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1 Network architecture

The full list of layers in our architecture is shown in Table 1. Aside from the max-
pooling layers and the skip connections (which refer to features from previous
layers via concatenation), the architecture is essentially a linear chain of layers
from the viewpoint of an individual input image track.

2 Numerical experiments

2.1 Results on Köhler et al. [1]

The dataset of Köhler et al. [1] is designed as a benchmark for deconvolution
algorithms. Figure 7 in the paper shows our result and that of Wieschollek et al.
[2] on their image number 2. As the dataset also contains the underlying ground
truth, we evaluate the corresponding progression of SSIM value in Figure 1,
for all of the four images of Köhler et al. [1]. After the sharp third frame is
introduced in the input, our method reaches a high SSIM value and retains it
even as low-quality input frames are later introduced.

2.2 Synthetic data

Figres 2 and 3 show results on numerical experiments with synthetic data from
our training data generation pipeline (see Figure 4 in the paper), using pho-
tographs from a validation subset which was not used in training. The known
ground truth allows us to quantify the quality of the solution at different burst
lengths. Figure 2 shows the progression of SSIM values for 100 different bursts of
16 frames, as well as the average SSIM over them, in a manner similar to Figure
1. Figure 3 shows the expected value and standard deviation of the change of
SSIM as each frame is introduced; ideally introducing a new frame would always
result in a positive change to the SSIM.

Note that the absolute numerical values are highly dependent on the under-
lying dataset. The data generation pipeline is intentionally designed to generate
a mixture ranging from easy to very difficult bursts, and for latter the recon-
struction quality is necessarily limited. However, what can be confirmed from
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Fig. 1. Progression of SSIM value on the four images in the dataset of Köhler et al. [1]
using our method and Wieschollek et al. [2].

the data is the trend that including more frames in a burst likely improves the
reconstruction, and that this effect persists beyond the number of frames used
during training (a per-minibatch random number of 1 to 8 images). The recon-
struction tends to “saturate” in the sense that beyond some point new images
are unlikely to reveal significant new information, but there is no evidence of
any accumulation of artifacts with increased frame counts.
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Fig. 2. Progress of SSIM value as images are added to the burst, using 100 different
bursts (gray) from the synthetic validation dataset of Figure 4 in the paper. The average
SSIM is plotted in red.
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Fig. 3. The change of SSIM when a new image is added, computed over 400 bursts
of synthetic data. For example, the 4th position on x-axis indicates the mean and
standard deviation of the change of SSIM as a 4th image is added to a burst of 3
images. Generally, adding frames to the burst is likely to increase the quality of the
reconstruction, although this effect tapers off at large burst sizes where a new image is
unlikely to contain information not already present in the burst.
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id type features filter size stride activation

1 conv 64 3 × 3 1 ELU
2 max-pool
3 concatenate layer 2
4 conv 96 1 × 1 1 ELU
5 conv 96 4 × 4 2 ELU
6 max-pool
7 concatenate layer 6
8 conv 128 1 × 1 1 ELU
9 conv 128 4 × 4 2 ELU
10 max-pool
11 concatenate layer 10
12 conv 256 1 × 1 1 ELU
13 conv 256 4 × 4 2 ELU
14 max-pool
15 concatenate layer 14
16 conv 384 1 × 1 1 ELU
17 conv 384 4 × 4 2 ELU
18 conv 384 3 × 3 1 ELU
19 deconv 384 4 × 4 2 ELU
20 max-pool
21 concatenate layers 17, 20
22 conv 384 1 × 1 1 ELU
23 conv 384 3 × 3 1 ELU
24 deconv 256 4 × 4 2 ELU
25 max-pool
26 concatenate layers 13, 25
27 conv 256 1 × 1 1 ELU
28 conv 256 3 × 3 1 ELU
29 deconv 192 4 × 4 2 ELU
30 max-pool
31 concatenate layers 9, 30
32 conv 192 1 × 1 1 ELU
33 conv 192 3 × 3 1 ELU
34 deconv 96 4 × 4 2 ELU
35 max-pool
36 concatenate layers 1, 35
37 conv 96 1 × 1 1 ELU
38 conv 96 3 × 3 1 ELU
39 max-pool

40 conv 64 3 × 3 1 ELU
41 conv 3 3 × 3 1 linear

Table 1. The sequence of layers in our network architecture. max-pool indicates a
max-pooling across different input tracks as described in the main document (not the
spatial reduction often referred to by the same name). The layers prior to the dividing
line are evaluated separately for each input track, after which the final max-pooling
combined with the last two layers compute a single output for the entire set.


