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Abstract. An exponential lower bound on the circuit complexity of deciding the weak monadic
second-order theory of one successor (WS1S) is proved. Circuits are built from binary operations, or
2-input gates, which compute arbitrary Boolean functions. In particular, to decide the truth of logical
formulas of length at most 610 in this second-order language requires a circuit containing at least
10'%5 gates. So even if each gate were the size of a proton, the circuit would not fit in the known
universe. This result and its proof, due to both authors, originally appeared in 1974 in the Ph.D. thesis
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result is extended to probabilistic circuits.
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1. Introduction

The goal of theoretical computer science, in a very general sense, is to understand
the capabilities and limitations of computation. Not surprisingly, most attention

*Editor’s note: Although this classic result originally appeared in 1974, it has never been published
in an archival publication. The current updated version went through the standard review process. We
are delighted to have it appearJACMnow.
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has been directed towards demonstrating the capabilities. However, a true scientific
understanding of capabilities can come only with an understanding of limitations.
An early proof of a limitation of computation was the result of Abel and Galois
in the early 1800’s, that there is no finite algorithm to find the roots of the general
guintic equation using only the rational arithmetic operations and root extraction.
Demonstrating the limits of computation in a more general sense began in the
1930's with proofs of undecidability. This was followed by the development of
complexity theory in the 1960’s and proofs of “large” (exponential and larger)
lower bounds in the 1970’s. (More details of this history are given below.) These
proofs of undecidability and large lower bounds are based on diagonalization. Both
types of results are prone to the objection that, in the real world, we are interested
in solving only afinite portion of a problem, for inputs up to a certain length.
For an asymptotic lower boune' on the time complexity of a problem where

c > 1 is a constant, the lower bound may become “impractically large” only for
very large input lengthas, if ¢ is only fractionally larger than 1. Indeed, in order

to draw meaningful conclusions about computational complexity, it is essential to
know at what finite point the asymptotic lower bound begins to take effect. This
information often is implicit in the proofs of results of this type. But even though
exponential lower bounds were known for several problems at the end of 1973,
this information had not been carefully worked out for any specific problem. At
that time, we chose to study one problem in detail, with the goal of showing that
solving the problem is practically infeasible even for reasonably small inputs. To do
this, we showed, for the logical theory WS1S, that deciding the truth of sentences
of length at most 610 requires a Boolean circuit as large as the known universe.
The proof of this result previously appeared only in the Ph.D. thesis of the first
author [Stockmeyer 1974]. The main purpose of this article is to place the proof
in an archived journal and describe the result in historical context, both before and
after 1974.

We begin with some prior history, beginning in the 1930’s. This period saw the
introduction of computational models by Church, Turing, and others that seem
to embody “computation” in a very general sense. One such model is the Turing
machine. The halting problem was proved to be undecidable using the technique
of diagonalization, and undecidability of other problems was shown by giving an
effective (computable by a Turing machine) reduction from the halting problem to
the other problem. As one examplegd&l’s technique of arithmetization showed
the undecidability of the first-order theory of integer arithmetic.

As real computers started to be built and used, attention shifted in the 1960’s to
thecomputational complexityf problems, that is, the amount of computational re-
sources, such as time and memory, needed to solve the problem. A resource bound
is expressed as a function of the length of the input to the device solving the
problem, so that we may talk about polynomial bournfsfor constanid > 1),
exponential bound<{ for constant > 1), etc. In many ways, the early develop-
ment of complexity theory had parallels in decidability theory. Fundamental results
from the 1960’s include those of Rabin [1960] and Hartmanis and Stearns [1965],
proving the existence of hierarchies of problems of strictly increasing complexity.
These results were proved by diagonalization and paralleled results such as the
undecidability of the halting problem (although the technical details were more
complicated). In fact, Blum [1966] explicitly considered a time-bounded version
of the halting problem: informally, to decide if a given Turing machine halts in
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a certain amount of time. He proved that the “certain amount of time” is a lower
bound (infinitely often) on the time used by any Turing machine that solves this
problem. Ehrenfeucht [1975], in a paper originally written and distributed in 1967,
considered a bounded version of the first-order theory of integer arithmetic where
all quantifiers are bounded by constants written in exponential notation (&)g., 3
He showed that the size of Boolean circuits that decide this theory must grow ex-
ponentially in the length of the input, and this was the first lower bound on the
circuit complexity of a decision problem in logic. Although Ehrenfeucht’s proof
influenced us and our proof follows the same broad outline as his, the result itself
left something to be desired as it dealt with an explicitly bounded version of an
undecidable problem. For both bounded problems, the bound immediately implies
decidability, and the proof of the lower bound on complexity parallels the proof of
undecidability of the original problem.

During this period, Cobham [1965] and Edmonds [1965] proposed polynomial-
time complexity as a model for the tractable problems. A key to proofs of in-
tractability in this sense was a complexity-theoretic version of effective reducibil-
ity. This was provided bfficient reducibility as introduced by Cook [1971] and
Levin [1973] and further developed by Karp [1972], although its importance had
been noted earlier by Meyer and McCreight [1971]. While Meyer and McCreight
suggested efficient reducibility as a tool to prove lower bounds on complexity, the
work of Cook, Levin, and Karp focused on parallels to the complete problems of
recursion theory, and this yielded the groundbreaking concept of NP-completeness.
But because nontrivial lower bounds on the complexity of problems in NP are not
known, it did not yield new lower bounds on complexity.

Itwas notlong before the authors [Meyer and Stockmeyer 1972] put the hierarchy
theorems and efficient reducibility together to prove exponential and larger lower
bounds on the time and space complexity of “natural problems,” meaning that the
problems have some reasonable practical or mathematical motivation; they are not
contrived to be complex. To apply the method to prove an exponential lower bound
on the complexity of a probler®, for example, one shows thathf is an arbitrary
problem that can be solved in exponential time thkis efficiently reducible td.

A hierarchy theorem states that there are such probletistrequireexponential

time, and an exponential lower bound frfollows. More details can be found,

for example, in Aho et al. [1974], Hopcroft and Ullman [1979], and Stockmeyer
[1987]. This method was later used to obtain lower bounds on the complexities of
many problems from diverse areas. These include most of the classical decidable
theories in logic, as well as many decidable problems in formal language theory,
game theory, concurrency theory, and algebra; see Stockmeyer [1987] for a survey.

A lower bound obtained by this method typically has the following form, say
for an exponential lower bound on the time complexity of a decision problem
D: There is a constart > 1 such that for any Turing machind that decides
D there are infinitely many inputs on whidid uses time at least", wheren
is the length of the input. The fact that any algorithm must use an excessively
large amount of timenfinitely oftenmight be viewed as plausible evidence that
any algorithm will also perform badly on inputs of reasonable size that actu-
ally arise in practice. We wanted, for at least one problem, to replace evidence
by proof.

For the decision problem, we chose the weak monadic second-order theory of
one successor (WS1S). This seemed like a good choice, first because it was a
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natural, previously studied problem; for exampleicBi [1960] and Elgot [1961]

had earlier proved that WS1S is decidable and had found close connections between
this theory and finite state automata. More to the point, Meyer had shown in the
Spring of 1972 (and published in Meyer [1975]) that this problem is not elementary-
recursive: it cannot be solved in time bounded above by any constant number of
compositions of exponential functions. This was an indication of the significant
expressive power of WS1S, as compared to problems whose complexities had
been shown to be merely single- or double-exponential. The language used to
write formulas in “vanilla” WS1S includes first-order variables that range dver

(the nonnegative integers), monadic second-order (set) variables that range over
finite subsets oN, the predicatesy = x + 1" and “x € S’ wherex andy denote
first-order variables an& denotes a set variable, and the usual quantifiers and
Boolean connectives. Writing formulas in this language is cumbersome as it omits
several notations that are commonly used to write formulas. The languaged

to write formulas in our result is enriched with some of these common notational
abbreviations: decimal constants, writing 5 forrOL + 1+ 1+ 1+ 1,x+ 4

forx +1+ 1+ 1+ 1, etc.; the binary relational symbots, <, =, #, >, > on
integers; and set equality. These additional predicates are all expressible in WS1S,
so the problem remains decidable. A precise definitiod &f given in Section 4.

Let EWS1SK) be the set of true sentences of lengtm £. (We include a blank
symbol in the alphabet, so that EWShyéssentially contains the true sentences

of length at mosh.)

Regarding our notion of “practically infeasible,” it should first be noted that Tur-
ing machine time is not sufficient to measure the complexity of finite problems,
because any finite problem can be decided by a finite state automaton within real
time (timen). This is accomplished by coding a finite table of all the answers into
the states of the automaton. Thus, for assessing the complexity of finite problems,
account must be taken of the size or complexity of the device performing an algo-
rithm as well as the time required by the algorithm. One quite general way to do
this is to measure the number of basic operations on bits or the amount of logical
circuitry required to decide the finite problem. The basic Boolean operations on bits
are binary operationsand, or, exclusive-oretc.—performed by “gates” with two
inputs and one output. This output may be fanned out to serve as input to other gates
in the circuit. This circuit model yields a basic measure of complexity for Boolean
functions as well as finite decision problems (via appropriate encoding into Boolean
vectors); precise definitions appear in Section 2. The circuit model was well known
at the time, and the study of circuit complexity and variations of it has contin-
ued and expanded since then (see, for example Boppana and Sipser [1990], Dunne
[1988], and Wegener [1987]); this is discussed further below in this introduction and
in Section 3.

The alphabet used for EWSI§(has 63 symbols, each of which can therefore
be coded into six binary digits. In particular, sentences of length 610 correspond to
Boolean vectors of length-10 = 3660 bits, and this will be the number of inputs
to a circuit that “accepts” the true sentences of length 610. The circuit is to have a
single output line that gives the value one if and only if the input vector is the code
of a true sentence of length 610. The main result can now be informally stated.

THEOREM 1.1. If C is a Boolean circuit that accepteWS1S(610) then C
contains more than0'2° gates.
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A quick calculation shows that the known universe could contain at mdst 10
protons, even if they were packed tightly together.

