
A Collaborative Reinforcement Learning Approach to Urban Traffic Control

Optimization

As’ad Salkham, Raymond Cunningham, Anurag Garg, and Vinny Cahill

Distributed Systems Group

School of Computer Science and Statistics

Trinity College Dublin, Ireland

{salkhama, raymond.cunningham, anurag.garg, vinny.cahill}@cs.tcd.ie

Abstract

The high growth rate of vehicles per capita now poses

a real challenge to efficient Urban Traffic Control (UTC).

An efficient solution to UTC must be adaptive in order to

deal with the highly-dynamic nature of urban traffic. In

the near future, global positioning systems and vehicle-to-

vehicle/infrastructure communication may provide a more

detailed local view of the traffic situation that could be em-

ployed for better global UTC optimization. In this paper

we describe the design of a next-generation UTC system

that exploits such local knowledge about a junction’s traf-

fic in order to optimize traffic control. Global UTC opti-

mization is achieved using a local Adaptive Round Robin

(ARR) phase switching model optimized using Collabora-

tive Reinforcement Learning (CRL). The design employs an

ARR-CRL-based agent controller for each signalized junc-

tion that collaborates with neighbouring agents in order to

learn appropriate phase timing based on the traffic pattern.

We compare our approach to non-adaptive fixed-time UTC

system and to a saturation balancing algorithm in a large-

scale simulation of traffic in Dublin’s inner city centre. We

show that the ARR-CRL approach can provide significant

improvement resulting in up to ~57% lower average wait-

ing time per vehicle compared to the saturation balancing

algorithm.

1. Introduction

Managing traffic in urban areas is a continuously evolv-

ing problem. Increasing population size requires more ef-

ficient transportation systems and hence better traffic con-

trol. Even developed countries are suffering high costs be-

cause of increasing road congestion levels. In the European

Union (EU) alone, congestion costs 0.5% of the member

countries’ Gross Domestic Product (GDP), and this is ex-

pected to increase to roughly 1% of the EU’s GDP by 2010

if the problem is not dealt with properly [13]. In 2002, the

number of vehicles per thousand persons had reached 460

which is nearly double the number in 1975. In addition, ve-

hicles are now travelling triple the overall distance that they

travelled 30 years ago [14]. Congestion and non-optimal

driving in the EU accounts for up to 50% of fuel consump-

tion on road networks resulting in toxic emissions that could

otherwise be diminished [14]. Urban transport contributes

40% of carbon dioxide emissions from road traffic in the

EU thus resulting in serious health and safety problems

[13]. In order to avoid the high costs predicted by such

threats, next-generation UTC has to provide efficient solu-

tions to the problem of traffic management. Fortunately, the

increasing adoption of global positioning and vehicle-to-

vehicle/infrastructure communication systems may provide

more detailed local view of the traffic situation that could

be exploited to achieve efficient global UTC optimization.

Minimizing vehicle travel time, reducing traffic delay,

increasing vehicle velocity, and prioritising emergency traf-

fic are goals that an efficient UTC system may realize.

Designing and implementing such a UTC system is not

straightforward. Issues like the unpredictability of traffic

flow, the heterogeneity of vehicles and the communication

and fusion of traffic data, must all be taken into consid-

eration. In order to provide a scheme that deals with all

these challenges, an adaptive UTC solution must be de-

ployed [12, 26]. Reinforcement Learning (RL) [36] is con-

sidered to be one of the approaches that provides adaptive

optimization solutions to control problems. Classical RL is

a centralized approach while a number of collaborative and

decentralized RL methods [11, 3, 37] have been proposed

for solving decentralized optimization problems.

