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Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2006

c© Massachusetts Institute of Technology 2006. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

May 25, 2006

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Piotr Indyk
Associate Professor

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Arthur C. Smith

Chairman, Department Committee on Graduate Students



2



Algorithmic Embeddings

by

Mihai Bădoiu
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Abstract

We present several computationally efficient algorithms, and complexity results on low
distortion mappings between metric spaces. An embedding between two metric spaces
is a mapping between the two metric spcaes and the distortion of the embedding is
the factor by which the distances change. We have pioneered theoretical work on
relative (or approximation) version of this problem. In this setting, the question is
the following: for the class of metrics C, and a host metric M ′, what is the smallest
approximation factor a ≥ 1 of an efficient algorithm minimizing the distortion of
an embedding of a given input metric M ∈ C into M ′? This formulation enables
the algorithm to adapt to a given input metric. In particular, if the host metric is
“expressive enough” to accurately model the input distances, the minimum achievable
distortion is low, and the algorithm will produce an embedding with low distortion
as well.

This problem has been a subject of extensive applied research during the last few
decades. However, almost all known algorithms for this problem are heuristic. As
such, they can get stuck in local minima, and do not provide any global guarantees
on solution quality.

We investingate several variants of the above problem, varying different host and
target metrics, and definitions of distortion. We present results for different types of
distortion: multiplicative versus additive, worst-case versus average-case and several
types of target metrics, such as the line, the plane, d-dimensional Euclidean space,
ultrametrics, and trees. We also present algorithms for ordinal embeddings and em-
bedding with extra information.

Thesis Supervisor: Piotr Indyk
Title: Associate Professor
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Chapter 1

Introduction

The problem of computing mappings between metric spaces started to receive more

attention from the theoretical computer science community in the past twenty years.

This problem has been found in many applications, and as theoretical tools used for

approximation algorithms. Mathematical studies of such mappings helped establish

the basis of this area in theoretical computer science. Classical results such as those

of Bourgain and Johnson-Lindenstrauss have already found numerous applications.

The main problem with such worst-case results, is that they cannot be applied to

low-dimensional spaces, mainly because there are high lower-bounds. The only way

around this shortcoming is to consider approximating the best distortion embedding.

These mappings between metric spaces have also been studied in the field called

multi-dimensional scaling (MDS) and have their roots in work going back to the

first half of the 20th century, and modern roots in work of Shepard [She62a, She62b],

Kruskal [Kru64a, Kru64b], and others. This is a subject of extensive research [MDS].

However, despite significant practical interests, very few theoretical results exist in

this area. The most commonly used algorithms are heuristic (e.g., gradient-based

method, simulated annealing, etc.) and are often not satisfactory in terms of the

running time and/or quality of the embeddings. The only theoretical results in this

area [HIL98, Iva00, ABFC+96, FCK96] have been a constant factor approximation

algorithm for minimum distortion embedding into a line, into ultrametrics, and into

trees, all using an additive notion of embeddings.
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1.1 Preliminaries

A metric space is a pair (X, f), where X is the set of points and f : X ×X → ℜ+.

In this dissertation for the input metric, we only consider the case when the metric

is finite, so X is a finite set. A metric has the following axioms:

• ∀x, y ∈ X, f(x, y) = 0 if and only if x = y.

• ∀x, y ∈ X, f(x, y) = f(y, x)

• ∀x, y, z ∈ X, f(x, y) + f(y, z) ≥ f(x, z).

The last axiom is called the triangle inequality.

An metric can be specified by the distance function f , which for an n-point set

can be represented in an n × n table. The metric specified this way can have any

geometric structure. This is why it’s hard to use a metric if given this way. A better

way to represent a metric would be to give each point coordinates in ℜd, and define f

as the distance between points (according to some norm). Yet another way would be

to have a tree or a graph, where the vertices correspond to the points, and the distance

between two points is defined as the shortest path distance on the tree/graph. This

metric is called a shortest path metric on a graph.

We would like to extract the geometric structure of a given metric and represent

the metric as a point set in ℜd, a tree or a graph. Representing the metric this

way would have its benefits, such as being easier to use for other algorithms, easier

to visualize the data, and easier to store the data. Unfortunately it is not always

possible to map any metric space into these representations without changing the

distances. Thus, we want to change the distances as little as possible. The quantity

that measures by how much the distances have changed is called distortion. There

are several ways of defining the distortion of a mapping.

Definition 1 Given two metric spaces (X, f) and (X ′, f ′), a mapping g : X → X ′ is

called an embedding.

14



Definition 2 An embedding g : X → X ′ is called an isometric embedding, if for any

x, y, f(x, y) = f ′(g(x), g(y)).

Definition 3 An embedding g : X → X ′ is called non-contracting, if for any x, y,

f(x, y) ≤ f ′(g(x), g(y)).

Definition 4 An embedding g : X → X ′ is called non-expanding, if for any x, y,

f(x, y) ≥ f ′(g(x), g(y)).

1.2 Types of embeddings

We will consider two ways of computing the overall distortion of an embedding. One

way is to consider the maximum distortion of any pair of points. This is the more

established (standard) way of computing the distortion. Another way is to consider

the average distortion over all the pairs. This will be called an average distortion

embedding. We will consider two ways of measuring the distortion between two points.

One way is to consider the ratio of the new distance over the old distance. This is

the standard way of looking at distortion. To be clear, we will call this multiplicative

distortion embeddings. Another way is to consider the absolute difference between the

new ratio and the old ratio. This will be called an additive distortion embedding. Note

that the distortion of additive embeddings change under scaling, i.e., if one forces the

embedding to be non-contractive or non-expanding, one will get different results.

More formally, for the (classic) multiplicative worst-case embedding, the distortion

is computed as follows:

α =
maxx,y∈X f

′(g(x), g(y))/f(x, y)

minx,y∈X f ′(g(x), g(y))/f(x, y)

For an embedding problem we are interested in computing a low-distortion em-

bedding, i.e., we are interested in minimizing the distortion of the embedding.

In this dissertation we will address the relative or approximation version of this

problem. In this setting, the question is the following: for a class of metrics C, and

15



Paper From Into Distortion Comments
[FCK96] general distance matrix ultrametrics c

[ABFC+96] general distance matrix tree metrics 3c
≥ 9/8c Hard to 9/8-approximate

[HIL98] general distance matrix line 2c
≥ 4/3c Hard to 4/3-approximate

[B0̆3] general distance matrix plane under l1 O(c)
[BDHI04] general distance matrix plane under l2 O(c) Time quasi-polynomial in ∆

- general distance metrix line 5c Menger-type result
4-points criterion

- general distance matrix line O(c) average additive distortion

Figure 1-1: Work on relative embedding problems for maximum additive distortion.
The rows in bold are presented in this thesis.

a host metric M ′, what is the smallest approximation factor a ≥ 1 of an efficient1

algorithm minimizing the distortion of embedding of a given input metric M ∈ C

into M ′ ? This formulation enables the algorithm to adapt to a given input metric.

In particular, if the host metric is “expressive enough” to accurately model the input

distances, the minimum achievable distortion is low, and the algorithm will produce

an embedding with low distortion as well.

1.3 Results

Our results will be partitioned into four categories: results about the additive dis-

tortion, multiplicative distortion, ordinal embeddings, and when extra information

about the metric is available.

In general, minimizing an additive measure suffers from the “scale insensitivity”

problem: local structures can be distorted in arbitrary way, while the global structure

is highly over-constrained. Multiplicative distortion generally does not suffer from the

scale insensitivity problem. Minimizing the multiplicative distortion seems to be a

harder problem in general.

Table 1-1 summarizes the results known about the additive distortion. The results

in bold will be presented in this dissertation, in the chapter on additive distortion.

1That is, with running time polynomial in n, where n is the number of points of the metric
spaces.
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Table 1-2 summarizes the results known about algorithmic embeddings in the

case of multiplicative distortion. In this dissertation we will present several of these

results, in the chapter on multiplicative distortion (the ones in bold).

We also present in this thesis results on ordinal embeddings and on embeddings

with extra information.
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Paper From Into Distortion Comments
[LLR95] general metrics L2 c uses SDP
[KRS04] line line c c is constant, embedding is a bijection

unweighted graphs bounded degree trees c c is constant, embedding is a bijection
[PS05] ℜ3 ℜ3 > (3− ǫ)c hard to 3-approximate, embedding is a bijection

[HP05] line line > nΩ(1) c = nΩ(1), embedding is a bijection
[EP04] unweighted graphs sub-trees O(c log n)
[PT01] outerplanar graphs sub-trees c
[CC95] unweighted graphs sub-trees NP-complete
[FK01] planar graphs sub-trees NP-complete

[BDG+05] unweighted graphs line O(c2) implies
√

n-approximation
> ac hard to a-approximate for some a > 1

c c is constant

unweighted trees line O(c3/2
√

log c)
subsets of a sphere plane 3c

[BCIS06] ultrametrics ℜd cO(d)

[ABD+05] general metrics ultrametrics c
[BCIS05] general metrics line O(∆3/4c11/4)

weighted trees line cO(1)

weighted trees line Ω(n1/12c) hard to O(n1/12)-approximate even for ∆ = nO(1)

[LNP06] weighted trees Lp O(c)
- general metrics line O(c) for c < 3/2

Figure 1-2: Work on relative embedding problems for multiplicative distortion. We use c to denote the optimal distortion, and n to denote the

number of points in in the input metric. Note that the table contains only the results that hold for the multiplicative definition of the distortion; The

results in bold are presented in this thesis.
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Chapter 2

Additive embeddings

In this chapter we present results using additive distortion. Using this notion, for an

embedding g from (X, f) to (X ′, f ′), the distortion is defined as

α = maxx,y∈X |f ′(g(x), g(y))− f(x, y)|

The results might force the metric to be non-contracting or non-expanding, in

which cases the notion of distortion varies, i.e., scaling changes the distortion of an

additive embedding.

2.1 Embedding Into the Plane

Credits: The results in this section have appeared in SODA’03.

Embedding arbitrary distance matrices into the two dimensional plane is a funda-

mental problem occurring in many applications. In the context of data visualization,

this approach allows the user to observe the structure of the data set and discover its

interesting properties. In computational chemistry, this approach is used to recreate

the geometric structure of the data from the distance information. Other application

areas are discussed in [MDS].

In this section we present a polynomial-time algorithm that approximates a given
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distance matrix D[·, ·] by a matrix of distances induced by a set of points in a two-

dimensional plane under l1 norm. Specifically, consider ǫ = minf{maxp,q |D[p, q] −
||f(p) − f(q)||1|}. Our algorithm computes f such that maxp,q |D[p, q] − ||f(p) −
f(q)||1| ≤ cǫ. The constant1 c guaranteed by our algorithm is equal to 30. However,

it is likely that it can be made smaller by a more careful analysis.

To our knowledge, this is the first algorithm that finds an (approximately) optimal

embedding of a given distance matrix into a fixed d-dimensional space, where d > 1

is low, under any standard definition of embedding (see Related Work, in chapter 1).

Overview of this section. In Section 2.1.2, we give an overview of the algorithm.

In Section 2.1.3, we show how to solve the problem for a special case when we know

the exact values of the x coordinates of the points and the value ǫ∗ of the smallest

error possible. In Section 2.1.5, we show how to reduce our problem to the special

case.

2.1.1 Preliminaries

Assume we are given a set P of n points and an n × n symmetric, positive and all-

zero on the diagonal distance matrix D, which also satisfies the triangle inequality.

The goal is to find an embedding f : P → ℜ2 of the points into the plane, which

minimizes the difference between the distances given by D and the distances given

by the embedding. The distances in the plane are computed using the l1 norm (or

l∞, which is isomorphic to l1 in two dimensions).

Let ǫ∗ be the optimal additive distortion. We guess ǫ∗ by doing a binary search

and we can assume we know its value. Given ǫ, let f : P → ℜ2 be an embedding such

that ∀p, q ∈ P ,

|D[p, q]− ||f(p)− f(q)||∞| ≤ ǫ

Such an embedding exists for every ǫ ≥ ǫ∗. To shorten the notation, we denote the x

coordinate of f(p) by p1 and the y coordinate by p2. Also, we write ||p− q||∞ instead

of ||f(p)− f(q)||∞. 2

1Different constant than the one in the intro.
2In the plane, l1 and l∞ are equivalent (by just rotating the point set by 90 degrees and scaling
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2.1.2 Overview of the algorithm

The algorithm works in two parts. In the first part, we approximate the x-coordinates

of the embedding within O(ǫ∗). In the second part, assuming we know the approxi-

mate values of the x coordinates, we find the y values approximately.

The solution for the first part is easy in the case of the l2 norm: we guess the diame-

ter p, q, guess their placement, rotate the plane such that p and q are horizontal. Then

we know that all v belong to the intersection of Ball(p,D[p, v]+ǫ)−Ball(p,D[p, v]−ǫ)
with Ball(q,D[q, v]+ ǫ)−Ball(q,D[q, v]− ǫ). This intersection gives little freedom to

the x-coordinate of v, and we can guess it within cǫ for a constant c. Unfortunately,

the l1 norm requires more elaborate techniques along these lines.

To do the second part we first find certain combinatorial structure of the point-set

and then solve the problem using linear programming. Here we use properties of the

l∞ norm in a crucial way. We do not yet know how to do the second part in the case

of the l2 norm, but we believe a very similar method should work. In particular, we

can roughly prove every lemma for l2 except (2.1.7).

2.1.3 A special case

In this section, we are going to solve a special case in which we know the exact x

coordinates of the points and ǫ for which there exists an embedding with distortion

of at most ǫ. More exactly, we will compute a 5-approximation solution, i.e., we

compute f such that ∀p, q ∈ P ,

|D[p, q]− ||f(p)− f(q)||∞| ≤ 5ǫ

In the following sections we are going to reduce the main problem to this special case.

Definition 2.1.1 We connect two points p, q with an edge if D[p, q] > |p1− q1|+3ǫ.

We call such an edge a “strong” edge. We connect two points p, q with a “weak”

edge if there is no strong edge between p and q and D[p, q] > |p1 − q1|+ ǫ.

it by some factor).
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Let E be the set of the strong edges,

E = {(p, q) | D[p, q] > |p1 − q1|+ 3ǫ}

Intuitively, the strong edges are the edges we care about. Our goal is eventually

to reduce the problem to linear programming. If there is no strong edge between two

points p and q, by adding the constraint −D[p, q]− ǫ ≤ q2 − p2 ≤ D[p, q] + ǫ we can

ensure that the distance between p and q in our solution is less than D[p, q]+ ǫ. Also,

since there is no strong edge between p and q, the distance already given by |p1− q1|
is good enough for a 3-approximation solution.

Let G = (P,E). If p, q, w are vertices in the same connected component of G, we

also add to E the weak edges between the points v and w if p1 ≤ v1 ≤ q1 and if v is

not part of the component:

E ′ = E
⋃

{(v, w) | ∃p, q in the same connected component as w of G and v is not

in the same connected component as w and D[v, w] > |v1−w1|+ǫ and p1 ≤ v1 ≤ q1}

Let G′ = (P,E ′).

Definition 2.1.2 For an edge (p, q) ∈ E ′, p1 ≤ q1, we have two cases: p2− q2 ≥ 0 or

p2 − q2 < 0. 3 We say an edge is “oriented up” if it satisfies the first inequality and

“down” if it satisfies the second inequality.

The main idea of the algorithm is the following: We partition the elements of P

into connected components of G′. We first note that if we know the orientation of

all the strong edges, we can compute an embedding with distortion of at most 3ǫ∗

via linear programming. We also note that within each connected component, if we

fix the orientation of a single edge, we can determine the orientation of all the other

edges. Finally, we observe that any relative orientation of the edges between the

connected components suffices in computing an embedding with distortion of at most

3Note that the fact that (p, q) ∈ E′ and the first inequality implies p2 − q2 > q1 − p1. Also,
(p, q) ∈ E′ and the second inequality implies p2 − q2 > q1 − p1.
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5ǫ∗.

Claim 2.1.3 If p and q are in the same connected component of G, and p1 ≤ q1,

then every k for which p1 ≤ k1 ≤ q1 is part of the same connected component of G′

as p and q. Moreover, every weak edge in G′ is adjacent to at least one strong edge.

Proof: Since p and q are in the same connected component, there exists a path

connecting p and q in G. Therefore, there exist v and w such that (v, w) ∈ E and

v1 ≤ k1 ≤ w1. Since (v, w) ∈ E we have

D[v, w] > |v1 − w1|+ 3ǫ

If (v, k) ∈ E ′, then k is in the same connected component of G′ as p and q. Otherwise,

we have

D[v, k] ≤ |k1 − v1|+ ǫ

By the triangle inequality we have D[v, w] ≤ D[v, k] +D[k, w]. Combining these

equations we get

D[k, w] ≥ D[v, w]−D[v, k] > |v1 − w1|+ 3ǫ− |k1 − v1| − ǫ = |k1 − w1|+ 2ǫ (2.1)

which means (k, w) ∈ E ′.

Moreover, every edge added has an adjacent edge from E, which is a strong edge.

Note that we do not add all the weak edges to E ′.

Definition 2.1.4 We say that two connected components of G′ overlap if and only

if a) there is no vertical line l that separates the elements of the first component from

the elements of the second component, and b) l does not intersect any point.

Claim 2.1.3 reveals the structure of G′. More specifically, no two connected com-

ponents overlap. This structure is exactly the desired one. We do not want to have

strong edges between the connected components, and we want them not to overlap,
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such that we can guess the orientation of each component. Note that we do not care

if we can have weak edges between the components.

Figure 2-1: The structure of G′: G′ has 4 connected components. Strong edges are
shown with solid lines, and weak edges with dotted lines. There are no strong edges
between the connected components. Components do not “overlap.” Each weak edge
is adjacent to at least one strong edge.

For an edge (v, w) ∈ E ′ which is oriented up, such that v1 ≤ w1, we have

w2 − v2 + ǫ ≥ D[v, w] ≥ w2 − v2 − ǫ (2.2)

Claim 2.1.5 By fixing the orientation of an edge of G′ we also fix the orientation of

all the other edges in the same connected component of G′.

Proof: We first show that if we know the orientation of an edge e, then we can

also determine the orientation of any adjacent edge if both e and the adjacent edge

are not weak edges. By setting the orientation of an edge and repeating this process

we can determine the orientation of all the edges in the connected component.

Without loss of generality, we assume that the edge (v, w) ∈ E ′ (w1 ≥ v1) is

oriented up: w2 − v2 > w1 − v1. Also let (w, t) ∈ E ′.

If (w, t) is a strong edge and (w, t) is oriented up, by using (2.2) multiple times

we get

D[v, t] ≥ |t2 − v2| − ǫ ≥ |w2 − v2| + |t2 − w2| − ǫ ≥ D[v, w] + D[w, t] − 3ǫ
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Since (w, t) is a strong edge, D[w, t] > 3ǫ, therefore

D[v, t] > D[v, w] (2.3)

Using the fact that (v, w) is an edge and (w, t) is a strong edge (i.e., D[v, w] >

w1 − v1 + ǫ and D[w, t] > |t1 − w1|+ 3ǫ), we get

D[v, t] > (w1 − v1) + |t1 − w1|+ ǫ > |t1 − v1|+ ǫ (2.4)

If (w, t) is a strong edge and (w, t) is oriented down, we have

D[v, t] ≤ ||t−v||∞+ǫ ≤ max{|t1−v1|+ǫ,D[v, w]+ǫ−D[w, t]+ǫ} ≤ max{|t1−v1|+ǫ,D[v, w]}
(2.5)

Since equations (2.3) and (2.4) contradict equation (2.5), we can determine whether

(w, t) is oriented up or down.

If (w, t) is a weak edge and (v, w) is a strong edge, then by a similar argument we

can determine the orientation of (w, t). If a connected component of G′ contains only

one connected component of G, we can determine the orientation of all the strong

edges first and then the orientation of the weak edges. If a connected component of

G′ contains two connected components of G, then these two components must overlap

(by the way we add weak edges), which means that there is a weak edge connecting

them. This means that we can determine the orientation of the strong edges in the

first component, then the orientation of a weak edge between the two components,

then the orientation of the strong edges of the second component, and finally the

orientation of all the remaining weak edges. The same argument applies to the case

when the connected component of G′ is composed of several connected components

of G.

Claim 2.1.6 Given the orientation of all the strong edges, we can compute a 3-

approximation solution via linear programming.
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Proof: We construct the following linear program:

Min δ

subject to

D[p, q]− δ ≥ q2 − p2 ≥ D[p, q] + δ, if (p, q) ∈ E is oriented up and q1 ≥ p1

D[p, q]− δ ≥ p2 − q2 ≤ D[p, q] + δ, if (p, q) ∈ E is oriented down and q1 ≥ p1

−D[p, q]− δ ≤ q2 − p2 ≤ D[p, q] + δ, if (p, q) /∈ E

First note that, if we were to have all the edges (including the weak ones) in

E, we would get an optimal solution. However, we know the orientation of only

the strong edges, and this gives a 3-approximation solution: It is clear that a 3-

approximation solution that satisfies the orientation given is a feasible solution for

this linear program. It is also clear that any solution of this program is an embedding

with error of at most max(δ∗, 3ǫ) and δ∗ ≤ 3ǫ.

By using Claims 2.1.5 and 2.1.6 we can get an approximate solution to the problem.

But what if we have several connected components in G′? We will prove that no

matter what relative orientation we take between the edges of the components, we

will still get a constant approximation solution. So, the algorithm is as follows: we

choose an arbitrary orientation to one edge from each connected component, and by

using Claims 2.1.5 and 2.1.6 we get an approximate solution.

Claim 2.1.7 There is a 5-approximation solution for every relative orientation be-

tween the edges of the components.

Proof: Let f be an optimal embedding. Let C1, C2, C3, . . . , Ck be the connected

components of G′, from the ones with the smallest x coordinate to the ones with

higher x coordinate: ∀i, if v ∈ Ci and w ∈ Ci+1, then v1 ≤ w1.

Choose any relative orientation of the components. Let the function s : {1, 2, . . . , k} →
{0, 1} denote the relative orientation of our arbitrary choice to the optimal embed-

ding f : s(i) = 1 if the orientation of the component Ci is different in f than in our
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arbitrary selection; s(i) = 0 otherwise.

We are going to start with an optimal solution and modify it to get a feasible

solution that has the given relative orientation, with error of at most 5ǫ:

We are going to modify f incrementally from the first component to the last.

Without loss of generality we can assume s(1) = 0. (If s(1) = 1 we can flip (or

reflect) f by the x axis, flipping each s(i) and still having an optimal embedding.)

We repeat the following steps for i from 2 to k:

If s(i) = 0, then we go to the next component Ci+1.

If s(i) = 1, then we will flip all the points in
⋃k

j=iCj by a certain line parallel to

the x axis. This flip will change the values of s(j) for all j ≥ i. The line by which we

are going to flip the points is computed as follows:

• Let p be a point in
⋃i−1

j=1Cj that maximizes p1 + p2: ∀v ∈
⋃i−1

j=1Cj, p1 + p2 ≥
v1 + v2.

• Let q be a point in
⋃i−1

j=1Cj that maximizes q1−q2: ∀v ∈
⋃i−1

j=1Cj , q1−q2 ≥ v1−v2.

• Let l1 be the line of slope −π/4 that passes through p, and let l2 be the line of

slope π/4 that passes through q. Let the point r denote the intersection of l1

with l2. Let l be the line through r that is parallel to the x axis.

• Flip the points in
⋃k

j=i Cj by l: for all v ∈ ⋃k
j=iCj, v

′
2 = 2r2 − v2

It is easy to see that by performing this flip operation on f we change only the

distances between v and w for v ∈ ⋃i−1
j=1Cj and w ∈ ⋃k

j=iCj. The question is: by

how much? Since there are no strong edges between the components, for such v and

w, we have:

D[v, w] ≤ |v1 − w1|+ 3ǫ (2.6)

If v ∈ Ci−1, then by the flips up to this step, the distance between v and w has

remained the same as in the original embedding:

D[v, w] + ǫ ≥ ||v − w||∞ ≥ |w2 − v2| (2.7)
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Combining equations (2.6) and (2.7) we get

|w2 − v2| ≤ D[v, w] + ǫ ≤ |w1 − v1|+ 4ǫ (2.8)

Let v′ be the point 4ǫ to the left of v: v′1 = v1− 4ǫ and v′2 = v2. Let d′ be the line

of slope π/4 that goes through v′ and d′′ be the line of slope −π/4 that goes through

v′.

It is easy to see that equation (2.8) implies w is located beneath d′ and above d′′.

(See Figure 2-2)

v

v’

4 ε

d’

d’’

Figure 2-2: The points w ∈ ⋃k
j=iCj are located beneath d′ and above d′′.

This holds for each v ∈ Ci−1. Therefore each w ∈ ⋃k
j=iCj is located between

these wedges. Now, our line l is chosen such that after we flip the points w ∈ ⋃k
j=iCj,

they will remain between these wedges, such that equation (2.8) remains true after

the flip. 4 Since we do not change the x coordinates and the original f is a solution

4The intersection of the space between pairs of wedges has the same shape as the space between
2 wedges and l divides this intersection into 2 symmetrically equal pieces.
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with error ǫ we know that

D[v, w] + ǫ ≥ |w1 − v1| (2.9)

Combining equations (2.8) and (2.9), we get

|w2 − v2| ≤ |w1 − v1|+ 4ǫ ≤ D[v, w] + 5ǫ

llr’ r’

l

l
2

1
l

l
2

1

4ε 4ε

2 2

l’

l’

l’

l’

1 1

Figure 2-3: The points in
⋃k

j=iCj will remain between the two lines (wedges) l′1 and
l′2 after the flip.

In addition, since for the next flips, the points that are being flipped are inside

an even more restrictive space between two wedges, they will not leave the space

between the two wedges and equation (2.8) will remain true after we have completed

all the flips. Again, since equation (2.9) is also true, we can combine them and get

that |w2 − v2| ≤ D[v, w] + 5ǫ after all the flips are completed. By applying this

argument to v ∈ C1, v ∈ C2, . . ., we conclude that for all points v, w, w1 ≥ v1, we

have |w2−v2| ≤ D[v, w]+5ǫ. Since we have no strong edges between the components,

for v ∈ Ci, w ∈ Cj, i 6= j, |v1 − w1| ≥ D[v, w]− 3ǫ. This implies that for two points

from different components, the distortion in our construction is at most 5ǫ. Since we

preserve the distances between points from the same component, we have constructed

an embedding with distortion of at most 5ǫ for an arbitrary relative orientation of

the edges between the connected components.
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Finally, we apply Claim 2.1.6 to produce a 5-approximation solution. We know

that for our orientation there is an embedding with error 5ǫ and this is a feasible

solution for our linear program.

2.1.4 The Final Algorithm

So far, we assumed we know certain points (the pair of points that give the diameter,

etc). To satisfy this assumption, we will iterate over all possible choices (a polynomial

number of such choices). The total running time of the algorithm is O(log diam
ǫ∗
n6LP )

where diam is the value of the diameter of P and LP is the time to solve a linear

program with n variables and O(n) constraints. Thus, the running time is polynomial

in n.

2.1.5 The general case

The main idea is to fix the x coordinates of the points and then to use the algorithm

from the previous section. We do not need to guess the x coordinates exactly. If we

guess them within cǫ for a constant c, it will be enough to get a constant approxima-

tion algorithm for the general case.

Let p and q denote the diameter. Let f be an optimal embedding with error ǫ.

Without loss of generality we have p = (0, 0) and we assume that the diameter is

given by q1 − p1.

Let A be the set of points v ∈ P − {p, q} for which the following equation is true:

D[p, q] + kǫ ≥ D[p, v] +D[v, q]

A = {v ∈ P − {p, q} : D[p, q] + kǫ ≥ D[p, v] +D[v, q]}

for a fixed constant k which we will chose later.5

5k will be chosen to be any constant greater than 9.
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Note that for v ∈ A, we have the following two inequalities:

v1 ≤ D[p, v] + ǫ

v1 ≥ D[p, q]−D[v, q]− 2ǫ ≥ D[p, v]− (k + 2)ǫ

It follows that by fixing v1 = 2D[p,v]−(k+1)ǫ
2

= D[p, v] − (k+1)ǫ
2

we are within an

additive factor of (k+3)ǫ
2

from the value of v1 in the optimal embedding f .

It is clear that if A = P − {p, q} then we can guess the x coordinate of all the

points in A and then by reducing the problem to the special case with ǫ′ = (k+3)ǫ
2

we

get a 5(k+3)
2

-approximation algorithm.

But what happens if P −A 6= ∅? We break our analysis into two cases:

Case 1

For this case we assume that for all points v ∈ P−A−{p, q} we have either ||p−v||∞ =

|p1 − v1| or ||q − v||∞ = |q1 − v1|.
Partition the points of P − A− {p, q} into three sets:

B = {v ∈ P − A − {p, q} : ||p − v||∞ = |p1 − v1|}

C = {v ∈ P − A − {p, q} : ||q − v||∞ = |q1 − v1| and v2 − p2 ≥ 0}

D = {v ∈ P − A − {p, q} : ||q − v||∞ = |q1 − v1| and v2 − p2 < 0}

Note that this is a partition: If B∩C 6= ∅ then there exists v ∈ B∩C, and we have

D[p, q] ≥ q1−p1−ǫ = q1−v1+v1−p1−ǫ = ||q−v||∞+||v−p||∞−ǫ ≥ D[q, v]+D[p, v]−3ǫ

which implies v ∈ A, which is a contradiction.

The idea is to choose certain points to decide for each point v ∈ P − A − {p, q}
if v ∈ B or v ∈ C ∪ D. If we can decide that, we can approximate its x coordinate
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within an additive error of cǫ for some constant c.

p’

p
q

p’’

v

Figure 2-4: If v ∈ B then v is restricted to the right stripe of width 2ǫ. If v ∈ C ∪D
then v is restricted to the left stripe of width 4ǫ. Since v is not in A, we know that
the distance between the stripes is at least (k − 2)ǫ

Let the point p′ ∈ C be such that p′ = minv∈C v1 + v2 and the point p′′ ∈ D such

that p′′ = minv∈D v1 − v2. Of course, p′ or p′′ may not even exist, but those cases are

easier to handle and the proof is basically the same for them as well.

Since p′ /∈ A, we have

D[p′, q] > D[p, q] + kǫ−D[p, p′] (2.10)

Since p′ ∈ C, we have the following inequalities

p′2 − ǫ ≤ D[p′, p] ≤ p′2 + ǫ (2.11)

D[p, q]−D[p′, q]− 2ǫ ≤ p′1 ≤ D[p, q]−D[p′, q] + 2ǫ (2.12)

By combining (2.10) with (2.12) we get that p′1 < D[p, p′]− (k− 2)ǫ. Using (2.11) we

get that

p′1 < p′2 − (k − 3)ǫ (2.13)
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For a point v ∈ B, we have

D[p′, v] ≥ |v1 − p′1| − ǫ

≥ D[p, v]− 2ǫ− p′1
> D[p, v]− p′2 + (k − 5)ǫ by (2.13)

≥ D[p, v]−D[p, p′] + (k − 6)ǫ by (2.11) (2.14)

Also,

D[p′, v] ≥ |v1 − p′1| − ǫ

≥ D[p, v]− 2ǫ− p′1
≥ D[p, v]−D[p, q] +D[p′, q]− 4ǫ by (2.12) (2.15)

For a point v ∈ C, we have D[p′, v] ≤ ||p′, v||∞ + ǫ ≤ max(v1 − p′1, v2 − p′2) + ǫ by

the way p′ was chosen.

If ||p′, v||∞ = v2 − p′2, we have

D[p′, v] ≤ v2 − p′2 + ǫ

≤ D[p, v]− p′2 + 2ǫ

≤ D[p, v]−D[p, p′] + 3ǫ by (2.11) (2.16)

Note that if k > 9, equations (2.14) and (2.16) are contradictory.
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If D[p′, v] = v1 − p′1 + ǫ, we have

D[p′, v] = v1 − p′1 + ǫ

≤ D[p, q]−D[q, v]− p′1 + 3ǫ

< D[p, v]− (k − 3)ǫ− p′1 by (2.10)

≤ D[p, v]− (k − 3)ǫ

− (D[p, q]−D[p′, q]− 2ǫ) by (2.12)

= D[p, v]−D[p, q] (2.17)

+D[p′, q]− (k − 5)ǫ

Note that if k > 9, equations (2.17) and (2.15) are contradictory.

We can also obtain similar equations for v ∈ D by replacing p′ with p′′ in the

above argument. We use these observations to prove the following claim:

Claim 2.1.8 We can determine which points are in B and which ones are in C ∪D
if k > 9.

Proof: If v ∈ B, by (2.14) and (2.15), the following equations are true:

D[p′, v] ≥ D[p, v]−D[p, p′] + (k − 6)ǫ

D[p′, v] ≥ D[p, v]−D[p, q] +D[p′, q]− 4ǫ

D[p′′, v] ≥ D[p, v]−D[p, p′′] + (k − 6)ǫ

D[p′′, v] ≥ D[p, v]−D[p, q] +D[p′′, q]− 4ǫ

If v ∈ C ∪D then either (2.16) or (2.17) is true (for p′ if v ∈ C or for p′′ if v ∈ D)

which implies that at least one of the above 4 equations is false. Therefore we say

that v ∈ B if all the about 4 equations are true, and v ∈ C ∪D otherwise.
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Case 2

For this case we assume that there exists a point r ∈ P−{p, q} for which the following

is true: ||p−r||∞ > |p1−r1| and ||q−r||∞ > |q1−r1|. It follows that ||p−r||∞ = |p2−r2|
and ||q − r||∞ = |q2 − r2|.

Let r be such a point that maximizes |r2 − p2|:

r = max
v∈P

||p−r||∞=|p2−r2|
||q−r||∞=|q2−r2|

|r2 − p2|

p

q

r

r’
r’’

v

Figure 2-5: If v ∈ B then v is restricted to the upper stripe of width 2ǫ. If v ∈ C
then v is restricted to the lower right stripe of width 4ǫ. If v ∈ D then v is restricted
to the lower left stripe of width 4ǫ

For this case, we will fix the y coordinate instead. The method we will use is

going to be very similar to the method used for case 1. We partition the points of

P − {p, q, r} into four sets as follows:

A = {v ∈ P−{r, p, q} : D[r, p]+kǫ ≥ D[r, v]+D[v, p] or D[r, q]+kǫ ≥ D[r, v]+D[v, q]}

B = {v ∈ P − A − {r, p, q} : ||r − v||∞ = |r2 − v2|}
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C = {v ∈ P − A − {r, p, q} : ||r − v||∞ = |r1 − v1| and v1 − r1 ≥ 0}

D = {v ∈ P − A − {r, p, q} : ||r − v||∞ = |r1 − v1| and v1 − r1 < 0}

Claim 2.1.9 If v ∈ C we can determine its y coordinate within an additive factor of

2ǫ

Proof: By the way of contradiction, we suppose that ||q − v||∞ = q1 − v1. Then

D[v, q] ≥ q1 − v1 − ǫ. It follows that D[r, q] ≥ q1 − r1 − ǫ ≥ q1 − v1 + v1 − q1 − ǫ ≥
D[r, v] + D[v, q] − 3ǫ. But for k ≥ 3, this implies v ∈ A, which contradicts the fact

that v ∈ C.

Therefore, we know that ||q − v||∞ = |q2 − v2|. If v2 > q2 we have that v1 > v2 >

q2 > q1 which means that the diameter is given by the |p1 − v1|, again impossible.

Therefore,

||q − v||∞ = q2 − v2

Using this observation, we have the following two bounds on v2: D[r, q]−D[r, v]−2ǫ ≤
v2 ≤ D[r, q]−D[r, v]+2ǫ and we can guess v2’s real value within an additive distance

of 2ǫ by setting v2 = D[r, q]−D[r, v].

Similarly by replacing q with p in the above proof, if v ∈ D we can also determine

its y coordinate within an additive factor of 2ǫ.

We shift everything and flip it by the y axis if necessary such that, r = (0, 0)

and p2 > 0. Note that this implies that q2 > 0 (if q2 < 0 then we would have

|p2 − q2| = |p2 − r2| + |r2 − q2| > |p1 − r1| + |r1 − q1| = |p1 − q1| = diam(P ), which

is a contradiction) and that every v ∈ B has v2 ≥ 0 (because we chose r such that it

maximizes r2 − p2). We proceed as before: we pick certain points to help us decide

for each point in which set it belongs to. If we can decide that, we can approximate

for each point its y coordinate within a constant times ǫ.

Let the point r′ ∈ C be such that r′ = minv∈C v1 + v2 and the point r′′ ∈ D such

that r′′ = minv∈D v1− v2. Of course, as before, r′ or r′′ may not even exist, but those

36



cases are easier to handle and the proof is basically the same for them as well.

Since r′ /∈ A, we have

D[r′, q] > D[r, q] + kǫ−D[r, r′] (2.18)

Since r′ ∈ C, we have the following inequalities

r′1 − ǫ ≤ D[r′, r] ≤ r′1 + ǫ (2.19)

D[r, q]−D[r′, q]− 2ǫ ≤ r′2 ≤ D[r, q]−D[r′, q] + 2ǫ (2.20)

By combining (2.18) with (2.20) we get that r′2 < D[r, r′]− (k− 2)ǫ. Using (2.19) we

get that

r′2 < r′1 − (k − 3)ǫ (2.21)

For a point v ∈ B, we have

D[r′, v] ≥ |v2 − r′2| − ǫ

≥ D[r, v]− 2ǫ− r′2
> D[r, v]− r′1 + (k − 5)ǫ by (2.21)

≥ D[r, v]−D[r, r′] + (k − 6)ǫ by (2.19) (2.22)

Also,

D[r′, v] ≥ |v2 − r′2| − ǫ

≥ D[r, v]− 2ǫ− r′2
≥ D[r, v]−D[r, q] +D[r′, q]− 4ǫ by (2.20) (2.23)

For a point v ∈ C, we have D[r′, v] ≤ max(v2 − r′2, v1 − r′1) + ǫ by the way r′ was

chosen.
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If ||r′, v||∞ = v1 − r′1, we have

D[r′, v] ≤ v1 − r′1 + ǫ

≤ D[r, v]− r′1 + 2ǫ

≤ D[r, v]−D[r, r′] + 3ǫ by (2.19) (2.24)

Note that if k > 9, equations (2.22) and (2.24) are contradictory.

If ||r′, v||∞ = v2 − r′2, we have

D[r′, v] ≤ v2 − r′2 + ǫ

≤ D[r, q]−D[q, v]− r′2 + 3ǫ

< D[r, v]− (k − 3)ǫ− r′2 by (2.18)

≤ D[r, v]− (k − 3)ǫ

− (D[r, q]−D[r′, q]− 2ǫ) by (2.20)

= D[r, v]−D[r, q] +D[r′, q] (2.25)

− (k − 5)ǫ

Note that if k > 9, equations (2.25) and (2.23) are contradictory.

We also have very similar equations for v ∈ D by using r′′. We use these observa-

tions to prove the following claim.

As before, we can use these equations to determine which points are in B and

which ones are in C ∪D. However, in this case, we should also distinguish between

C and D. We make the following observation:

Claim 2.1.10 If D[q, v]+D[v, r′] ≤ D[r′, q]+3ǫ or D[p, v]+D[v, r′′] ≤ D[r′′, p]+3ǫ we

can approximate v2 within a factor of 3ǫ. Otherwise, if v ∈ C, then D[r′, v] < D[r′′, v]

and if v ∈ D then D[r′, v] > D[r′′, v].
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Proof: First note that D[r′, r′′] has to be pretty large:

D[r′, r′′] ≥ r′1 − r1 + r1 − r′′1 − ǫ

≥ D[r′, r] +D[r′′, r]− 3ǫ

> D[r, q]−D[r′, q] +D[r, p]

−D[r′′, p] + (2k − 3)ǫ

≥ q2 − r2 − ǫ− (q2 − r′2 + ǫ)

+ p2 − r2 − ǫ− (q2 − r′′2 + ǫ) + (2k − 3)ǫ

= r′2 − r2 + r′′2 − r2 + (2k − 7)ǫ

≥ (2k − 7)ǫ (2.26)

We break our proof into three cases:

• Case 1: D[q, v] +D[v, r′] ≤ D[r′, q] + 3ǫ

First note that we know that

v2 ≥ q2 −D[q, v]− ǫ ≥ D[r, q]−D[q, v]− 2ǫ (2.27)

We also have that

v2 ≤ r′2 +D[v, r′] + ǫ (2.28)

≤ D[r, q]−D[q, r′] +D[v, r′] + 3ǫ (2.29)

≤ D[r, q]−D[q, v] + 6ǫ (2.30)

2 Therefore, as before, we can approximate v2 within an additive error of 4ǫ by

setting v2 = D[r, q]−D[q, v] + 2ǫ.

• Case 2: D[p, v] +D[v, r′′] ≤ D[r′′, p] + 3ǫ

The analysis of this case is analogous to the one above. (replace r′ by r′′ and q

by p).

39



• Case 3: If ||r′ − v||∞ = v2 − r′1 we have that D[q, v] + D[v, r′] ≤ D[r′, q] + 3ǫ,

which falls into case 1. Therefore, we know that ||r′ − v||∞ = v1 − r′1. In that

case,

D[r′′, v] ≥ v1 − r′1 + r′1 − r′′1 − ǫ

≥ D[v, r′] + r′1 − r′′1 − 2ǫ

≥ D[v, r′] +D[r′, r′′]− 3ǫ

> D[v, r′] + (2k − 10)ǫ by (2.26) (2.31)

Therefore, for v ∈ C we have D[r′′, v] > D[v, r′] if k ≥ 5. Symmetrically, for v ∈ D
we have D[r′′, v] < D[v, r′] for k ≥ 5.

We conclude that it is either the case that we can approximate v2 within 4ǫ (case

1 or 2) or we can compare D[v, r′′] with D[v, r′] to determine if v ∈ C or v ∈ D which

implies we can approximate v2 within additive error 2ǫ.

Using this observation we can easily distinguish between points in C and points

in D. For the points in v ∈ C we fix the y coordinate as v2 = D[r, q] − D[q, v] and

for the points v ∈ D, v2 = D[r, p]−D[p, v].

2.1.6 Conclusions

In this section, we showed how to approximate within a constant factor an embedding

of an arbitrary metric into a two-dimensional space where distances are computed

using the l1 norm with the notion of an additive error ǫ. Our constant is 30, but by

combining the general case with the special case more carefully, we believe can get

the constant down to 19, by just a tighter analysis in the constants.

Future Work. We believe the distortion and the running time can be improved

further. We also believe that the same technique might be extended to get the same

result for other norms (e.g., l2) or multiplicative error. It would also be of interest to
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extend this result for higher dimensions - let’s say three-dimensional space. It should

also be noticed that in the case of the l2 norm, while we don’t know how to prove claim

(2.1.7) with additive error, it is easy to prove it with multiplicative error and we can

obtain an embedding f : P → ℜ2, for which D[p, q] ≤ ||f(p)−f(q)||2 ≤ aD[p, q]+bǫ∗,

where a and b are absolute constants.

Acknowledgements. The author would like to thank Piotr Indyk and Sariel

Har-Peled for numerous comments on early drafts of the results and in particular to

Piotr Indyk for useful discussions.

2.2 Constant-factor approximation of the average

distortion of embedding a metric into the line.

Credits: The results in this section is work done with Piotr Indyk and Yuri Rabi-

novich in the autumn of 2002. The results haven’t been published yet.

The average distance of D, av(D) = 1/n2
∑

x,y∈P D(x, y) , is the average of

distances of n2 ordered pairs of points. In this section we consider non-contracting

(or expanding) embeddings f of metric D into a host space Y , i.e., such that the

induced submetric D′ of Y dominates D (no distance decreases).

Let avY (D) be the minimum of av(D′) over all such D′. We will show that, given

D, one can O(1)-approximate avline(D), where the host space is ℜ.

The average distortion of f is defined as av(D′)/av(D) ≥ 1 . The median of the

metric D on P be the point p ∈ P minimizing the expression 1/n
∑

x∈P D(p, x); it

will be denoted by med. Observe that for a set of points on a line, the standard

order-median coincides with the metric-median.

We start with the following simple fact:

av(D) ≥ 1

n

∑

x∈P

D(med, x) ≥ 1/2 · av(D) . (2.32)

The first inequality simply says that the average value of 1/n
∑

x∈P D(p, x), is no
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less than its minimum. The second inequality is true in fact for any p ∈ P :

∑

x,y∈P

D(x, y) ≤
∑

x,y∈P

D(x, p) +D(p, y) = 2n
∑

x∈P

D(p, x) . (2.33)

Thus, in order to approximate avline(D) it suffices to approximate the minimum pos-

sible value of
∑

x∈P D
′(med, x) over all D-dominating line metrics D′.

Let first be the leftmost point of D′. It turns out that instead of working with the

(relatively inconvenient) median, one can work with the “nice” first. This follows at

once from the following claim:

Claim 2.2.1 Let S ⊆ ℜ be a set of points {s1, s2, .., sn}, in the left-to-right order.

Then there exists, and is efficiently computable, a set T = {t1, t2, .., tn} ⊆ ℜ (again

in the left-to-right order) such that the induced metric δ of S is dominated by induced

metric δ′ of T (under the natural correspondence si 7→ ti), and

∑

i

|si − sn/2| ≥ c ·
∑

i

|ti − t1|

for some universal constant c > 1/9 .

Proof: We shall use an idea from the solution of the so-called Lost Cow Problem

[BCR93]. Assume for simplicity that sn/2 = 0. If s1 = 0, S itself can serve as S̄.

Otherwise, assume w.l.o.g., that the distance between sn/2 and the closest (but not

identical) point of S lying to its left is 1. Consider a particle which starts at 0, and

moves at a unit speed in the following manner:

0 → − 1 → 2 → − 4 → ... → −22k → 22k+1 → ...

Define ti as the moment of time when the particle first sees si. E.g., t1 = 0, t2 = 1

and so on. We have obtained T whose induced metric dominates that of S: due to

the unit speed, it is impossible get from si to sj faster that in |si − sj | units of time.

The (by now folklore) analysis of [BCR93] shows that T indeed has the other required

property.
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Thus, in order to approximate avline(D), it suffices to approximate
∑

x∈P D
′(first, x)

over all D-dominating line metrics D′.

Consider a complete graph Gn on P , such that the weight of the edge (i, j) is

D(si, sj). A simple but important observation is that the optimal embedding is

necessarily the shortest-path metric of some Hamiltonian path of Gn. Indeed, in the

optimal embedding f : (P,D) 7→ ℜ the distance between two neighboring points p, q

is at least D(p, q) by dominance, and no more thatD(p, q) by optimality. On the other

hand, by triangle inequality, any such Hamiltonian path yields a legal noncontracting

embedding.

In order to solve the problem, note that if we were after a Hamiltonian tour

(rather than a path), aiming to minimize (
∑

x∈P D
′(first, x)) + D′(last, first), then

the corresponding problem were precisely the well-known Minimum Latency problem.

A constant factor approximation for this problem were first obtained by Blum et

al. [BCCPRS94], and subsequently improved by Goemans and Kleinberg [GK98].

However, the difference between a path and a tour is negligeable, and therefore these

algorithms provides a solution to our path problem as well. To see that it suffices to

observe that sum of weights rising from to a path is at least half the sum of weights

rising from the corresponding tour.

To summarize, the approximation algorithm for our problem simply produces the

embedding corresponding to the pseudo-optimal Hamiltonian path produced by the

best known algorithm for the Minimum Latency problem. The approximation factor

is the product of that of the latter, ×2 for passing from tour to path, ×9 for working

with first instead of median, ×2 for optimizing the average distance from the median

instead the actual average distance av(D). We have established the following theorem:

Theorem 2.2.2 There is a (polynomial-time) O(1)-approximation algorithm for com-

puting a non-contractive embedding f of a given metric into a line that minimizes the

average distortion of f .

43



2.3 The 4-points criterion for additive distortion

into a line

Credits: The results in this section is work done with Piotr Indyk and Yuri Rabi-

novich in the autumn of 2002. The results haven’t been published yet.

A classical result of Menger states that a metric space (X,D) embeds isometrically

into Euclidean space Rm if and only if every subspace of (X,D) on at most m + 3

points embeds.

In this section we prove that given a metric space (X,D) for which every subspace

of (X,D) on at most 4 points embeds into a line with distortion at most ǫ, then

the whole metric embeds into a line with distortion at most 6ǫ. Since our proof is

constructive, we automatically obtain an algorithm for computing such an embedding.

Although the approximation ration is weeker than previously known, still this 4-points

criterion appears to be very useful.

Definition 5 A metric M = (X,D) embeds into a line with additive distortion ǫ if

there exist a mapping f : X → ℜ such that ∀x, y ∈ X,

D(x, y)− ǫ ≤ |f(x)− f(y)| ≤ D(x, y) + ǫ

Theorem 2.3.1 Let M = (X,D) be an arbitrary metric space. If every subspaces

of M on at most 4 points embeds into a line with additive distortion at most ǫ, then

there exists an embedding of M into a line with additive distortion 6ǫ.

Proof: Let x, y ∈ X such that D(x, y) = maxp,q D(p, q). If ǫ ≥ D(x, y), then

mapping all the points into a point is a good enough solution. Therefore, we can

assume that ǫ < D(x, y). Consider the subspaces on 4 points that contain x and y.

Without loss of generality we can assume that x is to the “left” of y, x < y.

It is easy to see that if S = {x, y, a, b} such that a has lower coordinate than x in
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an optimal embedding of S into the line, then |f ∗(x)− f ∗(a)| ≤ 2ǫ and D[x, a] ≤ 3ǫ:

|f(x)∗− f(a)∗| = f(x)∗− f(a)∗ + f(y)∗− f(y)∗ = |f(y)∗− f(a)∗| − |f(y)∗− f(x)∗| ≤

≤ D[y, a]−D[y, x] + 2ǫ ≤ 2ǫ

and

D[x, a] ≤ |f(x)∗ − f(a)∗|+ ǫ ≤ 3ǫ

We construct the following embedding: start by placing x at the coordinate 0,

and place the remaining points at the coordinate D[x, p] if D[x, p] > 3ǫ, and at the

coordinate ǫ otherwise.

Formally, the embedding f is defined as follows:

• f(x) = 0

• f(p) = D[x, p], if D[x, p] > 3ǫ

• f(p) = ǫ, if D[x, p] ≤ 3ǫ

All that one needs to prove is that for any 2 points a, b ∈ X, D[a, b] − 4ǫ ≤
|f(a)− f(b)| ≤ D[a, b] + 6ǫ. We split the analysis into 3 cases:

Case 1: D[x, a] > 3ǫ and D[x, b] > 3ǫ

In the optimal embedding of S = {x, y, a, b}, f ∗(a) > 0 and f ∗(b) > 0, giving

|f ∗(a) − D[x, a]| ≤ ǫ and |f ∗(b) − D[x, b]| ≤ ǫ. Therefore |f ∗(a) − f(a)| ≤ ǫ and

|f ∗(b)− f(b)| ≤ ǫ which gives that

|f(a)− f(b)| ≤ |f ∗(a)− f ∗(b)|+ 2ǫ ≤ D[a, b] + 3ǫ

Similarly,

|f(a)− f(b)| ≥ |f ∗(a)− f ∗(b)| − 2ǫ ≤ D[a, b]− 3ǫ

Case 2: D[x, a] ≤ 3ǫ and D[x, b] ≤ 3ǫ

By triangle inequality D[a, b] ≤ D[a, x]+D[x, b] ≤ 6ǫ. Since f(a) = f(b), we have

D[a, b] ≥ |f(a)− f(b)| ≥ D[a, b]− 6ǫ.
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Case 3: D[x, a] > 3ǫ and D[x, b] ≤ 3ǫ

As before we have that

|f ∗(a)− f(a)| ≤ ǫ (2.34)

If f ∗(b) ≥ 0, we have |f ∗(b)−D[x, b]| ≤ ǫ and

|f ∗(b)− f(b)| ≤ 3ǫ (2.35)

If f ∗(b) ≥ 0, we have the same inequality |f ∗(b)− f(b)| = |f ∗(b)− ǫ| ≤ 3ǫ

Combining equations (2.34) and (2.35) we get

|f(a)− f(b)| ≤ |f ∗(a)− f ∗(b)|+ 4ǫ ≤ D[a, b] + 5ǫ

Similarly,

|f(a)− f(b)| ≥ |f ∗(a)− f ∗(b)| − 4ǫ ≥ D[a, b]− 5ǫ

2.4 Embedding with an Extremum Oracle

Credits: The results in this section is work done with Erik Demaine, Mohammad-

Taghi Hajiaghayi, and Piotr Indyk, and has appeared in SoCG’04.