Some words should be said about why we attempted to prove a result of this type,
and why we think it was worth doing despite the apparent dearth of references to
it.? As for the first “why,” one reason was the all-purpose “because it was there.”
It seemed like the logical next step (and possibly the last step) in diagonalization-
based proofs of intractability. The numberd0wvas chosen so that the lower bound
could be stated informally yet accurately and would be easily remembered, for ex-
ample, “the computer must be as large as the universe.” With this objective, we
were curious to see how small the input length could be. Certainly the result would
be less striking if 610 were replaced by, say, 610,000, and the technical challenge
was to achieve an input length more like 610 than 610,000. As for importance, two
arguments can be made. First, for someone with a technical interest in complexity
theory, it provides an example (as far as we know, the only example) of justification
for, as Allender [2001] puts it,.” . inside essentially every asymptotic lower bound
in complexity theory, there hides a concrete statement about physical reality.” Sec-
ond, to the general scientifically inclined person, it is a result about intractability
that can be communicated without using technical language, for example, Turing
machines and exponential asymptotic lower bounds. Theorem 1.1 has been used
for this second purpose by Knuth [1976], Osherson [1995], and Stockmeyer and
Chandra [1979]. As further testimony to the usefulness of the result, it was used
by Pohl [1980] in the science fiction novBkyond the Blue Event Horizdo ex-
plain why a supercomputer of the distant future cannot cope with every problem
presented to it.

Turning to the history following 1974, the study of circuit complexity became
an active area, with much of it motivated by the=R? NP question. To prove that
P # NP, it would be enough to prove, for some problem in NP, that its circuit
complexity is not polynomially bounded. Although such a proof is not in sight,
two approaches have been explored. One is to prove “large,” for exacipleywer
bounds for restricted circuit models, with the hope of incrementally removing the
restrictions. The other is to prove “small,” for exampi®, lower bounds for the
unrestricted model (the model used in Theorem 1.1), with the hope of incrementally
improving the linear growth rate to super-polynomial.

An early result in the first category was done for thenotone arithmeticircuit
model, where the inputs are viewed as indeterminates and the allowed operations
are+ andx. Schnorr [1976a] proved an exponential lower bound on the complexity
of a polynomial derived from the (NP-complete) clique problem. Thand x
are not idempotent is crucial to the proof, as this severely limits the typeseddl
intermediate results that are computed within the circuit. Animportant advance was
made by Razborov [1985] and Andreev [1985], who proved that certain problems in
NP, including the clique problem, do not have polynomial complexity in the model
of monotone Booleawircuits, where the allowed operations are the monotone
Boolean operatiorendandor. These operations are idempotent; this allows a much
wider class of useful intermediate results and increases the difficulty of proving

! Taking conservative current estimates of fom. for the diameter of a proton and 20 billion
lightyears for the radius of the known universe.
2 A factor in the lack of references may be that it was never published in a conference or journal.
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lower bounds. See also Alon and Boppana [1987] and Boppana and Sipser [1990]
for further discussion and later improvements to these results. Another restricted
circuit model that has been widely studied is obtained by requiring that the depth of
the circuit (the length of a longest input-to-output path) be bounded by a constant.
Circuits are constructed from gates having unbounded fan-in (that is, arbitrary
arity); this is needed so that the constant-depth restriction does not restrict the
number of inputs to the circuit. One well-studied complexity class, A&defined

by further restricting constant-depth circuits to have polynomial size and to use the
basic operationsotand (unbounded fan-i@ndandor. Study of AC was initiated

by Ajtai [1983] and Furst et al. [1984], who showed that the parity function is not
in ACP. The lower bounds on circuit size proved in these papers were improved to
exponential by Yao [1985] andastad [1986].

But for unrestricted circuits, which may use all binary Boolean operations and
have no restriction on their depth, all known lower bounds on the circuit complex-
ities of problems in NP have the forom with ¢ < 3 [Schnorr 1974; Harper et al.
1975; Paul 1977; Stockmeyer 1977a; Blum 1984]. The proofs involve case analysis,
and the constart has been increased by considering wider classes of cases. Not
surprisingly, there has been little interest since 1984 in increasaigpve 3 by a
more extensive case analysis.

All of the results mentioned in the preceding two paragraphs are proved by “com-
binatorial” methods that delve into the innards of a cir€ijitassumed for contra-
diction to violate the lower bound being proved. In contrast, the “diagonalization-
based” methotlused to prove Theorem 1.1 makes no use of the internal structure
of C; it views C as a “black box.”

Although the diagonalization-based method has been useful in proving lower
bounds on the computational complexities of problems that have enough expres-
sive power to efficiently encode arbitrary exponential-time computations, there is
widespread belief, based in part on technical evidence, for example, [Baker et al.
1975], that this method will not help in proving thats? NP. The NP-complete
problems do not seem capable of efficiently encoding arbitrary exponential-time,
or even barely nonpolynomial-time, computations. New ideas are needed.

We now outline the structure of the rest of the article. Section 2 contains def-
initions of circuit complexity and some standard complexity classes that we will
need in stating results. In Section 3, we describe Ehrenfeucht’s argument and some
results that were obtained later using refinements of it. In Section 4, we define
EWSL1S and prove a quantitative exponential lower bound on its circuit complexity;
Theorem 1.1 is one consequence. In this section we also give an extension of the
result to probabilistic circuits; for example, to decide EWS1S(614) with probability
at least 2/3 of being correct, the circuit must contain at leaSPIfates. Section 5
is the conclusion.

2. Definitions

Let N denote the nonnegative integers a¥id denote the positive integers. Loga-
rithms with no specified base are to the base 2.

3 Which might also be called the “Berry-paradox-based” method; see Remark 3.5 at the end of
Section 3.
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2.1. QrecuiT CoMPLEXITY. There are several essentially equivalent definitions
of Boolean circuits in the literature, for example, Dunne [1988], Savage [1976],
and Wegener [1987]. We use a definition based on straight-line algorithms.

Let Q6= {g | g: {0, 1}> — {0, 1}} be the set of binary Boolean functions. Let
Q C Qi6, m e NT, andt € N. An Q-circuit of size t with m inputs a sequence

U = ,Bm: ﬂm-‘rlv ﬂm+2, ceey ,Bm+t—l

suchthatfom < k < m+t — 1, thestepgx = (i, j, 9), wherei andj are integers
with0 <i, ] < kandg € Q.

With each stegBi, we identify anassociated functiog : {0, 1}™ — {0, 1} by
induction. First, for 0< k < m — 1, define& to be thekth projection,

Ex(bobaby - - - bm_1) = by forall bobibs, - - -bm_1 € {0, 1}™.
fm<k=<m+t—1andB = (i, j, g), then define

&(x) = g(&i(x). £ (x)) for x € {0, 1}™.

If fisafunction,f : {0, 1}™ — {0, 1}P for positive integersn and p, thenU
computes fff U hasminputs and there are integersQiy, i, ..., ip <m+t—1
such that

f(x) = &,(X) &,(x) --- &,(x) forall x e {0, 1}™.

The circuit complexityof f (also calledcombinational complexitand Boolean
network complexitin the literature), denoted( f), is the smallest such that there
is anQs¢-circuit of sizet that computesf .# We use the shorthandrcuit for an
Qi6-circuit. Most of this article concerns functions with ran@e1}. For a circuit
U as above, théunction computed by Uk &, mn_1. LetU(x) denotes;;m_1(X).

Forn e N*, let 7/, = {f | f : {0,1}" — {0, 1}}. Define themaximum n-ary
circuit complexity Mn) as

M(n) = maX{C(f) | f € Fn}.

A“counting” argument of Shannon [1949] shows thafn) > (1—¢)2"/n for each
fixed e > 0 and all sufficiently large (see, e.g., Dunne [1988], Savage [1976],
and Wegener [1987]). Lupanov [1958] showed thatlimg, M(n)/(2"/n) = 1. (In
the sequel, we need only the rough bouatis< M(n) < b" for some constants
a, b > 1 and all sufficiently large.)

We now define circuit complexity for problems of deciding membership in sets
of words. LetI" be a finite alphabet, and || denote the cardinality of'. We
assumgl’| > 2, and if|[I"| = 2, thenI” = {0, 1}. Forx € I'*, let |x| denote the
length ofx. A language(overT') is a setL C I'*. A binary languageis a set
L € {0, 1}*.If IT'| > 2, anencoding fo" is a one-to-one function : ' — {0, 1}°

4 Of course there is no loss of generality in not allowing basic functions of one argument. For example,
an inversion gate-b can be computed apa (b, b) wheregna (v1, V2) = —(v1 A V). Similarly, adding

the Boolean constants 0 and 1 “for free”fas andé_; can decrease the circuit complexity by

at most two, and not at all if none of the outputsfofs a constant.
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wheres = [log|l'|15 If T = {0, 1}, there is a uniquencoding forl" defined by
h(0) = 0 andh(1) = 1. Leth : I'* — {0, 1}* be the extension di. LetL C I'*
andn € N*. Let F| , be the class of functions$ : {0, 1}Sf — {0, 1} such that, for
some encoding for I', forall x e T'", if x € L, thenf(h(x)) = 1, and ifx & L,
then f (h(x)) = 0. Thecircuit complexityof L is the functionC_ : N* — N such
that, for eacn € N*, C_(n) is the minimum ofC(f) over all f € 7 .5 Note that
for n fixed, C__(n) is the circuit complexity of deciding membership in tfaite
setL N I'". For B a class of function8 : N* — N, let CSIZE@B) denote the
class of languagels such that, for som& e B, we haveC, (n) < B(n) for all n.
For example, CSIZED(n°M)) is the class of languages having polynomial circuit
complexity; in current terminology this class is called P/poly (as discussed further
in Section 2.3).

A binary languagd. hasmaximum circuit complexity C, (n) = M(n) for all
n > 1. A languagel. hasexponential circuit complexity a.d.there is a rational
constant > 1 such thatC, (n) > c" for all sufficiently largen. A languagel. has
polynomial circuit complexitif there is a polynomiap(n) such thaC, (n) < p(n)
for all n.

