
Supplementary Materials:
Bidirectional Inference Networks

with Application to Health Profiling

1 Proof of Theorem 1 and Theorem 2 in the main paper
In this section, we explain the detail of Theorem 1 and Theorem 2 in the main paper. We start with giving the definition
and important properties of unimodal distribution and elliptical distribution. Then we introduce distribution families of
our interest, elliptically unimodal distribution. Finally we prove the arguments in Theorem 1 and Theorem 2 in main
paper.

1.1 Unimodal Distribution
We first briefly explain the concept of convex unimodal for probability distributions. We refer readers to the book [7] for
more detailed discussion on unimodality of distributions, especially in high dimensional space. Some of our definitions
directly borrow from [7].

Definition 1. A set S is called symmetric about center c if, for all x, c + x ∈ S ⇒ c − x ∈ S. A distribution with
density p is called symmetric about center c if, for all x, p(c+ x) = p(c− x).

Definition 2. A distribution onRn is said to be convex unimodal if it has a density p such that, for every η > 0, the
set {x : p(x) > η} is convex. Further if for every η > 0, the set {x : p(x) > η} is convex and symmetric, then this
distribution is called symmetric convex unimodal.

Lemma 1. Marginal distributions of symmetric convex unimodal distribution is symmetric convex unimodal.

Proof. To prove our lemma, we refer the theorem in book [7] which states that marginal distributions of central convex
unimodal distribution is central convex unimodal. Basically, central convex unimodal distribution is symmetric convex
unimodal distribution whose symmetric center is origin. Consider a random vector Y = (Y1, Y2) has a symmetric
convex unimodal distribution with the symmetric center µ = (µ1, µ2). Since Y − µ has a central convex unimodal
distribution, Y1 − µ1 as the marginal distribution is also central convex unimodal distribution. Thus the distribution of
Y1 is symmetric convex unimodal with the symmetric center µ1.

Lemma 2. Condition distributions of convex unimodal distribution is convex unimodal.

Proof. Consider a convex unimodal distribution p(V) and its conditional distribution p(VS |V−S = Ṽ−S) given a
subset variables V−S = Ṽ−S . For any η > 0, consider following sets C(η) = {VS : p(VS |V−S = Ṽ−S) > η},
A = {V : p(V) > ηp(V−S = Ṽ−S)} and B = {V : V−S = Ṽ−S}. Convex unimodality of p(V) implies that A is

convex. Since B is also convex, A ∩B = {V = (VS , V−S) : V−S = Ṽ−S and p(VS |V−S = Ṽ−S) = p(VS ,V−S=Ṽ−S)

p(V−S=Ṽ−S)
> η}

is convex. Thus, C(η), as the low dimensional projection of A ∩B, is convex. Since C(η) is convex for any η > 0, by
definition, distribution p(VS |V−S = Ṽ−S) is convex unimodal.

1

1.2 Elliptical Distribution
Further, we introduce elliptical distribution. [8] gives a good introduction of elliptical distribution. We refer readers to
this paper for more properties of elliptical distribution and the proofs of lemmas we use here.

Definition 3. A random vector Y in space Rd has an elliptical distribution if its characteristic function has the form,

t 7→ φ(t) = exp(it′µ)ϕ(t′Σt), t ∈ Rd. (1)

where µ ∈ Rd, Σ ∈ Rd×d is symmetric and semi-definite and ϕ : R+ 7→ R is function called characteristic generator.
And we denote this distribution as Ed(µ,Σ, φ).

Lemma 3 in the following describes the symmetricity of elliptical distributions. This lemma implies that the
parameter µ of the distribution Ed(µ,Σ, φ) is actually the mean of the random vector having this distribution. Also
distribution Ed(µ,Σ, φ) is symmetric about µ.

Lemma 3. A random vector Y have an elliptical distribution Ed(µ,Σ, φ) iff Y d
=µ+RAU 1 where R is non-negative

random variable, A is matrix that satisfies A′A = Σ, U is a random vector uniformly distributed over k = rank(Σ)
dimensional unit sphere i.e. {u ∈ Rk : |u|2 = 1}. And R and U are independent.

In the following lemmas2, we introduce the properties of the marginal and conditional distributions of elliptical
distribution. Before that, we introduce more notions in our setting. Let Y ∼ Ed(µ,Σ, φ) where µ = (µ1, µ2) ∈ Rd, the
matrix Σ ∈ Rd×d is positive semidefinate with rank(Σ) = r. Let

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
(2)

with sub-matrices Σ11 ∈ Rk×k, Σ12 ∈ Rk×(d−k), Σ21 ∈ R(d−k)×k, Σ22 ∈ R(d−k)×(d−k). Further, let Y = (Y1, Y2)
where Y1 is k dimensional sub-vector of Y .