In this section, we describe an O(1)-approximation algorithm for minimizing the

additive distortion in an embedding of a complete graph with distances specified by D

into the Euclidean plane. Define the spread ∆ of the metric by ∆ = diam(D)/ǫ, where

ǫ is the minimum additive distortion possible and diam(D) is the diameter of D, i.e.,

the maximum distance in D. The algorithm runs in polynomial time, multiplied by

a factor of O(lg ∆) if ǫ is not approximately known, given an extremum oracle for

a promised embedding f attaining minimum additive distortion ǫ. By exhaustive

enumeration of the possible oracle answers, this algorithm can be converted into an

algorithm without extra information having pseudo-quasipolynomial running time
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2O(log n·log2 ∆).

We view the algorithm as being given D and ǫ > 0, and the goal is either to find

an embedding of D into the plane with additive distortion O(ǫ) or to report that no

embedding with additive distortion at most ǫ exists. Here we assume that ǫ > 0 (and

thus ∆ is finite) because it is easy to test whether a complete graph of distances can

be embedded without distortion. If ǫ is unknown, we can guess ǫ up to a constant

factor in a standard way by trying values of the form diam/2i for i = 0, 1, 2, . . . . This

guessing multiplies the running time by O(lg ∆), which is obsorbed in the pseudo-

quasipolynomial time bound.

We use a geometric annulus (the difference between two disks of the same radii) to

represent approximately known distances. Define R(p, r, δ) to be the annulus centered

at point p with inner radius r− δ and outer radius r+ δ. The next lemma shows how

two such annuli can help isolate a point.

Lemma 2.4.1 Consider two points a and b at a distance r on the x axis, and two

radii ra and rb such that max{ra, rb} ≤ 2r. Then, for any ǫ ≤ r, the intersection

R = R(a, ra, ǫ) ∩ R(b, rb, ǫ) is enclosed in a vertical slab [x0 − 4ǫ, x0 + 4ǫ], where

x0 = (r2 + r2
a − r2

b )/2r.

Proof: By a suitable translation, we may assume without loss of generality that

a = (0, 0) and b = (r, 0). Any point (x, y) ∈ R must satisfy (ra − ǫ)2 ≤ x2 + y2 ≤
(ra + ǫ)2 and (rb− ǫ)2 ≤ (x− r)2 + y2 ≤ (rb + ǫ)2. Subtracting these two bounds, the

terms quadratic in x and y cancel out, and we obtain that any point (x, y) ∈ R must

satisfy |x− (r2 + r2
a − r2

b )/2r| ≤ ǫ|ra− rb|/r ≤ ǫ(ra + rb)/r ≤ 4ǫ. Thus (x, y) is in the

vertical slab [x0 − 4ǫ, x0 + 4ǫ] where x0 = r2 + r2
a − r2

b .

Using this tool, we show how to guess approximate x coordinates; the following

lemma is also useful in Section 5.3.

Lemma 2.4.2 Given a complete graph G = (V,E) with distances specified by D, and

given 0 < ǫ < diam(D)/2, we can compute in polynomial time a set of guesses of the

form x : V → R such that, if there is an embedding f of G into the Euclidean plane of

minimum additive distortion ǫ, at least one guess satisfies, for a suitable translation
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and rotation f̃ of f , |f̃x(v)− x(v)| ≤ 5ǫ for all v ∈ V . We can also ensure that the x

coordinates are distinct in each guess.

Proof: First we guess the diameter pair (a, b) in the embedding f , that is, the pair

that maximizes ‖f(p)− f(q)‖, by trying all pairs such that D[a, b] ≥ diam(D)− 2ǫ.

(The diameter pair must satisfy this property because f has additive distortion ǫ.)

By suitable translation and rotation f̃ of f , we can assume that f̃(a) = (0, 0) and

f̃y(b) = 0. Therefore we can assign x(a) = 0 and x(b) = D[a, b], and we have that

x(a) = f̃x(a) and |x(b)− f̃x(b)| ≤ ǫ.

To guess the remaining x coordinates f̃x(v) for vertices v /∈ {a, b}, we proceed

as in Bădoiu’s algorithm [B0̆3]. For any such vertex v, define the region Rv =

R(a,D[a, v], ǫ)∩R(b,D[b, v], ǫ). Because D[a, v] ≤ diam(D) ≤ D[a, b]+2ǫ < 2D[a, b],

we can apply Lemma 2.4.1 and set x(v) to the center x0 of the vertical slab. Because

|x(b)− f̃x(b)| ≤ ǫ and at worst the errors add, we have that |x(v)− f̃x(v)| < 5ǫ.

If two x coordinates are equal, we perturb them slightly, to guarantee that all

x coordinates are distinct. By a sufficiently small perturbation, we preserve that

|x(v)− f̃x(v)| < 5ǫ for all vertices v. Therefore we obtain a suitable guess x.

We assume in the rest of this section that ǫ = 1, by scaling the entires in D by

1/ǫ. Thus ∆ = diam(D).

We claim that it suffices to consider embeddings g with x coordinates given by a

suitable guess of Lemma 2.4.2. Consider the translated and rotated optimal embed-

ding f̃ . Construct f ′ by setting f ′
x(v) = x(v) and f ′

y(v) = f̃y(v) for all vertices v. By

Lemma 2.4.2, ‖f̃(v)− f ′(v)‖ < 5ǫ (for a suitable guess). By the triangle inequality,

| ‖f ′(v)− f ′(w)‖ − ‖f̃(v)− f̃(w)‖ | < 10ǫ, so the additive distortion of f ′ is at most

ǫ+ 10ǫ = 11ǫ.

In addition, we require that each y coordinate in the embeddings we construct is a

multiple of ǫ. By a similar argument as above, this assumption increases the additive

error by at most ǫ, to c′ǫ = 12ǫ.

The algorithm uses the divide-and-conquer paradigm to compute the y coordinates

in an embedding g (using the x coordinates given by the guess of Lemma 2.4.2). First,

we compute the median xm of the x coordinates of the vertices as mapped by g. Let
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V + be the set of all points p ∈ V such that g(p) has x coordinate larger than the

median xm, and let V − = V − V +. The algorithm proceeds by creating the set of

constraints on g(V +) and g(V −). The constraints have two properties:

1. The constraints are feasible; namely, f ′ satisfies them.

2. For any mapping g satisfying the constraints, we have | ‖g(p)−g(q)‖−D[p, q]| ≤
c, for all p ∈ V + and q ∈ V −; here c is a certain global constant.

These properties allow us to compute g(V +) and g(V −) (while enforcing the con-

straints) recursively and independently from each other.

The constraints are of the form “gy(p) ∈ Y (p)”, where Y (p) is a finite set of

intervals. They are constructed as follows. For i ≥ 1, define Ii = (xm + 2i−1 −
1, xm + 2i − 1]; for i ≤ −1, define Ii = −I−i. For each Ii, the algorithm queries

the extremum oracle to obtain a point pi
up ∈ V , f ′

x(p
i
up) ∈ Ii, such that f ′

y(pup) is

maximum. Similarly, the algorithm obtains pi
down. In addition, the algorithm obtains

the values f ′
y(p

i
up) and f ′

y(p
i
down) for each i.

With the oracle’s answers in hand, the algorithm imposes the following new con-

straints, for each i, d ∈ {up, down}, and p ∈ V :

1. “gy(p
i
d) = f ′

y(p
i
d)”;

2. if f ′
x(p) ∈ Ii, then “gy(p) ∈ [f ′

y(p
i
down), f ′

y(p
i
up)]”; and

3. “g(p) ∈ R(f ′(pi
d), D[pi

d, p], c
′)”. (This latter condition can be expressed as a

restriction on gy(p).)

As mentioned above, after imposing the constraints, the algorithm recurses to find

g(V +) and g(V −) independently. At the leaf level of recursion (i.e., when we are given

only one point p), the algorithm sets gy(p) to be an arbitrary y coordinate satisfying

all constraints (if it exists). If no such y coordinate exists, the algorithm concludes

that there is no acceptable embedding for the guess of Lemma 2.4.2 and this set of

oracle answers.

The oracle’s answers can be implemented by trying all possible choices of the

guessed variables. Each combination of a guess from Lemma 2.4.2 and the oracle
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answers leads to a different execution of the algorithm, ending with either a failure

or a final embedding g whose additive distortion can be checked to be at most c′ǫ.

The total number of such choices is bounded by 2O(log2 ∆), because there are at most

O(∆) different potential values for the y coordinates of f ′. The claimed bound for

the running time T (n) follows from the recursion T (n) = 2O(log2 ∆)[T (n/2) + nO(1)].

Note that, if we could compute the oracle’s answers in polynomial time, our algorithm

would have polynomial running time as well.

It is easy to see that the constraints imposed at all stages are consistent with f ′.

It remains to show that, after g(V +) and g(V −) satisfying the constraints are found,

then we have | ‖g(p)− g(q)‖ −D[p, q]| ≤ c, for all p ∈ V +, q ∈ V −, and some global

constant c > 0. This is done via the following two lemmas.

Lemma 2.4.3 Consider any two points a = (x, y) and b = (x′, y′), such that x′ ≥
x/2. Define b′ = (x′, y) and I = {0} × R. Then, for any r there exists r′ such that

I ∩ R(a, r, c′) ⊂ R(b′, r′, c) for a fixed constant c.

The interpretation (and usage) of this lemma is as follows. Consider the points

g(p) and g(q) as above, and assume that gx(p) ∈ Ii, i < 0, and gx(q) ∈ Ij, j > 0,

such that (i, j) 6= (−1, 1). (We will take care of the case (i, j) = (−1, 1) later.) In

the procedure described above, we impose constraints on g(p) of the form “g(p) ∈
R(a, r, c′)”, for d ∈ {down, up}, r = D[pj

d, p], and a = f ′(pj
d). However, it will be

more convenient to consider a different constraint, namely “g(p) ∈ R(b′, r′, c)”, where

b′ = (f ′
x(q), f

′
y(p

j
d)), because in this way f ′(q) and b′ have the same x coordinate,

a property used in the next lemma. However, we do not know f ′(q), so we cannot

impose the second constraint explicitly. Fortunately, Lemma 2.4.3 guarantees that

the latter constraint is implied by the former. Note that the assumption x′ ≥ x/2 is

satisfied by the construction of the intervals Ii and Ij .

Proof:[of Lemma 2.4.3] Without loss of generality, we can assume that I∩R(a, r, c′)

is nonempty. In addition, we assume that I ∩ R(a, r, c′) consists of two disconnected

components. (If it consists of only one component, the proof is similar.) Finally,

without loss of generality, we can assume that y = 0. Denote the upper component
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(with larger y coordinates) by Y = {0} × [yd, yu]. Let qd = (0, yd), qu = (0, yu). Note

that y2
u + x2 = (r + c′)2, and y2

d + x2 = (r − c′)2. By symmetry, it suffices to ensure

that Y ⊂ R(b′, r′, c).

Define r′ = ‖b′ − qu‖ = x′2 + y2
u. Consider any (0, z) ∈ Y . We need to show

(1) ‖b′ − (0, z)‖2 ≤ (r′ + c)2 and (2) ‖b′ − (0, z)‖2 ≥ (r′ − c)2 or r′ < c. First,

‖b′−(0, z)‖2 = x′2+z2 ≤ x′2+y2
u = r′2. Second, ‖b′−(0, z)‖2 ≥ x′2+y2

d ≥ r′2−2r′c+c2.

By plugging in the expressions for y2
d, r

′2, and then y2
u, we obtain equivalently

that

x′
2
+ (r − c′)2 − x2 ≥ [(r + c′)2 − x2] + x′

2 − 2r′c+ c2,

which simplifies to 2r′c− c2 ≥ 2c′r.

Because r′ ≥ max{x′, yu}, r′ ≤ x + yu, and (by the assumption) x′ ≥ x/2 and

r′ ≥ c, it follows that the last expression is satisfied if c ≥ 4c′. This proves the lemma.

The next lemma is about the following configuration of points: a = (0, ya), b =

(0, yb), c = (x, yc), and d = (x, yd). For any ra, rb, rc, rd, and s, define two sets:

S1 = {(0, y) : ya < y < yb} ∩ R(c, rc, s) ∩R(d, rd, s),

S2 = {(x, y) : yc < y < yd} ∩ R(a, ra, s) ∩R(b, rb, s).

Lemma 2.4.4 The difference maxu∈S1,v∈S2 ‖u− v‖−minu∈S1,v∈S2 ‖u− v‖ is at most

3s.

Before we prove this lemma, we show how the two lemmas together imply that,

for any two points p ∈ V − and q ∈ V + satisfying the imposed constraints, we have

‖g(p) − g(q)‖ = ‖f ′(p) − f ′(q)‖ ± O(1) as desired. To show this implication, we

consider two cases. Let f ′
x(p) ∈ Ii and let f ′

x(q) ∈ Ij .

Case 1: i = −1, j = 1. Let yup = max[f ′
y(p

−1
up ), f ′

y(p
1
up)] and ydown = max[f ′

y(p
−1
down), f ′

y(p
1
down)].

If yup−ydown ≤ c2 for c2 larger than, say, 10c′, then the statement follows. Oth-
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erwise, if yup − ydown > 10c′, then for any u ∈ {p, q}, the set

([−1, 1]× R) ∩i{−1,1},d∈{up,down} R(f ′(pi
d), D[pi

d, u], c
′)

has constant diameter. Thus the statement again follows.

Case 2: By Lemma 2.4.3 we can assume that the points pi
up, p

i
down, and p (as well as

pj
up, p

j
down, and q) have the same x coordinates. Then we apply Lemma 2.4.4.

It remains only to prove Lemma 2.4.4.

Proof:[of Lemma 2.4.4] Let z1 ∈ S1 and z2 ∈ S2 be any two points such that

‖z1 − z2‖ = max{‖u− v‖ : u ∈ S1, v ∈ S2}. Similarly, let t1 ∈ S1 and t2 ∈ S2 be any

two points such that ‖t1 − t2‖ = min{‖u− v‖ : u ∈ S1, v ∈ S2}. Let yp denote the y

coordinate of point p. Without loss of generality, we can assume that yz1 < yz2 < yd.

We claim that, if yt2 ≤ yz1, then z1 = t1. If yz1 < yt1 , then by decreasing yt1, we

decrease ‖t1 − t2‖. If yz1 > yt1 , then by decreasing yz1, we increase ‖z1 − z2‖. Thus,

z1 = t1, and in this case, ‖z1 − z2‖ − ‖t1 − t2‖ ≤ 2s.

It remains to analyze the case that yt2 > yz1. In this case, it is easy to see that,

as long as ya < yz1 , we can increase ya and decrease ra such that t2 and z2 continue

to belong to S2. Therefore, without loss of generality, we can assume that a = z1 and

ra + s = ‖z1 − z2‖.
Similarly, we apply the same idea to d and t1: we note that yt1 < yz2 and, by

decreasing yd, we can assume that d = z2 and rd + s = ra + s = ‖z1 − z2‖. It is easy

to see that, in this case (see Figure 2-6), we have ‖t1− t2‖ ≥ ra−3s = ‖z1− z2‖−3s.

We conclude that ‖z1 − z2‖ − ‖t1 − t2‖ ≤ 3s.
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Figure 2-6: Proof illustration of Lemma 2.4.4.
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Chapter 3

Multiplicative embeddings

In this chapter we present results on embedding using the more classical multiplicative

notion of distortion. The results can be partitioned into two categories: results about

unweighted shortest-path metrics on graphs, and results on the weighted version. The

results on unweighted graphs are simpler, give better guarantees, and thus are more

practical. The same algorithmic ideas can be extended with a lot more effort to the

weighted problems.

3.1 Unweighted shortest path metrics into the line

Credits: The work in this section is a combined version of two earlier papers by

Badoiu, Indyk, Rabinovich & Sidiropoulos, and by Dhamdhere, Gupta, Räcke &

Ravi which obtained nearly identical results. The results have appeared in SODA’05.

In this section, we present several approximation algorithms for the problem of

embedding metric spaces into a line, and into the two-dimensional plane. Among

other results, we give an O(
√
n)-approximation algorithm for the problem of finding

a line embedding of a metric induced by a given unweighted graph, that minimizes

the (standard) multiplicative distortion. We give an improved Õ(n1/3) approximation

for the case of metrics generated by unweighted trees. This is the first result of this

type.
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More formally, we present algorithms for the following fundamental embedding

problem: given a graph G = (V,E) inducing a shortest path metric M = M(G) =

(V,D), find a mapping f of V into a line that is non-contracting (i.e., |f(u) −
f(v)| ≥ D(u, v) for all u, v ∈ V ) which minimizes the distortion cline(M, f) =

maxu,v∈V
|f(u)−f(v)|

D(u,v)
. That is, our goal is to find cline(M) = minf cline(M, f). For

the case when G is an unweighted graph, we show the following algorithms for this

problem (denote n = |V |):

• A polynomial (in fact, O(n3c)-time) c-approximation algorithm for metrics M

for which cline(M) ≤ c. This also implies an O(
√
n)-approximation algorithm

for any M (Section 3.1.1).

• A polynomial-time Õ(
√
c) approximation algorithm for metrics generated by

unweighted trees. This also implies an Õ(n1/3)-approximation algorithm for

these metrics (Section 3.1.2).

• An exact algorithm, with running time nO(cline(M)) (Section 3.1.3).

We complement our algorithmic results by showing that a-approximating the value

of cline(M) is NP-hard for certain a > 1 in Section 3.1.4. In particular, this justifies

the exponential dependence on cline(M) in the running time bound for the exact

algorithm.

Distortion vs Bandwidth. In the context of unweighted graphs, the notion of

minimum distortion of an embedding into a line is closely related to the notion of a

graph bandwidth. Specifically, if the non-contraction constraint |f(u)−f(v)| ≥ D(u, v)

is replaced by a constraint |f(u) − f(v)| ≥ 1 for u 6= v, then c1(M(G)) becomes

precisely the same as the bandwidth of the graph G.

There are several algorithms that approximate the bandwidth of a graph [Fei00,

Gup00b]. Unfortunately, they do not seem applicable in our setting, since they do

not enforce the non-contraction constraint for all node pairs. However, in the case of

exact algorithms the situation is quite different. In particular, our exact algorithm

for computing the distortion is based on the analogous algorithm for the bandwidth

problem by Saxe [Sax80a].
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3.1.1 A c-approximation algorithm

We start by stating an algorithmic version of a fact proved in [Mat90].

Lemma 3.1.1 Any shortest path metric over an unweighted graph G = (V,E) can

be embedded into a line with distortion at most 2n− 1 in time O(|V |+ |E|).

Proof: Let T be a spanning tree of the graph. We replace every (undirected) edge of

T with a pair of opposite directed edges. Since the resulting graph is Eulerian, we can

consider an Euler tour C in T . Starting from an arbitrary node, we embed the nodes

in T according to the order that they appear in C, ignoring multiple appearances

of a node, and preserving the distances in C. Clearly, the resulting embedding is

non-contracting, and since C has length 2n, the distortion is at most 2n− 1.

Note that the O(n) bound is tight, e.g. when G is a star.

Let G = (V,E) be a graph, such that there exists an embedding of G of distortion

c. The algorithm for computing an embedding of distortion at most O(c2) is the

following:

1. Let fOPT be an optimal embedding of G (note that we just assume the existence

of such an embedding, without computing it). Guess nodes t1, t2 ∈ V , such that

fOPT (t1) = minv∈V fOPT (v), and fOPT (t2) = maxv∈V fOPT (v).

2. Compute the shortest path p = v1, v2, . . . , vL from t1 to t2.

3. Partition V into disjoint sets V1, V2, . . . VL, such that for each u ∈ Vi, D(u, vi) =

min1≤j≤LD(u, vj). Break ties so that each Vi is connected.

4. For i = 1 . . . L, compute a spanning tree Ti of the subgraph induced by Vi,

rooted at vi. Embed the nodes of Vi as in the proof of Lemma 3.1.1, leaving a

space of length |Vi| between the nodes of Vi and Vi+1.

Lemma 3.1.2 For every i, 1 ≤ i ≤ L, and for every x ∈ Vi, we have D(vi, x) ≤ c/2.

Proof: Assume that the assertion is not true. That is, there exists vi, and x ∈ Vi,

such that D(x, vi) > c/2. Consider the optimal embedding fOPT . By the fact that v1
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and vL are the left-most and right-most embedded nodes in the embedding fOPT , it

follows that there exists j, 1 ≤ j < L, such that fOPT (x) lies between fOPT (vj), and

fOPT (vj+1). W.l.o.g., assume that fOPT (vj) < fOPT (x) < fOPT (vj+1). Since x ∈ Vi,

we have |fOPT (vj+1) − fOPT (vj)| = fOPT (vj+1) − fOPT (x) + fOPT (x) − fOPT (vj) ≥
D(vj+1, x) +D(x, vj) ≥ 2D(x, vi) > c. This is a contradiction, since the expansion of

fOPT is at most c.

Lemma 3.1.3 For every i, 1 ≤ i ≤ L− c+ 1, we have
∑i+c−1

j=i |Vj| ≤ 2c2.

Proof: Assume that there exists i such that
∑i+c−1

j=i |Vj| > 2c2. Note that

max
i≤j1<j2≤i+c−1

|fOPT (vj1)− fOPT (vj2)| ≤ c(c− 1).

Moreover, since
∑i+c−1

j=i |Vj| > 2c2, we have maxu,w∈
Si+c−1

j=i Vj
|fOPT (u) − fOPT (w)| ≥

2c2. It follows that there exists u ∈ Vl, for some l, with i ≤ l ≤ i + c − 1, such that

|fOPT (vl) − fOPT (u)| ≥ 2c2−c(c−1)
2

> c2/2. Since the expansion is at most c, we have

D(vl, u) > c/2, contradicting Lemma 3.1.2.

Lemma 3.1.4 The embedding computed by the algorithm is non-contracting.

Proof: Let x, y ∈ V . If x and y are in the same set Vi, for some i, then clearly

|f(x)− f(y)| ≥ D(x, y), since the distance between x and y produced by an traversal

of the spanning tree of the graph induced by Vi is at least the distance of x and y on

Ti, which is at least D(x, y).

Assume now that x ∈ Vi and y ∈ Vj, for some i < j. We have |f(y) − f(x)| ≥
|Vi|+2

∑j−1
l=i+1 |Vl|+ |Vj| ≥ |Vi|+ |Vj|+j−i > D(x, vi)+D(y, vj)+D(vi, vj) ≥ D(x, y).

Lemma 3.1.5 The distortion of the embedding computed by the algorithm is at most

4c2.

Proof: It suffices to show that for each {x, y} ∈ E, |f(x) − f(y)| ≤ 4c2. Let x ∈ Vi,

and y ∈ Vj . If |i− j| ≤ 2c, then by Lemma 3.1.3 we obtain that |f(x)− f(y)| ≤ 4c2.
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Assume now that there exist nodes x ∈ Vi and y ∈ Vj, with {x, y} ∈ E, and

|i− j| > 2c. By Lemma 3.1.2, we obtain that D(vi, x) ≤ c/2, and D(y, vj) ≤ c/2, and

thus |i− j| = D(vi, vj) ≤ c+ 1, a contradiction.

Theorem 3.1.6 The described algorithm computes a non-contracting embedding of

maximum distortion O(c2), in time O(n3c).

Proof: By Lemmata 3.1.4 and 3.1.5, it follows that the computed embedding is non-

contracting and has distortion at most O(c2). In the beginning of the algorithm, we

compute all-pairs shortest paths for the graph. Next, for each possible pair of nodes

t1 and t2, the described embedding can be computed in linear time. Thus, the total

running time is O(n2|E|) = O(n3c).

Theorem 3.1.7 There exists a O(
√
n)-approximation algorithm for the minimum

distortion embedding problem.

Proof: If the optimal distortion c is at most
√
n, then the described algorithm com-

putes an embedding of distortion at most O(c
√
n). Otherwise, the algorithm de-

scribed in Lemma 3.1.1, computes an embedding of distortion O(n). Thus, by taking

the best of the above two embeddings, we obtain an O(
√
n)-approximation.

3.1.2 Better embeddings for unweighted trees

For the case of trees, we use a similar framework as for general graphs: we divide the

tree along the path from t1 to t2 and obtain connected components V1, . . . , VL each

with diam(Vi) ≤ c and
∑i+c−1

j=i |Vj| ≤ 2c2. Instead of a spanning tree on each Vi, we

give a more sophisticated embedding. We consider all the vertices in Xi = ∪i+c
j=iVj

together. Lemma 3.1.2 gives the following bound on the diameter of the set Xi.

Lemma 3.1.8 The diameter of the set Xj (for j = 1, 2, . . .) is at most 2c.

We use the following straightforward lower bound on the distortion for embedding

Xj.
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The local density ∆ of G is defined as

∆ = max
v∈V,r∈R>0

{ |B(v, r)| − 1

2r

}

,

where |B(v, r)| = {u ∈ V | d(u, v) ≤ r} denotes the ball of nodes within distance

r from v. Intuitively, a high local density tells us that there are dense clusters in

the graph, which will cause a large distortion. The following lemma formalizes this

intuition.

Lemma 3.1.9 [Local Density] Let G denote a graph with local density ∆. Then

any map of G into the line has distortion at least ∆.

Prefix Embeddings.

We first prove that it suffices to consider embeddings where each prefix of the associ-

ated tour forms a connected component of the tree; this will allow us to considerably

simplify all our later arguments.

Lemma 3.1.10 [Prefix Embeddings] Given any graph G, there exists an embed-

ding of G into the real line with the following two properties:

1. Walk from left to right on the line, the set of points encountered up to a certain

point forms a connected component of G.

2. The distortion of this map is at most twice the optimal distortion.

Proof: Consider the optimal embedding f ∗, and let v1, v2, . . . , vn be the order of

the points in this embedding. (We will blur the distinction between a vertex v and its

image f ∗(v) on the line.) Without loss of generality, we can assume that the distance

between any two adjacent points vi and vi+1 in this embedding is their shortest path

distance D(vi, vi+1).

Let i be the smallest index such that {v1, v2, . . . , vi} does not form a connected

subgraph; hence there exists some vertex on every vi−1-vi path that has not yet been

laid out. We pick a shortest path P , take the vertex w in P \ {v1, v2, . . . , vi−1} closest
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to vi−1, and place it at distance D(vi−1, w) to the right of vi−1 in the embedding. We

repeat this process until Property 1 is satisfied; it remains to bound the distortion we

have introduced.

Note that the above process moves each vertex at most once, and only moves

vertices to the left. We claim that each vertex is moved by at most distance c,

where c is the optimal distortion. Indeed, consider a vertex w that is moved when

addressing the vi−1-vi path, and let vk be a neighbor of w among v1, . . . , vi−1. Note

that the distance |f ∗(vk) − f ∗(w)| between these two vertices is at most c in the

optimal embedding. Since w stays to the right of vk, the distance by which w is

moved is at most c.

In short, though the above alterations move vertices to the left, whilst keeping

others at their original locations in f ∗, the distance between the endpoints of an edge

increases by at most c. Since the distance |f ∗(v)−f ∗(u)| was at most c to begin with,

we end up with an embedding with (multiplicative) distortion at most 2c, proving

the lemma.

Henceforth, we will only consider embeddings that satisfy the properties stated

in Lemma 3.1.10. The bound on the increase in distortion is asymptotically best

possible: for the case of the n-vertex star K1,n−1, the optimal distortion is ≈ n/2, but

any prefix embedding has distortion at least n− 2.

The Embedding Algorithm.

In this section, we give an algorithm which embeds trees with distortion g(c) =

2∆
√
c log c + c, where ∆ is the local density and c the optimal distortion. The

algorithm proceeds in rounds: in round i, we lay down a set Zi with about g(c)

vertices. To ensure that the neighbors of vertices are not placed too far away from

them, we enforce the condition that the vertices in Zi include all the neighbors of

vertices in ∪j<iZj that have not already been laid out.

It is this very tension between needing to lay out a lot of vertices and needing to

ensure their neighbors can be laid out later on, that leads to the following algorithm.

In fact, we will mentally separate the action of laying out the neighbors of previously
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embedded vertices (which we call the BFS part of the round) from that of laying out

new vertices (which we call the DFS part).

We assume that we know the left-most vertex r in the prefix embedding; we can

just run over all the possible values of r to handle this assumption. Let N(X) denote

the set of neighbors of vertices in a set X ⊆ V .

We define a light path ordering on the vertices of the tree T . The light path

ordering is a DFS ordering which starts at root r and at each point enters the subtree

with smallest number of vertices in it.

Algorithm Tree-Embed:

1. let C ← {r} denote the set of vertices

already visited. Set i← 1.

2. while C 6= V (T ) do

(Round i BFS)

3. Visit all vertices in N(C) \ C;

let C ← C ∪N(C)

(Round i DFS)

5. set B to be a set of g(c) vertices

of V (T ) \ C in the light path ordering.

Visit all vertices in B; let C ← C ∪ B.

6. endwhile

Lemma 3.1.11 [Number of rounds] The algorithm Tree-Embed requires at most
√

c log−1 c iterations.

Proof: By the very definition of the algorithm, the set C grows by at least g(c) in

every iteration. Note that the diameter of the tree is bounded by 2c and its local

density is ∆. Therefore, the number of nodes in the tree is at most 2∆c. Hence,

within (2∆c)/g(c) ≤
√

c log−1 c iterations, all the vertices of the tree will be visited.
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The heart of the proof is to show that visiting the vertices in Steps 3 and 5 does

not incur too much distortion; it may be the case that the size of N(C) \ C may be

too large, or even that these vertices may be separated very far from each other.

Lemma 3.1.12 [Span of boundary] The size of the induced spanning tree on the

boundary N(C) \ C is bounded by g(c).

Proof: Consider the set Ci of vertices that have been visited by round i. Consider

a vertex x visited in round j of the DFS for some j ≤ i. Note that the children of

the vertex x will be visited after x. We say that x is a branching point if not all the

children of x were visited in the same round as x. The branching point x is active

after round i if at least one of the vertices below it has not been visited by round i;

otherwise it is inactive. We claim that all the active branching points in Ci lie on

some root-leaf path. This follows because the light path ordering is a DFS ordering.

Therefore, if some vertices below a branching point x have not been visited, then the

DFS part of the algorithm will not visit a different subtree.

Note that each active branching point (except possibly the lowest one) has at least

two children and the algorithm visits the child which has a smaller number of vertices

in its subtree. Recall that the size of the tree is bounded by 2c2 by Lemma 3.1.3.

Therefore, the number of active branching points on a root to leaf path is at most

2 log c+ 1.

We claim that every node in N(Ci) \ Ci is within a distance of i + 1 of some

active branching point. We prove this by induction on i. Before the first round, this

property is true, since C0 = {r}. Now assume the property for i − 1 and consider a

vertex v ∈ N(Ci) \ Ci. Let u be the neighbor of v such that u ∈ Ci. If u was visited

in the round i of the DFS, then u is an active branching point, since its child v has

not been visited in the same round. Otherwise, if u was visited in round i of the BFS,

then u is within distance i of some branching point x. Since v is below x and has

not been visited after round i, the branching point x must be active. Therefore, v is

within distance i+ 1 from some active branching point.

Consider an active branching point x and let Nx contain the points from N(Ci)\Ci
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that are within distance i + 1 from x. Then, we can bound the span of the induced

tree on Nx using the local density bound. The number of vertices in the induced tree

on Nx is bounded by (i + 1)∆. Thus, for each active branching point, the number

of vertices in the induced tree is bounded by ∆
√

c log−1 c. Since there are 2 log c+ 1

branching points overall, the sum of spans over all the active branching points is at

most 2∆
√
c log c. Note that, all the active branching points are on a single root-leaf

path. Therefore, connecting all the branching points in N(Ci) \ Ci requires only a

path of length c. Hence, the total span of vertices in N(Ci) \ Ci is bounded by g(c).

Lemma 3.1.13 The span of the tree induced on the vertices visited in any iteration

is bounded by 2g(c).

Proof: From Lemma 3.1.12, the span of the vertices visited in Step 3 of the

algorithm is bounded by g(c). The number of new vertices visited in Step 5 of the

algorithm is bounded by g(c). Since, we visit a set of connected components, their

span is bounded by g(c)+span(N(C)\C). Therefore, the span of the vertices visited

in each iteration is bounded by 2g(c).

Lemma 3.1.14 The distortion of the embedding produced by Algorithm Tree-Embed

is 4g(c).

Proof: For a pair of vertices that are visited during the same iteration, the distance in

the embedding is bounded by 2g(c) (from Lemma 3.1.13). Therefore, the distortion

of such a pair is bounded by 4g(c). So, consider an edge (x, y) such that x and y

were visited in different iterations. Note that, Step 1 of the algorithm ensures that if

x is visited in iteration i, then y is visited in iteration i+ 1. Therefore, the distance

between x and y in the embedding is bounded by 4g(c). Hence, the distortion is

bounded by 4g(c).

Concatenating the embeddings. In order to concatenate the embeddings of

X1, X2, . . ., it is enough to observe that since the input graph is a tree, there is only one

edge connecting components Xi and Xi+1 for all i. Consider the last vertex in Xi, viz.
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vic. To produce an embedding of the component Xi using Algorithm Tree-Embed,

we use a light path ordering of Xi assuming that the subtree containing vic is the

heaviest subtree. Hence vic is last in the light path ordering of Xi and is visited in

the last iteration of the Algorithm Tree-Embed. This makes sure that the distortion

of the edge (vic, vic+1) is smaller than 2g(c). Changing the light path ordering in this

way does not affect the bound on the distortion proved in Lemma 3.1.14. Thus we

get the following result.

Theorem 3.1.15 There is a polynomial time algorithm that finds an embedding of

an unweighted tree with distortion 8∆
√
c log c+ 4c.

Corollary 3.1.16 There is a polynomial time algorithm that finds an embedding of

an unweighted tree with distortion within a factor O((n logn)1/3) of the optimal dis-

tortion.

3.1.3 A dynamic programming algorithm for graphs of small

distortion

Given a connected simple graph G = (V,E) and an integer c, we consider the problem

of deciding whether there exists a non-contracting embedding of G into the integer

line with maximum distortion at most c.

Note that the maximum distance between any two points in an optimal embedding

can be at most c(n− 1), and there always exists an optimal embedding with all the

nodes embedded into integer coordinates. W.l.o.g., in the rest of this section, we will

only consider embeddings of the form f : V → {0, 1, . . . , c(n−1)}. Furthermore, if G

admits an embedding of distortion c, then the maximum degree of G is at most 2c.

Thus, we may also assume that G has maximum degree 2c.

Definition 6 (Partial Embedding) Let V ′ ⊆ V . A partial embedding on V ′ is a

function g : V ′ → {0, 1, . . . , c(n− 1)}.

Definition 7 (Feasible Partial Embedding) Let f be a partial embedding on V ′.
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f is called feasible if there exists an embedding g of distortion at most c, such that for

each v ∈ V ′, we have g(v) = f(v), and for each u /∈ V ′, it is g(u) > maxw∈V ′ f(w).

Definition 8 (Plausible Partial Embedding) Let f be a partial embedding on

V ′. f is called plausible if

• For each u, v ∈ V ′, we have |f(u)− f(v)| ≥ D(u, v).

• For each u, v ∈ V ′, if {u, v} ∈ E, then |f(u)− f(v)| ≤ c.

• Let L = maxv∈V ′ f(v). For each u ∈ V ′, if f(u) ≤ L− c, then for each w ∈ V
such that {u, w} ∈ E, we have w ∈ V ′.

Lemma 3.1.17 If a partial embedding is feasible, then it is also plausible.

Proof: Let f be a partial embedding over V ′, such that f is feasible, but not plausible,

and let L = maxv∈V ′ f(v). It follows that there exists {u, w} ∈ E, with u ∈ V ′, such

that f(u) ≤ L − c, and w /∈ V ′. Since f is feasible, there exists an embedding

g of distortion at most c, satisfying g(u) = f(u) ≤ L − c, and g(w) > L. Thus,

|g(u)− g(w)| > c, a contradiction.

Definition 9 (Active Region) Let f be a partial embedding over V ′. The ac-

tive region of f is a couple (X, Y ), where X = {(u1, f(u1)), . . . , (u|X|, f(u|X|))} is

a set of min{2c + 1, |V ′|} couples, where {u1, . . . , u|X|} is a subset of V ′, such that

f(ui) = maxu∈V ′\{ui+1,...,u|X|} f(u), and Y is the set of all edges in E having exactly

one endpoint in V ′.

Lemma 3.1.18 Let f1 be a plausible partial embedding over V1, and f2 be a plausible

partial embedding over V2. If f1 and f2 have the same active region, then

• V1 = V2.

• f1 is feasible if and only if f2 is feasible.

Proof: Let L = maxv∈V ′ f(v). To prove that V1 ⊆ V2, assume that there exists

v ∈ V1 \ V2. Let p be a path starting at v, and terminating at some node in V1 ∩ V2,
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and let v′′ be the first node in V1 ∩ V2 visited by p, and v′ be the node visited

exactly before v′′. Clearly, v′ ∈ V1 \ V2, and v′ is not in the active region, thus

f1(v
′) < L − 2c. Furthermore, by the definition of a plausible partial embedding,

since the edge {v′′, v′} has exactly one endpoint in V2, it follows that f2(v
′′) > L− c.

Thus, |f1(v
′)−f1(v

′′)| = |f1(v
′)−f2(v

′′)| > c, contradicting the fact that f1 is plausible.

Similarly we can show that V2 ⊆ V1, and thus V1 = V2.

Assume now that f1 is feasible, thus there exists an embedding g1 of distortion

at most s, such that for each v ∈ V1, we have f1(v) = g1(v), and for each v /∈ V1,

we have g1(v) > L. Consider the embedding g2, where g2(u) = f2(u), if u ∈ V2,

and g2(u) = g1(u) otherwise. It suffices to show that g2 is non-contracting and has

distortion at most c.

If g2 has distortion more than c, then since f2 is a plausible partial embedding,

and g1 has distortion at most c, it follows that there exists an edge {u, w}, with

u ∈ V2 and w /∈ V2, such that |g2(u)− g2(w)| > c. Since the edge {u, w} has exactly

one endpoint in V2, it follows that f2(u) > L− c, and thus u is in the active region,

and f2(u) = f1(u). Thus, we obtain that |g1(u) − g1(w)| = |g2(u) − g2(w)| > c, a

contradiction. Thus, g2 has distortion at most c.

If g2 is a contraction, then there exist nodes u and w such that |g2(u)− g2(w)| <
D(u, w). Since f2 is plausible, and g2 is non-contracting, we obtain that exactly one

of the nodes u and w is in V2. W.l.o.g., assume that u ∈ V2 and w /∈ V2, and thus

f2(u) > L−c. Thus, u must be in the active region, and we obtain that f2(u) = f1(u),

and thus |g1(u)−g1(w)| = |g2(u)−g2(w)| < D(u, w), a contradiction. We have shown

that g2 is non-contracting and has distortion at most c, thus f2 is feasible.

Lemma 3.1.19 For fixed values of c, the number of all possible active regions for all

the plausible partial embeddings is at most O(n4c+2).

Proof: Let f be a plausible partial embedding, with active region (X, Y ), such that

|X| = i. It is easy to see that every edge in Y has exactly one endpoint in X.

Since the degree of every node is at most 2c, after fixing X, the number of possible

values for Y is at most 22ic. Also, the number of possible different values for X is at
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most
(

n
i

)

(nc)i. Thus, the number of possible active regions for all plausible partial

embeddings is at most
∑2c+1

i=1

(

n
i

)

(nc)i22ic = O(n4c+2).

Definition 10 (Successor of a Partial Embedding) Let f1 and f2 be plausible

partial embeddings on V1 and V2 respectively. f2 is a successor of f1 if and only if

• V2 = V1 ∪ {u}, for some u /∈ V1.

• For each u ∈ V1 ∩ V2, we have f1(u) = f2(u).

• If u ∈ V2 and u /∈ V1, then f2(u) = maxv∈V2 f2(v).

Let P be the set of all plausible partial embeddings, and let P̂ be the set of all

active regions of the embeddings in P . Consider a directed graph H with V (H) = P̂ .

For each x̂, ŷ ∈ V (H), (x̂, ŷ) ∈ E(H) if and only if there exist plausible embeddings

x, y, such that x̂ and ŷ are the active regions of x and y respectively, and y is a

successor of x.

Lemma 3.1.20 Let x0 be the active region of the empty partial embedding. G admits

a non-contracting embedding of distortion at most c, if and only if there exists a

directed path from x0 to some node x in H, such that x = (X, Y ), with X 6= ∅ and

Y = ∅.

Proof: If there exists a path from x0 to some node x = (X, Y ), with X 6= ∅ and

Y = ∅, then since X 6= ∅, it follows that x is not the active region of the empty

partial embedding. Furthermore, since G is connected and Y = ∅, it follows that x is

the active region of a plausible embedding f of all the nodes of G. By the definition

of a plausible embedding, it follows that f is a non-contracting embedding of G with

distortion at most c.

If there exists a non-contracting embedding f of G, with distortion at most c,

then we can construct a path in H , visiting nodes y0, y1, . . . , y|V |, as follows: For each

i let fi be the partial embedding obtained from f by considering only the i leftmost

embedded nodes, and let yi be the active region of fi. Clearly, each fi is a feasible

embedding, and thus by Lemma 3.1.17, it is also plausible. Moreover, y0 = x0,
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and for each 0 < i ≤ |V |, it is easy to see that fi is a successor of fi−1, and thus

(yi−1, yi) ∈ E(H). Since, f|V | is an embedding of all the nodes of G, the active region

y|V | = (X|V |, Y|V |) satisfies X|V | 6= ∅, and Y|V | = ∅.
Using Lemma 3.1.20, we can decide whether there exists an embedding of G

as follows: We begin at node x0, and we repeatedly traverse edges of H , without

repeating nodes. Note that we do not compute the whole H from the beginning, but

we instead compute only the neighbors of the current node. This is done as follows:

At each step i, we maintain a plausible partial embedding gi, such that each partial

embedding induced by the j leftmost embedded nodes in gi, has active region equal

to the jth node in the path from x0 to the current node. We consider all the plausible

embeddings obtained by adding a rightmost node in gi. The key property is that by

Lemma 3.1.18, the active regions of these embeddings are exactly the neighbors of the

current node. This is because an active region completely determines the subset of

embedded nodes, as well as the feasibility of such a plausible embedding. By Lemma

3.1.19, the above procedure runs in polynomial time when s is fixed.

Theorem 3.1.21 For any fixed integer c, we can compute in polynomial time a non-

contracting embedding of G, with distortion at most c, if one exists.

3.1.4 Hardness of approximation

In this section we show that the problem of computing minimum distortion embedding

of unweighted graphs is NP-hard to a-approximate for certain a > 1. This is done by

a reduction from TSP over (1, 2)-metrics. Recall that the latter problem is NP-hard

to approximate up to some constant a > 1.

Recall that a metric M = (V,D) is a (1, 2)-metric, if for all u, v ∈ V , u 6= v, we

have D(u, v) ∈ {1, 2}. Let G(M) be a graph (V,E) where E contains all edges {u, v}
such that D(u, v) = 1.

The reduction F from the instances of TSP to the instances of the embedding

problem is as follows. For a (1, 2)-metric M , we first compute G = (V,E) = G(M).

Then we construct a copy G′ = (V ′, E ′) of G, where V ′ is disjoint from V . Finally,
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we add a vertex o with an edge to all vertices in V ∪ V ′. In this way we obtain the

graph F (M).

The properties of the reduction are as follows.

Lemma 3.1.22 If there is a tour in M of length t, then F (M) can be embedded into

a line with distortion at most t.

Proof: The embedding f : F (M)→ ℜ is constructed as follows. Let v1, . . . , vn, v1 be

the sequence of vertices visited by a tour T of length t. The embedding f is obtained

by placing the vertices V in the order induced by T , followed by the vertex o and

then the vertices V ′. Formally:

• f(v1) = 0, f(vi) = f(vi−1) +D(vi−1, vi) for i > 1

• f(o) = f(vn) + 1

• f(v′1) = f(o) + 1, f(v′i) = f(v′i−1) +D(v′i−1, v
′
i) for i > 1

It is immediate that f is non-contracting. In addition, the maximum distortion

(of at most t) is achieved by the edges {o, v1} and {o, v′n}.

Lemma 3.1.23 If there is an embedding f of F (M) into a line that has distortion

s, then there is a tour in M of length at most s+ 1.

Proof: Let H = F (M). Let U = u1 . . . u2n be the sequence of the vertices of V ∪ V ′

in the order induced by f . Partition the range {1 . . . 2n} into maximal intervals

{i0 . . . i1− 1}, {i1 . . . i2− 1}, . . . , {ik−1 . . . ik− 1}, such that for each interval I, the set

{ui : i ∈ I} is either entirely contained in V , or entirely contained in V ′. Recall that

H has diameter 2. Since f has distortion s, it follows that |f(u1) − f(u2n)| ≤ 2s.

Moreover, from non-contraction of f it follows that |f(uij−1) − f(uij)| = 2 for all

j. It follows that if we swap any two subsequences of U corresponding to different

intervals I and I ′, then the resulting mapping of V ∪V ′ into ℜ is still non-contracting

(with respect to the metric induced by H). Therefore, there exists a mapping f ′ of

V ∪V ′ into ℜ which is non-contracting, in which all vertices of V precede all vertices

of V ′, and such that the diameter of the set f ′(V ∪ V ′) is at most 2s. Without loss
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of generality, assume that the diameter ∆ of f ′(v) is not greater than the diameter

of f ′(V ′). This implies that ∆ ≤ (2s − 2)/2 = s − 1. Therefore, the ordering of the

vertices in V induced by f ′ corresponds to a tour in M of length at most ∆+2 ≤ s+1.

Corollary 3.1.24 There exists a constant a > 1 such that a-approximating the min-

imum distortion embedding of an unweighted graph is NP-hard.

3.2 Embedding into the line when the distortion

is small

Credits: The results in this section is work done with Piotr Indyk and Yuri Rabi-

novich in the autumn of 2002. The results haven’t been published yet.

For the case when G is a weighted graph and we want to embed it into the line, we

obtain the following result. For induced metrics M such that cline(M) = 1 + ǫ < 1.5,

we give an algorithm that finds a line embedding f such that cline(M, f) = 1 +O(ǫ).

In other words, the algorithm constructs a good embedding for metrics that are very

well embeddable into a line. The algorithm proceeds by computing an MST T of M ,

and then ordering the nodes according to T . Thus, its running time is O(n2) in the

worst case, and it is even more efficient for metric spaces that support faster MST

computation. We also note that ordering the metric nodes using MST is a popular

heuristic (e.g., see [BJDG+03]). To our knowledge, our result provide the first known

provable guarantee for this heuristic.

The algorithm proceeds as follows: we start with every node of G being in its own

component, keeping for each component an embedding of the points of the component

into the line. We traverse the edges of G in increasing order of the distances D. If

the endpoints of the edge e = {v, u} are in different components, we merge these two
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components in the following way. Let ∆(C) be the diameter of a component C,

∆(C) = max
a,b∈C

D(a, b).

If D(e) < ∆(C)/(ǫ(1+ ǫ)), we can determine the order of the points of C = A
⋃

B in

an optimal embedding. If the distance D(e) ≥ ∆(C)/(ǫ(1 + ǫ)), we choose any order.

3.2.1 A Special Case

We first show how to prove the correctness for the special case when we have no

contractions, i.e., we have D(e) < ∆(C)/(ǫ(1+ ǫ)) whenever we merge 2 components.

In this case we show how to get an (1 + ǫ)-approximation.

Claim 3.2.1 Let f : X → ℜ be an optimal embedding. At any step of the algorithm,

for every 2 nodes a, b ∈ C such that f(a) > f(b) and any node p /∈ C, either f(p) >

f(a) or f(b) > f(p).

Proof: Suppose we have f(a) > f(p) > f(b). The nodes of C are linked by an

MST. Let {b′, a′} be an edge of the MST such that f(a′) > f(p) > f(b′). (such an edge

exists because a, b exist) Then we have either f(p) ≥ f(a′)+f(b′)
2

or f(p) < f(a′)+f(b′)
2

.

Without loss of generality, we have f(p) ≥ f(a′)+f(b′)
2

. Then, it must be the case that

D(a′, b′) > D(a′, p), and it follows that p must have been added to the MST of C,

therefore p ∈ C, which is a contradiction.

Claim 3.2.2 At any step of the algorithm for any component, there is a unique or-

dering of the (1+ ǫ)-embeddings into the line, f : X → ℜ, not considering the reverse

orderings.

Proof: We prove the statement by induction. The claim is trivially verified for

the base case, when the component contains only 1 node. When we merge 2 compo-

nents, A and B, because of claim 3.2.1 and the inductive hypothesis, we have only

4 possibilities: we first place the embedding of A or the reverse of it and then we

place the embedding of B or the reverse of it. Let e be the smallest edge between
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the 2 components. Since D(e) < ∆(A)/(ǫ(1 + ǫ)) and D(e) < ∆(B)/(ǫ(1 + ǫ)), we

cannot have the case that both placing the embedding and the reverse are feasible

solutions. Therefore, out of the 4 possibilities, at least 3 possibilities do not give an

(1 + ǫ)-embedding. Since there exists an (1 + ǫ)-embedding, one of the 4 possibilities

must give an (1 + ǫ)-embedding. Thus, this embedding is unique for the component

A
⋃

B.

We can compute the ordering of the embedding of A
⋃

B, by just looking at the

distances D between the extreme nodes of the embeddings of A and B. Given the

embeddings of the 2 components, f(A) and f(B) we compute f(A
⋃

B) by using the

right ordering of the nodes, and such that the distance between the closest 2 points

a ∈ A, b ∈ B, is exactly D(a, b).

Claim 3.2.3 f is an (1 + ǫ)-embedding of G.

Proof: The ordering of the points is exactly the same as in an optimal solution, by

the previous claim. The distance between every 2 consecutive nodes a, b is exactly

D(a, b), so f is contracted as much as possible. Thus, f cannot expand more than

1+ǫ. It remains to show that f is non-contracting. We show this by induction. In the

beginning of the algorithm the map of each component is trivially non-contracting.

Given 2 points a, b, consider the step of the algorithm when the 2 components A

and B are merged. (a ∈ A, b ∈ B) Let v ∈ A, u ∈ B the closest 2 points in

f . (v and u are extreme nodes in f(A) and f(B) respectively) By the triangle

inequality and the inductive hypothesis, D(a, b) ≤ D(a, v) + D(v, u) + D(u, b) ≤
f(a, v) + f(v, u) + f(u, b) = f(a, b).

The proof of the general case is based on the following structural theorem.

Theorem 3.2.4 Let (X,D) be a metric (1+ǫ)-embeddable into a line for ǫ < 1/2. Let

G = (X,X×X) be a complete graph with distances D. Then the shortest paths metric

on the minimum spanning tree of G c-approximates (X,D), for c = 2
∑∞

i=1 ǫ
i = O(ǫ).

Proof: Let M be the set of edges on a MST of G. Let a1, a2, . . . , ak be a path on

the MST. Let f : X → ℜ be a non-contracting (1 + ǫ)-embedding of (X,D) into a
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line. Since the map f does not expand too much we have

k−1
∑

i=1

(1 + ǫ)D(ai, ai+1) ≥
k−1
∑

i=1

|f(ai)− f(ai+1)| ≥ |f(a1)− f(ak)|. (3.1)

Without loss of generality we can assume f(a1) < f(ak).

Lemma 3.2.5 If f(a1) < f(ai) < f(ak) for i = 2, 3, . . . , k−1, then
∑k−1

i=1 D(ai, ai+1) ≤
|f(a1)− f(ak)|.

