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The classes of sequences generated by time- and space- restricted multiple counter 
machines are compared to the corresponding classes generated by similarly restricted 
multiple tape Turing machines. Special emphasis is placed on the class of sequences 
generable by machines which operate in real time. Real-time Turing machines are shown 
to be strictly more powerful than real-time counter machines. A number of questions 
which remain open for real-time Turing machines are settled for real-time counter 
machines. 

INTRODUCTION 

In  recent years much work has been done on the complexity of Tur ing  machine 
computations.  Parallelling this work on t ime- and space-restricted Tur ing  machines, 
we consider similar restrictions on machines which, in place of tapes, have registers 

capable of holding integers which can be incremented or decremented by one and 

tested for zero. Although such counter machines (CM's)  appear to be much simpler  
than Tur ing  machines (TM's ) ,  unrestricted CM's  have been shown by Minsky [8] 

to be as powerful as T M ' s .  Counter  machines, being susceptible to formal definition 
using little more mathematics than vector addition, are somewhat more tractable 

* A portion of this paper was presented at the Eighth Annual Symposium on Switching and 
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than restricted TM's ;  therefore, a number of questions which are still open for 
restricted TM's  are settled in this paper for restricted CM's. 

We confine our attention in this paper to machines as sequence generators. The 
main theme of the paper is a comparison of the properties of time-restricted T M  
and CM generators. In an earlier paper [4], we have made a similar comparison of 
language recognizers. Since sequence generation can be viewed as recognition of a 
language encoded over a one letter alphabet, a number of the results in this paper 
strengthen results reported in our earlier work. 

Special attention is paid to sequence generators which operate in real time, i.e., 
emit a bit at every step. The work of Hartmanis and Stearns [5] and Fischer [2] 
indicates that real-time generation plays a fundamental role in the study of time 
requirements of more general computations. Moreover, a sequence generable within 
any computable time restriction is, by definition (el. Section 1.1), a homomorphic 
image of a real-time generable sequence. This observation yields immediate extensions 
to a number of results reported in this paper which, for simplicity, have been stated 
and proved only for real-time generators. 

A surprising application of the notion of real-time generability has appeared in 
proofs by Cobham [1] of some special cases of 

CONJECTURE (Hartmanis-Stearns). Let x be a reat number, 0 ~ x < 1. I f  the 
infinite binary expansion of x is real-time generable by a CM, then x is either rational 
or transcendental. 

This conjecture lends yet more motivation to the study of real-time sequence 
generation. 

I. PRELIMINARIES 

1.1. The Models 

An n counter machine (n-CM) comprises a finite state control and n counters, 

each capable of containing any integer. The control unit of an n-CM is partitioned 
into active states (which emit outputs) and dormant states (which do not emit outputs). 
At the start of its computation, the n-CM is in a designated initial state, and all 
counters are set to zero. Each step in a CM computation is uniquely determined 
by the state of the control unit and by that subset of the counters which contain 
zero. The action at a step consists of adding 0, +1 ,  or --1 independently to each 
counter and changing the state of the control unit. If  the state of the CM is active, 
then an output is also emitted at that step. The sequence generated by the CM is 
then the sequence of outputs emitted during the course of the computation. Note 
that CM's operate autonomously. Thus, each CM computes a unique sequence, 
and each computation is infinite in that no "halting" mechanism is assumed. 



52 FISCHER, MEYER, AND ROSENBERG 

More precisely, an n -CM M is specified by 

(1) a finite set Q of states which is parti t ioned into a set Qa of active states and a 
set Pa  of dormant states; 

(2) a designated initial state q0 ~ Q; 

(3) a machine function 1 M, 

M : Q  • {0, I}~--~Q x { - 1 , 0 ,  1}~; 

(4) an output function oJ, 

o~ :Qo - .{0 ,  1}. 

Let  Z denote the set of integers. For  any z ~ Z, define 

l~ if z = O ,  
sg(z) = otherwise. 

Extend the function sg to Z ~ by 

sg ( (x ,  ..... x~ ) )  = (sg(xl ) , . . . ,  sg (~ , ) ) .  

For  ( x  1 .... , x~) and (Yl  .... , y~ )  in Z'*, define 

(x  1 ,..., x , )  + ( y l  .... , y, ,)  = (x l  + y~ .... , xn + y~). 

A configuration of the n - C M / ~ I  is an element o f Q  • Z n. I f  C = (s, (x  1 ,..., xn)) is 
a configuration of the n-CM, then the state of l~I in configuration C is or(C) = s. 
T h e  successor of configuration C is the configuration 

X(C) = (s', ( y l  ..... y~)) 

where 

M[s ,  s g ( ( x  I ,..., xn))] = (s', ( z  1 ..... zn)  ) 

and 

(Yl ,.--, Y~) = (xt  .... , x~) + ( z l  ,..., z~). 

The  computation of the n-CM 1~I is the (infinite) sequence of configurations 

Co,  C~, Ce ,... where C o = (qo, (0,..., 0)), and for each i > 0 Ci = X(Ci_~). The  

state-sequence generated by M is the sequence So, s~ .... where, for each i ~> O, 

s, = o ( C 3 .  

The  sequence generated by l~I is the binary sequence ~ : a0,  a 1 , a S ,... where the a~ 
are specified as follows: 

1 For any set S, we denote by S n the set of n tuples of elements of S. 
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Let q0, ql ,-.. be the state-sequence generated by M. 

(1) Let t ( 0 ) =  t~k[qk cQa]; 2 

(2) For each j > 0, let 

t(j) = #k[k > t(i  - -  1) & qg ~Qa]. 

Then, for each j = 0, 1,2,..., a i = w(qt(j)), a 

Let T be any increasing function from the nonnegative integers into the nonnegative 
integers. We say that M operates within time T if t(k) ~ T(k) for all k. M operates 
in time T if t(k) ---- T(k) for all k. 

Similar definitions can be made for Turing machines. We refer the reader to 
Hartmanis and Stearns [5] for details. 

For each such function T and positive integer m, we let Cr(m) denote the class of 
sequences generable within time T by m-CM's, and let C r  ---- [,.)~=o Cr(m) �9 We let 
Tr(m) and T r  denote the corresponding classes for TM's. 

Of particular interest is the case T ( n ) =  n. Automata which operate in time 
T(n) = n are said to operate in real time, and the sequence emitted by such an 
automaton is said to be real-time generable. Obviously, an automaton which operates 
in real time has no accessible dormant states. 

