
Cosmological Lower Bound on the Circuit Complexity
of a Small Problem in Logic

LARRY STOCKMEYER

IBM Almaden Research Center, San Jose, California

AND

ALBERT R. MEYER

Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract. An exponential lower bound on the circuit complexity of deciding the weak monadic
second-order theory of one successor (WS1S) is proved. Circuits are built from binary operations, or
2-input gates, which compute arbitrary Boolean functions. In particular, to decide the truth of logical
formulas of length at most 610 in this second-order language requires a circuit containing at least
10125 gates. So even if each gate were the size of a proton, the circuit would not fit in the known
universe. This result and its proof, due to both authors, originally appeared in 1974 in the Ph.D. thesis
of the first author. In this article, the proof is given, the result is put in historical perspective, and the
result is extended to probabilistic circuits.∗

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of Com-
putation—unbounded-action devices; F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical algorithms and problems—Computations on discrete structures; F.4.1 [Mathematical
Logic and Formal Languages]: Mathematical Logic—mechanical theorem proving

General Terms: Theory

Additional Key Words and Phrases: Circuit complexity, computational complexity, decision problem,
logic, lower bound, practical undecidability, WS1S

1. Introduction

The goal of theoretical computer science, in a very general sense, is to understand
the capabilities and limitations of computation. Not surprisingly, most attention

∗Editor’s note: Although this classic result originally appeared in 1974, it has never been published
in an archival publication. The current updated version went through the standard review process. We
are delighted to have it appear inJACMnow.
Authors’ addresses: L. Stockmeyer, e-mail: stock@acm.org; A. R. Meyer, Laboratory for Computer
Science, Massachusetts Institute of Technology, 545 Technology Square, Cambridge, MA 02139,
e-mail: meyer@lcs.mit.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax:+1 (212) 869-0481, or permissions@acm.org.
C© 2002 ACM 0004-5411/02/0900-0753 $5.00

Journal of the ACM, Vol. 49, No. 6, November 2002, pp. 753–784.

754 L. STOCKMEYER AND A. R. MEYER

has been directed towards demonstrating the capabilities. However, a true scientific
understanding of capabilities can come only with an understanding of limitations.
An early proof of a limitation of computation was the result of Abel and Galois
in the early 1800’s, that there is no finite algorithm to find the roots of the general
quintic equation using only the rational arithmetic operations and root extraction.
Demonstrating the limits of computation in a more general sense began in the
1930’s with proofs of undecidability. This was followed by the development of
complexity theory in the 1960’s and proofs of “large” (exponential and larger)
lower bounds in the 1970’s. (More details of this history are given below.) These
proofs of undecidability and large lower bounds are based on diagonalization. Both
types of results are prone to the objection that, in the real world, we are interested
in solving only afinite portion of a problem, for inputs up to a certain length.
For an asymptotic lower boundcn on the time complexity of a problem where
c > 1 is a constant, the lower bound may become “impractically large” only for
very large input lengthsn, if c is only fractionally larger than 1. Indeed, in order
to draw meaningful conclusions about computational complexity, it is essential to
know at what finite point the asymptotic lower bound begins to take effect. This
information often is implicit in the proofs of results of this type. But even though
exponential lower bounds were known for several problems at the end of 1973,
this information had not been carefully worked out for any specific problem. At
that time, we chose to study one problem in detail, with the goal of showing that
solving the problem is practically infeasible even for reasonably small inputs. To do
this, we showed, for the logical theory WS1S, that deciding the truth of sentences
of length at most 610 requires a Boolean circuit as large as the known universe.
The proof of this result previously appeared only in the Ph.D. thesis of the first
author [Stockmeyer 1974]. The main purpose of this article is to place the proof
in an archived journal and describe the result in historical context, both before and
after 1974.

We begin with some prior history, beginning in the 1930’s. This period saw the
introduction of computational models by Church, Turing, and others that seem
to embody “computation” in a very general sense. One such model is the Turing
machine. The halting problem was proved to be undecidable using the technique
of diagonalization, and undecidability of other problems was shown by giving an
effective (computable by a Turing machine) reduction from the halting problem to
the other problem. As one example, G¨odel’s technique of arithmetization showed
the undecidability of the first-order theory of integer arithmetic.

As real computers started to be built and used, attention shifted in the 1960’s to
thecomputational complexityof problems, that is, the amount of computational re-
sources, such as time and memory, needed to solve the problem. A resource bound
is expressed as a function ofn, the length of the input to the device solving the
problem, so that we may talk about polynomial bounds (nd for constantd ≥ 1),
exponential bounds (cn for constantc > 1), etc. In many ways, the early develop-
ment of complexity theory had parallels in decidability theory. Fundamental results
from the 1960’s include those of Rabin [1960] and Hartmanis and Stearns [1965],
proving the existence of hierarchies of problems of strictly increasing complexity.
These results were proved by diagonalization and paralleled results such as the
undecidability of the halting problem (although the technical details were more
complicated). In fact, Blum [1966] explicitly considered a time-bounded version
of the halting problem: informally, to decide if a given Turing machine halts in

Lower Bound on the Circuit Complexity of a Problem in Logic 755

a certain amount of time. He proved that the “certain amount of time” is a lower
bound (infinitely often) on the time used by any Turing machine that solves this
problem. Ehrenfeucht [1975], in a paper originally written and distributed in 1967,
considered a bounded version of the first-order theory of integer arithmetic where
all quantifiers are bounded by constants written in exponential notation (e.g., 325

).
He showed that the size of Boolean circuits that decide this theory must grow ex-
ponentially in the length of the input, and this was the first lower bound on the
circuit complexity of a decision problem in logic. Although Ehrenfeucht’s proof
influenced us and our proof follows the same broad outline as his, the result itself
left something to be desired as it dealt with an explicitly bounded version of an
undecidable problem. For both bounded problems, the bound immediately implies
decidability, and the proof of the lower bound on complexity parallels the proof of
undecidability of the original problem.

During this period, Cobham [1965] and Edmonds [1965] proposed polynomial-
time complexity as a model for the tractable problems. A key to proofs of in-
tractability in this sense was a complexity-theoretic version of effective reducibil-
ity. This was provided byefficient reducibility, as introduced by Cook [1971] and
Levin [1973] and further developed by Karp [1972], although its importance had
been noted earlier by Meyer and McCreight [1971]. While Meyer and McCreight
suggested efficient reducibility as a tool to prove lower bounds on complexity, the
work of Cook, Levin, and Karp focused on parallels to the complete problems of
recursion theory, and this yielded the groundbreaking concept of NP-completeness.
But because nontrivial lower bounds on the complexity of problems in NP are not
known, it did not yield new lower bounds on complexity.

It was not long before the authors [Meyer and Stockmeyer 1972] put the hierarchy
theorems and efficient reducibility together to prove exponential and larger lower
bounds on the time and space complexity of “natural problems,” meaning that the
problems have some reasonable practical or mathematical motivation; they are not
contrived to be complex. To apply the method to prove an exponential lower bound
on the complexity of a problemD, for example, one shows that ifH is an arbitrary
problem that can be solved in exponential time thenH is efficiently reducible toD.
A hierarchy theorem states that there are such problemsH thatrequireexponential
time, and an exponential lower bound forD follows. More details can be found,
for example, in Aho et al. [1974], Hopcroft and Ullman [1979], and Stockmeyer
[1987]. This method was later used to obtain lower bounds on the complexities of
many problems from diverse areas. These include most of the classical decidable
theories in logic, as well as many decidable problems in formal language theory,
game theory, concurrency theory, and algebra; see Stockmeyer [1987] for a survey.

A lower bound obtained by this method typically has the following form, say
for an exponential lower bound on the time complexity of a decision problem
D: There is a constantc > 1 such that for any Turing machineM that decides
D there are infinitely many inputs on whichM uses time at leastcn, wheren
is the length of the input. The fact that any algorithm must use an excessively
large amount of timeinfinitely oftenmight be viewed as plausible evidence that
any algorithm will also perform badly on inputs of reasonable size that actu-
ally arise in practice. We wanted, for at least one problem, to replace evidence
by proof.

For the decision problem, we chose the weak monadic second-order theory of
one successor (WS1S). This seemed like a good choice, first because it was a

756 L. STOCKMEYER AND A. R. MEYER

natural, previously studied problem; for example, B¨uchi [1960] and Elgot [1961]
had earlier proved that WS1S is decidable and had found close connections between
this theory and finite state automata. More to the point, Meyer had shown in the
Spring of 1972 (and published in Meyer [1975]) that this problem is not elementary-
recursive: it cannot be solved in time bounded above by any constant number of
compositions of exponential functions. This was an indication of the significant
expressive power of WS1S, as compared to problems whose complexities had
been shown to be merely single- or double-exponential. The language used to
write formulas in “vanilla” WS1S includes first-order variables that range overN
(the nonnegative integers), monadic second-order (set) variables that range over
finite subsets ofN, the predicates “y = x + 1” and “x ∈ S” wherex andy denote
first-order variables andS denotes a set variable, and the usual quantifiers and
Boolean connectives. Writing formulas in this language is cumbersome as it omits
several notations that are commonly used to write formulas. The languageL used
to write formulas in our result is enriched with some of these common notational
abbreviations: decimal constants, writing 5 for 0+ 1 + 1 + 1 + 1 + 1, x + 4
for x + 1+ 1+ 1+ 1, etc.; the binary relational symbols≤, <, =, 6=, >, ≥ on
integers; and set equality. These additional predicates are all expressible in WS1S,
so the problem remains decidable. A precise definition ofL is given in Section 4.
Let EWS1S(n) be the set of true sentences of lengthn in L. (We include a blank
symbol in the alphabet, so that EWS1S(n) essentially contains the true sentences
of length at mostn.)

Regarding our notion of “practically infeasible,” it should first be noted that Tur-
ing machine time is not sufficient to measure the complexity of finite problems,
because any finite problem can be decided by a finite state automaton within real
time (timen). This is accomplished by coding a finite table of all the answers into
the states of the automaton. Thus, for assessing the complexity of finite problems,
account must be taken of the size or complexity of the device performing an algo-
rithm as well as the time required by the algorithm. One quite general way to do
this is to measure the number of basic operations on bits or the amount of logical
circuitry required to decide the finite problem. The basic Boolean operations on bits
are binary operations—and, or, exclusive-or, etc.—performed by “gates” with two
inputs and one output. This output may be fanned out to serve as input to other gates
in the circuit. This circuit model yields a basic measure of complexity for Boolean
functions as well as finite decision problems (via appropriate encoding into Boolean
vectors); precise definitions appear in Section 2. The circuit model was well known
at the time, and the study of circuit complexity and variations of it has contin-
ued and expanded since then (see, for example Boppana and Sipser [1990], Dunne
[1988], and Wegener [1987]); this is discussed further below in this introduction and
in Section 3.

The alphabet used for EWS1S(n) has 63 symbols, each of which can therefore
be coded into six binary digits. In particular, sentences of length 610 correspond to
Boolean vectors of length 6·610= 3660 bits, and this will be the number of inputs
to a circuit that “accepts” the true sentences of length 610. The circuit is to have a
single output line that gives the value one if and only if the input vector is the code
of a true sentence of length 610. The main result can now be informally stated.

THEOREM 1.1. If C is a Boolean circuit that acceptsEWS1S(610), then C
contains more than10125 gates.

Lower Bound on the Circuit Complexity of a Problem in Logic 757

A quick calculation shows that the known universe could contain at most 10125

protons, even if they were packed tightly together.1

Some words should be said about why we attempted to prove a result of this type,
and why we think it was worth doing despite the apparent dearth of references to
it.2 As for the first “why,” one reason was the all-purpose “because it was there.”
It seemed like the logical next step (and possibly the last step) in diagonalization-
based proofs of intractability. The number 10125was chosen so that the lower bound
could be stated informally yet accurately and would be easily remembered, for ex-
ample, “the computer must be as large as the universe.” With this objective, we
were curious to see how small the input length could be. Certainly the result would
be less striking if 610 were replaced by, say, 610,000, and the technical challenge
was to achieve an input length more like 610 than 610,000. As for importance, two
arguments can be made. First, for someone with a technical interest in complexity
theory, it provides an example (as far as we know, the only example) of justification
for, as Allender [2001] puts it, “. . . inside essentially every asymptotic lower bound
in complexity theory, there hides a concrete statement about physical reality.” Sec-
ond, to the general scientifically inclined person, it is a result about intractability
that can be communicated without using technical language, for example, Turing
machines and exponential asymptotic lower bounds. Theorem 1.1 has been used
for this second purpose by Knuth [1976], Osherson [1995], and Stockmeyer and
Chandra [1979]. As further testimony to the usefulness of the result, it was used
by Pohl [1980] in the science fiction novelBeyond the Blue Event Horizonto ex-
plain why a supercomputer of the distant future cannot cope with every problem
presented to it.

