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Chapter 2

Patterns of Proof

2.1 The Axiomatic Method

The standard procedure for establishing truth in mathematics was invented by Eu-
clid, a mathematician working in Alexandria, Egypt around 300 BC. His idea was
to begin with five assumptions about geometry, which seemed undeniable based
on direct experience. For example, one of the assumptions was “There is a straight
line segment between every pair of points.” Propositions like these that are simply
accepted as true are called axioms.

Starting from these axioms, Euclid established the truth of many additional
propositions by providing “proofs”. A proof is a sequence of logical deductions
from axioms and previously-proved statements that concludes with the proposi-
tion in question. You probably wrote many proofs in high school geometry class,
and you’ll see a lot more in this course.

There are several common terms for a proposition that has been proved. The
different terms hint at the role of the proposition within a larger body of work.

• Important propositions are called theorems.

• A lemma is a preliminary proposition useful for proving later propositions.

• A corollary is a proposition that follows in just a few logical steps from a
lemma or a theorem.

The definitions are not precise. In fact, sometimes a good lemma turns out to be
far more important than the theorem it was originally used to prove.

Euclid’s axiom-and-proof approach, now called the axiomatic method, is the
foundation for mathematics today. In fact, just a handful of axioms, collectively
called Zermelo-Frankel Set Theory with Choice (ZFC), together with a few logical
deduction rules, appear to be sufficient to derive essentially all of mathematics.
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Our Axioms

The ZFC axioms are important in studying and justifying the foundations of math-
ematics, but for practical purposes, they are much too primitive. Proving theorems
in ZFC is a little like writing programs in byte code instead of a full-fledged pro-
gramming language—by one reckoning, a formal proof in ZFC that 2 + 2 = 4
requires more than 20,000 steps! So instead of starting with ZFC, we’re going to
take a huge set of axioms as our foundation: we’ll accept all familiar facts from high
school math!

This will give us a quick launch, but you may find this imprecise specification
of the axioms troubling at times. For example, in the midst of a proof, you may
find yourself wondering, “Must I prove this little fact or can I take it as an axiom?”
Feel free to ask for guidance, but really there is no absolute answer. Just be up
front about what you’re assuming, and don’t try to evade homework and exam
problems by declaring everything an axiom!

Logical Deductions

Logical deductions or inference rules are used to prove new propositions using pre-
viously proved ones.

A fundamental inference rule is modus ponens. This rule says that a proof of P
together with a proof that P IMPLIES Q is a proof of Q.

Inference rules are sometimes written in a funny notation. For example, modus
ponens is written:

Rule.
P, P IMPLIES Q

Q

When the statements above the line, called the antecedents, are proved, then we
can consider the statement below the line, called the conclusion or consequent, to
also be proved.

A key requirement of an inference rule is that it must be sound: any assignment
of truth values that makes all the antecedents true must also make the consequent
true. So if we start off with true axioms and apply sound inference rules, every-
thing we prove will also be true.

You can see why modus ponens is a sound inference rule by checking the truth
table of P IMPLIES Q. There is only one case where P and P IMPLIES Q are both
true, and in that case Q is also true.

P Q P −→ Q
F F T
F T T
T F F
T T T

There are many other natural, sound inference rules, for example:
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Rule.
P IMPLIES Q, Q IMPLIES R

P IMPLIES R

EDITING NOTE:

Rule.
NOT(P ) IMPLIES Q, NOT(Q)

P

�

Rule.
NOT(P ) IMPLIES NOT(Q)

Q IMPLIES P

On the other hand,

Rule.
NOT(P ) IMPLIES NOT(Q)

P IMPLIES Q

is not sound: if P is assigned T and Q is assigned F, then the antecedent is true
and the consequent is not.

Note that a propositional inference rule is sound precisely when the conjunc-
tion (AND) of all its antecedents implies its consequent.

As with axioms, we will not be too formal about the set of legal inference rules.
Each step in a proof should be clear and “logical”; in particular, you should state
what previously proved facts are used to derive each new conclusion.