Two automata are said to be time-equivalent if they generate the same sequence 
and operate in the same time. 

1.2. Preliminary Results 

We state, without proof, a number of results from [4] which will be useful in the 
sequel. 

(a) Space Complexity 

We say an m-CM (m-TM) operates in space S [S being a nondecreasing function 
from the nonnegative integers to the nonnegative integers] if S(n) is the largest 
integer, in magnitude, assumed by any counter (respectively, is the number of squares 
of tape visited) until the n-th element of the generated sequence is emitted. 

PROPOSITION l.l .  Let M be an m-CM which operates in space S. Then: 

(i) There is a constant c such that M operates within time T(n) ~ cnS(n) m. 

(ii) For any real e > O, one can find a time-equivalent CM M' which operates in 
space S'(n) ~ [S(n)']. 4 

(iii) One can find an equivalent 1-TM which operates in space S'(n) ~ log S(n). 

p. is the  minimal iza t ion  operator  of  recursive func t ion  theory.  For  any proposi t ional  P(x), 
t~y[P(y)] is the  least integer n such  that  P(n), if any exists;  it is undef ined  otherwise.  

3 Note  that  the  sequence  ~ can be null,  finite, or infinite. We  a s s u m e  in the  sequel  that  all 
sequences  genera ted  are infinite. 

4 For  any real n u m b e r  x > 0, [x] denotes  the  integer  part  of  x. 
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(b) Variants of the Model 

I t  will, on occasion, be useful to consider certain variants of our CM model. We 
now enumerate some variants which do not affect the operation time of a CM. 

PROPOSITION 1.2. Given an m-CM with the ability to alter the contents of each 
counter independently by arty integer between +c and --c in a single step (for some 
fixed integer c), one can effectively find a time-equivalent (ordinary) m-CM. 

PROPOSITION 1.3. Given an m-CM, one can effectively f ind a time-equivalent m-CM 
which 

(i) 
(ii) 

(iii) 

stores only nonnegative integers in its counters; 

alters its counters at most every c steps, for some integer c > 0; 

alters at most one counter per step. 

For convenience we shall generally make use of Proposition 1.3(i) without explicit 
note. 

1.3. Basic Necessary Conditions 

In  this section we develop two basic tools for showing that a sequence is not 
real-time generable by an m-CM. No comparable tools for T M ' s  are as yet known. 

Let  cx ---- a0, a I , a 2 ,... be an (infinite) binary sequence. For any integer k > 0, 
a k slice of ~x is a subsequence of the form ai ,..., ai+k_l , i.e., a contiguous length k 
subsequenee. 

LEMMA 1.1. Let ~ be a sequence real-time generable by an m-CM M. There is a 
constant c such that the number of distinct k slices of o~ cannot exceed c �9 km. 

Proof. Say that M has q states. We call two configurations of M k equivalent if 
they differ only in coordinates where both contain integers exceeding k. 

Clearly, if M is started in either of two k-equivalent configurations, the next k steps 
of the computation will be indistinguishable in terms of state sequence, hence, in 
terms of output sequence. 

Since the number  of k-equivalent configurations of M cannot exceed q(k + 2) m, 
the lemma readily follows. 

As an immediate application of the lemma, we find 

COROLLARY. The sequence of successive integers in binary notation is not in C~ . 

Obviously, the sequence has 2 k distinct k slices for every integer k. 
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The  condition of Lemma 1.1 is not sufficient to insure membership in C , ,  even 
for sequences which are in "In. The  following useful condition was suggested by 
A. Cobham. 

LEMMA 1.2. Let ~ be a sequence in C~.  Then there is a binary word w such that 

has arbitrarily long slices of  the form ww ... w. 

Proof. The proof is based on the following easily verified fact: Let M be an 
m-CM with the property that, for some fixed integer k, at every step in its computation, 
some counter of M contains an integer not exceeding k. Then M can effectively be 
replaced bv a time-equivalent (m - I)-CM. 

Therefore, let r be the least integer for which there is an r -CM M which real-time 
generates ~. If  r = 0, we are done. I f  r > 0, then for every integer h, there are 
configurations attained by M in which the contents of all counters exceed h; else M 
could be replaced by a real-time (r --  I)-CM. Once such a configuration is attaip"'!, 
M must exhibit the ultimately periodic behavior of a finite state machine for the 
next h steps. Since h was arbitrary, the lemma follows. 

The well-known sequence of Thue [11] contains no slice of the form www; hence, 

COROLLARY (A. Cobham). The Thue sequence is not in C .  . 

This latter sequence is of special interest since it is real-time generable by a TM,  
and the number of distinct k slices is uniformly bounded by a second degree polynomial 
in k. 

2. STABILITY OF COMPLEXITY (.'LASSES 

In this section we consider the stability of the time complexity classes under 
perturbations of the timing functions, under changes in the number of counters or 
tapes, and under operations on the sequences. 

2. I. Speedup Theorems 

The first main distinction between CM's  and T M ' s  is in the area of speedup. 
The  following result follows from Hartmanis and Stearns [5] in conjunction with 

Fischer [2] or Meyer, Rosenberg, and Fischer [7]. 6 

5 All logarithms in this paper are to the base 2. 
6 The result does not follow from [5] alone, since our generators can, in a single step, emit 

at most one binary digit and not a sequence thereof. 
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THEOREM 2.1. Let M be an m-TM which operates within time T(n), and let c > 0 be 

any real number such that E �9 T(n) >1 n. One can effectively find an (m + 3)-TM which is 
equivalent to 1%I and which operates within time [E. T(n)]. Thus, Tr(m ) C T[,rj(m + 3). 

It is not known if the three additional tapes are essential. 

COROLLARY. For all c > 1, To, = "In. That is, "linear time" coincides with real 
time for TM's. 

This result contrasts with the speedup theorem for CM's. 

THEOREM 2.2. Let E > 0 be any real number. Given a CM M which operates within 
time T(n) = n + E(n), one can find an equivalent CM M' which operates within time 
T'(n) = n + [,E(n)]. 

Thus, C~+E(~) ---- Cn+[r �9 
Theorem 2.2 follows immediately from Proposition 1.3(ii). 
The following result shows that Theorem 2.2 is best possible. 

THEOREM 2.3 (M. J. FischerT). For any ~ > 0, there is a sequence ~ in C~1+,), -- C~. 

Proof. We exhibit a sequence which satisfies the theorem. The emphasis will be 
on simplicity of exposition rather than on constructing the "tightest" sequence 
which works. 