2.2. TiIME AND SPACE COMPLEXITY. Other notions of the complexity of a lan-
guage are itsime complexityand space complexitysee, for example, Hopcroft
and Ullman [1979] for definitions if needed. Let DTIME(n)) (respectively,
DSPACES(n))) denote the class of languages accepted by deterministic multi-
tape Turing machines within time(n) (respectively, spacg(n)). For a clas®3 of
functions, DTIMEQ) and DSPACER) are defined in analogue with the definition
of CSIZE(B) above. In particular, define

E=DTIME(2°") and ESPACE= DSPACH2°™).

A fundamental difference between time complexity and circuit complexity is that
the former is measured oruaiformmodel (e.g., Turing machines) where there is
a single finite program that must work for all (infinitely many) inputs, and the latter
is measured on monuniformmodel (circuits) where there can be a different finite
program (a different circuit) for each input length. Indeed, one way to partition the
subject of computational complexity is along the uniform/nonuniform boundary.

2.3. GONNECTIONS BETWEENTIME AND CIRCUIT COMPLEXITY. The notion of
circuit complexity is in some sense incomparable with time complexity because, as
noted above, for eadh(even nonrecursive) there is a constasisuchthaC, (n) <
c". However, there is a basic relationship in one direction between these two notions
of complexity: circuit complexity provides a related lower bound on time complex-
ity. Savage [1972] showed that if € DTIME(T(n)) thenC_(n) = O(T(n)?).
Pippenger and Fischer [1979] improved thisxo(n) = O(T(n) log T (n)).

The two notions can be brought closer together if Turing machines are given a
limited amount of “advice.” The first result of this type was by the second author,

5 By considering only block encodings, the exposition is somewhat simplified, and there is essentially
no loss of generality.

6 1f || is not a power of 2, the value off(y) (and the output of the circuit) does not matter for

y € h(I'"). Requiring f (y) = 0 in these cases has no effect on our lower bound results.
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Meyer (cited in Berman and Hartmanis [1977]), who showed around 1973 that
the class of languages having polynomial circuit complexity is exactly the class of
languages that are polynomial-time Turing reducible to a sparse lan@jdge
amount of advice is limited by the sparseness of the “oracle” language. A language
Sis sparséf there is a polynomiap(n) such thatS contains at mosp(n) words of
lengthn, for alln. Schnorr [1976b] gave a more detailed relationship between circuit
complexity and time complexity defined in terms of Turing machines with sparse
oracles. Later Pippenger [1979] defined the “advice” model of Turing machines: the
advice for inputs of length is given to the machine as a string, which depends
only onn. Using notation that came into use later, the class P/poly is defined as
the class of languages that are accepted by deterministic Turing machines within
polynomial time using polynomially bounded advi¢e is polynomial inn). The
characterization of polynomial circuit complexity by P/poly is closely related to
Meyer’'s characterization: it is easy to see that a sequgngg.1 of polynomially
bounded advice strings can be encoded in a sparse language, and vice-versa.

Instead of making Turing machines nonuniform by giving them advice, another
way to bring time and circuit complexities closer together is to make circuits uniform
by requiring that they be efficiently constructible by a Turing machine. The idea of
uniform circuit complexity was introduced by Borodin [1977] and further developed
by Ruzzo [1981]. We are concerned only with nonuniform circuit complexity as
defined in Section 2.1. Of course, all of our lower bound results &dddtiori for
uniform circuit complexity.

2.4. BOUNDED ALTERNATION HIERARCHIES To state certain results, we need
a few classes of the bounded alternation hierarchies built on polynomial time and
exponential time. These classes can be defined in terms of alternating Turing ma-
chines (ATM’s) [Chandra et al. 1981]. Rather than introduce this model, we give
equivalent definitions in terms of bounded quantification over the arguments of a
polynomial-time computable relation. Let € I'*, k € N*, and letB be a class
of functionsB : N — N. The languagé. belongs to the classi(B) if there is a
functionB € B, afinite alphaben, and arelatioiR(x, yi1, Yo, .. ., Yk), computable
in time polynomial in|X| + |y1| 4+ - - - + |yk| for x € ' andyy, ..., Yk € A*, such
that for allx € T'*,

xeL iff (Iy)(Vy2)3Ys)- - (QuYIRX, Y1, Y2, . .., Y], 1)

where the quantifiers alternate (@ is 3 if kis odd orv if k is even) and where the
ith quantification is over thosg € A* with |yi| < B(|x|). The languagé belongs

to Ik (B) if the complement oL (i.e.,I'* — L) belongs toX«(B). (Equivalently,
[Tk (B) can be defined lik&y(B) in terms of alternating quantifiers except that the
leading quantifier is universal.) Also defid®(5) = I1o(B) = DTIME(B).

The classes of thg@olynomial-time hierarchy(first defined in Meyer and
Stockmeyer [1972] and further developed in Stockmeyer [1977b])=reand
M} for k > 0, defined byx) = %(P) andI1{ = Tk(P) whereP denotes the
class of polynomial functions. In particulat = P andx; = NP. The classes
of the exponential-time hierarchyx; and ITy, are defined bye? = %(€) and
[T} = Ik(€) where€ denotes the class of exponential functions, thatigor an
arbitraryc > 1. Because the time to compulX, yi, ..., Yk) is polynomial in
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IX| + |y1] + - - - + | Y|, once the exponential bourilon the lengths of thg's is
fixed, the time to comput® is bounded above by*! for some constant.

In terms of ATM’s, X” (respectivelyXf) is the class of languages accepted by
ATM'’s that use polynomial (respectively, exponential) time, start in an existential
state, and make at maost— 1 alternations from an existential state to a universal
state or vice-versa.

3. Ehrenfeucht’s Argument and Refinements

In 1967, Ehrenfeucht proved an exponential lower bound on the circuit complex-
ity of the first-order theory oN with addition, multiplication, and exponentiation,
where all quantifiers are bounded by constdn®onstants are written in posi-
tional (e.g., binary or decimal) notation and may be defined using exponential
notation. A sentence is a formula containing no free variables. Writing sentences
as words over some finite alphaliét let BIA (Bounded Integer Arithmetic) be
the language containing the true sentences in this logic. Obviously, BIA is decid-
able, because all quantifiers are bounded by constants. In this section, we outline
Ehrenfeucht’s [1975] proof that BIA has exponential circuit complexity a.e., and
give some results that were obtained later using a similar method. It is convenient to
assume that the alphaldeused to write formulas contains a blank symbol, so that
BIA NI'" essentially contains the true sentences of length at mast opposed to
exactlyn.

For0<i < 2", letbin,(i) be the length binary representation of Recall
Fo={f]f:{0,1}" - {0,1}}.

For f € F,, thetruth table of fis the binary word ttf) of length 2' defined by

tt(f) = f(binn(0))- f(binn(1))- f(binn(2)) - -- f(bina(2" — 1)).

Define a linear ordex on F,, the lexicographic ordey by g < f iff tt(g) is
lexicographically smaller than tt(.

Ehrenfeucht’'s argument goes roughly as follows: &et 1 be a constant such
thata” < M(n) for almost alln. Fix ann € N*. Let fq be the lexicographically
smallest function i, having maximum circuit complexity, that i§( fp) = M(n),
andC(g) < M(n) for all g < fo. Using Gddel’s result that every r.e. set has an
arithmetical representation [Rogers 1967, Sect. 14.4], it is easy to see (the details
are not given in Ehrenfeucht [1975]) that there is a forma(2) in the language
of BIA such that, for allx € {0, 1}", the function fo(x) = 1 iff ¢(1 - Xx) is true,
viewing 1- x as a binary numeral. Moreover, the lengthpét - x) is dnwhered is
a constant independent of Now a circuit of size that decides BIA on sentences
of lengthdn (using encodingdp : ' — {0, 1}*) gives a circuit of sizé + O(n) that
computesfy, as follows. For an input € {0, 1}", a circuit of sizeO(n) computes
the encoding vich of the binary numeral 1Xx; this is then substituted far in
¢(2), which in turn is given as input to the circuit of siz¢hat decides BIA 9",
Recalling thatC(fo) = M(n) > a" and choosing k ¢ < a%9, it follows that the
circuit complexity of BIA must be at leasf' for almost alln divisible by d. By
padding with blanks, an exponential lower bound holds a.e.

7 Although the result in Ehrenfeucht [1975] states only that the complexity of this problem is not
polynomial, an exponential lower bound is implicit in the proof.



Lower Bound on the Circuit Complexity of a Problem in Logic 763

Around 1973, the second author, Meyer, showed thhatan be computed by
a Turing machine using exponential space. One of the referees pointed out that
Sholomov [1975] made a similar observation. This can be done because members
of F, and circuits of sizéd" can be represented by words of length exponential in
n. Use tt(f) to represent, and represent a circuit by its definition as a straightline
algorithm (encoded as a word over some finite alphabet). Quantifications such as
“for all g < fp” are handled by exhaustive search, and only a constant number of
exponential-length representations need be stored on the tape at any one time. In
this way, Meyer showed the following. Recall ESPAGEDSPACE(X™).

THEOREM 3.1 (MEYER). ESPACE contains a binary language of maximum
circuit complexity.

This result allowed certain lower bounds on time complexity to be translated
to lower bounds on circuit complexity. For example, in proving that{NJhkt),
the first-order theory oN with addition (also known as Presburger arithmetic)
has time complexity double-exponentialinFischer and Rabin [1974] show that
every language. in DTIME(22°”) is poly-lin reducible to THN, +), that is, it
is reducible via a function computable in polynomial time and linear space; in
particular,|r (x)] = O(|x|). Because ESPACE DTIME(22°"), we can takeL
to be a binary language of maximum circuit complexity, from which it follows
easily that THN, +) has exponential circuit complexity a.e. (assuming again that
the alphabet of T{N, +) contains a blank symbol). Similarly, using the reduction
of Meyer [1975], any language in ESPACE is poly-lin reducible to WS1S, so WS1S
has exponential circuit complexity a.e.

The exponential-space algorithm that computasses double-exponential time,
for example, to search over all membersf After the definition of the alternating
Turing machine (ATM) model [Chandra et al. 1981], it was clear thatould be
computed by an ATM using exponential time and a constant number of alternations.

THEOREM 3.2. X5 N II§ contains a binary language of maximum circuit
complexity.