Proof: If f(ai) < f(ai+1) for all 1 ≤ i < k, then
∑k−1

i=1 D(ai, ai+1) ≤
∑k−1

i=1 |f(ai) −
f(ai+1)| = |f(a1) − f(ak)|. Otherwise there exists i, such that 1 < i < k, and

such that f(ai) > f(ai+1). It follows that there exist l, j such that l < j, and such

that f(al) < f(aj) < f(al+1) < f(aj+1). Since {al, al+1} is an edge in the MST

and {al, aj} is not, we have D(al, al+1) < D(al, aj). By the same argument we have

D(aj, aj+1) < D(al+1, aj+1). We construct a new path P ′ by removing {al, al +1} and

{aj , aj+1} and adding {al, aj} and {al+1, aj+1}. We also set D(al, aj) = D(al, al+1)

and D(al+1, aj+1) = D(aj, aj+1). Note that we decrease the distances of these edges,

which is OK. Since the degree of each node is 2, we will have a path from a1 to ak and

the sum of the distances of the path will remain the same. We repeat the argument, as

long as there exists i such that f(ai) > f(ai+1). Every such step performed decreases

the number of edges that overlap in the embedding. Thus, after a finite number of

these steps, we will end up with a path. Therefore, we have

k−1
∑

i=1

D′(ai, ai+1) =
k−1
∑

i=1

D(a′i, a
′
i+1) ≤

k−1
∑

i=1

D′(a′i, a
′
i+1) ≤

k−1
∑

i=1

|f(a′i)−f(a′i+1)| = |f(a1)−f(ak)|,

(3.2)

where a′1, a
′
2, . . . , a

′
k are the points on the path we end up with, and D′ is the original

distance function.

We call applying lemma 3.2.5 “linearizing” a path. We will now proceed to

prove the case when a1 and ak are not necessarily at the extremes of f . For the

path a1, a2, . . . , ak, let s, t such that f(as) < f(al) < f(at) for all l ∈ {1, . . . , k} −
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{s, t}. We linearize the path as, as+1, . . . , at by applying lemma 3.2.5. Let aq be the

rightmost point on the path a1, . . . , ai. We linearize the path aq, . . . , ai and find the

leftmost point p on the path a1, . . . aq. We linearize ap, . . . , aq and recursively apply

the previous argument to a1, . . . , aq.

Claim 3.2.6 Consider two consecutive sub-paths: a1, . . . , ai, . . . , aj, such that f(al) <

f(al+1) for l ∈ {1, . . . , i − 1}, and such that f(al) > f(al+1) for l ∈ {i, . . . , j − 1}.
Then f(ai+1) < f(a1).

Proof: Assume f(ai+1) ≥ f(a1). Then there exists l < i, such that f(al) < f(ai) <

f(al+1). If f(ai)−f(al) ≤ (f(al+1)−f(ai))/2 then it must be the case that D(al, ai) <

D(al, al+1) which implies {al, ai} must belong to the MST which is a contradiction.

Respectively, if f(al+1)−f(ai) ≤ (f(al+1)−f(ai))/2 implies {ai, al+1} is in the MST,

contradiction.

Applying claim 3.2.6 to the first two linearized paths a1, . . . ai, . . . , aj, such that

f(al) < f(al+1) for l ∈ {1, . . . , i−1}, and such that f(al) > f(al+1) for l ∈ {i, . . . , j−
1}, we get that

i−1
∑

l=1

D(al, al+1) ≤ |f(ai)− f(a1)| ≤ ǫD(ai, ai+1)

by using the fact that D(ai, ai+1) < D(a1, ai+1). By charging the cost of the small

linearized paths to the bigger ones, i.e., using the previous argument for each linearized

path and writing the length of the small path as ǫ times the size of the bigger path,

we get the following

k
∑

i=1

D(ai, ai+1) ≤ (

t
∑

i=s

D(ai, ai+1))(1 + 2

∞
∑

i=1

ǫi) (3.3)
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If t = s + 1 (the as, . . . , at path has only one edge) then D(a1, ak) ≥ D(as, at) since

{as, at} is not on the MST. By using 3.3 we get

k
∑

i=1

D(ai, ai+1) ≤ D(a1, ak)(1 + 2
∞
∑

i=1

ǫi) ≤ f(a1, ak)(1 + 2
∞
∑

i=1

ǫi)

If t > s + 1, then D(a1, as+1) ≥ D(as, as+1) and D(ak, at−1) ≥ D(at−1, at). By using

3.3 we get

k
∑

i=1

D(ai, ai+1) ≤ (D(a1, as+1)+

t−2
∑

i=s+1

D(ai, ai+1)+D(a1, as+1))(1+2

∞
∑

i=1

ǫi) ≤ f(a1, ak)(1+2

∞
∑

i=1

ǫi)

3.2.2 The general case of the algorithm

In this section we solve the case when we relax the condition of the special case.

Consider the step of the algorithm when we merge 2 components, A,B and we have

D(e) ≥ ∆(A)/(ǫ(1 + ǫ)). In this case we arbitrarily choose to place the embedding of

A or the reverse.

Claim 3.2.7 f is an (1 +O(ǫ))-distortion embedding of G.

Proof: The non-contracting part is exactly as the non-contracting proof of the claim

3.2.3. It remains to compute how much f can expand. The distance between every

2 consecutive nodes a, b is exactly D(a, b), so f is contracting as much as possible.

However, the ordering that we have computed might not be the same as in an optimal

solution.

We show there exists a graph G′ = (V,E,D′), such that for every 2 components

A, B that are merged, the edge between the closest 2 points in the embedding f is

part of the MST of G′. The distances d′ of G′ have the following property: (1 + 2ǫ+

2ǫ2 + ǫ3)D(v, w) ≥ D′(v, w) ≥ D(v, w). Our algorithm gives the same output on G′

as on G. The edges of the MST of G′ are non-expanding. Using these edges we can

upper-bound |f(v)− f(w)| by (1 +O(ǫ))D(v, w).
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When we merge A and B, let e = {v, u} be the smallest distance edge between A

and B. Let a ∈ A, b ∈ B such that

|f(a)− f(b)| = min
a∈A,b∈B

|f(a)− f(b)|.

If D(v, u) < ∆(A)/(ǫ(1 + ǫ)) and D(v, u) < ∆(B)/(ǫ(1 + ǫ)) then D(a, b) < (1 +

ǫ)D(v, u). If D(v, u) ≥ ∆(A)/(ǫ(1 + ǫ)) and D(v, u) < ∆(B)/(ǫ(1 + ǫ)) then ∆(A) <

D(v, u)ǫ(1 + ǫ). By triangle inequality D(a, b) < D(v, u)(1 + ǫ) + ∆(A)(1 + ǫ) =

(1 + ǫ)(D(v, u) + ∆(A)) < (1 + ǫ)(D(v, u)(1 + ǫ(1 + ǫ))) = (1 + 2ǫ+ 2ǫ2 + ǫ3)D(v, u).

The other 2 cases are similar to these ones. Next set the distances D′(p, r) =

max (D(p, r), D(a, b) + δ) for every p ∈ A and r ∈ B, except for D(a, b), for in-

finitesimally small δ > 0 such that D(p, r) > D(a, b). We set D′(a, b) = D(a, b).

It follows that the new distances are bigger by at most a multiplicative factor of

(1+2ǫ+2ǫ2 + ǫ3). We do this for every component A and B which have been merged.

By theorem 3.2.4 we have that the MST approximates the metric within 1+2
∑∞

i=1 ǫ
i.

Let σ(v, w) = {(a, b)|(a, b) is on the MST path from v to w}. For every pair of nodes

{v, w}, using theorem 3.2.4,

D′(v, w) ≥
∑

(p,r)∈σ(v,w)

D′(p, r)/(1 + 2
∞
∑

i=1

ǫi)

=
∑

(p,r)∈σ(v,w)

|f(p)− f(r)|/(1 + 2
∞
∑

i=1

ǫi)

≥ |f(v)− f(w)|/(1 + 2
∞
∑

i=1

ǫi).

We have D(v, w) ≥ D′(v, w)/(1 + 2ǫ + 2ǫ2 + ǫ3). Therefore, D(v, w) ≥ |f(v) −
f(w)|/((1 + 2

∑∞
i=1 ǫ

i)(1 + 2ǫ + 2ǫ2 + ǫ3)) = |f(v)− f(w)|/(1 + O(ǫ)). Therefore, f

doesn’t expand more than 1 +O(ǫ).

Theorem 3.2.8 Let (X,D) be a metric (1 + ǫ)-embeddable into a line for ǫ < 1/2.

Then a map f : X → ℜ can be computed in polynomial time such that f is an
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(1 +O(ǫ))-embedding of (X,D) into a line.

3.3 Embedding spheres into the plane

Credits: The work in this section is a combined version of two earlier papers by

Badoiu, Indyk, Rabinovich & Sidiropoulos, and by Dhamdhere, Gupta, Räcke &

Ravi which obtained nearly identical results. The results have appeared in SODA’05.

In this section we study the problem of embedding metrics into the plane. In

particular, we focus on embedding metrics M = (X,D) which are induced by a set

of points on a unit sphere S2. Embedding such metrics is important, e.g., for the

purpose of visualizing point-sets representing places on Earth or other planets, on

a (planar) computer screen.1 In general, we show that an n-point spherical metric

can be embedded with distortion O(
√
n), and this bound is optimal in the worst

case. (The lower bound is shown by resorting to the Borsuk-Ulam theorem [Bor33],

which roughly states that any continuous mapping from S2 into the plane maps two

antipodes of S2 to the same point.) For the algorithmic problem of embedding M

into the plane, we give a 3.512-approximation algorithm, when D is the Euclidean

distance in R3. For the case where D corresponds to the geodesic distance in S2, our

algorithm can be re-analyzed to give an approximation guarantee of 3.

To our knowledge, our results provide the first non-trivial approximation guaran-

tees for the standard (multiplicative) notion of distortion for embeddings into low-

dimensional spaces.

Let M = (X,D) be a metric induced by a set X of n points on a unit sphere S2,

under the Euclidean distance in R3. Let cdp(M) denote the minimum distortion of any

embedding of M into ldp.

Theorem 3.3.1 If M = (X,D) is the metric induced by a set X of n points on a

unit sphere S2, under the Euclidean distance in R3, then c22(M) = O(
√
n).

1Indeed, the whole field of cartography is devoted to low-distortion representations of spherical
maps in the plane.
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Proof: Since the size of the surface of S2 is constant, it follows that there exists a

cap K in S2, of size Ω(1/n), such that X ∩K = ∅. Let p0 be the center of K on S2,

and p′0 be its antipode. By rotating S2, we may assume that p0 = (0, 0, 1), and thus

p′0 = (0, 0,−1).

For points p, p′ ∈ S2, let ρS(p, p′) be the geodesic distance between p and p′ in S2.

Consider the mapping f : X → R2, such that for every point p ∈ X, with p = (x, y, z),

we have f(p) =

(

ρS(p, p′0)
x√

x2+y2
, ρS(p, p′0)

y√
x2+y2

)

, if p 6= p′, and f(p) = (0, 0), if

p = p′. It is straightforward to verify that f is non-contracting.

Claim 3.3.2 The expansion of f is maximized for points p, q, on the perimeter of

K, which are antipodals with respect to K.

Proof: Let p, q ∈ S2. W.l.o.g., we assume that p = (0, sinϕp, 1 + cosϕp), and q =

(sinϕq sin θq, sinϕq cos θq, 1 + cosϕq), for some 0 ≤ ϕp, ϕq ≤ ϕ, and 0 ≤ θq ≤ π. The

images of p and q are f(p) = (0, ϕp), and f(q) = (ϕq sin θq, ϕq cos θq), respectively.

Let h = ‖f(p)−f(q)‖
‖p−q‖ , be the expansion of f in the pair p, q. We obtain:

h2 =
ϕ2

q + ϕ2
p − 2ϕqϕp cos θq

2− 2 cosϕp cosϕq − 2 sinϕp sinϕq cos θq

Observe that since sinϕp ≤ ϕp, and sinϕq ≤ ϕq, it follows that h2 is maximized when

cos θq is minimized. That is, the expansion is maximized for θq = π.

Thus, we can assume that the expansion of f is maximized for points p, q ∈ S2,

with p = (0, sinϕp, 1 + cosϕp), and q = (0,− sinϕq, 1 + cosϕq). For such points, the

expansion is ϕp+ϕq

2 sin
ϕp+ϕq

2

. It follows that the expansion is maximized when ϕp + ϕq is

maximized, which happens when p and q are on the perimeter of K.

We pick p and q on the perimeter of K, such that p is the antipode of q w.r.to

K. Let ϕK be the angle of K, and set rK = ϕK/2. We have rK = Ω(1/
√
n), and

‖f(p)− f(q)‖ = 2π − 2rK , while ‖p− q‖ = 2 sin rK . Thus, the expansion is at most

π−rK

sin rK
. W.l.o.g., we can assume that rK ≤ π/2, since otherwise we can simply consider

a smaller cap K. Thus, π−rK

sin rK
≤ 2π−rK

πrK
< 2

rK
= O(

√
n). Since the embedding is

non-contracting, it follows that the expansion is O(
√
n).
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Theorem 3.3.3 There exists a metric M = (X,D), induced by a set X of n points

on a unit sphere S2, under the Euclidean distance in R3, such that any mapping

f : X → R2 has distortion Ω(
√
n).

Proof: Let X ⊂ S2 be a set of n points, such that X is a O(1/
√
n)-net of S2, and

let f : X → R2 be a non-expanding embedding. Since S2 ⊂ R3, by Kirszbraun’s

Theorem ([Kir34], see also [LN04a]), we obtain that f can be extended to a non-

expanding mapping f ′ : S2 → R2. Also, by the Borsuk-Ulam Theorem, it follows that

there exist antipodals p, q ∈ S2, such that f ′(p) = f ′(q). Since X is an O(1/
√
n)-net,

there exist points p′, q′ ∈ X, such that ‖p−p′‖ = O(1/
√
n), and ‖q− q′‖ = O(1/

√
n).

Since f is non-expanding, it follows that ‖f(p′) − f(q′)‖ = O(1/
√
n). On the other

hand, we have ‖p− q‖ = 2, and thus ‖p′− q′‖ = Ω(1). Thus, f has distortion Ω(
√
n).

Theorem 3.3.4 There exists a polynomial-time, 3.512-approximation algorithm, for

the problem of embedding a finite sub-metric of S2 into R2.

Proof: We apply the embedding of Theorem 3.3.1, by choosing K to be the largest

empty cap in S2. Let rK be the radius of K. By using an analysis similar to the one

of Theorem 3.3.1, we obtain that the distortion of the embedding is at most π−rK

sinrK
.

Moreover, by using the analysis of Theorem 3.3.3, we can show that the distortion of

an optimal embedding is at least max{1, cos rK

2 sin
rK
2

}. By simple calculations, we obtain

that the distortion is maximized for rK = 2 tan−1 (
√

3−1)33/4
√

2
6

≈ 0.749, for which we

obtain that the approximation ratio is less than 3.512.

For the case where the metric M = (X,D) corresponds to the geodesic distances

between the points of the sphere, we can show using the same techniques that the

algorithm of Theorem 3.3.4, is in fact a 3-approximation.

3.4 Weighted shortest path metrics into the line

Credits: The results in this section is work done with Julia Chuzhoy, Piotr Indyk,

and Anastasios Sidiropoulos, and has appeared in STOC’05.
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From Into Distortion Comments

general metrics line O(∆4/5c13/5)

weighted trees line cO(1)

weighted trees line Ω(n1/12c) Hard to O(n1/12)-approximate even for ∆ = nO(1)

Figure 3-1: Our results.

3.4.1 Introduction

In this section, we consider the problem of embedding metrics induced by weighted

graphs into the line. The known algorithms were designed for unweighted graphs and

thus provide only very weak guarantees for the problem. Specifically, assume that the

minimum interpoint distance between the points is 1 and the maximum distance2 is ∆.

Then, by scaling, one can obtain algorithms for weighted graphs, with approximation

factor multiplied by ∆.

Our results are presented in Figure 3-1. The first result is an algorithm that, given

a general metric c-embeddable into the line, constructs an embedding with distortion

O(∆4/5c13/5). The algorithm uses a novel method for traversing a weighted graph.

It also uses a modification of the unweighted-graph algorithm from [BDG+05] as a

subroutine, with a more general analysis.

Then, we consider the problem of embedding weighted tree metrics into the line.

In this case we are able to get rid of the dependence on ∆ from the approximation

factor. Specifically, our algorithm produces an embedding with distortion cO(1).

We complement our upper bounds by a lower bound, which shows that the problem

is hard to approximate up to a factor a = Ω(n1/12). This dramatically improves over

the earlier result of [BDG+05], which only showed that the problem is hard for some

constant a > 1 (note however that their result applies to unweighted graph metrics

as well). Since the instances used to show our hardness result have spread ∆ ≤ nO(1),

it follows that approximating the distortion up to a factor of ∆Ω(1) is hard as well.

In fact, the instances used to show hardness are metrics induced by (weighted) trees;

2We call the maximum/minimum interpoint distance ratio the spread of the metric.
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thus the problem is hard for tree metrics as well. Our hardness proof is inspired by

the ideas of Unger [Ung98].

3.4.2 Preliminaries

Consider an embedding of a set of vertices V into the line. We say that U ⊂ V is

embedded continuously, if there are no vertices x, x′ ∈ U , and y ∈ V − U , such that

f(x) < f(y) < f(x′).

We say that vertex set U is embedded inside vertex set U ′ iff the smallest interval

containing the embedding of U also contains the embedding of U ′. In particular,

we say that vertex v is embedded inside edge e = (x, y) for v 6= x, v 6= y, if either

f(x) < f(v) < f(y) or f(y) < f(v) < f(x) hold.

Let M = (X,D) be a metric, and f : X → R be a non-contracting embedding of

M into the line. Then, the length of f is maxu∈X f(u)−minv∈X f(v).

3.4.3 General metrics

In this section we will present a polynomial-time algorithm that given a metric M =

(X,D) of spread ∆ that c-embeds into the line, computes an embedding of M into

the line, with distortion O(c11/4∆3/4). Since it is known [Mat90] that any n-point

metric embeds into the line with distortion O(n), we can assume that ∆ = O(n4/3).

We view metric M as a complete graph G defined on vertex set X, where the

weight of each edge e = {u, v} is D(u, v). As a first step, our algorithm partitions

the point set X into sub-sets X1, . . . , Xℓ, as follows. Let W be a large integer to be

specified later. Remove all the edges of weight greater than W from G, and denote

the resulting connected components by C1, . . . , Cℓ. Then for each i : 1 ≤ i ≤ ℓ, Xi is

the set of vertices of Ci. Let Gi be the subgraph of G induced by Xi. Our algorithm

computes a low-distortion embedding for each Gi separately, and then concatenates

the embeddings to obtain the final embedding of M . In order for the concatenation

to have small distortion, we need the length of the embedding of each component to

be sufficiently small (relatively to W ). The following simple lemma, essentially shown

in [Mat90], gives an embedding that will be used as a subroutine.
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Lemma 3.4.1 Let M = (X,D) be a metric with minimum distance 1, and let T be

a spanning tree of M . Then we can compute in polynomial time an embedding of M

into the line, with distortion O(cost(T )), and length O(cost(T )).

The embedding in the lemma is computed by taking an (pre-order) walk of the

tree T . Since each edge is traversed only a constant number of times, the total length

and distortion of the embedding follows.

Our algorithm proceeds as follows. For each i : 1 ≤ i ≤ ℓ, we compute a spanning

tree Ti of Gi, that has the following properties: the cost of Ti is low, and there exists

a walk on Ti that gives a small distortion embedding of Gi. We can then view the

concatenation of the embeddings of the components as if it is obtained by a walk

on a spanning tree T of G. We show that the cost of T is small, and thus the total

length of the embedding of G is also small. Since the minimum distance between

components is large, the inter-component distortion is small.

Embedding the Components

In this section we concentrate on some component Gi, and we show how to embed it

into a line.

Let H be the graph on vertex set Xi, obtained by removing all the edges of length

at least W from Gi, and let H ′ be the graph obtained by removing all the edges

of length at least cW from Gi. For any pair of vertices x, y ∈ Xi, let DH(x, y)

and DH′(x, y) be the shortest-path distances between x and y in H and H ′, respec-

tively. Recall that by the definition of Xi, H is a connected graph, and observe that

DH(x, y) ≥ DH′(x, y) ≥ D(x, y).

Lemma 3.4.2 For any x, y ∈ Xi, DH′(x, y) ≤ cD(x, y).

Proof: Let f be an optimal non-contracting embedding of Gi, with distortion at most

c. Consider any pair u, v of vertices that are embedded consecutively in f . We start

by showing that D(u, v) ≤ cW . Let T be the minimum spanning tree of H . If edge

{u, v} belongs to T , then D(u, v) ≤ W . Otherwise, since T is connected, there is

an edge e = {u′, v′} in tree T , such that both u and v are embedded inside e. But
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then D(u′, v′) ≤W , and since the embedding distortion is at most c, |f(u)− f(v)| ≤
|f(u′)−f(v′)| ≤ cW . As the embedding is non-contracting, D(u, v) ≤ cW must hold.

Consider now some pair x, y ∈ Xi of vertices. If no vertex is embedded be-

tween x and y, then by the above argument, D(x, y) ≤ cW , and thus the edge

{x, y} is in H ′ and DH′(x, y) = D(x, y). Otherwise, let z1, . . . , zk be the vertices

appearing in the embedding f between x and y (in this order). Then the edges

{x, z1}, {z1, z2}, . . . , {zk−1, zk}, {zk, y} all belong to H ′, and therefore

DH′(x, y) ≤ DH′(x, z1) +DH′(z1, z2) + . . .DH′(zk−1, zk) +DH′(zk, y)

= D(x, z1) +D(z1, z2) + . . .D(zk−1, zk) +D(zk, y)

≤ |f(x)− f(z1)|+ |f(z1)− f(z2)|+ . . .+ |f(zk−1)− f(zk)|+ |f(zk)− f(y)|

= |f(x)− f(y)| ≤ cD(x, y)

We can now concentrate on embedding graph H ′. Since the weight of each edge

in graph H ′ is bounded by O(cW ), we can use a modified version of the algorithm

of [BDG+05] to embed each Gi. First, we need the following technical Claim.

Claim 3.4.3 There exists a shortest path p = v1, . . . , vk, from u to u′ in H ′, such

that for any i, j, with |i− j| > 1, D(vi, vj) = Ω(W |i− j|).

Proof: Pick an arbitrary shortest path, and repeat the following: while there exist

consecutive vertices x1, x2, x3 in p, with DH′(x1, x3) < cW , remove x2 from p, and

add the edge {x1, x3} in p.

The algorithm works as follows. We start with the graph H ′, and we guess points

u, u′, such that there exists an optimal embedding of Gi having u and u′ as the left-

most and right-most point respectively. Let p = (v1, . . . , vk) be the shortest path from

u to u′ on H ′ (here v1 = u and vk = u′), that is given by Claim 3.4.3. We partition

Xi into clusters V1, . . . , Vk, as follows. Each vertex x ∈ Xi belongs to cluster Vj , that

minimizes D(x, vj).

Our next step is constructing super-clusters U1, . . . , Us, where the partition in-
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duced by {Vj}kj=1 is a refinement of the partition induced by {Uj}sj=1, such that there

is a small-cost spanning tree T ′ of Gi that “respects” the partition induced by {Uj}sj=1.

More precisely, each edge of T ′ is either contained in a super-cluster Ui, or it is an

edge of the path p. The final embedding of Gi is obtained by a walk on T ′, that

traverses the super-clusters U1, . . . , Us in this order.

Note that there exist metrics over Gi for which any spanning tree that “respects”

the partition induced by Vj’s is much more expensive that the minimum spanning

tree. Thus, we cannot simply use Uj = Vj .

We now show how to construct the super-clusters U1, . . . , Us. We first need the fol-

lowing three technical claims, which constitute a natural extensions of similar claims

from [BDG+05] to the weighted case.

Claim 3.4.4 For each i : 1 ≤ i ≤ k, maxu∈Vi
{D(u, vi)} ≤ c2W/2.

Proof: Let u ∈ Vi. Consider the optimal embedding f . Since f(v1) = minw∈X f(w),

and f(vk) = maxw∈X f(w), it follows that there exists j, with 1 ≤ j < k, such that

min{f(vj), f(vj+1)} < f(u) < max{f(vj), f(vj+1)}.

Assume w.l.o.g., that f(vj) < f(u) < f(vj+1). We have D(u, vj) ≥ D(u, vi), since

u ∈ Vi. Since f is non-contracting, we obtain f(u) − f(vj) ≥ D(u, vj) ≥ D(u, vi).

Similarly, we have f(vj+1)−f(u) ≥ D(u, vi). Thus, f(vj+1)−f(vj) ≥ 2D(u, vi). Since

{vj, vj+1} ∈ E(G′), we have D(vj, vj+1) ≤ cW . Thus, c ≥ f(vj+1)−f(vj )

D(vj+1,vj)
≥ 2D(u,vi)

cW
.

Claim 3.4.5 For each r ≥ 1, and for each i : 1 ≤ i ≤ k − r + 1,
∑i+r−1

j=i |Vi| ≤
c2W (c+ r − 1) + 1.

Proof: Let A =
⋃i+r−1

j=1 Vi. Let x = argminu∈Af(u), and y = argmaxu∈Af(u). Let

also x ∈ Vi, and y ∈ Vj. Clearly, |f(vi)−f(vj)| ≤ cD(vi, vj) ≤ cDG′(vi, vj) ≤ c2W |i−
j| ≤ c2W (r − 1). By Claim 3.4.4, we have D(x, vi) ≤ c2W/2, and D(y, vj) ≤ c2W/2.

Thus, |f(x) − f(vi)| ≤ cD(x, vi) ≤ c3W/2, and similarly |f(y) − f(vj)| ≤ c3W/2.

It follows that |f(x) − f(y)| ≤ |f(x) − f(vi)| + |f(vi) − f(vj)| + |f(vj) − f(y)| ≤
c3W + c2W (r − 1). Note that by the choice of x, y, and since the minimum distance
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in M is 1, and f is non-contracting, we have
∑i+r−1

j=i |Vi| ≤ |f(x)− f(y)|+ 1, and the

assertion follows.

Claim 3.4.6 If {x, y} ∈ E(H ′), where x ∈ Vi, and y ∈ Vj, then D(vi, vj) ≤ cW +

c2W , and |i− j| = O(c2).

Proof: Since {x, y} ∈ E(G′), we have D(x, y) ≤ cW . By Claim 3.4.4, we have

D(x, vi) ≤ c2W/2, and D(y, vj) ≤ c2W/2. Thus, D(vi, vj) ≤ D(vi, x) + D(x, y) +

D(y, vj) ≤ cW + c2W .

By Lemma 3.4.2, we have that DG′(vi, vj) ≤ cD(vi, vj) ≤ c2W + c3W . Since every

edge of G′ has length at least 1, we have |i− j| ≤ DG′(vi, vj) ≤ c2W + c3W .

Let α be an integer with 0 ≤ α < c4W . We partition the set Xi into super-clusters

U1, . . . , Us, such that for each l : 1 ≤ l ≤ s, Ul is the union of c4W consecutive clusters

Vj, where the indexes j are shifted by α. We refer to the above partition as α-shifted.

Claim 3.4.7 Let T be an MST of Gi. We can compute in polynomial time a spanning

tree T ′ of Gi, with cost(T ′) = O(cost(T )), and an α-shifted partition of Xi, such that

for any edge {x, y} of T ′, either both x, y ∈ Ul for some l : 1 ≤ l ≤ s, or x = vj and

y = vj+1 for some j : 1 ≤ j < k.

Proof: Observe that since H is connected, all the edges of T can have length

at most W , and thus T is a subgraph of both H and H ′. Consider the α-shifted

partition obtained by picking α ∈ {0, . . . , c4W − 1}, uniformly at random. Let T ′ be

the spanning tree obtained from T as follows: For all edges {x, y} of T , such that

x ∈ Vi ⊆ Ui′, and y ∈ Vj ⊆ Uj′, where i′ 6= j′, we remove {x, y} from T , and we add

the edges {x, vi}, {y, vj}, and the edges on the subpath of p from vi to vj. Finally, if

the resulting graph T ′ contains cycles, we remove edges in an arbitrary order, until T ′

becomes a tree. Note that although T ′ is a spanning tree of Gi, it is not necessarily

a subtree of H ′.

Clearly, since the edges {x, vi}, and {y, vj} that we add at each iteration of the

above procedure are contained in the sets Ui′ , and Uj′ respectively, it follows that T ′

satisfies the condition of the Claim.
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We will next show that the expectation of cost(T ′), taken over the random choice

of α, is O(cost(T )). For any edge {x, y} that we remove from T , the cost of T ′ is

increased by the sum of D(x, vi) and D(y, vj), plus the length of the shortest path

from vi to vj in H ′. Observe that the total increase of cost(T ′) due to the subpaths of

p that we add, is at most cost(T ). Thus, it suffices to bound the increase of cost(T ′)

due to the edges {x, vi}, and {y, vj}.
By Claim 3.4.4, D(x, vi) ≤ c2W/2, and D(y, vj) ≤ c2W/2. Thus, for each edge

{x, y} that we remove from T , the cost of the resulting T ′ is increased by at most

O(c2W ).

For each i, the set Ui ∪ Ui+1 contains Ω(c4W ) consecutive clusters Vj . Also, by

Claim 3.4.6 the difference between the indexes of the clusters Vt1 , Vt2 containing the

endpoints of an edge, is at most |t1 − t2| = O(c2). Thus, the probability that an

edge of T is removed, is at most O( 1
c2W

), and the expected total cost of the edges in

E(T ′) \ E(T ) is O(|Xi|) = O(cost(T )). Therefore, the expectation of cost(T ′), is at

most O(cost(T )). The Claim follows by the linearity of expectation, and by the fact

that there are only few choices for α.

Let U1, . . . , Us be an α-shifted partition, satisfying the conditions of Claim 3.4.7,

and let T ′ be the corresponding tree. Clearly, the subgraph T ′[Ui] induced by each Ui

is a connected subtree of T ′. For each Ui, we construct an embedding into the line by

applying Lemma 3.4.1 on the spanning tree T ′[Ui]. By Claim 3.4.5, |Ui| = O(c6W 2),

and by Claim 3.4.4, the cost of the spanning tree T ′[Ui] of Ui is at most O(|Ui|c2W ) =

O(c8W 3). Therefore, the embedding of each Ui, given by Lemma 3.4.1 has distortion

O(c8W 3), and length O(c8W 3).

Finally, we construct an embedding for Gi by concatenating the embeddings com-

puted for the sets U1, U2, . . . , Us, while leaving sufficient space between each consec-

utive pair of super-clusters, so that we satisfy non-contraction.

Lemma 3.4.8 The above algorithm produces a non-contracting embedding of Gi with

distortion O(c8W 3) and length O(cost(MST(Gi))).

Proof: Let g be the embedding produced by the algorithm. Clearly, g is non-
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contracting. Consider now a a pair of points x, y ∈ X, such that x ∈ Ui, and y ∈ Uj .

If |i− j| ≤ 1, then |g(x)− g(y)| = O(c8W 3), and thus the distortion of D(x, y) is at

most O(c8W 3).

Assume now that |i − j| ≥ 2, and x ∈ Vi′, y ∈ Vj′. Then |g(x) − g(y)| =

O(|i− j| · c8W 3). On the other hand, D(x, y) ≥ D(vi′, vj′) − D(vi′, x) − D(vj′, y) ≥
D(vi′, vj′) − c2W ≥ DH′(vi′ , vj′)/c − c2W ≥ |i′ − j′|/c − c2W = Ω(|i − j|c4W 2).

Thus, the distortion on {x, y} is O(c7W 2). In total, the maximum distortion of the

embedding g is O(c8W 3).

In order to bound the length of the constructed embedding, consider a walk on

T ′ that visits the vertices of T according to their appearance in the line, from left to

right. It is easy to see that this walk traverses each edge at most 4 times. Thus, the

length of the embedding, which is equal to the total length of the walk is at most

4cost(T ′) = O(cost(T )).

The Final Embedding

We are now ready to give a detailed description of the final algorithm. Assume that

the minimum distance in M is 1, and the diameter is ∆. Let H = (X,E) be a graph,

such that an edge (u, v) ∈ E iff D(u, v) ≤ W , for a threshold W , to be determined

later. We use the algorithm presented above to embed every connected component

G1, . . . , Gk of H . Let f1, f2, . . . , fk be the embeddings that we get for the components

G1, G2, . . . Gk using the above algorithm, and let T be a minimum spanning tree of G.

It is easy to see that T connects the components Gi using exactly k − 1 edges.3 We

compute our final embedding f as follows. Fix an arbitrary Eulerian walk of T . Let

P be the permutation of (G1, G2, . . . , Gk) that corresponds to the order of the first

occurrence of any node ofGi in our traversal. Compute embedding f by concatenating

the embeddings fi of components Gi in the order of this permutation. Let Ti be

the minimum spanning tree of Gi. Between every 2 consecutive embeddings in the

permutation fi and fj , leave space maxu∈Gi,v∈Gj
{D(u, v)} = D(a, b) +O(cost(Ti)) +

3Follows from correctness of Kruskal’s algorithm. These k− 1 edges are exactly the last edges to
be added because they are bigger than W and within components we have edges smaller than W

88



O(cost(Tj)), where D(a, b) is the smallest distance between components Gi and Gj .

This implies the next two Lemmata.

Lemma 3.4.9 The length of f is at most O(c∆).

Proof: The length of f is the sum of the lengths of all fi and the space that we

leave between every 2 consecutive fi, fj’s. Then, by Lemma 3.4.8, the length of fi

is O(c · cost(Ti)). Thus, the sum of the lengths of all fi’s is O(c · cost(T )). The

total space that we leave between all pairs of consecutive embeddings fi is cost(T ) +

2
∑k

i=1O(cost(Ti)) = O(cost(T )). Therefore the total length of the embedding f is

O(cost(T )). At the same time, the cost of T is at most the length of the optimal

embedding f , which is O(c∆). The statement follows.

Lemma 3.4.10 Let a ∈ Gi, b ∈ Gj for i 6= j. Then W ≤ D(a, b) ≤ |f(a)− f(b)| ≤
O(c∆) ≤ O(cD(a, b) ∆

W
)

Proof: The first part D(a, b) ≤ |f(a) − f(b)| is trivial by construction, since we

left enough space between components Gi and Gj . Since a and b are in difference

connected components, we have D(a, b) > W . Using Lemma 3.4.9 we have that

|f(a)− f(b)| = O(c∆) = O(c∆D(a,b)
W

) = O(cD(a, b) ∆
W

).

Theorem 3.4.11 Let M = (X,D) be a metric with spread ∆, that embeds into the

line with distortion c. Then, we can compute in polynomial time an embedding of M

into the line, of distortion O(c11/4∆3/4).

Proof: Consider any pair of points. If they belong to different components, their dis-

tance distortion is O(c∆/W ) (Lemma 3.4.10). If they belong to the same component,

their distance distortion is O(c8W 3) (Lemma 3.4.8). Setting W = ∆1/4c−7/4 gives the

claimed distortion bound.

3.4.4 Hardness of Embedding Into the Line

In this section we show that even the problem of embedding weighted trees into

the line is nβ-hard to approximate, for some constant 0 < β < 1. Our reduction
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is performed from the 3SAT(5) problem, defined as follows. The input is a CNF

formula ϕ, in which each clause consists of exactly 3 different literals and each variable

participates in exactly 5 clauses, and the goal is to determine whether ϕ is satisfiable.

Let x1, . . . , xn, and C1, . . . , Cm, be the variables and the clauses of ϕ respectively,

with m = 5n/3. Given an input formula ϕ, we construct a weighted tree G, such

that if ϕ is satisfiable then there is an embedding of G into the line with distortion

O(b) (for some b = poly(n)) and if ϕ is not satisfiable, then the distortion of any

embedding is at least bτ , where τ = poly(n). The construction size is polynomial in

τ , and hence the hardness result follows.

The construction

Our construction makes use of caterpillar graphs. A caterpillar graph consists of a

path called body, and a collection of vertex disjoint paths, called hairs, while each hair

is attached to a distinct vertex of the body, called the base of the hair. One of the

endpoints of the caterpillar body is called the first vertex of the caterpillar, and the

other endpoint is called the last vertex. We use two integer paremeters b = poly(n)

and τ = poly(n), whose exact value is determined later. We call a caterpillar graph

a canonical caterpillar, if: (1) its body consists of integer-length edges, (2) the length

of each hair is a multiple of b, and (3) each hair consists of edges of length 1
bτ

. Our

weighted tree G is a collection of canonical caterpillars, connected together in some

way specified later. Notice that in any embedding of a canonical caterpillar with

distortion less than bτ , each hair must be embedded continuously (the formal proof

appears below). Let B1, . . . , Bt be caterpillars. A concatenation of B1, . . . , Bt is a

caterpillar obtained by connecting each pair of consecutive caterpillars Bi, Bi+1 for

1 ≤ i < t with a unit-length edge between the last vertex of Bi and the first vertex

of Bi+1.

The building blocks of our graph G are literal caterpillars, variable caterpillars and

clause caterpillars, that represent the literals, the variables and the clauses of the input

formula ϕ. All these caterpillars are canonical. Let xi be some variable in formula

ϕ. We define two caterpillars called literal caterpillars wi and w′
i, which represent
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the literals xi and xi, respectively. Additionally, we have a variable caterpillar vi

representing variable xi.

Let YL and YR be caterpillars whose bodies contain only one vertex (denoted by L

and R respectively), with a hair of length τ 3b (denoted by HL and HR respectively)

attached to the body. The main part of our graph G is a canonical caterpillar W ,

defined as a concatenation of YL, w1, w
′
1, w2, w

′
2, . . . wn, w

′
n, YR. The hairs of HL and

HR are used as padding, to ensure that all the vertices of G\(HL∪HR), are embedded

between L and R. The length of the body of W is denoted by N , and is calculated

later. Variable caterpillars vi attach to W as follows. The first vertex of vi connects

by a unit-length edge to the first vertex of w′
i.

For every clause Cj in formula ϕ, our construction contains a canonical caterpillar

kj representing it, which is also called a key. Each key kj is attached to vertex L by

an edge of length N . Figure 3-3 (which appears in the Appendix) summarizes the

above described construction.

We now provide the details on the structure of the literal caterpillars. Consider a

literal ℓ, and let w be the caterpillar that represents it (i.e., if ℓ is xi or xi, then w

is wi or wi). Assume that ℓ participates in (at most 5) clauses Cℓ
1, C

ℓ
2, . . .. Then w

is the concatenation of at most 5 caterpillars, denoted by hℓ
1, h

ℓ
2, . . ., that represent

the participation of ℓ in these clauses (see Figure 3-2). Following [Ung98], we call

these caterpillars keyholes. For convenience, we ensure that for each literal ℓ there

are exactly 5 such keyholes hℓ
1, h

ℓ
2, . . . , h

ℓ
5, as follows. If the literal participates in less

than 5 clauses, we use several copies of the same keyhole that corresponds to some

clause in which ℓ participates. Thus, for each clause, for each literal participating

in this clause, there is at least one keyhole. All the keyholes that correspond to the

same clause Cj are copies of the same caterpillar h(j), called the keyhole of Cj.

The main idea of the construction is as follows. First, the keys and the keyholes

are designed in a special way, such that in order to avoid the distortion of bτ , each

key kj has to be embedded inside one of the matching keyholes (copies of h(j)). The

variable caterpillars are shaped in such a way that in any embedding with distortion

less than bτ , each variable caterpillar vi is either embedded in wi or w′
i. If vi is
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Figure 3-3: The high-level view of the construction.

embedded in wi, then no key can be embedded inside any keyhole belonging to wi

without incurring the distortion of bτ , and the same is true in case vi is embedded

into w′
i. Suppose formula ϕ is satisfiable. Then embedding of G with distortion O(b)

is obtained as follows. We first embed hair HL (starting from the vertex furthest from

L), then the body of W and then HR (starting from the vertex closest to R). For

each variable xi, if the correct assignment to xi is true, then variable caterpillar vi

is embedded inside the literal caterpillar w′
i, and otherwise it is embedded inside wi.

Given a clause Cj, if ℓ is the satisfied literal in this clause, we embed the key kj in

the copy of keyhole h(j), that corresponds to literal ℓ. On the other hand, if ϕ is not

satisfiable, we still need to embed each variable caterpillar vi inside one of the two

corresponding caterpillars wi, w
′
i, thus defining an assignment to all the variables.

For example, if vi is embedded inside wi, this corresponds to the assignment false

to variable xi. Such embedding of vi will block all the keyholes in the caterpillar

wi. Since the assignment is non-satisfying, for at least one of the keys kj , all the

corresponding keyholes (copies of h(j)) are blocked, and so in order to embed kj , we

will need to incur a distortion of bτ .

Keys and Keyholes

We start with the following definition.

Definition 11 For an integer α, a barrier caterpillar of length α consists of a body
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of α unit-length edges, and a hair of length b, attached to each one of the vertices of

the body.

Observe that the length of an embedding of a barrier of length α is at least αb.

Intuitively, a barrier B of a “proper” length makes it impossible to embed a “short”

edge (u, v) such that u and v are on the opposite sides of B, without incurring high

distortion.

For a clause Cj , the corresponding keyhole h(j) consists of three parts: prefix,

suffix and the main part.

The prefix caterpillar, denoted by P , starts with a barrier of size τ 3, which is

connected by an edge of length τ 2, called large edge, to vertex s which in turn is

connected by a unit-length edge to a barrier of size 3τ 4. There is also a hair of length

bτ 2, called large hair, that attaches to vertex s.

The suffix caterpillar is denoted by S, and it is the mirror reflection of the prefix,

where vertex s is denoted by t (see Figure 3-4). � 2bt1� 2b1s� 2� 3 3� 4 3� 4 � 2 � 3
Figure 3-4: The prefix and the suffix.

The main part of keyhole h(j) corresponding to clause Cj consists of m caterpillars

Q1, Q2, . . . , Qm. Caterpillar Qi, for 1 ≤ i ≤ j consists of a vertex zi with a hair of

length τb attached to it, which is referred to as a small hair. Vertex zi connects with an

edge of length τ (called a small edge) to a barrier of size τ 2. For j < i ≤ m, caterpillar

Qi is just a barrier of size τ 2. The keyhole hj is defined to be the concatenation of

P,Q1, . . . , Qm, S.

We now proceed to define the keys. A key kj is defined identically to the keyhole

hj , with the following changes:

• Observe that in the body of prefix P of h(j), vertex s is adjacent to two edges,

of sizes τ 2 and 1. We switch these two edges. We do the same with the two
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edges adjacent to vertex t in the body of suffix S. The resulting prefix and

suffix are denoted by P ′ and S ′ respectively.

• Observe that each vertex zi, 1 ≤ i ≤ j is attached in the body of h(j) to two

edges, of sizes 1 and τ . We switch these two edges.

...

...

1� 2 1� 2 1� 2
1� 2

�b
1 �b�� 2b1s� 3 � 2 3� 4 � 2

� 21�
1� 2z1

� 2b 3� 4� 3 � 21 s z1

1� 21 �b�zj
�b� 1zj

Keyhole hj
Key kj � 2b3� 4 � 2 1 � 3t

� 2bt13� 4 � 2 � 3

Figure 3-5: The key and the keyhole.

The intuition is that when any key is embedded into a keyhole, the two large

hairs of the key have to be embedded inside the two large edges of the keyhole and

vice versa, while the small hairs of both key and keyhole are embedded between the

two long hairs. Similarly, the small hairs of the key have to be embedded inside the

small edges of the keyhole and vice versa. Moreover, inside each small edge of a key

(keyhole), at most one small hair of a keyhole (key) can be embedded, if the distortion

is less than τb. Assume now that the key and the keyhole do not match, for example,

we have key kj and keyhole h(i) where j < i. Then the number of small hairs in

the keyhole is larger than the number of small edges in the key, and the distortion of

embedding key kj into keyhole h(i) is large.

Variable caterpillars

We now define caterpillars vi, representing variable xi in formula ϕ.

Caterpillar vi is a concatenation of five identical caterpillars L1, . . . , L5. Caterpillar

Lj for 1 ≤ j ≤ 5 consists of three parts: The prefix P ′ and the suffix S ′ are identical

to the prefix and the suffix of a key; the main part consists of m barriers of size τ 2

each, where each pair of consecutive barriers is connected by an edge of length τ .
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The idea is that when vi is embedded into wi or w′
i, then each one of the caterpillars

L1, . . . , L5 will be embedded into the 5 corresponding keyholes, thus blocking them.

More precisely, the 10 large hairs of vi will be embedded into the 10 large edges of

L1, . . . , L5, ensuring that no large hair of any key can be embedded there.

Construction Size

We fix τ = nµ for some large integer µ. Our first step is bounding the length N of

the body of W . Recall that W consists of 2n literal caterpillars, each consisting of 5

keyholes. The length of a keyhole is at most m(τ 2 +τ+1)+6τ 4 +2τ 3 +2τ 2 +2 < 7τ 4.

Therefore, N = O(τ 4n). We set b = 3N .

One can easily see that the size of the construction is dominated by the number

of vertices on the hairs HR and HL. The length of each one of these hairs is τ 3b,

and the length of each edge on a hair is 1
bτ

. Therefore, the construction size is

O(τ 4b2) = O(τ 12n2).

Analysis

In the following, we consider an embedding f of our graph G with distortion less than

τb. We start by showing several structural properties of this embedding.

Claim 3.4.12 Each hair of each caterpillar is embedded continuously.

Proof: Assume otherwise. Then there is an edge e = (x, y) on some hair H , and a

vertex v not belonging to H embedded inside e. But the length of e is only 1
τb

, while

the distance D(x, v) is at least 1, and thus the distortion is at least τb.

Claim 3.4.13 The set of vertices in G\ (HL∪HR) is embedded continuously between

the embeddings of L and R.

Proof: By Claim 3.4.12, HL and HR are embedded continuously. Since the length

of each HL, and HR is τ 3b, and the length of the longest edge of W is τ 2, it follows

that G \ (HL ∪ HR) also has to be embedded continuously. Thus, in order to avoid

distortion larger than τb, G \ (HL ∪HR) has to be embedded between L and R.
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Our next goal is to prove that given some large edge e = (u, v) on the body of

W (which must belong to the prefix or the suffix of one of the keyholes), the only

large hair of W that is embedded in it is the hair attached to u or v. The meaning of

this claim is that the embedding of W has to be “nice”, with the main part of each

keyhole embedded between its prefix and suffix.

Claim 3.4.14 Let hi
j be any keyhole on caterpillar W , and let e be one of its large

edges (assume w.l.o.g. that this edge is from its prefix). Let H be the large hair

belonging to the prefix. Then H is the only hair belonging to W embedded inside e.

Proof: We denote e = (s, a), where s is the base of hair H . Recall that there is a

barrier B1 of size τ 3 attached to a. If hi
j is not the first keyhole of W , then there is a

suffix of another keyhole adjacent to B1, with a barrier B2 of size τ 3 attached to B1

by a unit-length edge. The other endpoint of B2 attaches by a unit-length edge to a

base of a large hair H ′. Clearly, H is embedded inside edge e continuously. Since the

length of H is τ 2b, barriers B1, B2, and hair H ′ are embedded on the same side of H

as vertex a.

11
H 0

1 a s
H

� 2� 3 � 3v � 2b� 2b
Assume the claim is false, and let H ′′ be some other large hair belonging to some

keyhole embedded inside e. Let x be the base of this hair. Since hair H ′′ is embedded

inside edge e, so is its base x. Recall that vertex x attaches with a unit-length edge to

a barrier B′ of length 3τ 4. As the body of this barrier consists of unit-length edges, it

has to be embedded completely between the embeddings of H and H ′. The distance

between s and the base of H ′ is only 2τ 3 +τ 2 +3, and thus the distance between their

images in the embedding is at most 2τ 4b + τ 2b + 3b. On the other hand, the size of

the embedding of B′ must be at least 3τ 4b.

The only case we still need to consider is when hi
j is the first keyhole on W . But

then it is easy to see that the barrier B′ has to be embedded between the embeddings
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of H and the hair HL, which is again impossible.

The next corollary follows from Claim 3.4.14 and uses the fact that the main part

of each keyhole only contains edges of length at most τ .

Corollary 3.4.15 The main part of each keyhole is embedded between the two large

hairs of the prefix and the suffix of the keyhole. Moreover, the large hairs of caterpillar

W are embedded in the same order in which they appear on the body of W .

Proof: Consider some keyhole hj , and path P between s and t on its body. Recall

that s and t serve as bases of large hairs whose length is τ 2b, and every edge on path

P is of length at most τ . Therefore, all the vertices on path P and the hairs attached

to them have to be embedded between the embeddings of these two large hairs.

Assume now that the large hairs on caterpillar W are not embedded in the same

order in which they appear in W . Then there are three hairs H1, H2, H3, such that

H1 and H2 appear consecutively in W , but H3 is embedded between H1 and H2. Let

a and b be the bases of hairs H1 and H2. Then H3 is embedded inside some edge e

on the path (a, b). In order to avoid distortion τb, e has to be a large edge, and the

only large edges between a and b are the two edges adjacent to a and b inside which

the hairs H1 and H2 are embedded, which contradicts Claim 3.4.14

We prove next that for any large edge on any keyhole, at most one large hair of

any key or a variable caterpillar can be embedded inside it.

Claim 3.4.16 Let hi be some keyhole, and let e be one of its large edges. Then there

is at most one large hair belonging to any key or a variable caterpillar embedded inside

e.

Proof: Denote the endpoints of e by {v, u}. From the construction, there is a

large hair H attached to one of these vertices, assume it’s u. Recall also that both

v and u are connected to barriers of size at least τ 3. Clearly, hair H is embedded

inside e right next to vertex u. Suppose there are two other large hairs, H ′ and H ′′

embedded inside e, and assume that H ′′ is embedded between H and H ′. Denote
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the base of the hair H ′′ by v′′. Recall that v′′ is connected by unit-length edge to a

barrier of length τ 3. It is impossible to embed this whole barrier inside edge e, since

the total length of such an embedding would be τ 3b, while the length of edge e is

only τ 2. Therefore, there is at least one unit-length edge e′ (part of the barrier body),

whose one endpoint is embedded next to H ′′ and whose other endpoint is embedded

outside e. But then one of the hairs H ′, H is embedded inside e′, so it is impossible

that the distortion is less than τb.

Using the same reasoning, we can prove the following two claims:

Claim 3.4.17 For each small edge in a keyhole, only one small hair belonging to any

key or a variable caterpillar can be embedded inside it.

Claim 3.4.18 For every key, for each one of its large (small, respectively) edges, at

most one large (small, respectively) hair of a keyhole can be embedded inside it.

Additionally, observe that the main part of any key ki must be embedded com-

pletely between the prefix and the suffix of some keyhole hℓ
j and the large hairs of

ki are embedded into large hairs of hℓ
j . In this case we say that key ki is embedded

inside keyhole hℓ
j .

Yes instance

Note that the distance between any two vertices on the bodies of any caterpillars in

our construction is at most 3N = b.

Claim 3.4.19 For each j, with 1 ≤ j ≤ m, key kj can be embedded inside a copy of

h(j) with distortion O(b).

Proof: The embedding is as follows. We move from left to right. While embedding

the barriers, we embed a hair from the key and then a hair from the keyhole inter-

changeably, as follows: let H be a hair from the key and H ′ be a hair from a keyhole.

We first embed H starting from its base, then we embed H ′ starting from the vertex

furthest from its base. The distance between the embeddings of H and H ′ is 3b, and
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thus the maximum stretch of an edge on the bodies of the barriers is O(b). The large

and the small hairs are embedded inside the large and the small edges respectively

as follows. Let the endpoints of the large (small) edge of the key be denoted by v, u

(the hair is attached to v), and denote the endpoints of the large (small) edge of the

keyhole by u′, v′, the hair being attached to v′. We first embed vertex u′, then the

large (small) hair of the key, starting from v, then the large (small) hair of the keyhole

(starting from the endpoint opposite to v′, so v′ is embedded last), and then vertex

u. In case H , H ′ are large, the distance between their embeddings is 2τ 2b+ b, and if

they are small, the distance is 2τb+ b. In any case, the distortion of this embedding

is at most O(b).