(a) Generation of 

The sequence c~ is constructed by emitting, in order, binary representations of the 
successive integers interspersed with strings of O's. In particular, the binary representa- 
tion of each integer m is preceded by a string of O's of length 2tlogml+1. 

We describe a 5-CM M which generates ~. 1%I will operate in discrete stages; for 
each integer m, the m-th stage has 2 m phases. 

At the initiation of the 0-th phase of the m-th stage, the five counters of M will 
contain the following integers: 

Counter Contents 

.4 2,,~-1 

B 0 

C 0 
D 2 m-1 
E 0 

7 Private communication. 
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(i) Using counter D, M emits 2"  O's, one per time unit. Simultaneously, M loads 
counters C and E with 2". Using finite state control, the roles of C and D are inter- 
changed. 

(ii) Using counters A and B, by successive divisions by 2, M emits the binary 
representation of the contents of A. Simultaneously, M loads C with the original 
contents of A. At the end of this process, counters -4 and B are both 0, and counter C 
contains the integer that was in A originally. The  roles of t / a n d  C are interchanged. 

(iii) Counter A is incremented by 4-1 and counter E by --1.  

The  next phase ensues. 
At the initiation of the k-th phase of the m-th stage (1 -'~ k -< 2"), the five counters 

of M will contain the following integers: 

Counter Contents 

A 2 "-1 4 - k  
B 0 
C 0 
D 2"  
E 2 " - - k  

(iv) Using counters C and D, M emits a string of 2"  O's, one per time unit. The  
roles of C and D are then interchanged. 

Steps (ii) and (iii) are now performed to complete this phase. 
Note that the nullity of counter E is used to signal a change of stage. 

Note that, for every integer m, c~ contains 2 m distinct m-slices. By Lemma  1.1, 
c~ is not a real-time generable by any CM. 

(c) ~ ~ c3 . (5 )  

During each of the 2"  phases of the m-th state, M emits m 4- 2"  symbols. The  
initial string of O's of length 2 m is emitted in real time. The  remaining m symbols 
are emitted in fewer than 2 m+l steps, s Each phase thus takes fewer than 3 �9 2 m steps. 
T o  see this more precisely, assume that symbols a 0 .... , ar have been generated in 
at most 3r steps, and that symbol a,+ 1 is the first symbol to be emitted in the k-th 

s The first division takes fewer than 2 m steps, the second fewer than 2 m-x, etc. 
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phase of the m-th stage. For each iE{l,. . . ,  2"}, symbol at+ ~ is emitted at step 
3r + i < 3(r + i). Then, for each j e {1,..., m}, symbol ar+~,~+j is emitted before step 

3 r + 2 " +  ~ 2 m - h ~ l = 3 r + 2  m -4-2m+1(~ 2 - n ) < 3 ( r  + 2 m ) < 3 ( r  + 2  r~ + j ) .  
h~i  h=l  

Thus, M operates within time T(n) - -3n .  Theorem 2.2, therefore, implies that 
c~ ~ C(a+d ~ . 

Thus, for counter machines, one obtains the same "partial" speedup for generation 
as for recognition [4]. For Turing machines, Theorem 2.1 indicates a full speedup 
for generation, whereas Rosenberg [10] showed there is only a partial speedup for 
recognition. 

There is an important special case in which a full speedup is attainable. This 
result is immediate from Proposition 1.3(ii). 

PROPOSITION 2.1. Given a CM which emits an output at least every c steps for 
some integer c > O, one can find an equivalent CM which operates in real time. 

2.2. The Real-Time Hierarchy 

In 1963, Rabin [9] proved that there were languages real-time recognizable by 
2-tape TM's  but not by 1-tape TM's. For generation, it is not known if any number 
of tapes yields more real-time computing power than one tape. 

Open Problem. Is there an m > 1 such that T~(m) -- T~(1) ~ ~ ? 
For counter machines, the current state of knowledge is more complete. A simple 

proof was presented in [4] to the effect that, for every m, there is a language which 
is real-time recognizable by an (m -~- I) -- CM but by no m -- CM. We now extend 
this result to CM generators (which can be viewed as recognizers for languages for 
a unary alphabet). 

THEOREM 2.4. For every integer m > 0, Co(m) is properly included in Cn(m + 1). 

Proof. We first remark that Cn(l) = C,,(0) is the set of sequences generable by 
a finite state machine. Since each such sequence is ultimately periodic, it is an 
elementary excercise to find sequences in C~(2) -C~(1) .  

The reader will easily verify, for example, that the sequence 

O~ ~ a o ,  a l , . . .  

such that ai -- 1 iff i is a perfect square suffices. The difficulty sets in when the m 
of the theorem strictly exceeds 1. 
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We now exhibit, for any given integer m ~ 2, a sequence cx ~ C~(m + 1) --  C~(m). 
Since weak inclusion of the sets is immediate, this demonstration, combined with 
the above remarks will complete the proof. 

(a) G e n e r a t i o n  o f  ~ ~ 

Let M be a real-time (m -t- 1) --  CM with counters labelled A o .... , A , , .  i ' s  com- 
putation is composed of alternating phases, an o u t p u t  phase, and an u p d a t e  phase. 
The  initiation of the output phase is signalled by A o containing 0 and that of the 
update phase by A 1 containing 0. (Both cannot occur simultaneously.) 

Unless otherwise indicated, lbl emits a 0 at every step. 

(i) Initialization: M adds +1  to A a and proceeds to the output phase. 

(ii) Output  phase: l~I increments A 0 by 1 at each step, while simultaneously 
decrementing all other counters, repeating until A 1 contains 0, at which point the 
update phase is entered. M emits a 1 at precisely those steps when at least one of 
the counters contained a 0 on the previous step. 

(iii) Update phase: Let j be the largest integer for which Aj does not contain 0. 
I f  j = O, set j to 1. lkl first adds ~ 1 to the current A j .  Then 19I simultaneously 
adds --1 to A o and +1  to ~41 ,..., A j ,  repeating until A o contains O. The output 
phase is then reentered. 

(b) ~ e C , ( m  + l) 

By definition, M generates c~ in real time. 

(c) a 6 C,(m) 

In order to show that ~ ,6 C,(m), we must analyze the structure of ~. 

(i) Assume that at the beginning of an output phase, the counters of M contain 
integers 0, X 1 ,..., A~ , respectively, where X 1 > 0, and X 1 >~ X i for i ~ {2, . ,  m}. 