PrROOF. We define a binary languade by an expression of the form (1) for
k = 3. Choose the constabtsuch thatM (n) < b" for all n. LetC, denote the set
of circuits of size at mosh". As above, we represent members7fandC, by
words of lengthc" for some constardt. For convenience, we identify a function or
circuit with its word representation.

Fixn > 1. Forf € F, andU € C,, let the predicateomp f, U) hold iff f is
the function computed by . To decidecomp f, U) it is enough to check, for all
x € {0, 1}", that f(x) = 1 iff U(x) = 1. This is an exponential {2 number of
exponential-time computations, somg( f, U) can be computed in time”#"). For
U € C, and integett with 0 < t < b", let sizdt, U) hold iff the size ofU is at
mostt; obviously, this predicate can also be computed in titA® 2By definition,

C(f)y<t iff (3U e(Cy)[sizdt,U) A comyf, U)].
Consider the predicatémax f, t) defined as followsCmax f, t) iff

(Vge F)l(C(@) =t) A =(C(f) <t—-1) A (g< f=C(g) <t—-1)].
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Note that, ift satisfies the first conjunct for &, thent > M(n). If f,t satisfy the
second conjunct, the@(f) > t, sot < M(n). If f,t satisfy the third conjunct for
all g, then allg with g < f can be computed by a circuit of size- 1; together
with t = M(n) andC(f) > t, this means thaf is the lexicographically smallest
function in F, having maximum circuit complexity. In summary, @max f, t),
thent = M(n) and f = f,. DefineL N {0, 1}" by:

xel iff (IH)AV[Cmaxf,t)A f(x)=1]. )

SoL has maximum circuit complexity. By straightforward manipulation of quan-
tifiers, the definition ol in (2) can be written

@3f, t)(¥g, U)EU’, U")[R(x, f,t, g, U, U", U"),

whereR is quantifier-free and can be decided in tigiefor somed. Therefore,
L € 5. Changing X € L"to x ¢ L”in (2), it defines the complemerit of L.
Thereforel € £, soL e 1. [0

Becausef,, and(C, can be restricted to contain words of lengthd@er some
finite alphabet, the proof actually shows that there is a binary language of maximum
circuit complexity inx3(2") N I3(2").

Theorem 3.2 can be used to show thatRh+), the first-order theory of the
reals with addition, has exponential circuit complexity a.e. This follows as above
for Th(N, +) because Berman [1980], using methods of Fischer and Rabin [1974],
shows that if a languageis accepted by an ATM simultaneously withiR® time
andO(n) alternations, theh is poly-lin reducible to TKR, +).

We next mention some later results that used a similar proof method. Like
many good ideas, Ehrenfeucht’s argument has been discovered more than once.
Kannan [1982] showed the following:

THEOREM3.3 (KANNAN). Foreachd> 1, thereis an Le ©5NT1J such that
L ¢ CSIZE©O(n%)).

(In other words, for alt, C__(n) > cn® for infinitely manyn.) Using an argument
similar to the one in Ehrenfeucht [1975] and in the proof of Theorem 3.2, Kannan
first proves Theorem 3.3 with} N I1} in place ofx] N %) .8 He then uses a result
of Karp and Lipton [1980], that N’ P/poly implies%) = =) for all k > 2,
to finish the proof by considering two cases. First, if NFP/poly, then, by Karp
and Lipton [1980],=; NT1} = £) NTI). On the other hand, if there is a language
L € NP butL ¢ P/poly, thenL € NP € =5 N1} andL ¢ CSIZE©O(n?)) for
all d.

Scarpellini [1985] later published a weaker version of Theorem 3.3 whgre
115 is replaced byz, for some (unspecified.

8 The argument is not exactly the same, because representations of arbitear§, have length
exponential im. Instead, for a suitable constant- d, for eachn he considert)y, the lexicographi-
cally smallest circuit of size® that is equivalent to no circuit of sizé€+. ThenL N {0, 1}" is defined
by Uo.
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Kannan [1982] also showed that a version of Theorem 3.3 holds at an exponen-
tially higher level.

THEOREM3.4 (KANNAN). Thereisaconstante 1andan Le £§NTI§such
that L ¢ CSIZE(O(c")).

The constant in this result is less than@36. It is not known whethex§ N I15
contains a binary language of maximum circuit complexity.

It is an open question whether Theorem 3.3 (respectively, 3.4) can be improved
by replacingzzp N l‘IgJ (respectivelyx§NTI$) by a smaller class. Wilson [1985] has
considered this question in relativized worlds (cf. Baker et al. [1975]). The circuit
model is relativized to a binary “oracle” languagdeby allowing circuits to use
oracle gates of arbitrary arity, which output 1 or 0 depending on whether the input
to the gate belongs t& or not. Anr-ary oracle gate contributego the size of the
circuit. DefineAS ™ = ENP*, (The class\§ = ENPis the exponential-time analogue
of AY = P"Pin the polynomial-time hierarchy. Obviously$ € AS € SN T15.)
Wilson constructs a recursive ora@esuch thatifL e AS® then theB-relativized
circuit complexity of L is linear in n. Thus, relative to some oracle, Theo-
rem 3.3 (respectively, Theorem 3.4) cannot be improveld to A} (respectively,

L € AS).

A stzriking result related to improving Theorem 3.4 in the real (unrelativized)
world, by Impagliazzo and Wigderson [1997], states that if E contains a language
whose circuit complexity is exponential a.e., the = BPP, where BPP is the
class, defined by Gill [1977], of languages accepted by polynomial-time proba-
bilistic Turing machines with error probability bounded beloy21This equality
would be significant because the obvious simulation of probabilistic computation
by deterministic computation tries every possible outcome of the random choices
made by the probabilistic algorithm, and this can cause an exponential blow-up in
time complexity.

Remark3.5 (The Berry Paradox  Just as @del’s Incompleteness Theorem
can be viewed as a formalization of the Liar's Paradox, “This statement is false,”
Ehrenfeucht’'s argument can be viewed a formalization of the Berry Paradox. The
Berry Paradox, which was originally published by Bertrand Russell (who had been
told of a similar paradox by Oxford University librarian G. Berry) has been stated
in many forms; one is: “The least integer not nameable in fewer than nineteen
syllables.” The paradox is that this phrase names that integer using eighteen sylla-
bles. The formal version of this in Ehrenfeucht’s proof is, for a weord {0, 1}":

“f(x) = 1 wheref is the least function itf,, not computable by a circuit of size
M(n).” Clearly, a circuit that decides the truth of statements of this form for an ar-
bitrary x € {0, 1}" must have size exponential in the length of the statement, given
the fact (proved by a counting argument) tihn) is exponential. As described

by Chaitin [1995], the Berry Paradox also plays a role in program-size complexity
(having various other names including Kolmogorov complexity and algorithmic
information; see Li and Vanyi [1990] for background). It is not surprising that
the same technique was used for both circuit-size complexity and program-size
complexity. A circuit can be viewed as a program to a “universal circuit simulator”
that takes a description of a circwit and an inputx and determines the value
U(x). The simulator uses bounded time, in particular, polynomigkint |U|.

The definition of program-size complexity is similar, the main difference being
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that the program is given to a universal Turing machine with no bound on its
running time?

4. A Lower Bound on the Circuit Complexity of EWS1S

We give a quantitative lower bound on the circuit complexity of EWSLS;
Theorem 1.1 is one corollary. Because our numerical lower bound depends on the
language used to write formulas, we begin in Section 4.1 with a precise definition of
the syntax of this language. Section 4.2 contains the statement of the lower bound
(Theorem 4.1) and its proof. In Section 4.3, we give an extension of Theorem 1.1 to
probabilistic circuits; these circuits can utilize random bits in their computations,
but the error probability must be bounded beloi2 1Quantum circuits are briefly
mentioned in Section 4.4. We note that the quantum circuit complexity of EWS1S
is c" for somec > 1, but we have no numerical results.

4.1. DEFINITION OF EWS1S. A context-free grammar in BNF notation oy
the language used to write formulas, is shown in Figure 1.

LetT be the alphabet of, that is, the set of terminal symbols in Figure 1. Note
that|I"| = 63. If ® € L, then|®| denotes the length ab viewed as a word irL.

In the absence of parentheses, the precedence order for logical connectives is
-, A, V, =, & (decreasing). Binding of quantifiers to formulas takes precedence
over all logical connectives. To improve readability, redundant parentheses are
sometimes used to write formulas in the text; these are denoted as Hracas]
are not counted in the length of formulas.

A formula ¢ € L is asentenceff it contains no free variables. Let EWS1S
be the set of sentences ihthat are true under the standard interpretatiofN pf
with set variables ranging over finite subsetfNofLeading zeroes are ignored in
interpreting constants.) The symbol # denotes a blank “padding” character that is
ignored in determining the truth of a sentence. Because sentences can be padded
with blanks,Cews1dn) measures the circuit complexity of deciding sentences of
length< n.

4.2. THE LOWER BOUND AND ITS PROOF

THEOREM 4.1. Letk, m, n be positive integers such that
(1) m> k+ 1+ loglog( + m),
(2) k —24 > 2logm, and
(3) n = 459+ |(log;p2)m] + 11|log;gm).
Then Gwsidn) > 2473,
Theorem 4.1 is proved below. For a fixed numerical valua,a lower bound

on Cewsi1dn) is obtained by choosingandm to satisfy the above constraints. For
example, we can now obtain the precise formulation of Theorem 1.1.

THEOREM 4.2. Cgws14610) > 10125,

9 Replacing “polynomial time” by “recursive time” gives other analogies, for example, between P and
the recursive sets, NP and the r.e. sets, and the polynomial-time hierarchy and the Kleene arithmetical
hierarchy.
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(member ofC) 1= (formula) | (member off) #

(formulg) ::= 3 (variable (formula) | V(variable (formula) | —(formula)

| (formula) (Boolean connectivéformula) | ((formula) | (atom

(atom) ::= (term){order relatiof{term) | (set variable = (set variablg
| (term) € (set variablg| (term) ¢ (set variablg

(term) 1= (integer variablg| (constant | (integer variablg+ (constanit

(Boolean connective::= A | V | = | &

(orderrelation = < | < | =] # | > | >
(variable ::= (integer variablg| (set variablg
(integer variablg ::= (integer variablglower casg| (lower casg

(set variablg ::= (set variablg(upper casg| (upper casge
(lowercasg ::= al|bjc|]---|plq
(uppercase::= A|B|C|---|P|Q

(constant ::= (constant(digit) | (digit)

(digit) == 0]21|2]3]---19

Fic. 1. The syntax of.