Lemma 4. Distributions of Y1 and Y2 as marginal distributions of Ed(µ,Σ, φ) are Ed(µ1,Σ11, φ1) and Ed(µ2,Σ22, φ1)
respectively which are also elliptical.

Lemma 5. Conditional distribution for Y2|Y1 = y1 is elliptical distribution Ed(µ2|1,Σ2|1, φ2|1), where

µ2|1 = µ2 + Σ21Σ−111 (y1 − µ1) (3)

Σ2|1 = Σ22 − Σ21Σ−111 Σ12 (4)

1.3 Elliptically Unimodal Distribution
Definition 4. A distribution is said to be elliptically unimodal if it is elliptical, convex unimodal and has a density p
with an unique maximum (mode).

Lemma 6. Elliptically unimodal distribution EUd(µ,Σ, φ) is symmetric convex unimodal. Furthermore, the mean
vector µ is the symmetric center and also the unique mode.

Proof. According to Lemma 3, the distribution EUd(µ,Σ, φ) being elliptical implies that it is symmetric about µ, i.e.,
its density p satisfies p(µ + x) = p(µ − x),∀x. For every η > 0, set C(η) = {x : p(x) > η} is symmetric about µ,
since µ+ x ∈ C(η)⇒ p(µ+ x) > η ⇒ p(µ− x) > η ⇒ µ− x ∈ C(η). Since we already know set C(η) is convex
due to the fact that the distribution EUd(µ,Σ, φ) is convex unimodal. Thus it is symmetric convex unimodal. We further
show that mean vector µ is the mode. Assume the mode is µ+ δ (δ 6= 0), then there is another vector µ− δ such that
p(µ− δ) = p(µ+ δ), which violates the uniqueness of the mode. Thus any vector other than µ can not be the mode of
the density function.

Lemma 7. Consider p(V) is a elliptically unimodal distribution with the mean vector µ. Its marginal distribution
p(VS) is elliptically unimodal distribution with the mean vector µS .

1The distribution equal sign, d
= , means the random vectors on both sides have the same distribution.

2The derivations of Lemma 4 and Lemma 5 can be found in section 1.2.4 and 1.2.5 of [8].

2

Proof. By Lemma 4, we know marginal distribution p(VS) is elliptical and have the mean vector µS . By Lemma 1, we
know the marginal distribution p(VS) is symmetric convex unimodal. Combining together, we have that the marginal
distribution p(VS) is elliptically unimodal distribution with mean vector µS .

Lemma 8. Consider p(V), a elliptically unimodal distribution with mean vector µ. Its conditional distribution
p(VS |V−S = Ṽ−S) is elliptically unimodal distribution. Furthermore, if Ṽ−S = µ−S , the mean vector of conditional
distribution p(VS |V−S = µ−S) is µS .

Proof. By Lemma 5, we know the conditional distribution p(VS |V−S = Ṽ−S) is elliptical. By Lemma 2, we know the
conditional distribution p(VS |V−S = Ṽ−S) is convex unimodal. Thus the conditional distribution p(VS |V−S = Ṽ−S) is
also elliptically unimodal. Furthermore, if Ṽ−S = µ−S , according to the given Eqn. 3 in Lemma 5, we can derive that
the mean vector for p(VS |V−S = Ṽ−S) is µS .

1.4 Proof of the Theorem
In the following, we restate the arguments of Theorem 1 and Theorem 2 in main paper give the proofs separately.

Theorem 1. In the forward inference case, we predict a set of variables V based on the distribution p(V |X) conditioned
on given variables X. Our prediction V̂ satisfies following greedy property.

v̂n = argmax
vn

p(vn|X, V̂n), n = 1, . . . , N (5)

The arguemnt of this theorem is: if the distribution p(V |X) is elliptically unimodal, our prediction is actually global
optimum, i.e., V̂ = argmaxV p(V |X)

Proof. Since p(V |X) is elliptically unimodal, say its mode is V ∗. By Lemma 7, we know for every n, the marginal
distribution p(Vn|X) is also elliptically unimodal with mode V ∗n . Further by Lemma 8, p(Vn|X)’s conditional
distribution p(vn|X, Vn−1 = V ∗n−1) is elliptically unimodal with mode v∗n. Thus at first step in forward inference,
our prediction for variable v1, v̂1, satisfies v̂1 = argmaxv1 p(vn|X) = v∗1 . For the following steps, the prediction v̂n
satisfies v̂n = argmaxvn p(vn|X, Vn−1 = V̂n−1 = V ∗n−1) = v∗n. Thus in total, our prediction V̂ = V ∗.