We aim to use Collaborative Reinforcement Learning

(CRL) to provide adaptive and efficient UTC by exploit-

ing vehicle location data. Each signalized junction, (i.e.,

a junction controlled by a traffic signal) runs a CRL-based

1

traffic controller/agent that follows an adaptive phase cycle,

i.e., Adaptive Round Robin (ARR), and observes the local

traffic pattern from local vehicle location data. Adaptive-

ness is provided through a set of actions that provide dif-

ferent service times per phase. In this paper we describe

a large-scale UTC, (i.e., Dublin’s inner city centre) opti-

mization scheme using CRL-based ARR controllers (ARR-

CRL). We also experiment with a decentralized ARR-RL

design in order to assess the effect of collaboration on UTC

optimization. We show that both the ARR-RL and ARR-

CRL schemes outperform the non-adaptive fixed-time UTC

and the saturation balancing algorithm baselines. Moreover,

we show that collaboration can significantly improve per-

formance in terms of average vehicle waiting time. Our

ARR-CRL and ARR-RL schemes were developed using our

generic CRL framework that provides the necessary compo-

nents for agent-based application development

The urban traffic simulator we use is microscopic and

models individual vehicles’ behaviour in a detailed map of

a real city. In addition, we rely on vehicle location data to

provide the information needed by each agent, (e.g., vehi-

cle count on a certain approach). In effect, UTC solutions or

policies achieved through a given optimization scheme are

near-optimal given the challenging, complex and dynamic

problem nature. This is in contrary to the static chess prob-

lem, for example, where the possible system states are finite

and each action’s effect is predictable.

The remainder of the paper is organized as follows.

Section 2 presents related work. Section 3 describes our

generic CRL framework. Section 4 presents the decentral-

ized ARR-RL-based and the ARR-CRL-based UTC simu-

lation of Dublin’s inner city centre traffic network and pro-

vides experimental results. In Section 5 we discuss future

work and conclude in Section 6.

2. Related Work

Traffic control has been a widely-known problem for a

long time. Many systems and methodologies to address it

have been proposed over the past four decades. Most exist-

ing UTC systems are based on complex mathematical mod-

els to optimize specific settings of a traffic controller for

each phase, namely, the time between signalling adjacent

traffic controllers (offset), the green time on each approach

(split), and the time given to all approaches on a specific

junction (cycle time). The well-known SCATS [22] and

SCOOT [18] systems follow such a methodology. These

systems have improved traffic conditions in many countries

[19] but the question remains open when it comes to their

absolute success, due for instance, to the overhead of com-

plex personnel training and their acceptability [19]. These

systems are generally centralized and mainly suffer from

inefficient handling of saturated traffic conditions due to in-

adequate real-time adaptiveness. They also need a complex

software implementation that impairs their portability and

incurs high maintenance cost [26, 33, 5]. In addition, unde-

sirable human intervention in many unexpected situations

such as accidents is almost inevitable. Other approaches

like OPAC [16], PRODYN [15], and RHODES [24] calcu-

late switching times by solving dynamic optimization prob-

lems in a real-time manner. Such systems suffer exponen-

tial complexities [10] that diminish their chances of being

deployed on a large scale [26]. Another dimension be-

ing pursued in UTC is based on store-and-forward mod-

elling as in TUC [9]. TUC models the traffic network as

a connected graph of junctions and regulates a set of con-

trol rules (involving green time) while the system is online.

The approach has low complexity and promising simulation

and empirical results. Other methods are single intersec-

tion centric and use several forms of Dynamic Programming

(DP) [36] as the means to minimise total delay time, for in-

stance, COP [33], ADPAS [20], and ALLONS-D [29]. Nev-

ertheless, problem formulation for such UTCmethods is not

considered a straightforward issue [20]. In [6] a heuris-

tic/fuzzy model for a cooperative and a non-cooperative

traffic simulation based on a variation of the Green Light

District (GLD) [40] simulator is presented. Nevertheless,

there is no significant improvement for the average junction

waiting time using their cooperative approach against the

non-cooperative one. Bazzan A. [4] proposes an evolution-

ary game theory based approachwhere agents try to balance

between their local and global goals. However, the evalu-

ation was based on a macroscopic simulation of a single

arterial street controlled by multiple intersection agents.

(Multi)-Agent Systems (MAS) [25], RL and numerous

decentralized RL methods are being customized for UTC.