PROOF Choosek = 420,m = 430,n = 610, and note that*?¢ > 10'%5. [

The proof of Theorem 4.1 is along the same lines as Ehrenfeucht’s proof and
the proof of Theorem 3.2. The key step is Lemma 4.6, which states thatif
andn satisfy certain constraints, then there is a functfgn {0, 1}™ — {0, 1} of
“large” (>2"3) circuit complexity such that questions about the valuef@bn
words of lengthm can be transformed to questions about membership of sentences
of lengthn in EWS1S; moreover, the circuit complexity of the transformation
is relatively “small.” It then follows easily that the circuit complexity of EWS1S
must be almost as large as that gf For assume that the circuit complexity of
EWSL1S is small. Then, by placing a circuit that computés series with a small
circuit that accepts EWSISI™", we obtain a small circuit that computég which
is a contradiction. One way to proceed with the proof would be to construct a
specific exponential-space Turing machmesuch thatM accepts a languadeof
maximum circuit complexity (Theorem 3.1), and then use the efficient reduction
of Meyer [1975] to reducé to EWS1S. After estimating the length of the EWS1S
sentence that would result, we decided that it would be better to carry out a direct
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arithmetization of circuits by EWS1S formulas, following the outline of the proof of
Theorem 3.1.

One preliminary result, an “abbreviation trick,” is required before proving
Theorem 4.1. If® is a logical formula involving several occurrences of a sub-
formula ®, the trick allows® to be written equivalently as a formula involving
only one occurrence @. Special cases of the trick were discovered independently
by several people in the early 1970’s. Here we give a fairly general version, due to
M. Fischer and the second author around 1973.

In describing the trickb, c, p,r € N*t, and variables may be either first-order
variables or second-order (set) variables. We always apply the trick to fordhulas
of the form

q)(ulv ) ub) = Q121Q222 e QCZC lII(ula sty uba Zl» R ZC);

whereQ, ..., Q¢ are quantifiersy, ..., U, denote variables that occur free in
®, andz, ..., z; denote variables. Heng denotes a formula (with free variables
Ug,...,Up, 23, ..., Z) of the form

W=_(- 0\ ....V1p) - O(Vo1,...,Vp) -+ O(Vr1, ..., Vrp) -+°),

where®(vy, ..., Vp) denotes a formula op free variablesvy, ..., v,, and for
1 <i < r theith occurrenced(v; 1, ..., Vi p) of ® in ¥ denotes a substitution
instance of®(vy, ..., vp) with vy replaced byv; 1, v, replaced byv; », and so on.
Eachv; j (for1 <i <r and 1< j < p) denotes either a variable or a constant.
In the cases we consider: eagh that is a variable is either free i (it is one of
Us, ..., Up)oris bound by one of the quantifies, . .., Q¢ (itisone ofz,, .. ., z);
and® has the form (- -) preceded by zero or more quantifiers.

Under these circumstancdscan be written equivalently as a formuainvolv-
ing one occurrence @ as follows. First, letl’ be the formula obtained fromr by
replacing theéth occurrence®(vi 1, . . ., Vi p), of ® by the atomic formulay; = 1"
forl <i <r,wherey,..., Yy, denote new variables. Now we use “dummy vari-
ables”y, dy, ..., dp, and write a separate formula to ensure that = y; and
dj =v;; forsomei andallj =1,2,..., p, theny = 1iff ©(dy, ..., dp) is true.
That is:

®'(Ug, ..., Up) = Q121--- QcZAyr--- Iy (ll!’ A Vdi---VdpVy

i=1

={y=1% @(dl,...,dp))>).

In the cases we consideb, uses sufficiently few variables that the additional
variablesyi, ..., ¥, Y, ds, ..., dp can each be written as a single letter. Also, each
of thev;  is either a single letter or a single digit.

Under these conditions, the length &f is related to the lengths ab and ®
as follows.
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Length relation for the abbreviation trick :
|®'| = |®|+ (1 —r1)|O] + (4pr + 9r + 2p + 13).

In particular, the symbol®1z; . .. Q.z: plus those symbols i’ contribute (| +
3r —r|0|) to|d].

Let NAND = {gna} Where the binary Boolean functiogy, is defined by
Ona(V1, V2) = =(V1 A V2).

If x € {0,1}™, thenint(x) is the nonnegative integer such thatx is a re-
verse binary representation of(possibly with following zeroes). For example,
int(111000) = 7 andint(101100) = 13. Define theencoding engx) of x by
endx) = m(int(x) + 1). Note thatencis an injection from{0, 1}™ into N.

Let F C N. Thenfct(F) is the function mappingO, 1}™ to {0, 1} defined by

fct(F)(x) = 1 iff endx) e F.

This is the means by which functions frof, 1}™ to {0, 1} are encoded as finite
sets of integers in our arithmetization. Note that for efich F;, there is a finite
setF such thatf = fct(F).

LEMMA 4.3. Let k and m satisfy(1) of Theorem4.1. There is a formula
EAsY(F) in £ (depending on k and m) such that:

(@) For all finite F c N, the formulaEasY(F) is true iff there is @&AND-circuit
of size2* with m inputs that computes {&); and

(b) |[EASY(F)| < 377+ 10[log,om].

ProOF.  We first write a formula EsY’(F) involving several occurrences of a
subformula, and then obtaimEyY(F) from EAsY'(F) using the abbreviation trick
described above.

Some notation is helpful. I6 C N, let seqS) denote the (infinite) binary se-
qguencebgbib, - - -, whereb; = 1ifi € Sandb; = 0ifi ¢ S. Letm-wordS, j)
denote the finite binary subwolg] b;1bj 2 - - - bj m-1 Of sedS) (this word has
lengthm).

Let dedm) denote the decimal representationnof Let dedk) be a decimal
representation ok with leading zeroes if necessary to makedk) = dedm).
(Constraint (1) impliek < m.)

The formula BsY'(F) is a conjunction of five subformulas. The first four sub-
formulas, 1, ¥, ¥3, and,, place constraints on the variablBs P, d, andq
(which are free variables in these subformulas). The last subforinuéxpresses
thatfct(F) is the function computed by some NAND-circuit of size at mdst 2

4.2.1 Construction off;. First,y1(B, d, a) is written so thava (v1(B, d, a))
is true iffd € B andB = By where

Bo={z|m=<z=<dandz=0 modm}.
Y¥1(B, d, a)is

deB A dedm)e B
A ({a<dedm) v a>d} = a¢gB) (¥1)
AN {a<d A a#0 = (ae B & a+dedm) e B)).
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m m m m m m

111 ...111 000 ... 000 100 ... 000 010 ... 000 ... ... 011..111 111 .. 111 don’tcare ...

t t f f !

d

FiGc.2. P, B, andd

4.2.2 Construction ofyr,. AssumingB = By andd € B, thenva (y(B, P,
d, a)) is true iff m-word P,0) = 1™ and m-word P, mi) is a reverse binary
representation ofi (— 1) mod 2", for all integersi such thatm < mi < d.
That is,

sedP) =

m m m m m m
1111.--110000- - -001000- - - 000100 - - 001100 - -000010---00 --- (3)

and, if seqP) = popip2--- where po, p1, P2, ... are bits, then this pattern
continues at least to bipy,m_1 of sedP). The bits of seP) beyond the
(d+m—21)th are not constrained k. The subformulay; is similar to one used by
Robertson [1974].

Yo(B, P,d,a)is

(a<dedm) = a€ P) A (a<d = FLP(B, P, a)), ()

where RIP(B, P, a) iff bits p, and p,.m have the correct relationship, either equal
or not equal, inseqP). Note thatp, # pa.m iff there is ab € B U {0} with

b < asuch that, for ali withb < i < a, bit pj = 1. To see this, say first that

a ¢ B U {0}. If there is such &, thenb = by whereby is the largest member
of B U {0} satisfyinghy < a. So adding one to the reverse binary representation
m-word P, b) will propagate a carry to bip,, thus flipping this bit. On the other
hand, if such d does not exist then the carry will not propagate as far apziln

the casea € B U {0}, there is such &, namelyb = a (in this case, there is nio
withb <i < a, so “for alli” is vacuously true); this is correct because the lowest
order bit always flips. Thus,U#(B, P, a) is

(ae P & a+dedm) ¢ P)
< db((beBvb=0Ab<aanVi(b<i ni<a} = ieP))).
4.2.3 Construction ofyrs. Assuming thatB = By, d € B, andsedP) is
as in (3) where this pattern continues at least to fitm_1 of sedP), then
va(y3(P, d, a)) is true iff d = 0 modm2™. The subformula/; states simply
thatm-word P, d) = 1™.
Y3(P, d, a)is

({d<a A a<d+dedm)} = ae P). (r3)

Recall thatd € B and 0¢ B by (¥1), and thusd > 0. Now writing sedP) =
1Mo, the formulava (y1 A ¥ A ¥3) implies thato cycles at least once through
the 2" binary words of lengtim. See Figure 2, whersed P) has been broken into
blocks of lengthm and arrows point to those positionss#d P) that belong tdB.

4.2.4 Construction of4. If B and P are as in Figure 2, thevia (v4(B, P,
g, a)) is true iff g € B andgq < m2X. We use that ifa is the smallest number iB
such thata + k € P, thena = m(2X + 1).
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¥4(B, P,q,a)is
ge B A (faeB A a<q} = a+dedqk) € P). (V4)
To summarizel, throughiy, if Ya (1 A o A Y3 A 1) is true then:

d = 0 modm2™ and d > O,
B={z|m=<z<d andz=0modm}, (4)

sedP) is as in Figure 2,
q<m2* and q € B.