2.2 Proof Templates

In principle, a proof can be any sequence of logical deductions from axioms and
previously proved statements that concludes with the proposition in question.
This freedom in constructing a proof can seem overwhelming at first. How do
you even start a proof?

Here’s the good news: many proofs follow one of a handful of standard tem-
plates. Each proof has it own details, of course, but these templates at least provide
you with an outline to fill in. In the remainder of this chapter, we’ll through sev-
eral of these standard patterns, pointing out the basic idea and common pitfalls
and giving some examples. Many of these templates fit together; one may give
you a top-level outline while others help you at the next level of detail. And we’ll
show you other, more sophisticated proof techniques in Chapter 3.

The recipes that follow are very specific at times, telling you exactly which
words to write down on your piece of paper. You’re certainly free to say things
your own way instead; we’re just giving you something you could say so that
you’re never at a complete loss.



80 CHAPTER 2. PATTERNS OF PROOF

2.2.1 Proof by Cases

Breaking a complicated proof into cases and proving each case separately is a use-
ful and common proof strategy. In fact, we have already implicitly used this strat-
egy when we used truth tables to show that certain propositions were true or valid.
For example, in section 1.1.5, we showed that an implication P −→ Q is equivalent
to its contrapositive ¬Q −→ P by considering all 4 possible assignments of T or F
to P and Q. In each of the four cases, we showed that P −→ Q was true if and
only if ¬Q −→ P was true. (For example, if P = T and Q = F, then both P −→ Q
and ¬Q −→ P are false, thereby establishing that (P −→ Q) ←→ (¬Q −→ P ) is
true in for this case.) Hence we could conclude that P −→ Q was true if and only
if ¬Q −→ P are equivalent.

Proof by cases works in much more general environments than propositions
involving Boolean variables. In what follows, we will use this approach to prove a
simple fact about acquaintances. As background, we will assume that for any pair
of people, either they have met or not. If every pair of people in a group has met,
we’ll call the group a club. If every pair of people in a group has not met, we’ll call
it a group of strangers.

Theorem. Every collection of 6 people includes a club of 3 people or a group of 3 strangers.

Proof. The proof is by case analysis1. Let x denote one of the six people. There are
two cases:

1. Among the other 5 people besides x, at least 3 have met x.

2. Among the other 5 people, at least 3 have not met x.

Now we have to be sure that at least one of these two cases must hold,2 but
that’s easy: we’ve split the 5 people into two groups, those who have shaken hands
with x and those who have not, so one of the groups must have at least half the
people.

Case 1: Suppose that at least 3 people have met x.
This case splits into two subcases:

Case 1.1: Among the people who have met x, none have met each other.
Then the people who have met x are a group of at least 3 strangers. So
the Theorem holds in this subcase.

Case 1.2: Among the people who have met x, some pair have met each
other. Then that pair, together with x, form a club of 3 people. So the
Theorem holds in this subcase.

This implies that the Theorem holds in Case 1.
Case 2: Suppose that at least 3 people have not met x.
This case also splits into two subcases:

1Describing your approach at the outset helps orient the reader. Try to remember to always do this.
2Part of a case analysis argument is showing that you’ve covered all the cases. Often this is obvious,

because the two cases are of the form “P ” and “not P ”. However, the situation above is not stated quite
so simply.
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Case 2.1: Among the people who have not met x, every pair has met
each other. Then the people who have not met x are a club of at least 3
people. So the Theorem holds in this subcase.

Case 2.2: Among the people who have not met x, some pair have not
met each other. Then that pair, together with x, form a group of at least
3 strangers. So the Theorem holds in this subcase.

This implies that the Theorem also holds in Case 2, and therefore holds in all cases.
�

2.2.2 Proving an Implication

Propositions of the form “If P , then Q” are called implications. This implication is
often rephrased as “P IMPLIES Q” or “P −→ Q”.

Here are some examples of implications:

• (Quadratic Formula) If ax2 + bx+ c = 0 and a 6= 0, then

x =
−b±

√
b2 − 4ac

2a
.