This is a new way of achieving highly-adaptive and respon-

sive near-optimal solutions for the UTC problem. Abdulhai

et al. [2, 1] have shown that the use of RL, particularly

Q-Learning [38], for providing adaptive traffic control solu-

tions is a promising approach to pursue. They argue that the

use of Q-Learning is encouraging since it is an off-policy

unsupervised learning approach that does not need a prede-

fined model for the environment. In [2] results from using

Q-Learning for an isolated traffic light controller showed

that it outperformed the pre-timed control scheme for vari-

able traffic flows. Q-Learning either slightly outperformed

or was equal to the pre-timed control when traffic flows

were uniform or constant. Weiring et al. [40, 39] researched

the benefits of using multi-agent model-based RL for traffic

control. Their approach is car-centric where each car esti-

mates its waiting time and communicates it to the nearest

traffic light. The traffic lights that they use are RL-based

agents that implement Q-Learning. Moreover, they experi-

ment with different local and global communication scenar-

ios where traffic lights can exchange knowledge for better

decision making. Steingröver et al. [35] provide a simi-

lar approach in addition to taking into account congestion

levels at a given junction. A simple pair of connected traf-

fic light junctions each running a Q-Learning-based agent is

presented in [7] where theymodel and control the small traf-

fic network using a stochastic game scheme. Their results

showed that Q-Learning outperformed random and best-

effort policies. Moreover, the average number of waiting

vehicles was reduced by ~30% when both agents were us-

ing Q-learning as opposed to it being used by one agent

at a time. Pendrith [27] proposed a distributed Q-Learning

scheme in which optimization is aimed at controlling vehi-

cle speed. The basic model used is a 3×3 grid of mobile ve-

hicles where the learning agent (vehicle) is positioned in the

middle. Vehicles are presumed to be equipped with radar

sensors that enable a given vehicle to determine the states

of the surrounding vehicles if any. More complex RL tech-

niques were used by Richter et al. [32]. They exploited the

Natural Actor-Critic (NAC) [28] algorithm that is based on

4 different RL methods, i.e., policy gradient, natural gra-

dient, temporal difference and least-square temporal differ-

ence. In their simplified simulation they had 5 scenarios and

every junction on the grid had 4 phases. NAC managed to

outperform a SCATS inspired technique (namely, SAT) in a

10× 10 junction grid simulation while optimizing for vehi-

cle average travel time. Furthermore, Cao et al. have used

a form of RL classifier system to build a distributed learn-

ing control scheme for traffic light junctions [8]. In order to

provide (intelligent) cooperation schemes among RL-based

traffic control agents, RL has been coupled with different

genetic algorithms in several cases [23, 34].

It is very rare to find a large-scale urban traffic simulation

based on real city maps. Moreover, the optimization prob-

lem in many proposed systems was occasionally not clearly

defined, i.e., non-specific reward model or a vague environ-

ment representation (state-action space) and agent collabo-

ration specifics. The lack of a generic design framework for

RL and CRL applications has also limited the experimen-

tation with different design choices, (e.g., different reward

models, state-action spaces, learning strategies and action

selection techniques). In addition, the use of a model-based

RL approach as in [40, 39] adds unnecessary complexities

compared to using model-free Q-Learning as argued by Ab-

dulhai et al. [2, 1]. We argue as well that it is more realistic

to assume the future pervasiveness of relatively cheap and

well-understood sensor technologies, e.g., global position-

ing devices, rather than relying on expensive and inaccurate

infrastructure, e.g., radar or camera sensors.

3. The CRL Framework

Sutton et al. [36] introduce RL as “learning how to map

situations to actions so as to maximise a numerical reward

signal”. Any RL solution is based on two basic elements,

namely, a reward function and a value function. Optionally,

some RL solutions rely on a model of the environment to

predict the reward and next state after taking an action in

a given state. The reward function is meant to provide an

immediate goodness measure for a certain action in a given

state. The value function tries to indicate what is best in

the future by accumulating the relevant immediate rewards

throughout a (finite) horizon. Interaction with the environ-

ment eventually provides the RL-based agent with a policy

that defines what is the best action to take in any state at

any given time. Moreover, action selection can occur us-

ing exploratory strategies, (e.g., (ǫ-)greedy or Boltzmann)

or non-exploratory strategies, (e.g., random or greedy). If

a form of direct collaboration is required among originally

RL-based agents, they are then expanded to be CRL-based

agents.

Q-Learning is a well-established model-free RL tech-

nique based on the concept of discounted expected rewards.