For each variable caterpillar vi, we can view its five sub-caterpillars L1, . . . , L5 as

“master keys” that can be embedded into any keyhole. We say that variable caterpillar

vi is embedded inside literal w iff the five sub-caterpillars of vi are embedded into the

five keyholes of w.

Similarly to Claim 3.4.19, we can prove the following claim.

Claim 3.4.20 For each i : 1 ≤ i ≤ n, variable caterpillar vi can be embedded inside

each one of the literal caterpillars wi or w′
i with distortion at most O(b).

Lemma 3.4.21 If ϕ is satisfiable, then there exists an embedding of G into the line,

with distortion at most O(b).

Proof: Consider the satisfying assignment to the variables, and assume the assignment

to xi is true. Then, we embed vi inside w′
i. Each clause contains at least one literal

that satisfies it, so no variable caterpillar is embedded on this literal. We embed the

key corresponding to the clause on the keyhole that belongs to that literal.

Finally, we embed HL and HR, to the left and to the right of the image of G,

respectively. The maximum distortion of this embedding is at most O(b).

Unsatisfiable instance

Claim 3.4.22 Suppose we have any embedding with distortion less than τb. Then

each key is embedded in one of its corresponding keyholes.
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Proof: Suppose key ki is embedded inside some keyhole hj and i 6= j (w.l.o.g., let

i < j). Since all the small edges of ki and the small hairs of hj are embedded between

the long hairs of ki, and the number of small edges of ki is less than the number of

small hairs of hj , the distortion must be at least bτ .

Claim 3.4.23 Each variable caterpillar vi is embedded inside either wi, or w′
i. More-

over, once we embed vi inside wi or w′
i, it is impossible to embed any keys inside

keyholes of wi or w′
i, respectively, without incurring distortion τb.

Proof: Let vi be some variable caterpillar. Observe that there are 10 large hairs in vi,

which, in order to avoid distortion of τb, have to be embedded into 10 large edges of

W . We prove that these have to be 10 consecutive large edges of wi or of w′
i. Recall

that the large hairs of W are embedded in the order in which they appear in W , each

one of them is embedded into its adjacent large edge. The edge that attaches vi to

W is unit length, thus the first large hair of vi has to be embedded into the hair of w′
i

or wi that lies closest to vi. Observe also that large hairs of W can only be embedded

inside large edges of vi, and only one such hair is embedded into any large edge of vi.

Therefore, all the large hairs of vi have to be embedded into the large edges of wi or

into the large edges of w′
i. Assume we embed vi into wi. Then inside each large edge

of wi, there is a large hair of vi embedded in it. By Claim 3.4.16, it is impossible to

embed additional large edge into this edge, thus none of the keys can be embedded

into keyholes belonging to wi.

Lemma 3.4.24 If ϕ is not satisfiable, then any embedding of G into the line has

distortion at least τb.

Proof: Assume we have an embedding with distortion less than τb. Then by Claim

3.4.22, each variable must be embedded in one of its corresponding literals, which

implies an assignment to the variables. This assignment is not a satisfying one, so

for some clause, for each one of its literals, there is a variable caterpillar embedded

inside them, so it is impossible to embed the key corresponding to the clause into one

of its keyholes, and the distortion must be at least τb.
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Theorem 3.4.25 Given an M-point metric that c-embeds into the line, it is NP-hard

to compute an embedding with distortion less than Ω(cM1/12−ǫ) for arbitrarily small

constant ǫ.

Proof: Recall that our construction size is M = τ 12n2. If ϕ is satisfiable, then

there is an embedding with distortion O(b). Otherwise, any embedding has distortion

at least τb. Since τ = nµ for a large enough constant µ, the theorem follows.

3.4.5 Approximation Algorithm for Weighted Trees

In this section we consider embedding of weighted trees into the line. Given a weighted

tree T , let ϕ be its optimal embedding into the line, whose distortion is denoted by

c (we assume that c ≥ 200). We provide a poly(c)-approximation algorithm, which,

combined with earlier work, implies n1−ǫ approximation algorithm for weighted trees,

for some constant 0 < ǫ < 1. The first step of our algorithm is guessing the optimal

distortion c, and from now on we assume that we have guessed its value correctly.

We start with notation. Fix any vertex r of the tree to be the root. Given a

vertex v 6= r, denote d(v) = D(v, r). Consider any edge e = (u, v). The length of e is

denoted by we, and de = min{d(u), d(v)} is the distance of e from r. We say that e

is a large edge if we ≥ de

c
, it is a medium edge if de

c
> we ≥ de

c2
, and otherwise e is a

small edge.

Claim 3.4.26 If e = (u, v) is a medium or a small edge, then r is not embedded

between u and v in the optimal solution.

Proof: Assume otherwise. Then |ϕ(u)− ϕ(v)| ≥ de. But D(u, v) = we <
de

c
, and

edge e is stretched by a factor greater than c.

Let C be the collection of connected components, obtained by removing all the

large edges from the graph. For each component C ∈ C, let r(C) denote its “root”,

i.e. the vertex of C closest to r in tree T . We also denote by e(C) the unique edge

incident on r(C) on the path from r(C) to r, and by α(C) the length of this edge.
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Procedure Partition

Let C be the current set of all the components.
While there is a large component C ∈ C, with a medium-sized edge e on the path
from r(C) to ℓ(C), such that the removal of e splits C into two large components,
do:

Let C ′ and C ′′ be the two large components obtained by removing e. Remove
C from C and add C ′ and C ′′ to C.

Clearly, in the optimal solution, the embedding of component C lies completely to

the left or to the right of r.

Given some component C ∈ C, let ℓ(C) be the

�(C) = we(C)
rC1 C2 r(C) Ce(C)

h1̀ h2̀ ... h5̀1w`
Figure 3-2: Caterpillar representing

literal ℓ.

vertex in C that maximizes D(r(C), ℓ(C)), and let

P (C) be the path between r(C) and ℓ(C) in tree

T . We define the radius of C to be s(C) = D(r(C), ℓ(C)).

Component C is called large if s(C) > c4α(C), oth-

erwise the component is called small. We define a

tree T ′ of components, whose vertex set is C ∪ {r},
and the edges connecting the components are the same as in the original graph, (i.e.,

e(C) for all C ∈ C.)
The main idea of our algorithm is to find the embedding of each one of the compo-

nents separately recursively, and then concatenate these embeddings in some carefully

chosen order. However, there is a problem with this algorithm, which is illustrated

by the following example. Consider a large component C, consisting of a very long

path, and a small component C ′ attached to this path in the middle. In this case any

small-distortion embedding has to interleave the vertices of C and C ′, and thus our

algorithm fails. We note that as e(C ′) is a large edge, vertices of component C ′ have

to be embedded into medium-sized edges of C (formal proof of this fact is provided

later). In order to solve the above problem, we perform Procedure Partition,

that further subdivides large components by removing some medium-size edges from

them.

From now on we only consider the components after the application of the above

procedure, and the component graph, the values r(C), ℓ(C), α(C) and so on are de-
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fined with respect to these components. It is easy to see that if a medium size edge

e is incident on some component C, then C is a large component.

In fact, it is more convenient for us to define and solve a slightly more general

problem. In the modified problem, in addition to a weighted tree T , we are also given

a threshold value H . Given any embedding of our tree into the line, we say that it

satisfies the root condition if: (1) each component C is embedded completely to the

right or to the left of r, and (2) no component C with α(C)+s(C) ≥ cH is embedded

to the right of r. Our goal is to find an embedding that satisfies the root condition,

while minimizing its distortion. Even though the problem might look artificial at this

point, it is easy to see that by setting H = ∞, it converts to our original problem.

The reason for defining the problem this way is that our algorithm solves the problem

recursively on each component C ∈ C, and then concatenates their embeddings into

the final solution. In order to avoid large distortion of the distance between r and

r(C), we need to impose the root condition on the sub-problem corresponding to C

with threshold H = D(r, r(C)). We later claim that for each sub-problem there is an

optimal embedding with distortion c that satisfies the corresponding root condition.

The Structure of the Optimal Solution

In this section we explore some structural properties of the optimal solution, on which

our algorithm relies.

Definition 12 Let C,C ′ be two large components. We say that these components are

incompatible if s(C) > 2c3α(C ′) and s(C ′) > 2c3α(C).

The proof of the following lemma appears in section 3.4.5.

Lemma 3.4.27 If C and C ′ are large incompatible components, then in the optimal

solution they are embedded on different sides of r.

Definition 13 Let C be a large component, and C ′ a small component. We say that

there is a conflict between C and C ′ iff 2c4α(C) < α(C ′) < s(C)/2c4.
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Lemma 3.4.28 If C is a large component having a conflict with small component

C ′, then C and C ′ are embedded on different sides of r in the optimal solution.

The proof of the above lemma can be found in section 3.4.5.

Claim 3.4.29 Let C,C ′ be large components and C ′′ a small component. Moreover,

assume that there is a conflict between C and C ′′ and there is a conflict between C ′

and C ′′. Then C and C ′ are incompatible.

Proof: Since there is a conflict between C and C ′′, α(C ′′) > 2c4α(C). A conflict

between C ′ and C ′′ implies that α(C ′′) < s(C ′)/2c4. Therefore, s(C ′) > 2c3α(C).

Similarly, we can prove that s(C) > 2c3α(C ′).

We subdivide the small components into types or subsets M1,M2, . . .. We say

that a small component C is of type i and denote C ∈Mi iff ci−1 ≤ α(C) < ci.

Claim 3.4.30 For each i, |Mi| ≤ 4c4.

Proof: Consider some i ≥ 1, and assume that |Mi| > 4c4. Then in the optimal

solution, there are more than 2c4 components of type i embedded on one of the sides

of r. Denote these components by Ci
1, C

i
2, . . . , C

i
k, k > 2c4, and assume that vertices

r(Ci
j) are embedded in the optimal solution in this order, where r(Ci

1) is embedded

closest to r. It is easy to see that for any pair C,C ′ of small components, the distance

between r(C) and r(C ′) is at least α(C)
c

. As the optimal embedding is non-contracting,

for every j = 1, . . . , k − 1, there is a distance of at least α(C i
j)/c ≥ ci−2 between the

embedding of r(Ci
j) and r(Ci

j+1). Therefore, r(Ci
k) is embedded at a distance at least

kci−2 > 2ci+2 from r. However, d(r(Ci
k)) ≤ α(Ci

k) + cα(Ci
k) ≤ 2ci+1, and thus this

distance is distorted by more than a factor of c in the optimal embedding.

The Approximation Algorithm

Our algorithm consists of three major phases. In the first phase we compute the set

C of components, after performing Procedure Partition. In the second phase,

we solve the problem recursively for each one of the components C ∈ C, where the
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threshold for the root condition becomes H = D(r(C), r). In the final phase, we

combine the recursive solutions to produce the final embedding.

Claim 3.4.31 For each recursive call to our algorithm, there is an embedding of the

corresponding instance with distortion c, that satisfies the root condition.

Proof: Let C be a component, and let C ′ be a component obtained after decomposing

C. We consider the recursive call in C ′. Since C is just a subtree of T , it embeds

into the line with distortion c. Let f be such an embedding of C with distortion c.

W.l.o.g., we can assume that r(C ′) is embedded to the left of r(C). It suffices to show

that f satisfies the root condition in component C ′.

Observe that for the recursive call in C ′, the threshold value isH = D(r(C), r(C ′)).

All the edges of C ′ as not large w.r.to r(C), thus all the vertices of C ′ are embedded

to the left of r(C). Assume now that the root condition is not satisfied for C ′.

This implies that there exists a component C ′′ that is obtained after decomposing

C ′, such that α(C ′′) + s(C ′′) ≥ cH , and such that C ′′ is embedded to the left of

r(C ′). Thus, f(r(C ′)) < f(l(C ′′)) < f(r(C)). It follows that |f(r(C ′)) − f(r(C))| >
|f(r(C ′))− f(l(C ′′))| ≥ D(r(C ′), l(C ′′)) = α(C ′′) + s(C ′′) ≥ cH = cD(r(C ′), r(C)), a

contradiction.

The final embedding is produced as follows. First, partition the set C of com-

ponents into two subsets R, L, containing the components to be embedded to the

right and to the left of r, respectively. The partition procedure is explained below.

The components in L are then embedded to the left of r, while the embedding of

each component is determined by the recursive procedure call, and the embeddings

of different components do not overlap. The order of components is determined as

follows. For each small component C, let f(C) = α(C), and for each large component

C ′, let f(C ′) = s(C ′)/2c4. The order of embedding is according to f(C), where the

component C with smallest f(C) is embedded closest to the root r. The embedding

of components in R is performed similarly, except that the embedding of each com-

ponent is the mirror image of the embedding returned by the recursive procedure

call (so that the root condition holds in the right direction). We put enough empty

105



space between the embeddings of different components to ensure that the embedding

is non-contracting. In the rest of this section we show how to partition C into the

subsets R and L.

We start with large components. We translate the problem into an instance of

2SAT, as follows. We have one variable x(C) for each large cluster C. Embedding C

to the left of r is equivalent to setting x(C) = T . If two components C and C ′ are

incompatible, we ensure that variables x(C) and x(C ′) get different assignments, by

adding clauses x(C)∨x(C ′) and x(C)∨x(C ′). Additionally, if s(C)+α(C) > cH , then

we ensure that C is not embedded to the right of r by adding a clause x(C) ∨ x(C).

The optimal solution induces a satisfying assignment to the resulting 2SAT formula,

and hence we can find a satisfying assignment in polynomial time. The clusters C

with x(C) = T are added to L and all other clusters are added to R.

Consider now any small cluster C. If s(C) + α(C) > cH , then we add C to L.

Otherwise, if s(C) + α(C) ≤ cH , then there is at most one large component C ′ that

has conflict with C. If such a component C ′ exists, then we embed C on the side

opposite to that where C ′ is embedded. Otherwise, C is embedded to the left of r.

Clearly, in any embedding consistent with the above decision the root condition is

satisfied.

The analysis of this phase of the algorithm appears in Section 3.4.5, together with

the proof of the following theorem:

Theorem 3.4.32 The algorithm produces a non-contracting embedding with distor-

tion bounded by cO(1).

Large Incompatible Components

The goal of this section is to prove Lemma 3.4.27

We start with the following claim:

Claim 3.4.33 Let C and C ′ be two large incompatible components. Then in the

optimal solution, vertex ℓ(C ′) is not embedded inside any edge of P (C).

106



Proof: Assume otherwise, and let e = (u, v) be an edge of P (C), with d(u) < d(v),

such that ℓ(C ′) is embedded between u and v. In order to finish our proof, it is enough

to show that D(u, ℓ(C ′)) ≥ d(u): in this case, if ℓ(C ′) is embedded between u and v,

then |ϕ(u)−ϕ(v)| ≥ d(u), and as e is not a large edge, it is stretched by a factor greater

than c in this embedding. It now only remains to prove that D(u, ℓ(C ′)) ≥ d(u). For

the sake of convenience, we denote ℓ = ℓ(C ′).

We consider three cases. The first case is when the components C and C ′ are

not the ancestor and descendant of one another in the tree of components. Let a

be the least common ancestor of u and ℓ, note that a 6= u, a 6= ℓ. Then D(u, ℓ) =

D(a, u) + D(a, ℓ). However, D(a, ℓ) ≥ s(C ′) ≥ c4α(C ′) ≥ c2de(C′) ≥ d(a) (we are

using the facts that C ′ is a large component and so s(C ′) ≥ c4α(C ′) and also that

e(C) is a large or a medium size edge, and therefore α(C ′) = we(C′) ≥
de(C′)

c2
). Thus,

D(u, ℓ) ≥ D(a, u) + d(a) ≥ d(u) as desired.

The second case is when C ′ is a descendant of C in the tree of components. Let

a ∈ C be the least common ancestor of u and ℓ, note that a = u is possible. Then

D(u, ℓ) = D(u, a) + D(a, ℓ). Again, D(a, ℓ) ≥ s(C ′) ≥ c4α(C ′) ≥ c2de(C′) ≥ d(a)

holds, and thus D(u, ℓ) ≥ D(a, u) + d(a) ≥ d(u).

The third case is when C ′ is an ancestor of C in the component tree. Let a ∈ C ′ be

the least common ancestor of u and ℓ. Notice first that D(a, r(C ′)) < s(C ′)/2 must

hold, since otherwise de(C) ≥ D(a, r(C ′)) ≥ s(C ′)/2 > c3α(C) = c3we(C), which is

impossible since e(C) is a large or a medium size edge. Assume now thatD(a, r(C ′)) <

s(C ′)/2 holds. But thenD(a, ℓ) ≥ s(C ′)/2 ≥ c3α(C). To finish the proof, observe that

D(u, ℓ) = D(a, ℓ) +D(a, u) ≥ c3α(C) +D(u, r(C)) ≥ d(r(C)) +D(u, r(C)) ≥ d(u).

Lemma 3.4.34 (Lemma 3.4.27) If C and C ′ are large incompatible components,

then in the optimal solution they are embedded on different sides of r.

Proof: Assume C and C ′ are embedded on the same side of r. As Claim 3.4.33

holds in both directions, the only way for C and C ′ to be embedded on the same

side of r is when ℓ(C) is embedded between r(C ′) and r or when ℓ(C ′) is embedded

between r(C) and r.
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Assume w.l.o.g. that ℓ(C) is embedded between r(C ′) and r. Since D(ℓ(C), r) ≥
s(C) ≥ 2c3α(C ′), vertices r(C ′) and r are embedded at a distance at least 2c3α(C ′)

from one another. However, d(r(C ′)) = α(C ′) + de(C′) ≤ α(C ′) + c2α(C ′) < 2c2α(C ′)

and thus this distance is distorted by more than a factor of c.

Combining Large and Small Components

This section is devoted to proving Lemma 3.4.28.

Lemma 3.4.35 (Lemma 3.4.28) If C is a large component having a conflict with

small component C ′, then C and C ′ are embedded on different sides of r in the optimal

solution.

Proof: Our proof consists of three claims. In the first claim, we show that if C

and C ′ are embedded on the same side of r, then r(C ′) is embedded inside some edge

e on path P (C). The second claim shows that C ′ must be a descendant of C in the

tree of components. Finally, in the third claim, we show that edge e on path P (C)

into which r(C ′) is embedded is a medium-size edge, whose removal splits C into two

large components, therefore e must have been removed by Procedure Partition.

Claim 3.4.36 Assume that C and C ′ are embedded on the same side of r. Then

r(C ′) is embedded inside some edge e on path P (C).

Proof: Assume otherwise. Then either r(C ′) is embedded between r and r(C), or

all the vertices on path P (C) are embedded between r(C ′) and r. If the former

case is true, then |ϕ(r) − ϕ(r(C))| > d(r(C ′)) ≥ α(C ′) ≥ 2c4α(C). But d(r(C)) =

α(C) + de(C) ≤ α(C) + c2α(C) < 2c2α(C). Thus, the distance between r and r(C) is

distorted by a factor greater than c.

If the latter is true, then |ϕ(r) − ϕ(r(C ′))| > s(C) > 2c4α(C ′). However, this

means that the distance between r and r(C ′) is distorted by a factor greater than c,

since d(r(C ′)) = α(C ′) + de(C′) ≤ α(C ′) + cα(C ′) ≤ 2cα(C ′).
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Let e = (u, v) denote the edge on path P (C), such that r(C ′) is embedded inside

e, and assume w.l.o.g. that d(u) < d(v).

Claim 3.4.37 C ′ is a descendant of C in the tree of components.

Proof: Assume otherwise. There are two cases to consider. If C is the descendant

of C ′, then de(C) ≥ α(C ′) ≥ 2c4α(C), which is impossible since e(C) is a large or a

medium size edge.

The second case is when C and C ′ are not an ancestor-descendant pair. Let a

be the least common ancestor of u and r(C ′), and notice that a 6∈ C ′. We show

that D(u, r(C ′)) ≥ d(u), and thus |ϕ(u)− ϕ(v)| ≥ d(u) must hold, while D(u, v) =

we < d(u)/c since e is not large. Therefore, edge e is stretched by a factor greater

than c, leading to a contradiction. To see that D(u, r(C ′)) ≥ d(u), Observe that

D(u, r(C ′)) ≥ α(C ′) + α(C) + D(u, r(C)). However, α(C ′) ≥ 2c4α(C) ≥ de(C) (we

used the facts that C ′ and C have a conflict, and also that e(C) is a large or a medium

size edge). Therefore, D(u, r(C ′)) ≥ d(e(C)) + α(C) +D(u, r(C)) ≥ d(u).

Claim 3.4.38 Edge e is of medium size, and upon its removal component C splits

into two large components.

Proof: We first show that e is a medium size edge. Let a be the least common

ancestor of r(C ′) and u. Since C ′ is a descendant of C, a ∈ C. Then D(u, r(C ′)) =

D(u, a)+D(a, r(C ′)). However, D(a, r(C ′)) ≥ α(C ′) ≥ d(a)
c

, since e(C ′) is a large edge,

and a is on the path from r(C ′) to the root. Altogether, we have that D(u, r(C ′)) ≥
D(u, a)+ d(a)

c
≥ d(u)

c
. Since r(C ′) is embedded between u and v, |ϕ(u)−ϕ(v)| ≥ d(u)

c
,

and thus D(u, v) = we ≥ d(u)
c2

must hold.

Consider now two components C1, C2 obtained from C by removing edge e, and

assume w.l.o.g. that r(C) ∈ C1. We show that both these components are large.

Assume for contradiction that C1 is small. On one hand, since C and C ′ have

a conflict, 2c4α(C) < α(C ′). On the other hand, since r(C ′) is embedded inside

edge e, and D(u, r(C ′)) ≥ α(C ′), then α(C ′) ≤ cwe must hold. Combining the two
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inequalities together, we have: 2c3α(C) < we. But since e is not large, d(u) = de >

we · c > 2c4α(C). Finally, recall that d(u) ≤ D(u, r(C)) + α(C) + c2α(C), and thus

D(u, r(C)) > c4α(C) must hold. But D(u, r(C)) ≤ s(C1), and thus C1 is a large

component.

We now prove that C2 is a large component. The main part of the proof is showing

that d(u) ≤
(

1− 1
c

)

s(C)
c3

. Assume that the above bound is true. Then since e is not

large, we < d(u)
c
≤
(

1− 1
c

) s(C)
c4

. On the other hand, we can show that s(C2) is

sufficiently large relatively to we, as follows:

s(C2) ≥ s(C)− d(u)−we ≥ s(C)−
(

1− 1

c

)

s(C)

c3
−
(

1− 1

c

)

s(C)

c4
≥
(

1− 1

c

)

s(C)

Therefore, s(C2) ≥ c4we holds, and C2 is a large component.

It now only remains to prove that d(u) ≤
(

1− 1
c

) s(C)
c3

. Recall that r(C ′) is

embedded between u and v, and thus the distance between the embeddings of u and

v is at least:

D(u, r(C ′)) +D(v, r(C ′)) ≥ 2D(u, r(C ′)) = 2[D(u, a) +D(a, r(C ′))]

As the distortion is at most c,

we ≥ 2
D(u, a) +D(a, r(C ′))

c

must hold. On the other hand, edge e is not large, and thus

we <
d(u)

c
=
d(a) +D(u, a)

c

Combining the two inequalities together, we get:

d(a) ≥ D(u, a) + 2D(a, r(C ′)) ≥ D(u, a) + 2α(C ′)
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Since a is on the path from r(C ′) to r and e(C ′) is a large edge, α(C ′) ≥ d(a)
c

. We

thus have: d(a)
(

1− 2
c

)

≥ D(u, a).

Altogether,

d(u) = d(a) +D(u, a) ≤ d(a)

(

2− 2

c

)

≤ cα(C ′)

(

2− 2

c

)

≤ s(C)

c3

(

1− 1

c

)

Analysis of the Algorithm

We start with the following simple observation.

Observation 3.4.39 Let C be any component, and let r be the root of the current

instance. Then D(r(C), r) ≤ 2c2α(C).

Proof: It is easy to see that D(r(C), r) = α(C)+de(C). However, since e(C) is a large

or a medium size edge, α(C) ≥ de(C)

c2
. In total,D(r(C), r) ≤ α(C)+c2α(C) ≤ 2c2α(C).

We now bound the empty space we need to leave between each pair of components

that are embedded next to each other. Consider some component C embedded to

the left of r. Recall that in the recursive procedure call for C, we use threshold value

H = D(r(C), r) for the root condition. Let v ∈ C be the rightmost vertex in the

embedding of C.

We want to show D(v, r) is “small”.Assume w.l.o.g. that v 6= r(C). Let C ′ be

the component, obtained by the decomposition of C, that contains v. Note that due

to Observation 3.4.39, D(r(C ′), r(C)) ≤ 2c2α(C ′). Since v (and therefore C ′) lies on

the right side of r(C), it must satisfy the threshold condition α(C ′) + s(C ′) ≤ cH =

cD(r(C), r). We can now write
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D(v, r) ≤ D(r(C), r) + [D(v, r(C ′)) +D(r(C ′), r(C))]

≤ D(r(C), r) + [s(C ′) + 2c2α(C ′)]

≤ D(r(C), r) + 2c3H

≤ 3c3D(r(C), r)

≤ 6c5α(C)

For each component C embedded to the left of r, we leave empty space of 6c5α(C)

to the right of the embedding of C, and empty space of s(C) +D(r, r(C)) ≤ s(C) +

2c2α(C) to the left of the embedding of C, such that empty spaces belonging to

different components do not overlap. The embedding of components inR is performed

similarly. It is easy to see that the resulting embedding is non-contracting.

Consider now some component C. Let L(C),S(C) denote the sets of large and

small components, respectively, embedded between C and r by our algorithm. We

define L(C) =
∑

C′∈L(C) s(C
′), and S(C) =

∑

C′∈S(C) α(C ′). In order to bound the

approximation ratio of our algorithm, it is helpful to bound first the values L(C) and

S(C) in terms of α(C).

Lemma 3.4.40 For any component C, L(C) ≤ 4c4α(C), and S(C) ≤ 24c8α(C).

Proof:

We start by bounding L(C). Consider any pair C1, C2 of large components, em-

bedded on the same side of r. These components are compatible, and thus we can

assume w.l.o.g. that s(C1) ≤ 2c3α(C2). However, since C2 is large, α(C2) ≤ s(C2)/c
4,

and therefore s(C1) ≤ 2s(C2)/c, and C1 is embedded closer than C2 to the root.

Assume now that C is a large component, and let C ′ ∈ L(C) be the component

that maximizes s(C ′). Then s(C ′) ≤ 2c3α(C) (since otherwise C must be embedded

closer to r than C ′). Moreover, the values of s(C ′′) for C ′′ ∈ L(C) constitute a

geometric series with ratio 2
c
. Therefore, L(C) ≤ 4c3α(C).
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If C is a small component, let C ′ ∈ L(C) be the component that maximizes s(C ′).

Due to the ordering of the components by our algorithm, s(C′)
2c4
≤ α(C). The values

of s(C ′′) for C ′′ ∈ L(C) again form a geometric series, and thus L(C) ≤ 4c4α(C).

We now proceed to bound S(C). Recall that there are at most 4c4 small compo-

nents of each type. Assume first that C is a small component of type i. Then S(C)

contains at most 4c4 components of the same type (whose α is less than α(C)), and at

most 4c4 components for each one of the types 1, . . . , i− 1. Thus, S(C) ≤ 12c4α(C).

Suppose now that C is a large component, and let C ′ ∈ S(C) be the component

maximizing α(C ′). Then α(C ′) ≤ s(C)
2c4

. Since there is no conflict between C and C ′,

α(C ′) ≤ 2c4α(C) must hold. Again, we have at most 4c4 components of the same

type as C ′, whose α-value is not greater than α(C ′), and at most 4c4 components of

each one of the smaller types. Therefore, S(C) ≤ 12c4 · 2c4α(C) ≤ 24c8α(C).

Definition 14 Given a component C, its weight W (C) is defined to be the sum of

weights of its edges.

Claim 3.4.41 W (C) ≤ 2cs(C)

Proof: The length of any embedding of C is at least W (C), while the maximum

distance between any pair of points in C is 2s(C). Since the distortion of the optimal

embedding is c, the claim holds.

The next theorem is the central theorem in the analysis of our algorithm.

Theorem 3.4.42 Let C be the instance of our problem with threshold H for the root

condition. Then the algorithm produces an embedding with the following properties:

• The length of the embedding is at most c13W (C).

• The length of the embedding to the right of the root r is at most c28H.

• For any vertex v ∈ C, v is embedded within distance c29D(v, r) from r.

Proof:
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The proof is by induction on the instance size. Let C be the collection of compo-

nents produced by our algorithm. We assume that the claim holds for each C ′ ∈ C
and the corresponding threshold value, and prove it for C.

We start by bounding the embedding length. We first bound the length of the

embedding to the left of r. Let CL be the leftmost component embedded to the left of

r (if such a component exists). The length of the embedding to the left of r consists

of the following parts: (1) the lengths of the embeddings of all the components in L:

they are bounded by c13
∑

C′∈LW (C ′) by the inductive hypothesis; (2) the additional

space we need to leave between the components to ensure non-contraction.

We show that this additional space is at most c13α(CL). Observe that edge e(CL)

does not participate in any of the recursive algorithm executions. Since we can bound

the length of the embedding to the right of r in a similar fashion, this will finish the

proof that the total length of the embedding is at most c13W (C).

We now bound the additional space we need to place between the components. Let

C ′ ∈ L\{CL} be some large component. The empty space we need to leave due to C ′ is

at most 2[s(C ′)+D(r(C ′), r)] ≤ 2[s(C ′)+2c2α(C ′)] ≤ 3s(C ′) (since C ′ is large). Thus,

in total, the large components in L \ {CL} contribute at most 3L(CL) ≤ 12c4α(CL).

Consider now some small component C ′ ∈ L \ {CL}. The empty space due to C ′ is

again bounded by 2[s(C ′) + D(r(C ′), r)] ≤ 2[s(C ′) + 2c2α(C ′)]. However, since C ′

is small, s(C ′) ≤ c4α(C ′), and thus its contribution is at most 3c4α(C ′). In total,

small components in L \ {CL} contribute at most 3c4S(CL) ≤ 72c12α(CL). Finally,

component CL itself contributes at most 6c5α(CL). The total additional empty space

is thus at most:

12c4α(CL) + 72c12α(CL) + 6c5α(CL) ≤ c13α(CL)

We now prove the second part of the theorem.

Let CR be the rightmost component in our embedding. From the root condition,

α(CR) + s(CR) ≤ cH . If C ′ is a large component embedded between CR and r,

then its embedding length is at most c13W (C ′) ≤ 2c14s(C ′). The amount of empty
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space we need to leave out for this component is at most 2[s(C ′) + D(r(C ′), r)] ≤
2[s(C ′) + 2c2α(C ′)] ≤ 3s(C ′). Thus, the total contribution of such components is at

most 6c14L(CR) ≤ 3c14 · 4c4α(CR) = 12c18α(CR).

Similarly, the length of the embedding of a small component C ′ is at most 2c14s(C ′) ≤
2c18s(C ′), and the amount of free space we need to add due to C ′ is bounded by

2[s(C ′) + D(r(C ′), r)] ≤ 2[s(C ′) + 2c2α(C ′)] ≤ 3c4α(C ′).The total contribution of

small components is at most 3c18S(CR) ≤ 3c18 · 24c8α(CR) ≤ 72c26α(CR). Finally,

the length of the embedding of CR is at most 2c14s(CR), and the empty space we

need to leave to the left of it is at most 6c5α(CR). The total size of the embedding

to the right of r is at most:

12c18α(CR) + 72c26α(CR) + 6c5α(CR) + 2c14s(CR) ≤ c27(α(CR) + s(CR)) ≤ c28H

Finally, we prove the third part of the theorem. Consider some vertex v, belonging

to some component C ′. Let ψ be the embedding computed by the algorithm. Then

|ψ(v)− ψ(r)| ≤ |ψ(v)− ψ(r(C ′))|+ |ψ(r)− ψ(r(C ′))|, while D(v, r) = D(v, r(C ′)) +

D(r, r(C ′)). By the inductive hypothesis, |ψ(v) − ψ(r(C ′))| ≤ c30D(v, r(C ′)). We

now prove that |ψ(r)− ψ(r(C ′))| ≤ c30D(r, r(C ′)), thus finishing the proof.

The distance between the embeddings of r(C ′) and r consists of three parts: (1)

The length of the recursive embedding of component C ′ to the right of its root r(C ′):

bounded by c28D(r, r(C ′)) by the induction hypothesis; the empty space we need

to leave between the embedding of C ′ and its neighbor that lies between C ′ and r:

bounded by 6c5α(C ′); (3) the embeddings of all the components lying between C ′ and

the root r, and their empty spaces. The last term can be bounded by the similar way

we used to bound the distance between the embedding of CR and the root, which is

at most c27α(CR). Summing the three terms together, we get:

|ψ(r)− ψ(r(C ′))| ≤ c28D(r, r(C ′)) + 6c5α(C) + c27α(CR) ≤ c29D(r, r(C ′))
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Theorem 3.4.43 (Theorem 3.4.32) The algorithm produces a non-contracting em-

bedding with distortion bounded by cO(1).

Proof: It is easy to see that the embedding produced by the algorithm is non-

contracting. We now prove that the distortion is at most 4c32. Let e = (u, v) be

some edge in our original instance. Let C be the first instance in our recursive al-

gorithm executions, where u and v are separated: i.e., u, v ∈ C, but there are two

components Cu, Cv ⊆ C, such that u ∈ Cu, v ∈ Cv. Let r denote the root of the

current instance.

Then edge e is a large or a medium-size edge, and thus D(u, v) = we ≥ d(u)
c2

. Also,

since d(v) = d(u) + we ≤ c2we + we ≤ 2c2we, we have that in total:

D(u, v) = we ≥
d(u) + d(v)

4c2

On the other hand, consider the embedding ψ produced by our algorithm. Then:

|ψ(u)− ψ(v)| ≤ |ψ(u)− ψ(r)|+ |ψ(v)− ψ(r)|

≤ c30(d(u) + d(v))

≤ 4c32
d(u) + d(v)

4c2

≤ 4c32we

3.5 Embedding Ultrametrics Into Low-Dimensional

Spaces

Credits: The results in this section is work done with Julia Chuzhoy, Piotr Indyk,

and Anastasios Sidiropoulos, and has appeared in SoCG’06.
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3.5.1 Introduction

In this section we consider embedding ultrametrics into the plane. Ultrametrics are

a natural class of metrics, frequently occurring in applications involving hierarchical

clustering. They are of particular interest in biology, where they can be used to

represent evolutionary trees (cf. [FK99] or [DEKM98], p. 168). Visualizing such trees

requires embedding them into the plane, which is exactly the problem we consider in

this paper.

Our main result is an algorithm which receives as input an ultrametric and outputs

its embedding into the plane. If the input ultrametric embeds into the plane with

distortion c (under lp norm for any 1 ≤ p ≤ ∞4), then the embedding produced

by the algorithm has distortion O(c3). In particular, for the case where the input

ultrametric is embeddable into the plane with constant distortion, the distortion of

the embedding produced by the algorithm is also constant. The running time of our

algorithm is linear in the input size, assuming it is given the value of the optimum

distortion c (or its approximation). The algorithm generalizes to embeddings into

ℜd (equipped with the l2 norm), and the distortion becomes cO(d), where c is the

distortion of the optimal embedding of the ultrametric into ℜd.

In our second result we prove that any ultrametric can be embedded into the

plane with distortion O(
√
n). More generally, for any d ≥ 2, we show how to embed

any ultrametric into ℜd with distortion dO(1)n1/d. Notice that unlike the first result,

this result relates to the absolute version of the distortion minimization problem. The

proof is algorithmic - the embedding can be found in polynomial time. Combining the

two results together, we obtain an O(n1/3)-approximation algorithm for embedding

ultrametrics into the plane.

We also remark that for the case of embedding ultrametrics into low-dimensional

spaces, it has been shown (cf. [BM04b]) that for any ǫ > 0, any ultrametric can be

embedded into ℓ
O(ǫ−2 log n)
p , with distortion 1 + ǫ.

Finally, we investigate the hardness of embedding ultrametrics into the plane. We

4The algorithm is described for the case of the l2 norm. However, since lp norms for all 1 ≤ p ≤ ∞
in ℜ2 are equivalent up to a factor of 2, the algorithm works for any lp norm as well.
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prove that the problem of finding the smallest-distortion embedding is strongly NP-

hard, if the distance is measured according to the l∞ norm. Interestingly, the problem

of minimizing the distortion of embedding into ultrametrics can be solved exactly in

polynomial time [ABD+05].

Our techniques

We use the well-known fact that any ultrametric M = (X,D) can be well approxi-

mated by hierarchically well-separated trees (HST’s) (see Section 3.5.2 for definitions).

The corresponding HST T has the points of X as its leaves, and each vertex v of T

has a label l(v) ∈ ℜ+. The distance of any pair of points p, q ∈ X is exactly the label

of their nearest common ancestor.

The hierarchical structure of HST’s naturally enables constructing the embedding

in a recursive manner. That is, the mapping is constructed by embedding (recursively

and independently) the children of the root node, and then combining the embed-

dings. Implementing this idea, however, requires overcoming a few obstacles, which

we discuss now. For simplicity, we focus on embeddings into the plane.

Distortion lower bound. The first issue is how to obtain a good lower bound

for the distortion. It is not difficult to see that the distortion depends on both the

number of nodes, and the structure of the ultrametric. For example, the full 2-HST

of depth t, where all internal nodes have degree 4, requires Ω(t) distortion; at the

same time, the full 4-HST of depth t, where all internal nodes have degree 4, can be

embedded with constant distortion.

Our lower bound is obtained as follows. Consider any node v and its children

u1 . . . uk. Let Pi be the set of leaves in the subtree of the node ui, P = P1 ∪ . . .∪ Pk.

By the definition of ultrametrics, the distances between any pair of points p ∈ Pi

and q ∈ Pj for i 6= j, are equal to the same value, namely l(v). Consider any non-

contracting embedding f : P → ℜ2. Construct a ball of radius l(v)/2 around each

point f(p), p ∈ P , and denote this ball by B(p, l(v)/2). It is easy to see that the

union of the interiors of the balls around points in Pi and the union of the interiors

of the balls around points in Pj must be disjoint if i 6= j.
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Our lower bound on distortion proceeds by estimating the total volume C(v)

of ∪p∈PB(p, l(v)/2). Specifically, by packing argument, one can observe that the

distortion of the optimal embedding must be at least Ω(
√

C(v) − O(1)). Thus, it

suffices to have a good lower bound for the volume C(v). It would appear that

such lower bounds could be obtained by summing C(ui)’s, since the balls around

different sets Pi are disjoint. Unfortunately, C(ui) is the volume of the union of

the balls of radius l(ui)/2, not l(v)/2, so the above is not strictly true. However,

∪p∈Pi
B(p, l(v)/2) can be expressed as a Minkowski sum of ∪p∈Pi

B(p, l(ui)/2) and a

ball of radius [l(v)− l(ui)]/2. Then the volume of that set can be bounded from below

by using Brunn-Minkowski inequality, by a function of C(ui) and l(v) − l(ui). This

enables us to obtain a recursive formula for C(v) as a function of C(ui)’s.

Distortion accumulation. The recursive formula for the lower bound suggests

a recursive algorithm. Consider some vertex v of the HST, and let u1, . . . , uk be its

children. For each ui, 1 ≤ i ≤ k, the leaves in the subtree of ui are mapped into

a square R(ui) whose volume is at most C(ui). Then the squares are re-arranged

to form a square R(v). The main difficulty with this approach is that the optimal

way to pack the squares is difficult to find. In fact, the optimal embedding could,

in principle, not pack the points into squares. To overcome this problem, we allow

some limited stretching of the squares, to fit them into R(v). However, stretching

causes distortion, and thus we need to make sure that stretching done over different

levels does not accumulate. In order to avoid such accumulation of distortion, we

alternate between the horizontal and vertical stretchings of the squares. Specifically,

we assign, for each vertex v of the HST, a bit g(v) that determines whether the squares

into which the sub-trees of the children of v are embedded will be stretched in the

horizontal or the vertical direction before they are packed into the square R(v). We

calculate the values of the bits g(v) in a top-down manner, starting with the leaves

of the HST, to ensure that the final stretchings are balanced.

It appears that the need to compute a proper choice of stretching directions (which

can also be viewed as rotations) at each level is not just an artifact of our algorithm,

but it might be necessary to achieve low distortion. In particular, the only con-
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stant distortion embedding of a full 2-HST into the plane that we are aware of uses

alternating rotations.

Higher dimensions. We show how to generalize the algorithm for embedding

ultrametrics into the plane to higher dimensions. We show an algorithm that produces

a cO(d)-distortion embedding of the input ultrametric into ℜd under the l2 norm, where

c denotes the optimal distortion achievable when embedding the input ultrametric into

ℜd.

Hardness. We show NP-hardness of the embedding problem for the case of the

plane under l∞ norm. We use a reduction from the square packing problem. Since

our algorithm also uses (a variant of) square packing, the packing problem appears

to be intimately related to embeddings of ultrametrics.

3.5.2 Preliminaries and Definitions

A metric M = (X,D) is an ultrametric if it can be represented by a labeled tree T

whose set of leaves is X, in the following manner. Each non-leaf vertex v of T has a

label l(v) > 0. If u is a child of v in tree T , then l(u) ≤ l(v). For any x, y ∈ X, the

distance between x and y is defined to be the label of the nearest common ancestor

of x and y, and this distance should be equal to D(x, y).

We now proceed to define hierarchically well-separated trees (HST’s). For any

α ≥ 1, an α-HST is an ultrametric where for each parent-child pair of vertices (u, v),

l(u) = αl(v). It is easy to see that for any α ≥ 1, any ultrametric can be α-

approximated by an α-HST (cf. [Bar96]). Moreover, such an HST can be found in

time linear in the input size. Therefore, if the input ultrametric M embeds into ℜd

with distortion c, then the metric M ′ defined by the corresponding 2-HST embeds

into ℜd with distortion c′ = 2c. Any non-contracting embedding of M ′ into ℜd with

distortion c′′ represents a non-contracting embedding of M with distortion O(c′′).

Therefore, from now on we will concentrate on embeddings of HST’s into ℜd.

Given a 2-HST T , we will use the following additional notation. Let r denote the

root of the tree, and let h denote the tree height. We assume that r belongs to the
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first level of T , and all the leaves belong to level h. By scaling the underlying metric

M , we can assume w.l.o.g., that for each vertex v at level h − 1, l(v) = 2. For any

non-leaf vertex v, we denote by Xv the set of leaves of the subtree of T rooted at v,

and we denote the number of leaves in the subtree nv.

We will use the Brunn-Minkowski inequality, defined as follows. Given any two

sets A,B ⊆ Rd, let A ⊕ B denote the Minkowski sum of A and B, i.e., A ⊕ B =

{a+ b | a ∈ A, b ∈ B}.

Theorem 3.5.1 (Brunn-Minkowski inequality) For any pair of sets A,B ⊆ Rd,

Vol(A⊕B)1/d ≥ Vol(A)1/d + Vol(B)1/d.

3.5.3 A Lower Bound on the Distortion of Optimal Embed-

ding

In this section we show a lower bound on the distortion of optimal embedding of a

metric M ′ which is defined by a 2-HST denoted by T .

For any r > 0, let B(r) denote the ball of radius r in ℓd2 centered at the origin.

Let Vd(r) denote the volume of a d-dimensional ball of radius r, Vd(r) = πd/2rd

Γ(1+d/2)
.

For each vertex v of T , we define a value C(v), which intuitively is a lower-bound on

the minimum volume embedding of Xv (the precise statement appears below). The

values C(v) are defined recursively, starting from the leaves. For each leaf v, we set

C(v) = Vd(1/2).

Consider now vertex v at level j ∈ [h− 1], and let u1, . . . , uk be the children of v

in T . We define:

C(v) =
k
∑

i=1

(

(C(ui))
1/d + (Vd(l(v)/4))1/d

)d

Given any embedding ϕ : X → ℓd2, for any subset X ′ ⊆ X, let ϕ(X ′) denote the image

of points in X ′ under ϕ.
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Lemma 3.5.2 Let v be a non-leaf vertex of T , and let ϕ be any non-contracting

embedding of Xv into ℓd2. Then the volume of ϕ(Xv)⊕ B
(

l(v)
2

)

is at least C(v).

Proof: Let u1, . . . , uk be the children of v. The proof is by induction. Assume first

that v belongs to level h− 1 of T , and consider S = ϕ(Xv)⊕ B(l(v)/2). Recall that

l(v) = 2. Since the embedding is non-contracting, for any 1 ≤ i < j ≤ k, vertices

ui, uj are embedded at a distance at least 2 from each other. Therefore, set S consists

of k balls of disjoint interiors, of radius 1 each, and thus the volume of S is exactly

kVd(1) = C(v).

Assume now that v belongs to some level j ∈ [h− 2]. Let S = ϕ(Xv)⊕B(l(v)/2).

Equivalently, S is the union of Si = ϕ(Xui
) ⊕ B(l(v)/2) for i ∈ [k]. Since the

embedding is non-contracting, all the sets Si have disjoint interiors. For each i ∈ [k],

let us denote S ′
i = ϕ(Xui

)⊕B(l(ui)/2). Recall that l(v) = 2l(ui). Therefore, for each

i ∈ [k], Si = S ′
i ⊕ B(l(v)/4). Using the induction hypothesis, the volume of S ′

i is at

least C(ui). From the Brunn-Minkowski inequality, it follows that:

(Vol(Si))
1/d ≥ (Vol(S ′

i))
1/d

+ (Vd(l(v)/4))1/d

≥ (C(ui))
1/d + (Vd(l(v)/4))1/d

Therefore, in total,

Vol(S) =
k
∑

i=1

Vol(Si) ≥
k
∑

i=1

(

(C(ui))
1/d + (Vd(l(v)/4))1/d

)d

= C(v).

Suppose we are given some set of points S ⊆ ℜd, that has volume V . We define

ρd(V ) =
(

V ·Γ(1+d/2)

πd/2

)1/d

, i.e., ρd(V ) is the radius of the d-dimensional ball in ℜd that

has volume V . Observe that S has two points at a distance at least ρd(V ) from

each other (otherwise, S is contained in a ball of radius smaller than ρd(V ), which is

impossible).

Corollary 3.5.3 Let v be some non-leaf vertex of T , and let ϕ be any non-contracting
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embedding of M ′ into ℓd2, with distortion at most c′. Then c′ ≥ ρd(C(v))/l(v)− 1.

Proof: Consider S = ϕ(Xv)⊕B (l(v)/2). By Lemma 3.5.2, the volume of S is at least

C(v), and thus there are two points x, y ∈ S within a distance at least ρ = ρd(C(v))

from each other. By the definition of S, it follows that there are two points a, b ∈ Xv,

which are embedded at a distance of at least ρ− l(v) from each other. As the distance

between a, b in T is at most l(v), the bound on the distortion follows.

3.5.4 Approximation Algorithm for Embedding Ultrametrics

Into the Plane

Preliminaries and Intuition

Let M = (X,D) be the input ultrametric that embeds into the plane with distortion

c. Let M ′ = (X,D′) be the metric defined by the 2-HST T which 2-approximates

M . Then M ′ embeds into the plane with distortion c′ ≤ 2c, and any non-contracting

embedding of M ′ into the plane with distortion O(c′3) is also a non-contracting em-

bedding of M with distortion at most O(c3). Therefore, from now on we concentrate

on embedding M ′ into the plane.

Consider some non-leaf vertex u. We define au =
√

C(u). If u 6= r, let v be its

father. We define bu = au +
√

πl(v)
4

.

Our algorithm works in bottom-up fashion. Let v be some vertex. The goal of

the algorithm is to embed all the vertices of Xv into a square Q of side av, incurring

only small distortion. Let u1, . . . , uk be the children of v, and assume that for all

j : 1 ≤ j ≤ k, we have already embedded X(uj) inside a square Qj of side auj
. Recall

that for any pair of vertices x ∈ Xuj
, y ∈ Xuj′

, where 1 ≤ j 6= j′ ≤ k, the distance

between x and y in T is l(v). Our first step is to ensure non-contraction (or more

precisely small contraction), by adding empty strips of width
buj−auj

2
=

√
πl(v)
8

around

the squares. Thus, we obtain a collection Q′
1, . . . , Q

′
k of squares, of sides bu1 , . . . , buk

,

respectively. Our goal now is to pack these squares into one large square Q of side

av. Observe that from volume view point, Vol(Q) = Vol(Q′
1) + . . . + Vol(Q′

k), since

a2
v =

∑k
j=1 b

2
uj

, by the definition of Cv. However, it is not always possible to obtain
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such tight packing of squares. Instead, we convert each square Q′
j to rectangle Rj

whose sides are buj
suj

, buj
/suj

for some suj
= O(c′). Observe that the volume of Rj

is the same as that of Q′
j . This will enable us to pack all the rectangles R1, . . . , Rk

into Q. Recall that inside each square Q′
j , vertices of Xuj

are embedded. In order to

convert square Q′
j into rectangle Rj , we contract all the distances along one axis, and

expand all the distances along the other axis, by the same factor suj
.

Consider now two vertices u, v, and let z be their least common ancestor. The

distance between u and v might thus be contracted or expanded when we calculate

the embedding of Xz. However, for each vertex z′ on the path from z to r, the

distance between u and v might be contracted or expanded again, when calculating

the embedding of Xz′. In order to avoid accumulation of distortion, we would like

to alternate the contractions and expansions of this distance in an appropriate way.

To this end, we calculate, for each vertex v, a value g(v) ∈ {−1, 1}. Let u1, . . . , uk

be the children of v, and let Q′
1, . . . , Q

′
k be their corresponding squares. If g(v) = 1,

then when embedding squares Q′
1, . . . , Q

′
k into square Q of side av, we expand them

along axis x and contract along axis y. If g(v) = −1, we do the opposite. The values

of g(v) have to be computed in a top-bottom fashion. They are calculated in such a

way that the total distortion of distance between any pair of points in X stays below

poly(c′).

For any non-root vertex u in T , with parent a vertex v, we define su = av/bu.

Also, for the root r of T , let sr = 1.

Lemma 3.5.4 For each vertex u, 1 ≤ su ≤ 32c′.

Proof: If u is the root, then su = 1. Otherwise, let u, v ∈ T , such that v is the father

of u. We have already observed that a2
v is the sum of b2uj

, for all children uj of v.

Thus, s(u) ≥ 1 holds.

Recall now that by the definition of bu, its value is at least l(v)
4

. On the other

hand, by Corollary 3.5.3, c′ ≥ av

l(v)
√

π
− 1, and thus av ≤ (c′ + 1)

√
πl(v) ≤ 8c′l(v).

Therefore, su = av

bu
≤ 32c′.

Let v be some non-leaf vertex, and let u1, . . . , uk be its children. Let Q′
1, . . . , Q

′
k be
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the squares of side bu1 , . . . , buk
, respectively, corresponding to the children. In order

to pack these squares into a square of side av, we transform each square Q′
j into a

rectangle with sides buj
sj,

buj

sj
. The goal of the next lemma is to calculate the values

g(v) ∈ {−1, 1} for each v ∈ V , that will determine, along which axis we contract, and

along which expand when embedding the subtree of v.

Suppose we have a function g : V (T )→ {−1, 1}. Consider some vertex v ∈ V (T ),

and let v1, v2, . . . , vk be the vertices on the path from v to r, where v1 = r, vk = v.

We define h(v) =
∏k−1

j=1 s
g(vj )
vj+1 .

Lemma 3.5.5 We can calculate, in linear time, function g : V (T ) → {−1, 1}, such

that for each v ∈ V (T ), 1
32c′
≤ h(v) ≤ 32c′.

Proof: Observe first that in order to be able to calculate h(v) for any v ∈ V , it is

enough to know the values of g(v′) of all the vertices v′ on the path from r to v, not

including v.

We traverse the tree in the top-bottom fashion. For root r, we set g(r) = 1. Since

for all the values sv, 1 ≤ sv ≤ 32c′ holds, we have that for each level-2 vertex v,

1
32c′
≤ h(v) ≤ 32c′ holds, as required.