• (Goldbach’s Conjecture) If n is an even integer greater than 2, then n is a sum
of two primes.

• If 0 ≤ x ≤ 2, then −x3 + 4x+ 1 > 0.

There are a couple of standard methods for proving an implication.

Method #1: Assume P is true

This method is really an example of proof by cases in disguise. In particular, when
proving P IMPLIES Q, there are two cases to consider: P is true and P is false. The
case when P is false is easy since, by definition, T IMPLIESQ is true no matter what
Q is. This case is so easy that we usually just forget about it and start right off by
assuming that P is true when proving an implication, since this is the only case
that is interesting. Hence, in order to prove that P IMPLIES Q:

1. Write, “Assume P .”

2. Show that Q logically follows.

For example, we will use this method to prove

Theorem 2.2.1. If 0 ≤ x ≤ 2, then −x3 + 4x+ 1 > 0.

Before we write a proof of this theorem, we have to do some scratchwork to
figure out why it is true.

The inequality certainly holds for x = 0; then the left side is equal to 1 and
1 > 0. As x grows, the 4x term (which is positive) initially seems to have greater
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magnitude than −x3 (which is negative). For example, when x = 1, we have
4x = 4, but −x3 = −1. In fact, it looks like −x3 doesn’t begin to dominate 4x until
x > 2. So it seems the−x3 +4x part should be nonnegative for all x between 0 and
2, which would imply that −x3 + 4x+ 1 is positive.

So far, so good. But we still have to replace all those “seems like” phrases with
solid, logical arguments. We can get a better handle on the critical −x3 + 4x part
by factoring it, which is not too hard:

−x3 + 4x = x(2− x)(2 + x)

Aha! For x between 0 and 2, all of the terms on the right side are nonnegative. And
a product of nonnegative terms is also nonnegative. Let’s organize this blizzard of
observations into a clean proof.

Proof. Assume 0 ≤ x ≤ 2. Then x, 2− x, and 2 + x are all nonnegative. Therefore,
the product of these terms is also nonnegative. Adding 1 to this product gives a
positive number, so:

x(2− x)(2 + x) + 1 > 0

Multiplying out on the left side proves that

−x3 + 4x+ 1 > 0

as claimed. �

There are a couple points here that apply to all proofs:

• You’ll often need to do some scratchwork while you’re trying to figure out
the logical steps of a proof. Your scratchwork can be as disorganized as you
like—full of dead-ends, strange diagrams, obscene words, whatever. But
keep your scratchwork separate from your final proof, which should be clear
and concise.

• Proofs typically begin with the word “Proof” and end with some sort of
doohickey like � or � or “q.e.d”. The only purpose for these conventions
is to clarify where proofs begin and end.

Pitfall

For the purpose of proving an implication P IMPLIES Q, it’s OK, and typical, to
begin by assuming P . But when the proof is over, it’s no longer OK to assume that
P holds! For example, Theorem 2.2.1 has the form “if P , then Q” with P being
“0 ≤ x ≤ 2” and Q being “−x3 + 4x + 1 > 0,” and its proof began by assuming
that 0 ≤ x ≤ 2. But of course this assumption does not always hold. Indeed, if you
were going to prove another result using the variable x, it could be disastrous to
have a step where you assume that 0 ≤ x ≤ 2 just because you assumed it as part
of the proof of Theorem 2.2.1.
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Method #2: Prove the Contrapositive

We have already seen that an implication “P IMPLIES Q” is logically equivalent to
its contrapositive

NOT(Q) IMPLIES NOT(P ).

Proving one is as good as proving the other, and proving the contrapositive is
sometimes easier than proving the original statement. Hence, you can proceed as
follows:

1. Write, “We prove the contrapositive:” and then state the contrapositive.

2. Proceed as in Method #1.

For example, we can use this approach to prove

Theorem 2.2.2. If r is irrational, then
√
r is also irrational.