An RL-based agent that uses Q-Learning usually learns

with a specific rate 0 ≤ α < 1 and a certain discount fac-

tor 0 ≤ γ < 1 through a Markov Decision Process (MDP)

representation of the environment.

We have designed a generic framework to support the

implementation of both RL and CRL applications. The

use of a framework enables us to experiment with different

application designs in a more structured and flexible man-

ner. The CRL framework is a C++ library that provides

the programmer with all the components needed to build an

RL application, e.g., agents, learning strategies, action se-

lection strategies, states, actions, MDP representation, and

model. By model in the CRL framework we mean the struc-

ture where the learnt values are stored and indexed by some

key, for instance, a key can be in the form of (state_ID, ac-

tion_ID) if we are using Q-Learning. The framework also

supports CRL application development by providing, in ad-

dition to the common RL application needs, a feedback or

an advertisement strategy, neighbourhoodmanagement and

caching. In that case, the model has caching support for

the information communicated from neighbouring agents.

Figure 1 represents the CRL framework class diagram.

Furthermore, each CRL agent manages its view of its

neighbours using a class that provides an interface for com-

munication. A certain advertisement strategy followed by

every CRL agent determines how the latter should update

its knowledge from its neighbours and how to decide on

what information is to be communicated to them.

4. Decentralized ARR-RL-based and ARR-

CRL-based UTC Simulation of Dublin

The most popular designs for UTC simulations are based

on either a microscopic or a macroscopic approach [17].

Figure 1. CRL framework class diagram

The latter commonly models traffic flow based on concepts

inspired by fluid dynamics. It deals with vehicles collec-

tively and on a homogeneous basis. On the other hand, the

microscopic approach models the details of individual ve-

hicle/driver behaviour, for instance, lane switching, vehicle

following, and speed control. In addition, it differentiates

between various types of vehicles, which is closer to real

life. The UTC simulator [30] we use is based on the micro-

scopic approach. Its input is a set of XML files describing

the road network to be simulated and the valid phases for

each signalized junction. This includes, the number of lanes

per road, the maximum allowed speed on a given road, and

the distances between connected junctions. Moreover, traf-

fic can be generated between specific junctions or among

user-defined zones where the source/destination junctions

are selected randomly within the source/destination zones.

4.1. Traffic Light Controller Design

We focus on experimenting with ARR-RL-based and

ARR-CRL-based traffic light control scenarios that provide

near-optimal policies for the UTC problem. In the ARR-RL

controller, a given signalized junction’s state-action space is

modelled based on every available phase and its status, (i.e.,

busy/not busy). A given phase’s status depends on all the in-

coming approaches of that phase. A pair of a phase and its

status is considered a state in the model, see Figure 2.

A given phase’s status is determined by comparing the

total number of vehicles within range on its incoming ap-

proaches against a specific threshold value. The ARR-RL

controller specifies a number of actions, (i.e., candidate

phase durations including a zero-second duration action)

that could possibly be chosen in a given state. Given that we

follow a round-robin style over n phases, after any action

we take in any state of phase Pi, the next action will be in

a state of phase P(i+1) mod n depending on local traffic con-

ditions. The availability of a zero-second duration action

Busy

Not Busy

Busy

Not Busy

Busy

Not Busy

Phase 0

Phase 1
Phase 2= las t

Edges: actions [0, x, y...] seconds duration for the originating phase

Figure 2. State-Action space for an ARR-

(C)RL traffic controller

allows the ARR-RL controller to skip unnecessary phases

while exploring for the near-optimal policy. Furthermore,

an ARR-CRL controller uses the same state-action space

model as in the ARR-RL controller but allows for knowl-

edge exchange among collaborating ARR-CRL controllers.

The collaboration is governed by a specific advertisement

strategy. This strategy defines the frequency of communi-

cation, the nature of communicated data, and the groups of

ARR-CRL agents every controller is allowed to send to and

receive from, (i.e., agents to collaborate with).

The map of Dublin’s inner city centre is presented in Fig-

ure 3. The pattern of traffic we experiment with is based on

4032 vehicles uniformly inserted over ~133 minutes dura-

tion. Those vehicles are of the same type and travel in both

directions between the map’s opposing edges. The map

comprises 64 signalized junctions which makes it a chal-

lenging UTC optimization task given the aforementioned

pattern.