Consider now some vertex v ∈ V at level k, where k ≥ 2. Let v1, v2, . . . , vk be

the vertices on the path from r to v, where v1 = r, and vk = v, and assume we have

calculated g(v1), . . . , g(vk−1), such that for each j : 2 ≤ j ≤ k, 1
32c′
≤ h(vj) ≤ 32c′

holds. We set g(v) = 1 if h(vk) ≤ 1, and we set g(v) = −1 otherwise. Let u be a child

of v. Since h(u) = hv · sg(v)
u , and su ≤ 32c′, the inequality 1

32c′
≤ h(u) ≤ 32c′ holds.

It is easy to see that the running time of the above algorithm is linear, if the values

h(v) of the vertices calculated by the algorithm are stored in a table. The algorithm

traverses each vertex only once, and for each vertex v the calculation of h(v) and g(v)

takes only constant time.

Algorithm Description

The algorithm consists of two phases. The first phase is pre-processing, and the

second phase is computing the embedding itself.
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Phase 1: Preprocessing. In this phase we translate the input ultrametric M into

a 2-HST T , and calculate the values av, bv, sv, g(v) for each vertex v ∈ T . Each one

of these operations takes time linear in the input size.

Phase 2: Computing the embedding. The algorithm works in a bottom-up

fashion. For any vertex v in tree T , we produce an embedding of vertices Xv inside

a square of side av. We start from level-h vertices (the leaves). Let v be such vertex.

Then av =
√

C(v) =
√

π/4. We embed this point in the center of a square with a

side of length
√

π/4.

Consider some level-i vertex v, for 1 ≤ i < h, and let u1, . . . , uk be its children.

We assume that for each j : 1 ≤ j ≤ k, we have calculated the embeddings of uj into

a square Qj of side auj
. We convert this square into a rectangle Rj , as follows. First,

we add an empty strip of width
√

πl(v)
8

along the border of Qj , so that now we have a

new square Q′
j of side buj

. If g(v) = 1, then we expand the square along axis x and

contract it along axis y by the factor of suj
. Otherwise, we expand square Q′

j along

axis y and contract it along axis x by the factor of suj
. Notice that by the definition

of suj
, the length of the longer side of Rj is precisely av. As the volume of Rj equals

to the volume of Q′
j, and since a2

v =
∑k

j=1 b
2
uj

, we can pack all the rectangles next to

each other inside a square Q of side av, with their longer side parallel to the x-axis if

g(v) = 1, and to y-axis otherwise.

Analysis

The goal of this section is to bound the distortion produced by the algorithm. We

first bound the maximum contraction, and then the maximum expansion of distances.

Lemma 3.5.6 For any u, u′ ∈ X, the distance between the images of u and u′, is at

least Ω(1/c′)D(u, u′).

Proof: Let v be the least common ancestor of u, u′.

Let z, z′ be the children of v, to whose subtrees vertices u, u′ belong, respectively.

Let Q,Q′ be the squares into which Xz, and Xz′ are embedded, respectively, and let

R,R′ be the corresponding rectangles. Recall that we have added a strip of width
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at least
√

πl(v)
4

to squares Q,Q′, and then stretched the new squares by a factors

of s(z), s(z′), respectively. Without loss of generality, we can assume s(z) ≥ s(z′).

Therefore, immediately after computing the embedding for Xv, there is a strip S

of width at least l(v)
4s(z)

between the rectangles R,R′. The width of strip S in the

final embedding is a lower bound on the distance between the images of u and u′.

Let v1, . . . , vk be the vertices on the path from r to v, where v1 = r, vk = v. Let

uk+1 = z. If g(v) = 1, then strip S is horizontal, and thus for each j : 1 ≤ j ≤ k − 1,

if g(vj) = 1 then its width decreases by the factor of s(vj+1), and if g(vj) = −1

then its width increases by the same factor. Thus, the final width of S is at least:

l(v)

4s(z)g(v)

∏k−1
j=1 s(vj+1)

−g(vj) = l(v)
4

∏k
j=1 s(vj+1)

−g(vj ) ≥ l(v)
4h(z)

≥ l(v)
128c′

.

If g(v) = −1, then strip S is vertical, and thus for each j : 1 ≤ j ≤ k − 1,

whenever g(vj) = 1, the width of the strip grows by the factor of s(vj+1), and whenever

g(vj) = −1, this width decreases by the same factor. Thus, in this case, the final

width of S is at least: l(v)
4
s(z)g(v)

∏k−1
j=1 s(vj+1)

g(vj) = l(v)
4

∏k
j=1 s(vj+1)

g(vj) ≥ l(v)
128c′

.

As D(u, u′) = l(v), this concludes the proof of the lemma.

Lemma 3.5.7 For any u, u′ ∈ X, the distance between the images of u and u′, is at

most O(c′2)D(u, u′).

Proof: Let v be the least common ancestor of u, u′. Then D(u, u′) = l(v). Following

Corollary 3.5.3, c′ ≥
√

C(v)
π
/l(v)− 1, and thus av ≤ (c′ + 1)

√
πl(v) ≤ 4c′l(v).

When calculating the embedding of Xv, all the vertices in Xv were embedded

inside a square A whose side is av ≤ 4c′l(v) = O(c′D(u, u′)).

After computing the final embedding, A is mapped to a rectangle A′, which is

obtained from A by expanding by a factor of γ along one axis, and by expanding by

a factor of 1/γ along the other axis. If v1, . . . , vk are all the vertices along the path

from the root r = v1 to v = vk, then γ =
∏k−1

j=1 s(vj+1)
g(vj) = h(v). Thus, by Lemma

3.5.5, γ is at least Ω(1/c′), and at most O(c′). It follows that the diameter of A′

is at most O(c′2D(u, u′)). Since the images of u and u′ in the final embedding are

contained inside A′, the assertion follows.

The following result is now immediate:
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Theorem 3.5.8 Given an ultrametric M that c-embeds into the Euclidean plane,

we can compute in linear time an embedding of M into the Euclidean plane with

distortion O(c3).

3.5.5 Upper Bound on Absolute Distortion

In this section we show that for any d ≥ 2, any n-point ultrametric can be embedded

into ℓd2 with distortion O(d1/2n1/d).

Given an ultrametric M , we first compute an α-HST T that α-approximates M ,

for some constant α > 16. Let M ′ be the metric associated with T . Observe that

any embedding of M ′ into ℓd2 with distortion c, is also an embedding of M into ℓd2,

with distortion O(c). Thus, it suffices to show that M ′ can be embedded into ℓd2 with

distortion O(d1/2n1/d).

We will compute an embedding of M ′ into ℓd2 inductively, starting from the leaves

of T . For every subtree of T rooted at a vertex u, we compute an embedding fu of

the submetric of M ′ induced by Xu, into ℓd2. We maintain the following inductive

properties of fu:

• The contraction of fu is at most 16.

• f(Xu) is contained inside a hypercube of side length l(u)n
1/d
u .

We assume w.l.o.g. that for each leave v of T , l(v) = 1. Thus, we can embed

each leave in a center of a hypercube of side 1. The following lemma shows how to

compute the recursive embedding of inner vertices of T .

Lemma 3.5.9 Let v be an internal vertex of T , whose children are u1, . . . , uk. As-

sume that for each i ∈ [k], we are given an embedding fui
: Xui

→ Rd, with contrac-

tion at most 16, such that fui
(Xui

) is contained inside a d-dimensional hypercube Sui
,

with side length l(ui)n
1/d
ui . Then we can compute in polynomial time an embedding

fv : Xv → Rd, with contraction at most 16, such that fv(Xv) is contained inside a

d-dimensional hypercube Sv, with side length l(v)n
1/d
v .
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Proof:

For each i ∈ [k], let ri = l(ui)n
1/d
ui be the length of the side of the hypercube

Svi
. Let also S ′

ui
be a hypercube of side length r′i = ri + l(v)/16, having the same

center as Sui
. We assume w.l.o.g. that n1 ≥ n2 ≥ · · · ≥ nk and thus r′1 ≥ · · · ≥ r′k.

We note that for each i : 1 ≤ i ≤ k, r′i ≤ l(v)n
1/d
v /4, since r′i = ri + l(v)/16 =

l(ui)n
1/d
ui + l(v)/16 ≤ l(v)n

1/d
v /4.

We first define a partition R = {Rj}λj=1, of the set [k], which we will use to

partition the set of hypercubes {Sui
}ki=1, as follows. We will define λ + 1 integers

t0, t1, . . . , tλ, where t0 = 0, tλ = k, and t0 < t1 < · · · < tλ, and then set Rj to

contain all the indices i : tj−1 +1 ≤ i ≤ tj . This defines a partition of the hypercubes

into λ sets S1, . . . ,Sλ, where Sj contains the hypercubes Sui
with i ∈ Rj . For each

j : 1 ≤ j ≤ λ, let ρj = r′tj−1+1 denote the side of the largest hypercube in Sj , and let

ρ′j = rtj denote the side of the smallest hypercube in Sj .

We now proceed to define the numbers tj , for j : 0 ≤ j ≤ λ. Set t0 = 0, and for

each j ≥ 1, if tj−1 < k, we inductively define tj as

tj = min{k, tj−1 + ⌊l(v)n1/d
v /r′tj−1+1⌋d−1}.

If tj = k then we set λ = j.

Note that for any j ∈ [λ− 1],

|Rj| =
⌊

l(v)n
1/d
v

ρj

⌋d−1

We now define the embedding fv by placing the hypercubes S ′
ui

inside a hypercube

of side length l(v)n
1/d
v , such that their interiors do not overlap, using the partition

R. For each j ∈ [λ], we place the hypercubes in Sj inside a parallelepiped Wj having

d − 1 sides of length l(v)n
1/d
v , and one side of length ρj , as follows. It is easy to

see that we can pack |Rj| d-dimensional hypercubes of side ρj inside Wj . Since each

hypercube in Sj has side at most ρj , we can replace each hypercube embedded into

Wj by a hypercube from Sj , such that the centers of both hypercubes coincide.

129



Finally, we place the parallelepipeds Wj inside a parallelepiped W having d −
1 sides of length l(v)n

1/d
v , and one side of length

∑λ
j=1 ρj . Observe first that the

contraction of this embedding is at most 16: for any pair of vertices x, y ∈ X(v), if

x, y both belong to a subtree of the same child ui of v, then by induction hypothesis

the distance between them is contracted by at most 16. If x ∈ X(ui), y ∈ X(ui′) and

i 6= i′, then the original distance is D(x, y) = l(v). Since we add emty space of width

l(v)/32 around the hypercubes S(uq) when they are transformed into hypercubes

S ′(uq), it is clear that the distance between the embeddings of x and y is at least

l(v)/16.

It now only remains to show that
∑λ

j=1 ρj ≤ l(v)n
1/d
v . We partition the par-

allelepipeds Wj into two types. The first type contains all the parallelepipeds Wj ,

where ρj/ρ
′
j ≥ 2. Additionally, the last parallelepiped Wk is also of the first type,

regardless of the ratio ρk/ρ
′
k. Let M1 ⊆ [k] contain all the indices j where Wj is

of the first type. All the other parallelepipeds belong to the second type, and let

M2 = [k] \M1 contain the indices of the parallelepipeds of the second type. Notice

that for j ∈M1, the values ρj form a geometric series with ratio 1/2. Since the sides

r′i of the hypercubes Sui
are bounded by l(v)n

1/d
v /4, it is easy to see that:

∑

j∈M1

ρj ≤
l(v)n

1/d
v

4

(

1 +
1

2
+

1

4
+ · · ·

)

≤ l(v)n
1/d
v

2

It now remains to bound
∑

j∈M2
ρj . Fix some j ∈M2, and consider some hyper-

cube S ′
ui

where i ∈ Rj . As Wj is of the second type, we know that r′i ≥ ρj/2. On the

other hand,

r′i = ri +
l(v)

16
= l(ui)n

1/d
ui

+
l(v)

16

≤ l(v)

16

(

1 + n1/d
ui

)

≤ l(v)

4
n1/d

ui

Therefore, nui
≥
(

2ρj

l(v)

)d

. Recall that for j : 1 ≤ j < λ, |Rj| =
⌊

l(v)n
1/d
v

ρj

⌋d−1

≥
(

l(v)n
1/d
v

2ρj

)d−1

. Therefore, we have that
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∑

i∈Rj

nui
≥
(

l(v)n
1/d
v

2ρj

)d−1

·
(

2ρj

l(v)

)d

≥ 2ρj

l(v)
n1−1/d

v

Thus, ρj ≤
l(v)

P

i∈Rj
nui

2n
1−1/d
v

, and

∑

j∈M2

ρj ≤
l(v)nv

2n
1−1/d
v

≤ l(v)n
1/d
v

2

We have that in total,
∑

j ρj =
∑

j∈M1
ρj +

∑

j∈M2
ρj ≤ l(v)n

1/d
v .

We are now ready to prove the main theorem of this section.

Theorem 3.5.10 For any d ≥ 2, any n-point ultrametric can be embedded into ℓd2

with distortion O(d1/2n1/d). Moreover, the embedding can be computed in polynomial

time.

Proof: Starting from the leaves of T , we inductively compute for each v ∈ V (T ) the

embedding fv as described above. By recursively applying Lemma 3.5.9 we can com-

pute in polynomial time the embedding fv, that also satisfies the inductive properties.

Let f be the resulting embedding fr.

Consider now two points x, y ∈ X, and let v be the nearest common ancestor of x

and y. Since fv(Xv) is contained inside a hypercube of side length l(v)n
1/d
v , it follows

that ‖f(x)− f(y)‖2 ≤
(

dn
2/d
v l2(v)

)1/2

= d1/2n1/dD(x, y). Since the contraction of fv

is at most 16, it follows that the distortion of f is O(d1/2n1/d).

Observe that for d = 2, the algorithm provides an O(
√
n)-distortion embedding.

Combining this with the O(c3)-distortion algorithm from Section 3.5.4, we obtain the

following result:

Theorem 3.5.11 There is an efficient O(n1/3)-approximation algorithm for mini-

mum distortion embedding of ultrametrics into the plane.

Proof: Let c be the optimal distortion achievable by any embedding of the input

ultrametric into the plane. If c > n1/6 then the above algorithm, which produces an

O(
√
n)-distortion embedding is an O(n1/3)-approximation. Otherwise, if c ≤ n1/6,
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then the algorithm from Section 3.5.4 gives O(c2) = O(n1/3)-approximation.

We remark that Theorem 3.5.10 generalizes a result of Gupta [Gup00a], who shows

that every n-point weighted star metric can be embedded into Rd, with distortion

O(n1/d). This is a corollary of the following simple observation.

Claim 3.5.12 Every n-point weighted star can be embedded into an ultrametric of

size O(n) with distortion at most 2.

Proof: Consider a star S with root r, and leaves x1, . . . , xn, where for each i ∈ [n],

DS(r, xi) = wi. Assume w.l.o.g. that w1 ≤ w2 ≤ . . . ≤ wn. We construct a tree

T with root r′ as follows. T contains a path zn, zn−1, . . . , z1, where zn = r′, and for

each i ∈ [n − 1], DT (r′, zi) = wn − wi. We now embed S into T as follows. For

each i ∈ [n], we add xi to T , and we connect xi to zi with an edge of length wi.

Observe that the shortest-path metric on the leaves of T is an ultrametric, since all

the leaves are on the same level. Moreover, for any i < j ∈ [n], DT (xi, xj) = 2wj,

while DS(xi, xj) = wi + wj, and so the resulting embedding is non-contracting, and

has expansion at most 2.

3.5.6 NP-hardness of Embedding Ultrametrics Into the Plane

In this section we consider embeddings into the plane under the ℓ∞ norm. We say

that a square S ⊂ R2 is orthogonal if the sides of S are parallel to the axes.

We will show that the problem of computing a minimum distortion embedding of

an ultrametric into the plane under the ℓ∞ norm is NP-hard. We perform a reduction

from the following NP-complete problem (see [LTW+90]): Given a packing square S

and a set of packed squares L = {s1, . . . , sn}, is there an orthogonal packing of L into

S? We call this problem SquarePacking.

For a square s, let a(s) denote the length of its side. Assume w.l.o.g. for

each i ∈ [n], a(si) ∈ N, a(S) ∈ N, and that a(s1) ≤ a(s2) ≤ . . . ≤ a(sn). The

SquarePacking problem is strongly NP-complete. Thus we can assume w.l.o.g.

that there exists N = poly(n), such that 1 ≤ a(s1) ≤ . . . ≤ a(sn) ≤ a(S) < N .
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r

x1

. . .
y1,1 y1,2 y1,k2

x2

. . .
y2,1 y2,2 y2,k2

. . . xn

. . .
yn,1 yn,2 yn,k2

Figure 3-6: The constructed tree T . The labels of the vertices are: l(r) = a(S) and
l(xi) = a(si)− a(S)/(k − 1).

The Construction

Consider an instance of the SquarePacking problem, where S is the packing square,

and L = {s1, . . . sn} is the set of packed squares. We will define an ultrametric

M = (X,D) and an integer k, such that M embeds into the plane with distortion

at most k − 1 iff there exists an orthogonal packing of L into S. It is convenient to

define M by constructing its associated labeled tree T , where each v ∈ V (T ) has a

label l(v) ∈ Q.

Let k = N10. For each square si ∈ L, we introduce a set of k2 leaves yi,1, . . . yi,k2 in

T . We connect all of these leaves to a vertex xi, and we set l(xi) = a(si)−a(S)/(k−1).

Note that l(xi) is very close to a(si). Next, we introduce a root vertex r ∈ V (T ), and

for each i ∈ [n], we connect xi to r. We set l(r) = a(S).

For a vertex v ∈ V (T ), we denote by Xv the set of leaves of T having v as an

ancestor. Figure 3-6 depicts the described construction.

YES-Instance

Assume that there exists an orthogonal packing of L into S. We will show that there

exists an embedding f : X → R2 with distortion k − 1.

As a first step, for each vertex xi : 1 ≤ i ≤ n, we embed all the vertices of Xxi
in a

square Qi of side (k− 1)l(xi). This is done by simply placing a k× k orthogonal grid

with step l(xi) inside Qi and embedding the vertices of Xxi
on the grid points. Next,

we transform the squares Qi into squares Q′
i by adding empty strips of width a(S)/2

around Qi. Notice that the side of Q′
i is exactly (k − 1)l(xi) + a(S) = (k − 1)a(si).

Finally, we embed the squares Q′
i into a square S of side (k−1)a(S) according to the
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S

s1

s2

s3

s4

→

f(Xx1)

f(Xx2)
f(Xx3)

f(Xx4)

Figure 3-7: The embedding constructed for the YES instance.

packing of the input squares in S. Figure 3-7 depicts the resulting embedding f .

We now show that the distortion of the embedding f is at most k − 1.

Let u, v ∈ X. We have to consider the following cases for u, v:

Case 1: u, v ∈ Xxi
for some i ∈ [n]. Since the vertices of Xxi

are embedded on a

grid of step l(xi), it follows that ‖f(u)− f(v)‖∞ ≥ l(xi) = D(u, v). Thus, the

contraction is at most 1. Moreover, since all the vertices of Xxi
are embedded

inside a square Qi of side l(xi)(k − 1), the expansion is at most k − 1.

Case 2: u ∈ Xxi
and v ∈ Xxj

, for some i 6= j. Since we add empty strips of width

a(S)/2 around the squares Qi, Qj, we have that ‖f(u) − f(v)‖∞ ≥ a(S) =

l(r) = D(u, v). Thus, the contraction is 1. On the other hand, all the vertices

are embedded inside a square S of side l(r)(k− 1) = a(S)(k− 1), and therefore

the expansion is at most k − 1.

Thus, we have shown that the distortion is at most k − 1.

NO-Instance

Assume that there is no orthogonal packing of L inside S. We show that the minimum

distortion required to embed M into the plane is greater than k − 1. Assume that

there exists an embedding f : X → R2, with distortion at most k − 1. W.l.o.g. we

can assume that f is non-contracting.

The following lemma will be useful in the analysis.
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Lemma 3.5.13 Let M = (X,D) be a uniform metric on k2 points, for some integer

k > 0. Then, the minimum distortion for embedding M into the plane is k − 1.

Moreover, an embedding f has distortion k − 1 iff f(X) is an orthogonal grid.

Proof: By scaling M , we can assume w.l.o.g. that for any u, v ∈ X, D(u, v) = 1.

Consider an non-contracting embedding f : X → R2. For any v ∈ X, let Av be

square of side length 1, centered at f(v). Clearly, for any u, v ∈ X, with u 6= v,

the interiors of squares Au and Av are disjoint. Let A =
⋃

v∈X Av. It follows that

Vol(A) = |X|. Thus, there exist p1, p2 ∈ A, such that ‖p1 − p2‖∞ ≥ |X|1/2 = k.

Let v1, v2 ∈ X be the centers of the squares Av1 , Av2 to which p1 and p2 belong,

respectively. Then ‖f(v1) − p1‖∞ ≤ 1/2, and ‖f(v2) − p2‖∞ ≤ 1/2. It follows that

‖f(v1)− f(v2)‖∞ ≥ k − 1. Thus the distortion is at least k − 1.

Clearly, if f maps X onto a k × k orthogonal grid, the distortion of f is k − 1. It

remains to show that this is the only possible optimal embedding.

Assume that an embedding f has distortion k − 1, and let f be non-contracting.

Observe that since the diameter of f(X) is at most k − 1, f(X) must be contained

inside a square K of side length k − 1. Let {Av}v∈X be defined as above. It follows

that A is contained inside a square K ′ of side length k. Since Vol(A) = Vol(K ′), it

easily follows that f(X) is an orthogonal k × k grid.

Corollary 3.5.14 For each i ∈ [n], f(Xxi
) is an orthogonal k× k grid of side length

(k − 1)l(xi) = (k − 1)a(si)− a(S).

For each i ∈ [n], let Q′
i be the square of side length (k−1)a(si), that has the same

center of mass as f(Xxi
).

Claim 3.5.15 For each i, j ∈ [n], i 6= j, the interiors of the squares Q′
i, Q

′
j are

disjoint.

Proof: Assume that the assertion is not true. That is, there exist i, j ∈ [n], with

i 6= j, and p ∈ R2, such that p belongs to the interiors of both squares Q′
i, Q

′
j . By

the definition of Q′
i and Q′

j , there are points v1 ∈ Xxi
, v2 ∈ Xxj

which are embedded
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within distance smaller than a(S)/2 from p. But then ‖f(v1) − f(v2)‖∞ < a(S),

contradicting the fact that the embedding is non-contracting.

Claim 3.5.16
⋃n

i=1Q
′
i is contained inside a square of side length ka(S).

Proof: Since f has expansion at most k − 1, f(X) is contained inside an orthogonal

square S of side length (k − 1)l(r) = (k − 1)a(S). Observe that for each i ∈ [n], for

each point p ∈ Qi, there exists v ∈ Xxi
, such that ‖p − f(v)‖∞ ≤ a(S)/2. Let S ′

be the square of side length ka(S) that has the same center as S. It follows that S ′

contains
⋃n

i=1Q
′
i.

Lemma 3.5.17 If M can be embedded into the plane with distortion at most k − 1,

then there exists an orthogonal packing of L inside S.

Proof: If there exists an embedding f : X → R2 with distortion k−1, by Claim 3.5.16

we obtain that
⋃n

i=1Qi is contained inside a square of side length ka(S). Moreover,

by Claim 3.5.15, the embeddings of squares Q′
i defines a feasible packing of these

squares into the square S ′. Note that for each i : 1 ≤ i ≤ n, Qi has side length

(k − 1)a(si). That is, the squares Q1, . . . , Qn are just scaled copies of the squares

s1, . . . , sn. Thus, we obtain that there exists an orthogonal packing of L inside a

square S ′ of side length a(S) k
k−1

. Recall that k = N10 > a(S)10. Thus, S ′ has side

length less than a(S) + 1/2.

Since a(S) and a(si) for each i ∈ [n] are integers, it follows that there is also an

orthogonal packing of L into a square of side length a(S).

The following theorem is now immediate.

Theorem 3.5.18 The problem of minimum-distortion embedding of ultrametrics into

the plane under the ℓ∞ norm is NP-hard.

136



3.5.7 Approximation Algorithm for Embedding Ultrametrics

Into Higher Dimensions

In this section we extend the techniques used in Section 3.5.4, to obtain an approxi-

mation algorithm for embedding ultrametrics into ℓd2.

Given an ultrametric M = (X,D) that embeds into ℓd2 with distortion c, we first

embed M into a 2-HST M ′ = (X,D′). Let T be the labeled tree associated with

M ′, as in Section 3.5.4. Then M ′ embeds into ℓd2 with distortion c′ = O(c). We

now focus on finding an embedding of M ′ into the ℓd2 with distortion at most c′O(d).

The same embedding is an cO(d)-distortion embedding of M into ℓd2. We compute

an embedding of M ′ into ℓd2 by recursively embedding the subtrees of vertices in a

bottom-up fashion.

For any vertex u in the tree, let au = (C(u))1/d. If u is a non-root vertex, let v

be the father of u in T . We set bu = au + (Vd(l(v)/4))1/d, and su = av/bu. If u is the

root of the tree, we set su = 1.

Given a vertex v in the tree, we embed the vertices in Xv into a hypercube of side

av, recursively. Let u1, . . . , uk be the children of v, and assume that for each i ∈ [k],

we are given an embedding of Xui
into a d-dimensional hypercube Qui

of side length

aui
. We define an additional hypercube Q′

ui
of side length bui

that has the same center

as Qui
(i.e., Q′

ui
is obtained from Qui

by adding a “shell” of width (Vd(l(v)/4))1/d/2

around Qui
). Let Qv be a d-dimensional hypercube of side length av.

Note that the volume of Qv equals the sum of volumes of Q′
ui

, for 1 ≤ i ≤ k. This

is since the volume of Qv is ad
v = C(v), while the sum of volumes of Q′

ui
, 1 ≤ i ≤ k is

k
∑

i=1

bdui
=

k
∑

i=1

(

(C(ui))
1/d + (Vd(l(v)/4))1/d

)d

= C(v).

Fix one coordinate j ∈ [d]. We now show how to embed the hypercubes Q′
u1
, . . . , Q′

uk

into Qv. Consider some hypercube Q′
ui

: 1 ≤ i ≤ k. For each dimension j′ 6= j, we

increase the length of the corresponding side of Q′
ui

by the factor of sui
. Addition-

ally, we decrease the length of the side of Q′
ui

corresponding to the dimension j by
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the factor of sd−1
ui

. Let Ri denote the resulting parallelepiped. Notice that for each

dimension j′ 6= j, the length of the corresponding side of parallelepiped Ri is exactly

av. Moreover, the volume of Ri equals the volume of Q′
ui

. Therefore, we can easily

pack the parallelepipeds Ri, 1 ≤ i ≤ k, inside the hypercube Qv, where the shortest

side of Ri is placed along dimension j.

As in the algorithm for embedding ultrametrics into the plane, we need to ensure

that these stretchings do not accumulate as we go up the tree. To ensure this, we

calculate, for each vertex v a value g(v) ∈ [d]. When calculating the embedding

of the hypercubes Q′
u1
, . . . , Q′

uk
into the hypercube Qv, we contract the hypercubes

Q′
u1
, . . . , Q′

uk
along the dimension g(v) and expand them along all the other dimen-

sions.

Our next goal is to prove an analogue of Lemma 3.5.5, that shows how to calculate

the values g(v) so that the total distortion is not accumulated.

We start with the following claim:

Claim 3.5.19 For each vertex u of the tree, 1 ≤ su ≤ 8c′.

Proof: If u is the root of the tree, then su = 1 and the claim is trivially true.

Assume now that u is not the root, and let v be its father. We denote the children of

v by u1, . . . , uk, and we assume that u = ui for some i ∈ [k].

Recall that su = av/bu, and that we have already observed that ad
v =

∑k
j=1 b

d
uj

,

and thus su ≥ 1 clearly holds.

We now prove the second inequality. For the sake of convenience, we denote

V = (Vd(l(v)/4))1/d. Recall that bu = au + V ≥ V .

On the other hand, from Corollary 3.5.3,

c′ ≥ ρd(C(v))/l(v)− 1

Therefore, we have that

ρd(C(v)) =

(

C(v)Γ(1 + d/2)

πd/2

)1/d

≤ 2c′l(v)
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and thus

av = C(v)1/d ≤ 2c′l(v)

(

πd/2

Γ(1 + d/2)

)1/d

= 8c′V

Therefore, su = av/bu ≤ 8c′V/V ≤ 8c′.

For each vertex u of the tree, for each dimension j ∈ [d], we recursively define

a value hj(u), as follows. If u is the root, then hj(u) = 1 for all j ∈ [d]. Consider

now some vertex u which is not the root, and let v be its father. Then we define

hj(u) = hj(v) · sαj(v)
u , where αj(v) is defined to be 1 if j 6= g(v), and it is defined to

be −(d− 1) if i = g(v). Notice that
∏

j∈[d] hj(u) = 1.

Fix any vertex u ∈ V (T ) and any dimension j ∈ [d]. Let Qu be the hypercube

of side au into which the vertices of Xu have been embedded when u was processed

by the algorithm. Then the value hj(u) is precisely the stretch along the dimension

j of Qu in the final embedding. In other words, if we take a pair of points x, y ∈ Qu

such that xj = yj − 1, and for all the other coordinates j′, xj′ = yj′, then hj(u) is

precisely the distance between x and y in the final embedding. We next prove that

we can calculate the values g(v) in a way that ensures that that for each vertex u and

for each dimension j ∈ [d], hj(u) lies between (O(1/c′))d and (O(c′))d.

Lemma 3.5.20 We can compute in polynomial time values g(u) for all u ∈ V (T ),

such that for each u ∈ V (T ), for each dimension j ∈ [d], (O(1/c′))d ≤ hj(u) ≤
(O(c′))d.

Proof: If u is the root, then we arbitrarily set g(u) = 1.

Consider now some non-root vertex u, and let v be its parent. Let j ∈ [d] be the

dimension for which hj(v) is maximized. Then we set g(u) = j.

Claim 3.5.21 For every vertex u, maxi{hi(u)}
mini{hi(u)} ≤ (8c′)d.

Proof: The claim is trivially true for the root r since maxi{hi(r)}
mini{hi(r)} = 1. For any non-

root vertex u, assume that the claim is true for its parent v. Assume w.l.o.g. that

h1(v) ≥ h2(v) ≥ · · · ≥ hd(v), and g(u) = 1. Then h1(u) = h1(v)/s
d−1
u , and for each

i > 1, hi(u) = hi(v) · su. There are three cases to consider. If h1(u) equals the
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maximum value among {hi(u)}di=1, then clearly maxi{hi(u)}
mini{hi(u)} ≤

maxi{hi(v)}
mini{hi(v)} ≤ (8c′)d by

the induction hypothesis. If h1(u) equals the minimum value among {hi(u)}di=1, then

maxi{hi(u)}
mini{hi(u)} = h2(u)

h1(u)
= sd

uh2(v)
h1(v)

≤ sd
u. Finally, if neither of the above two cases happens,

then maxi{hi(u)}
mini{hi(u)} = h2(u)

hd(u)
= h2(v)su

hd(v)su
≤ (8c′)d by the induction hypothesis.

Since
∏d

i=1 hi(u) = 1, we get that (O(c′))−d ≤ hi(u) ≤ (O(c′))d.

It is easy to see that the algorithm for computing the values g(u), runs in poly-

nomial time.

Let f : X → ℜd denote the resulting embedding produced by the algorithm. The

next two lemmas bound the maximum contraction and the maximum expansion of

the distances in this embedding.

Lemma 3.5.22 For any pair u, u′ ∈ X of points, ‖f(u)−f(u′)‖∞ ≥ (O(c′))−dD′(u, u′).

Proof: Fix any pair u, u′ ∈ X of vertices, and let v be their least common ancestor

in the tree T . Thus, D′(u, u′) = l(v). Let z, z′ be the children of v such that u ∈ Xz

and u′ ∈ Xz′. Assume w.l.o.g. that sz > sz′. Recall that Q′
z, Q

′
z′ contain empty

shell of width (Vd(l(v)/4))1/d/2 in which no vertices are embedded. When Q′
z, Q

′
z′ are

embedded inside Qv, they are contracted by the factors sz, sz′ respectively along the

ith dimension, where i = g(v). Thus, in the embedding of Xv inside Qv, the distance

between the images of u and u′ along the ith dimension is at least:

Vd(l(v)/4)

sd−1
u

=

√
πl(v)

4(Γ(1 + d/2))1/dsd−1
u

≥ l(v)

2O(log d)sd−1
u

In the final embedding this distance is multiplied by the factor hi(v). Thus, the

final distance is at least

l(v)

2O(log d)sd−1
u

hi(v) =
l(v)

2O(log d)
hi(u) ≥

l(v)

(O(c′))d

Lemma 3.5.23 For any pair u, u′ ∈ X of points, ‖f(u)−f(u′)‖∞ ≤ (O(c′))d+1D′(u, u′).
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Proof: Fix any pair u, u′ ∈ X of vertices, and let v be their least common ancestor

in the tree T , so that D′(u, u′) = l(v).

Recall that Qv is a hypercube of side av, and thus when the embedding of Xv has

been computed, the distance between the images of u and u′ was at most av. In the

final embedding this distance increased by the factor of at most maxi∈[d] {hi(v)} ≤
(O(c′))d, and thus the final distance is at most av (O(c′))d. From Corollary 3.5.3,

using the same reasoning as in the proof of Claim 3.5.19, we have that

av ≤ 2c′l(v)

√
π

(Γ(1 + d/2))1/d
≤ O(c′)l(v)

Thus, ‖f(u)− f(u′)‖∞ ≤ (O(c′))d+1 l(v).

Combining the results of Lemma 3.5.22 and Lemma 3.5.23, we obtain the following

theorem.

Theorem 3.5.24 For any d > 2, there is a polynomial time algorithm that embeds

any input ultrametric M into ℓd2 with distortion cO(d), where c is the optimal distortion

of embedding M into ℓd2.

3.5.8 Conclusions and Open Problems

In this section we investigated the problem of embedding ultrametrics into low-

dimensional spaces ℜd. In particular, for d = 2, we provided two results. The first

one was relative: a linear-time algorithm which, given any ultrametric c-embeddable

into the plane, produces an embedding with distortion O(c3). The second result was

absolute: any n-point ultrametric can be embedded into the plane with distortion
√
n.

The key question left open by this work is: is it possible to generalize our results

to a larger class of (weighted) metrics? In particular, it would be very interesting to

design an algorithm for relative embeddings of (weighted) tree metrics. Such metrics

are encountered in many applied areas, such as computational biology. Similarly, it

would be interesting to obtain an o(n)-distortion embedding of weighted tree metrics
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into the plane (this problem has been posed already in [BMMV02]).

Finally, it remains to determine what is the best possible distortion of relative

embeddings of ultrametrics into the plane that can be computed in polynomial time.

Our results show that the answer is greater than c but smaller than O(c3), leaving a

wide range of possibilities.

3.6 Approximation Algorithms for Embedding Gen-

eral Metrics Into Trees

Credits: The results in this section is work done with Piotr Indyk, and Anastasios

Sidiropoulos, and it hasn’t been published yet.

In this section, we consider the problem of embedding general metrics into trees.

We give the first non-trivial approximation algorithm for minimizing the multiplica-

tive distortion. Our algorithm produces an embedding with distortion (c logn)O(
√

log ∆),

where c is the optimal distortion, and ∆ is the spread of the metric (i.e. the ratio of

the diameter over the minimum distance). We give an improved O(1)-approximation

algorithm for the case where the input is the shortest path metric over an unweighted

graph.

We also provide almost tight bounds for the relation between embedding into trees

and embedding into spanning subtrees. We show that for any unweighted graph G,

the ratio of the distortion required to embed G into a spanning subtree, over the

distortion of an optimal tree embedding of G, is at most O(logn). We complement

this bound by exhibiting a family of graphs for which the ratio is Ω(log n/ log log n).

3.6.1 Introduction

In this section we consider the problem of approximating minimum distortion for

embedding general metrics into tree metrics, i.e., shortest path metric over (weighted)

trees. This is a natural problem with connections and applications to many areas. The
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classic application is the recovery of evolutionary trees from evolutionary distances

between the data (e.g., see [Sci05], or [DEKM98], section 7.3). Another motivation

comes from computational geometry. Specifically, Eppstein ([Epp00], Open Problem

4) posed a question about algorithmic complexity of finding the minimum-dilation

spanning tree of a given set of points in the plane. This problem is equivalent (up

to a constant factor in the approximation factor) to a special case of our problem,

where the input metric is induced by points in the plane. Moreover, a closely related

problem has been studied in the context of graph spanners [PU87, PR98]. Namely,

the problem of computing a minimum-stretch spanning tree of a graph can be phrased

as the problem of computing the minimum distortion embedding of a graph into a

spanning subtree.

Our results

Our main results are the first non-trivial approximation algorithms for embedding

into tree metrics, for minimizing the multiplicative distortion. Specifically, if the

input metric is an unweighted graph, we give a O(1)-approximation algorithm for

this problem. For general metrics, we give an algorithm such that if the input met-

ric is c-embeddable into some tree metric, produces an embedding with distortion

α(c logn)O(logα ∆), for any α ≥ 1. In particular, by setting α = 2
√

log ∆, we obtain

distortion (c logn)O(
√

log ∆). Alternatively, when ∆ = nO(1), by setting α = nǫ, we

obtain distortion nǫ(c logn)O(1/ǫ). This in turn yields an O(n1−β)-approximation for

some β > 0, since it is always possible to construct an embedding with distortion

O(n) in polynomial time [Mat90].

Further, we show that by composing our approximation algorithm for embed-

ding general metrics into trees, with the approximation algorithm of [BCIS05] for

embedding trees into the line, we obtain an improved5 approximation algorithm for

embedding general metrics into the line. The best known distortion guarantee for

this problem [BCIS05] was cO(1)∆3/4, while the composition results in distortion

5Strictly speaking, the guarantees are incomparable, but the dependence on ∆ in our algorithm
is a great improvement over the earlier bound.
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(c logn)O(
√

log ∆). In fact, we provide a general framework for composing relative

embeddings which could be useful elsewhere.

For the special case where the input is an unweighted graph metric, we also study

the relation between embedding into trees, and embedding into spanning subtrees.

An O(logn)-approximation algorithm is known [EP04] for this problem. We show

that if an unweighted graph metric embeds into a tree with distortion c, then it also

embeds into a spanning subtree with distortion O(c logn). We also exhibit an infinite

family of graphs that almost achieves this bound; each graph in the family embeds

into a tree with distortion O(logn), while any embedding into a spanning subtree

has distortion Ω(log2 n/ log log n). We remark that by composing the upper bound

with our O(1)-approximation algorithm for unweighted graphs, we recover the result

of [EP04].

Related Work

The study of the problem of approximating metrics by tree metrics has been initiated

in [FCK96, ABFC+96], where the authors give an O(1)-approximation algorithm for

embedding metrics into tree metrics. They also provide exact algorithms for embed-

dings into simpler metrics, called ultrametrics. However, instead of the multiplicative

distortion (defined as above), their algorithms optimize the additive distortion; that

is, the quantity maxp,q |D(p, q)−D′(p, q)|. The same problem has recently been stud-

ied also for the case of minimizing the Lp norm of the differences [HKM05, AC05]. In

a recent paper [AC05], a (log n log log n)1/p-approximation has been obtained for this

problem.

Minimizing the multiplicative distortion seems to be a harder problem in general.

For example, embedding into the line is hard to nΩ(1)-approximate for multiplicative

distortion, and there is no known poly(c)-approximation algorithm, while for additive

distortion there exists a simple 3-approximation.

The problem of embedding into a tree with minimum multiplicative distortion

is closely related to the problem of computing a minimum-stretch spanning tree.

The two problems are identical for the case of complete graphs. We mention the
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work of [PU87, CC95, VRM+97, PR98, PT01, FK01, EP04]. For unweighted graphs,

the best known approximation is an O(logn)-approximation algorithm [EP04]. Our

algorithm for unweighted graphs can be combined with our algorithm for converting

an embedding into a tree into an embedding into a spanning subtree, to give the same

approximation guarantee (within constant factors).

The problem of approximating the multiplicative distortion of embeddings into

ultrametrics has been studied as well; there is a polynomial-time algorithm for solving

this problem exactly [ABD+05]. Ultrametrics are useful for modeling evolutionary

data, but they are not as expressive as general tree metrics. In particular, they form

a proper subset of tree metrics. See [DEKM98] for a more detailed discussion.

Our techniques

In this section we give a brief overview of the main ideas behind our algorithms. For

more in-depth descriptions, see the introductions to the individual sections.

We start from the unweighted graphs. The basic observation behind our algo-

rithms is that if a metric M can be embedded into the a with “low” distortion, then

M should “look” like a tree. That is, there exists a decomposition of M into clusters,

which can be “connected” together in a manner resembling some tree (say, T ). In

this case, the embedding can be constructed by embedding each cluster separately,

and combining the embeddings using T as an outline.

We mention that a similar general idea has been used in the aforementioned algo-

rithm of [EP04], for O(logn)-approximating the distortion of embedding unweighted

graph metrics into subtrees. However, our algorithm for computing the decomposition

is substantially different from theirs. In particular, [EP04] use a divide-and-conquer

method for constructing the decomposition, using the existence of balanced separa-

tors for the input metric. In contrast, we employ a BFS-like approach. It appears

that our method leads to a significantly simpler algorithm, even after combining the

algorithm for embedding into trees with the “tree-to-subtree” conversion.

To extend the above approach to the weighted metrics, we need to apply the

algorithm recursively within each cluster in the decomposition. This is because,
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unlike in the unweighted case, here the diameter of each cluster can be pretty large.

To ensure that multiple recursive steps do not amplify the distortion, we need a

stronger tree-like decomposition, in which any two clusters are relatively “far apart”.

We call it a tree-like well-separated decomposition.

The techniques of Emek and Peleg, start with a somewhat similar clustering to

our algorithm for unweighted graphs. Their clustering requires to be balanced (ie,

split the graph in parts at most half the original size), while our does not. The

way we construct the tree for the base level and for the recursion level is radically

different, mainly because we are not outputting a subtree for the O(1)-approximation

algorithm for the unweighted case. Also, in the end, our recreating of their O(logn)-

approximation algorithm for spanning subtree for unweighted graphs is much simpler

and shorter.

Notation and Definitions

Graphs For a graph G = (V,G), and U ⊆ V (G), let G[U ] denote the subgraph

of G induced by U . For u, v ∈ V (G) let DG(u, v) denote the shortest-path distance

between u and v in G. We assume that all the edges of G have weight at least 1. If G

is weighted let WG denote the maximum edge weight of G, and let WG = 1 otherwise.

Metrics For any finite metric space M = (X,D), we assume that the minimum

distance in M is at least 1. M is called a tree metric iff it is the shortest-path

metric of a subset of the vertices of a weighted tree. For a graph G = (V,E), and

γ ≥ 1 we say that G γ-approximates M if V (G) ⊆ X, and for each u, v ∈ V (G),

D(u, v) ≤ DG(u, v) ≤ γD(u, v). We say that M c-embeds into a tree if there exists

an embedding of M into a tree with distortion at most c. When considering an

embedding into a tree, we assume unless stated otherwise that the tree might contain

steiner nodes. By a result of Gupta [Gup01], after computing the embedding we can

remove the steiner nodes losing at most a O(1) factor in the distortion (and thus also

in the approximation factor).
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α-Restricted Subgraphs For a weighted graph G = (V,E), and for α > 0, the

α-restricted subgraph of G is defined as the graph obtained from G after removing

all the edges of weight greater than α. Similarly, for a metric M = (X,D), the α-

restricted subgraph of M is defined as the weighted graph on vertex set X, where an

edge {u, v} appears in G iff D(u, v) ≤ α, and the weight of every edge {u, v} is equal

to D(u, v).

3.6.2 A Forbidden-Structure Characterization of Tree-Embeddability

Before we describe our algorithms, we give a combinatorial characterization of graphs

that embed into trees with small distortion. For any c > 1, the characterization

defines a forbidden structure that cannot appear in a graph that embeds into a tree

with distortion at most c. This structure will be later used when analyzing our

algorithms to show that the computed embedding is close to optimal.

Lemma 3.6.1 Let G = (V,E) be a (possibly weighted) graph. If there exist nodes

v0, v1, v2, v3 ∈ V (G), and λ > 0, such that

• for each i, with 0 ≤ i < 4, there exists a path pi, with endpoints vi, and

vi+1 mod 4, and

• for each i, with 0 ≤ i < 4, DG(pi, pi+2 mod 4) > λWG,

then, any embedding of G into a tree has distortion greater than λ.

Proof: Let W = WG. Consider an optimal non-contracting embedding f of G, into a

tree T . For any u, v ∈ V (G), let Pu,v denote the path from f(u) to f(v), in T . For

each i, with 0 ≤ i < 4, define Ti as the minimum subtree of T , which contains all the

images of the nodes of pi. Since each Ti is minimum, it follows that all the leaves of

Ti are nodes of f(pi).

Claim 3.6.2 For each i, with 0 ≤ i < 4, we have Ti =
⋃

{u,v}∈E(pi)
Pu,v.

Proof: Assume that the assertion is not true. That is, there exists x ∈ V (Ti), such

that for any {u, v} ∈ E(pi), the path Pu,v does not visit x. Clearly, x /∈ V (pi), and
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thus x is not a leaf. Let T 1
i , T

2
i , . . . , T

j
i , be the connected components obtained by

removing x from Ti. Since for every {u, v} ∈ E(pi), Pu,v does not visit x, it follows

that there is no edge {u, v} ∈ E(pi), with u ∈ T a
i , v ∈ T b

i , and a 6= b. This however,

implies that pi is not connected, a contradiction.

Claim 3.6.3 For each i, with 0 ≤ i < 4, we have Ti ∩ Ti+2 mod 4 = ∅.

Proof: Assume that the assertion does not hold. That is, there exists i, with 0 ≤ i < 4,

such that Ti ∩ Ti+2 mod 4 6= ∅. We have to consider the following two cases:

Case 1: Ti ∩ Ti+2 mod 4 contains a node from V (pi) ∪ V (pi+2 mod 4). W.l.o.g.,

we assume that there exists w ∈ V (pi+2 mod 4), such that w ∈ Ti ∩ Ti+2 mod 4.

By Claim 3.6.2, it follows that there exists {u, v} ∈ E(pi), such that f(w) lies on

Pu,v. This implies DT (f(u), f(v)) = DT (f(u), f(w)) +DT (f(w), f(v)). On the other

hand, we have DG(pi, pi+2 mod 4) > λW , and since f is non-contracting, we obtain

DT (f(u), f(v)) > 2λW . Thus, c ≥ DT (f(u), f(v))/DG(u, v). Since {u, v} ∈ E(G),

and the maximum edge weight in G is at most W , we have DG(u, v) ≤ W , and thus

c > 2λ.

Case 2: Ti ∩ Ti+2 mod 4 does not contain nodes from V (pi) ∪ V (pi+2 mod 4). Let

w ∈ Ti ∩ Ti+2 mod 4. By Claim 3.6.2, there exist {u1, v1} ∈ E(pi), and {u2, v2} ∈
E(pi+2 mod 4), such that w lies in both Pu1,v1 , and Pu2,v2 . We have DT (f(u1), f(v1))+

DT (f(u2), f(v2)) = DT (f(u1), f(w))+DT (f(w), f(v1))+DT (f(u2), f(w))+DT (f(w), f(v2)) ≥
DT (f(u1), f(u2))+DT (f(v1), f(v2)) ≥ DG(u1, u2)+DG(v1, v2) ≥ 2DG(pi, pi+2 mod 4) >

2λW . Thus, we can assume that DT (f(u1), f(v1)) > λW . It follows that c ≥
DT (f(u1),f(v1))

DG(u1,v1)
> λ.

Moreover, since pi, and pi+1 mod 4, share an end-point, we have Ti∩Ti+1 mod 4 6= ∅.
By Claim 3.6.3, it follows, that

⋃3
i=0 Ti ⊆ T , contains a cycle, a contradiction.

Tree-Like Decompositions

In this section we describe a graph partitioning procedure which is a basic step in our

algorithms. Intuitively, the procedure partitions a graph into a set of clusters, and

arranges the clusters in a tree, so that the structure of the tree of clusters resembles
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the structure of the original graph.

Formally, the procedure takes as input a (possibly weighted) graph G = (V,E),

a vertex r ∈ V (G), and a parameter λ ≥ 1. The output of the procedure is a pair

(TG
K ,KG), where KG is a partition of V (G), and TG

K is a rooted tree with vertex set

KG.

The partition KG of V (G) is defined as follows. For integer i, let

Vi = {v ∈ V (G)|WG(i− 1)λ ≤ DG(r, v) < WGiλ}.

Initially, KG is empty. Let t be the maximum index such that Vt is non-empty. Let

Yi =
⋃t

j=i Vj . For each i ∈ [t], and for each connected component Z of G[Yi] that

intersects Vi, we add the set Z ∩ Vi, to the partition KG. Observe that some clusters

in KG might induce disconnected subgraphs in G.

TG
K can now be defined as follows. For each K,K ′ ∈ KG, we add the edge {K,K ′}

in TG
K iff there is an edge in G between a vertex in K and a vertex in K ′. The root of

TG
K is the cluster containing r. The resulting pair (TG

K ,KG) is called a (r, λ)-tree-like

decomposition of G.

Figure 3-8 depicts the described decomposition.

Proposition 3.6.4 TG
K is a tree.

Proof: Let u, v ∈ V (G). Since G is connected, there is a path p from u to v in G.

Let p = x1, . . . , x|p|. For each i ∈ {1, . . . , |p|}, let Ki ∈ KG be such that xi ∈ Ki. It is

easy to verify that the sequence {Ki}|p|i=1 contains a sub-sequence that corresponds to

a path in TG
K . Thus, TG

K is connected.

It is easy to show by induction on i that for i = t, . . . , 1, the subset Li ⊆ KG that

is obtained by partitioning
⋃t

j=i Vj , induce a forest in TG
K . Since L1 = KG, and TG

K is

connected, it follows that TG
K is a tree.
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Figure 3-8: An example of a tree-like decomposition of a graph.

Properties of Tree-Like Decompositions

Before using the tree-like decompositions in our algorithms, we will show that for a

certain range of the decomposition parameters, they exhibit some useful properties.

We will first bound the diameter of the clusters in KG. The intuition behind the

proof is as follows. If a cluster K is long enough, then starting from a pair of vertices

in x, y ∈ K that are far from each other, and tracing the shortest paths from x and y

to r, we can discover the forbidden structure of lemma 3.6.1 in G. Applying lemma

3.6.1 we obtain a lower bound on the optimal distortion, contradicting the fact that

G embeds into a tree with small distortion.

Lemma 3.6.5 Let G = (V,E) be a graph that γ-embeds into a tree, let r ∈ V (G),

and let (TG
K ,KG) be a (r, γ)-tree-like decomposition of G. Then, for any K ∈ KG, and

for any u, v ∈ K, DG(u, v) ≤ 20γWG.

Proof: Assume that the assertion is not true, and pick K ∈ KG, and vertices x, y ∈ K,

such that DG(x, y) > 20γWG. Recall that KG was obtained by partitioning the

vertices of G according to their distance from r. Let qx, and qy be the shortest paths

from x to r, and from y to r respectively. Let K1, . . . , Kτ be the branch in TG
K , such

that r ∈ K1, and Kτ = K. By the construction of KG, we have that for any i ∈ [τ ],

for any z ∈ Ki, DG(r, z) ≤ iWGγ. Thus, DG(x, y) ≤ DG(x, r) + DG(r, y) ≤ 2τWGc.

Since DG(x, y) > 20γWG, it follows that τ > 10.

Consider now the sub-path px of qx that starts from x, and terminates to the

first vertex x′ of Kτ−2 visited by qx. Define similarly py as the sub-path of qy that

starts from y, and terminates to the first vertex y′ of Kτ−2 visited by qy. We will

first show that DG(px, py) > γWG. Observe that by the construction of KG, we have
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that DG(x, x′) ≤ 2γWG, and also DG(y, y′) ≤ 2γWG. Since px, and py are shortest

paths, we have that for any z ∈ px, DG(x, z) ≤ 2γWG, and similarly for any z ∈ py,

DG(y, z) ≤ 2γWG. Pick z ∈ px, and z′ ∈ py, such that DG(z, z′) is minimized.