Recall that rational numbers are equal to a ratio of integers and irrational num-
bers are not. So we must show that if r is not a ratio of integers, then

√
r is also not

a ratio of integers. That’s pretty convoluted! We can eliminate both not’s and make
the proof straightforward by considering the contrapositive instead.

Proof. We prove the contrapositive: if
√
r is rational, then r is rational.

Assume that
√
r is rational. Then there exist integers a and b such that:

√
r =

a

b

Squaring both sides gives:

r =
a2

b2

Since a2 and b2 are integers, r is also rational. �

2.2.3 Proving an “If and Only If”

Many mathematical theorems assert that two statements are logically equivalent;
that is, one holds if and only if the other does. Here is an example that has been
known for several thousand years:

Two triangles have the same side lengths if and only if two side lengths
and the angle between those sides are the same in each triangle.

The phrase “if and only if” comes up so often that it is often abbreviated “iff”.

Method #1: Prove Each Statement Implies the Other

The statement “P IFF Q” is equivalent to the two statements “P IMPLIES Q” and
“Q IMPLIES P”. So you can prove an “iff” by proving two implications:
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1. Write, “We prove P implies Q and vice-versa.”

2. Write, “First, we show P implies Q.” Do this by one of the methods in Sec-
tion 2.2.2.

3. Write, “Now, we show Q implies P .” Again, do this by one of the methods
in Section 2.2.2.

Method #2: Construct a Chain of IFFs

In order to prove that P is true iff Q is true:

1. Write, “We construct a chain of if-and-only-if implications.”

2. Prove P is equivalent to a second statement which is equivalent to a third
statement and so forth until you reach Q.

This method sometimes requires more ingenuity than the first, but the result can
be a short, elegant proof, as we see in the following example.

Theorem 2.2.3. The standard deviation of a sequence of values x1, . . . , xn is zero iff all
the values are equal to the mean.

Definition. The standard deviation of a sequence of values x1, x2, . . . , xn is defined
to be: √

(x1 − µ)2 + (x2 − µ)2 + · · ·+ (xn − µ)2

n
(2.1)

where µ is the mean of the values:

µ ::=
x1 + x2 + · · ·+ xn

n

As an example, Theorem 2.2.3 says that the standard deviation of test scores is
zero if and only if everyone scored exactly the class average. (We will talk a lot
more about means and standard deviations in Part IV of the book.)

Proof. We construct a chain of “iff” implications, starting with the statement that
the standard deviation (2.1) is zero:√

(x1 − µ)2 + (x2 − µ)2 + · · ·+ (xn − µ)2

n
= 0. (2.2)

Since zero is the only number whose square root is zero, equation (2.2) holds iff

(x1 − µ)2 + (x2 − µ)2 + · · ·+ (xn − µ)2 = 0. (2.3)

Squares of real numbers are always nonnegative, and so every term on the left
hand side of equation (2.3) is nonnegative. This means that (2.3) holds iff

Every term on the left hand side of (2.3) is zero. (2.4)

But a term (xi − µ)2 is zero iff xi = µ, so (2.4) is true iff

Every xi equals the mean.

�
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2.2.4 Proof by Contradiction

In a proof by contradiction or indirect proof, you show that if a proposition were false,
then some false fact would be true. Since a false fact can’t be true, the proposition
had better not be false. That is, the proposition really must be true.

EDITING NOTE:
So proof by contradiction would be described by the inference rule

Rule.
¬P −→ F

P

�

Proof by contradiction is always a viable approach. However, as the name sug-
gests, indirect proofs can be a little convoluted. So direct proofs are generally
preferable as a matter of clarity.

Method: In order to prove a proposition P by contradiction:

1. Write, “We use proof by contradiction.”

2. Write, “Suppose P is false.”

3. Deduce something known to be false (a logical contradiction).

4. Write, “This is a contradiction. Therefore, P must be true.”

As an example, we will use proof by contradiction to prove that
√

2 is irrational.
Recall that a number is rational if it is equal to a ratio of integers. For example,
3.5 = 7/2 and 0.1111 · · · = 1/9 are rational numbers.