Figure 3. Dublin’s inner city centre map

Our baselines for comparison are a SAT-like [31] al-

gorithm that roughly emulates SCATS’ behaviour of sat-

uration balancing in addition to a Fixed Time Traf-

fic Controller (FT-TC) scenario where a FT-TC is as-

signed to each signalized junction. The FT-TC cycles

through a given junction’s phases giving a fixed phase

time to each. We chose to experiment with 20- and

40-second phase times assuming that 20-second is a rea-

sonable average phase time. The SAT-like algorithm

tries to achieve a 90% saturation level and uses a 20-

second minimum phase time and a maximum cycle length

of [min_phase_time × factor × number of phases]
where the factor in this case is set to 2 while the number

of phases depends on the junction. Essentially, we exper-

iment with two different scenarios, a decentralized ARR-

RL scenario and an ARR-CRL scenario that share the basic

design choices. Each signalized junction in the ARR-RL

and ARR-CRL scenarios is assigned an ARR-RL agent or

an ARR-CRL agent respectively. In both scenarios agents

are designed with a set of {0, 20, 40} second actions avail-

able within their state-action space. These agents learn us-

ing Q-Learning and chose their actions based on a Boltz-

mann action selection technique. In the ARR-CRL sce-

nario, agents employ a common advertisement strategy that

allows a given ARR-CRL agent to exchange its rewards col-

lected during 240 seconds. These exchanged rewards are

discounted based on age using a Net Present Value (NPV)

[21] inspired formula (1). The d_rate in the NPV for-

mula is the discount rate used to diminish the significance

of older rewards. An rt is the reward obtained at index t

in the exchanged reward vector. The most recent reward

has the highest t value while the first has t = 0, hence,
0 ≤ t < rv_size and rv_size is the reward vector size. We

set the d_rate to 0.1.

NPV (rt) =
rt

(1 + d_rate)(rv_size−(t+1))
(1)

We design a reward model for the ARR-RL scenario

based on the number of vehicles that manage to clear the

junction (v_cleared) during the selected action (phase set)

duration and on the number of vehicles that are still waiting

(v_waiting) after the action execution. The reward is cal-

culated locally using rlocal = (v_cleared − v_waiting).
An ARR-CRL agent uses the same local reward model as

in the ARR-RL agent to calculate the rewards that are to be

exchangedwith its identified neighbours. The actual reward

model used by any ARR-CRL agent to update its learnt

policy is hence a composite of its local reward value and

the normalized discounted rewards received from its neigh-

bours, see formula (2). In the ARR-CRL scenario, an ARR-

CRL agent’s send/receive neighbours are the first signalized

junctions positioned up and down stream.

exch_rewards =
∑

n∈neighbours

∑t=rv_sizen−1
t=0 NPV (rnt)

rv_sizen

rARR−CRL = rlocal +
exch_rewards

number of neighbours
(2)

4.2. Experimental Results

We run the simulation for 140 minutes in order to give

the most recently inserted vehicles the possibility to reach

their destinations. In case of the ARR-RL and the ARR-

CRL scenarios the agents are bootstrapped with initial Q-

values (warm models) based on explored models resulting

from the simulation of three similar traffic traces (training

traces) following the same traffic pattern. We conduct a

number of experiments using different Q-Learning discount

factors γ and learning rates α. The Boltzmann temperature

is set initially to 10000 and cools down uniformly as time

advances throughout the training simulation, until it reaches

1 half-way through the experiment where the warm models

are extracted. The results we present in Table 1 are based on

the best performing settings of γ and α for the correspond-

ing ARR-RL and ARR-CRL bootstrapped simulations us-

ing a different traffic trace from the training traces but fol-

lowing the same traffic pattern. The Boltzmann tempera-

ture is fixed to 1, (i.e., exploitation) during the bootstrapped

simulation. The metrics used to evaluate our results are the

Average Waiting Time (AWT) and the Average Travelling

Time (ATT) per arrived vehicle. The travelling time is de-

fined as the time the vehicle spends with its speed > 0 while

the waiting time is the time spent still at signalized junc-

tions.