Turning to the history following 1974, the study of circuit complexity became
an active area, with much of it motivated by the P=? NP question. To prove that
P 6= NP, it would be enough to prove, for some problem in NP, that its circuit
complexity is not polynomially bounded. Although such a proof is not in sight,
two approaches have been explored. One is to prove “large,” for example,cn, lower
bounds for restricted circuit models, with the hope of incrementally removing the
restrictions. The other is to prove “small,” for example,cn, lower bounds for the
unrestricted model (the model used in Theorem 1.1), with the hope of incrementally
improving the linear growth rate to super-polynomial.

An early result in the first category was done for themonotone arithmeticcircuit
model, where the inputs are viewed as indeterminates and the allowed operations
are+ and×. Schnorr [1976a] proved an exponential lower bound on the complexity
of a polynomial derived from the (NP-complete) clique problem. That+ and×
are not idempotent is crucial to the proof, as this severely limits the types ofuseful
intermediate results that are computed within the circuit. An important advance was
made by Razborov [1985] and Andreev [1985], who proved that certain problems in
NP, including the clique problem, do not have polynomial complexity in the model
of monotone Booleancircuits, where the allowed operations are the monotone
Boolean operationsandandor. These operations are idempotent; this allows a much
wider class of useful intermediate results and increases the difficulty of proving

1 Taking conservative current estimates of 10−15 m. for the diameter of a proton and 20 billion
lightyears for the radius of the known universe.
2 A factor in the lack of references may be that it was never published in a conference or journal.

758 L. STOCKMEYER AND A. R. MEYER

lower bounds. See also Alon and Boppana [1987] and Boppana and Sipser [1990]
for further discussion and later improvements to these results. Another restricted
circuit model that has been widely studied is obtained by requiring that the depth of
the circuit (the length of a longest input-to-output path) be bounded by a constant.
Circuits are constructed from gates having unbounded fan-in (that is, arbitrary
arity); this is needed so that the constant-depth restriction does not restrict the
number of inputs to the circuit. One well-studied complexity class, AC0, is defined
by further restricting constant-depth circuits to have polynomial size and to use the
basic operationsnotand (unbounded fan-in)andandor. Study of AC0 was initiated
by Ajtai [1983] and Furst et al. [1984], who showed that the parity function is not
in AC0. The lower bounds on circuit size proved in these papers were improved to
exponential by Yao [1985] and H˚astad [1986].

But for unrestricted circuits, which may use all binary Boolean operations and
have no restriction on their depth, all known lower bounds on the circuit complex-
ities of problems in NP have the formcn with c ≤ 3 [Schnorr 1974; Harper et al.
1975; Paul 1977; Stockmeyer 1977a; Blum 1984]. The proofs involve case analysis,
and the constantc has been increased by considering wider classes of cases. Not
surprisingly, there has been little interest since 1984 in increasingc above 3 by a
more extensive case analysis.

All of the results mentioned in the preceding two paragraphs are proved by “com-
binatorial” methods that delve into the innards of a circuitC, assumed for contra-
diction to violate the lower bound being proved. In contrast, the “diagonalization-
based” method3 used to prove Theorem 1.1 makes no use of the internal structure
of C; it viewsC as a “black box.”

Although the diagonalization-based method has been useful in proving lower
bounds on the computational complexities of problems that have enough expres-
sive power to efficiently encode arbitrary exponential-time computations, there is
widespread belief, based in part on technical evidence, for example, [Baker et al.
1975], that this method will not help in proving that P6= NP. The NP-complete
problems do not seem capable of efficiently encoding arbitrary exponential-time,
or even barely nonpolynomial-time, computations. New ideas are needed.

We now outline the structure of the rest of the article. Section 2 contains def-
initions of circuit complexity and some standard complexity classes that we will
need in stating results. In Section 3, we describe Ehrenfeucht’s argument and some
results that were obtained later using refinements of it. In Section 4, we define
EWS1S and prove a quantitative exponential lower bound on its circuit complexity;
Theorem 1.1 is one consequence. In this section we also give an extension of the
result to probabilistic circuits; for example, to decide EWS1S(614) with probability
at least 2/3 of being correct, the circuit must contain at least 10125 gates. Section 5
is the conclusion.

2. Definitions

LetN denote the nonnegative integers andN+ denote the positive integers. Loga-
rithms with no specified base are to the base 2.

3 Which might also be called the “Berry-paradox-based” method; see Remark 3.5 at the end of
Section 3.

Lower Bound on the Circuit Complexity of a Problem in Logic 759

2.1. CIRCUIT COMPLEXITY. There are several essentially equivalent definitions
of Boolean circuits in the literature, for example, Dunne [1988], Savage [1976],
and Wegener [1987]. We use a definition based on straight-line algorithms.

LetÄ16 = {g | g : {0, 1}2→ {0, 1}} be the set of binary Boolean functions. Let
Ä ⊆ Ä16, m ∈ N+, andt ∈ N. AnÄ-circuit of size t with m inputsis a sequence

U = βm, βm+1, βm+2, . . . , βm+t−1

such that form≤ k ≤ m+ t −1, thestepβk = (i, j, g), wherei and j are integers
with 0≤ i, j < k andg ∈ Ä.

With each stepβk, we identify anassociated functionξk : {0, 1}m → {0, 1} by
induction. First, for 0≤ k ≤ m− 1, defineξk to be thekth projection,

ξk(b0b1b2 · · ·bm−1) = bk for all b0b1b2 · · ·bm−1 ∈ {0, 1}m.
If m≤ k ≤ m+ t − 1 andβk = (i, j, g), then define

ξk(x) = g(ξi (x), ξ j (x)) for x ∈ {0, 1}m.
If f is a function, f : {0, 1}m → {0, 1}p for positive integersm and p, thenU

computes fiff U hasm inputs and there are integers 0≤ i1, i2, . . . , i p ≤ m+ t−1
such that

f (x) = ξi1(x) ξi2(x) · · · ξi p(x) for all x ∈ {0, 1}m.
The circuit complexityof f (also calledcombinational complexityandBoolean
network complexityin the literature), denotedC(f), is the smallestt such that there
is anÄ16-circuit of sizet that computesf .4 We use the shorthandcircuit for an
Ä16-circuit. Most of this article concerns functions with range{0, 1}. For a circuit
U as above, thefunction computed by Uis ξt+m−1. Let U (x) denoteξt+m−1(x).

For n ∈ N+, let Fn = { f | f : {0, 1}n → {0, 1}}. Define themaximum n-ary
circuit complexity M(n) as

M(n) = max{C(f) | f ∈ Fn}.
A “counting” argument of Shannon [1949] shows thatM(n) > (1−ε)2n/n for each
fixed ε > 0 and all sufficiently largen (see, e.g., Dunne [1988], Savage [1976],
and Wegener [1987]). Lupanov [1958] showed that limn→∞ M(n)/(2n/n) = 1. (In
the sequel, we need only the rough boundsan ≤ M(n) ≤ bn for some constants
a, b > 1 and all sufficiently largen.)

We now define circuit complexity for problems of deciding membership in sets
of words. Let0 be a finite alphabet, and let|0| denote the cardinality of0. We
assume|0| ≥ 2, and if |0| = 2, then0 = {0, 1}. For x ∈ 0∗, let |x| denote the
length of x. A language(over 0) is a setL ⊆ 0∗. A binary languageis a set
L ⊆ {0, 1}∗. If |0| > 2, anencoding for0 is a one-to-one functionh : 0→ {0, 1}s

4 Of course there is no loss of generality in not allowing basic functions of one argument. For example,
an inversion gate¬b can be computed asgNA(b, b) wheregNA(v1, v2) = ¬(v1∧v2). Similarly, adding
the Boolean constants 0 and 1 “for free” asξ−2 andξ−1 can decrease the circuit complexity off by
at most two, and not at all if none of the outputs off is a constant.

760 L. STOCKMEYER AND A. R. MEYER

wheres = dlog|0|e.5 If 0 = {0, 1}, there is a uniqueencoding for0 defined by
h(0) = 0 andh(1) = 1. Let ĥ : 0∗ → {0, 1}∗ be the extension ofh. Let L ⊆ 0∗
andn ∈ N+. LetFL ,n be the class of functionsf : {0, 1}sn→ {0, 1} such that, for
some encodingh for 0, for all x ∈ 0n, if x ∈ L, then f (ĥ(x)) = 1, and ifx 6∈ L,
then f (ĥ(x)) = 0. Thecircuit complexityof L is the functionCL : N+ → N such
that, for eachn ∈ N+, CL (n) is the minimum ofC(f) over all f ∈ FL ,n.6 Note that
for n fixed, CL (n) is the circuit complexity of deciding membership in thefinite
set L ∩ 0n. For B a class of functionsB : N+ → N, let CSIZE(B) denote the
class of languagesL such that, for someB ∈ B, we haveCL(n) ≤ B(n) for all n.
For example, CSIZE(O(nO(1))) is the class of languages having polynomial circuit
complexity; in current terminology this class is called P/poly (as discussed further
in Section 2.3).

A binary languageL hasmaximum circuit complexityif CL (n) = M(n) for all
n ≥ 1. A languageL hasexponential circuit complexity a.e.if there is a rational
constantc > 1 such thatCL (n) > cn for all sufficiently largen. A languageL has
polynomial circuit complexityif there is a polynomialp(n) such thatCL (n) ≤ p(n)
for all n.

2.2. TIME AND SPACECOMPLEXITY. Other notions of the complexity of a lan-
guage are itstime complexityandspace complexity; see, for example, Hopcroft
and Ullman [1979] for definitions if needed. Let DTIME(T(n)) (respectively,
DSPACE(S(n))) denote the class of languages accepted by deterministic multi-
tape Turing machines within timeT(n) (respectively, spaceS(n)). For a classB of
functions, DTIME(B) and DSPACE(B) are defined in analogue with the definition
of CSIZE(B) above. In particular, define

E= DTIME
(
2O(n)

)
and ESPACE= DSPACE

(
2O(n)

)
.

A fundamental difference between time complexity and circuit complexity is that
the former is measured on auniformmodel (e.g., Turing machines) where there is
a single finite program that must work for all (infinitely many) inputs, and the latter
is measured on anonuniformmodel (circuits) where there can be a different finite
program (a different circuit) for each input length. Indeed, one way to partition the
subject of computational complexity is along the uniform/nonuniform boundary.

2.3. CONNECTIONS BETWEENTIME AND CIRCUIT COMPLEXITY. The notion of
circuit complexity is in some sense incomparable with time complexity because, as
noted above, for eachL (even nonrecursiveL) there is a constantcsuch thatCL (n) ≤
cn. However, there is a basic relationship in one direction between these two notions
of complexity: circuit complexity provides a related lower bound on time complex-
ity. Savage [1972] showed that ifL ∈ DTIME(T(n)) thenCL(n) = O(T(n)2).
Pippenger and Fischer [1979] improved this toCL(n) = O(T(n) logT(n)).

The two notions can be brought closer together if Turing machines are given a
limited amount of “advice.” The first result of this type was by the second author,

5 By considering only block encodings, the exposition is somewhat simplified, and there is essentially
no loss of generality.
6 If |0| is not a power of 2, the value off (y) (and the output of the circuit) does not matter for
y 6∈ ĥ(0n). Requiring f (y) = 0 in these cases has no effect on our lower bound results.

Lower Bound on the Circuit Complexity of a Problem in Logic 761

Meyer (cited in Berman and Hartmanis [1977]), who showed around 1973 that
the class of languages having polynomial circuit complexity is exactly the class of
languages that are polynomial-time Turing reducible to a sparse languageS; the
amount of advice is limited by the sparseness of the “oracle” language. A language
S is sparseif there is a polynomialp(n) such thatScontains at mostp(n) words of
lengthn, for alln. Schnorr [1976b] gave a more detailed relationship between circuit
complexity and time complexity defined in terms of Turing machines with sparse
oracles. Later Pippenger [1979] defined the “advice” model of Turing machines: the
advice for inputs of lengthn is given to the machine as a stringαn, which depends
only on n. Using notation that came into use later, the class P/poly is defined as
the class of languages that are accepted by deterministic Turing machines within
polynomial time using polynomially bounded advice (|αn| is polynomial inn). The
characterization of polynomial circuit complexity by P/poly is closely related to
Meyer’s characterization: it is easy to see that a sequence{αn}n≥1 of polynomially
bounded advice strings can be encoded in a sparse language, and vice-versa.

Instead of making Turing machines nonuniform by giving them advice, another
way to bring time and circuit complexities closer together is to make circuits uniform
by requiring that they be efficiently constructible by a Turing machine. The idea of
uniform circuit complexity was introduced by Borodin [1977] and further developed
by Ruzzo [1981]. We are concerned only with nonuniform circuit complexity as
defined in Section 2.1. Of course, all of our lower bound results holda fortiori for
uniform circuit complexity.