Theorem 2.2.4.
√

2 is irrational.

Proof. We use proof by contradiction. Suppose the claim is false; that is,
√

2 is ra-
tional. Then we can write

√
2 as a fraction n/d where n and d are positive integers.

Furthermore, let’s take n and d so that n/d is in lowest terms, namely, there is no
number greater than 1 that divides both n and d).

Squaring both sides gives 2 = n2/d2 and so 2d2 = n2. This implies that n is a
multiple of 2. Therefore n2 must be a multiple of 4. But since 2d2 = n2, we know
2d2 is a multiple of 4 and so d2 is a multiple of 2. This implies that d is a multiple
of 2.

So the numerator and denominator have 2 as a common factor, which contra-
dicts the fact that n/d is in lowest terms. So

√
2 must be irrational. �

EDITING NOTE:
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Potential Pitfall

Often students use an indirect proof when a direct proof would be simpler. Such
proofs aren’t wrong; they just aren’t excellent. Let’s look at an example. A function
f is strictly increasing if f(x) > f(y) for all real x and y such that x > y.

Theorem 2.2.5. If f and g are strictly increasing functions, then f + g is a strictly in-
creasing function.

Let’s first look at a simple, direct proof.

Proof. Let x and y be arbitrary real numbers such that x > y. Then:

f(x) > f(y) (since f is strictly increasing)
g(x) > g(y) (since g is strictly increasing)

Adding these inequalities gives:

f(x) + g(x) > f(y) + g(y)

Thus, f + g is strictly increasing as well. �

Now we could prove the same theorem by contradiction, but this makes the
argument needlessly convoluted.

Proof. We use proof by contradiction. Suppose that f + g is not strictly increasing.
Then there must exist real numbers x and y such that x > y, but

f(x) + g(x) ≤ f(y) + g(y)

This inequality can only hold if either f(x) ≤ f(y) or g(x) ≤ g(y). Either way, we
have a contradiction because both f and g were defined to be strictly increasing.
Therefore, f + g must actually be strictly increasing. �

�

A proof of a proposition P by contradiction is really the same as proving the
implication T IMPLIESP by contrapositive. Indeed, the contrapositive of T IMPLIES
P is NOT(P ) IMPLIES F. As we saw in Section 2.2.2(???), such a proof would be
begin by assuming NOT(P ) in an effort to derive a falsehood, just as you do in a
proof by contradiction.

Pitfall

No matter how you think about it, it is important to remember that when you
start by assuming NOT(P ), you will derive conclusions along the way that are not
necessarily true. (Indeed, the whole point of the method is to derive a falsehood.)
This means that you cannot rely on such intermediate results after the proof is
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completed, for example that n is even in the proof of Theorem 2.2.4). There was
not much risk of that happening in the proof of Theorem 2.2.4, but when you are
doing more complicated proofs that build up from several lemmas, some of which
utilize a proof by contradiction, it will be important to keep track of which follow
from a (false) assumption in a proof by contradiction.

2.3 Good Proofs in Practice

One purpose of a proof is to establish the truth of an assertion with absolute cer-
tainty. Mechanically checkable proofs of enormous length or complexity can ac-
complish this. But humanly intelligible proofs are the only ones that help someone
understand the subject. Mathematicians generally agree that important mathemat-
ical results can’t be fully understood until their proofs are understood. That is why
proofs are an important part of the curriculum.

To be understandable and helpful, more is required of a proof than just logical
correctness: a good proof must also be clear. Correctness and clarity usually go
together; a well-written proof is more likely to be a correct proof, since mistakes
are harder to hide.

In practice, the notion of proof is a moving target. Proofs in a professional
research journal are generally unintelligible to all but a few experts who know all
the terminology and prior results used in the proof. Conversely, proofs in the first
weeks of an introductory course like Mathematics for Computer Science would be
regarded as tediously long-winded by a professional mathematician. In fact, what
we accept as a good proof later in the term will be different than what we consider
to be a good proof in the first couple of weeks of this course. But even so, we can
offer some general tips on writing good proofs:

State your game plan. A good proof begins by explaining the general line of rea-
soning. For example, “We use case analysis” or “We argue by contradiction.”