Metric F
T
-T

C
2
0
se
c

F
T
-T

C
4
0
se
c

S
A
T
-l
ik
e

A
R
R
-R

L

A
R
R
-C

R
L

Average Waiting Time (AWT) 276.124 822.432 422.464 232.135 180.974

Average Travel Time (ATT) 220.499 270.064 227.469 208.328 205.631

Number of vehicles that arrived 3858 2990 3693 3922 3936

Table 1. Average waiting and travel time per

arrived vehicle in seconds and the number of

vehicles that managed to arrive to their des-
tinations

Table 2 presents the relative performance improvement

achieved using the ARR-RL and ARR-CRL scenarios.

Experiments show that the ARR-RL scenario results in

~15.9% and ~71.7% lower AWT compared to the FT-TC

20sec and the FT-TC 40sec respectively. The SAT-like sce-

nario fails to outperform both ARR-RL and ARR-CRL that

showed ~45% and ~57% better results in the case of their

AWT respectively. On the other hand, the ARR-CRL sce-

nario results in ~22% improvement on the ARR-RL AWT.

The AWT metric shows a significant improvement in both

the ARR-RL and ARR-CRL experimental results. Concern-

ing the ATT metric, the ARR-RL scenario reduces travel

time by ~5.5%, ~22.8% and ~8.4% in contrast to the FT-TC

20sec, the FT-TC 40sec and the SAT-like scenarios respec-

tively. Moreover, ARR-CRL showed a small difference of

~1.29% better ATT performance compared to the ARR-RL

scenario.

Scenario ARR-RL ARR-CRL

FT-TC 20sec (15.9% , 5.5%) (34.4% , 6.7%)

FT-TC 40sec (71.7% , 22.8%) (77.9% , 23.8%)

SAT-like (45% , 8.4%) (57% , 9.6%)

Scenario ARR-CRL

ARR-RL (22% , 1.29%)

*Percentages are presented in the following format:

(~Average Waiting time (AWT)% , ~Average Travel Time (AWT)%)

Table 2. Relative performance improvement
of the different scenarios

In Figure 4 we present the accumulated waiting time

throughout the simulation for all the vehicles in the map.

The simulation’s granularity is quite fine where the plotted

accumulation occurs every 250 milliseconds hence the large

numbers on the y-axis.

 0

 50000

 100000

 150000

 200000

 250000

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06

A
c
c
u

m
u

la
te

d
 w

a
it
in

g
 t

im
e

 (
h

o
u

rs
)

fo
r

a
ll

v
e

h
ic

le
s
 i
n

 t
h

e
 m

a
p

Simulation time in milliseconds

Dublin’s Inner City Centre Experiments

SAT-Like
FT-TC 20sec
FT-TC 40sec

ARR-RL
ARR-CRL

Figure 4. Accumulated waiting time

In effect, the graph reaffirms the results presented in Ta-

ble 1. It is also noticeable that the FT-TC 40sec and the

SAT-like accumulated waiting times for all vehicles grows

out of scale. Both ARR-RL and ARR-CRL scenarios out-

perform the FT-TC 20sec scenario while ARR-CRL main-

tains lowest measures starting half way through the simula-

tion. We believe the ability of both ARR-RL and ARR-CRL

designs to skip unnecessary phases and to provide suitable

timing per phase are key to their good performance.

5. Future Work

The work presented in this paper intended to establish

a platform for future experiments involving uncertainty in

such large-scale dynamic environments. We would like to

provide an uncertainty model that could possibly deal with

noisy sensor data during the exploration for better optimiza-

tion. We are also exploring different collaboration tech-

niques among intelligent agents and potentially better en-

vironmental representations. The CRL framework allows

us to experiment with different action selection techniques

such as ǫ-greedy which could be an interesting future com-

parison against Boltzmann action selection.

6. Conclusion

In this work we showed that RL and CRL are promising

approaches to providing optimization solutions to dynamic

environments especially the UTC problem. Moreover, we

noticed that improvements are possible when collaboration

is used among agents in such environments. The reduction

in average waiting time per arrived vehicle achieved by both

the ARR-RL and the ARR-CRL scenarios is quite signifi-

cant despite the steady/uniform nature of the pattern we ex-

perimented with. One would expect that the FT-TC scenar-

ios, given its uniform phase cycling, to perform very well

with such a pattern but regardless the ARR-RL and ARR-

CRL scenarios proved to be more suitable in terms of per-

formance. The SAT-like scenario maintained better results

than the FT-TC 40sec only where that was still insufficient.