2.4. BOUNDED ALTERNATION HIERARCHIES. To state certain results, we need
a few classes of the bounded alternation hierarchies built on polynomial time and
exponential time. These classes can be defined in terms of alternating Turing ma-
chines (ATM’s) [Chandra et al. 1981]. Rather than introduce this model, we give
equivalent definitions in terms of bounded quantification over the arguments of a
polynomial-time computable relation. LetL ⊆ 0∗, k ∈ N+, and letB be a class
of functionsB : N→ N. The languageL belongs to the class6k(B) if there is a
functionB ∈ B, a finite alphabet1, and a relationR(x, y1, y2, . . . , yk), computable
in time polynomial in|x| + |y1| + · · · + |yk| for x ∈ 0∗ andy1, . . . , yk ∈ 1∗, such
that for allx ∈ 0∗,

x ∈ L iff (∃y1)(∀y2)(∃y3) · · · (Qkyk)[R(x, y1, y2, . . . , yk)], (1)

where the quantifiers alternate (soQk is∃ if k is odd or∀ if k is even) and where the
i th quantification is over thoseyi ∈ 1∗ with |yi | ≤ B(|x|). The languageL belongs
to 5k(B) if the complement ofL (i.e.,0∗ − L) belongs to6k(B). (Equivalently,
5k(B) can be defined like6k(B) in terms of alternating quantifiers except that the
leading quantifier is universal.) Also define60(B) = 50(B) = DTIME(B).

The classes of thepolynomial-time hierarchy(first defined in Meyer and
Stockmeyer [1972] and further developed in Stockmeyer [1977b]) are6

p
k and

5
p
k for k ≥ 0, defined by6 p

k = 6k(P) and5p
k = 5k(P) whereP denotes the

class of polynomial functions. In particular,6 p
0 = P and6 p

1 = NP. The classes
of the exponential-time hierarchy, 6e

k and5e
k, are defined by6e

k = 6k(E) and
5e

k = 5k(E) whereE denotes the class of exponential functions, that is,cn for an
arbitraryc > 1. Because the time to computeR(x, y1, . . . , yk) is polynomial in

762 L. STOCKMEYER AND A. R. MEYER

|x| + |y1| + · · · + |yk|, once the exponential boundB on the lengths of they’s is
fixed, the time to computeR is bounded above byc|x| for some constantc.

In terms of ATM’s,6 p
k (respectively,6e

k) is the class of languages accepted by
ATM’s that use polynomial (respectively, exponential) time, start in an existential
state, and make at mostk − 1 alternations from an existential state to a universal
state or vice-versa.

3. Ehrenfeucht’s Argument and Refinements

In 1967, Ehrenfeucht proved an exponential lower bound on the circuit complex-
ity of the first-order theory ofN with addition, multiplication, and exponentiation,
where all quantifiers are bounded by constants.7 Constants are written in posi-
tional (e.g., binary or decimal) notation and may be defined using exponential
notation. A sentence is a formula containing no free variables. Writing sentences
as words over some finite alphabet0, let BIA (Bounded Integer Arithmetic) be
the language containing the true sentences in this logic. Obviously, BIA is decid-
able, because all quantifiers are bounded by constants. In this section, we outline
Ehrenfeucht’s [1975] proof that BIA has exponential circuit complexity a.e., and
give some results that were obtained later using a similar method. It is convenient to
assume that the alphabet0 used to write formulas contains a blank symbol, so that
BIA ∩0n essentially contains the true sentences of length at mostn, as opposed to
exactlyn.

For 0 ≤ i < 2n, let binn(i) be the length-n binary representation ofi . Recall
Fn = { f | f : {0, 1}n→ {0, 1} }.

For f ∈ Fn, thetruth table of f is the binary word tt(f) of length 2n defined by

tt(f) = f (binn(0)) · f (binn(1)) · f (binn(2)) · · · f (binn(2n − 1)).

Define a linear order< on Fn, the lexicographic order, by g < f iff tt(g) is
lexicographically smaller than tt(f).

Ehrenfeucht’s argument goes roughly as follows: Leta > 1 be a constant such
thatan ≤ M(n) for almost alln. Fix ann ∈ N+. Let f0 be the lexicographically
smallest function inFn having maximum circuit complexity, that is,C(f0) = M(n),
andC(g) < M(n) for all g < f0. Using Gödel’s result that every r.e. set has an
arithmetical representation [Rogers 1967, Sect. 14.4], it is easy to see (the details
are not given in Ehrenfeucht [1975]) that there is a formulaϕ(z) in the language
of BIA such that, for allx ∈ {0, 1}n, the function f0(x) = 1 iff ϕ(1 · x) is true,
viewing 1· x as a binary numeral. Moreover, the length ofϕ(1 · x) is dn whered is
a constant independent ofn. Now a circuit of sizet that decides BIA on sentences
of lengthdn (using encodingh : 0→ {0, 1}∗) gives a circuit of sizet + O(n) that
computesf0, as follows. For an inputx ∈ {0, 1}n, a circuit of sizeO(n) computes
the encoding viah of the binary numeral 1· x; this is then substituted forz in
ϕ(z), which in turn is given as input to the circuit of sizet that decides BIA∩ 0dn.
Recalling thatC(f0) = M(n) ≥ an and choosing 1< c < a1/d, it follows that the
circuit complexity of BIA must be at leastcn for almost alln divisible by d. By
padding with blanks, an exponential lower bound holds a.e.

7 Although the result in Ehrenfeucht [1975] states only that the complexity of this problem is not
polynomial, an exponential lower bound is implicit in the proof.

Lower Bound on the Circuit Complexity of a Problem in Logic 763

Around 1973, the second author, Meyer, showed thatf0 can be computed by
a Turing machine using exponential space. One of the referees pointed out that
Sholomov [1975] made a similar observation. This can be done because members
of Fn and circuits of sizebn can be represented by words of length exponential in
n. Use tt(f) to representf , and represent a circuit by its definition as a straightline
algorithm (encoded as a word over some finite alphabet). Quantifications such as
“for all g < f0” are handled by exhaustive search, and only a constant number of
exponential-length representations need be stored on the tape at any one time. In
this way, Meyer showed the following. Recall ESPACE= DSPACE(2O(n)).

THEOREM3.1 (MEYER). ESPACE contains a binary language of maximum
circuit complexity.

This result allowed certain lower bounds on time complexity to be translated
to lower bounds on circuit complexity. For example, in proving that Th〈N,+〉,
the first-order theory ofN with addition (also known as Presburger arithmetic)
has time complexity double-exponential inn, Fischer and Rabin [1974] show that
every languageL in DTIME(22O(n)

) is poly-lin reducible to Th〈N,+〉, that is, it
is reducible via a functionr computable in polynomial time and linear space; in
particular,|r (x)| = O(|x|). Because ESPACE⊆ DTIME(22O(n)

), we can takeL
to be a binary language of maximum circuit complexity, from which it follows
easily that Th〈N,+〉 has exponential circuit complexity a.e. (assuming again that
the alphabet of Th〈N,+〉 contains a blank symbol). Similarly, using the reduction
of Meyer [1975], any language in ESPACE is poly-lin reducible to WS1S, so WS1S
has exponential circuit complexity a.e.

The exponential-space algorithm that computesf0 uses double-exponential time,
for example, to search over all members ofFn. After the definition of the alternating
Turing machine (ATM) model [Chandra et al. 1981], it was clear thatf0 could be
computed by an ATM using exponential time and a constant number of alternations.

THEOREM 3.2. 6e
3 ∩ 5e

3 contains a binary language of maximum circuit
complexity.

PROOF. We define a binary languageL by an expression of the form (1) for
k = 3. Choose the constantb such thatM(n) ≤ bn for all n. Let Cn denote the set
of circuits of size at mostbn. As above, we represent members ofFn andCn by
words of lengthcn for some constantc. For convenience, we identify a function or
circuit with its word representation.

Fix n ≥ 1. For f ∈ Fn andU ∈ Cn, let the predicatecomp(f,U) hold iff f is
the function computed byU . To decidecomp(f,U) it is enough to check, for all
x ∈ {0, 1}n, that f (x) = 1 iff U (x) = 1. This is an exponential (2n) number of
exponential-time computations, socomp(f,U) can be computed in time 2O(n). For
U ∈ Cn and integert with 0 ≤ t ≤ bn, let size(t,U) hold iff the size ofU is at
mostt ; obviously, this predicate can also be computed in time 2O(n). By definition,

C(f) ≤ t iff (∃U ∈ Cn)[size(t,U) ∧ comp(f,U)].

Consider the predicateCmax(f, t) defined as follows:Cmax(f, t) iff

(∀g ∈ Fn)[(C(g) ≤ t) ∧ ¬(C(f) ≤ t − 1) ∧ (g < f ⇒ C(g) ≤ t − 1)].

764 L. STOCKMEYER AND A. R. MEYER

Note that, ift satisfies the first conjunct for allg, thent ≥ M(n). If f, t satisfy the
second conjunct, thenC(f) ≥ t , sot ≤ M(n). If f, t satisfy the third conjunct for
all g, then allg with g < f can be computed by a circuit of sizet − 1; together
with t = M(n) andC(f) ≥ t , this means thatf is the lexicographically smallest
function inFn having maximum circuit complexity. In summary, ifCmax(f, t),
thent = M(n) and f = f0. DefineL ∩ {0, 1}n by:

x ∈ L iff (∃ f)(∃ t)[Cmax(f, t) ∧ f (x) = 1]. (2)

So L has maximum circuit complexity. By straightforward manipulation of quan-
tifiers, the definition ofL in (2) can be written

(∃ f, t)(∀g,U)(∃U ′,U ′′)[R(x, f, t, g,U,U ′,U ′′)],

whereR is quantifier-free and can be decided in timedn for somed. Therefore,
L ∈ 6e

3. Changing “x ∈ L” to x 6∈ L” in (2), it defines the complementL of L.
Therefore,L ∈ 6e

3, soL ∈ 5e
3.

BecauseFn andCn can be restricted to contain words of length 2n over some
finite alphabet, the proof actually shows that there is a binary language of maximum
circuit complexity in63(2n) ∩53(2n).

Theorem 3.2 can be used to show that Th〈R,+〉, the first-order theory of the
reals with addition, has exponential circuit complexity a.e. This follows as above
for Th〈N,+〉 because Berman [1980], using methods of Fischer and Rabin [1974],
shows that if a languageL is accepted by an ATM simultaneously within 2O(n) time
andO(n) alternations, thenL is poly-lin reducible to Th〈R,+〉.

We next mention some later results that used a similar proof method. Like
many good ideas, Ehrenfeucht’s argument has been discovered more than once.
Kannan [1982] showed the following:

THEOREM3.3 (KANNAN). For each d≥ 1, there is an L∈ 6 p
2 ∩5p

2 such that
L 6∈ CSIZE(O(nd)).

(In other words, for allc, CL (n) > cnd for infinitely manyn.) Using an argument
similar to the one in Ehrenfeucht [1975] and in the proof of Theorem 3.2, Kannan
first proves Theorem 3.3 with6 p

4 ∩5p
4 in place of6 p

2 ∩6 p
2 .8 He then uses a result

of Karp and Lipton [1980], that NP⊆ P/poly implies6 p
k = 6

p
2 for all k ≥ 2,

to finish the proof by considering two cases. First, if NP⊆ P/poly, then, by Karp
and Lipton [1980],6 p

4 ∩5p
4 = 6 p

2 ∩5p
2 . On the other hand, if there is a language

L ∈ NP butL 6∈ P/poly, thenL ∈ NP ⊆ 6 p
2 ∩ 5p

2 andL 6∈ CSIZE(O(nd)) for
all d.

Scarpellini [1985] later published a weaker version of Theorem 3.3 where6
p
2 ∩

5
p
2 is replaced by6 p

k for some (unspecified)k.

8 The argument is not exactly the same, because representations of arbitraryf ∈ Fn have length
exponential inn. Instead, for a suitable constantc > d, for eachn he considersU0, the lexicographi-
cally smallest circuit of sizenc that is equivalent to no circuit of sizend+1. ThenL ∩{0, 1}n is defined
by U0.

Lower Bound on the Circuit Complexity of a Problem in Logic 765

Kannan [1982] also showed that a version of Theorem 3.3 holds at an exponen-
tially higher level.

THEOREM3.4 (KANNAN). There is a constant c> 1and an L∈ 6e
2∩5e

2 such
that L 6∈ CSIZE(O(cn)).

The constantc in this result is less than 1.036. It is not known whether6e
2 ∩5e

2
contains a binary language of maximum circuit complexity.