Keep a linear flow. Sometimes proofs are written like mathematical mosaics, with
juicy tidbits of independent reasoning sprinkled throughout. This is not
good. The steps of an argument should follow one another in an intelligi-
ble order.

A proof is an essay, not a calculation. Many students initially write proofs the way
they compute integrals. The result is a long sequence of expressions without
explanation, making it very hard to follow. This is bad. A good proof usually
looks like an essay with some equations thrown in. Use complete sentences.

Avoid excessive symbolism. Your reader is probably good at understanding words,
but much less skilled at reading arcane mathematical symbols. So use words
where you reasonably can.

Revise and simplify. Your readers will be grateful.
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Introduce notation thoughtfully. Sometimes an argument can be greatly simpli-
fied by introducing a variable, devising a special notation, or defining a new
term. But do this sparingly since you’re requiring the reader to remember all
that new stuff. And remember to actually define the meanings of new vari-
ables, terms, or notations; don’t just start using them!

Structure long proofs. Long programs are usually broken into a hierarchy of smaller
procedures. Long proofs are much the same. Facts needed in your proof that
are easily stated, but not readily proved are best pulled out and proved in
preliminary lemmas. Also, if you are repeating essentially the same argu-
ment over and over, try to capture that argument in a general lemma, which
you can cite repeatedly instead.

Be wary of the “obvious”. When familiar or truly obvious facts are needed in a
proof, it’s OK to label them as such and to not prove them. But remember
that what’s obvious to you, may not be—and typically is not—obvious to
your reader.

Most especially, don’t use phrases like “clearly” or “obviously” in an attempt
to bully the reader into accepting something you’re having trouble proving.
Also, go on the alert whenever you see one of these phrases in someone else’s
proof.

Finish. At some point in a proof, you’ll have established all the essential facts
you need. Resist the temptation to quit and leave the reader to draw the
“obvious” conclusion. Instead, tie everything together yourself and explain
why the original claim follows.

The analogy between good proofs and good programs extends beyond struc-
ture. The same rigorous thinking needed for proofs is essential in the design of
critical computer systems. When algorithms and protocols only “mostly work”
due to reliance on hand-waving arguments, the results can range from problem-
atic to catastrophic. An early example was the Therac 25, a machine that provided
radiation therapy to cancer victims, but occasionally killed them with massive
overdoses due to a software race condition. A more recent (August 2004) exam-
ple involved a single faulty command to a computer system used by United and
American Airlines that grounded the entire fleet of both companies—and all their
passengers!

It is a certainty that we’ll all one day be at the mercy of critical computer sys-
tems designed by you and your classmates. So we really hope that you’ll develop
the ability to formulate rock-solid logical arguments that a system actually does
what you think it does!
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2.3.1 Problems

Class Problems

Problem 2.1.
If we raise an irrational number to an irrational power, can the result be rational?

Show that it can by considering
√

2
√

2
and arguing by cases.

Problem 2.2.
Identify exactly where the bugs are in each of the following bogus proofs.3

(a) Bogus Claim: 1/8 > 1/4.

Bogus proof.

3 > 2
3 log10(1/2) > 2 log10(1/2)

log10(1/2)3 > log10(1/2)2

(1/2)3 > (1/2)2,

and the claim now follows by the rules for multiplying fractions. �

(b) Bogus proof : 1¢ = $0.01 = ($0.1)2 = (10¢)2 = 100¢ = $1. �

(c) Bogus Claim: If a and b are two equal real numbers, then a = 0.

Bogus proof.

a = b

a2 = ab

a2 − b2 = ab− b2

(a− b)(a+ b) = (a− b)b
a+ b = b

a = 0.