Acknowledgements

The work described in this paper was partly supported

by Science Foundation Ireland (as Investigator award

02/IN1/I250) and by the Irish Higher Education Authority

Programme for Research in Third Level Institutions (as the

Networked Embedded Systems Centre). The authors would

like to thank Vinny Reynolds for his work on the UTC sim-

ulator and Mikhail Volkov for implementing the SAT-like

algorithm.

References

[1] B. Abdulhai and P. Pringle. Autonomous multiagent rein-

forcement learning - 5gc urban traffic control. In Annual

Transportation Research Board Meeting, 2003.

[2] B. Abdulhai, P. Pringle, and G. Karakoulas. Reinforcement

learning for true adaptive traffic signal control. In ASCE

Journal of Transportation Engineering, volume 129(3),

pages 278–284, 2003.

[3] N. Ahmadabadi, M. Asadpour, and E. Nakano. Coopera-

tive Q-learning: The Knowledge Sharing Issue. Journal of

Advanced Robotics, 15(8):815–832, 2001.

[4] A. L. C. Bazzan. A distributed approach for coordination of

traffic signal agents. AAMAS, 10(1):131–164, 2004.

[5] C. Bielefeldt, C. Diakaki, and M. Papageorgiou. TUC and

the SMART NETS project. In Proceedings of the IEEE

ITS’01, pages 55–60, 2001.

[6] E. Bitting and A. A. Ghorbani. Cooperative multiagent sys-

tems for the optimization of urban traffic. In Proceedings of

IAT’04, pages 176–182, Washington, DC, USA, 2004. IEEE

Computer Society.

[7] E. Camponogara and W. K. Jr. Distributed learning agents

in urban traffic control. In F. Moura-Pires and S. Abreu,

editors, EPIA, volume 2902 of Lecture Notes in Computer

Science, pages 324–335. Springer, 2003.

[8] Y. J. Cao, N. Ireson, L. Bull, and R. Miles. Design of a

traffic junction controller using classifier systems and fuzzy

logic. In Proceedings of the 6th International Conference on

Computational Intelligence, Theory and Applications, pages

342–353, London, UK, 1999. Springer-Verlag.

[9] C. Diakaki, M. Papagerogiou, and K. Aboudolas. A mul-

tivariable regulator approach to traffic-responsive network-

wide signal control. Control Engineering Practice, 10:183–

195, February 2002.

[10] V. Dinopoulou, C. Diakaki, and M. Papageorgiou. Appli-

cations of the urban traffic control strategy tuc. European

Journal of Operational Research, 175(3):1652–1665, 2006.

[11] J. Dowling, R. Cunningham, E. Curran, and V. Cahill. Build-

ing autonomic systems using collaborative reinforcement

learning. Knowl. Eng. Rev., 21(3):231–238, 2006.

[12] K. Dresner and P. Stone. Multiagent traffic management:

Opportunities for multiagent learning. In K. T. et al., editor,

LAMAS 2005, volume 3898 of Lecture Notes In AI. Springer

Verlag, Berlin, 2006.

[13] European-Commission. European transport policy for 2010

: time to decide. Brussels, Belgium, 2001.

[14] European-Commission. On the intelligent car initiative -

raising awareness of ICT for smarter, safer and cleaner ve-

hicles. Brussels, Belgium, 2006.

[15] J. Farges, J. Henry, and J. Tuffal. The PRODYN real-

time traffic algorithm. In Proceedings of the IEE Interna-

tional Conference on Road Traffic Signalling, pages 307–

312, 1983.

[16] N. Gartner. OPAC: A demand-responsive strategy for traf-

fic signal control. U.S. Dept. Transportation, Transp. Res.

Record 906, 1983.

[17] S. P. Hoogendoorn and P. H. L. Bovy. State-of-the-art of

vehicular traffic flow modelling. volume 215, pages 283–

303(21), 19 August 2001.