It is an open question whether Theorem 3.3 (respectively, 3.4) can be improved
by replacing6 p

2 ∩5p
2 (respectively,6e

2∩5e
2) by a smaller class. Wilson [1985] has

considered this question in relativized worlds (cf. Baker et al. [1975]). The circuit
model is relativized to a binary “oracle” languageX by allowing circuits to use
oracle gates of arbitrary arity, which output 1 or 0 depending on whether the input
to the gate belongs toX or not. Anr -ary oracle gate contributesr to the size of the
circuit. Define1e,X

2 = ENPX
. (The class1e

2 = ENP is the exponential-time analogue
of1p

2 = PNP in the polynomial-time hierarchy. Obviously,6e
1 ⊆ 1e

2 ⊆ 6e
2 ∩5e

2.)
Wilson constructs a recursive oracleB such that ifL ∈ 1e,B

2 then theB-relativized
circuit complexity of L is linear in n. Thus, relative to some oracle, Theo-
rem 3.3 (respectively, Theorem 3.4) cannot be improved toL ∈ 1p

2 (respectively,
L ∈ 1e

2).
A striking result related to improving Theorem 3.4 in the real (unrelativized)

world, by Impagliazzo and Wigderson [1997], states that if E contains a language
whose circuit complexity is exponential a.e., then P = BPP, where BPP is the
class, defined by Gill [1977], of languages accepted by polynomial-time proba-
bilistic Turing machines with error probability bounded below 1/2. This equality
would be significant because the obvious simulation of probabilistic computation
by deterministic computation tries every possible outcome of the random choices
made by the probabilistic algorithm, and this can cause an exponential blow-up in
time complexity.

Remark3.5 (The Berry Paradox). Just as G¨odel’s Incompleteness Theorem
can be viewed as a formalization of the Liar’s Paradox, “This statement is false,”
Ehrenfeucht’s argument can be viewed a formalization of the Berry Paradox. The
Berry Paradox, which was originally published by Bertrand Russell (who had been
told of a similar paradox by Oxford University librarian G. Berry) has been stated
in many forms; one is: “The least integer not nameable in fewer than nineteen
syllables.” The paradox is that this phrase names that integer using eighteen sylla-
bles. The formal version of this in Ehrenfeucht’s proof is, for a wordx ∈ {0, 1}n:
“ f (x) = 1 where f is the least function inFn not computable by a circuit of size
M(n).” Clearly, a circuit that decides the truth of statements of this form for an ar-
bitrary x ∈ {0, 1}n must have size exponential in the length of the statement, given
the fact (proved by a counting argument) thatM(n) is exponential. As described
by Chaitin [1995], the Berry Paradox also plays a role in program-size complexity
(having various other names including Kolmogorov complexity and algorithmic
information; see Li and Vit´anyi [1990] for background). It is not surprising that
the same technique was used for both circuit-size complexity and program-size
complexity. A circuit can be viewed as a program to a “universal circuit simulator”
that takes a description of a circuitU and an inputx and determines the value
U (x). The simulator uses bounded time, in particular, polynomial in|x| + |U |.
The definition of program-size complexity is similar, the main difference being

766 L. STOCKMEYER AND A. R. MEYER

that the program is given to a universal Turing machine with no bound on its
running time.9

4. A Lower Bound on the Circuit Complexity of EWS1S

We give a quantitative lower bound on the circuit complexity of EWS1S;
Theorem 1.1 is one corollary. Because our numerical lower bound depends on the
language used to write formulas, we begin in Section 4.1 with a precise definition of
the syntax of this language. Section 4.2 contains the statement of the lower bound
(Theorem 4.1) and its proof. In Section 4.3, we give an extension of Theorem 1.1 to
probabilistic circuits; these circuits can utilize random bits in their computations,
but the error probability must be bounded below 1/2. Quantum circuits are briefly
mentioned in Section 4.4. We note that the quantum circuit complexity of EWS1S
is cn for somec > 1, but we have no numerical results.

4.1. DEFINITION OF EWS1S. A context-free grammar in BNF notation forL,
the language used to write formulas, is shown in Figure 1.

Let0 be the alphabet ofL, that is, the set of terminal symbols in Figure 1. Note
that|0| = 63. If8 ∈ L, then|8| denotes the length of8 viewed as a word inL.

In the absence of parentheses, the precedence order for logical connectives is
¬,∧,∨,⇒,⇔ (decreasing). Binding of quantifiers to formulas takes precedence
over all logical connectives. To improve readability, redundant parentheses are
sometimes used to write formulas in the text; these are denoted as braces,{ }, and
are not counted in the length of formulas.

A formula ϕ ∈ L is a sentenceiff it contains no free variables. Let EWS1S
be the set of sentences inL that are true under the standard interpretation ofN,
with set variables ranging over finite subsets ofN. (Leading zeroes are ignored in
interpreting constants.) The symbol # denotes a blank “padding” character that is
ignored in determining the truth of a sentence. Because sentences can be padded
with blanks,CEWS1S(n) measures the circuit complexity of deciding sentences of
length≤ n.

4.2. THE LOWERBOUND AND ITS PROOF

THEOREM 4.1. Let k,m, n be positive integers such that

(1) m> k+ 1+ log log(2k +m),
(2) k− 24≥ 2 logm, and
(3) n ≥ 459+ b(log102)mc + 11blog10mc.

Then CEWS1S(n) > 2k−3.

Theorem 4.1 is proved below. For a fixed numerical value ofn, a lower bound
onCEWS1S(n) is obtained by choosingk andm to satisfy the above constraints. For
example, we can now obtain the precise formulation of Theorem 1.1.

THEOREM 4.2. CEWS1S(610)> 10125.

9 Replacing “polynomial time” by “recursive time” gives other analogies, for example, between P and
the recursive sets, NP and the r.e. sets, and the polynomial-time hierarchy and the Kleene arithmetical
hierarchy.

Lower Bound on the Circuit Complexity of a Problem in Logic 767

〈member ofL〉 ::= 〈formula〉 | 〈member ofL〉 #

〈formula〉 ::= ∃ 〈variable〉〈formula〉 | ∀〈variable〉〈formula〉 | ¬〈formula〉
| 〈formula〉〈Boolean connective〉〈formula〉 | (〈formula〉) | 〈atom〉

〈atom〉 ::= 〈term〉〈order relation〉〈term〉 | 〈set variable〉 = 〈set variable〉
| 〈term〉 ∈ 〈set variable〉 | 〈term〉 6∈ 〈set variable〉

〈term〉 ::= 〈integer variable〉 | 〈constant〉 | 〈integer variable〉 + 〈constant〉

〈Boolean connective〉 ::= ∧ | ∨ | ⇒ | ⇔

〈order relation〉 ::= < | ≤ | = | 6= | ≥ | >

〈variable〉 ::= 〈integer variable〉 | 〈set variable〉

〈integer variable〉 ::= 〈integer variable〉〈lower case〉 | 〈lower case〉

〈set variable〉 ::= 〈set variable〉〈upper case〉 | 〈upper case〉

〈lower case〉 ::= a | b | c | · · · | p | q

〈upper case〉 ::= A | B | C | · · · | P | Q

〈constant〉 ::= 〈constant〉〈digit〉 | 〈digit〉

〈digit〉 ::= 0 | 1 | 2 | 3 | · · · | 9

FIG. 1. The syntax ofL.

PROOF. Choosek = 420,m= 430,n = 610, and note that 2416> 10125.

The proof of Theorem 4.1 is along the same lines as Ehrenfeucht’s proof and
the proof of Theorem 3.2. The key step is Lemma 4.6, which states that, ifk, m,
andn satisfy certain constraints, then there is a functionf0 : {0, 1}m → {0, 1} of
“large” (>2k−3) circuit complexity such that questions about the value off0 on
words of lengthm can be transformed to questions about membership of sentences
of lengthn in EWS1S; moreover, the circuit complexity of the transformationτ
is relatively “small.” It then follows easily that the circuit complexity of EWS1S
must be almost as large as that off0. For assume that the circuit complexity of
EWS1S is small. Then, by placing a circuit that computesτ in series with a small
circuit that accepts EWS1S∩0n, we obtain a small circuit that computesf0, which
is a contradiction. One way to proceed with the proof would be to construct a
specific exponential-space Turing machineM such thatM accepts a languageL of
maximum circuit complexity (Theorem 3.1), and then use the efficient reduction
of Meyer [1975] to reduceL to EWS1S. After estimating the length of the EWS1S
sentence that would result, we decided that it would be better to carry out a direct

768 L. STOCKMEYER AND A. R. MEYER

arithmetization of circuits by EWS1S formulas, following the outline of the proof of
Theorem 3.1.

One preliminary result, an “abbreviation trick,” is required before proving
Theorem 4.1. If8 is a logical formula involving several occurrences of a sub-
formula2, the trick allows8 to be written equivalently as a formula involving
only one occurrence of2. Special cases of the trick were discovered independently
by several people in the early 1970’s. Here we give a fairly general version, due to
M. Fischer and the second author around 1973.

In describing the trick,b, c, p, r ∈ N+, and variables may be either first-order
variables or second-order (set) variables. We always apply the trick to formulas8
of the form

8(u1, . . . ,ub) = Q1z1Q2z2 · · · Qczc9(u1, . . . ,ub, z1, . . . , zc),

whereQ1, . . . , Qc are quantifiers,u1, . . . ,ub denote variables that occur free in
8, andz1, . . . , zc denote variables. Here9 denotes a formula (with free variables
u1, . . . ,ub, z1, . . . , zc) of the form

9 = (· · · 2(v1,1, . . . , v1,p) · · · 2(v2,1, . . . , v2,p) · · · 2(vr,1, . . . , vr,p) · · ·),
where2(v1, . . . , vp) denotes a formula ofp free variablesv1, . . . , vp, and for
1 ≤ i ≤ r the i th occurrence2(vi,1, . . . , vi,p) of 2 in 9 denotes a substitution
instance of2(v1, . . . , vp) with v1 replaced byvi,1, v2 replaced byvi,2, and so on.
Eachvi, j (for 1 ≤ i ≤ r and 1≤ j ≤ p) denotes either a variable or a constant.
In the cases we consider: eachvi, j that is a variable is either free in8 (it is one of
u1, . . . ,ub) or is bound by one of the quantifiersQ1, . . . , Qc (it is one ofz1, . . . , zc);
and2 has the form (· · ·) preceded by zero or more quantifiers.

Under these circumstances,8 can be written equivalently as a formula8′ involv-
ing one occurrence of2 as follows. First, let9 ′ be the formula obtained from9 by
replacing thei th occurrence,2(vi,1, . . . , vi,p), of2 by the atomic formula “yi = 1”
for 1 ≤ i ≤ r , wherey1, . . . , yr denote new variables. Now we use “dummy vari-
ables” y, d1, . . . ,dp, and write a separate formula to ensure that ify = yi and
dj = vi, j for somei and all j = 1, 2, . . . , p, theny = 1 iff 2(d1, . . . ,dp) is true.
That is:

8′(u1, . . . ,ub) = Q1z1 · · · Qczc∃y1 · · · ∃yr

(
9 ′ ∧ ∀d1 · · · ∀dp∀y({

r∨
i=1

{d1 = vi,1 ∧ · · · ∧ dp = vi,p ∧ y = yi }
}

⇒ (y = 1⇔ 2(d1, . . . ,dp))

))
.

In the cases we consider,8 uses sufficiently few variables that the additional
variablesy1, . . . , yr , y, d1, . . . ,dp can each be written as a single letter. Also, each
of thevi, j is either a single letter or a single digit.

Under these conditions, the length of8′ is related to the lengths of8 and2
as follows.

Lower Bound on the Circuit Complexity of a Problem in Logic 769

Length relation for the abbreviation trick :

|8′| = |8| + (1− r)|2| + (4pr + 9r + 2p+ 13).

In particular, the symbolsQ1z1 . . . Qczc plus those symbols in9 ′ contribute (|8|+
3r − r |2|) to |8′|.

Let NAND = {gNA} where the binary Boolean functiongNA is defined by
gNA(v1, v2) = ¬(v1 ∧ v2).

If x ∈ {0, 1}m, then int(x) is the nonnegative integerz such thatx is a re-
verse binary representation ofz (possibly with following zeroes). For example,
int(111000)= 7 and int(101100)= 13. Define theencoding enc(x) of x by
enc(x) = m(int(x)+ 1). Note thatencis an injection from{0, 1}m intoN.

Let F ⊂ N. Thenfct(F) is the function mapping{0, 1}m to {0, 1} defined by

fct(F)(x) = 1 iff enc(x) ∈ F.

This is the means by which functions from{0, 1}m to {0, 1} are encoded as finite
sets of integers in our arithmetization. Note that for eachf ∈ Fm there is a finite
setF such thatf = fct(F).

LEMMA 4.3. Let k and m satisfy(1) of Theorem4.1. There is a formula
EASY(F) in L (depending on k and m) such that:

(a) For all finite F ⊂ N, the formulaEASY(F) is true iff there is aNAND-circuit
of size2k with m inputs that computes fct(F); and

(b) |EASY(F)| ≤ 377+ 10blog10mc.
PROOF. We first write a formula EASY′(F) involving several occurrences of a

subformula, and then obtain EASY(F) from EASY′(F) using the abbreviation trick
described above.

Some notation is helpful. IfS ⊆ N, let seq(S) denote the (infinite) binary se-
quenceb0b1b2 · · ·, wherebi = 1 if i ∈ S andbi = 0 if i 6∈ S. Let m-word(S, j)
denote the finite binary subwordbj bj+1bj+2 · · ·bj+m−1 of seq(S) (this word has
lengthm).

Let dec(m) denote the decimal representation ofm. Let dec(k) be a decimal
representation ofk with leading zeroes if necessary to makedec(k) = dec(m).
(Constraint (1) impliesk < m.)