We have DG(x, y) ≤ DG(x, z) + DG(z, z′) + DG(z′, y) ≤ DG(z, z′) + 4γWG. Thus,

DG(px, py) = DG(z, z′) ≥ DG(x, y)− 4γWG > 20γWG − 4γWG = 16γWG.

Let now px′ be the remaining sub-path of qx, starting from x′, and terminating to

r, and define py ′ similarly. Let pxy be the path from x′ to y′, obtained by concatenating

px′, and py ′.

By the construction of KG it follows that if we remove from G all the vertices in

the sets K1, K3, . . . , Kτ−1, then x and y remain in the same connected component.

In other words, we can pick a path pyx from x to y, that does not visit any of the

vertices in
⋃τ−1

j=1 Kj. It follows that the distance between any vertex of pyx, and any

vertex in
⋃τ−2

j=1 Kj , is greater than γWG. Thus, DG(pxy, pyx) > γWG.

We have thus shown that there are vertices x, y, y′, x′ ∈ V (G), and paths px, py, pxy, pyx,

satisfying the conditions of Lemma 3.6.1. It follows that the optimal distortion re-

quired to embed G into a tree is greater than γ, a contradiction.

Using the bound on the diameter of the clusters in KG, we can show that for

certain values of the parameters, the distances in the tree of clusters approximate the

distances in the original graph.

Lemma 3.6.6 Let G = (V,E) be a graph that γ-embeds into a tree, let r ∈ V (G),

and let (TG
K ,KG) be a (r, γ)-tree-like decomposition of G. Then, for any K1, K2 ∈ KG,

and for any x1 ∈ K1, x2 ∈ K2,

(DT G
K

(K1, K2)− 2)WGγ ≤ DG(x1, x2) ≤ (DT G
K

(K1, K2) + 2)20WGγ.

Proof: Let δ = DT G
K

(K1, K2). We begin by showing the first inequality. We have to

consider the following cases:

Case 1: K1 and K2 are on the same path from the root to a leaf of TG
K . Let

the path between K1 and K2 in TG
K be K1, H1, H2, . . . , Hδ−1, K2. Assume that

the assertion is not true. That is, DG(x1, x2) < (δ − 2)WGγ. Thus, DG(r, x2) ≤
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DG(r, x1) + DG(x1, x2) < DG(r, x1) + (δ − 1)WGγ. Assume that r ∈ Kr, for some

Kr ∈ KG, and w.l.o.g. that K1 is an ancestor of K2 in TG
K . Let the distance be-

tween Kr and K1 in TG
K be k. Then, the distance between Kr and K2 is at most

k′ = k +DG(x1, x2)/(WGγ). This implies that δ = k′ − k < δ − 1, a contradiction.

Case 2: K1 and K2 are not on the same path from the root to a leaf of TG
K . Let Ka

be the nearest common ancestor of K1 and K2 in TG
K . Observe that any path from x

to y in G passes through Ka. Thus, we have DG(x, y) ≥ DG(Kx, Ka) +DG(Ka, Ky).

Let δi, for i ∈ {1, 2} be the distance between Ka and Ki in TG
K . Then, by an

argument similar to the above, we obtain that DG(Kx, Ka) ≥ (δ1 − 1)WGγ, and also

DG(Ky, Ka) ≥ (δ2 − 1)WGγ. Since Ka is the nearest common ancestor of K1 and

K2, it follows that Ka separates K1 from K2 in G. Thus, DG(x, y) ≥ DG(Kx, Ky) ≥
DG(Kx, Ka) +DG(Ky, Ka) ≥ (δ − 2)WGc.

We now show the second inequality. Consider an edge {K,K ′} of TG
K . Since K

and K ′ are connected in TG
K it follows that there exists an edge in G between a vertex

in K and a vertex in K ′. Since the maximum edge weight of G is WG, we obtain

DG(K,K ′) ≤WG.

Since by Lemma 3.6.5, the diameter of each K ∈ KG is at most 20WGγ, it follows

that DG(x1, x2) ≤ δWG + (δ + 1)20WGγ < (δ + 2)20WGγ.

Approximation Algorithm for Embedding Unweighted Graphs

In this section we give a O(1)-approximation algorithm for the problem of embedding

the shortest path metric of an unweighted graph into a tree. Informally, the algorithm

works as follows. Let G = (V,E) be an unweighted graph, such that G can be

embedded into an unweighted tree with distortion c. At a first step, we compute a

tree-like decomposition (TG
K ,KG) of G. For each cluster in KG we embed the vertices

of the cluster in a star. We then connect the starts to form a tree embedding of G by

connecting stars that correspond to clusters that are adjacent in TG
K .

Formally, the algorithm can be described with the following steps.

Step 1. We pick r ∈ V (G), and we compute a (r, c)-tree-like decomposition (TG
K ,KG)

of G.
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Step 2. We construct a tree T as follows. Let KG = {K1, . . . , Kt}. For each i ∈ [t],

we construct a star with center a new vertex ρi, and leaves the vertices in Ki.

Next, for each edge {Ki, Kj} in TG
K , we add an edge {ρi, ρj} in T .

By proposition 3.6.4, we know that the resulting graph T is indeed a tree, so

we can focus of bounding the distortion of T . By lemma 3.6.5, the diameter of each

cluster in KG is at most 20cWG = 20c. Let x1, x2 ∈ V (G), with x1 ∈ K1, and x2 ∈ K2,

for some K1, K2 ∈ KG. We have DT (x1, x2) = 2 +DT (ρ1, ρ2) = 2 +DT G
K

(K1, K2). By

lemma 3.6.6 we obtain that DT (x1, x2) ≤ 4 + DG(x1, x2)/c ≤ 5DG(x1, x2). Also by

the same lemma, DT (x1, x2) ≥ DG(x1, x2)/(20c). By combining the above it follows

that the distortion is at most 100c.

Theorem 3.6.7 There exists a polynomial time, constant-factor approximation algo-

rithm, for the problem of embedding an unweighted graph into a tree, with minimum

multiplicative distortion.

Well-Separated Tree-Like Decompositions

Before we describe our algorithm for embeddings general metrics, we need to introduce

a refined decomposition procedure. As in the unweighted case, we want to obtain a

partition of the input metric space in a set of clusters, solve the problem independently

for each cluster, and join the solutions to obtain a solution for the input metric.

The key properties of the tree-like decomposition used in the case of unweighted

graphs are the following: (1) the distances in the tree of clusters approximate the

distances in the original graph, and (2) the diameter of each cluster is small.

Observe that if the graph is weighted with maximum edge weight WG, and the

clusters have small diameter, then the distance between two adjacent clusters of a

tree-like decomposition can be any value between 1 and WG. Thus, the tree of clusters

cannot approximate the original distances by a factor better than WG.

We address this problem by introducing a new decomposition that allows the

diameter of each cluster to be arbitrary large, while guaranteeing that (1) the distance

between clusters is sufficiently large, and (2) after solving the problem independently
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for each cluster, the solutions can be merged together to obtain a solution for the

input metric.

Formally, let G = (V,E) be a graph that γ-embeds into a tree. Let also r ∈ V (G),

and α ≥ 1 be a parameter. Intuitively, the parameter α controls the distance between

clusters in the resulting partition.

A (r, γ, α)-well-separated tree-like decomposition is a triple (TG
K ,KG,AG), were

(TG
K ,KG) is a (r, γ)-tree-like decomposition of G, and AG is defined as follows.

For a set A ⊆ V (G), let ZA = {K ∈ KG|K ∩ A 6= ∅}. Define TG,A
K to be the

vertex-induced subgraph TG
K [ZA].

Proposition 3.6.8 Let A ⊆ V (G), such that G[A] is connected. Then, TG,A
K is a

subtree of TG
K

Proof: Since G[A] is connected, it suffices to show that any edge e of G is either

contained in some K ∈ KG, or the end-points of e are contained in sets K,K ′ ∈ KG,

such that there is an edge between K and K ′ in TG
K . Assume that this is not true,

and pick an edge {v1, v2} ∈ E(G), with v1 ∈ K1, and v2 ∈ K2, for some K1, K2 ∈ KG,

such that there is no edge between K1 and K2 in TG
K .

Let Kr ∈ KG be such that r ∈ Kr. Assume first that K1 is on the path from K2

to Kr ∈ KG in TG
K . This implies however that D(v1, v2) > WG, contradicting the fact

that {v1, v2} ∈ E(G).

It remains to consider the case where K1 is not in the path from K2 to Kr, and K2

is not in the path from K1 to Kr in TG
K . Then by the construction of KG we know that

any path from a vertex in K1 to a vertex in K2 in G has to pass through an ancestor

of K1, and K2. Thus, there is not edge between K1 and K2 in G, a contradiction.

AG is computed in two steps:

Step 1. We define a partition ĀG. ĀG contains all the connected components of G

obtained after removing all the edges of weight greater than WG/(γ
3/2α).

Step 2. We set AG := ĀG. While there exist A1, A2 ∈ AG such that the diameter of

TG,A1

K ∩ TG,A2

K is greater than 50γ, we remove A1, and A2 from AG, and we add

A1 ∪A2 in AG. We repeat until there are no more such pairs A1, A2.
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Properties of Well-Separated Tree-Like Decompositions

We now show the main properties of a well-separated tree-like decomposition that

will be used by our algorithm for embedding general metrics. They are summarized

in the following two lemmata.

Intuitively, the first lemma shows that the distance between different clusters is

sufficiently large, and at the same time they don’t share long parts of the tree TG
K .

The technical importance of the later property will be justified in the next section. It

is worth mentioning however that intuitively, the fact that the intersections are short

will allow us to arrange the clusters of AG in a tree, without intersections, incurring

only a small distortion.

Lemma 3.6.9 For any A1, A2 ∈ AG, DG(A1, A2) ≥WG/(γ
3/2α), and TG,A1

K ∩ TG,A2

K

is a subtree of TG
K with diameter at most 50γ.

Proof: For any A1, A2 ∈ ĀG, we have that D(A1, A2) ≥ WG/(γ
3/2α). Since AG is

obtained by only merging sets, the first property holds. Moreover, the construction of

AG clearly terminates, and the second property follows by the termination condition

of the construction procedure.

For an embedding of G into a tree T , and for disjoint A1, A2 ⊂ V (G), we say that

A1 splits A2 in T , if A2 intersects at least 2 connected components of T [V (G) \ A1].

Claim 3.6.10 Let A1, A2 ⊂ V (G), with A1 ∩ A2 = ∅, such that G[A1], and G[A2]

are both connected. Assume that the diameter of TG,A1

K ∩ TG,A2

K is greater than 50γ.

Consider an optimal non-contracting embedding of G into a tree T , with distortion γ.

Then, either A1 splits A2 in T , or A2 splits A1 in T .

Proof: Since G[A1], and G[A2] are both connected, it follows by Proposition 3.6.8 that

TG,A1

K , and TG,A2

K are both connected subtrees of TG
K . Pick a path p = K1, K2, . . . , Kl

in TG
K , with l > 50γ, that is contained in TG,A1

K ∩ TG,A2

K .

Assume that the assertion is not true. Let A′
1 = A1 ∩ (

⋃l
i=1Ki), and let A′

2 =

A2∩ (
⋃l

i=1Ki). Let T1 be the minimum connected subtree of T that contains A′
1, and
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similarly let T2 be the minimum connected subtree of T that contains A′
2. It follows

that T1 ∩ T2 = ∅.
Let x1 be the unique vertex of T1 which is closest to T2. Since T1 is minimal,

x1 disconnects T1. Moreover, since G[A1] is connected, it follows that there exists

{w,w′} ∈ E(G), such that the path from w to w′ in T passes through x1. Since

DG(w,w′) ≤ WG, we obtain that there exists x∗1 ∈ {w,w′}, with DT (x∗1, x1) ≤
DT (w,w′)/2 ≤ γDG(w,w′)/2 ≤ γWG/2.

By Lemma 3.6.5, it follows that for any x ∈ A′
1, there exists x′ ∈ A′

2, such that

DG(x, x′) ≤ 20WGγ. Moreover, for any x ∈ A′
1, DT (x, T2) = DT (x, x1) +DT (x1, T2).

Thus, for any x ∈ A′
1, DT (x, x∗1) ≤ DT (x1, x

∗
1) + DT (x, x1) ≤ γWG/2 + DT (x, T2) ≤

γWG/2 + γDG(x,A′
2) ≤ 21WGγ

2.

Pick z ∈ A′
1 ∩ K1, and z′ ∈ A′

1 ∩ Kl. By the triangle inequality, DT (z, z′) ≤
DT (z, x∗1) + DT (x∗1, z

′) ≤ 42WGγ
2. On the other hand, the distance between K1,

and Kl in TG
K is l − 1. Thus, by Lemma 3.6.6 we obtain that DG(z, z′) ≥ (l −

3)WGγ > 45WGγ
2, which contradicts that fact that the embedding of M into T is

non-contracting.

The next lemma will be used to argue that when recursing in a cluster, the cor-

responding induced metric can be sufficiently approximated by a graph with small

maximum edge weight.

Lemma 3.6.11 For any A ∈ AG, the WG/(γ
1/2α)-restricted subgraph of G[A], is

connected.

Proof: Fix an optimal non-contracting embedding of G into a tree T , with distortion

γ.

For k ≥ 0, let Ak
G be the partition AG after k iterations of Step 2 have been

performed, with A0
G = ĀG.

Assume that the assertion is not true, and pick the smallest k, such that there

exists A ∈ Ak
G, such that the WG/(γ

1/2α)-restricted subgraph of G[A] is not con-

nected. Assume that A is obtained by joining A1, A2 ∈ Ak−1
G . By the minimality of k,

it follows that the WG/(γ
1/2α)-restricted subgraphs of G[A1], and G[A2] respectively

156



Figure 3-9: Case 2 of the proof of Lemma 3.6.11.

are connected. Thus, DG(A1, A2) > WG/(γ
1/2α).

By Lemma ??, we can assume w.l.o.g. that A2 splits A1. Thus, by removing A2

from T , we obtain a collection of connected components F1. Consider the partition

F ′
1 of A1 defined by restricting F1 on A1. Formally, F ′

1 = {f ∩A1|f ∈ F1, f ∩A1 6= ∅}.
We have to consider the following cases:

Case 1: There exists Z ∈ ĀG, with Z ⊆ A1, such that Z intersects at least

two sets in F ′
1. By considering only edges of weight at most WG/(γ

3/2α), the in-

duced subgraph G[Z] is connected. It follows that there exist z1, z2 ∈ Z, with

DG(z1, z2) ≤ WG/(γ
3/2α), such that the path from z1 to z2 in T passes through

A2. Thus, DT (z1, z2) ≥ 2DG(A1, A2) > 2WG/(γ
1/2α) ≥ 2γD(z1, z2), contradicting

the fact that the expansion of T is at most γ.

Case 2: For any Z ∈ ĀG, with Z ⊆ A1, we have Z ⊆ Z ′, for some Z ′ ∈ F ′
1.

Observe that for ant t ≥ 0, any element in At
G is obtained as the union of elements

of ĀG. Thus, we can pick the minimum j ≥ 1, such that there exist B1, B2 ∈ Aj−1
G ,

such that during iteration j of Step 2, the set B = B1∪B2 is obtained, with B ⊆ A1,

and such that B1 ⊆ Z ′
1, and B2 ⊆ Z ′

2, for some Z ′
1, Z

′
2 ∈ F ′

1, In other words, we pick

the minimum j such that we can find sets B1, B2 ∈ Aj−1
G , that are contained in A2,

and neither of them is split by A2 in T . W.l.o.g., we can assume that B2 splits B1 in

T . Thus, there exist C1, C2 ⊆ B1, such that any path between C1 and C2 in T passes

through B2. Moreover, any path from B1 to B2 in T passes through A2. Thus, any

path from C1 to C2 in T passes through A2. This however contradicts the minimality

of j. The scenario is depicted in Fig 3-9.
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Approximation Algorithm for Embedding General Metrics

In this section we present an approximation algorithm for embedding general metrics

into trees. Before we get into the technical details of the algorithm, we give an informal

description. The main idea is to partition the input metric M using a well-separated

tree-like decomposition, and then solve the problem independently for each cluster of

the partition by recursion. After solving all the sub-problems, we can combine the

partial solutions to obtain a solution for M . There are a few points that need to be

highlighted:

Termination of the recursion. As pointed out in the description of the well-

separated tree-like decompositions, the clusters of the resulting partition might have

arbitrarily long diameter. In particular, we cannot guarantee that by recursively de-

composing each cluster we obtain sub-clusters of smaller diameter. To that extend,

our recursion deviates from standard techniques since the sub-problems are not nec-

essarily smaller in a usual sense. Instead, our decomposition procedure guarantees

that at each recursive step, the metric of each cluster can be approximated by a graph

with smaller maximum edge length. This can be thought as restricting the problem

to a smaller metric scale.

Merging the partial solutions. The partial solution for each cluster in the

recursion is an embedding of the cluster into a tree. As in the algorithm for unweighted

graphs, we merge the partial solutions using the tree TG
K of the well-separated tree-like

decomposition as a rough approximation of the resulting tree. However, in the case of

a well-separated decomposition, the parts of TG
K that correspond to different clusters

of the partition AG might overlap. Moreover, since some of the clusters might be

long, we need to develop an elaborate procedure for merging the different trees into

a tree for M , without incurring large distortion.

The Main Inductive Step

We will now describe the main inductive step of the algorithm. Let M = (X,D) be a

finite metric that c-embeds into a tree. At each recursive step performed on a cluster
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A∗ of M , the algorithm is given a graph G with vertex set A, that c-approximates

M . In order to recurse in sub-problems, we compute a well-separated tree-like de-

composition of G. We chose the parameters of the well-separated decomposition so

that each sub-cluster A, can be c-approximated by a graph that has maximum edge

weight significantly smaller than the maximum edge weight of G. Formally, the main

recursive step is as follows.

Procedure RecursiveTree

Input: A graph G with maximum edge weight WG, that c-approximates M .

Output: An embedding of G into a tree S.

Step 1: Partitioning. If G contains only one vertex, then we output a triv-

ial tree containing only this vertex. Otherwise, we proceed as follows. We

pick r ∈ V (G), and compute a (r, c2, α)-well-separated tree-like decomposition

(TG
K ,KG,AG) of G, where α > 0 will be determined later.

Step 2: Recursion. For any A ∈ AG, let GA be the WG/α-restricted subgraph,

with V (GA) = A. We recursively execute the procedure RecursiveTree on

GA, and we obtain a tree SA.

Step 3: Merging the solutions. In this final step we merge the trees SA to obtain

S.

We define a tree T as follows. We first remove from TG
K all the edges between

vertices at level i50c2, and i50c2 + 1, for any integer i : 1 ≤ i ≤ n/(50c2). For

any connected component C of the resulting forest, T contains a vertex C. Two

vertices C,C ′ ∈ V (T ) are connected, iff there is an edge between C, and C ′ is

TG
K . We consider T to be rooted at the vertex which corresponds to the subtree

of TG
K that contains r. Furthermore, for each Ai ∈ AG, we define a subtree Ti

of T as follows: Ti contains all the vertices C of T , such that TG,Ai

K visits C.

Lemma 3.6.12 There exists a polynomial-time algorithm that computes an un-

weighted tree T ′, and for any i ∈ [k] a mapping ϕi : V (Ti)→ V (T ′), such that

159



• for any i, j ∈ [k], ϕi(Ti) ∩ ϕj(Tj) = ∅,

• for any i, j ∈ [k], for any vi ∈ V (Ti), and vj ∈ V (Tj), DT (vi, vj) ≤
DT ′(ϕi(vi), ϕj(vj)) ≤ 20(DT (vi, vj) + 1) logn.

Proof:

Claim 3.6.13 For any Ai, Aj ∈ AG, with Ai 6= Aj, either Ti ∩ Tj = ∅, or there

exists v ∈ V (T ), and v1, . . . , vl, for some l ≥ 0, such that v1, . . . , vl are children

of v, and Ti ∩ Tj = {v, v1, . . . , vl}.

Proof: It follows immediately from the fact that for any Ai, Aj ∈ AG, the

diameter of TG,Ai

K ∩ TG,Aj

K is at most 50c2.

Let r be the root of T . Initially, T ′ contains a single vertex r′. To simplify the

discussion, we assume w.l.o.g., that r is a leaf vertex of T . We also assume that

for every edge {u, v} ∈ E(T ), there is a tree Ti that contains {u, v}. This is

because if there is no such tree, then we can simply introduce a new subtree Ti,

that contains only the vertices u, and v.

For every Ti that visits r, we introduce in T ′ a copy ϕi(Ti) of Ti, and we connect

ϕi(r) to r′.

We proceed by visiting the vertices of T in a top-down fashion. Assume that

we are visiting a vertex v ∈ V (T ), with parent p(v), and children v1, . . . , vt. At

this step, we are going to introduce in T ′ a copy ϕi(Ti) of Ti, for every Ti that

visits v, and we have not considered yet. We consider the following cases:

Case 1: There is no Ti that visits v, and p(v).

Let Ta be a subtree that visits p(v). For every Tb that visits v, and we

have not considered yet, we introduce in T ′ a copy ϕb(Tb) of Tb, and we

connect ϕb(v) to ϕa(p(v)).

Case 2: There exists Ti that visits v, and p(p(v)), and there is no j 6= i, such

that Tj visits v, and p(v).
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For every Tb that visits v, and we have not considered yet, we introduce in

T ′ a copy ϕb(Tb) of Tb, and we connect ϕb(v) to ϕi(v).

Case 3: There is no Ti that visits v, and p(p(v)), and there exists Tj that visits

v, and p(v).

Let a ∈ [k] be the minimum integer such that Ta visits v, and p(v). For

every Tb that visits v, and we have not considered yet, we introduce in T ′

a copy ϕb(Tb) of Tb, and we connect ϕb(v) to ϕa(v).

Case 4: There exists Ti that visits v, and p(p(v)), and there exists Tj, with

i 6= j, that visits v, and p(v).

Let a ∈ [k] be the minimum integer with a 6= i, such that Ta visits v,

and p(v). For every Tb that visits v, and we have not considered yet, we

introduce in T ′ a copy ϕb(Tb) of Tb. With probability 1/2, we connect

ϕb(v) to ϕi(v), and with probability 1/2, we connect ϕb(v) to ϕa(v).

Claim 3.6.14 T ′ is a tree.

Proof: T ′ is a forest since each ϕi(Ti) is a tree, and also each ϕi(Ti) is connected

to exactly one ϕj(Tj), such that Tj was considered before i. Also, T ′ is connected

since every vertex of T is contained in some subtree Tt.

Claim 3.6.15 For any v ∈ V (T ), there exists at most one i ∈ [k], such that Ti

visits both v, and p(p(v)).

Proof: Assume that the assertion is not true. Let Ti, Tj be subtrees that visit

both v, and p(p(v)). Then, Ti and Tj also visit p(v). This however contradicts

the definition of the subtrees T1, . . . , Tk.

Claim 3.6.16 Let i, j ∈ [k], with i 6= j, be such that Ti, and Tj both visit a

vertex v ∈ V (T ), but they do not visit p(v). Then, with probability at least 1/2,

there exists t ∈ [k], such that Tt visits v, and p(v), and both ϕi(v), and ϕj(v)

are connected to ϕt(v).
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Proof: Recall the procedure for constructing T ′, described above. Consider

the step in which we add to T ′ the subtrees that visit the vertex v, and v is

their highest vertex in T . Clearly Ti, and Tj are both in this set of subtrees.

Observe that in cases 1, 2, and 3, the first event of the assertion happens with

probability 1. This is because all the trees that we consider are connected to

the same subtree.

In the remaining case 4, there are subtrees Ti′ , Tj′ such that each subtree that

we consider is going to be connected to Ti′ with probability 1/2, and to Tj′ with

probability 1/2. Thus, with probability 1/2, Ti and Tj are going to be connected

to the same subtree.

Claim 3.6.17 Let i, j ∈ [k], with i 6= j, be such that Ti visits v, and does

not visit p(v), and Tj visits both v, and p(v), for some v ∈ V (T ). Then, with

probability at least 1/4, there exists L ≤ 4, and t(1), . . . , t(L), such that

• t(1) = i, and t(L) = j,

• for each l ∈ [L− 1], ϕt(l)(Tt(l)) is connected to ϕt(l+1)(Tt(l+1)).

Proof: We have to consider the following cases:

Case 1: Tj visits p(p(v)).

In this case, ϕi(v) is connected to ϕj(v) with probability at least 1/2.

Case 2: Tj does not visit p(p(v)).

Let w be the smallest integer, such that Tw visits v, and p(v), but does not

visit p(p(v)). If w = j, then ϕi(v) is connected to ϕj(v) with probability

at least 1/2.

Otherwise, if w 6= j, then with probability at least 1/2, ϕi(v) is connected

to ϕw(v). Moreover, by Claim 3.6.16, with probability at least 1/2, there

exists w′ ∈ [k], such that both ϕw(p(v)), and ϕj(p(v)), are connected to

ϕw′(p(v)). Observe that the above two events are independent. Thus,

with with probability at least 1/4, the sequence of subtrees Ti, Tw, Tw′, Tj,

satisfy the conditions of the assertion.
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Claim 3.6.18 Let Ti, Tj be two subtrees such that they both visit some vertex

v ∈ V (T ). Then, with probability at least 1 − n−4, there exists L = O(logn),

such that for any Ti, Tj, there exists a sequence of subtrees Tt(1), . . . , Tt(L), with

• t(1) = i, and t(L) = j, and

• for any l ∈ [L− 1], ϕt(l)(Tt(l)) is connected to ϕt(l+1)(Tt(l+1)).

Proof: By the previous claim, we know that with constant probability there

exists a path of length at most 3 between ϕi(Ti) and ϕj(Tj) in T ′. If this

happens, then we have a small path between ϕi(Ti) and ϕj(Tj). Otherwise, we

look at the trees ϕi′(Ti′) and ϕj′(Tj′) which are connected to ϕi(Ti) and ϕj(Tj)

towards the root, and they visit the vertex p(p(v)). Note that with constant

probability (by the previous claim again) there exists a path of length at most

4 between ϕi′(Ti′) and ϕj′(Tj′). By continuing this argument towards the root

6 logn times, it follows that with probability 1−n−6 there exists a path of length

at most 20 logn. By an union bound argument it follows that with probability

1− n−4 every ϕi(Ti) and ϕj(Tj) which have a vertex in common are connected

by a path of length at most 20 logn in T ′.

Claim 3.6.19 Let Ti, Tj be two subtrees such that they both visit some vertex

v ∈ V (T ). Then, with probability at least 1− n−4, for any vi ∈ V (Ti), and for

any vj ∈ V (Tj), DT (vi, vj) ≤ DT ′(ϕi(vi), ϕj(vj)) ≤ (DT (vi, vj) + 1)O(logn).

Proof: Observe that since the diameter of the intersection of the two subtrees

is at most 2, in order to approximate the distance between ϕi(vi) and ϕj(vj)

for all vi, vj , it suffices to approximate the distance between ϕi(v) and ϕj(v).

By the previous claim, it easily follows that there a path of length 20 logn that

connects ϕi(v) to ϕj(v).

In order to finish the proof, it suffices to consider pairs Ti, Tj that do not inter-

sect. Let Ti, Tj be such a pair of subtrees, and let xi, xj be the closest pair of
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vertices between Ti, and Tj. Let p be the path between xi to xj in T . Assume

that p visits the subtrees Ti, Tt(1), . . . , Tt(l), Tj . We further assume w.l.o.g., that

for each Tt(s), p visits at least one edge from Tt(s), that does not belong to any

other Tt(s′), with s 6= s′. Assume that for each s ∈ [l], p enters Tt(s) in a vertex

ys, and leaves Tt(s) at a vertex zs. We have

DT ′(ϕi(xi), ϕj(xj)) = DT ′(ϕi(xi), ϕt(1)(y1)) +
l
∑

s=1

DT ′(ϕt(s)(ys), ϕt(s)(zs)) +

l−1
∑

s=1

DT ′(ϕt(s)(zs), ϕt(s+1)(ys+1)) +DT ′(ϕt(l)(zl), ϕj(xj))

≤ O(l · logn) +
l
∑

s=1

DT (ys, zs)

= O(DT (xi, yi) logn)

Similarly to the proof of the above claim, we observe that since the intersection

of any two trees is short, and we approximate the distance between the closest

pair of Ti, and Tj, it follows that we also approximate the distance between any

pair of vertices od Ti, and Tj .

Note that the tree T ′ might contain vertices C ∈ V (T ), such that for any

K ∈ KG, K /∈ C. We call such a vertex steiner. First, for each steiner vertex

C ∈ V (T ′) we add a vertex vC ∈ V (S). We have to add the following types of

edges:

• For any C1, C2 ∈ V (T ′), such that both C1, and C2 are steiner vertices, we

add the edge {vC1 , vC2} in S, with weight WG/(c
3α).

• For any C1, C2 ∈ V (T ′), such that C2, is a steiner vertex, and there exists

A1 ∈ AG, such that C1 ∈ ϕ1(T1), we pick K1 ∈ TG,A1

K , with K1 ∈ C1, and

an arbitrary x1 ∈ K1, and we add the edge {x1, vC1} in S. The weight of

this new edge is WG/(c
3α).

• For any pair A1, A2 ∈ AG, with A1 6= A2, such that there exists an edge in

T ′ connecting ϕ1(T1) with ϕ2(T2), we add an edge between SA1 , and SA2.
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We pick the edge that connects SA1 with SA2 as follows. Pick C1, C2 ∈
V (T ), with C1 ∈ T1, and C2 ∈ T2, such that there is an edge between

ϕ1(C1), and ϕ2(C2) in T ′. We pick an arbitrary pair of points x1, x2, with

x1 ∈ K1 ∈ C1, and x2 ∈ K2 ∈ C2, for some K1, K2 ∈ KG, and we connect

SA1 with SA2 by adding the edge {x1, x2} of length D(x1, x2).

Given the metric M = (X,D), the algorithm first computes a weighted complete

graph G0 = (V,E), with V (G0) = X, such that the weight of each edge {u, v} ∈ E(G)

is equal to D(u, v). Let ∆ be the diameter of M . Clearly, G0 is a ∆-restricted

subgraph. The algorithm then executes the procedure RecursiveTree on G0, and

outputs the resulting tree S.

Before we bound the distortion of the resulting embedding, we first need to show

that at each recursive call of the procedure RecursiveTree, the graph G satisfies

the input requirements. Namely, we have to show that G c-approximates M . Clearly,

this holds for G0. Thus, it suffices to show that the property is maintained for each

graph GA, were A ∈ AG. Observe that since G c-approximates M , and M c-embeds

into a tree, it follows that G c2-embeds into a tree. Since (TG
K ,KG,AG) is a (r, c2)-

well-separated decomposition, we can assume the properties of lemmata 3.6.9, and

3.6.11, for γ = c2.

Lemma 3.6.20 For any A ∈ AG, GA c-approximates M .

Proof: The next claim is similar to a lemma given in [BCIS05], modified for the case

of embedding into trees.

Claim 3.6.21 Let α > 0. Let G be an α-restricted subgraph of M , and let G′ be an

αc-restricted subgraph of M , with V (G) = V (G′). If G is connected, then for any

u, v ∈ V (G), D(u, v) ≤ DG′(u, v) ≤ cD(u, v).

Proof: Let M ′ be the restriction of M on V (G). Consider a non-contracting embed-

ding of M ′ into a tree T ′ with distortion at most c. Consider an edge {u, v} ∈ E(T ′).

We will first show that D(u, v) ≤ αc. Let S be a minimum spanning tree of G. If

{u, v} ∈ E(S), then since G is connected, it follows that D(u, v) ≤ α. Assume now
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that {u, v} /∈ E(S). Let Tu and Tv be the two subtrees of T ′, obtained after removing

the edge {u, v}, and assume that Tu contains u, and Tv contains v. Let p = x1, . . . , x|p|

be the unique path in S with u = x1, and v = x|p|. Observe that the sequence of

vertices visited by p start from a vertex in Tv, and terminate at a vertex in Tu. Thus,

there exists i ∈ [|p| − 1], such that vi ∈ Tv, while vi+1 ∈ Tu. It follows that the edge

{u, v} lies in the path from vi to vi+1 in T ′, and thus DT ′(u, v) ≤ DT ′(vi, vi+1). Since

{vi, vi+1} is an edge of S, we have by the above argument that D(vi, vi+1) ≤ α. Since

the embedding in T has expansion at most c, it follows that DT ′(vi, vi+1) ≤ αc. Thus,

DT ′(u, v) ≤ αc.

Consider now some pair x, y ∈ V (G). If no vertex is embedded between x and

y, then by the above argument, D(x, y) ≤ αc, and thus the edge {x, y} is in G′ and

DG′(x, y) = D(x, y). Otherwise, let z1, . . . , zk be the vertices appearing in T ′ between

x and y (in this order). Then the edges {x, z1}, {z1, z2}, . . . , {zk−1, zk}, {zk, y} all

belong to G′, and therefore

DG′(x, y) ≤ DG′(x, z1) +DG′(z1, z2) + . . .DG′(zk−1, zk) +DG′(zk, y)

= D(x, z1) +D(z1, z2) + . . .D(zk−1, zk) +D(zk, y)

≤ DT ′(x, z1) +DT ′(z1, z2) + . . .+DT ′(zk−1, zk) +DT ′(zk, y)

= DT ′(x, y) ≤ cD(x, y)

By the construction of the set AG, it follows that a WG/c
2-restricted subgraph

with vertex set A, is connected. Thus, by claim 3.6.21, DGA
c-approximates D.

The next two lemmata bound the distortion of the resulting embedding of G into

S. The fact that the contraction is small follows by the fact that the distance between

the clusters in AG is sufficiently large. The expansion on the other hand, depends on

the maximum depth of the recursion. This is because at each recursive call, when we

merge the trees SA to obtain S, we incur an extra cO(1) log n-factor in the distortion.

Since at every recursive call the maximum edge weight of the input graph decreases

by a factor of α, the parameter α can be used to adjust the recursion depth in order
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to optimize the final distortion.

Lemma 3.6.22 The contraction of S is O(c7α).

Proof: In order to bound the contraction of S, it is sufficient to bound the contraction

between pairs of vertices x1, x2 ∈ V (G), such that either {x1, x2} ∈ S, or between x1

and x2 there are only steiner nodes in S.

We will prove the assertion by induction on the recursive steps of the algorithm.

Consider an execution of the recursive procedure RecursiveTree, with input a

graphG with maximum edge weight WG. If G contains only one vertex, then assertion

is trivially true. Otherwise, assume that all the recursively computed trees SA satisfy

the assertion.

Consider such a pair x1, x2 ∈ V (G), and assume that in the path from x1 to x2 in

S, there are k ≥ 0 steiner nodes. If there exists A ∈ AG, such that x1, x2 ∈ A, then

the assertion follows by the inductive hypothesis.

Assume now that there exist A1, A2 ∈ AG, with A1 6= A2, such that x1 ∈ A1,

and x2 ∈ A2. It follows that DS(x1, x2) = (k + 1)WG/(c
3α). Pick C1, C2 ∈ V (T ),

and K1, K2 ∈ KG, such that x1 ∈ K1 ∈ C1, and x2 ∈ K2 ∈ C2. We have

DT ′(ϕ1(C1), ϕ2(C2)) = k+1. By Lemma 3.6.12, we obtain DT (C1, C2) ≤ k+1. Thus,

DT G
K

(K1, K2) ≤ (k + 2)50c2. By Lemma 3.6.6, D(x1, x2) ≤ ((k + 2)50c2 + 2)WGc
2.

Thus, the contraction on x1, x2 is DS(x1,x2)
D(x1,x2)

≤ ((k+2)50c2+2)WGc2

(k+1)WG/(c3α)
< 104c7α.

Lemma 3.6.23 The expansion of S is at most (cO(1) logn)logα ∆.

Proof: We will prove the assertion by induction on the recursive steps of the algorithm.

Consider an execution of the recursive procedure RecursiveTree, with input a

graph G with maximum edge weight WG. If G contains only one vertex, then the

expansion of the computed tree is at most 1. Otherwise, at Step 2 we partition V (G)

into AG, and at Step 3, for each A ∈ AG we define the graph GA, and recursively

execute RecursiveTree on GA, obtaining an embedding of GA into a tree SA.

Assume that for each A ∈ AG, the expansion on SA is at most ξ.
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Consider x, y ∈ V (G). Assume that x ∈ Aix , and y ∈ Aiy , for some Aix , Aiy ∈ AG.

If Aix = Aiy , then the expansion is at most ξ, be the inductive hypothesis. We can

thus assume that Aix 6= Aiy . Pick Kx, Ky ∈ KG, and Cx, Cy ∈ V (T ), such that

x ∈ Kx ∈ Cx, and y ∈ Ky ∈ Cy. Let p be the path between ϕix(Cx), and ϕiy(Cy) in

T ′.

Let also q be the path from x to y in S. Assume that q visits the sets in AG

in the order At1 , At2 , . . . , Atk . Let vi, and v′i be the first and the last respectively

vertex of Ati visited by q Similarly, let ϕji
(Ci), ϕji

(C ′
i) and be the first, and the last

respectively vertex of ϕji
(Tji

) visited by p. For each j ∈ [k], pick Ki, K
′
i ∈ KG, such

that vi ∈ Ki, and v′i ∈ K ′
i.

Let δ = WG/(c
3α). We have:

DS(x, y) =

k
∑

j=1

DS(vj, v
′
j) +

k−1
∑

j=1

DS(vj′, vj+1)

≤ ξ

k
∑

j=1

D(vj, v
′
j) + δ

k−1
∑

j=1

DT ′(ϕji
(C ′

i), ϕji+1
(Ci+1))

≤ ξWGc
2

k
∑

j=1

(2 +DT G
K

(Kj , K
′
j)) + 20δ log n

k−1
∑

j=1

(1 +DT (C ′
i, Ci+1))

≤ ξWGc
2

k
∑

j=1

(2 + 100c2DT (Cj, C
′
j)) + 20δ log n

k−1
∑

j=1

(1 +DT (C ′
i, Ci+1))

≤ (102ξWGc
4 + 40δ log n)DT (Cx, Cy)

≤ (102ξWGc
4 + 40δ log n)DT G

K
(Kx, Ky)

≤ (102ξWGc
4 +

40WG log n

c3α
)(
D(x, y)

WGc
+ 2)
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Since Aix 6= Aiy , it follows that D(x, y) ≥ δ = WG/(c
3α). Thus,

DS(x, y) ≤ (102ξWGc
4 +

40WG log n

c3α
)(
D(x, y)

WGc
+ 2c3α

D(x, y)

WG
)

≤ (102ξc4 +
40 logn

c3α
)3c3αD(x, y)

≤ (306ξc7α + 120 logn)D(x, y)

Given a graph of maximum edge weight WG, the procedure RecursiveTree

might perform recursive calls on graphs with maximum edge weight c3δ = WG/α.

Since the minimum distance in M is 1, and the spread of M is ∆, it follows that the

maximum number of recursive calls can be at most log ∆/ logα. Thus,

DS(x, y) ≤ (cO(1) log n)logα ∆D(x, y)

Theorem 3.6.24 There exists a polynomial-time algorithm which given a metric

M = (X,D) that c-embeds into a tree, computes an embedding of M into a tree,

with distortion (c logn)O(
√

log ∆).

Proof: By Lemmata 3.6.22, and 3.6.23, it follows that the distortion of S is cO(1)α(cO(1) log n)logα ∆.

By setting α = 2
√

log ∆, we obtain that the distortion is at most (c logn)O(
√

log ∆).

Acknowledgments We thank Julia Chuzhoy for many insightful discussions about

the problem.

3.6.3 The Relation Between Embedding Into Trees and Em-

bedding Into Subtrees

In this section we study the relation between embedding into trees, and embedding

into spanning subtrees. More specifically, let G = (V,E) be an unweighted graph.
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Assume that G embeds into a tree with distortion c, and also that G embeds into a

spanning subtree with distortion c∗.

Clearly, since every spanning subtree is also a tree, we have c ≤ c∗. We are

interested in determining how large the ratio c∗/c can be. We show that for every

n0, there exists n ≥ n0, and an n-vertex unweighted subgraph G, for which the ratio

is Ω(log n/ log logn). We complement this lower bound by showing that for every

unweighted graph G, the ratio is at most O(logn).

The Lower Bound

In this section we prove a gap between the distortion of embedding graph metrics into

trees, and into spanning subtrees. We do this by giving an explicit infinite family of

graphs.

Let n > 0 be an integer. We define inductively an unweighted graph G = (V,E)

with Θ(n) vertices, and prove that G O(logn)-embeds into a tree, while any embed-

ding of G into a subtree has distortion Ω(log2 n/ log log n).

Let G1 be a cycle on log n vertices. We say that the cycle of G1 is at level 1.

Given Gi, we obtain Gi+1 as follows. For any edge {u, v} that belongs to a cycle at

level i, but not to a cycle at level i−1, we add a path pu,v of length log n−1 between

u and v. We say that the resulting cycle induced by path pu,v and edge {u, v} is at

level i+ 1.

Let G = Glog n/ log log n. It is easy to see that |V (G)| = Θ(n). Moreover, every

edge of G belongs to either only one cycle of size log n at level logn/ log log n, or

exactly two cycles of size logn; one at level i, and one at level i+ 1, for some i, with

1 ≤ i < log n/ log log n.

We associate with G a tree TC = (V (TC), E(TC)), such that V (TC) is the set of

cycles of length log n of G, and {C,C ′} ∈ E(TC) iff C and C ′ share an edge. We

consider TC to be rooted at the unique cycle of G at level 1.

Lemma 3.6.25 Any embedding of G into a subtree has distortion Ω(log2 n/ log log n).

Proof: Let T be a spanning subtree of G. Let k = log n/ log log n. We will compute
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inductively a set of cycles C, while maintaining a set of edges E ′ ⊆ E(G). Initially,

we set C = C1, where C1 is the cycle of G at level 1, and E ′ = ∅. At each iteration,

we consider the subgraph

G′ =

(

⋃

C∈C
C

)

\ E ′.

We pick a cycle C /∈ C, such that C shares an edge e with G′, and we add C in C,
and e in E ′. Observe that at every iteration G′ is a cycle. Thus, we can pick e and

C such that e /∈ T . The process ends when we cannot pick any more such e and C,

with e /∈ T .

Consider the resulting graph G′ =
(
⋃

C∈C C
)

\ E ′. Since G′ is a cycle, it follows

that there exists an edge e′ = {u, v} ∈ G′, such that e′ /∈ T . Since there is no cycle

C ′ /∈ C, with e′ ∈ C ′, it follows that e′ belongs to a cycle at level k. Thus, there exists

a sequence of length log n cycles, K1, . . . , Kk, with K1 = C1, and Kk = C ′, and such

that Ki ∈ C, for each i, with 1 ≤ i ≤ k, and the there exists a common edge ei ∈ E ′

in Ki and Ki+1, for each i, with 1 ≤ i < k.

Consider the sequence of graphs obtained fromG after removing the edges e′, ek−1, ek, . . . , e1,

in this order. It is easy to see that after removing each edge, the distance be-

tween u and v in the resulting graph increases by at least Ω(log n). Since none

of there edges is in T , it follows that the distance between u and v in T is at least

k logn = log2 n/ log log n.

Lemma 3.6.26 There exists an embedding of G into a tree, with distortion O(logn).

Proof: We will construct a tree T = (V (T ), E(T )) as follows: Initially, we set V (T ) =

V (G), and E(T ) = ∅. For the cycle C1 at level 1, we pick an arbitrary vertex vC1 ∈ C1.

Next, for each u ∈ C1, with u 6= vC1 , we add an edge between u and vC1 in T of length

DG(u, vC1).

For every other cycle C ′ at some level i > 1, let e′ = {u′, v′} be the unique edge

that C ′ shares with a cycle C ′′ at level i−1. We pick a vertex vC′ arbitrarily between

one of the two endpoints of e′. For every vertex x ∈ C ′, with x 6= vC′ , we add an edge

between x and vC′ in T , of length DG(x, vC′).
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Clearly, the resulting graph T is a tree. It is straightforward to verify that for

every {u, v} ∈ E(T ), DT (u, v) = DG(u, v), and thus the resulting embedding is non-

contracting. It remains to bound the expansion for any pair of vertices x, y ∈ V (G).

We will consider the following cases.

Case 1. There exists a cycle C ∈ V (TC), such that x, y ∈ C: We have

DT (x, y) = DT (x, vC) +DT (vC , y)

= DG(x, vC) +DG(vC , y)

< log n

≤ DG(x, y) logn

Case 2. There exist Cx, Cy ∈ V (TC), with x ∈ Cx, and y ∈ Cy, such that Cy lies

on the path in TC from Cx to the root of TC : Consider the path K1, . . . , Kl

in TC , with Cx = K1, and Cy = Kl. For each i, with 1 ≤ i < l, let ei =

{xi, yi} ∈ E(G) be the common edge of Ki and Ki+1. Note that the shortest

path p from x to y in G visits at least one of the endpoints of each edge ei.

Assume w.l.o.g. that p visits x1, x2, . . . , xl−1 (in this order). Observe that each

i, with 1 ≤ i < l, for each v ∈ Ki we have either DT (xi, v) = DG(xi, v), or

DT (xi, v) = DG(xi, yi) +DG(yi, v) ≤ DG(xi, v) + 2. Thus, we obtain

DT (x, y) ≤ DT (x, x1) +DT (x1, x2) + . . .+DT (xl−2, xl−1) +DT (xl−1, y)

< DG(x, x1) +DG(x1, x2) + . . .+DG(xl−2, xl−1) + 2(l − 2) +

DG(xl−1, y) + logn/2

< DG(x, y) + 2 logn/ log logn + (logn)/2

< DG(x, y)3 logn

Case 3. There exist Cx, Cy, Cz ∈ V (TC), with x ∈ Cx, and y ∈ Cy, such that Cz is

the nca of Cx and Cy in TC : This Case is similar to Case 2.
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Theorem 3.6.27 For every n0 > 0, there exists n ≥ n0, and an n-vertex un-

weighted graph G, such that the minimum distortion for embedding G into a tree

is O(logn), while the minimum distortion for embedding G into any of its subtrees is

Ω(log2 n/ log logn).

Proof: It follows by Lemmata 3.6.25 and 3.6.26.

The Upper Bound

We now complement the lower bound given above with an almost matching upper

bound for unweighted graphs. The idea is to first use the O(1)-approximation algo-

rithm from Section 3.6.2 for embedding unweighted graphs into trees to obtain the

clustering KG. Then, by slightly modifying this clustering, we can guarantee that

each cluster induces a connected subgraph of the original graph, and thus it can be

easily embedded into a spanning subtree. Next, for each cluster we define a new ran-

domly chosen clustering. This new clustering will be used in the final step to merge

the computed subtrees of the clusters, into a spanning subtree of the graph, while

losing only a O(logn) factor in the distortion.

Let G = (V,E) be an unweighted graph, that embeds into an unweighted tree with

distortion c. For a subset V ′ ⊆ V (G), and for every u, v ∈ V ′, we denote by DV ′(u, v)

the shortest path distance between u and v in G[V ′]. If G[V ′] is disconnected, we can

assume that DV ′(u, v) =∞.

Consider the set tree-like partition (TG
K ,KG) constructed by the algorithm of Sec-

tion 3.6.2. Let KG = {Kr1, Kr2, . . .}, and assume that TG
K is rooted at Kr.

Let FK be the forest obtained by removing from TG
K all the edges between vertices

at levels 21j and 21j + 1, for all j, with 1 ≤ j < ⌊depth(TG
K )/21⌋ − 1. Let C(FK) be

the set of connected components of FK. Let

J =
⋃

A∈C(FK)

{

⋃

Ki∈A

Ki

}

.

Clearly, J is a partition of V (G). Let TJ be the tree on vertex set J , where the edge
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{Ji, Jj} is in TJ if there exist {Ki′, Kj′} ∈ E(TG
K ), such that Ki′ ∈ Ji, and Kj′ ∈ Jj .

We consider TJ as being rooted at a vertex Jr ∈ J , where Kr ∈ Jr.

Lemma 3.6.28 For each Ji ∈ J , G[Ji] is connected.

Proof: Assume w.l.o.g., that Ji is the union of sets of vertices Kj, for all Kj ∈ A,

where A ∈ C(FK) is a subtree of TJ . Assume that Kr′ is the vertex of A that is

closest to Kr in TG
K . Let pl be the unique path in A from Kr′ to a leaf Kl of A. Let

also J l
i =

⋃

Kk∈pl
Kk. It suffices to show that for each leaf l, the induced subgraph

G[J l
i ] is connected.

Let pl = K1, K2, . . .Kt, where Kr′ = K1, and Kl = Kt. Note that t ≥ 21. Assume

now that G[J l
i ] is disconnected, and let C(G[J l

i ]) be the set of connected components

of G[J l
i ].

Claim 3.6.29 There exists t′, with 1 ≤ t′ ≤ t, and C1 6= C2 ∈ C(G[J l
i ]), such that

Kt′ ∩ C1 6= ∅, and Kt′ ∩ C2 6= ∅.

Proof: Assume that the assertion in not true. That is, for each t′, with 1 ≤ t′ ≤ t, Kt′

is contained in a connected component C ′
t′ ∈ C(G[J l

i ]). Observe that for each t′′, with

1 ≤ t′′ < t, there exists at least one edge between Kt′′ and Kt′′+1. This means that

all the C ′
t′s are in fact the same connected component, and thus C(G[J l

i ]) contains a

single connected component. It follows that J l
i is connected, a contradiction.

Claim 3.6.30 There exist C1, C2 ∈ C(G[J l
i ]), such that K11∩C1 6= ∅, and K11∩C2 6=

∅.

Proof: Let t′, with 1 ≤ t′ ≤ t, and C1, C2 ∈ C(G[J l
i ]) be given by Claim 3.6.29. If

t′ = 11, then there is nothing to prove.

Otherwise, pick v1 ∈ Kt′ ∩ C1, and v2 ∈ Kt′ ∩ C2. By the construction of K, we

have that there exists a path p from v1 to v2, such that p is the concatenation of the

paths qt′ , . . . , q1, q, q
′
1, . . . , q

′
t′ , where for each i ∈ [1, t′], qi and q′i are paths of length

at most c in Ki. Moreover, there exists a path p̄ from v1 to v2, such that p̄ is the

concatenation of the paths wt′, . . . , wt, w, w
′
t, . . . , w

′
t′ , where for each i ∈ [t′, t], wi and

w′
i are paths of length at most c in Ki.
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If t′ > 11, then pick v′1 ∈ q11, and v′2 ∈ q′11. Otherwise, if t′ < 11, pick w′
1 ∈ q11,

and v′2 ∈ w′
11. Clearly, in both cases we have v′1 ∈ C1, and v′2 ∈ C2.

Let now C1, C2 ∈ C(G[J l
i ]) be the connected components given by Claim 3.6.30.

Pick v1 ∈ Kt′ ∩ C1, and v2 ∈ Kt′ ∩ C2. Let p be the shortest path between v1 and v2

in G. We observe that there are two possible cases for p:

Case 1: p is the concatenation of the paths q11, . . . , q1, q, q
′
1, . . . , q

′
11, where for each

i ∈ [1, 11], qi and q′i are contained in Ki.

Case 2: p is the concatenation of the paths q11, . . . , qt, q, q
′
t, . . . , q

′
11, where for each

i ∈ [11, t], qi and q′i are contained in Ki.

Since the above two Cases can be analyzed identically, we assume w.l.o.g. that p

satisfies Case 1. Observe that for each i ∈ [1, 11), each qi and each q′i visits c vertices

of Ki. It follows that the length of p is greater than 20c, contradicting Lemma 3.6.5.