During this phase, M emits a slice of cx of length X 1 + 1 which contains l 's  
precisely in positions 1, X 1 -~- 1 ..... X , ,  -~- 1.1~ This phase ends with the counters 
of i containing the integers X 1 , 0, X 2 --  X 1 ,..., X m -- X 1 , respectively. 

(ii) Now assume that, at the beginning of an update phase, the counters of M 
contain integers X 1 , O, X 2 X 1 .... , X , , ,  - -  X 1 , respectively, with some Xj- - -  A 1 :f: 0 
while -u - )(1 for k > j. 

During this phase, i emits a slice of a of length X a + 1 which consists entirely 
of O's. The  update phase ends with the counters of M containing the integers 

9 For this proof we revert to the original definition of CM which permits negative integers 
in the counters. 

x0 Of course some X~ may equal some X~, so some of these m -t- 1 positions may be the same. 
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0, X 1 , X 2 ,..., X~_~, X, + 1, 0 ..... 0, respectively. In the ease that all X i ---- X x for 
i > 1, it ends with the counters of M containing 0, X 1 + 1, 0,..., 0, respectively. 

Note that, in effect the integers X 2 ..... A~ are treated as the base Xx + 1 repre- 
sentation of an integer, with X,  being the high order digit. Thus,  with each increment 
of this integer, carries propogate "to the left." The  set of integers of length m --  1 
in base X l + !  is exhausted when X ~ - X ~ -  - - A m .  At this point, X a is 
incremented, and M begins to enumerate the (m --  I)-digit numbers in base X 1 + 2. 

With this information about the structure of c~, we can resume our argument. 
For each integer k ~> l, consider the set of (k, ra)-words, i.e., length k --  1 binary 

words containing at most (m --  l) l's. For every k, the number of (k, m)-words 
exceeds the binomial coefficient ~--x (,r-l). Moreover, for every (k, m)-word w, ~ contains 
a slice 0klwl0~. n 

Now, let r > 2m be any integer divisible by 4, and let k be an integer in the range 
r/2 <~ k ~ 3r/4. Each (k, m)-word w appears in r --  k distinct r-slices of ~; namely, 

OqwlO r-k-l- i  (i = 0 ..... r - -  k --  1). 

Thus,  the number of distinct r slices of c~ must exceed 

3r/4 11 x ) , m  k ~r/2 

which, in turn, exceeds 

ar/~ ( r / 2 -  l] 
( r - - 3 r / 4 ) \ m _  l ]  

k~r/2 

which is no smaller than 

(r14)(r/4)(r/2 - -  m + l)m-l/(m - -  1)! 

This last expression is a polynomial in r of degree m + l with positive leading 
coefficient and, therefore, exceeds c" r "~I for some fixed c > 0. 

Since, for sufficiently large r, r'"~l >. d .  r "  for any fixed d, the proof is now 
completed by appealing to Lemma I.l.  

Thus,  the addition of a single counter increases the real-time computing power 
of CM's.  Unfortunately, the present proof sheds no light on the corresponding 
problem for TM's .  It would appear that new notions are needed to settle that open 
problem. 

2.3. Operations on Sequences 

In this section we consider the effect of operations on sequences on the classes 
Tn(m) and Cn(m). Another basic difference between T M ' s  and CM's  will emerge 
from this study. 

n We let 0 k denote a string of k O's. 
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(a) Compression Operations 

Let f be any function f : {0, 1}~ --~ {0, 1} for some k. A sequence fl = b0, bl ,... 
is an f compression of a sequence c~ = a0, a 1 ,... if for each nonnegative integer i, 

b~ = f(aik , ai!:+l , . . . ,  a ( ~ + l ) k - 1 ) .  

THEOREM 2.5. Let ~ be an), sequence in CA(m) [respectively, in T.(m)] for some m. 
Then every f compression of a is also in C,~(m) [respectively, in T~(m)]. 

The  proof is immediate since one can obviously construct a generator for any 
f compression of ~ which would emit symbols at a constant rate. 

(b) Composite Sequences 

As before, let f be an arbitrary function mapping {0, 1}/'---~ (0, 1}. The  sequence 
13 = b0, b: ,... is an f composite of the k sequences cx i = aio, ail ,... (1 ~ i ~ k) if, 
for every integer j >~ O, bj = f(al~ , a2j .... , a~j). 

The  following result is obvious: 

PROPOSITION 2.2. I f  the k sequences oq ,..., ak are each in C~(m) [respectively, 
in Tn(m)] for some integer m, then any f composite of the sequences is in Cn(km) [respec- 
tively, in T~(km)]. 

In this subsection we show that for T M ' s  Proposition 2.2 can be significantly 
improved, while for CM's  it cannot. 

THEOREM 2.6. I f  the k sequences OL 1 , . . . ,  Otlr are each in Tn(m)for  some integer m, 
then any f-composite of the sequences is in T~(m q- 4). 

Proof. By Theorem 2.4, it will suffice to show that, for some integer c > 0, the 
composite sequence is in Tc~(m q- 1). This, then, is our goal. 

For i = I,..., k, let the sequence ~i be generated by the real-time m - T M  Mi �9 We 
construct an (m ~- 1)-TM M which will generate the f-composite  sequence 13. 

(a) Structure of M 

M will have m + 1 tapes, denoted T O .... , T~,, each having k tracks. 1~ Tape  T O 
wilt be used to control the generation of/3. For i = 1,..., k, the /-th channels of 
tapes T 1 ,..., T m will be used to simulate M i . 

(b) Operation of M 

M will operate in discrete stages, each comprising k + 1 phases. Roughly speaking, 
during the r-th stage, M will generate 2 ~ symbols from each a~, hence, an equal 
number  from/3. 

lg T h e  reader who wishes to avoid the  an t h ropomorph i c  not ion of  tracks can read this as 
saying tha t  the  symbols  wri t ten on To are f rom an a lphabet  which  is a cross p roduc t  of  k smal ler  
a lphabets .  
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Let us assume that at the beginning of the r-th stage, M has the following informa- 
tion available: 

(i) a segment of length 2 r-1 is marked off on tape T o ; 

(ii) for i ----- 1,..., k, the i-th channels of tapes T 1 ,..., T,n contain the same informa- 
tion as would the tapes of i ~  after 2 r - -  1 steps of its computation, and the squares 
on which Mi ' s  heads would reside are marked; 

(iii) for j = 1 ..... m, the head on tape T~ resides on the square it initially occupied, 
which is also marked. The  r-th stage now proceeds as follows: 

Phase O. Using the marked segment of length 2 r-l, M uses tapes T O and T 1 to 
mark off a segment of length 2" on tape T O . 