The formula EASY′(F) is a conjunction of five subformulas. The first four sub-
formulas,ψ1, ψ2, ψ3, andψ4, place constraints on the variablesB, P, d, andq
(which are free variables in these subformulas). The last subformulaψ5 expresses
thatfct(F) is the function computed by some NAND-circuit of size at most 2k.

4.2.1. Construction ofψ1. First,ψ1(B, d,a) is written so that∀a (ψ1(B, d,a))
is true iff d ∈ B andB = B0 where

B0 = { z | m≤ z≤ d andz≡ 0 modm}.
ψ1(B, d,a) is

d ∈ B ∧ dec(m) ∈ B
∧ ({a < dec(m) ∨ a > d} ⇒ a 6∈ B) (ψ1)
∧ ({a < d ∧ a 6= 0} ⇒ (a ∈ B ⇔ a+ dec(m) ∈ B)).

770 L. STOCKMEYER AND A. R. MEYER

FIG. 2. P, B, andd.

4.2.2. Construction ofψ2. AssumingB = B0 andd ∈ B, then∀a (ψ2(B, P,
d,a)) is true iff m-word(P, 0) = 1m and m-word(P,mi) is a reverse binary
representation of (i − 1) mod 2m, for all integersi such thatm ≤ mi ≤ d.
That is,

seq(P) =
m︷ ︸︸ ︷

1111· · ·11

m︷ ︸︸ ︷
0000· · ·00

m︷ ︸︸ ︷
1000· · ·00

m︷ ︸︸ ︷
0100· · ·00

m︷ ︸︸ ︷
1100· · ·00

m︷ ︸︸ ︷
0010· · ·00 · · · (3)

and, if seq(P) = p0 p1 p2 · · · where p0, p1, p2, . . . are bits, then this pattern
continues at least to bitpd+m−1 of seq(P). The bits of seq(P) beyond the
(d+m−1)th are not constrained byψ2. The subformulaψ2 is similar to one used by
Robertson [1974].
ψ2(B, P, d,a) is

(a < dec(m) ⇒ a ∈ P) ∧ (a < d ⇒ FLIP(B, P,a)), (ψ2)

where FLIP(B, P,a) iff bits pa andpa+m have the correct relationship, either equal
or not equal, inseq(P). Note thatpa 6= pa+m iff there is ab ∈ B ∪ {0} with
b ≤ a such that, for alli with b ≤ i < a, bit pi = 1. To see this, say first that
a 6∈ B ∪ {0}. If there is such ab, thenb = b0 whereb0 is the largest member
of B ∪ {0} satisfyingb0 < a. So adding one to the reverse binary representation
m-word(P, b) will propagate a carry to bitpa, thus flipping this bit. On the other
hand, if such ab does not exist then the carry will not propagate as far as bitpa. In
the casea ∈ B ∪ {0}, there is such ab, namelyb = a (in this case, there is noi
with b ≤ i < a, so “for all i ” is vacuously true); this is correct because the lowest
order bit always flips. Thus, FLIP(B, P,a) is

((a ∈ P ⇔ a+ dec(m) 6∈ P)
⇔ ∃b ((b ∈ B ∨ b = 0) ∧ b ≤ a ∧ ∀i ({b ≤ i ∧ i < a} ⇒ i ∈ P))).

4.2.3. Construction ofψ3. Assuming thatB = B0, d ∈ B, and seq(P) is
as in (3) where this pattern continues at least to bitpd+m−1 of seq(P), then
∀a (ψ3(P, d,a)) is true iff d ≡ 0 modm2m. The subformulaψ3 states simply
thatm-word(P, d) = 1m.
ψ3(P, d,a) is

({d ≤ a ∧ a < d + dec(m)} ⇒ a ∈ P). (ψ3)

Recall thatd ∈ B and 0 6∈ B by (ψ1), and thusd > 0. Now writing seq(P) =
1mσ , the formula∀a (ψ1 ∧ ψ2 ∧ ψ3) implies thatσ cycles at least once through
the 2m binary words of lengthm. See Figure 2, whereseq(P) has been broken into
blocks of lengthm and arrows point to those positions ofseq(P) that belong toB.

4.2.4. Construction ofψ4. If B and P are as in Figure 2, then∀a (ψ4(B, P,
q,a)) is true iff q ∈ B andq ≤ m2k. We use that ifa is the smallest number inB
such thata+ k ∈ P, thena = m(2k + 1).

Lower Bound on the Circuit Complexity of a Problem in Logic 771

ψ4(B, P,q,a) is

q ∈ B ∧ ({a ∈ B ∧ a ≤ q} ⇒ a+ dec(k) 6∈ P). (ψ4)

To summarizeψ1 throughψ4, if ∀a (ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4) is true then:

d ≡ 0 modm2m and d > 0,
B = { z | m≤ z≤ d and z≡ 0 modm }, (4)

seq(P) is as in Figure 2,

q ≤ m2k and q ∈ B.

4.2.5. Construction ofψ5. We first describe a formula, MATCH, that is used as
a subformula inψ5. We then state the relevant properties of MATCH in Claim 4.4.

MATCH(X1,w1, X2,w2) is

∃K ∀b (w1 < w2 ∧ (w1 ∈ B ∨ w1 < dec(m))
∧ (b < w1+ dec(m) ⇒ (b ∈ K ⇔ b ∈ X1)) (5)
∧ ({w1 ≤ b ∧ b < w2} ⇒ (b ∈ K ⇔ b+ dec(m) ∈ K)) (6)
∧ (w2 ≤ b ⇒ (b ∈ K ⇔ b ∈ X2))). (7)

CLAIM 4.4. Assume that B, P, d, and q are as in(4). Let S, S1, S2 be finite
subsets ofN.

(a) Let z1, z2 ∈ B ∪ {0}. MATCH(S1, z1, S2, z2) is true iff z1 < z2 and
m-word(S1, z1) = m-word(S2, z2).

(b) Let i ∈ N and a∈ B. MATCH(P, i, S,a) is true iff i < a and either
(i) i ∈ B and m-word(S,a) = m-word(P, i), or
(ii) 0 ≤ i < m and m-word(S,a) = 0i 1m−i .

(c) Let a∈ B with a≤ q. There is at most one i∈ N such thatMATCH(P, i, S,a)
is true.

PROOF

(a) The last three conjuncts of MATCH (holding∀b) constrainseq(K) in terms
of seq(S1) andseq(S2). Conjunct (5) says thatseq(K) must matchseq(S1) in bit
positions 0 throughz1 + m − 1. Conjunct (6) says thatseq(K) must match it-
self, m bits to the left, in bit positionsz1 + m throughz2 + m− 1. Conjunct (7)
says thatseq(K) must matchseq(S2) in all bit positions≥ z2. Conjuncts (5),
(6), and (7) are true∀b iff m-word(S1, z1) = m-word(S2, z2), because it is nec-
essary and sufficient to take, forb ∈ B ∪ {0}, m-word(K , b) = m-word(S1, b)
for 0 ≤ b ≤ z1, m-word(K , b) = m-word(S1, z1) for z1 < b ≤ z2, and
m-word(K , b) = m-word(S2, b) for z2 ≤ b. This is illustrated in Figure 3(a) for
m= 6; binary words are broken into blocks of length 6 for readability.

(b) By the second conjunct of MATCH, there are two cases:i ∈ B or i < m.
In the first case, we havem-word(P, i) = m-word(S,a) by part (a). So assume
that i < m. The (unique) choice forseq(K) is illustrated in Figure 3(b). Formally,
recall that 1m0m is a prefix ofseq(P). Therefore, (5) is true∀b iff 1m0i is a prefix
of seq(K). Now, conjuncts (5) and (6) are both true∀b iff m-word(K , 0) = 1m

andm-word(K , b) = 0i 1m−i for all b ∈ B with b ≤ a (recall a ∈ B). Finally,
conjunct (7) is true∀b iff m-word(K , b) = m-word(S, b) for all b ∈ B with a ≤ b.
All of these constraints onK can be met iffm-word(S,a) = 0i 1m−i .

772 L. STOCKMEYER AND A. R. MEYER

FIG. 3. Illustrating the proof of Claim 4.4.

(c) Fix a ∈ B with a ≤ q. Constraint (1) of Theorem 4.1 impliesk ≤ m− 1.
Now a ≤ q ≤ m2k ≤ m2m−1 implies that for alli1, i2 ∈ B with i1, i2 < a:

m-word(P, i1) = m-word(P, i2) iff i1 = i2 (8)
m-word(P, i1) ∈ {0, 1}m−1 · 0. (9)

Now suppose that MATCH(P, i1, S,a) and MATCH(P, i2, S,a) are both true. Part
(b) of the claim impliesi1, i2 < a and one of four cases.

First, if i1, i2 ∈ B, then part (a) implies thatm-word(P, i1) = m-word(S,a) =
m-word(P, i2). Soi1 = i2 by (8).

Second, ifi1, i2 < m, then part (b) implies that 0i11m−i1 = m-word(S,a) =
0i21m−i2, soi1 = i2.

We show that the remaining two cases, where one ofi1, i2 belongs toB and
the other is less thanm, cannot occur. Say thati1 ∈ B and i2 < m, the
other case being symmetric. Thenm-word(P, i1) = m-word(S,a) and i1 <
a because MATCH(P, i1, S,a) is true, andm-word(S,a) = 0i21m−i2 because
MATCH(P, i2, S,a) is true. Som-word(P, i1) = 0i21m−i2 andm− i2 ≥ 1. This
contradicts (9), which states thatm-word(P, i1) must end with 0 wheni1 ∈ B and
i1 < a ≤ q.

This completes the proof of Claim 4.4.

The next step is to describe how subsets ofN are viewed as representing circuits
and computations of circuits. It is natural to encode functionsf ∈ Fm as sets and
encode inputsx ∈ {0, 1}m as integers. Then “f (x) = 1” can be expressed by a
single set membership. However, encoding inputsx as integers creates a problem

Lower Bound on the Circuit Complexity of a Problem in Logic 773

in expressing “U (x) = 1,” whereU denotes a circuit, because the computation
of U on x requires the bits ofx. This is handled by defining the computation of
an encoded circuit on an encodedx to be a finite setD such that (among other
properties)x is a prefix ofseq(D). We can then express that the computationD
“starts correctly” by MATCH(D, 0, P, e) wheree= enc(x) = m(int(x)+ 1) is the
encoding ofx.

Let S (for “small”) denote{z | z ∈ N and 0≤ z < m}. Define the function
α : S∪ B→ N by

α(a) =
{

a if a ∈ S
a/m+m− 1 if a ∈ B.

Note thatα is strictly increasing, andα mapsS∪ B one-to-one onto the set of
integersz with 0≤ z≤ d/m+m− 1.

Let B, P, d,q be as in (4), and letI , J ⊆ N. The pair (I , J) is legal iff I andJ
are finite and

(∀a ∈ B)(∃ i, j ∈ N)[(MATCH(P, i, I ,a) ∧ MATCH(P, j, J,a))]. (10)

It is important to note by Claim 4.4(c) that, if (I , J) is legal, then for each
a ∈ B with a ≤ q there is a uniquei such that MATCH(P, i, I ,a) and a
unique j such that MATCH(P, j, J,a); call theseia and ja, respectively. In par-
ticular, ia, ja < a. If (I , J) is legal, thenq-circuit(I , J) is the (unique) NAND-
circuit U of size t

def= q/m with m inputs,U = βm, βm+1, . . . , βm+t−1, where
βα(a) = (α(ia), α(ja), gNA) for all a ∈ B with a ≤ q. This is a legal definition
of a circuit becauseia, ja < a andα is strictly increasing. Note that the sizet
is at most 2k, becauseq/m ≤ 2k by (4). Figure 4 illustrates how a particular
I and J code a circuit in the casem = 5 and t = 5 (so q = mt = 25). In
this figure,seq(P) is shown for reference,∗ is a “don’t care” symbol, and words
are broken into blocks of lengthm = 5 for readability. Consider, for example,
gate 6. The inputs to this gate are the inputs 3 and 4 (really, the projection func-
tions ξ3 and ξ4). Becauseα−1(6) = 10, this information should be encoded in
m-word(I , 10) andm-word(J, 10). Thus, we takem-word(I , 10)= 0312 = 00011
andm-word(J, 10)= 0411 = 00001. Consider now gate 8. The inputs to this gate
are gates 5 and 7. Becauseα−1(8) = 20, this information should be encoded in
m-word(I , 20) andm-word(J, 20). Thus, we takem-word(I , 20)= 00000 because
m-word(P, α−1(5))= m-word(P, 5)= 00000. Similarly,m-word(J, 20)= 01000
becausem-word(P, α−1(7))= m-word(P, 15)= 01000.

Let U be a circuit of sizet = q/m with m inputs, letx ∈ {0, 1}m andD ⊆ N.
Let ξi (x) denote the function associated with stepβi of q-circuit(I , J) for 0≤ i <
m+ t − 1. ThenD computes U on xiff

(∀a ∈ S∪ B with a ≤ q)
[
a ∈ D ⇔ ξα(a)(x) = 1

]
.