For each Ji ∈ J , we define a set Ji of subsets of Ji as follows. First, we pick a

vertex ri ∈ Ji, and we construct a BFS tree TJi
of G[Ji], rooted at ri. Note that by

Lemma 3.6.28, G[Ji] is connected, and thus there exists such a BFS tree. We also pick

an integer αJi
∈ [0, 100c), uniformly at random. Let FJi

be the forest obtained from

TJi
by removing the edges between vertices at levels 100cj+ αJi

and 100cj +αJi
+ 1,

for all j, with 1 ≤ j <

⌊

depth(TJi
)

100c

⌋

− 2. The set Ji can now be defined as the set of

sets of vertices of the connected components of FJi
. Clearly, Ji is a partition of Ji.

Lemma 3.6.31 For each Ji, Jj ∈ J , such that Ji is the parent of Jj in TJ , and for

each Jj,k ∈ Jj, there exist u ∈ Ji, and v ∈ Jj,k, such that {u, v} ∈ E(G).

Proof: It is easy to verify by the construction of KG that Jj is a subset of the vertices

of at least 21c, and at most 42c consecutive levels of a BFS tree of G. Let l1, . . . , lt be

these levels, where l1 is the level closest to the root of the BFS tree of G. For every

vertex x ∈ Jj, there exists a vertex y ∈ Ji, such that {x, y} ∈ E(G), iff x ∈ l1. Thus,

it suffices to show that for every Jj,k ∈ Jj, Jj,k ∩ l1 = ∅.
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It is easy to verify that for every v ∈ Jj, there exists u ∈ l1, such that DJj
(v, u) <

42c. In the construction of Jj, we pick a vertex rj ∈ Jj, and we compute a BFS tree T ′

of GJj
. Every Jj,k ∈ Jj is a subtree Tj,k of T ′ rooted at a vertex rj,k. Tj,k contains all

the predecessors of rj,k that are at distance at most δj,k, for some 100c ≤ δj,k ≤ 200c.

Assume now that there is no vertex of l1 in the 42c first levels of Tj,k. Pick a vertex

of Tj,k at level 42c + 1. By the above argument, there exists a vertex u ∈ l1 that is

at distance at most 42c from v. This implies that u is contained within the 84c + 1

first levels of Tj,k. Thus, Tj,k ∩ l1 6= ∅, and Jj,k ∩ l1 6= ∅.

Lemma 3.6.32 For each Ji, Jj ∈ J , such that Ji is the parent of Jj in TJ , and

for each u, v ∈ Ji, and u′, v′ ∈ Jj, such that {u, u′} ∈ E(G), and {v, v′} ∈ E(G),

DJi
(u, v) ≤ 90c.

Proof: Note that the partition KG is obtained on a BFS tree of G with root some

r ∈ V (G). If r ∈ Ji, then DJi
(u, v) ≤ DJi

(u, r) +DJi
(r, v) ≤ 84c.

It remains to consider the case r /∈ V (G). This implies that there exists Jk ∈ J ,

such that Jk is the parent of Ji in TJ . Assume that the assertion is not true. That

is, there exist u, v ∈ Ji, and u′, v′ ∈ Jj , with {u, u′} ∈ E(G), {v, v′} ∈ E(G), and

DJi
(u, v) > 90c. By the construction of KG, and since r /∈ Ji it follows that there exist

w, z ∈ Ji, and w′, z′ ∈ Jk, with {w,w′} ∈ E(G), and {z, z′} ∈ E(G), and moreover

there exists a shortest path p1 in G from w to u, and a shortest path p2 from v to z

in G, such that p1 and p2 are contained in Ji. It is easy to verify that the length of

each of the paths p1 and p2 is at least 22c.

Furthermore, there exists a path p3 from w′ to z′, and a path p4 from u′ to v′,

such that both p3 and p4 do not visit Ji. Let p′3 be the path obtained from p3 by

adding the edges {w,w′}, and {z′, z}. Similarly, let p′4 be the path obtained from p4

by adding the edges {u, u′}, and {v′, v}.
Let x1 be a vertex of p1 such that DG(x1, u) > 5c, and DG(x1, w) > 5c. Similarly,

let x2 be a vertex of p2 such that DG(x2, v) > 5c, and DG(x2, z) > 5c. We need to

define the following set of paths:

• Let q1 be the subpath of p1 from u to x1.

176



• Let q2 be the path obtained by concatenating the subpath of p1 from x1 to w,

with p3.

• Let q3 be the subpath of p2 from z to x2.

• Let q4 be the path obtained by concatenating the subpath of p2 from x2 to v,

with p4.

It is straight-forward to verify that DG(q1, q3) > 5c, and D(q2, q4) > 5c. By apply-

ing Lemma 3.6.1, we obtain that the optimal distortion for embedding G into an

unweighted tree is more than 5c, a contradiction.

Theorem 3.6.33 If an unweighted graph G can be embedded into a tree with distor-

tion c, then G can be embedded into a subtree with distortion O(c logn).

Proof: We can compute an embedding of G into a subtree T as follows. Initially, we

set T equal to the empty subgraph. We pick a vertex r ∈ V (G), and we compute a

(r, c)-partition of G. We compute the partition J , and for each Ji ∈ J , we compute

the partition Ji, as described above. For each Ji ∈ J , and for each Ji,j ∈ Ji, we add

to T a spanning tree of Ji,j of radius O(c).

It remains to connect the subtrees by adding edges between the sets Ji,j. Observe

that if r ∈ Ji, then Ji contains a single set Ji,j.

Assume now that r /∈ Jj, and let Ji be the parent of Jj in TJ . By Lemma 3.6.31,

for each Jj,k ∈ Jj, there an edge between Jj,k and Ji in G. For each such Jj,k, we pick

one such edge, uniformly at random, and we add it to T .

Consider now two subsets Jj,k, Jj,l ∈ Jj. It is easy to see that Jj,k, and Jj,l get

connected to the same subset Ji,t ∈ Ji, with probability at least 1 − 90c
100c

= Ω(1).

Thus, the probability that two such subsets have not converged to the same subset

in an ancestor after O(logn) levels is at most 1/poly(n). Since there are at most n2

pairs of such subsets Ji,j, it follows that the above procedure results in a tree with

distortion O(c logn) with high probability.
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Chapter 4

Ordinal embeddings

Credits: The results in this section is work done with Noga Alon, Erik Demaine,

Martin Farach-Colton, MohammadTaghi Hajiaghayi, and Anastasios Sidiropoulos,

and has appeared in SODA’05.

In this chapter, we introduce a new notion of embedding, called minimum-relaxation

ordinal embedding, parallel to the standard notion of minimum-distortion (metric) em-

bedding. In an ordinal embedding, it is the relative order between pairs of distances,

and not the distances themselves, that must be preserved as much as possible. The

(multiplicative) relaxation of an ordinal embedding is the maximum ratio between

two distances whose relative order is inverted by the embedding. We develop several

worst-case bounds and approximation algorithms on ordinal embedding. In particu-

lar, we establish that ordinal embedding has many qualitative differences from metric

embedding, and capture the ordinal behavior of ultrametrics and shortest-path met-

rics of unweighted trees.

4.1 Introduction

The classical field of multidimensional scaling (MDS) has witnessed a surge of inter-

est in recent years with a slew of papers on metric embeddings; see e.g. [IM04]. The

problem of multidimensional scaling is that of mapping points with some measured
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pairwise distances into some target metric space. Originally, the MDS community

considered embeddings into an ℓp space, with the goal of aiding in visualization, com-

pression, clustering, or nearest-neighbor searching; thus, low-dimensional embeddings

were sought. An isometric embedding preserves all distances, while more generally,

metric embeddings tradeoff the dimension with the fidelity of the embeddings.

Note, however, that the distances themselves are not essential in nearest-neighbor

searching and many contexts of visualization, compression, and clustering. Rather,

the order of the distances captures sufficient information, that is, we might only need

an embedding into a metric space with any monotone mapping of the distances. Such

embeddings were heavily studied in the early MDS literature [CS74, Kru64a, Kru64b,

She62a, She62b, Tor52] and have been referred to as ordinal embeddings, nonmetric

MDS, or monotone maps. Here, we use the first term.

While the early work on ordinal embeddings was largely heuristic, there has been

some work with mathematical guarantees since then. Define a distance matrix to be

any matrix of pairwise distances, not necessarily describing a metric. In [SFC04], it

was shown that it is NP-hard to decide whether a distance matrix can be ordinally

embedded into an additive metric, i.e., the shortest-path metric in a tree. Define the

ordinal dimension of a distance matrix to be the smallest dimension of a Euclidean

space into which the matrix can be ordinally embedded. Bilu and Linial [BL04] have

shown that every matrix has ordinal dimension at most n− 1. They also applied the

methods of [AFR85] to show that (in a certain well-defined sense) almost every n-point

metric space has ordinal dimension Ω(n). Because ultrametrics can be characterized

by the order of distances on all triangles, they are closed under monotone mappings.

Holman [Hol72] showed that every n-point ultrametric can be isometrically embedded

into (n − 1)-dimensional Euclidean space and that n − 1 dimensions are necessary.

Combined with the closure property just noted, this shows that the ordinal dimension

of every ultrametric is exactly the maximal n− 1.1

Relaxations of ordinal embeddings have involved problems of deciding the realiza-

1This observation settles an open problem posed in [BL04] asking for the worst-case ordinal
dimension of any metric on n points, which they showed was between n/2 and n− 1. Ultrametrics
show that the answer is n− 1.
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tion of partial orders. For example, Opatrny [Opa79] showed that it is NP-hard to

decide whether there is an embedding into one dimension satisfying a partial order

that specifies the maximum edge for some triangles. Such partial orders on triangles

are called betweenness constraints. Chor and Sudan [CS98] gave a 1/2-approximation

for maximizing the number of satisfied constraints. It is also NP-hard to decide

whether there is an embedding into an additive metric that satisfies a partial order

defined by the total order of each triangle [SFC04].

4.1.1 Our Results

We take a different approach. We define a metric M ′ to be an ordinal embedding

with relaxation α ≥ 1 of a distance matrix M if αM [i, j] < M [k, l] implies M ′[i, j] <

M ′[k, l]. In other words, significantly different distances have their relative order

preserved. Note that in an ordinary ordinal embedding, we must respect distance

equality, while in an ordinal embedding with relaxation 1, we may break ties. It is

now natural to minimize the relaxation needed to embed a distance matrix M into a

target family of metric spaces. Here we optimize the confidence with which we make

an ordinal assertion, rather than the number of ordinal constraints satisfied.

In this chapter, we prove a variety of results about the Ordinal Relaxation Problem.

We show that the best relaxation achievable is always at most the best distortion of

a metric embedding. Furthermore, while the optimal relaxation is bounded by the

ratio between the largest and smallest distances in M , the optimal distortion can

grow arbitrarily. Indeed, the ratio between the optimal relaxation and distortion can

be arbitrarily large even when embedding into the line, and can be infinite when

embedding into cut metrics. (We also give a polynomial-time algorithm to compute

the best ordinal embedding into a cut metric.) We show that, if the target class

of the embedding is ultrametrics, the relaxation and distortion are equal, and the

optimal embedding can be computed in polynomial time. More surprisingly, we show

that ultrametrics are the only target metrics for which all distance matrices have a

bounded ratio between the best distortion and the best relaxation.

We demonstrate many more differences between ordinal and metric embeddings.
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While any metric can be isometrically embedded into ℓ∞, there are four-point metrics

that cannot be so embedded into any ℓp, p < ∞. In contrast, we show that it

is possible to ordinally embed any distance matrix into ℓp for any fixed 1 ≤ p ≤
∞. We show that the shortest-path metric of an unweighted tree can be ordinally

embedded into d-dimensional Euclidean space with relaxation Õ(n1/d). We also show

that relaxation Ω(n1/(d+1)) is sometimes necessary. In contrast, the best bounds on

the worst-case distortion required are O(n1/(d−1)) and Ω(n1/d) [Gup00b]. The proof

techniques required for the ordinal case are also substantially different (in particular

because the usual “packing” arguments fail) and lead to approximation algorithms

described below. We show that ultrametrics can be ordinally embedded into O(lgn)-

dimensional ℓp space with relaxation 1. In contrast, the best known metric embedding

of ultrametrics into c lg n-dimensional space has distortion 1+Ω(1/
√
c) [BM04a], and

ordinary (no-relaxation) ordinal embeddings require n − 1 dimensions. For general

metrics, we show a lower bound of Ω(lg n/(lg d + lg lg n)) on the relaxation of any

ordinal embedding into d-dimensional ℓp space for fixed integers p or p = ∞. In

particular, for d = Θ(lgn), this lower bound is Ω(lg n/ lg lg n), leaving a gap between

the upper bound of O(lgn) which follows from Bourgain embedding. In contrast,

for metric embeddings, there is an Ω(lg n) lower bound on distortion for d = Θ(lg n)

[LLR95, Mat97].

We also develop approximation algorithms for finding the minimum possible re-

laxation for an ordinal embedding of a specified metric. Specifically, we give a 3-

approximation for ordinal embedding of the shortest-path metric of a specified un-

weighted tree into the line. In contrast, only O(n1/3)-approximation algorithms are

known for the same problem with distortion [BDG+05]. In general, approximation

algorithms for embedding are a central challenge in the field, and few are known

[HIL98, Iva00, B0̆3, ABFC+96, FCK96, BDHI04]. We also expect that our techniques

will extend to obtain approximation algorithms for more general ordinal embedding

problems.
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4.2 Definitions

In this section, we define ordinal embeddings and relaxation, as well as the standard

notions of metric embeddings and distortion.

Consider a finite metric D : P × P → [0,∞) on a finite point set P—the source

metric—and a class T of metric spaces (T, d) ∈ T where d is the distance function

for space T—the target metrics. An ordinal embedding (with no relaxation) of D into

T is a choice (T, d) ∈ T of a target metric and a mapping ϕ : P → T of the points

into the target metric such that every comparison between pairs of distances has the

same outcome: for all p, q, r, s ∈ P , D(p, q) ≤ D(r, s) if and only if d(ϕ(p), ϕ(q)) ≤
d(ϕ(r), ϕ(s)). Equivalently, ϕ induces a monotone function D(p, q) 7→ d(ϕ(p), ϕ(q)),

and for this reason ordinal embeddings are also called monotone embeddings. An

ordinal embedding with relaxation α of D into T is a choice (T, d) ∈ T and a mapping

ϕ : P → T such that every comparison between pairs of distances not within a

factor of α has the same outcome: for all p, q, r, s ∈ P with D(p, q)/D(r, s) > α,

d(ϕ(p), ϕ(q)) > d(ϕ(r), ϕ(s)). Equivalently, we can view a relaxation α as defining

a partial order on distances D(p, q), where two distances D(p, q) and D(r, s) are

comparable if and only if they are not within a factor of α of each other, and the

ordinal embedding must preserve this partial order on distances.

An ordinal embedding with relaxation 1 is a different notion from ordinal em-

bedding with no relaxation, because the former allows violation of equalities between

pairs of distances. Indeed, we will show in Section 4.6.1 that the two notions have

major qualitative differences. We define ordinal embedding with relaxation in this

way, instead of making the > α inequality non-strict, because otherwise our notion

of relaxation 1 would have to be phrased as “relaxation 1+ ǫ for any ǫ > 0”. Another

consequence is that we can define the minimum possible relaxation α∗ = α∗(D, T )

of an ordinal embedding of D into T , instead of having to take an infimum. (The

infimum will be realized provided the space T is closed.)

We pay particular attention to contrasts between ordinal embedding and “stan-

dard” embedding, which we call “metric embedding” for distinction. A contractive
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metric embedding with distortion c of a source metric D into a class T of target

metrics is a choice (T, d) ∈ T and a mapping ϕ : P → T such that no distance

increases and every distance is preserved up to a factor of c: for all p, q ∈ P ,

1 ≤ D(p, q)/d(ϕ(p), ϕ(q)) ≤ c. Similarly, we can define an expansive metric em-

bedding with distortion c with the inequality 1 ≤ d(ϕ(p), ϕ(q))/D(p, q) ≤ c. When

c = 1, these two notions coincide to require exact preservation of all distances; such

an embedding is called a metric embedding with no distortion or an isometric em-

bedding. In general, c∗ = c∗(D, T ) denotes the minimum possible distortion of a

metric embedding of D into T . (This definition is equivalent for both contractive and

expansive metric embeddings, by scaling.)

4.3 Comparison between Distortion and Relaxation

The following propositions relate α∗ and c∗.

Proposition 4.3.1 For any source and target metrics, α∗ ≤ c∗.

Proof: Consider a contractive metric embedding ϕ into (T, d) with distortion c.

We show that ϕ is also an ordinal embedding into (T, d) with relaxation α ≤ c.

Consider a pair of distances D(p, q) and D(p′, q′) with ratio D(p, q)/D(p′, q′) larger

than c. (Thus, in particular, we label p, q, p′, q′ so that D(p, q) > D(p′, q′).) Then

d(ϕ(p), ϕ(q))/d(ϕ(p′), ϕ(q′)) ≥ D(p, q)/(cD(p′, q′)) by expansiveness of D(p, q) and

distortion of D(p′, q′). Thus d(ϕ(p), ϕ(q))/d(ϕ(p′), ϕ(q′)) > 1, so d(ϕ(p), ϕ(q)) >

d(ϕ(p′), ϕ(q′)) as desired.

Next we show that c∗ and α∗ can have an arbitrarily large ratio, even when the

target metric is the real line.

Proposition 4.3.2 Embedding a uniform metric (where D(p, q) = 1 for all p 6= q)

into the real line has c∗ = n− 1 and α∗ = 1.

Proof: The mapping ϕ(p) = 0, for all p ∈ P , is an ordinal embedding with no

relaxation, because every distance remains equal (albeit 0). Any expansive metric
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embedding into the real line must have distance at least 1 between consecutively em-

bedded points, so the entire embedding must occupy an interval of length at least

n − 1. The two points embedded the farthest away from each other therefore have

distance at least n − 1, for a distortion of at least n − 1. On the other hand, any

embedding in which consecutively embedded points have distance exactly 1 has dis-

tortion n− 1.

Next we give a general bound on α∗ that is essentially always finite. Define the

diameter diam(D) of a metric D to be the ratio of the maximum distance to the

minimum distance. (If the minimum distance is zero and the maximum distance is

positive, then diam(D) =∞; if both are zero, then diam(D) = 1.)

Proposition 4.3.3 For any source metric D and any target metrics, α∗ ≤ diam(D).

Proof: The mapping ϕ(p) = 0, for all p ∈ P , has ordinal relaxation diam(G),

because all non-equal comparisons between distances are violated, and the largest

ratio between any two distances is precisely diam(D).

No such general finite upper bound exists for c∗, as evidenced by “cut metrics”.

A cut metric is defined by a partition P = A∪B of the point set P into two disjoint

sets A and B. The metric assigns a distance of 0 between pairs of points in A and

pairs of points in B, and assigns a distance of 1 between other pairs of points. If the

source metric D has no zero distances and the target metrics are the cut metrics, then

c∗ =∞, because some distance must become 0 which requires infinite distortion.

In contrast, α∗ remains at most diam(D), and in some sense measures the quality

of a clustering of the points into two clusters. Furthermore, the optimal α∗ and

clustering can be computed efficiently:

Proposition 4.3.4 The minimum-relaxation ordinal embedding of a specified metric

into a cut metric can be computed in polynomial time.

Proof: First we guess the optimal relaxation α∗ among O(n4) possibilities (the

ratio of the distance between any two pairs of points). Second we guess a pair (p, q)

of points on different sides of the cut and with minimum distance D(p, q). Thus all
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pairs (r, s) of points with smaller distance D(r, s) < D(p, q) must have r and s on

the same side of the cut. Also, if there is any ordinal embedding of relaxation α∗,

there cannot be pairs (r, s) of points with distance larger by a factor of α∗, i.e., with

D(r, s) > αD(p, q), because such distances will be mapped to a distance smaller or

equal to 1, the mapped distance of (p, q). Similarly, there cannot be pairs (r, s) and

(r′, s′) of points with distance less than D(p, q) and with D(r, s) > αD(r′, s′), because

those pairs are forced to map to equal distances of 0. Finally, all pairs (r, s) of points

with D(p, q) ≤ D(r, s) ≤ αD(p, q) must have r and s on different sides of the cut if

there is another distance D(r′, s′) < D(r, s)/α, and otherwise are unconstrained.

All constraints of the form “r and s must be on the same side of the cut” and

“r and s must be on different sides of the cut” can be phrased as a 2-SAT instance.

Each point r has a variable xr which is 0 if it placed in set A and 1 if it placed in

set B. Each constraint thus has the form xr = xs or xr 6= xs, which can be phrased

in 2-CNF. Thus we can find an ordinal embedding into a cut metric with relaxation

at most the guessed value of α∗, if one exists.

Next we consider the related problem of ordinal embedding into the real line,

which is a generalization of cut metrics. First we show that we can decide whether

α∗ = 1 in this case. The algorithm requires more sophistication (namely, guessing)

than the trivial algorithm for metric embedding with distortion 1, where one can

incrementally build an embedding in any Euclidean space in linear time.

Proposition 4.3.5 In polynomial time, we can decide whether a given metric can be

ordinally embedded into the line with relaxation 1.

Proof: The algorithm guesses the leftmost point p and greedily places every point

q at position D(p, q) on the line. (In particular, the algorithm places p at position 0.)

It is easy to show that this embedding has ordinal relaxation 1 whenever such an

embedding exists.

Next we consider the worst case for ordinal embedding into the line. We show

in particular that the cycle requires large relaxation. The cycle also requires large

distortion into the line, but the proof technique for ordinal relaxation is very different
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from the usual “packing argument” that suffices for metric distortion.

Proposition 4.3.6 Ordinal embedding of the shortest-path metric of an unweighted

cycle of even length n into the line requires relaxation at least n/2.

Proof: Suppose to the contrary that there is an ordinal embedding ϕ of the cycle

into the line with relaxation less than n/2. Label the vertices of the cycle 1 through n

in cyclic order. Assume without loss of generality that ϕ(1) < ϕ(n/2 + 1). We must

also have ϕ(2) < ϕ(n/2 + 1), because otherwise |ϕ(2)− ϕ(1)| ≥ |ϕ(n/2 + 1)− ϕ(1)|,
contradicting that α < n/2. Similarly, ϕ(2) < ϕ(n/2+2), because otherwise |ϕ(n/2+

2)−ϕ(n/2 + 1)| ≥ |ϕ(n/2 + 2)−ϕ(2)|, again contradicting that α < n/2. Repeating

this argument shows that ϕ(3) < ϕ(n/2+3), etc., and finally that ϕ(n/2+1) < ϕ(1),

a contradiction.

Section 4.5 shows that some trees also require Ω(n) ordinal relaxation into the

line.

4.4 ℓp Metrics are Universal

In this section we show that every distance matrix can be ordinally embedded without

relaxation into ℓp space of a polynomial number of dimensions, for any fixed 1 ≤ p ≤
∞. This result is surprising in comparison to metric embeddings. Every metric

can be embedded into ℓp using O(lgn) distortion [Bou85, LLR95], and in the worst

case Ω(lg n) distortion is necessary for any p < ∞, as proved in [LLR95] for p = 2

and in [Mat97] for all other values of p. In particular, the shortest-path metric of a

constant-degree expander graph requires Ω(lg n) distortion.

Theorem 4.4.1 Every distance matrix can be ordinally embedded without relaxation

into O(n5)-dimensional ℓp space, for any fixed 1 ≤ p ≤ ∞.

The same result was established independently in [BL04] using an algebraic proof.

Specifically, they show that every distance matrix can be ordinally embedded into

(n − 1)-dimensional Euclidean space, and then use the property that any Euclidean
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metric can be isometrically embedded into any ℓp space with at most
(

n
2

)

dimensions.

In constrast, our proof is purely combinatorial.

We can also reduce the number of dimensions for some values of p. For example,

for p = 2, a simple rotation reduces the number of dimensions to n− 1.

Our proof proceeds in two steps. First we show that 0/1 Hamming metrics are

universal in the same sense as Theorem 4.4.1. To conclude the proof, we note that

there is an ordinal embedding without relaxation from 0/1 Hamming metrics into

any ℓp metric. In fact, the pth root of the distances in a 0/1 Hamming metric can be

metrically embedded without distortion into ℓp with the same number of dimensions.

This second part is merely an observation, so the main work is in showing that 0/1

Hamming metrics are universal:2

Lemma 4.4.2 Every distance matrix can be ordinally embedded without relaxation

into a 0/1 Hamming metric with O(n5) dimensions. In other words, any desired

ordering on the distances between pairs of n points can be realized by a 0/1 Hamming

metric on those n points.

Proof: Given a partial order P on a set of distances, we construct a 0/1 Hamming

metric H such that Pi,j < Pk,l implies Hi,j < Hk,l. If P is non-total, then we can take

any topological sort of P and realize it as a Hamming metric. This ordinal embedding

will satisfy the original partial order, so from now on, we assume that P is a total

order. Because P is an order on distances, defined by pairs of points, we can define

it as a sequence of pairs P = [(a0, b0), (a1, b1), . . . , (a(n
2)
, b(n

2)
)], where in each pair, we

arbitrarily select which node is a and which is b.

We now must produce a 0/1 vector for each point of the space so that the Hamming

metric induced preserves the order P. We assume that n is a power of 2; otherwise

we can simply round n up to the next power of two.

2Note that finite 0/1 Hamming metrics and finite Hamming metrics are essentially the same,
because one can be converted into the other with a dimension blowup that is multiplicative in the
number of points. Thus our result could have been established with general Hamming metrics.
However, our construction directly yields a 0/1 Hamming metric, so we do not need this extra
conversion detail.
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Our main tool will be Hadamard matrices, defined as follows. Let H0 = [0], and

Hi−1 =





Hi Hi

Hi Hi





where Hi is the bitwise negation of Hi. Notice that the first row is the all-0 vector,

denoted ~0. Also, each row other than the first row consists of half 0s and half 1s.

More strikingly, any two rows of Hi have Hamming distance 2i−1, that is, they differ

in half their positions. Finally, ~1 has Hamming distance 2i−1 from any row except

the first row, with which it has Hamming distance 2i.

We generate a set of dimensions that code for each distance Pi and concatenate

all the dimensions at the end. To code for distance Pi = (ai, bi), we set ai’s bits to

be 0in and bi’s bits to be 1in. Every other point in the space besides these two gets a

distinct row from the Hadamard matrix, repeated i times. Now the induced distances

are in/2 for any pair of points except for ai and bi, which are at distance in.

Let the total number of dimensions be d = n
(

n
2

)

(
(

n
2

)

+ 1)/2.

Consider now the distances between any pair a and b resulting from the concate-

nation of all d dimensions, and assume that a = ai and b = bi, that is, their pairwise

distance is the ith in the list. Then their pairwise distance is (d + in)/2. Thus, this

embedding assigns to the ith smallest distance in P the ith smallest distance in the

Hamming metric.

4.5 Approximation Algorithms for Unweighted Trees

into the Line

In this section, we give a 3-approximation algorithm for ordinally embedding the

shortest-path metric induced by an unweighted tree into the line with approximately

minimum relaxation. In contrast, the best approximation algorithm known for met-

rically embedding trees into the line with approximately minimum distortion is a

recently discovered O(n1/3)-approximation [BDG+05].
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First we find a structure for proving lower bounds on the optimal relaxation:

Lemma 4.5.1 Given n such that 3 divides n− 1, ordinal embedding of the shortest-

path metric of an unweighted 3-spider with (n − 1)/3 vertices on each leg of the

spider (i.e., a 3-star with each edge subdivided into a path of (n−1)/3 edges) requires

relaxation at least (n− 1)/3.

Proof: Suppose to the contrary that there is an ordinal embedding ϕ of the 3-

spider into the line with relaxation α < (n − 1)/3. Label the vertices as follows: 0

denotes the root, and a1, . . . , a(n−1)/3, b1, . . . , b(n−1)/3, and c1, . . . , c(n−1)/3 denote the

nodes on the legs of the spider in order of their distance from the root 0. Because

α < (n− 1)/3, |ϕ(a(n−1)/3)− ϕ(0)| > 0, and the same holds for b(n−1)/3 and c(n−1)/3.

Because the spider has three legs, two of a(n−1)/3, b(n−1)/3, c(n−1)/3 are on the same

side of the root 0 on the line. Without loss of generality, assume that the a and b legs

are both to the right of 0, and that ϕ(a(n−1)/3) ≥ ϕ(b(n−1)/3) > ϕ(0). Let k be such

that ϕ(ak) < ϕ(b(n−1)/3) < ϕ(ak+1) (where the label a0 refers to the root 0). Such a

k exists because α < (n − 1)/3, so ϕ(ak) 6= ϕ(b(n−1)/3) for all k, and because ϕ(0) <

ϕ(b(n−1)/3) < ϕ(a(n−1)/3). It follows that |ϕ(b(n−1)/3)− ϕ(ak+1)| < |ϕ(ak+1)− ϕ(ak)|.
In contrast, in the 3-spider graph, b(n−1)/3 and ak+1 have distance at least (n− 1)/3,

and ak+1 and ak have distance 1. Therefore α > (n− 1)/3.

Definition 15 Given a tree T , a tripod (a, b, c) is the union of shortest paths in T

connecting every pair of vertices among {a, b, c}. The root r of the tripod is the

common vertex among all three shortest paths. The length of the tripod is k =

min{D(r, a), D(r, b), D(r, c)}.

Any tripod of length k induces a 3-spider with k vertices on each leg, by truncating

all longer arms of the tripod to length k. Thus by Lemma 4.5.1, any tree with a tripod

of length k must have ordinal relaxation at least k. Using this lower bound, we obtain

a constant-factor approximation algorithm.

Theorem 4.5.2 Given a tree T , there is an ordinal embedding ϕ : T → R of T into

the line with relaxation 2k + 1, where k is the length of the largest tripod of T . The
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embedding can be computed in polynomial time.

Proof: If there are at most two leaves in the tree T , then T can be trivially

embedded into the line without distortion or relaxation. Otherwise, T has a tripod.

Let (A,B,C) be a longest tripod, let r be its root, and let k be its length. We

view T as rooted at r. Let (a, b, c) be a tripod rooted at r that maximizes D(r, a) +

D(r, b) +D(r, c). This tripod corresponds to taking the longest three paths starting

from different neighbors of r. In particular all three paths have length at least k, so

the tripod (a, b, c) has length k. Relabel {a, b, c} so that D(r, a) = k.

Claim 4.5.3 For any d ∈ {a, b, c}, for any d′ 6= r on the path from r to d, and for

any descendant x of d′, D(d′, x) ≤ D(d′, d).

Proof: Assume, to the contrary, that D(d′, x) > D(d′, d). If d = a, then there would

be a larger tripod (x, b, c) rooted at r. Otherwise, assume without loss of generality

that d = b. Then there would be a tripod (a, x, c), of the same length, and such that

D(r, a) +D(r, x) +D(r, c) > D(r, a) +D(r, b) +D(r, c), a contradiction.

Claim 4.5.4 For any d ∈ {b, c}, for any d′ 6= r on the path from r to d, and for any

descendant x of d′, such that the path from x to d′ intersects the path from r to d only

at vertex d′, D(d′, x) ≤ k.

Proof: Suppose to the contrary that D(d′, x) > k. By the definition of d′, D(d′, a) >

D(r, a) = k. By Claim 4.5.3, D(d′, d) ≥ D(d′, x). If D(d′, d) ≤ k, then D(d′, x) ≤
D(d′, d) ≤ k, a contradiction. If D(d′, d) > k, then the tripod (x, d, a) (rooted at d′)

has length at least k + 1, which is again a contradiction.

Now we construct the embedding ϕ as follows. For every vertex x on the shortest

path between b and c, we contract every subtree that intersects the path only at x

into the single vertex x. The resulting graph is the same path from b to c, but where

each vertex represents several vertices of the original graph. We embed this path into

the line, placing the ith vertex along the path at coordinate i. This embedding places

several vertices of the original graph at the same point in the line.
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We claim that the depth of each contracted tree is at most k. For each subtree

rooted at r (e.g., the one containing a), no vertex x in the subtree can have D(r, x) > k

because then we could have chosen that vertex as a and increase the objective function

D(r, a) +D(r, b) +D(r, c), a contradiction. For each subtree rooted at another node

b′ 6= r on the path from b to c, we can apply Claim 4.5.4 and obtain that D(b′, x) ≤ k

for any vertex x in the subtree rooted at b′. Therefore the depth of each contracted

tree is at most k.

Finally we claim that the ordinal relaxation of this mapping is at most 2k + 1.

Consider two vertices x and y belonging to contracted subtrees rooted at s and t,

respectively. Their original distance is at most 2k + D(s, t), and their new distance

is D(s, t). Therefore the distance changes order with respect to distances at least

D(s, t), for a worst-case ratio of (2k+D(s, t))/D(s, t). This ratio is maximized when

D(s, t) = 1 in which case it is 2k + 1.

Corollary 4.5.5 There is a polynomial-time algorithm to find ϕ of Theorem 4.5.2.

The algorithm is a 3-approximation algorithm for ordinally embedding trees into a

line.

Proof: The proof of Theorem 4.5.2 is constructive, thus it gives an algorithm.

Since the length of the largest tripod is a lower bound of embedding ordinally the

tripod into a line, we obtain that the algorithm is a (2+1/k)-approximation algorithm.

4.6 Ultrametrics

In this section we establish several results about ordinal embedding when the source

metric or the target metrics are ultrametrics.

4.6.1 Ultrametrics into ℓp with Logarithmic Dimensions

First we demonstrate that ultrametrics can be ordinally embedded into O(lgn)-

dimensional ℓp space, for any fixed 1 ≤ p ≤ ∞, with relaxation 1. Here we ex-
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ploit the minor difference between “relaxation 1” and “no relaxation”—that equality

constraints can be violated—because, as described in the introduction, any ordinal

embedding without relaxation of any ultrametric into Euclidean space requires n− 1

dimensions. Thus the ordinal dimension of an ultrametric is “just barely” n− 1; the

slightest relaxation allows us to obtain a much better embedding. Our result also con-

trasts metric embeddings where ultrametrics can be embedded into Euclidean space

with 1 + ǫ distortion, but such an embedding requires ǫ−2 lg n dimensions [BM04a].

The number of dimensions in our ordinal embeddings is independent of any such ǫ.

Our construction is based on monotone stretching of the discrepancy between

different distances:

Lemma 4.6.1 For any k > 1, and for any ultrametric M = (P,D), there is an

ultrametric M ′ = (P,D′) such that, for any p, q, r, s ∈ P , if D(p, q) = D(r, s), then

D′(p, q) = D′(r, s), and if D(p, q) > D(r, s), then D′(p, q) ≥ kD′(r, s).

Proof: Because M is an ultrametric, we can construct a weighted tree T , with P

forming the set of leaves, such that the weights are nondecreasing along any path of T

starting from the root. Moreover, for any u, v ∈ P , the ultrametric distance D(u, v)

is equal to the maximum weight of an edge along the path from u to v in T .

For u, v ∈ P , define r(D(u, v)) = i where D(u, v) is equal to the ith smallest

distance in M . Consider now the weighted tree T ′ obtained from T by replacing an

edge of weight w by an edge of weight kr(w). Let M ′ be the resulting ultrametric

induced by T ′. If D(p, q) = D(r, s), then r(D(p, q)) = r(D(r, s)), so D′(p, q) =

D′(r, s). Finally, if D(p, q) > D(r, s), then r(D(p, q)) ≥ r(D(r, s)) + 1, so D′(p, q) ≥
kD′(r, s).

We combine this lemma with a result for the metric case:

Lemma 4.6.2 (Bartal and Mendel [BM04a]) For any 1 ≤ p ≤ ∞, any n-point

ultrametric can be metrically embedded into O(ǫ−2 lg n)-dimensional ℓp space with

distortion at most 1 + ǫ.

Now we are ready to prove the main result of this subsection:
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Theorem 4.6.3 For any 1 ≤ p ≤ ∞, any n-point ultrametric can be ordinally em-

bedded into O(lgn)-dimensional ℓp space with relaxation 1.

Proof: Given an ultrametric M = (P,D), by Lemma 4.6.1, we can obtain an

ultrametric M ′ = (P,D′) such that, for any p, q, r, s ∈ P , if D(p, q) = D(r, s), then

D′(p, q) = D′(r, s), and if D(p, q) > D(r, s), then D′(p, q) ≥ 2D′(r, s). Applying

Lemma 4.6.2 with ǫ = 1/2, we obtain a contractive metric embedding ϕ of P into

O(lgn)-dimensional ℓp space such that, for any p, q, r, s ∈ P , if D(p, q) > D(r, s),

then ‖ϕ(p) − ϕ(q)‖ ≥ 2
3
D′(p, q) ≥ 4

3
D′(r, s) ≥ 4

3
‖ϕ(r) − ϕ(s)‖. Therefore ϕ is an

ordinal embedding with relaxation 1.

4.6.2 Arbitrary Distance Matrices into Ultrametrics

In this subsection, we give a polynomial-time algorithm for computing an ordinal em-

bedding of an arbitrary metric into an ultrametric with minimum possible relaxation.

We will show that the optimal ordinal embedding of a distance matrix M into

an ultrametric is the subdominant of M [FKW95]. One recursive construction of the

subdominant is as follows. First, we compute a partition P = P1 ∪ P2 ∪ · · · ∪ Pk, for

some k ≥ 2, such that the minimum distance between any Pi and Pj is maximized.

Such a partition can be found by computing a minimum spanning tree T of M , and

partitioning the points by removing all the edges of T of maximum length. Let ∆

be the maximum distance between any two points in P . We create a hierarchical

tree representation for an ultrametric by starting with a root vP and k children

vP1 , . . . , vPk
. The length of the edge {vP , vPi

} is equal to ∆ for each i ∈ {1, 2, . . . , k}.
We recursively compute hierarchical tree representations for the metrics induced by

the point sets P1, P2, . . . , Pk, and then we merge these trees by identifying, for each

i ∈ {1, 2, . . . , k}, the root of the tree for Pi with the node vPi
. In fact this entire

construction can be carried out with a single computation of the minimum spanning

tree, and thus takes linear time.

Lemma 4.6.4 Let ∆ = maxp,q∈P D(p, q) and let δ be the minimum distance between

two points in different sets Pi and Pj. Then any ordinal embedding has relaxation at
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least ∆/δ.

Proof: Suppose that the maximum distance ∆ is attained by points u, v with

u ∈ Pi and v ∈ Pj, where i 6= j. Consider an optimal ordinal embedding ϕ of

M into a hierarchical tree representation T of an ultrametric. Thus the distance

between two leaves p and q is equal to the maximum length of an edge along the

unique path between p and q. No matter how ϕ splits P into subsets at the root

of T , there exist r, s ∈ P such that D(r, s) = δ and the path from r to s in T visits

the root of T . Thus the path from r to s passes through the maximum edge in

T . Hence, the maximum distance along the path between u and v in T cannot be

larger than the maximum distance along the path between r and s in T . Therefore

d(ϕ(u), ϕ(v)) ≤ d(ϕ(r), ϕ(s)), while D(u, v) = ∆ > δ = D(r, s), so the relaxation is

at least ∆/δ.

Theorem 4.6.5 Given any distance matrix M , we can compute in polynomial time

an optimal ordinal embedding of M into an ultrametric.

Proof: Let ϕ be the ordinal embedding of M = (P,D) computed by the algorithm,

with a hierarchical tree representation T . The maximum relaxation α of ϕ is attained

for some p, q, r, s ∈ P such that D(p, q) ≥ αD(r, s) and d(ϕ(p), ϕ(q)) < d(ϕ(r), ϕ(s)).

It follows that there exists an internal node v of T , with children v1 and v2, such

that leaves p and q are descendants of v1, while only one of the leaves r or s is a

descendant of v1. Assume without loss of generality that r is a descendant of v1 and

s is a descendant of v2.

Consider the recursive call of the algorithm on a subset of points P ′ ⊆ P in which

the node v was created. Because r and s are in different subtrees of v, it follows that,

in the partition of the set P ′ of points computed by the algorithm, the minimum

distance between distinct sets is at most D(r, s). On the other hand, the maximum

distance between pairs of points in P ′ is at least D(p, q). Thus, by Lemma 4.6.4,

the optimal relaxation for ordinal embedding of M into an ultrametric is at least

D(p, q)/D(r, s) ≥ α.

By a similar argument it can be shown that the same algorithm also computes
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a metric embedding of M into an ultrametric with minimum possible distortion.

Furthermore, the distortion is equal to the relaxation in this embedding. In the next

section we show that ultrametrics are essentially the only case where this can happen

universally.

4.6.3 When Distortion Equals Relaxation

Finally we show that, in a certain sense, ultrametrics are the only target metrics that

have equal values of α∗ and c∗, or even a universally bounded ratio between α∗ and c∗.

Theorem 4.6.6 If a set T of target metrics is closed under inclusion (i.e., closed

under taking the submetric induced on a subset of points), and there is a constant C

such that every distance matrix D has c∗/α∗ ≤ C (when embedding D into T ), then

every metric in T is an ultrametric.

Proof: Consider any metric M in T . We claim thatM has more than one diameter

pair. Suppose to the contrary that only p and q attain the maximum distance in M .

Let M+d be the distance matrix identical to M except for M+d(p, q) = M(p, q) + d.

Let d be any positive real greater than the sum of the second- and third-largest

distances. Then M+d is not in T because it violates the triangle inequality and T is

a family of metrics. Because no other distance in M is equal to M(p, q), M+d can be

ordinally embedded with no relaxation into T simply by taking M . However, M+d

cannot be metrically embedded into T without distortion, because M+d is not in T .

Furthermore M+cd cannot be metrically embedded into T with distortion less than c,

because any contractive metric embedding must reduce the distance between p and q

by a factor of c. Therefore the ratio between the minimum metric distortion c∗ and

the minimum ordinal relaxation α∗ cannot be bounded.

Now by inclusion, any submetric of M induced by three points is also in T , and

therefore has a non-unique maximum edge. Thus all triangles in M are tall isosceles,

which is one characterization of M being an ultrametric.

In fact, this theorem needs only that the set T of target metrics is closed under

taking the induced metric on any triple of points.
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4.7 Worst Case of Unweighted Trees into Euclidean

Space

In this section, we consider the worst-case relaxation required for ordinal embedding

of the shortest-path metric of an unweighted tree T into d-dimensional ℓ2 space. Our

work is motivated by that of Gupta [Gup00b] and Babilon, Matoušek, Maxová, and

Valtr [BMMV02]. We show that, for any d ≥ 2, and for any unweighted tree T on n

nodes, α∗ = Õ(n1/d). We complement this result by exhibiting a family of trees with

optimal ordinal relaxation Ω(n1/(d+1)). In contrast, the best bounds on the worst-

case distortion required are Õ(n1/(d−1)) and Ω(n1/d) [Gup00b]. These ranges overlap

at the endpoint of Θ̃(n1/d), but it seems that ordinal embedding and metric embedding

behave fundamentally differently, in particular because different proof techniques are

required for both the upper and lower bounds.

First we prove the upper bound. At a high level, the algorithm finds nodes that

can be contracted to a single point, which can be an effective ordinal embedding,

unlike metric embedding where it causes infinite distortion.

Theorem 4.7.1 Any weighted tree can be ordinally embedded into d-dimensional ℓ2

space with relaxation Õ(n1/d).

Proof: Let T = (V (T ), E(T )) be an unweighted tree with |V (T )| = n. We show

how to obtain an ordinal embedding of T into d-dimensional ℓ2 space with relaxation

Õ(n1/d).

We construct a new tree T ′ as follows. Initially, we set T ′
0 := T . For i = 1, . . . , n1/d,

we repeat the following process: Set T ′
i := T ′

i−1. For any leaf v of T ′
i−1, we remove v

from T ′
i . Let T ′ := T ′

n1/d.

Define the function p : V (T ) → V (T ′), such that for any v ∈ V (T ) \ V (T ′), p(v)

is the node in V (T ′), which is closest to v, and for any v ∈ V (T ′), p(v) = v. It is easy

to see that for every leaf v of T ′, there are at least n1/d nodes u ∈ V (T ) \ V (T ′), with

p(u) = v. Thus, the number of leaves of T ′ is at most n
d−1

d .

It follows that using Gupta’s algorithm [Gup00b], we can compute an expansive
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metric embedding ϕ′ of T ′ into d-dimensional ℓ2 space with distortion at most kn1/d,

for some k = polylog(n). To obtain an embedding ϕ of T , we simply set ϕ(v) =

ϕ′(p(v)) for each v ∈ V (T ).

It remains to show that ϕ′ has ordinal relaxation Õ(n1/d). Let v1, v2, v3, v4 ∈ V (T ),

with v3 6= v4 and

dT (v1, v2) > (2 + k)n1/ddT (v3, v4).

We have

‖ϕ(v1)− ϕ(v2)‖ = ‖ϕ′(p(v1))− ϕ′(p(v2))‖

≥ dT ′(p(v1), p(v2))

≥ dT (v1, v2)− 2n1/d

> (2 + k)n1/ddT (v3, v4)− 2n1/d

≥ kn1/ddT (v3, v4)

≥ kn1/ddT ′(p(v3), p(v4))

≥ ‖ϕ′(p(v3))− ϕ′(p(v4))‖

= ‖ϕ(v3)− ϕ(v4)‖.

Thus, we obtain that ϕ has ordinal relaxation at most (2 + k)n1/d = Õ(n1/d).

Next we prove the worst-case lower bound. The main novelty here is a new packing

argument for bounding relaxation. Let F (m,L) denote the m-spider with arms of

length L, that is, an m-star with each edge refined into a path of length L.

Lemma 4.7.2 Any ordinal embedding of F (m,L) into d-dimensional ℓ2 space re-

quires relaxation Ω(min{L,m1/d}).

Proof: Let T = F (m,L), and let r ∈ V (T ) be the only vertex of T with degree

greater than 2. For any i, with 0 ≤ i ≤ L, let Ui = {v ∈ V (T ) | dT (r, v) = i}.
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Consider an optimal embedding ϕ : V (T )→ Rd with relaxation α. We define

µi = min
u,v∈V (T )

{‖ϕ(u)− ϕ(v)‖ | dT (u, v) = i},

λi = max
u,v∈V (T )

{‖ϕ(u)− ϕ(v)‖ | dT (u, v) = i}.

Observe that, if µ2L = 0, then there exist u, v ∈ UL such that ϕ(u) = ϕ(v). It follows

that, if α < 2L, then for any {x, y} ∈ E(T ), ϕ(x) = ϕ(y), which implies that all the

vertices are mapped to the same point, and thus α = Ω(L).

It remains to show that the assertion is true in the case µ2L > 0. Consider the

nodes of UL. For any u, v ∈ UL, we have dT (u, v) = 2L, and thus ‖ϕ(u)−ϕ(v)‖ ≥ µ2L.

For any v ∈ UL, let Bv be the ball of radius µ2L/2 centered at ϕ(v). It follows that,

for any u, v ∈ UL, the balls Bu, Bv can intersect only on their boundary. Thus,

∣

∣

∣

∣

∣

⋃

v∈UL

Bv

∣

∣

∣

∣

∣

=
∑

v∈UL

|Bv|

= Ω(mµd
2L)

By a packing argument, we obtain that there exist u, v ∈ UL such that ‖ϕ(u)−ϕ(v)‖ =

Ω(m1/dµ2L), which implies

λ2L = Ω(m1/dµ2L). (4.1)

Now consider two nodes u, v ∈ UL such that ‖ϕ(u)− ϕ(v)‖ = λ2L, and let p be the

path from u to v in T . It follows that there exist nodes x, y ∈ p with dT (x, y) = 2L/α

and ‖ϕ(x)− ϕ(y)‖ ≥ λ2L/α. Thus

λ2L/α ≥ λ2L

α
. (4.2)

Also, by the definition of the ordinal relaxation, we have

µ2L > λ2L/α. (4.3)
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Combining (4.1), (4.2), and (4.3), we obtain αλ2L/α = Ω(m1/dµ2L) = Ω(m1/dλ2L/α).

Thus we have shown that, if µ2L > 0, then α = Ω(m1/d). The lemma follows.

Theorem 4.7.3 For any n > 0 and any d ≥ 2, there is a tree T on n nodes for

which every ordinal embedding has relaxation Ω(n1/(d+1)).

Proof: The theorem follows from Lemma 4.7.2, for T = F (nd/(d+1), n1/(d+1)).

4.8 Arbitrary Metrics into Low Dimensions

By Lemma 4.3.1, a general O(lgn) upper bound on relaxation carries over from metric

embeddings of any n-point metric space into O(lgn)-dimensional Euclidean space,

using theorems of Bourgain and of Johnson and Lindenstrauss. For metric distortion,

this bound is tight [LLR95], but one might suspect that the ordinal relaxation can be

smaller. Here we show that it cannot be much smaller: some n-point metric spaces

require relaxation Ω(log n/ log log n). This claim is a special case of the following

result.

Theorem 4.8.1 There is an absolute constant c > 0 such that, for every d and n,

there is a metric space T on n points such that the relaxation of any ordinal embedding

of T into d-dimensional Euclidean space is at least log n
log d+log log n+c

− 1.

The proof is based on two known results. The first is a bound of Warren on the

number of sign patterns of a system of real polynomials. The second is the existence

of dense graphs with no short cycles. We first state these two results.

Let Pj = Pj(x1, . . . , xℓ), j = 1, . . . , m, be m real polynomials. For a point u =

(u1, . . . , uℓ) ∈ Rℓ, the sign pattern of the Pj’s at u is the m-tuple (ǫ1, . . . , ǫm) ∈
(−1, 0, 1)m, where ǫj = sign Pj(u). Let s(P1, P2, . . . , Pm) denote the total number of

sign patterns of the polynomials P1, P2, . . . , Pm, as u ranges over all points of Rℓ.

The following result is derived in [Alo95] as a slight modification of a theorem of

Warren [War68].
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Theorem 4.8.2 Let P1 . . . Pm be m real polynomials in ℓ real variables, and suppose

the degree of each Pj does not exceed k. If 2m ≥ ℓ, then s(P1 . . . Pm) ≤ (8ekm/ℓ)ℓ.

The following statement follows from a result of Erdős and Sachs [ES63], and can

be also proved directly by a simple probabilistic argument.

Lemma 4.8.3 For every g ≥ 3 and every n ≥ 3, there are (connected) graphs on n

vertices with at least 1
4
n1+1/g edges, and with no cycle of length at most g.

We note that there are slightly better known results based on certain algebraic con-

structions, but for our purpose here the above estimate suffices.

We can now prove Theorem 4.8.1. Throughout the proof and the rest of the

section, we assume that n is large, whenever this is needed, and omit all floor and

ceiling signs whenever these are not crucial.

Proof:[of Theorem 4.8.1] Without trying to optimize the constants, define g =

log n
log d+log log n+5

. We will show that some n-point metric spaces require relaxation at

least g − 1. Without loss of generality, assume g − 1 is bigger than 1, as otherwise

there is nothing to prove. By Lemma 4.8.3, there is a graph G = (V,E) on a set

V = {1, 2, . . . , n} of n labeled vertices, with m ≥ 1
4
n1+1/g > 7nd logn edges, and with

no cycles of length at most g. For every subset E ′ ⊂ E of precisely m/2 edges, the

subgraph (V,E ′) of G defines a metric space T (E ′) on the set V (if the subgraph

is disconnected, some distances can be defined to be infinite; alternatively, we can

fix a spanning tree in G and include it in all subgraphs to make sure they are all

connected). This gives us a collection of 2(1+o(1))m metric spaces on V , with the

following property.

(*) For every two distinct spaces (T, d) and (T ′, d′) in the collection, there are two pairs

of points x, y and z, w so that d(x, y) = 1 and d′(x, y) > g − 1, whereas d′(z, w) = 1

and d(z, w) > g − 1.

Indeed, this follows from the fact that, for every two distinct subgraphs in our

collection, there is an edge {x, y} belonging to the first one and not to the second,

and vice versa. As the shortest cycle in G is of length exceeding g, the claim in (*)
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follows.

Fix a space T is our collection, and let ϕT be a minimum relaxation embedding of

it into d-dimensional Euclidean space. Let ϕT (i) = (xT
i,1, . . . , x

T
i,d). Then the square of

the Euclidean distance between each two points in the embedding can be expressed

as a polynomial of degree 2 in the dn variables xT
i,j. The difference between two

such squares of distances is thus also a polynomial of degree 2 in these variables. It

follows that the order of all
(

n
2

)

distances is determined by the signs of
(

n
2

)2
< n4/4

polynomials of degree 2 each, in dn variables. By Theorem 4.8.2, the total number

of such orders is at most

(

16en4

4dn

)dn

≤ n(3+o(1))dn = 2(3+o(1))nd log n.