Phase i (l ~ i < k). i positions heads 1 .... , m  on the squares marked on 
channel i of each tape. M then simulates Mi for 2 r steps, recording the symbols Mi  
would emit on channel i of tape T O . The  end of this simulation period is signalled 
by the head on T O reaching the end of the marked segment of length 2 r. The  head 
on T O then backspaces to the beginning of the segment, and the other heads backspace 
to their initial squares. Phase i + 1 is now entered. 

Phase k. Phase k is almost identical to phase k - -  1. However, instead of recording 
the symbols Mk would emit, M combines these symbols with the stored output 
from the preceding phases and emits the next 2r-slice of ft. 

The  reader should be able to fill in the details about M ' s  operation. 

(c) Timing Estimates 

We estimate the time required for the r-th stage. 

(i) Phase 1 clearly requires at most 2 r steps. 

(ii) Since, by the end of the (r - -  1)-th stage, 2 r - -  1 symbols of each c~ i have 
been generated, at most 2" - -  1 steps are required to position the heads of M in 
each phase. Each Mi is then simulated for 2 r steps. Finally, the heads are backspaced 
at most 2 r+l squares. Thus,  the r- th stage, during which a 2r-slice of fl is generated, 
requires at most (4k + l) �9 2 ~ steps. Therefore, M operates within time T(n) =- 8k �9 n. 

(The additional factor of 2 compensates for the fact that phases 0 - -  (k - -  1) produce 
no output.) 

Since fl is thus in Ts~.,,(m ~ 1), the theorem follows. 
The  reader will easily verify that Theorems 2.5 and 2.6 and Proposition 2.2 

remain valid if the finite function f is replaced by a generalized sequential machine 
mapping. 

In contrast to Theorem 2.6, we find that the CM complexity classes are sensitive 
to even simple operations on sequences, such as OR-ing. 
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"rrtEOaEM 2.7. For any integers k, m > 0, there exist rn sequences ~1 ,..., ~,~, each 
in C,,(k -i- 4), such that the sequence fl = Vi=x ai is not in Cn(km). la 

Proof. For i = I ..... m, we describe a (k + 4)-CM Mi which generates c~ i in 
real time. Let us focus on a specific M i .  

For each integer r, let p,  denote the r-th prime, and, for any integer x, let rrr(x ) 
be the exponent o fp r  in the prime factorization of x. 

(a) General Description of OL i 

In rough terms, Mg will generate a sequence of the form ztlWlZ21W 2 ... where, 
for each integer q, zq is a sequence of 2kq O's, and wq is a binary word of length q + 1 
having l ' s  precisely in positions 7r(g__x)k+l(q) ..... zrik(q )- 

(b) Generation of cq 

Mi will have k - { - 4  counters: two process-control counters, /)1 and P2,  two 
computational counters, C 1 and C 2 , and k generating counters, G 1 ,..., Gk �9 

Mi will operate in discrete stages, each stage comprising an update phase and an 
output phase. During the update phase of stage q, Mi will emit zql; during the output 
phase, it will emit % .  This  is accomplished as follows. 

At the initiation of stage q (q --  I, 2,...) counters P1 and C 1 will each contain q, 
and all other counters will be empty. 

(i) Update Phase. Throughout  the update phase, Mi emits a 0 at each step. At 
every (2k)-th step of the update phase, Mi adds -- 1 to/~ and + 1 to P2. The  phase 
terminates when P1 is empty; then the output phase begins, and Mi emits a 1. 

While Mi is counting in its control counters, it stores the integer %(q) in counter G~ 
for j ( i -  1)k -{ 1,..., ik. This is accomplished by successive divisions of q by 
P(i-1)Ic, ] , . . . ,  P i k ,  using counters C] and C 2 . Since computing Try(q) requires fewer than 
pjq/(pj -- l) --L 2q steps, all this computing can be done in fewer than 2kq steps; 
hence, it can be completed during the update phase. 

(ii) Output Phase. When the output phase begins, counter P1 is empty, and P2 
contains q; one of C 1 and C 2 is empty (say C t ; by a change of name this can be 
assumed), and the other contains an integer less than q; and each Gj contains the 
int ~ger '-u(q)' 

At each step of the output phase: Mi adds -i-! to P1 and C1 and adds - 1  to P2 ; 
it adds - - I  to C 2 until C, is empty; it adds --1 to each G~ until that G~ is empty. 

At each step an output is emitted. This  output is a 0 unless some G~ had become 
empty at the previous step, in which case a 1 is emitted. When P~ is empty, M~ adds + 1 
to Px and to C~, emits a 0, and enters stage q + 1. 

t3 fl is the elementwise OR of the cx,. 
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(C) The Sequence/3 

For any integer s, and for any s tuple of integers ~Yl ,...,Ys), there is obviously 
an integer x such that, for i =- i ..... s, 7ri(x ) = Yi. Therefore, the sequence/3 is of 
the form zllWlZ21W 2 ,... where each z~ is a sequence of 2kq O's and dach Wq is a binary 
word of length q + I having l ' s  precisely in positions 7q(q),..., ~rk,,(q). 

The  sequence/3 must, then, contain every slice of the form 0qiwl0 q where w is 
a binary word of length not exceeding q containing at most k m -  1 l 's. The  Theorem 
now follows by repeating the argument of Theorem 2.4. 

By clever programming the constant 4 of the Theorem can undoubtedly be reduced, 
but it can probably not be set to 0. 

3. REAL-TIME COUNTABLE FUNCTIONS 

The  notion of a real-time countable function was introduced by Yamada [12] 
as a convenient way to describe real-time generable sequences. We shall extend the 
work of Yamada both by generalizing a number  of his results to CM generators as 
well as T M ' s ,  and by developing a general technique for finding and identifying 
real-time countable functions. 

One can associate with any sequence ~ = a 0 , a 1 ,... containing infinitely many l ' s  
a strictly increasing recursive function f as follows: 

f(O) -=-- #y[a v ---- 1] 

f (x  q- 1) = tzy[y > f ( x ) &a ,  = 1]. 

Thus,  a is a characteristic sequence for the range o f f .  I f  a is real-time generable, then 
f i s  termed real-time countable, and the real-time generator for a is called a counter for f.  