4.2.5 Construction ofs. We first describe a formula, McH, that is used as
a subformula inys. We then state the relevant properties ofidH in Claim 4.4.
MATCH(X1, Wy, X, W2) IS

AK Vb (w1 <wy A (Wp € B v wy < dedm))

A <wi+dedm) = (be K & be X)) (5)
A(fwi<b Ab<wy} = (be K & b+dedm) € K)) (6)
Awz<b = (be K & be Xp)). 7)

CLAam 4.4. Assume that B, P, d, and q are as(#). Let S §, S be finite
subsets oN.

(@) Let z,z2 € B U {0}. MATCH(S,,z1, S, 2) is true iff z < 2z, and
m-word S, z1) = m-word S, z).

(b) Leti e Nand ae B. MATCH(P, i, S, a) istrueiffi < a and either
(i) i € B and m-wor@S, a) = m-wordP, i), or
(i) 0 <i <mand m-words, a) = 0'1m".

(c) Letae B with a< g. There is at most oned N such thatMATCH(P, i, S, a)
is true.

PROOF

(a) The last three conjuncts of icH (holding Yb) constrainsedK) in terms
of sedS) andsedS). Conjunct (5) says thated K) must matchsed §,) in bit
positions 0 througlz; + m — 1. Conjunct (6) says thated K) must match it-
self, m bits to the left, in bit positiong; + m throughz, + m — 1. Conjunct (7)
says thatsedK) must matchsedS) in all bit positions> z,. Conjuncts (5),
(6), and (7) are tru&b iff m-wordS;, z) = m-wordS,, z), because it is nec-
essary and sufficient to take, fore B U {0}, m-word K, b) = m-word S, b)
for0 < b < z, m-wordK,b) = m-wordS, z;) for zz < b < 2z, and
m-word K, b) = m-wordS;, b) for z, < b. This is illustrated in Figure 3(a) for
m = 6; binary words are broken into blocks of length 6 for readability.

(b) By the second conjunct of McH, there are two cases:e Bori < m.
In the first case, we hawa-word P, i) = m-wordS, a) by part (a). So assume
thati < m. The (unique) choice fasedK) is illustrated in Figure 3(b). Formally,
recall that I'0™ is a prefix ofseq P). Therefore, (5) is trugb iff 1™0' is a prefix
of sedK). Now, conjuncts (5) and (6) are both trwe iff m-wordK, 0) = 1™
andm-wordK,b) = 0'1™"' for all b € B with b < a (recalla € B). Finally,
conjunct (7) is trueyb iff m-word K, b) = m-wordS, b) for allb € B witha < b.
All of these constraints oK can be met ifim-word S, a) = 0'1™".
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z,=6
{

seq(S;)= 010010 101100 000000 101111 000000 000000 ...
seq(K)= 010010 101100 101100 101100 010011 000000 ...
seq(S,) = 100100 000100 111111 101100 010011 000000 ...

f

7,2=]8

(a) How K is chosen in part (a).

i=4
|

seq(P)= 111111 000000 100000 010000 110000 001000 ...
seq(K)= 111111 000011 000011 000011 010011 000000 ...
seq(S)= 100100 000100 010101 000011 010011 000000 ...

a=18
(b) How K is chosen in part (b).
FiG. 3. lllustrating the proof of Claim 4.4.

(c) Fixa € B with a < g. Constraint (1) of Theorem 4.1 impliéds< m — 1.
Nowa < g < m2¢ < m2™1 implies that for alli1, i, € B with iy, i, < a:

m-word P, i;) = m-wordP,i,) iff i;=1i> 8)
m-word P, i1) € {0,1}™1.0. 9)

Now suppose that MrcH(P, i1, S, a) and MATCH(P, i, S, a) are both true. Part
(b) of the claim implies,, i, < a and one of four cases.

First, ifi;, io € B, then part (a) implies thah-word P, i;) = m-wordS, a) =
m-word P, i,). Soi; = i, by (8). _ _

~Second, ifi1,i < m, then part (b) implies that'A™ 't = m-wordS, a) =
021M'2 s0iq = i».

We show that the remaining two cases, where ong,0b belongs toB and
the other is less tham, cannot occur. Say that € B andi, < m, the
other case being symmetric. ThemwordP,i;) = m-wordS,a) andi; <
a because MTCH(P, i1, S a) is true, andm-wordS, a) = 021™'2 because
MATCH(P, i, S, a) is true. Som-word P, i;) = 021™"2 andm — i, > 1. This
contradicts (9), which states thatword P, i;) must end with 0 wheiy € B and
i1<a<q.

This completes the proof of Claim 4.4(]

The next step is to describe how subseti @fre viewed as representing circuits
and computations of circuits. It is natural to encode functibns F,, as sets and
encode inputx € {0, 1}™ as integers. Thenf(x) = 1” can be expressed by a
single set membership. However, encoding inpués integers creates a problem
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in expressing U (x) = 1,” whereU denotes a circuit, because the computation
of U on x requires the bits ok. This is handled by defining the computation of
an encoded circuit on an encodedo be a finite seD such that (among other
properties)x is a prefix ofsed D). We can then express that the computatidn
“starts correctly” by M\TCH(D, O, P, ) wheree = endx) = m(int(x) + 1) is the
encoding ofx.

Let S (for “small”) denote{z | z € Nand 0 < z < m}. Define the function
a:SUB — Nby

a fae$S

«(@) = {a/m+m—1 ifa e B.
Note thatw is strictly increasing, and mapsSU B one-to-one onto the set of
integerszwith0<z<d/m+m-— 1.

LetB, P,d,qbe asin (4), and let, J € N. The pair (, J) islegaliff | andJ
are finite and

(Vva € B)(3i, ] € N)[(MATCH(P,i,1,a) A MATCH(P, j, J, a))]. (10)

It is important to note by Claim 4.4(c) that, ifl (J) is legal, then for each
a € B with a < q there is a uniqué such that MTCH(P,i, 1,a) and a
unique j such that MTCH(P, j, J, a); call thesei, and j,, respectively. In par-
ticular,ia, ja < a. If $I, J) is legal, theng-circuit(l, J) is the (unique) NAND-
circuit U of sizet % g/m with m inputs,U = Bm, Bms1s - - -, Bmit_1, Where
Ba@ = (a(ia), «(ja), Ona) for all a € B with a < q. This is a legal definition
of a circuit because,, ja < a andu is strictly increasing. Note that the size
is at most £, becausg/m < 2% by (4). Figure 4 illustrates how a particular
| and J code a circuit in the cassn = 5 andt = 5 (sog = mt = 25). In
this figure,sedq P) is shown for references is a “don’t care” symbol, and words
are broken into blocks of lengtm = 5 for readability. Consider, for example,
gate 6. The inputs to this gate are the inputs 3 and 4 (really, the projection func-
tions £ and&,). Becausex—1(6) = 10, this information should be encoded in
m-word 1, 10) andm-wordJ, 10). Thus, we taken-word(l, 10) = 012 = 00011
andm-word J, 10) = 0*1! = 00001. Consider now gate 8. The inputs to this gate
are gates 5 and 7. Because!(8) = 20, this information should be encoded in
m-word|, 20) andm-word J, 20). Thus, we taken-word |, 20) = 00000 because
m-word P, «~%(5)) = m-word P, 5) = 00000. Similarlym-wordJ, 20) = 01000
becausen-word P, «~1(7)) = m-word( P, 15) = 01000.

LetU be a circuit of sizé = q/m with minputs, letx € {0,1}™ andD C N.
Let & (x) denote the function associated with sgpf g-circuit(l, J) for0 <i <
m+t — 1. ThenD computes U on xf

(Vae SUBwWitha<qg)[ae D & &@(X) =1]

Note in particular thatm-word D, 0) = x, because, for < a < m, we have
Ey(a)(X) = &a(X) = Xa Wherex = XoX1 - - - Xm—1. Figure 4 showsedD) for a set

D that computegy-circuit(l, J) on x = 11001. In particular, 11001 is a prefix
of sedD). For example, 25 D because&,zs)(X) = &(X) = 0. The latter is
consistent wittb N {0, 1, 2, ..., 24} because the inputs to gate 9 are gates 8 and 6,
a~1(8)=20€e D,a"%(6) = 10 € D, andgna(l,1) = 0.
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g—circuit(L)) = (0, 1, gy.), G. 4 840)s (2,6.84), 5.7, 84), (8,6,84,)

= B . B . B . By . B

seq(P) = 11111 00000 10000 01000 11000 00100 ...

seq(I) = ***% 11111 00011 00111 00000 11000 ...

seq(d) = ¥ 01111 00001 10000 01000 10000 ...

seq(D) = 11001 Qs s i o (oo
a 01234 5 10 15 20 25

x(a) 01234 5 6 7 8 9
FiG. 4. 1 andJ code a circuitg-circuit(l, J). D computegy-circuit(l, J) on inputx = 11001.

We note some simple facts and then write. Claim 4.5 is immediate from
definitions and the fact tha is constrained as in Figure 2.

CLAIM 4.5
(@) Letx e {0, 1}™, F € N, and e= m(int(x) + 1).
Then m-wordP, €) = x, and ec F iff fct(F)(x) = L.
(b) If U is a circuit of size gm with m inputs, x {0, 1}™, and D computes U on
X,thenge D iffU(x) = 1.

Now assuming thaB, P, d, g are as in (4)ys(F, B, P, q) is true iff there is a
NAND-circuit of sizeq/m that computes$ct(F).

¥s(F, B, P, Q) is
31 3JVedD vadi 3j v, (¥s)
wherevy is
(ee B = {MATCH(D,O0, P, €)
A@aeB =

{MATCH(P, i, 1,a) A MATCH(P, j, J, a) ()
n(@aeD & {igD v jgD}})
AN(QeD & e F)}).
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Inwords, s expresses the following. There exists a ciragitircuit(l, J), of size
q/m( < 2¥) such thatforallinputg € {0, 1}™ (wheree = endx) = m(int(x)+1))
there exists a computatidd such that:

(1) x is the input to the computatioD, that is,m-word D, 0) = m-word P, €) by
Claim 4.4(a) and Claim 4.5(a).