Note in particular thatm-word(D, 0) = x, because, for 0≤ a < m, we have
ξα(a)(x) = ξa(x) = xa wherex = x0x1 · · · xm−1. Figure 4 showsseq(D) for a set
D that computesq-circuit(I , J) on x = 11001. In particular, 11001 is a prefix
of seq(D). For example, 256∈ D becauseξα(25)(x) = ξ9(x) = 0. The latter is
consistent withD∩ {0, 1, 2, . . . ,24} because the inputs to gate 9 are gates 8 and 6,
α−1(8)= 20∈ D, α−1(6)= 10∈ D, andgNA(1, 1)= 0.

774 L. STOCKMEYER AND A. R. MEYER

FIG. 4. I andJ code a circuit,q-circuit(I , J). D computesq-circuit(I , J) on inputx = 11001.

We note some simple facts and then writeψ5. Claim 4.5 is immediate from
definitions and the fact thatP is constrained as in Figure 2.

CLAIM 4.5

(a) Let x ∈ {0, 1}m, F ⊆ N, and e= m(int(x)+ 1).
Then m-word(P, e) = x, and e∈ F iff fct(F)(x) = 1.

(b) If U is a circuit of size q/m with m inputs, x∈ {0, 1}m, and D computes U on
x, then q∈ D iff U (x) = 1.

Now assuming thatB, P, d,q are as in (4),ψ5(F, B, P,q) is true iff there is a
NAND-circuit of sizeq/m that computesfct(F).
ψ5(F, B, P,q) is

∃I ∃J ∀e∃D ∀a ∃i ∃ j ψ ′5, (ψ5)
whereψ ′5 is

(e∈ B ⇒ {MATCH(D, 0, P, e)
∧ (a ∈ B ⇒

{MATCH(P, i, I ,a) ∧ MATCH(P, j, J,a) (ψ ′5)
∧ (a ∈ D ⇔ {i 6∈ D ∨ j 6∈ D})})

∧ (q ∈ D ⇔ e∈ F)}).

Lower Bound on the Circuit Complexity of a Problem in Logic 775

In words,ψ5 expresses the following. There exists a circuit,q-circuit(I , J), of size
q/m (≤ 2k) such that for all inputsx ∈ {0, 1}m (wheree= enc(x) = m(int(x)+1))
there exists a computationD such that:

(1) x is the input to the computationD, that is,m-word(D, 0)= m-word(P, e) by
Claim 4.4(a) and Claim 4.5(a).

(2) For all gatesβα(a) with a ∈ B, there existsi and j such that the outputξα(a)(x)
of βα(a) is computed correctly as (¬ξα(i)(x) ∨ ¬ξα(j)(x)) (which is equivalent
to gNA(ξα(i)(x), ξα(j)(x))). Note also by Claim 4.4(b) and (c) that whena ∈ B
anda ≤ q, there is at most onei such that MATCH(P, i, I ,a) is true, and thisi
must be a “proper” value, that is,i < a and eitheri < mor i ∈ B, and similarly
for MATCH(P, j, J,a).

(3) q-circuit(I , J)(x) = 1 iff fct(F)(x) = 1 by Claim 4.5.

Now let EASY′(F) be

∃B ∃P ∃d ∃q ∃I ∃J ∀e∃D ∀a ∃i ∃ j (ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4 ∧ ψ ′5).
Note that each ofψ1, ψ2, andψ4 is a conjunction of subformulas and thatψ3 and
ψ ′5 have the form (· · ·). By standard manipulation of quantifiers, and using that the
variablesI , J, e, D, i, j do not appear free in any ofψ1, ψ2, ψ3, orψ4, the formula
EASY′(F) is equivalent to

∃B ∃P ∃d ∃q (∀a (ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4) ∧ ψ5).

It should now be clear that EASY′(F) is true iff there is a NAND-circuit of size 2k

that computesfct(F). In the “if” direction, always choosed = m2m andq = m2k,
chooseP andB as in (4), and choose legal (I , J) such thatq-circuit(I , J) computes
fct(F). Note thatd = m2m means that there is a one-to-one correspondence between
{0, 1}m and B given byx ↔ enc(x). Givene ∈ B, choose finiteD such thatD
computesq-circuit(I , J) on x wheree = enc(x). Moreover, chooseI , J, D such
that, for alla with a ∈ B anda > q,

∃i ∃ j (MATCH(P, i, I ,a) ∧ MATCH(P, j, J,a) ∧ (a ∈ D ⇔ (i 6∈ D ∨ j 6∈ D))).

(This can be done, for example, by takingm-word(I ,a) = m-word(J,a) = 0m,
anda ∈ D iff m 6∈ D, for all a ∈ B with a > q.) In the “only if” direction,
B, P, d, andq must be chosen to satisfy (4); then the choice ofI andJ determines
a circuit (q-circuit(I , J)) of sizeq/m ≤ 2k that computesfct(F). If q/m < 2k,
thenq-circuit(I , J) can be easily modified to give a circuit of size 2k that com-
putesfct(F).

We now count the length of EASY′(F). Letz= blog10mc+1. Note that|dec(k)| =
|dec(m)| = z. First, |MATCH| = 72+ 3z. The lengths ofψ1, ψ2, ψ3, ψ4, andψ ′5
are, respectively, 40+ 3z, 61+ 2z, 14+ z, 18+ z, and 38+ 3|MATCH|. The
length of EASY′ is the sum of these plus 28 additional symbols, so|EASY′| = 199+
7z+ 3|MATCH|.

Using the abbreviation trick withr = 3 andp = 4 to reduce the three occurrences
of MATCH to one, EASY′ can be written equivalently as EASY where

|EASY| = |EASY′| − 2|MATCH| + 96= 377+ 10blog10mc.
Note that the additional variablesd1, d2, d3, d4, y1, y2, y3, y used in the abbreviation
trick can be namedA, c,C, f, g, h, k, l , respectively.

776 L. STOCKMEYER AND A. R. MEYER

This completes the construction of EASY(F) and the proof of Lemma 4.3.

LEMMA 4.6. Let k, m, and n be positive integers that satisfy(1) and (3) of
Theorem4.1. Then there is a function f0 : {0, 1}m→ {0, 1} such that:

(i) C(f0) > 2k/5;
(ii) for each x ∈ {0, 1}m there is a sentenceϕx ∈ L such that|ϕx| = n, and

ϕx ∈ EWS1Siff f0(x) = 1; and
(iii) if h : 0 → {0, 1}6 is any encoding for0 and if τ is the function that maps x

to ĥ(ϕx) for all x ∈ {0, 1}m, then C(τ) ≤ 220m2.

PROOF. Letk, m, andn be fixed positive integers that satisfy constraints (1) and
(3) of Theorem 4.1. Letω(x) be a decimal representation ofenc(x) = m(int(x)+1),
where leading zeroes are appended if necessary so that

|ω(x)| = b(log102)mc + blog10mc + 2. (12)

Note thatx ∈ {0, 1}m implies int(x) ≤ 2m − 1. So enc(x) ≤ m2m, and the
decimal representation ofenc(x) need never be longer thanblog10(m2m)c + 1 ≤
b(log102)mc + blog10mc + 2.

Define the formula LESSTHAN(G, F) by

∃a (a ∈ F ∧ a 6∈ G ∧ ∀b (b > a ⇒ (b ∈ G ⇔ b ∈ F))).

LESSTHAN(G, F) is easily seen to define a linear order on finite subsets ofN.
Also, for each finiteX ⊂ N there is a finite number ofW ⊂ N satisfying
LESSTHAN(W, X).

Now letϕ′′′x be the following sentence:

∃F ∀G (ω(x) ∈ F ∧ ¬EASY(F) ∧ (LESSTHAN(G, F) ⇒ EASY(G))). (ϕ′′′x)

A particular NAND-circuit of size 2k is completely described by giving a pair
(i, j) with 0 ≤ i, j < s for each steps with m ≤ s ≤ m+ 2k − 1. Therefore,
the number of NAND-circuits of size 2k is at most (m + 2k)2·2k

< 22m
, where

the inequality follows from constraint (1) of Theorem 4.1. Because there are 22m

functions from{0, 1}m to {0, 1}, there is some finiteX ⊂ N such that EASY(X)
is false.

Because there is a finite number ofW ⊂ N with LESSTHAN(W, X), there is
exactly oneF0 ⊂ N such that∀G (¬EASY(F0)∧ (LESSTHAN(G, F0) ⇒ EASY(G)))
is true. We takef0 = fct(F0). Because each function inÄ16 can be synthesized
using at most five NAND-gates [Harrison 1965], it follows thatC(f0) > 2k/5. Also,
“ω(x) ∈ F” is true iff enc(x) ∈ F0 iff f0(x) = 1 by definition of f0 = fct(F0), so
ϕ′′′x is true iff f0(x) = 1.

Substituting the definition of LESSTHANin the definition ofϕ′′′x , it can be written
equivalently asϕ′′x , defined by

∃F ∀G ∀a ∃b (ω(x) ∈ F ∧ ¬EASY(F)
(ϕ′′x)∧ ({a 6∈ F ∨ a ∈ G ∨ {b > a ∧ (b 6∈ G ⇔ b ∈ F)}} ∨ EASY(G))).

To see the equivalence, letθ (a, b,G, F) denote the formula within the outer-
most{· · ·}, and note that∀a ∃b (θ (a, b,G, F)) is equivalent to¬LESSTHAN(G, F).
Using (12),

|ϕ′′x | = 41+ 2|EASY| + b(log102)mc + blog10mc.

Lower Bound on the Circuit Complexity of a Problem in Logic 777

The abbreviation trick withr = 2 andp = 1 applied toϕ′′x and EASY givesϕ′x
equivalent toϕ′′x and

|ϕ′x| = |ϕ′′x | − |EASY| + 41= 459+ b(log102)mc + 11blog10mc
using Lemma 4.3(b) for an upper bound on|EASY|. The additional variables
d1, y1, y2, y can be namedE,m, n, o, respectively. By constraint (3) of Theo-
rem 4.1, j ≥ 0 can be chosen such thatϕx = ϕ′x# j and |ϕx| = n. So f0 andϕx
satisfy the requirements of Lemma 4.6.

It remains only to bound the circuit complexity of the transformationτ mapping
x to ĥ(ϕx). For fixedk, m, andn, the wordĥ(ω(x)) is the only part ofĥ(ϕx) that
depends onx. Recall that the length ofω(x) is independent ofx. Thus, all bits
of ĥ(ϕx), excludingĥ(ω(x)), can be computed using the two gates with constant
output. Now, 220m2 − 2 is a gross upper bound on the circuit complexity of the
function mappingx to ĥ(ω(x)), using straightforward classical algorithms for bi-
nary addition, binary multiplication, and binary-to-decimal conversion (see, e.g.,
Knuth [1969]).

This completes the proof of Lemma 4.6.

Proof of Theorem4.1. Letk, m, andn satisfy the constraints (1), (2), and (3) of
the theorem. Assume the conclusion is false, that is,CEWS1S(n) ≤ 2k−3. Therefore,
there is an encodingh : 0 → {0, 1}6 and a circuitU of size≤ 2k−3 with 6n
inputs that computes a functionf such thatf (ĥ(ϕ)) = 1 iff ϕ ∈ EWS1S, for all
ϕ ∈ L ∩ 0n.

Let f0 andτ be as in Lemma 4.6 for thisk,m, n, andh. In particular,C(f0) >
2k/5. Let T be a circuit of size≤ 220m2 that computesτ . Let U0 be the circuit
obtained by identifying the 6n outputs ofT with the 6n inputs ofU . Thus, the
outputĥ(ϕx) of T becomes the input ofU . It is clear how to defineU0 from T and
U within the formalism of straightline algorithms such that the size ofU0 is the
size ofT plus the size ofU . Now U0 computesf0 because, for allx ∈ {0, 1}m,

U0(x) = 1 ⇔ f (ĥ(ϕx)) = 1 ⇔ ϕx ∈ EWS1S⇔ f0(x) = 1.

Because constraint (2) implies 220m2 ≤ 2k−4, the size ofU0 is at most 2k−4+2k−3 <
2k/5. This contradictsC(f0) > 2k/5, so we must haveCEWS1S(n) > 2k−3.

Remark4.7 (What Fraction of Inputs are Hard?). Theorem 4.2, read literally,
says that, for each circuit of size 10125, there is an input of length 610 on which
the circuit gives the wrong answer about membership of the input in EWS1S.
By our proof, we may assume that this input is a sentence of EWS1S, becauseτ
produces only (encodings of) sentences. Some improvement in thenumberof hard
sentences can be made, using the simple argument that if a circuit is wrong for only
w sentences then the circuit can be patched by building in a table of the answers for
these sentences, increasing the size of the circuit by at most 6nw+2. For example,
if a circuit is wrong on at most 10121 sentences of length 610, then its size must be
at least 10124. Although large in absolute terms, 10121 is an insignificant fraction of
the number of sentences of length 610. When this argument is used for arbitrary
n, the provably hard sentences form an asymptotically vanishing fraction. Except
for this most trivial argument, we do not know how to obtain lower bounds on the
frequency of hard inputs. This question is interesting, important, and wide open.
We do not even know whether some constant fraction of the sentences must be hard.