�

Problem 2.3.
It’s a fact that the Arithmetic Mean is at least as large the Geometric Mean, namely,

a+ b

2
≥
√
ab

3From Stueben, Michael and Diane Sandford. Twenty Years Before the Blackboard, Mathematical Asso-
ciation of America, ©1998.
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for all nonnegative real numbers a and b. But there’s something objectionable
about the following proof of this fact. What’s the objection, and how would you
fix it?

Bogus proof.

a+ b

2
?
≥
√
ab, so

a+ b
?
≥ 2
√
ab, so

a2 + 2ab+ b2
?
≥ 4ab, so

a2 − 2ab+ b2
?
≥ 0, so

(a− b)2 ≥ 0 which we know is true.

The last statement is true because a−b is a real number, and the square of a real
number is never negative. This proves the claim. �

Problem 2.4.
Generalize the proof of Theorem 2.2.4 that

√
2 is irrational. For example, how about

3
√

2?

Problem 2.5.
Here is a different proof that

√
2 is irrational, taken from the American Mathemat-

ical Monthly, v.116, #1, Jan. 2009, p.69:

Proof. Suppose for the sake of contradiction that
√

2 is rational, and choose the least
integer, q > 0, such that

(√
2− 1

)
q is a nonnegative integer. Let q′ ::=

(√
2− 1

)
q.

Clearly 0 < q′ < q. But an easy computation shows that
(√

2− 1
)
q′ is a nonnega-

tive integer, contradicting the minimality of q. �

(a) This proof was written for an audience of college teachers, and at this point
it is a little more concise than desirable. Write out a more complete version which
includes an explanation of each step.

(b) Now that you have justified the steps in this proof, do you have a preference
for one of these proofs over the other? Why? Discuss these questions with your
teammates for a few minutes and summarize your team’s answers on your white-
board.

Problem 2.6.
Here is a generalization of Problem 2.4 that you may not have thought of:
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Lemma 2.3.1. Let the coefficients of the polynomial a0+a1x+a2x
2+· · ·+an−1x

m−1+xm

be integers. Then any real root of the polynomial is either integral or irrational.

(a) Explain why Lemma 2.3.1 immediately implies that m
√
k is irrational when-

ever k is not an mth power of some integer.

(b) Collaborate with your tablemates to write a clear, textbook quality proof of
Lemma 2.3.1 on your whiteboard. (Besides clarity and correctness, textbook qual-
ity requires good English with proper punctuation. When a real textbook writer
does this, it usually takes multiple revisions; if you’re satisfied with your first draft,
you’re probably misjudging.) You may find it helpful to appeal to the following:
Lemma 2.3.2. If a prime, p, is a factor of some power of an integer, then it is a factor of
that integer.

You may assume Lemma 2.3.2 without writing down its proof, but see if you can
explain why it is true.

Homework Problems

Problem 2.7.
Show that log7 n is either an integer or irrational, where n is a positive integer. Use
whatever familiar facts about integers and primes you need, but explicitly state
such facts.

Problem 2.8.
For n = 40, the value of polynomial p(n) ::= n2 + n+ 41 1.1, is not prime, as noted
in Section 1.3. But we could have predicted based on general principles that no
nonconstant polynomial, q(n), with integer coefficients can map each nonnegative
integer into a prime number. Prove it.

Hint: Let c ::= q(0) be the constant term of q. Consider two cases: c is not
prime, and c is prime. In the second case, note that q(cn) is a multiple of c for all
n ∈ Z. You may assume the familiar fact that the magnitude (absolute value) of
any nonconstant polynomial, q(n), grows unboundedly as n grows.

Problem 2.9.
The fact that that there are irrational numbers a, b such that ab is rational was
proved in Problem 2.1. Unfortunately, that proof was nonconstructive: it didn’t
reveal a specific pair, a, b, with this property. But in fact, it’s easy to do this: let
a ::=

√
2 and b ::= 2 log2 3.

We know
√

2 is irrational, and obviously ab = 3. Finish the proof that this a, b
pair works, by showing that 2 log2 3 is irrational.
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