It  is essential to note that a counter for f does not compute f in the conventional 
sense of the word. We shall say that an n -CM computes a function f under the 
following conditions. I f  the n-CM is started with an integer x in counter 1 and all 
other counters empty, it will enter a designated state with f(x) in counter n and all 
other counters empty. The  n-CM is said to c o m p u t e r  within (respectively, in) time T 
if, for any x, at most (respectively, exactly) T(x) steps elapse between the time the 
n -CM is started with x in counter I to the time it enters the designated state. Similar 
conventions apply when the counter for f is a T M .  

Thus,  real-time countable functions should not be confused with functions which 
can be computed within slowly growing time functions. In fact, any recursive function 
can be majorized by some real-time countable function, so there are arbitrarily large 
real-time countable functions which must take arbitrarily long to compute. [The 
time required to compute f(x) cannot, by definition, be less than f(x).] Rather, 
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real-time countability is related to the property that a function can be computed 
in t ime proportional to its own values. We now formalize this property. 

A function f (x)  ~ x is self-computable if there is an integer k > 0 such that, for 
all x, f(x)  is computable within time k . f ( x ) .  

The  definition of real-time countability readily yields 

PROPOSITION 3.1. Every real-time CM (TM)  countable function is self-computable 
on a CM (respectively, TM).  

The  remainder of this section is devoted to proving a partial converse to Proposi- 
tion 3.1. This  converse will provide a powerful tool for establishing the real-time 
countability of functions. It  can be used to simplify several known proofs and settle 
certain open questions. 

We now lay the groundwork for a partial converse to Proposition 3.1. 
We say a function f(x) > /x  is strongly self-computable if there is an integer k 2> 0 

such that, for all x, f(x)  is computable in time k "f(x). 
The  following lemma is of central importance in the sequel. 

LEMMA 3.1. A function f (x)  >~ x is self-computable on a CM (TM)  if, and only if, 
it is strongly self-computable on a CM (respectively, TM).  

Proof. Sufficiency being self-evident, we establish necessity. Let  M be an 
n-CM which computes f within time k . f (x)  for some integer k > 0. Consider the 
(n + 2)-CM N which operates as follows. A computation by N begins with an integer x 
in counter 1 and all other counters empty. 

(a) N simulates /d  on its first n counters, adding 1 to counter n + 1 for each 
step of the computation. After some number  t ~ k . f (x)  steps, when M would halt, 
N has the following configuration: 

(i) counters 1 ..... (n - -  1) are empty; 

(ii) counter n containsf(x);  

(iii) counter n + 1 contains t ~ k "f(x); 

(iv) counter n + 2 is empty. 

(b) N now begins decrementing counter n, while handling counters n -]- 1, n q- 2 
in the following way. For each decrement from counter n, a 1 is added to counter 
n q- 2. Similarly, for each such decrement, k is subtracted from counter n + 1 until 
that counter is emptied. Once counter n q- 1 has been depleted, subtractions from 
that counter are replaced by additions to it. (Thus, we are acting as though counter 
n - [ - 1  had contained - - t  and we had consistently added k to it.) At the end 
of this process, a total of t -~ k . f ( x )  steps have elapsed, and N has the following 
configuration: 

571141x-5 
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(i) counters 1,..., n are empty; 

(ii) counter n + 1 contains k "f(x) - -  t; 

(iii) counter n + 2 contains f (x) .  

(e) N finally empties counter n + 1 and halts in a designated state. Thus, after 
precisely k . f ( x )  + t + k . f ( x )  - -  t = 2k " f ( x )  steps, N has arrived at the following 
configuration: 

(i) counters 1,..., n + 1 are empty; 

(ii) counter n + 2 containsf(x). 

f is thus shown to be strongly self-computable. Since a T M  tape can readily act as a 
counter with no time loss, if l~I is an n-TM, N can be taken to be an (n + 2)-TM. 
The lemma thus holds for TM's  as well. 

The following lemma is immediate by Proposition 1.3(ii) and the proof techniques 
of Theorem 2.2. 

LEMMA 3.2. Let l~I be an m-CM which computes a function f i n  time k . f  for some 
integer k > O. For any integer c > O, one can effectively obtain from M an m-CM N 
which operates as follows: 

For any integer x >~ O, when N is started with [x[c] in its first counter, all other counters 
empty, and x - -  c[x/c] infinite state memory, N will enter a designated state in [k . f(x)/c] 
steps with [f(x)/c] in its last counter, all other counters empty, and f ( x )  - -  c[f(x)/c] in 
finite state memory. 14 

We refer to the function which N computes as f~c}. 
Given a function f ,  let Af(x) = f ( x  + 1) - - f ( x ) .  I f f  is increasing, A f  obviously 

takes on only positive values. 

THEOREM 3.1. Let f be a strictly increasing function. I f  A f  is self-computable on a 
CM (TM) then f is real-time countable on a CM (respectively, TM). 

Proof. The TM version follows directly from the CM construction given. Let 
l~I be an m-CM which computes A f  in time k" Af for some integer k > 0. By 
Lemma 3.1, such an M exists; moreover, by Lemma 3.2 we can obtain, from M, 
another m-CM N which computes the function A f ~ .  We now construct an 
(m + 2)-CM P which is a real-time counter for f.  

(a) Structure of P 

P will have two counters Pa and P~ to control the process of counting f ,  and it 
will have m counters C 1 ,..., C,~ with which to simulate N. It will further have two 
bounded registers in finite state memory, which can hold any integer not exceeding 2k. 

1~ For  any  real n u m b e r  x, Ix] denotes  the  least integer  n > x. 
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(b) Operation of P 

P will operate in discrete stages. For each integer q, at the beginning of stage q, 
P will have the integer [q/2k] in counters P1 and C 1 , 0 in all other counters, and 
q --  2k[q/2k] in finite memory. 

While emitting O's at every step, P simulates N on counters C 1 ,..., C,~ until N 
would complete its computation. At this point, P1 and P2 are unchanged, 6'1 ..... C,,_ 1 
are empty, Cm contains [Af(q)/2k], and [k.Af(q)/2k] = [Af(q)/2] steps have elapsed. 

P now empties C,~, subtracting 1 every k time units, and simultaneously transfers 
the contents of P1 to both P2 and C 1 . The reader will readily see that, when C m is 
finally emptied, P can emit a 1 after an additional delay of fewer than k steps and 
make the necessary adjustments for the next stage of the process. 

We leave it to the reader to fill in the minor details of P's operation. 
Thus, the q-th stage of P's computation takes precisely ~if(q) steps. There- 

fore, inductively, if P emitted a 1 at time f(q), it would again emit a 1 at time 
f (q)  + Af(q) = f ( q  + 1). That is to say, P is a real-time counter forf .  