778 L. STOCKMEYER AND A. R. MEYER

To be specific, is there a constantε > 0, such that for all polynomialsp(n), there
exists ann0, such that for alln ≥ n0, all circuitsUn of sizep(n), and all encodings
h, the circuitUn decides EWS1S incorrectly (Un(ĥ(ϕ)) = 1 iff ϕ 6∈ EWS1S) on at
least anε fraction of the sentencesϕ of lengthn?

Two developments related to the frequency of hard inputs should be mentioned.
First, Levin [1986] (see also Gurevich [1991]) has introduced a theory of average-
case complexity. Here a decision problem has the form (L , µ) whereL ⊆ 0∗ andµ
is a probability distribution on0∗. Part of the theory is a notion of efficient reduction
that is “distribution preserving.” Second, Ajtai [1996] has shown a connection
between the worst-case and average-case complexities of the problem of finding a
shortest nonzero vector in an integer lattice.

4.3. EXTENSION TO PROBABILISTIC CIRCUITS. Beginning with Gill [1977],
Rabin [1976], and Solovay and Strassen [1977], the solution of decision prob-
lems by probabilistic algorithms, that is, algorithms employing random numbers,
has played an increasing role in the theory of computing. Besides being a natural
mathematical concept, probabilistic computation can be useful in practice: if the
error probability of a probabilistic decision algorithm is bounded below 1/2 then
the error probability can be decreased to 2−k by makingO(k) independent runs of
the algorithm and taking the majority answer (this follows from Fact 4.8 below). It
has even been suggested that the current theoretical model of the “tractable prob-
lems,” namely P, should be replaced by the class BPP [Gill 1977] containing the
languages accepted by polynomial-time probabilistic Turing machines with error
probability bounded below 1/2.

The definition of aprobabilistic circuit of size t with m inputsis like the definition
of a circuit in Section 2.1, with one exception. In addition to them inputs that receive
an inputx ∈ {0, 1}m, there is some numberl of random bit inputs. Formally, these
are added as functionsξk for−l ≤ k ≤ −1, the projection functions of the random
bit inputs. Now each functionξk, for−l ≤ k ≤ m+ t−1, maps{0, 1}l ×{0, 1}m to
{0, 1} in the obvious way. For such a circuitU , for r ∈ {0, 1}l andx ∈ {0, 1}m, let
U (r, x) = ξm+t−1(r, x), the associated function of the highest numbered step. Let
pU (x) be the probability thatU (r, x) = 1 whenr is chosen uniformly at random
from {0, 1}l .

Let f : {0, 1}m → {0, 1}, and let 0< ε < 1/2. The ε-error probabilistic
circuit complexity of f, which we denotePCε(f), is the smallestt such that there
is a probabilistic circuit of sizet with m inputs such that, for allx ∈ {0, 1}m, if
f (x) = 1, thenpU (x) ≥ 1− ε, and if f (x) = 0, thenpU (x) ≤ ε. Now for L ⊆ 0∗,
the definition of theε-error probabilistic circuit complexity of L, denotedPCL ,ε(n),
is analogous to the definition ofCL (n) in Section 2.1: it is the minimum ofPCε(f)
over f ∈ FL ,n.

Bennett and Gill [1981] have shown that for each0 andε there is a constantcsuch
that for allL ⊆ 0∗, CL(n) ≤ cn·PCL ,ε(n).10 In particular, P/poly = BPP/poly; that
is, polynomial-size probabilistic circuits are no more powerful than polynomial-
size deterministic circuits. To prove a numerical lower bound onPCEWS1S,ε(n),

10 Adleman [1978], using a similar proof, had earlier shown this for probabilistic circuits with “one-
sided error,” that is, there existsε > 0 such that, for allx, if f (x) = 1, then pU (x) ≥ ε, and if
f (x) = 0, thenpU (x) = 0.

Lower Bound on the Circuit Complexity of a Problem in Logic 779

however, we need a value forc. To obtain this, we use the following Chernoff
bound [Motwani and Raghavan 1995, Chap. 4].

FACT 4.8. Let X1, . . . , XN be independent0/1 valued random variables and
let 0< ε < 1 be such thatPr[Xi = 1] = ε for 1≤ i ≤ N. For all δ > 0,

Pr[X1+ · · · + XN > (1+ δ)εN] <

(
eδ

(1+ δ)(1+δ)

)εN

. (13)

The following uses the same proof method as Adleman [1978] and Bennett and
Gill [1981], but includes values for constants. Let lnx = logex.

THEOREM 4.9. Let 0 be a finite alphabet, L⊆ 0∗, and 0 < ε < 1/2. Let
δ = 1/(2ε)− 1 and c= (ε((1+ δ) ln(1+ δ)− δ))−1. Then

CL(n) ≤ (dcn ln|0|e + 1)(PCL ,ε(n)+ 14). (14)

PROOF. Let s = dlog|0|e. Fix an n, and restrict attention to thosex ∈ 0n.
Let U be a probabilistic circuit of sizePCL ,ε(n) with inputs x′ ∈ {0, 1}sn and
r ∈ {0, 1}l , and leth be an encoding for0 such that, for allx (in 0n), if x ∈ L, then
pU (ĥ(x)) ≥ 1− ε, and if x 6∈ L, then pU (ĥ(x)) ≤ ε. For oddN ∈ N, we define
a probabilistic circuitUN . The circuitUN containsN copies ofU . The inputĥ(x)
is given to all copies, but the random bits are chosen independently for each copy.
Thus,UN has inputsr ′, x′ wherer ′ ∈ {0, 1}Nl andx′ ∈ {0, 1}sn. The outputs of
the copies are fed into a circuit that computesmajN , the N-ary majority function
(majN(b1, . . . ,bN) = 1 iff

∑N
i=1 bi ≥ N/2). Thus,UN(r ′, x′) = 1 iff a majority

of the N copies ofU output 1. BecauseN is odd, a majority is always a strict
majority. Using the rough boundC(majN) ≤ 14N for all N (which follows easily
from Savage [1976, Thm. 3.1.1.4]), the size ofUN is at mostN(PCL ,ε(n)+ 14).

Define theerror probability of UN , denotederr(N), to be the smallest number
γ such that, for allx, if x ∈ L, then pUN (ĥ(x)) ≥ 1 − γ , and if x 6∈ L, then
pUN (ĥ(x)) ≤ γ . Clearly

err(N) ≤ Pr

[
X1+ · · · + XN >

N

2

]
,

where

Pr[Xi = 1] = ε for 1≤ i ≤ N

and where theXi are independent. By Fact 4.8,err(N) is less than the RHS of (13)
whereδ = 1/(2ε) − 1 is chosen so that (1+ δ)ε = 1/2. Thus,err(N) < α−N ,
whereα = ((1+ δ)(1+δ)e−δ)ε. Note thatc = (lnα)−1. We want to chooseN large
enough thaterr(N) < |0|−n. This holds ifα−N ≤ |0|−n, which is equivalent to
N ≥ (lnα)−1n ln|0|. So there is an oddN ≤ dcn ln|0|e + 1 such thaterr(N) <
|0|−n. Thus, the size ofUN is at most the RHS of (14).

DefineχL : 0n → {0, 1} by χL(x) = 1 if x ∈ L, or 0 if x 6∈ L. To finish
the proof, we show that iferr(N) < |0|−n then (∃ r ′)(∀x)[UN(r ′, ĥ(x)) = χL (x)].
Thus, by substituting some stringr ′0 ∈ {0, 1}Nl for the random inputs ofUN , we
obtain a (deterministic) circuitD that computesχL . The size ofD is at most the
size ofUN , because gates ofUN that use a random bit as input can be simpli-
fied to obtainD. Assume for contradiction that (∀r ′)(∃x)[UN(r ′, ĥ(x)) 6= χL (x)].

780 L. STOCKMEYER AND A. R. MEYER

For r ′ ∈ {0, 1}Nl andx ∈ 0n, let W(r ′, x) = UN(r ′, ĥ(x)) ⊕ χL(x) (intuitively,
W(r ′, x) = 1 iff UN is wrong on inputx and random stringr ′). By assumption,
(∀r ′)(∃x)[W(r ′, x) = 1], so

∑
r ′
∑

x W(r ′, x) ≥ 2Nl . But err(N) < |0|−n implies
for eachx that

∑
r ′ W(r ′, x) < |0|−n2Nl , which implies

∑
x

∑
r ′ W(r ′, x) < 2Nl .

This contradiction proves the lemma.

To state a version of Theorem 1.1 for probabilistic circuit complexity, we take
ε = 1/3 to be definite.

THEOREM 4.10. PCEWS1S,1/3(614)> 10125.

PROOF. Taking k = 435, m = 445, andn = 614 in Theorem 4.1 gives
CEWS1S(614) > 2432. Recall that|0| = 63. Looking now at the statement of
Theorem 4.9, a calculation shows thatc ln 63 < 115 when ε = 1/3.
Theorem 4.9 gives

PCEWS1S,1/3(614)≥ CEWS1S(614)

115· 614+ 1
− 14>

2432

105
> 10125.

4.4. QUANTUM CIRCUIT COMPLEXITY. An active area during the past ten years
has beenquantum computational complexity, where algorithms are performed by
quantum-mechanical systems. Introductions to quantum computation include the
book by Nielsen and Chuang [2000], the survey by Aharonov [1998], and the
collection of papers in the October 1997 issue ofSIAM Journal on Computing.
Quantum circuits were first defined by Deutsch [1989] and study of quantum circuit
complexity was initiated by Yao [1993]. A definition of quantum circuits is beyond
the scope of this article.

We do not have a nontrivial numerical lower bound on the quantum circuit
complexity of EWS1S. A major roadblock is that an analogue of Theorem 4.9
for quantum circuits is not known. The quantum circuit complexity of a problem
is linear in its deterministic circuit complexity, but it is possible, given current
knowledge, that deterministic circuit complexity can be exponentially larger than
quantum circuit complexity. Absent an analogue of Theorem 4.9, it seems that a
diagonalization-based proof of a large lower bound on quantum circuit complexity
must start from scratch, for example, use a formula in EWS1S (or some other
decidable theory) to diagonalize over quantum circuits. We see no serious technical
obstacles to doing this, perhaps using an input length in the thousands rather than
the hundreds, although we have not tried.

There is, however, an analogue of Theorem 3.1: There is a language in ESPACE
whose quantum circuit complexity is exponential a.e. The proofs are essentially
the same, although two facts about quantum complexity are needed (stated here
informally). First, there is a finite complete basis for quantum circuit computa-
tion, that is, a finite set of quantum gates that suffice to build any quantum cir-
cuit [Adleman et al. 1997; Solovay and Yao 1996]. Using this finite basis, Shannon’s
counting argument shows that the maximumn-ary quantum circuit complexity is
exponential inn. The second fact is that the analogue ofpU (x) for quantum cir-
cuits can be computed by a Turing machine using space polynomial in|U | + |x|
[Bernstein and Vazirani 1997]. Using these facts, a diagonalization as in the proof
of Theorem 3.2 can be done in exponential space. A corollary is that if ESPACE is
poly-lin reducible toL, then the quantum circuit complexity ofL is exponential.

Lower Bound on the Circuit Complexity of a Problem in Logic 781

For example, the quantum circuit complexities of WS1S and Th〈N,+〉 are
exponential a.e.

5. Conclusion and Future Directions

We have shown that a method based on diagonalization can be used to prove an
astronomical lower bound on the computational complexity of a natural, uncon-
trived and decidable problem in logic, even when the problem is restricted to input
lengths in the hundreds. We have extended the result to probabilistic circuits. We
believe that a similar result can be shown for quantum circuit complexity, perhaps
using input lengths in the thousands.

Our purpose has been to demonstrate by example (EWS1S) that large lower
bounds can be proved for relatively small inputs. We believe that this phenomenon
is typical, and that similar results can be obtained for most of the exponential
asymptotic lower bounds in the literature.

Our main result disposes of the concern that the exponential lower bound on
the complexity of EWS1S begins to take effect only for impractically huge inputs.
However, this result does not eliminate another possible loophole, that EWS1S
might be hard only for an insignificant fraction of the sentences, as discussed
in Remark 4.1. Obtaining nontrivial bounds on the density of hard inputs is an
important open problem.

REFERENCES

ADLEMAN, L. 1978. Two theorems on random polynomial time. InProceedings of the 19th Annual IEEE
Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, Calif.,
75–83.

ADLEMAN, L. M., DEMARRAIS, J.,AND HUANG, M.-D. A. 1997. Quantum computability.SIAM J. Com-
put. 26, 1524–1540.

AHARONOV, D. 1998. Quantum computation–A review. InAnnual Reviews of Computational Physics,
Vol. IV, D. Stauffer, Ed. World Scientific Press, River Edge, N.J.

