.(x), a*, b*, c*. d*, e*) a.e.

= %(a*,b*,c*,d*,e*)(x)

for all x such that a tentative commitment (d*,x, yd,, zd») is made at some

stage after stage e* in the construction of B.

But since we have assumed that d* is tentatively 1-cancelled infinitely

often, this latter equality must occur for infinitely many x.

Thus, we have <ï>7(a,ft,>c.d.e,) <|o$a, i.o.

But since <p7(a • b » c * d % e * ̂  = CA, this contradicts the hypothesis Comp A

>g o tA a.e. Therefore, our assumption that d* was tentatively 1-cancelled

infinitely often was wrong, and so we conclude that no index is tentatively 1-

cancelled infinitely often in the construction of \p^a*b»c*y  Q.E.D.

We note that in Theorem 5.4, if tB is chosen to be a monotone increasing

running time, then it is not hard to prove that the set B has its complexity

"compressed" above the function tB, that is, Comp B < A o tB a.e. for some

hGR2 which depends only on the measure.

An interesting technical question is whether Theorem 5.4 can be strength-

ened by replacing the condition that tA be a running time by the condition that tA

merely be recursive. Theorem 5.3 (for all sufficiently complex sets ,4) would

then follow easily from this strengthened version of Theorem 5.4 (cf. the

"complexity core" lemma from [L] ).

The results of this section aim to support the first of the two opposite

conjectures suggested at the beginning of the section. These conjectures have
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not been resolved, however, since the set B in each theorem is constructed to

preserve a single lower bound on the complexity of the set A.

For sets with sufficient speedup [Bl], [B2], it may be the case that there

is no single lower bound whose preservation by B ensures that A is not helped by

B in the sense of the question below. A complete answer would provide a single

set B preserving all lower bounds for A's complexity:

Open question. Does there exist g ER2 with the property that for every

recursive set A there exist arbitrarily complex recursive sets B such that

(\/tA E ß,)[Comp A > g o tA a.e. "* Comp(B)^ > tA a.e.] ?

Replacing "a.e." by "i.o." in the above question produces an equivalent

open question, as does replacing the entire last Une by "~\(B ̂ -improves A i.o.)"

[LJ.

6. Sets which are helped.  In support of the second conjecture at the

beginning of §5, we now outline the construction of a class of sets which

are helped by all sets whose complexities are "nicely" compressed.

Definition 6.1.1. For any hER2, define a recursive set Ah as follows:

Let xv x2, x3 be such that x = <xt, x2, x3). Then define

1 - (1 - <PXl(x2))   if *, (*a) < h(x2, x3),

CAh(x) =

0 otherwise.

Theorem 6.1 (helped sets). For any s E R2, there exists s £ R2 with

the following property: IfhE R2, t is a total running, time and B is any set

such that

Comp B > ¿ o t i.o.   and    Comp B < h o t a.e.,

then

B s-improves A n i.o.

Proof.  We give an outline of the ideas used in the proof, s' is chosen

to be only slightly larger than s, the difference arising from the overhead

required for simple subcomputations.  We consider /' such that ip¡ = CB and

$(<Ao/ a.e.

Let y = <i, x, t(x)), so CA (y) = CB(x) by definition of Ah.

If for almost all x, CA (y) could be computed by a program using measure

at most s o t(x), then a simple modification of this program would compute CB

using measure at most s' o t a.e., contradicting the lower bound on Comp B.

Thus, for infinitely many x, to compute CA (y) requires measures s o t(x).
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On the other hand, using a 5-oracIe, a program which recognizes arguments

y of the form above can compute CA (y) by interrogating the oracle about x.

Since t is a running time, arguments y of the form above can actually be recog-

nized using measure approximately t(x), so with a 5-oracle, CAft(y) can be computed

in measure t(x) for almost all x.

That is, B s-improves An i.o.   Q.E.D.

As a final comment, we note that if we choose An for A in Theorems 53

and 5.4, and A is sufficiently large, then we may obtain sets B satisfying these

theorems such that Comp B > s' o tB a.e. and Comp B < A o tB a.e. for arbitrar-

ily large running times tB. Any such set B s-improves An i.o. by Theorem 6.1,

yet simultaneously preserves the lower bound on Comp An used in Theorems 5.3

or 5.4.

This illustrates our earlier comment that a set B may preserve any given

lower bound on Comp An, but fail to preserve other larger lower bounds. Indeed,

it easily follows from the definition of An that An has i.o. speedup approximately

equal to A (cf. [B2] ), so that preserving any given lower bound on Comp An is

insufficient to prevent s-improvement of Ah.
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