(2) For all gateg, ) With a € B, there exist$ andj such that the outpust,)(X)
of Bu(a) Is computed correctly as-€.)(X) vV —&.(j)(X)) (which is equivalent
t0 gna (5x)(X), €x(j)(X))). Note also by Claim 4.4(b) and (c) that whare B
anda < g, there is at most oniesuch that MTCH(P, i, |, a) is true, and thi$
must be a “proper” value, thatis< aand either < mori € B, and similarly
for MATCH(P, j, J, a).

(3) g-circuit(l, J)(x) = 1 iff fct(F)(x) = 1 by Claim 4.5.

Now let EasY’(F) be
B3P 3d3q3I 3IVedDVadi 3j (Y1 A Yo A Y3 A Ya A YL).

Note that each of/1, ¥», andy, is a conjunction of subformulas and that and

¥¢ have the form (- -). By standard manipulation of quantifiers, and using that the
variablesl, J, e, D, i, j do not appear free in any @fi, ¥, ¥3, Or ¥4, the formula
EAsY/(F) is equivalent to

3B3IP3d3q(Ya(yr A Y2 A Y3 A Y1) A Ps).

It should now be clear thatdsy'(F) is true iff there is a NAND-circuit of size'2
that computesct(F). In the “if” direction, always choosd = m2™ andq = m2,
chooseP andB as in (4), and choose legdl (J) such thag-circuit(l, J) computes
fct(F). Note thad = m2™ means thatthere is a one-to-one correspondence between
{0, 1}™ and B given byx < endx). Givene € B, choose finiteD such thatD
computegy-circuit(l, J) on x wheree = endx). Moreover, choosé, J, D such
that, for alla with a € B anda > q,

3i 3j (MATCH(P,i,1,a) A MATCH(P, j,J,a) A(a€e D & (i €D v j ¢ D))).

(This can be done, for example, by takingwordl, a) = m-word J, a) = 0™,
anda € D iff m ¢ D, for alla € B with a > @.) In the “only if” direction,
B, P, d, andg must be chosen to satisfy (4); then the choicé ahdJ determines
a circuit (g-circuit(l, J)) of sizeq/m < 2X that computegct(F). If g/m < 2K,
theng-circuit(l, J) can be easily modified to give a circuit of siz& that com-
putesfct(F).

We now countthe length of&SY'(F). Letz = [log,,m|+1. Note thatdedk)| =
|[dedm)| = z. First, [IMATCH| = 72+ 3z. The lengths ofjr1, ¥, V3, ¥4, andyg
are, respectively, 46- 3z, 61+ 2z, 14+ z, 18+ z, and 38+ 3|MATCH|. The
length of EASY is the sum of these plus 28 additional symbolgB®Y'| = 199+
7z + 3|MATCH].

Using the abbreviation trick with = 3 andp = 4 toreduce the three occurrences
of MATCH to one, EAsY’ can be written equivalently asAEy where

|EASY| = |EASY'| — 2|MATCH| + 96 = 377+ 10| log;,m].

Note that the additional variablds, do, d3, da, Y1, Y2, Y3, Y used inthe abbreviation
trick can be named\, c, C, f, g, h, k, |, respectively.
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This completes the construction oA&r(F) and the proof of Lemma 4.3.[]

LEMMA 4.6. Let k, m, and n be positive integers that satigfy and (3) of
Theoremd.1. Then there is a functiong £ {0, 1} — {0, 1} such that:

(i) C(fo) > 2/5
(ii) for each x e {0, 1}™ there is a sentencex € L such thatj¢x| = n, and
ox € EWS1Siff fo(x) = 1; and
(i) ifh : T — {0, 1} is any encoding fof" and if r is the function that maps x
to h(gx) for all x € {0, 1}™, then Q) < 22°m2,

PrROOF. Letk, m, andn be fixed positive integers that satisfy constraints (1) and
(3) of Theorem 4.1. Laeb(x) be a decimal representationafqx) = m(int(x) +1),
where leading zeroes are appended if necessary so that

| o(X)| = L(log;2)m] + [log;om] + 2. (12)

Note thatx € {0, 1}™ impliesint(x) < 2™ — 1. Soendx) < m2™, and the
decimal representation ehdx) need never be longer thafog,;,(m2™)| + 1 <
L(logyp2)m] + [logygm] + 2.

Define the formula ESSTHANG, F) by

Ja(aceF AagG AVbb>a = (beG & bekF)).

LESSTHANG, F) is easily seen to define a linear order on finite subsetd.of
Also, for each finiteX c N there is a finite number oW C N satisfying
LESSTHANW, X).

Now lety;’ be the following sentence:

JF VG (w(x) € F A —=EASY(F) A (LESSTHANG, F) = EAsSY(G))). (¢}

A particular NAND-circuit of size ® is completely described by giving a pair
(i, j) with 0 < i, j < s for each step with m < s < m+ 2X — 1. Therefore,
the number of NAND-circuits of sizeX2is at most fn + 2€)22 < 22", where
the inequality follows from constraint (1) of Theorem 4.1. Because thereZare 2
functions from{0, 1}™ to {0, 1}, there is some finiteX C N such that Bsy(X)
is false.

Because there is a finite number W C N with LESSTHANW, X), there is
exactly ond~y C N such thavG (—EAsY(Fg) A (LESSTHANG, Fg) = EASY(G)))
is true. We takefy = fct(Fp). Because each function ®1 can be synthesized
using at most five NAND-gates [Harrison 1965], it follows ta4tfo) > 2¢/5. Also,
“w(X) € F"is true iff endx) € Fo iff fp(x) = 1 by definition of f, = fct(Fop), so
@y is true iff fo(x) = 1.

Substituting the definition of ESSTHANIN the definition ofy;’, it can be written
equivalently asp;, defined by

JFVGVadb(w(X) € F A —EASY(F)
AN{fagF vaeGvib>an(bgG & beF)}} v EAsY(G))).

To see the equivalence, lé(a, b, G, F) denote the formula within the outer-
most{- - -}, and note thata3db (A (a, b, G, F)) is equivalent to-LESSTHANG, F).
Using (12),

(o

lpx| = 41+ 2|EASY| + [(log;02)m] + [l0gyom].
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The abbreviation trick with = 2 andp = 1 applied top;, and EASY givesy;
equivalent tap; and

0, | = @] — |EASY| 4+ 41 = 459+ |(log;s2)m| + 11[log;,m)]

using Lemma 4.3(b) for an upper bound ¢asy|. The additional variables
di, y1, Y2, Yy can be namedE, m, n, o, respectively. By constraint (3) of Theo-
rem 4.1,j > 0 can be chosen such that = ¢, # and|gx| = n. So fo andgy
satisfy the requirements of Lemma 4.6.

It remains only to bound the circuit complexity of the transformationapping
X to h(gy). For fixedk, m, andn, the wordh(w(x)) is the only part oh(gy) that
depends orx. Recall that the length ab(x) is independent ok. Thus, all bits
of h(gyx), excludingh(w(x)), can be computed using the two gates with constant
output. Now, 2°m? — 2 is a gross upper bound on the circuit complexity of the
function mappingx to h(w(x)), using straightforward classical algorithms for bi-
nary addition, binary multiplication, and binary-to-decimal conversion (see, e.qg.,
Knuth [1969]).

This completes the proof of Lemma 4.6.]

Proof of Theorerd.1. Letk, m, andn satisfy the constraints (1), (2), and (3) of
the theorem. Assume the conclusion is false, thaggsi{n) < 2<~3. Therefore,
there is an encoding : ' — {0, 1}° and a circuitU of size < 2k=3 with 6n
inputs that computes a functioh such thatf (h(y)) = 1 iff ¢ € EWSLS, for all
pelnrn

Let fo andt be as in Lemma 4.6 for this, m, n, andh. In particular,C( fp) >
2¢/5. Let T be a circuit of size< 22°m? that computes. Let Uy be the circuit
obtained by identifying the 6 outputs of T with the & inputs ofU. Thus, the
outputh(ey) of T becomes the input @f . It is clear how to defin&Jp from T and
U within the formalism of straightline algorithms such that the siz&gfs the
size of T plus the size oJ. Now Uy computesfy because, for ak € {0, 1}™,

Uox) =1 & f(h(gy) =1 & ¢y € EWS1IS & fo(x) = 1.

Because constraint (2) implie€? < 254, the size ofJyis at most #4243 <
2X/5. This contradict€( fo) > 2¢/5, so we must hav€gwsidn) > 243,

Remark4.7 \What Fraction of Inputs are Harg? Theorem 4.2, read literally,
says that, for each circuit of size *#9, there is an input of length 610 on which
the circuit gives the wrong answer about membership of the input in EWSL1S.
By our proof, we may assume that this input is a sentence of EWS1S, because
produces only (encodings of) sentences. Some improvementimthkeerof hard
sentences can be made, using the simple argument that if a circuit is wrong for only
w sentences then the circuit can be patched by building in a table of the answers for
these sentences, increasing the size of the circuit by at mest-&. For example,
if a circuit is wrong on at most 28 sentences of length 610, then its size must be
at least 16?4, Although large in absolute terms, %dis an insignificant fraction of
the number of sentences of length 610. When this argument is used for arbitrary
n, the provably hard sentences form an asymptotically vanishing fraction. Except
for this most trivial argument, we do not know how to obtain lower bounds on the
frequency of hard inputs. This question is interesting, important, and wide open.
We do not even know whether some constant fraction of the sentences must be hard.
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To be specific, is there a constant- 0, such that for all polynomialp(n), there

exists amo, such that for alh > no, all circuitsUy, of size p(n), and all encodings
h, the circuitU, decides EWS1S incorrectldf(h(¢)) = 1iff ¢ € EWS1S) on at
least are fraction of the sentencesof lengthn?

Two developments related to the frequency of hard inputs should be mentioned.
First, Levin [1986] (see also Gurevich [1991]) has introduced a theory of average-
case complexity. Here a decision problem has the farmu) wherel C ' andu
is a probability distribution oiir*. Part of the theory is a notion of efficient reduction
that is “distribution preserving.” Second, Ajtai [1996] has shown a connection
between the worst-case and average-case complexities of the problem of finding a
shortest nonzero vector in an integer lattice.