This is smaller than the number of spaces in our collection, and hence, by the pi-

geonhole principle, there are two distinct spaces T and T ′ in our collection, so that

the orders of the distances in their embeddings are the same. This, together with

(*), implies that the relaxation in at least one of these embeddings is at least g − 1,

completing the proof.

The last proof easily extends to embeddings into d-dimensional ℓp space for any

even integer p. The only difference is that, in this case, the pth power of the distance

between a pair of given points in the embedding is a polynomial of degree p in the

dn variables describing the embedding. Working out the computation in the proof

above, this yields the following result.

Theorem 4.8.4 There is an absolute constant c > 0 such that, for every d and n,

and for every even integer p, there is a metric space T on n points such that the

relaxation in any ordinal embedding of T into d-dimensional ℓp space is at least

log n
log d+log(log n+log p)+c

− 1.

The above argument, combined with an additional trick, can in fact be extended

to handle ordinal embeddings into d-dimensional ℓp space for odd integers p, as well

as embeddings into d-dimensional ℓ∞ space.
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Theorem 4.8.5 (i) For every n ≥ d, there is a metric space T on n points such that

the relaxation in any ordinal embedding of T in d-dimensional ℓ∞ space is at least

log n
log d+log log n+O(1)

− 1.

(ii) For every n ≥ d, and for every odd positive integer p, there is a metric space T

on n points such that the relaxation of any ordinal embedding of T into d-dimensional

ℓp space is at least log n
log(2d2+3d log n+d log p+O(d))

− 1.

Proof: As before, the result is proved by a counting argument: we prove that the

number of possible orders between all distances in a set of n points in the relevant

spaces is not too large, and use the fact that there are many significantly different

metric spaces on n points, concluding that for two such metric spaces the embed-

ding orders the distances identically, and hence deriving the required lower bound on

relaxation.

(i) We start by bounding the number of possible orders of all distances in a set X

of n points in d-dimensional ℓ∞ space. Given such a set, define, for each ordered set

(x, y, z, w) of (not necessarily distinct) four points of X, and for each two indices i, j

in {1, 2, . . . , d}, the following linear polynomial in the dn variables representing the

coordinates of the points: (xi − yi) − (wj − zj). By Theorem 4.8.2 these d2n4 poly-

nomials have at most (O(1)dn3)dn ≤ 2(4+o(1))dn log n sign patterns. (In fact, because

the polynomials here are linear, there is a slightly better, and simpler, estimate than

the one provided by Warren’s Theorem here—see [Har67]—but the asymptotic of the

logarithm in this estimate is the same.) We claim that the signs of all these poly-

nomials determine completely the order on all the
(

n
2

)

distances between pairs of the

points. Indeed, the signs of the polynomials (xi− yi)− (xj − yj), (xi− yi)− (yj − xj)

(and their inverses) determines a coordinate i such that ||x− y||∞ is xi− yi or yi−xi

(as this is simply the maximum of all 2d differences of the form (xi − yi), (yi − xi)).

Suppose, now, that ||x− y||∞ = xi − yi and ||w − z||∞ = wj − zj . Then the sign of

(xi − yi)− (wj − zj) determines which of the two distances is bigger. It follows that

the total number of orders of the distances of n points in d-dimensional ℓ∞ space is

at most 2(4+o(1))dn log n.
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Define g = log n
log d+log log n+5

, take a graph G = (V,E) as in the proof of Theorem

4.8.1, and construct a collection of 2(1+o(1))7nd log n metric spaces on a set of n points

satisfying (*). The desired result follows, just as in the proof of Theorem 4.8.1.

(ii) As in the proof of part (i), we first bound the number of possible orders of all

distances in a set X of n points in d-dimensional ℓp space. Given such a set, define,

for each two (not necessarily distinct) pairs {x, y} and {z, w} of points, and each two

sign vectors

(ǫ1, ǫ2, . . . , ǫd), (δ1, δ2, . . . , δd) ∈ {−1, 1}d,

the following polynomial in the dn coordinates of the points:

d
∑

i=1

ǫi(xi − yi)
p −

d
∑

j=1

δj(zj − wj)
p.

This is a set of 22dn4 polynomials, each of degree p, and thus, by Theorem 4.8.2, the

number of their sign patterns is bounded by

22d2n+3dn log n+dn log p+O(dn). (4.4)

As before, it is not difficult to see that the signs of all these polynomials deter-

mine completely the order of all distances between pairs of points. Therefore, the

number of such orders does not exceed (4.4). The desired result now follows as be-

fore, by considering metrics induced by subgraphs with half the edges of a graph

on n vertices with at least 1
4
n1+1/g edges, and no cycles of length at most g, where

g = log n
log(2d2+3d log n+d log p+O(d))

.

4.9 Conclusion and Open Problems

We have introduced minimum-relaxation ordinal embeddings and shown that they

have distinct and sometimes surprising behavior. Yet many problems remain to be

explored in this context; our hope is that this paper forms the foundation of a fruitful

body of research. Here we highlight some of the more important directions for future
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exploration.

An important line of study is to continue comparing ordinal embeddings with

metric embeddings. One interesting question is whether the dimensionality-reduction

results of Bourgain [Bou85] and Johnson and Lindenstrauss [JL84] can be improved

for ordinal relaxation. From Theorem 4.8.1 and Proposition 4.3.1, we know that

the optimal worst-case relaxation for an ordinal embedding of a general metric into

O(lgn)-dimensional Euclidean space is between Ω(lg n/ lg lg n) and O(lgn). Closing

this Θ(lg lg n) gap is an intiguing open problem; a better upper bound would improve

on Bourgain-based metric embeddings into O(lgn) dimensions. Another problem

is how much relaxation is required for dimensionality reduction of a metric already

embedded in arbitrary dimensional ℓp space. For p = 2, we obtain an ideal relaxation

of 1 + ǫ using Johnson-Lindenstrauss combined with Proposition 4.3.1. For p = ∞,

dimensionality reduction is impossible, by Theorem 4.8.5(i), because ℓ∞ is universal

in the metric sense. For p 6= 2,∞, the problem is open; in contrast, it is known for

metric embeddings that dimensionality reduction is impossible for ℓ1 [BC03, LN04b].

Another important direction is to develop more approximation algorithms for

minimum-relaxation ordinal embedding. Unlike general upper bounds on distortion,

existing approximation algorithms for minimum-distortion metric embedding do not

carry over to ordinal embedding because the optimum solution is generally smaller.

Our O(1)-approximation result in Section 4.5, and the lack of a matching result for

metric embedding despite much effort, shows that in some contexts ordinal embed-

ding problems may prove more easily approximable than metric embedding. We

expect that our approximation result can be generalized using similar techniques to

unweighted graphs, weighted trees, and/or higher dimensions, and that it can be

strengthened to a PTAS. A related open problem is to consider trees as target met-

rics, and find the tree metric into which a given metric can be ordinally embedded

with approximately minimum relaxation. Another family of approximation problems

arise with the related notion of additive relaxation, in contrast to (multiplicative) re-

laxation, where pairs of distances within an additive α must have their relative order

preserved. In some cases, approximation results may be harder for ordinal embedding
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than metric embedding. For example, in the problem of approximating the minimum

additive distortion/relaxation for an ordinal embedding of an arbitrary metric into

the line, the simple greedy algorithm of Proposition 4.3.5 is a 3-approximation for

metric embedding but can be arbitrarily bad for ordinal embedding.3

A final direction to consider is finding other applications of ordinal embedding.

In particular, in the context of approximation algorithms for other problems, when

are low-relaxation ordinal embeddings as useful as (and more powerful than) low-

distortion metric embeddings? Nearest neighbor is a simple example where only the

order of distances is relevant, but we expect there are several other such problems.
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Chapter 5

Embeddings with extra

information

Credits: The results in this section is work done with Erik Demaine, Mohammad-

Taghi Hajiaghayi, and Piotr Indyk, and has appeared in SoCG’04.

A frequently arising problem in computational geometry is when a physical struc-

ture, such as an ad-hoc wireless sensor network or a protein backbone, can measure

local information about its geometry (e.g., distances, angles, and/or orientations),

and the goal is to reconstruct the global geometry from this partial information.

More precisely, we are given a graph, the approximate lengths of the edges, and pos-

sibly extra information, and our goal is to assign 2D coordinates to the vertices such

that the (multiplicative or additive) error on the resulting distances and other infor-

mation is within a constant factor of the best possible. We obtain the first pseudo-

quasipolynomial-time algorithm for this problem given a complete graph of Euclidean

distances with additive error and no extra information. For general graphs, the anal-

ogous problem is NP-hard even with exact distances. Thus, for general graphs, we

consider natural types of extra information that make the problem more tractable,

including approximate angles between edges, the order type of vertices, a model

of coordinate noise, or knowledge about the range of distance measurements. Our

pseudo-quasipolynomial-time algorithm for no extra information can also be viewed
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as a polynomial-time algorithm given an “extremum oracle” as extra information.

We give several approximation algorithms and contrasting hardness results for these

scenarios.

5.1 Introduction

Suppose we have a geometric structure (a graph realized in Euclidean space), but

we can only measure local properties in this structure, such as distances between

pairs of vertices, and the measurements are just approximate. In many applications,

we would like to use this approximate local information to reconstruct the entire

geometric structure, that is, the realization of the graph. Two interesting questions

arise in this context: when is such a reconstruction unique, and can it be computed

efficiently?

These problems have been studied extensively in the fields of computational ge-

ometry [CL92, EHKN99, Yem79, Sax79], rigidity theory [Hen92, Con91, JJ05], sensor

networks [ČHH01, SRB01], and structural analysis of molecules [BKL99, ABC+05,

CH88, Hen95]. The reconstruction problem arises frequently in several distributed

physical structures such as the atoms in a protein [BKL99, CH88, Hen95] or the nodes

in an ad-hoc wireless network [ČHH01, SRB01, PCB00].

A reconstruction is always unique (up to isometry) and easy to compute for a com-

plete graph of exact distances, or any graph that can be “shelled” by incrementally

locating nodes according to the distances to three noncollinear located neighbors.

More interesting is that such graphs include visibility graphs [CL92] and segment vis-

ibility graphs [EHKN99]. In general, however, the reconstruction problem is NP-hard

[Yem79], even in the strong sense [Sax79]. It is also NP-hard to test whether a graph

has a unique reconstruction [Sax80b, Sect. 6]. The uniqueness of a reconstruction in

the generic case1 was recently shown to be testable in polynomial time in 2D by a

1In the generic case [JJ05], we are given the promise that the goal embedding is “generic”. An
embedding of a graph into d-dimensional Euclidean space is generic if the coordinates of the vertices
are algebraically independent over the rationals, i.e., no polynomial over the vertex coordinates with
rational coefficients evaluates to zero, except for the zero polynomial.

208



simple characterization related to generic infinitesimal rigidity [Hen92, JJ05], but this

result has not yet led to efficient algorithms for actual reconstruction in the generic

case.

The goal of this chapter is to overcome these difficulties by obtaining efficient

algorithms for approximate embedding of metrics into the plane. Our approach is

to explore possible additional types of local information and study their influence

on the complexity of the problem. In many practical scenarios, such information

is readily available. In other cases, the amount of extra information needed is so

small that it can be “guessed” via exhaustive enumeration, which leads to a pseudo-

quasipolynomial-time algorithm that uses no extra information.2 This algorithm is

in fact the first such algorithm for embedding into low-dimensional Euclidean space

with approximately optimal additive distortion.

We consider the following types of extra information:

Angle information: Between every pair of incident edges, we are given the approx-

imate counterclockwise angle.

Extremum oracle: Suppose that the x coordinates of the embedding are known

(fixed). Let f be an optimal (minimum-distortion) embedding subject to these

and all other constraints. The extremum oracle reports, in any specified verti-

cal slab of the optimal embedding, the minimum y coordinate of a point and

a point achieving that coordinate, and symmetrically for the maximum y coor-

dinate. More precisely, given a range [xl, xr], the oracle reports the data point

p = argminp′:fx(p′)∈[xl,xr] fy(p
′) and f(p), and symmetrically with argmax. In

addition, we require that the answers returned by the oracle to different queries

are consistent, that is, based on the same embedding f .

Guessing this extra information is exactly what causes one of our algorithms to

use pseudo-quasipolynomial time when given no extra information. This result

is presented in the chapter on additive distortion.

2An algorithm’s running time is quasipolynomial if it is 2logO(1) n, pseudopolynomial if it is NO(1)

where N is the maximum value of any number in the problem instance, and pseudo-quasipolynomial

if it is 2logO(1) n · logO(1) N .
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Order type: For some point p and all pairs of points q, r, we are given the clock-

wise/counterclockwise orientation of △pqr.

Distribution information: We know that the metric is induced by random points

in a square (as in, e.g., [GRK04]) plus adversarial noise added to their pairwise

distances.

Range constraints: Each point p has a range rp such that we know the (approxi-

mate) distance between p and a point q precisely when this distance is at most

rp.

One of our motivations for studying these problems is “autoconfiguration” in the

Cricket Compass [PMBT01, MIT] location system. In this system, several beacons

are placed in a physical environment, and the goal is to find the global geometry of

these beacons in order to enable private localization of mobile devices such as PDAs

(personal digital assistants). In general, the beacons live in 3D space, but a common

scenario is that they all live in a common plane (the ceiling). Beacons can measure

approximate pairwise distances, with sub-centimeter accuracy and a range of up to

several meters, using a combination of ultrasonic and radio pulses (measuring the

difference in travel time between the sound-speed pulse and the light-speed pulse).

Using two or more ultrasonic transceivers to measure distances from two or more

points on a beacon, beacons can also measure approximate counterclockwise angles

of other beacons within range, relative to a local coordinate system. In this practical

scenario, distribution information, range constraints, order type, and especially angle

information are all reasonable assumptions to consider.

We show that any of the types of extra information described above, in addition

to the approximate distance information given by D, often allow us to design efficient

algorithms to construct embeddings into 2D with approximately optimal distortion.

Specifically, we develop polynomial-time algorithms for the following versions of this

embedding-with-extra-information problem:

1. Embedding a general graph with approximate angle information into two-dimensional

ℓs space, s ∈ {1, 2,∞}, with approximately optimal multiplicative distortion.
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If we are given the counterclockwise angle of each edge with respect to a fixed

axis, or we are given counterclockwise angles between incident pairs of edges in

the complete graph, our approximation factor is O(1). If we are given coun-

terclockwise angles between pairs of incident edges in a general graph, our ap-

proximation factor is O(diam) where diam is the diameter of the graph. The

approximation factors depend on the additive error on the angles; see Section

5.2 for details.

These algorithms are the first subexponential-time algorithms for embedding an

arbitrary metric into a low-dimensional space (even in the one-dimensional case)

to approximately minimize multiplicative distortion. Without angles, even em-

bedding tree metrics into the line with approximately minimum multiplicative

distortion is hard to approximate better than a factor of Θ(n1/12), by a recent

result of Bădoiu et al. [BCIS05].

2. Embedding a complete graph into the Euclidean plane with O(1)-approximate

additive distortion in pseudo-quasipolynomial time of 2O(log n·log2 ∆) where ∆ is

the “spread” of the input point set. We obtain this result in Section 2.4 using

a polynomial number of calls to an extremum oracle, which can be simulated

in pseudo-quasipolynomial time.

This algorithm is the first algorithm for minimizing the additive distortion

of an embedding into a low-dimensional Euclidean space, other than trivial

exponential-time algorithms.

3. Embedding a complete graph into the Euclidean plane with O(1)-approximate

additive distortion given the orientation of all triples of points involving a com-

mon point (Section 5.3).

4. Embedding a complete graph into the Euclidean plane with O(1)-approximate

additive distortion given the prior that the distances D are approximately in-

duced by a random set of points in a unit square. In this case, our algorithm

returns an embedding with additive distortion that is within a constant factor
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of the maximum noise added to any distance. See Section 5.4 for the detailed

formulation.

5. Embedding a general graph that satisfies the range constraints into the line

with O(1)-approximate additive distortion (Section 5.5).

6. In contrast, we show that embedding a general graph that satisfies the range

constraints into two-dimensional ℓp space, for p ∈ {1, 2,∞}, is NP-hard (Section

5.6). This problem was known to be NP-hard without range constraints in d-

dimensional Euclidean space for all d [Sax79].

Several of these algorithms are practical; often they are based on simple linear pro-

grams.

5.2 Embedding with Angle Information

This section considers embedding a graph with given edge lengths up to multiplicative

error and given angles with additive error, in ℓ1, ℓ2, and ℓ∞. We consider several

possible angle specifications in the next section, and reduce to the case that we know

the counterclockwise angle between every edge and one fixed edge.

5.2.1 Different Types of Angle Information

Lemma 5.2.1 Given a complete graph, and given counterclockwise angles between

pairs of incident edges each with (one-sided or two-sided) additive error at most γ,

we can compute the counterclockwise angle of every edge with respect to a particular

edge with additive error at most 2γ.

Proof: Fix one edge (p, q) and call it the x axis. To estimate the counterclockwise

angle of an edge (v, w) with respect to the x axis, we use the known counterclockwise

angles θ1 = ∠pqv and θ2 = ∠qvw. If the angles were exact, the counterclockwise

angle of (v, w) with respect to (p, q) would be θ1 + θ2 − 180◦ (modulo 360◦). With

additive error, the errors in θ1 + θ2 accumulate to at most double in the worst case.
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Figure 5-1: Feasible region of a point q with respect to p given the ℓ2 distance within
a multiplicative ǫ and given the counterclockwise angle to the x axis within an addi-
tive γ. (Measuring counterclockwise angle, instead of just angle, distinguishes between
q being “above” or “below” the x axis.)

Lemma 5.2.2 Given a general graph, and given counterclockwise angles between

pairs of incident edges each with (one-sided or two-sided) additive error at most γ,

we can compute the counterclockwise angle of every edge with respect to a particular

edge with additive error at most (diam+1)γ where diam is the diameter of the graph.

Proof: Similar to Lemma 5.2.1, except now we must combine counterclockwise

angles along a path p, q, . . . , v, w, which might have length up to diam + 2, and

therefore involves at most diam + 1 angles.

This lemma is the best we can obtain in the worst case. We can of course improve

the angles estimates by, e.g., choosing (p, q) to be maximally central, computing short-

est paths, etc. If the errors are known to be independent and randomly distributed

with mean 0, the error is O(
√

diam) with high probability, where diam is the diameter

of the graph.

5.2.2 ℓ2 Algorithm

Our algorithm for embedding into the Euclidean plane assumes, possibly using the

reductions of the previous section, that we are given the approximate counterclockwise
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angle of every edge with respect to one edge (which we view as the x axis). The

algorithm sets up a constraint program for finding the coordinates of each vertex.

The straightforward setup has nonconvex constraints and is difficult to solve. We

relax the program to a convex program at the cost of some error. We further relax

the program to a linear program at the cost of additional error.

The basic optimization problem has the following constraints. For every edge

(p, q), the distance and angle information of that edge specifies a (nonconvex) con-

straint region, relative to the location of p, that must contain q. (See Figure 5-1.)

Conditioning on that there is an embedding of the graph achieving multiplicative

error ǫ on the distances and additive error γ on the angles, we can find such an em-

bedding by finding a feasible solution satisifying all constraints. If only one of these

error parameters (e.g., γ) is known, we can still find such an embedding by setting the

objective function to minimize the other error parameter (e.g., ǫ). If neither error pa-

rameter is known, we obtain a family of solutions by minimizing one error parameter

subject to various choices for the other parameter; alternatively, we can minimize any

desired linear combination of the error parameters by setting the objective function

accordingly.

We can relax each constraint region to be convex by taking its convex hull. More

precisely, we add one edge (a, b) to cut off the inner arc of the region; see Figure 5-1.

This relaxation, applied to every constraint region defined by an edge (p, q), produces

a convex program. The maximum possible error is obtained when q is placed at the

midpoint between a and b. Then the distance between p and q is cos γ times the

input distance between p and q. We can transform this contraction into an expansion

by multiplying all distances by 1/ cos γ. Thus, the maximum expansion is at most

(1 + ǫ)/ cos γ, proving the following theorem:

Theorem 5.2.3 Given a graph, given the length of each edge with multiplicative error

ǫ, and given the counterclockwise angle of every edge with respect to a particular

edge with additive error γ, we can compute in polynomial time an ℓ2 embedding with

angles of maximum additive error γ and distances of maximum multiplicative error
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(1 + ǫ)/ cos γ − 1.

We can further relax the constraint region to be piecewise-linear by approximating

the unique arc of the region with a polygonal chain. Then we obtain a linear program

from combining the relaxed constraint for each edge (p, q). If we use k+1 ≥ 2 segments

in a regular chain, the maximum expansion factor of a distance is (1 + ǫ)/ cos(γ/k).

By incorporating the expansion factor from the previous theorem as well, we obtain

the following theorem:

Theorem 5.2.4 Given a graph, given the length of each edge with multiplicative error

ǫ, and given the counterclockwise angle of every edge with respect to a particular edge

with additive error γ, we can compute in polynomial time an ℓ2 embedding with angles

of maximum additive error γ and distances of maximum multiplicative error

1 + ǫ

cos γ cos(γ/k)
− 1 =

1 + ǫ

cos γ
− 1 +O

(

γ2

k2

)

.

5.2.3 More Types of Angle Information

For embedding into ℓ1, we need additional information about the global rotation of

the graph. More precisely, we need to know, for each edge (p, q), the quadrant of q

with respect to p. In other words, we need to know the two high-order bits of the

counterclockwise angle of each edge (p, q) with respect to the x axis, i.e., whether this

angle is in [0, 90◦], [90◦, 180◦], [180◦, 270◦], or [270◦, 360◦]. Because of our additive

angle errors, we may not know to which quadrant an edge belongs; in this case, we

would like to know that the edge is borderline between two particular quadrants.

If our input specifies counterclockwise angles of edges with respect to the x axis,

we are done. For other types of input, we can apply the following reductions:

Lemma 5.2.5 Given a graph, given counterclockwise angles between pairs of incident

edges each with (one-sided or two-sided) additive error at most γ, and given the

counterclockwise angle of one edge relative to the x axis with the same additive error,

we can compute the counterclockwise angle of every edge with respect to the x axis
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with additive error at most (diam + 2)γ.

Proof: Apply Lemma 5.2.2 relative to the edge for which we know the counter-

clockwise angle with respect to the x axis, and translate using this angle.

Lemma 5.2.6 Given a graph, and given counterclockwise angles between pairs of

incident edges each with (one-sided or two-sided) additive error at most γ, we can

compute a family of O(1/γ′) possible assignments of counterclockwise angles relative

to the x axis with additive error at most γ + γ′.

Proof: Apply Lemma 5.2.2 to obtain counterclockwise angles relative to an edge

e, and then “guess” the counterclockwise angle of the x axis with respect to e among

the ⌈360◦/γ′⌉ angles of the form 0, γ′, 2γ′, . . . .

5.2.4 ℓ1 Algorithm

We can adapt the ℓ2 algorithm to an ℓ1 algorithm as follows. The convex program

and linear program are the same as before; the only difference is the shape of the

constraint region of q with respect to p. For an edge (p, q) that is known to be in a

particular quadrant, the region is a trapezoid as shown in Figure 5-2(a). In this case,

the region is already convex and polygonal, and we find an embedding with no error

beyond the optimal distortion.

The difficult case is when the edge (p, q) straddles two quadrants, i.e., is almost

parallel to a coordinate axis. See Figure 5-2(b). In this case, the angular wedge

intersects two sides of the ℓ1 circle around p, and the region becomes a nonconvex

‘V’. As before, we convexify this region by closing the mouth of the ‘V’. The resulting

region is also polygonal, so we can apply linear programming.

The worst-case error arises when (p, q) is exactly parallel to a coordinate axis.

Then the smallest distance between p and a relaxed position for q is 1− (tan γ)/(1 +

tan γ) times the input distance between p and q. Again we can transform this con-

traction into an expansion by multiplying all distances by 1/[1− (tan γ)/(1+ tan γ)],

and the maximum expansion is at most (1 + ǫ)/[1− (tan γ)/(1 + tan γ)]:
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(a) Convex case

(b) Nonconvex case

Figure 5-2: Feasible region of a point q with respect to p given the ℓ1 distance within
a multiplicative ǫ and given the counterclockwise angle to the x axis within an addi-
tive γ.
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Theorem 5.2.7 Given a complete graph, given the length of each edge with multi-

plicative error ǫ, and given the counerclockwise angle of every edge with respect to the

x axis with additive error γ, we can compute in polynomial time an ℓ1 embedding with

angles of maximum additive error γ and distances of maximum multiplicative error

1 + ǫ

1− (tan γ)/(1 + tan γ)
− 1 = (1 + ǫ)(γ +O(γ3)) + ǫ.

If we are given the approximate counterclockwise angles between incident pairs

of edges, and the approximate counterclockwise angle between one edge and the x

axis, then we can apply this theorem in combination with Lemma 5.2.5. If we are

just given the approximate counterclockwise angles between incident pairs of edges,

we can consider all “combinatorial rotations” with respect to the x axis, and extract

whether each edge is roughly horizontal, roughly vertical, or substantially within one

of the four quadrants. This partial information increases the region error for near-

horizontal and near-vertical edges, and does not preserve the angle for all other edges,

but will approximately preserve distances in the resulting embedding.

5.2.5 Extension to ℓ∞

We can directly adapt the ℓ1 algorithm to an ℓ∞ algorithm. If we rotate an ℓ∞ input

by 45◦, and scale by a factor of 1/
√

2 in each dimension, then we obtain an “identical”

ℓ1 input. The two inputs are identical in the sense that the ℓ∞ distance between any

pair of points in the ℓ∞ input is equal to the ℓ1 distance between that pair in the

ℓ1 input. Thus, we can apply the ℓ1 embedding algorithm to the ℓ1 input, and then

undo the transformation, and we obtain an ℓ∞ embedding of an ℓ∞ input.

5.3 Embedding with Order Type

In this section, we consider the situation in which we are given all pairwise Euclidean

distances between points in the plane as well as the “order type” of the points. The

order type of a set of (labeled) points in the plane specifies, for each triple (p, q, r)
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of points, the orientation of that triple, i.e., whether visiting those points in order

(forming a triangle) proceeds clockwise or counterclockwise (or, in degenerate cases,

collinear).

While we present the initial algorithm assuming that we know the entire order

type, we later relax the assumption to knowing only the orientations of all triples

including a fixed point p. This relaxation reduces the amount of required extra

information from
(

n
3

)

orientations to
(

n−1
2

)

orientations. In fact, this information is

equivalent to knowing the counterclockwise order of points around point p.

Orientations can be very sensitive to small perturbations, and we are told only

approximate information about the pairwise distances between points, so for orienta-

tions to be useful we need to know a range in which they apply. For a set of points

in the plane, we call a set of triples of points totally δ-robust if perturbing the x and

y coordinates of every point by at most ±δ does not change the orientations of any

of the triples in the set. A set of orientations is δ-robust if perturbing the x and y

coordinates of any single point by at most ±δ does not change the orientation of any

of the triples in the set. Obviously, total δ-robustness implies δ-robustness, but in

fact, the two notions are equivalent up to constant factors:

Lemma 5.3.1 If a set of triples is 3δ-robust, then it is totally δ-robust.

Proof: If the set of triples is not totally δ-robust, there must be a perturbation of

the points such that some triple (p, q, r) in the set changes orientation, i.e., p crosses

the line segment between q and r. Because the total movement of p, q, and r in

such a situation is at most 3δ, we can instead change the orientation of (p, q, r) by

fixing q and r (and all other points except p) and just perturbing p by 3δ. But this

contradicts the assumption that the set of triples is 3δ-robust.

Our embedding algorithm assumes that the given orientations are totally δ-robust,

for a particular choice of δ related to the distortion of the desired embedding. By

Lemma 5.3.1, it suffices to assume that they are 3δ-robust. More precisely, the main

theorem of this section is as follows:
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Theorem 5.3.2 Suppose that we are given a complete graph with specified edge lengths,

and we are given an orientation for each triple of points involving one common point.

Suppose we are promised that there is an embedding into the Euclidean plane with

additive distortion ǫ in which these triples involving one common point have the spec-

ified orientations and are totally cǫ-robust (or 3cǫ-robust). Then in polynomial time,

multiplied by a factor of O(lg ∆) if ǫ is not approximately known, we can compute an

embedding f of the graph into the Euclidean plane with additive distortion at most cǫ,

for a global constant c.

Proof: First we guess ǫ up to a constant factor as in Section 2.4 by trying values

of the form diam(D)/2i for i = 0, 1, 2, . . . , where diam(D) is the maximum distance

in the given metric D. Then we apply Lemma 2.4.2 to guess the x coordinates of

the vertices up to an additive ±5ǫ. By setting c ≥ 5, robustness tells us that the

orientations remain valid within this fixing of x coordinates. Also, changing the x

coordinates of the promised embedding f according to this assignment increases the

additive distortion by at most 10ǫ.

Next we show how to assign the y coordinates of f such that, for every pair (v, w)

of vertices, |D[v, w]−‖f(v)−f(w)‖2| ≤ 3ǫ (not counting the distortion introduced by

fixing the x coordinates). Because the x coordinates are fixed, this constraint forces

fy(v)− fy(w) to lie within the union of (at most) two intervals, one interval for when

fy(v) ≥ fy(w) and the other for when fy(v) ≤ fy(w). We show how to obtain the

y coordinates by setting up a linear program, using the orientations to disambiguate

between the two intervals.

We define a graph G whose vertex set is the same as the input graph. The

edges of G are of two types: strong and weak. We connect vertices v and w by a

strong edge in G if D[v, w] ≥
√

(fx(v)− fx(w))2 + 3ǫ2. We connect two points v

and w by a weak edge in G if there are two points u1 and u2, connected via paths

of strong edges to w but not to v, such that D[v, w] >
√

(fx(v)− fx(w))2 + ǫ2 and

fx(u1) ≤ fx(v) ≤ fx(u2). The proofs of the following lemmas are very similar to

Claims 4.1 and 4.2 of Bădoiu [B0̆3] and hence omitted.
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Lemma 5.3.3 No two connected components of G overlap in x extent; that is, there

is a vertical line (not passing through any vertices) that separates the vertices of the

first component from the vertices of the second component.

Call an edge {v, w} oriented up if fx(v) ≤ fx(w) and fy(v) ≤ fy(w), and call an

edge {v, w} oriented down if fx(v) ≤ fx(w) and fy(v) ≥ fy(w).

Lemma 5.3.4 If we fix the orientation of an edge of G, we can uniquely determine

the orientation of all other edges in the same connected component.

By the definition of a strong edge, if there is no strong edge between two points v

and w, the horizontal distance already fixed as fx(v)− fx(w) is “good enough” for a

3ǫ-approximation. To ensure that the distortion remains sufficiently small, we form

the constraint D[v, w] + ǫ ≥ ‖f(v)− f(w)‖, which is equivalent to the pair of linear

constraints

−
√

(D[p, q] + ǫ)2 − (fx(p)− fx(q))2 ≤ fy(p)−fy(q) ≤
√

(D[p, q] + ǫ)2 − (fx(p)− fx(q))2.

For any edge {v, w} ∈ E(G) that is oriented up and for which fx(v) ≤ fx(w), we

form this linear constraint on fy:

√

(fx(w)− fx(v))2 + (fy(w)− fy(v))2−ǫ ≤ D[v, w] ≤
√

(fx(w)− fx(v))2 + (fy(w)− fy(v))2+ǫ,

or equivalently,

√

D[v, w]2 − 2ǫD[v, w] + ǫ2 − (fx(w)− fx(v))2 ≤ fy(w)− fy(v)

≤
√

D[v, w]2 + 2ǫD[v, w] + ǫ2 − (fx(w)− fx(v))2.

We have a similar relation for edges {v, w} ∈ E(G) that are oriented down.

Now, using Lemmas 5.3.3 and 5.3.4 and the description above, we can obtain a

cǫ-approximation solution for the problem provided that G has only one connected

component. However, if there are several connected components, each connected com-

ponent can be oriented up or down, and the total number of cases can be exponential.
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Instead, we use the given orientations of triples to disambiguate the orientations of

components. Because the orientations are totally cǫ-robust, and we guess the x and y

coordinates within ǫ+ 10ǫ+ 3ǫ = 14ǫ total additive distortion (counting the ǫ distor-

tion in f), the orientations remain correct if we set c ≥ 14. Without loss of generality,

we assume that the leftmost component is oriented up. Now consider a point v in

this component. We show that, for each other component C, we can use orientations

of triples involving v to determine whether C is oriented up or down. Consider a

strong edge (u, w) ∈ C. (Such a strong edge should exist, because otherwise C has

only one point and its orientation is trivial.) Because there is no strong edge between

u and v, the segment connecting u to v is almost horizontal (see the definition of

strong edge). Using this property, using that (u, w) is a strong edge, and using the

orientation of the triple (v, u, w), we can determine the orientation of edge (u, w) and

thus by Lemma 5.3.4 the orientation of the whole component C. Thus, fixing the

orientation of the leftmost component, we can determine the orientation of all edges

of other components. Finally, by setting up the following linear program, we obtain
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the desired approximation embedding:

√

D[v, w]2 − 2ǫD[v, w] + ǫ2 − (fx(w)− fx(v))2

≤ fy(w)− fy(v)

≤
√

D[v, w]2 + 2ǫD[v, w] + ǫ2 − (fx(w)− fx(v))2

if {v, w} ∈ E is oriented up and fx(w) ≥ fx(v),

√

D[v, w]2 − 2ǫD[v, w] + ǫ2 − (fx(w)− fx(v))2

≤ fy(v)− fy(w)

≤
√

D[v, w]2 + 2ǫD[v, w] + ǫ2 − (fx(w)− fx(v))2

if {v, w} ∈ E is oriented down and fx(w) ≥ fx(v),

−
√

(D[v, w] + ǫ)2 − (fx(v)− fx(w))2

≤ fy(v)− fy(w)

≤
√

(D[v, w] + ǫ)2 − (fx(v)− fx(w))2

if {v, w} /∈ E.

5.4 Embedding with Distribution Information

In this section we consider embedding the complete graph on n vertices into the Eu-

clidean plane while approximately minimizing additive distortion of specified edge

lengths that come from a kind of adversarial distribution. Roughly speaking, we

are given the promise that the distances satisfy that, after perturbing each distance

within ±ǫ, the resulting distances are exactly the pairwise distances between n points

sampled uniformly from the unit square [0, 1]2. More precisely, the specified dis-

tances come from first randomly sampling n points uniformly from the unit square,

then exactly measuring their Euclidean distances, and then adversarially perturb-

ing each distance within ±ǫ. Our goal is to construct an embedding with additive
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distortion O(ǫ).

Theorem 5.4.1 There is a polynomial-time algorithm that, given a complete graph

with edge lengths arising from the adversarial distribution described above, finds an

embedding that has additive distortion O(ǫ) with probability 1− o(1), as long as ǫ =

ω(1/
√
n). The algorithm is deterministic; the probability is taken over the uniform

sample of points in the unit square.

Proof: Let r be any value such that r = ω(1/
√
n) and r = O(ǫ). The algorithm

first guesses a “frame” for the square, and then uses a “triangulation” approach

relative to this frame:

1. For every quadruple (v1, v2, v3, v4) of vertices (the frame), construct the follow-

ing embedding f :

(a) Embed vi, i ∈ {1, 2, 3, 4}, as follows: f(v1) = (0, 0), f(v2) = (0, 1), f(v3) =

(1, 1), and f(v4) = (1, 0).

(b) Embed every other vertex w to an arbitrary point f(w) in the region

Rw = [0, 1]2 ∩
⋂

i=1,2,3,4

R
(

f(vi), D[vi, w], ǫ+ 2
√

2r
)

,

where R(p, r, δ) is the annulus centered at point p with inner radius r −
δ and outer radius r + δ. If Rw is empty, we ignore this (incomplete)

embedding and skip this iteration of the loop.

2. Report the embedding f with the smallest additive distortion.

This algorithm has the feature that every constructed embedding maps the vertices

into the unit square. It remains to analyze the quality of the best embedding f found.

Let f ∗ denote the uniformly random embedding into the unit square that we assume

exists, and which has additive distortion ǫ.

We start by showing that there is a good choice of the frame. The following claim

follows from basic calculations:
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Claim 5.4.2 With probability 1− o(1), each of the four r × r subsquares of the unit

square that each share a corner with the unit square contain f ∗(v) for some v ∈ V .

We condition on the event that there is at least one vertex v1, v2, v3, and v4 mapped

via f ∗ to the lower-left, lower-right, upper-right, and upper-left corner sub-squares,

respectively. (By Claim 5.4.2, this event happens with probability 1−o(1).) Consider

the iteration of Step 1 of the algorithm that chooses this quadruple of points for the

frame. If we modify f ∗ by performing the assignment as in Step 1(a) of the algorithm,

then the resulting embedding has additive distortion at most ǫ+2
√

2r. Therefore, in

this iteration, every region Rw includes f ∗(w) and is thus nonempty.

It suffices to show that the diameter of each set Rw is O(ǫ + r). Consider any

vertex w other than v1, v2, v3, and v4. We need the following claim, which can be

proved using the same type of argument as in the proof of Theorem 5.3.2:

Claim 5.4.3 Consider any two points p, q ∈ [0, 1]2 and any r1, r2, δ > 0 such that

r1, r2 = O(‖p− q‖). The set R(p, r1, δ) ∩ R(q, r2, δ) is contained in a strip of width

O(δ) whose direction (i.e., an infinite line contained in the strip) is orthogonal to the

line passing through p and q.

Recall that Rp is an intersection of four annuli (and the unit square). Applying

Claim 5.4.3 to the annuli around points (0, 0) and (1, 0), we conclude that Rp is

contained in a vertical strip of width O(ǫ + r). Applying Claim 5.4.3 to the annuli

around points (0, 0) and (0, 1), we conclude that Rp is contained in a horizontal strip

of the same width. It follows that that the diameter of Rp is O(ǫ+ r) as claimed, and

therefore that the additive distortion of the embedding f computed by the algorithm

is O(ǫ+ r).

5.5 Embedding with Range Graphs

In this section we are interested in embedding a graph with specified edge lengths

into the line subject to the following condition. An embedding f : V → R of a

graph G = (V,E) with edge lengths specified by D satisfies the range condition if,
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for every three points p, q, r ∈ V , (a) if {p, q} ∈ E and {p, r} /∈ E, |f(p) − f(q)| ≤
|f(p) − f(r)|, and (b) if {p, q}, {p, r} ∈ E, |f(p) − f(q)| ≤ |f(p) − f(r)| precisely

if D[p, q] ≤ D[p, r]. Among all such embeddings, we will find one that minimizes

the additive distortion with respect to the specified edge lengths on G. Part (b) of

this definition will be satisfied provided the difference between adjacent distances in

a near-optimal embedding is at least the additive distortion.

5.5.1 The Exact Case

In this subsection we consider embedding with zero distortion:

Lemma 5.5.1 Given a graph G with edge lengths specified by D, we can check in

polynomial time whether there is an embedding f that satisfies the range condition

and matches D exactly on the edges of f , and construct such an embedding if it

exists.

Proof: Without loss of generality we assume that the graph G is connected. Let

p be the leftmost point in an embedding f into the line that satisfies the conditions

of the lemma. We guess p by enumerating all |V | possibilities. Without loss of

generality, p has coordinate 0. All neighbors of p in G lie to the right of p. Let q

be such a neighbor. Let r be a neighbor of q but not a neighbor of p. By the range

condition, we have |f(p) − f(r)| > |f(p) − f(q)|. Therefore, f(r) > f(q) and thus

f(r) = f(q) +D[q, r]. By traversing G in a breadth-first manner, we can reconstruct

f . The running time of our algorithm is O(|V | · |E|).

5.5.2 The Additive Error Case

In this subsection we consider the case when the optimal embedding has minimum

additive distortion ǫ. We say an edge (p, q) ∈ G is a forward edge if f(p) ≤ f(q) and

a backward edge if f(p) > f(q). We call this distinction the orientation of an edge.

Note that if (p, q) is a forward edge then (q, p) is a backward edge.
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Lemma 5.5.2 Given a graph G with edge lengths specified by D for which there is an

embedding f that satisfies the range condition, and for any two incident edges {p, q}
and {q, r} in G, we can determine the orientation of (q, r) in f given the orientation

of (p, q) in f using just D.

Proof: Without loss of generality (p, q) is a forward edge and D[p, q] > D[q, r]. By

part (b) of the range condition, if D[p, r] < D[p, q], then (q, r) must be a backward

edge. By both parts of the range condition, if D[p, r] > D[p, q] or D[p, r] is unknown,

then (q, r) must be a forward edge.

Theorem 5.5.3 Given a graph G with edge lengths specified by D, we can construct

in polynomial time an embedding f that satisfies the range condition and matches D

up to the minimum possible additive distortion subject to the range condition.

Proof: Let (p, q) be an edge in G. Without loss of generality we can assume (p, q) is

a forward edge. Lemma 5.5.2 implies that we know the orientation of all the incident

edges. By applying this argument multiple times, we can determine the orientation

of all the edges within the connected component of G containing p. We cannot

determine the relative orientation between different connected components, but this

is not necessary. By placing the locally embedded connected components far away

from each other, the resulting embedding satisfies the range condition. Knowing the

orientations, we can construct the following linear program which minimizes additive

distortion:

minimize ǫ

subject to f(p) +D[p, q]− ǫ < f(q) < f(p) +D[p, q] + ǫ if (p, q) is a forward edge,

f(p)−D[p, q]− ǫ < f(q) < f(p)−D[p, q] + ǫ if (p, q) is a backward edge.

In Section 5.6, we show that embedding a graph with given edge lengths in two-

dimensional ℓ1 and ℓ2 space, even using exact distances and a more restricted form

of range-condition, is NP-hard.
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5.6 Hardness Results

Saxe [Sax79] proved that deciding embeddability of a given graph with exact ℓ2 edge

lengths is strongly NP-hard in d dimensions, for any d ≥ 1. Independently, Yemini

[Yem79] proved weak NP-hardness of the same problem for d = 2 with a simple

reduction from Partition. Here we prove weak NP-hardness for both ℓ1 and ℓ2 in

2D, even when the graph satisfies the constant-range condition: two vertices v, w are

connected by an edge precisely when their distance is at most a fixed range r. This

condition is a special case of the (variable) range condition defined in Section 5.5,

and hence our hardness results apply under that restriction as well. One interesting

feature of our restricted form of the problem is that the problem is not hard in 1D, and

thus our proofs require us to use the structure of 2D. In contrast, previous hardness

proofs start with 1D, and then trivially extend to higher dimensions.

5.6.1 ℓ2 Case

Theorem 5.6.1 It is NP-hard to decide whether a given graph with exact ℓ2 edge

lengths and satisfying the constant-range condition has an embedding with zero dis-

tortion.

Our reduction from Partition is sketched in Figure 5-3. The range is 1.1L, where

L is a large number to be chosen later. In any embedding of our graph, all vertices

lie roughly on a square grid with edge lengths L/2. We use strips of k vertices spaced

every L/2 units to build rigid bars of length kL/2; the strips are rigid because each

vertex can see the next two vertices in the strips. We use right isosceles triangles with

edge lengths L/2, L/2, and L/
√

2 to force angles of 90◦. All other pairs of vertices

have distance at least
√

5
/

2 > 1.1L, so are not within range.

For a given instance a1, a2, . . . , an of Partition, we construct 2n edges, two with

length (L + ai)/2 for each i, and force them all to be parallel. We choose L large

enough so that
∑n

i=1 ai < 0.1L. For each pair of edges of length (L + ai)/2, we

also create a pair of edges of length L/2, so that the absolute horizontal shift caused

by these four edges is (L + ai) − L = ai. Each such quadruple of edges can be
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Figure 5-3: Our reduction from Partition
to ℓ2 embedding of a graph satisfying the
constant-range condition. In the reduc-
tion, the ai’s are much smaller than L, and
in this drawing, the ai’s are drawn as 0.

Figure 5-4: Analogous gadgets for use in
Figure 5-3 for the ℓ∞ case. Here ai is
drawn larger than reality. Dotted edges
are present, but not necessary for rigidity.
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independently flipped so that the shift is either ai or −ai. Finally, we add another

connection between the two extreme edges which forces the total shift to be 0. Thus,

a distortion-free embedding corresponds to a solution to Partition and vice versa.

5.6.2 ℓ1 and ℓ∞ Case

We prove the first hardness result about embedding with exact ℓ1 or ℓ∞ distances:

Theorem 5.6.2 It is NP-hard to decide whether a given graph with exact ℓ∞ edge

lengths (or equivalently, exact ℓ1 edge lengths) and satisfying the constant-range con-

dition has an embedding with zero distortion.

The proof is similar to the ℓ2, except that the gadgets are slightly more compli-

cated; see Figure 5-4. The radius r is now exactly L. We use a sequence of attached

L×L boxes in place of a strip of vertices. As before, this construction acts as a rigid

bar, except that it can be flipped. (In Figure 5-4, vertices p and q can be swapped.)

To perturb a length by ai from a multiple of L, we add a small ai×ai box and attach

it in the middle of the strip. This box is in fact rigid and cannot be flipped with

respect to its neighbors. Thus, the construction can be plugged into Figure 5-3 and

we have the theorem.

5.7 Open Problems

An important open problem in this area is whether there is a polynomial-time al-

gorithm for approximately minimizing additive distortion given all pairwise distance

information and no extra information. Our pseudo-quasipolynomial-time algorithm is

one step in this direction. The analogous problem for multiplicative distortion seems

even harder.

A general theme of our work is to consider the case in which we do not know

all distances. Another approach for making this case tractable is to constrain the

connectivity to something less than n−1 (for the complete graph). For example, what

can we say about c-connected graphs for sufficiently large c, or cn-connected graphs
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for c < 1? These special cases will still likely require extra information, because even

for the case where we know all pairwise distances, we do not know approximation

algorithms without extra information except for ℓ1 and additive distortion [B0̆3].

It would seem natural to obtain angle estimates in a graph G “for free” using

(approximate) distances in G ∪G2, by analyzing triangles (p, q, r) in G ∪ G2. There

are two problems with this approach. The first problem is that two vertices p, q in

a triangle may be much closer to each other than to the third vertex r, and the

multiplicative errors on distances allow p and q to spin around each other and allow

p and q to have any angle. This problem can be surmounted by assuming that the

ratio of lengths between any two incident edges is bounded. The second, more serious

problem is that it is difficult to decode the orientations of triangles and hence the signs

of the angles using purely distance information. We conjecture that this information

can be decoded using distances in G ∪G2 ∪G3 ∪G4 ∪G5 ∪G6, because 6-connected

graphs have unique embeddings [JJ05].

Even with just distance information, the complexity of one interesting variation

remains unresolved. Given a graph that is generically uniquely embeddable, in the

sense that almost any assignment of edge lengths induces a unique embedding, can we

construct the unique embedding for almost any assignment of edge lengths? Jackson

and Jordán [JJ05] recently showed that, in polynomial time, we can test whether a

graph has this property, but the proof is not entirely constructive. Another exam-

ple of an NP-hard problem that can be solved in polynomial time almost always is

Subset Sum. Our hardness reductions for embedding are based on Subset Sum, so

there is hope that nongeneric examples are the only obstruction to polynomial-time

algorithms.

In this chapter we have focused on embedding metrics into the plane, but it would

be natural to try to extend our work to slightly higher dimensions, in particular 3D

which is important in some appliactions. Some of our results extend relatively eas-

ily. For example, in fixed dimension, given the approximate angle of every edge with

respect to every coordinate axis (with additive error), and given distances with multi-

plicative error, we can apply the constant-factor approximation algorithms described
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in Sections 5.2.2 and 5.2.4.
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embeddings of trees. In GD ’01: Revised Papers from the 9th Interna-

tional Symposium on Graph Drawing, pages 343–351, London, UK, 2002.

Springer-Verlag.

[Bor33] K. Borsuk. Drei Sätze über die n-dimensionale euklidische Sphäre. Fund.
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[Mat97] JǐŕıMatoušek. On embedding expanders into lp spaces. Israel Journal of

Mathematics, 102:189–197, 1997.

[MDS] Algorithms for multidimensional scaling.

http://dimacs.rutgers.edu/SpecialYears/2001 Data/Algorithms/MDSdescription.html.

[MIT] MIT CSAIL Networks and Mobile Systems group. The Cricket indoor

location system. http://nms.csail.mit.edu/projects/cricket/.

[Opa79] J. Opatrny. Total ordering problem. SIAM J. Computing, 8:111–114,

1979.

[PCB00] Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan. The

Cricket location-support system. In Proceedings of 6th Annual Interna-

tional Conference on Mobile Computing and Networking, pages 32–43,

Boston, MA, August 2000.

[PMBT01] Nissanka B. Priyantha, Allen K. L. Miu, Hari Balakrishnan, and Seth

Teller. The Cricket compass for context-aware mobile applications. In

Proceedings of the 7th ACM International Conference on Mobile Com-

puting and Networking, pages 1–14, Rome, Italy, July 2001.

[PR98] D. Peleg and E. Reshef. A variant of the arrow distributed directory

protocol with low average case complexity. In Proc. 25th Int. Colloq. on

Automata, Language and Programming, pages 670–681, 1998.

[PS05] C. Papadimitriou and S. Safra. The complexity of low-distortion embed-

dings between point sets. Proceedings of the ACM-SIAM Symposium on

Discrete Algorithms, pages 112–118, 2005.

[PT01] D. Peleg and D. Tendler. Low stretch spanning trees for planar graphs.

Technical Report MCS01-14, The Weizmann Institute of Science, 2001.

[PU87] D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube.

In Proc. 6th ACM Symposium on Principles of Distributed Computing,

pages 77–85, 1987.

240



[Sax79] J. B. Saxe. Embeddability of weighted graphs in k-space is strongly NP-

hard. In Proceedings of the 17th Allerton Conference on Communication,

Control, and Computing, pages 480–489, 1979.

[Sax80a] J. B. Saxe. Dynamic-programming algorithms for recognizing small-

bandwidth graphs in polynomial time. SIAM J. Algebraic Discrete Meth-

ods, 1:363–369, 1980.

[Sax80b] James B. Saxe. Two papers on graph embedding problems. Technical

Report CMU-CS-80-102, Department of Computer Science, Carnegie-

Mellon University, January 1980.

[Sci05] Will there ever be a tree of life that systematists can

agree on? Science, 125th Anniversary Issue. Available at

http://www.sciencemag.org/sciext/125th/, 2005.

[SFC04] R. Shah and M. Farach-Colton. On the complexity of ordinal clustering.

Journal of Classification, 2004. To appear.

[She62a] R. N. Shepard. The analysis of proximities: Multidimensional scaling

with an unknown distance function 1. Psychometrika, 27:125–140, 1962.

[She62b] R. N. Shepard. The analysis of proximities: Multidimensional scaling

with an unknown distance function 2. Psychometrika, 27:216–246, 1962.

[SRB01] C. Savarese, J. Rabaey, and J. Beutel. Locationing in distributed ad-hoc

wireless sensor networks. In Proceedings of the International Conference

on Acoustics, Speech, and Signal Processing, pages 2037–2040, Salt Lake

City, UT, May 2001.

[Tor52] W. S. Torgerson. Multidimensional scaling I: Theory and method. Psy-

chometrika, 17(4):401–414, 1952.

[Ung98] W. Unger. The complexity of the approximation of the bandwidth prob-

lem. Proceedings of the Symposium on Foundations of Computer Science,

1998.

241



[VRM+97] G. Venkatesan, U. Rotics, M. S. Madanlal, J. A. Makowsky, and C. P.

Rangan. Restrictions of minimum spanner problems. Information and

Computation, 136(2):143–164, 1997.

[War68] Hugh E. Warren. Lower bounds for approximation by nonlinear mani-

folds. Transactions of the American Mathematical Society, 133:167–178,

1968.

[Yem79] Y. Yemini. Some theoretical aspects of position-location problems. In

Proceedings of the 20th Annual IEEE Symposium on Foundations of

Computer Science, pages 1–8, 1979.

242