[18] P. B. Hunt, D. I. Robertson, and R. D. Bretherton. The

SCOOT on-line traffic signal optimization technique. Traffic

Eng. Control, 23:190–192, 1982.

[19] P. K.Fehon. Adaptive traffic signals are we missing the boat?

In ITE District 6 Annual Meeting. DKS Associates, 2004.

[20] C. O. Kim, Y. Park, and J.-G. Baek. Optimal signal control

using adaptive dynamic programming. In O. G. et al., edi-

tor, ICCSA (4), volume 3483 of Lecture Notes in Computer

Science, pages 148–160. Springer, 2005.

[21] G. C. I. Lin and S. V. Nagalingam. CIM justification and

optimisation. Taylor & Francis, London, UK, 2000.

[22] P. Lowrie. SCATS: The sydney co-ordinated adaptive traf-

fic system-principles, methodology, algorithms. In Proceed-

ings of the IEE International Conference on Road Traffic

Signalling, pages 67–70, 1982.
[23] S. Mikami and Y. Kakazu. Genetic reinforcement learning

for cooperative traffic signal control. In ICEC, pages 223–

228, 1994.
[24] P. Mirchandani and L. Head. A real-time traffic signal con-

trol system: architecture, algorithms, and analysis. Trans-

portation Research Part C: Emerging Technologies, 9:415–

432(18), December 2001.
[25] L. Panait and S. Luke. Cooperative multi-agent learning:

The state of the art. AAMAS, 11(3):387–434, 2005.
[26] M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialosa,

and Y. Wang. Review of road traffic control strategies. In

Proceedings of the IEEE, volume 91, pages 2043–2067, De-

cember 2003.
[27] M. D. Pendrith. Distributed reinforcement learning for a

traffic engineering application. In AGENTS’00, pages 404–

411, New York, NY, USA, 2000. ACM Press.
[28] J. Peters, S. Vijayakumar, and S. Schaal. Natural actor-critic.

In ECML, pages 280–291, 2005.
[29] I. Porche and S. Lafortune. Dynamic traffic control: De-

centralized and coordinated methods. In Proceedings of the

IEEE Conference on ITS, 1997.
[30] V. Reynolds, V. Cahill, and A. Senart. Requirements for

an ubiquitous computing simulation and emulation environ-

ment. In InterSense’06, page 1, New York, NY, USA, 2006.

ACM.
[31] S. Richter. Learning traffic control - towards practical traf-

fic control using policy gradients - Diplomarbeit. Albert-

Ludwigs-Universität Freiburg, 2006.
[32] S. Richter, D. Aberdeen, and J. Yu. Natural actor-critic for

road traffic optimisation. In Advances in Neural Information

Processing Systems, volume 19. TheMIT Press, Cambridge,

MA, 2007.
[33] S. Sen and L. K. Head. Controlled optimization of phases at

an intersection. Transportation Science, 31(1):5–17, 1997.
[34] Z. sheng Yang, X. Chen, Y. shan Tang, and J. ping Sun. In-

telligent cooperation control of urban traffic networks. In

Proceedings of 2005 ICMLC, volume 3, pages 1482–1486,

2005.
[35] M. Steingröver, R. Schouten, S. Peelen, E. Nijhuis, and

B. Bakker. Reinforcement learning of traffic light controllers

adapting to traffic congestion. In BNAIC, pages 216–223,

2005.
[36] R. Sutton and A. Barto. Reinforcement Learning: An Intro-

duction. MIT Press, Cambridge, MA, 1998.
[37] M. Tan. Multi-agent reinforcement learning: independent

vs. cooperative agents. In Readings in agents, pages 487–

494, San Francisco, CA, USA, 1998. Morgan Kaufmann

Publishers Inc.
[38] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine

Learning, 8(3-4):279–292, 1992.
[39] M. Wiering. Multi-agent reinforcement learning for traffic

light control. In Proceedings of the 17th ICML, pages 1151–

1158. Morgan Kaufmann, San Francisco, CA, 2000.
[40] M. Wiering, J. Veenen, J. Vreeken, and A. Koopman. Intel-

ligent traffic light control. 2004.