AHO, A. V., HOPCROFT, J. E.,AND ULLMAN , J. D. 1974. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Mass.

AJTAI, M. 1983. 61
1-formulae on finite structures.Ann. Pure Appl. Logic 24, 1–48.

AJTAI, M. 1996. Generating hard instances of lattice problems. InProceedings of the 28th Annual ACM
Symposium on Theory of Computing. ACM, New York. Full version: Report TR96-007,Electronic
Colloquium on Computational Complexity, http://www.eccc.uni-trier.de/eccc/.

ALLENDER, E. 2001. Some pointed questions concerning asymptotic lower bounds and news from the
isomorphism front. InCurrent Trends in Theoretical Computer Science, G. Paun, G. Rozenberg, and
A. Salomaa, Eds. World Scientific Press, River Edge, N.J., 25–41.

ALON, N., AND BOPPANA, R. B. 1987. The monotone circuit complexity of Boolean functions.Combi-
natorica 7, 1–23.

ANDREEV, A. E. 1985. On a method for obtaining lower bounds for the complexity of individual monotone
functions.Dokl. Ak. Nauk SSSR 282, 1033–1037. English translation inSov. Math. Dokl. 31, 530–534.

BAKER, T., GILL , J.,AND SOLOVAY, R. 1975. Relativizations of the P=? NP question.SIAM J. Comput. 4,
431–442.

BENNETT, C. H., AND GILL , J. 1981. Relative to a random oracleA, PA 6= NPA 6= co-NPA with
probability 1.SIAM J. Comput. 10, 96–113.

BERMAN, L. 1980. The complexity of logical theories.Theoret. Comput. Sci. 11, 71–77.
BERMAN, L., AND HARTMANIS, J. 1977. On isomorphisms and density of NP and other complete sets.

SIAM J. Comput. 6, 305–322.
BERNSTEIN, E.,AND VAZIRANI , U. 1997. Quantum complexity theory.SIAM J. Comput. 26, 1411–1473.
BLUM, M. 1966. Recursive function theory and speed of computation.Canadian Math. Bull. 9, 745–749.
BLUM, N. 1984. A Boolean function requiring 3n network size.Theoret. Comp. Sci. 28, 337–345.

782 L. STOCKMEYER AND A. R. MEYER

BOPPANA, R. B.,AND SIPSER, M. 1990. The complexity of finite functions. InHandbook of Theoretical
Computer Science, Volume A, Algorithms and Complexity, J. van Leeuwen, Ed. Elsevier, New York,
Chapter 14, 757–804.

BORODIN, A. 1977. On relating time and space to size and depth.SIAM J. Comput. 6, 733–743.
BÜCHI, J. R. 1960. Weak second order arithmetic and finite automata.Z. Math. Logik Grundl. Math. 6,

66–92.
CHAITIN , G. J. 1995. The Berry paradox.Complexity 1, 26–30.
CHANDRA, A. K., KOZEN, D. C.,AND STOCKMEYER, L. J. 1981. Alternation.J. ACM 28, 114–133.
COBHAM, A. 1965. The intrinsic computational difficulty of functions. InProceedings of the 1964

International Congress for Logic, Methodology and Philosophy of Science, Y. Bar-Hillel, Ed. North-
Holland, Amsterdam, 24–30.

COOK, S. A. 1971. The complexity of theorem proving procedures. InProceedings of the 3rd Annual
ACM Symposium on Theory of Computing. ACM, New York, 151–158.

DEUTSCH, D. 1989. Quantum computational networks.Proc. Roy. Soc. Lond. A 425, 73–90.
DUNNE, P. E. 1988. The Complexity of Boolean Networks. Academic Press, New York.
EDMONDS, J. 1965. Paths, trees and flowers.Canad. J. Math. 17, 449–467.
EHRENFEUCHT, A. 1975. Practical decidability.J. Comput. Syst. Sci. 11, 392–396.
ELGOT, C. C. 1961. Decision problems of finite automata design and related arithmetics.Trans. Amer.

Math. Soc. 98, 21–51.
FISCHER, M. J., AND RABIN, M. O. 1974. Super-exponential complexity of Presburger arithmetic. In

Complexity of Computation, SIAM-AMS Proceedings, vol. 7, R. Karp, Ed. American Mathematical
Society, Providence, R.I., 27–42.

FURST, M., SAXE, M., AND SIPSER, M. 1984. Parity, circuits, and the polynomial time hierarchy.Math.
Syst. Theory 17, 13–27.

GILL , J. 1977. Computational complexity of probabilistic Turing machines.SIAM J. Comput. 6, 675–
695.

GUREVICH, Y. 1991. Average case completeness.J. Comput. Syst. Sci. 42, 346–398.
HARPER, L. H., HSIEH, W. N., AND SAVAGE, J. E. 1975. A class of Boolean function with linear combi-

national complexity.Theoret. Comput. Sci. 1, 161–183.
HARRISON, M. A. 1965. Introduction to Switching and Automata Theory. McGraw-Hill, New York.
HARTMANIS, J.,AND STEARNS, R. E. 1965. On the computational complexity of algorithms.Trans. Amer.

Math. Soc. 117, 285–306.
HÅSTAD, J. 1986. Almost optimal lower bounds for small depth circuits. InAdvances in Computer

Research, Vol. 5: Randomness and Computation, S. Micali, Ed. JAI Press, Greenwich, CT.
HOPCROFT, J. E.,AND ULLMAN , J. D. 1979. Introduction to Automata Theory, Languages, and Compu-

tation. Addison-Wesley, Reading, Mass.
IMPAGLIAZZO, R.,AND WIGDERSON, A. 1997. P=BPP unless E has sub-exponential circuits: Derandom-

izing the XOR lemma. InProceedings of the 29th Annual ACM Symposium on Theory of Computing.
ACM, New York, 220–229.

KANNAN, R. 1982. Circuit-size lower bounds and non-reducibility to sparse sets.Inf. Cont. 55, 40–
56.

KARP, R. M. 1972. Reducibility among combinatorial problems. InComplexity of Computer Computa-
tions, R. E. Miller and J. W. Thatcher, Eds. Plenum Press, New York, 85–103.

KARP, R. M.,AND LIPTON, R. J. 1980. Some connections between nonuniform and uniform complexity
classes. InProceedings of the 12th Annual ACM Symposium on Theory of Computing. ACM, New York,
302–309.

KNUTH, D. E. 1969. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms. Addison-
Wesley, Reading, Mass.

KNUTH, D. E. 1976. Mathematics and computer science: coping with finiteness.Science 194, 1235–
1242. Reprinted in: D. E. Knuth,Selected Papers in Computer Science, Cambridge University Press,
Cambridge, UK, 1996.

LEVIN, L. A. 1973. Universal sorting problems.Problemy Peredaci Informacii 9, 115–116. English
translation inProb. Inf. Trans. 9, 265–266.

LEVIN, L. A. 1986. Average case complete problems.SIAM J. Comput. 15, 285–286.
LI, M., AND VITÁNYI , P. M. 1990. Kolmogorov complexity and its applications. InHandbook of The-

oretical Computer Science, Volume A, Algorithms and Complexity, J. van Leeuwen, Ed. Elsevier, New
York, Chapter 4, 187–254.

LUPANOV, O. B. 1958. Ob odnom metode sinteza skhem.Izv. VUZ (Radiofizika) 1, 120–140.

Lower Bound on the Circuit Complexity of a Problem in Logic 783

MEYER, A. R. 1975. Weak monadic second-order theory of successor is not elementary-recursive. In
Logic Colloquium: Symposium on Logic Held at Boston 1972-73.Lecture Notes in Mathematics, vol.
453, R. Parikh, Ed. Springer-Verlag, Berlin, 132–154.

MEYER, A. R., AND MCCREIGHT, E. M. 1971. Computationally complex and pseudo-random zero-one
valued functions. InTheory of Machines and Computations. Academic Press, New York, 19–42.

MEYER, A. R., AND STOCKMEYER, L. J. 1972. The equivalence problem for regular expressions with
squaring requires exponential space. InProceedings of the 13th Annual IEEE Symposium on Switching
and Automata Theory. IEEE Computer Society Press, Los Alamitos, Calif., 125–129.

MOTWANI, R., AND RAGHAVAN , P. 1995. Randomized Algorithms. Cambridge University Press,
Cambridge, UK.

NIELSEN, M. A., AND CHUANG, I. L. 2000. Quantum Computation and Quantum Information Theory.
Cambridge University Press, Cambridge, UK.

OSHERSON, D. 1995. Probability judgement. InAn Invitation to Cognitive Science, Vol. 3: Thinking, 2nd
ed., E. E. Smith and D. Osherson, Eds. MIT Press, Cambridge, MA.

PAUL, W. 1977. A 2.5n-lower bound on the combinational complexity of Boolean functions.SIAM J.
Comput. 6, 427–443.

PIPPENGER, N. 1979. On simultaneous resource bounds. InProceedings of the 20th Annual IEEE Sympo-
sium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, Calif., 307–311.

PIPPENGER, N., AND FISCHER, M. J. 1979. Relations among complexity measures.J. ACM 26, 361–381.
POHL, F. 1980. Beyond the Blue Event Horizon. Ballantine Books, New York, Chapter 12.
RABIN, M. O. 1960. Degree of difficulty of computing a function and a partial ordering of recursive sets.

Tech. Rep. 2, Hebrew Univ., Jerusalem, Israel.
RABIN, M. O. 1976. Probabilistic algorithms. InAlgorithms and Complexity, New Directions and Recent

Trends, J. F. Traub, Ed. Academic Press, New York, 21–29.
RAZBOROV, A. A. 1985. Lower bounds on the monotone complexity of some Boolean functions.Dokl.

Ak. Nauk SSSR 281, 798–801. English translation inSov. Math. Dokl. 31, 354–357.
ROBERTSON, E. L. 1974. Structure of complexity in the weak monadic second-order theories of the

natural numbers. InProceedings of the 6th Annual ACM Symposium on Theory of Computing. ACM,
New York, 161–171.

ROGERS, JR., H. 1967. Theory of Recursive Functions and Effective Computability. McGraw-Hill,
New York.

RUZZO, W. L. 1981. On uniform circuit complexity.J. Comput. Syst. Sci. 22, 365–383.
SAVAGE, J. E. 1972. Computational work and time on finite machines.J. ACM 19, 660–674.
SAVAGE, J. E. 1976. The Complexity of Computing. Wiley, New York.
SCARPELLINI, B. 1985. Complex Boolean networks obtained by diagonalization.Theoret. Comput.

Sci. 36, 119–125.
SCHNORR, C. P. 1974. Zwei lineare untere shranken f¨ur die komplexität Boolescher funktionen.Com-

puting 13, 155–171.
SCHNORR, C. P. 1976a. A lower bound on the number of additions in monotone computations.Theoret.

Comp. Sci. 2, 305–315.
SCHNORR, C. P. 1976b. The network complexity and the Turing machine complexity of finite functions.

Acta Inform. 7, 95–107.
SHANNON, C. E. 1949. The synthesis of two-terminal switching circuits.Bell Syst. Tech. J. 28, 59–98.
SHOLOMOV, L. A. 1975. On one sequence of functions which is hard to compute.Mat. Zametki 17,

957–966.
SOLOVAY, R.,AND STRASSEN, V. 1977. A fast Monte-Carlo test for primality.SIAM J. Comput. 6, 84–85.

Erratum:SIAM J. Comput. 7, 118.
SOLOVAY, R.,AND YAO, A. 1996. Manuscript, not yet published.
STOCKMEYER, L. J. 1974. The complexity of decision problems in automata theory and logic. Tech. Rep.

MAC TR-133, MIT Project MAC, Cambridge, MA.
STOCKMEYER, L. J. 1977a. On the combinational complexity of certain symmetric Boolean functions.

Math. Syst. Th. 10, 323–366.
STOCKMEYER, L. J. 1977b. The polynomial-time hierarchy.Theoret. Comput. Sci. 3, 1–22.
STOCKMEYER, L. J. 1987. Classifying the computational complexity of problems.J. Symb. Logic 52,

1–43.
STOCKMEYER, L. J.,AND CHANDRA, A. K. 1979. Intrinsically difficult problems.Sci. Amer. 240, May,

140–159.
WEGENER, I. 1987. The Complexity of Boolean Functions. Wiley-Teubner, New York, Stuttgart.

784 L. STOCKMEYER AND A. R. MEYER

WILSON, C. B. 1985. Relativized circuit complexity.J. Comput. Syst. Sci. 31, 169–181.
YAO, A. C. 1985. Separating the polynomial-time hierarchy by oracles. InProceedings of the 26rd Annual

IEEE Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos,
Calif., 1–10.

YAO, A. C. 1993. Quantum circuit complexity. InProceedings of the 34th Annual IEEE Symposium on
Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, Calif., 352–361.

RECEIVED JUNE2002;REVISED OCTOBER2002;ACCEPTED OCTOBER2002

Journal of the ACM, Vol. 49, No. 6, November 2002.