Theorem 3.1 and Proposition 3.1 immediately yield 

COROLLARY. Let f be an increasing function. I f~ i f  is real-time countable, then f is also. 

A second corollary of Theorem 3.1 and Lemma 3.1 has wide application. 

COROLLARY. Let f be an increasing self-computable function such that, for some real 
number a >t 2 and for all integers x, f ( x  + 1) >~ a . f (x) .  Then f is real-time countable. 

Proof. By hypothesis, f (x )  is computable within time k . f (x )  for some integer 
k > 0. Thus, the obvious method of computing Af(x), namely computing f (x) ,  then 

f ( x  + 1), then computing their difference, requires at most 3k . f ( x  + 1) steps. 
Now, since f ( x  + 1) >/a  . f(x) ,  it is clear that 

3f(x)  : f ( x  + l) - - f ( x )  >~f(x + 1) - - f ( x  + 1)la : ((a --  1)la)f(x + 1), 

whence,f(x + 1) ~< (a/(a --  1))Af(x). 
Therefore, we have (i) Af(x) is computable within time [(3ka/(a --  1))1 ~if(x), and 

(ii) Af(x) ~ (a -- 1)f(x) >if(x)  >/x .  Thus, / i f  is self-computable, and the result 
follows by Lemma 3.1 and Theorem 3.1. 

In order to gauge the utility of the previous results, we note that many familiar 
arithmetic functions are self-computable (and, in fact, real-time countable on a CM). 
For example, all polynomials with nonnegative integer coefficients are real-time 
countable on a CM, as are f ( x )  = c ~ for any positive integer c and g(x) = x!. With 
such common functions as starting points, one can infer the self-computability 
and/or real-time countability of other functions from the folloming closure properties: 
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PROPOSITION 3.2. 

following functions: 
l f  f and g are self-computable on a CM (TM),  then so are the 

(a) hi(x) := f ( x )  + g(x); 

(b) h2(x ) :-: f (x )  "g(x); 

(c) ha(x ) :-- f(x)gr 

(d) h,(x) : : / ( x ) ! ;  

(e) hs(x) : : f(e(x)); 

(f) h,(x) :--: ~ f(i);  

(g) hT(x) ---- f ly( i ) .  
i = 0  

Proof. It  is a straightforward exercise to show that each of the noted functions 
is computable within time proportional to its values. For example, to computef(g(x)): 

(i) Compute g(x) in kxg(x ) steps. 

(ii) Computef(g(x)) in k~(g(x))  steps. 

This  computation thus takes k2f(g(x)) _ klg(x ) <~ (k 1 -- k2)f(g(x)) steps, whence 
h b is self-computable. 

The  other proofs are similar and are left to the reader. 
The  techniques developed in this section afford powerful tools for establishing 

the real-time countability offunctions.  In fact, they suffice to show that every function 
explicitly Shown by Yamada. to be real-time countable on a T M  i s, in fact, real-time 
countable on a CM. However, not all functions which are real-time countable in 
Yamada's  sense (i.e., on a T M )  are real-time countable on a CM as the corollaries 
to Lemma  1.1 and 1.2 readily show. 

As a final remark, we note that Lemma  3.2 has a rather strong implication for CM 
speedup. The  lemma can be expanded on to show that, for sequences e in which 
l ' s  are sufficiently sparse, ~6 one can obtain a full speedup for CM's.  This  supplements 
the special case of Proposition 2.1. 

4. SIMULATION OF ONE MACHINE BY ANOTHER 

4.1. Simulation of CM's  by T M ' s  

T h e  following result was proved by the authors in [4]. 

16 To make the notion, "sufficiently sparse," more precise, let d~( i , j )  be the distance between 
the ith a n d j t h  l ' s  in the sequence a. We then say that cx is "sufficiently sparse" if, for some f > 0  
and for all n, d~(n, n + 1) > (I + ~)d,(n - I,  n). 
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THEOREM 4.1. Given any k-CM recognizer which operates within time T(n) and 
space S(n), one can effectively find, for any ~ > O, an equivalent 1-TM recognizer 
which operates within time (I %- E) T(n) and space log S(n). 

The "full" speedup for TM generators (Theorem 2.1) affords us the following 
strengthened version of Theorem 4.1. 

TtlEOREM 4.2. For any integer k and real-time countable function T, crt , l (k)  C Trl,l(4). 

In other words, every k-CM can effectively be replaced by a time-equivalent 4-TM. 
It is an interesting open problem whether or not the number of tapes can be reduced, 
e.g., to one. 

4.2. Simulation of TM's by CM's 

We begin by presenting an upper bound on the time required by an m-CM to 
simulate a h-TM. 

THEOREM 4.3. Let M be a k-TM with w working symbols which operates in time T 
and space S. There are constants u > 1 and v such that for any integer r > O, one 
can effectively f ind a (2r + 1)k-CM N, equivalent to M which operates within time 

T'(n) ~ v �9 ~ [T(i) -- T(i 1)] �9 wrS,)/rl 
i=1 

< v �9 T(n)wrscn~/rl 

ulT(n]/rl. 

Proof. We prove the result for the case k = 1, the extension to arbitrary k being 
immediate. 

(a) Structure of N 

N will have 2r + 1 counters named R o ,..., Rr_ 1 (these will simulate the right 
side of M's tape), L o , . . . ,  L r _  1 (which will simulate the left side of M's tape), and .4 
(an auxiliary counter). In addition, the finite memory of N will have a bounded 
register, capable of holding any nonnegative integer less than w. 

(b) Correspondence Between Configurations 

Let M have working alphabet {S o ..... Sw-a}, So being the blank symbol. Associate 
with each symbol S~ (0 ~< i < w) the integer label I Sil  = i. 

Assume that, at some state in its computation, the nonblank portion of M's tape 
is of the form 

a~a~_ 1 "" aocbob 1 ... bq 
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with the read-write head residing on c. At the corresponding point in the simulation, 
counter R a (0 ~ d < r) of M will contain the integer 

[q l r l  

Xd = E [ bir+d [ wi' 
i=o 

counter L,  (0 ~< e < r) of M will contain the integer 

r~/,q 

Y e =  ~ lair+el wi, 
i=0 

counter A will contain 0, and the bounded register will contain [ c [. 