4.3. EXTENSION TO PROBABILISTIC CIRCUITS. Beginning with Gill [1977],
Rabin [1976], and Solovay and Strassen [1977], the solution of decision prob-
lems by probabilistic algorithms, that is, algorithms employing random numbers,
has played an increasing role in the theory of computing. Besides being a natural
mathematical concept, probabilistic computation can be useful in practice: if the
error probability of a probabilistic decision algorithm is bounded belg then
the error probability can be decreased t§ By makingO(k) independent runs of
the algorithm and taking the majority answer (this follows from Fact 4.8 below). It
has even been suggested that the current theoretical model of the “tractable prob-
lems,” namely P, should be replaced by the class BPP [Gill 1977] containing the
languages accepted by polynomial-time probabilistic Turing machines with error
probability bounded below/2.

The definition of gorobabilistic circuit of size t with m inpuis like the definition
of acircuitin Section 2.1, with one exception. In addition torthi@puts that receive
an inputx € {0, 1}™, there is some numbéof random bit inputsFormally, these
are added as functiogg for —| < k < —1, the projection functions of the random
bit inputs. Now each functiogy, for —| <k < m+t—1, mapg0, 1}' x {0, 1}™ to
{0, 1} in the obvious way. For such a circuit, forr € {0, 1}' andx € {0, 1}™, let
U(r, X) = &myta(r, X), the associated function of the highest numbered step. Let
pu (x) be the probability that (r, X) = 1 whenr is chosen uniformly at random
from {0, 1}'.

Let f : {0,1}™ — {0,1}, and let 0< ¢ < 1/2. Thes-error probabilistic
circuit complexity of fwhich we denot®C,(f), is the smallest such that there
is a probabilistic circuit of sizé with m inputs such that, for akk € {0, 1}™, if
f(x) =1,thenpy(x) > 1—¢,andif f(x) = 0, thenpy (x) < e.Now forL C I'*,
the definition of the:-error probabilistic circuit complexity of Ldenoted®C,_ . (n),
is analogous to the definition € (n) in Section 2.1: it is the minimum &®?C.( f)
overf € Fin.

Bennett and Gill[1981] have shown that for edthnde there is a constaetsuch
thatforallL < I'*, C,(n) < cn-PC .(n).1%In particular, P/poly = BPP/poly; that
is, polynomial-size probabilistic circuits are no more powerful than polynomial-
size deterministic circuits. To prove a numerical lower boundP@gwsis.(n),

10 Adleman [1978], using a similar proof, had earlier shown this for probabilistic circuits with “one-
sided error,” that is, there exists> 0 such that, for alk, if f(x) = 1, thenpy(x) > ¢, and if
f(x) =0, thenpy(x) = 0.
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however, we need a value for To obtain this, we use the following Chernoff
bound [Motwani and Raghavan 1995, Chap. 4].

FACT 4.8. Let Xq,..., XN be independerd/1 valued random variables and
let0 < ¢ < 1besuchthaPr[Xj =1]=¢forl<i < N.Forall§ > 0,

e(S eN
The following uses the same proof method as Adleman [1978] and Bennett and
Gill [1981], but includes values for constants. Leklg= log.x.

THEOREM 4.9. LetT be a finite alphabet, LC I'*, and0 < ¢ < 1/2. Let
8§ =1/(2¢) — 1and c= (e((1 + 8) In(1 + 8) — 8))~L. Then

CL(n) < (fenIn|T[T + 1)(PC (n) + 14). (14)

ProOOF Lets = [log|l'|]. Fix ann, and restrict attention to those e I'".
Let U be a probabilistic circuit of siz€C .(n) with inputsx’ € {0, 1}°" and
r € {0, 1)', and leth be an encoding fof such that, foralk (in "), if x € L, then
pu(h(x)) > 1—¢, and ifx ¢ L, thenpy(h(x)) < ¢. For oddN € N, we define
a probabilistic circuily. The circuitUy containsN copies ofU. The inputh(x)
is given to all copies, but the random bits are chosen independently for each copy.
Thus,Uy has inputg’, X’ wherer’ € {0, N andx’ € {0, 1)%". The outputs of
the copies are fed into a circuit that computeajy, the N-ary majority function
(majy(by, ..., by) = 1iff ZiN:l bi > N/2). Thus,Un(r’, X') = 1 iff a majority
of the N copies ofU output 1. Becaus®l is odd, a majority is always a strict
majority. Using the rough bound(majy) < 14N for all N (which follows easily
from Savage [1976, Thm. 3.1.1.4]), the sizdlyf is at mostN(PC_ .(n) + 14).

Define theerror probability of Uy, denotederr(N), to be the smallest number
y such that, for allx, if x € L, thenpy,(h(x)) > 1 — y, and ifx ¢ L, then

puy (R(X)) < y. Clearly

N
err(N) < Pr[xl+---+XN > E]

where
PriXi =1]=¢ for 1<i<N

and where theX; are independent. By Fact 4&r(N) is less than the RHS of (13)
wheres = 1/(2¢) — 1 is chosen so that (& §)e = 1/2. Thus,err(N) < o~ N,
wherea = ((1+ 8)3*9e?%)?. Note thatc = (Ina)~1. We want to choos# large
enough thaerr(N) < |I|~". This holds ifa~N < |I"|", which is equivalent to
N > (Ina)~'nIn|T|. So there is an odt! < [cnIn|T'|1 + 1 such thaerr(N) <
[T'|~". Thus, the size dfJ is at most the RHS of (14).

Definex. : ' — {0, 1} by x.(x) = 1if x € L, or 0if x ¢ L. To finish
the proof, we show that #érr(N) < |T'|™" then @r’")(VX)[Un(r’, h(X)) = x.(X)].
Thus, by substituting some strimg € {0, 1}N' for the random inputs of/y, we
obtain a (deterministic) circuiD that computeg, . The size ofD is at most the
size of Uy, because gates &fy that use a random bit as input can be simpli-
fied to obtainD. Assume for contradiction tha¥)(3x)[Un(r’, h(X)) # x.(X)].
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Forr’ € {0, N andx e I, let W(r’, x) = Un(r', h(x)) ® x.(X) (intuitively,

W(r’,x) = 1iff Uy is wrong on inputx and random string’). By assumption,
(Vr)@EX)[W(r', x) = 1], s0> ", 3, W(r’, x) > 2N Buterr(N) < |T'|™" implies
for eachx that)",, W(r’, x) < |T'|~"2N!, which implies}_, >, W(r’, x) < 2N

This contradiction proves the lemmal]

To state a version of Theorem 1.1 for probabilistic circuit complexity, we take
¢ = 1/3 to be definite.

THEOREM 4.10. PCewsisi/3(614) > 10,

PrROOF Takingk = 435, m = 445, andn = 614 in Theorem 4.1 gives
Cews14614) > 2*% Recall that|I'| = 63. Looking now at the statement of
Theorem 4.9, a calculation shows thatn63 < 115 whene = 1/3.
Theorem 4.9 gives

Cewsid614) 1, 2% gas [

P 614)> —————
Cews1s1/3(614) > 115614+ 1 10°

4.4. QUANTUM CIRcUIT COMPLEXITY. An active area during the past ten years
has beemuantum computational complexityhere algorithms are performed by
guantum-mechanical systems. Introductions to quantum computation include the
book by Nielsen and Chuang [2000], the survey by Aharonov [1998], and the
collection of papers in the October 1997 issueStAM Journal on Computing
Quantum circuits were first defined by Deutsch [1989] and study of quantum circuit
complexity was initiated by Yao [1993]. A definition of quantum circuits is beyond
the scope of this article.

We do not have a nontrivial humerical lower bound on the quantum circuit
complexity of EWS1S. A major roadblock is that an analogue of Theorem 4.9
for quantum circuits is not known. The quantum circuit complexity of a problem
is linear in its deterministic circuit complexity, but it is possible, given current
knowledge, that deterministic circuit complexity can be exponentially larger than
guantum circuit complexity. Absent an analogue of Theorem 4.9, it seems that a
diagonalization-based proof of a large lower bound on quantum circuit complexity
must start from scratch, for example, use a formula in EWS1S (or some other
decidable theory) to diagonalize over quantum circuits. We see no serious technical
obstacles to doing this, perhaps using an input length in the thousands rather than
the hundreds, although we have not tried.

There is, however, an analogue of Theorem 3.1: There is a language in ESPACE
whose quantum circuit complexity is exponential a.e. The proofs are essentially
the same, although two facts about quantum complexity are needed (stated here
informally). First, there is a finite complete basis for quantum circuit computa-
tion, that is, a finite set of quantum gates that suffice to build any quantum cir-
cuit[Adleman etal. 1997; Solovay and Yao 1996]. Using this finite basis, Shannon’s
counting argument shows that the maximaorary quantum circuit complexity is
exponential im. The second fact is that the analoguepgf(x) for quantum cir-
cuits can be computed by a Turing machine using space polynomjidl| i | x|
[Bernstein and Vazirani 1997]. Using these facts, a diagonalization as in the proof
of Theorem 3.2 can be done in exponential space. A corollary is that if ESPACE is
poly-lin reducible toL, then the quantum circuit complexity &f is exponential.
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For example, the quantum circuit complexities of WS1S andNTh-) are
exponential a.e.

5. Conclusion and Future Directions

We have shown that a method based on diagonalization can be used to prove an
astronomical lower bound on the computational complexity of a natural, uncon-
trived and decidable problem in logic, even when the problem is restricted to input
lengths in the hundreds. We have extended the result to probabilistic circuits. We
believe that a similar result can be shown for quantum circuit complexity, perhaps
using input lengths in the thousands.

Our purpose has been to demonstrate by example (EWS1S) that large lower
bounds can be proved for relatively small inputs. We believe that this phenomenon
is typical, and that similar results can be obtained for most of the exponential
asymptotic lower bounds in the literature.

Our main result disposes of the concern that the exponential lower bound on
the complexity of EWS1S begins to take effect only for impractically huge inputs.
However, this result does not eliminate another possible loophole, that EWS1S
might be hard only for an insignificant fraction of the sentences, as discussed
in Remark 4.1. Obtaining nontrivial bounds on the density of hard inputs is an
important open problem.
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