(c) Simulation o f  M by N 

Assume now that M overwrites symbol c by c' and shifts its head to the left to 
arrive at the configuration 

a . a ~  ".. aoe'bobl ".. b q 

with the read-write head residing on a o . N responds with the following actions: 

(i) Using finite state control, N renames each counter Ra as Ra+ a (0 ~ d < r - -  1). 
It then renames the original counter Rr_ x as R o and places the integer 

x ~ X r _ l ' w + c '  

into the new R o (using A as an auxiliary counter). 

(ii) Similarly, N renames counter L e as Le_ 1 (1 ~ e ~< r --  1). It  then renames 
the original counter L o as L~_ 1 and places the integer 

y = [y,_x/w] 

into the new L,_ 1 (again using A). 

(iii) Finally N replaces the contents of the bounded register by 

Y,-1 - -  w[Yr-llW] ~- l ao I. 

(d) Timing Estimates 

One easily verifies that N's simulation of a step of M above requires at most 
2W(w rl~+ll/rl + w rlq+l)/rl) s t e p s .  

Now, if M operates in space S(n),  then, for the T( i )  - -  T ( i  - -  1) steps between 
the (i - -  1)-th and i-th outputs, we must have p + q + 3 ~ S( i ) .  The  simulation 
by N of a step by M in this time interval requires, therefore, at most 4wrs,}/,+21 steps. 
The  result now follows immediately. 

A commonly occurring special case yields an interesting corollary. 
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COROLLARY. Let M be a k - T M  with w working symbols which operates in time T(n) 
and space S(n) = log T(n). One can find, for any integer q ~ O, a (2q + 1)k-CM 
equivalent to M which operates within time T'(n) = v �9 [T(n)l+{l~ for some v > O. 

This corollary and the sequel lend import to the following: 

Open Problem. Given a T M  which operates in time T(n), does there exist a 
time-equivalent T M  which operates in space S(n) = log T(n)? 

We now establish a lemma which yields a lower bound on the time required by 
a CM to simulate a TM.  I f  the above open problem is settled in the affirmative, 
then the lower bound obtained is not bad; otherwise, it is quite weak. 

LEMMA 4.1. Let c~ be an infinite binary sequence, and let f and g be functions with 
the following property: For infinitely many n > O, the initial f (n)  slice of ~ contains 
at least g(n) distinct n slices. I f  o~ is generable within time T by an m-CM, then 

nT( f (n ) )  > O. sup  
, ~  g(n)i+i/m 

Proof. Let M be an m-CM with q states which generates ~ within time T. Let 
w~ [i = l,...,g(n)] be distinct n slices in the initiatf(n) slice of~, and let ti [i = 1 .... ,g(n)] 
be the time at which the first digit of wl appears in M ' s  generation of cx. Since the 
zoi are all distinct, the configurations of M at times t x ,..., tgr must also be distinct. 
There must, therefore, be a least integer d ~> 0 such that more than half of these 
g(n) distinct configurations are mutually d inequivalent. 

Since the number of d inequivalent configurations of M cannot exceed q .  d" ,  
we must have 

whence 

q .  d "  > g(n)/2 

d > k �9 g(n) 1''', 

where k ~ (2q) -1/". 
For i = 1 ..... g(n), let ui be the time at which M emits the last digit of wi,  and 

refer to ui - -  ti as the time required for wi .  Note that, since the w~ are all distinct, 
if M is in e-equivalent configurations (for some e > 0) at times ti and tj :/= t i ,  then 
the time required for each of w i and w~ must exceed e. 

Now, by definition of d, at least half of the configurations of M at times t 1 ,..., tg(,j 
are (d --  l)-equivalent to some other of these configurations. Thus,  no fewer than 
half of the n slices w 1 ..... w~r each requires at least time d. Of these g(n)/2 slices 
requiring no less than time d, at least g(n)/2n do not overlap in a. (w~ and wj do not 
overlap if either u i < tj or uj < t~ .) These nonoverlapping slices, therefore, account 
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for at least d.  g(n)/2n steps during M's  emitting the initial f(n) slice of n. We must 
then have 

T(f(n)) ~ d . g(n)/2n > (k/n) . g(n) l+a/" 

where k = (2"'+1q) -l/m, and the lemma follows. Q.E.D. 

THEO~M 4.4. The sequence of binary representations of integers is real-time 
generable by a 1-TM but requires time T on any m-CM where 

sup log nT(n) 
n-~oo hi+l/m ~ 0. 

The sequence referred to obviously satisfies the lemma with f ( n ) =  2" and 
g(n) = 2"/3. 

As a corollary to Theorem 4.4, we obtain the following result which was already 
obvious from the tools of Section 1.3. 

COROLLARY 4.4. "In(1) --  C .  ~ ~ .  

4.3. (m + 1)-CM's and m-CM's 

In this final section we investigate the time required for an m-CM to simulate 
a CM with more counters. Corresponding problems for TM's  are discussed by 
Hartmanis and Stearns [5] and by Hennie and Stearns [6]. 

By our previous remark that 0-CM's and I -CM's  are both equivalent to finite 
state machines (as sequence generators), we need consider only machines with m ~ 2. 

The following theorem gives a coarse upper bound, which regrettably does not 
depend upon the number of counters of the machine M being simulated. 

THEOREM 4.5. Given a CM M which operates within time T(n), one can effectively 
find an r -CM ( r />  2) which operates within time T'(n) ~ cT(n) x+a/~r-x~ for some 
positive constants c and d. 

Proof. (a) Since M operates within time T(n), it also operates within space T(n). 

(b) Using Theorem 4.1, we can find a I - T M  N, equivalent to M, which operates 
within time T(n) and space log T(n). 

(c) Using the corollary to Theorem 4.3, we can find, for any q > 0, a (2q + I)-CM, 
equivalent to N, which operates within time c[T(n)] l+lx~176 where w is the number 
of symbols in the alphabet of N and c is a constant. Choosing r = 2q + 1, and 
d = 2 �9 log w we obtain the stated result. 

Other simulation results were reported in [4]. 
Using Lemma 4.1, we can find a lower bound on the time required by an r-CM 

to simulate an m-CM. 
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TIIEOREM 4.6. The sequence o~ n which was shown to be in Cn(m + l)  - - O n ( m )  

requires time T on any r - C M  (r ~ m), where 

sup {T(n)/n t ~1 . . . . . .  ~-l/(m +-l)'r]} > O. 

Proof. Note  that  the sequence  in ques t ion has f (n )  = n ''+1 and g(n) = a . f (n )  

for some a > O. T h u s  

T(f (n) )  > k . [f(n)l -l/tm+l' . [af(n)] l+l/r. 

T h e  result  now follows immediate ly .  
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