Theorem 2. In hybrid inference case, we predict a subset of variables VS based on the distribution p(VS |X, V−S = Ṽ−S)
with given extra variable X and V−S . We divide the target variables VS into two parts: VB = VS ∩ {vi : i < L} and
VB = VS ∩ {vi : i > L}, where L is largest index of variable in V−S , i.e., L = maxi∈−S i. We first do backward
inference and assume the result V̂B satisfies V̂B = argmaxVB p(VB |X, V−S = Ṽ−S). Then we use forward prediction to
get the prediction V̂F . The arguemnt of this theorem is: if the distribution p(VS |X, V−S = Ṽ−S) is elliptically unimodal,
our prediction is actually global optimum, i.e., V̂S = (V̂B , V̂F) = argmaxVS p(VS |X, V−S = Ṽ−S).

Proof. We denote the mode of elliptically unimodal distribution p(VS |X, V−S = Ṽ−S) as V ∗S . By Lemma 7, the marginal
distribution p(VB |X, V−S = Ṽ−S) is an elliptically unimodal distribution with mode V ∗B . By Lemma 8, the conditional
distribution p(VF |X, V−S = Ṽ−S , VB = V ∗B) is an elliptically unimodal distribution with mode V ∗F . By our assumption,
the prediction V̂B = argmaxVB p(VB |X, V−S = Ṽ−S) = V ∗B . Further, since p(VF |X, V−S = Ṽ−S , VB = V ∗B) is
elliptically unimodal, by Theorem 1 we can conclude that the forward prediction actually gives global optimum i.e.
V̂F = argmaxVF p(VF |X, V−S = Ṽ−S , VB = V ∗B) = V ∗F . Thus in total our prediction result V̂S = (V̂B , V̂F) equals to
the global optimum V ∗S = (V ∗B , V

∗
F).

2 Marginal Likelihood of V−S
In the paper, we propose to approximate the marginal negative log-likelihood L(V−Sj |X;θ) efficiently and effectively
by leveraging the properties of NPN. The process is as follows:

L(V−Sj |X;θ) ≈
∑

vn∈−Sj

− log p(vn|X),

where − log p(vn|X) can be computed recursively as follows:

3

• − log p(v1|X) =
‖µθ1 (X)−v1‖22

2sθ1 (X) + 1
2 log sθ1(X).

• For k > 1,

− log p(vk|X) =
‖µθk(X, Ûk−1)− vi‖22

2sθk(X, Ûk−1)
+

1

2
log sθk(X, Ûk−1),

where Ûk = {û1, . . . , ûk} with ûk as the estimated mean and variance (output by NPN) of vk given X (note that
NPN can take mean-variance pairs as input):

ûk = (µθk(X, Ûk−1), sθk(X, Ûk−1))

In this section, we justify this approximation by showing that if each NPN subnetwork has a single layer, the process
above computes the mean and variance VS exactly (note that since NPN assumes diagonal covariance matrices for the
output, the our process can only compute the diagonal entries of the covariance matrix for VS exactly and ignores the
off-diagonal entries).

2.1 More Background on NPN
Different from vanilla neural networks which usually take deterministic input, NPN is a probabilistic neural network
which takes distributions as input. The input distributions will go through layers of linear and nonlinear transformation
to produce output distributions. In NPN, all hidden neurons and weights are also distributions expressed in closed form.
Specifically, in a vanilla neural network fw(x) will take x is input and compute the output based on parameters w. A
corresponding Gaussian NPN would assume w is drawn from a Gaussian distribution pθ(w) parameterized by θ and
that x is drawn from N (xm, xs) (xs is set to 0 when the input is deterministic). It will then compute the mean and
variance of the output Gaussian distribution µθ(xm, xs) and sθ(xm, xs) in closed form, where µθ(·, ·) and sθ(·, ·) share
parameters θ in a sophisticated way so that:

E[fw(x)] ≈ µθ(xm, xs)
E[f2w(x)] ≈ sθ(xm, xs) + µ2

θ(xm, xs),

where the expectations are taken over x ∼ N (xm, xs) and w ∼ pθ(w).
In a linear NPN layer, if the input a is drawn from a distribution p(a|am,as) (not necessarily Gaussian) with the

mean am and the variance as and the weights W (we ignore biases in this section for simplicity) are drawn from a
distribution p(W|Wm,Ws) with the mean Wm and the variance Ws (NPN assumes diagonal covariance matrix for
hidden neurons and parameters), the mean and variance of the output o, denoted as om and os, can be computed as:

om = µθ(am,as) = amWm, (6)
os = sθ(am,as) = asWs + as(Wm ◦Wm) + (am ◦ am)Ws, (7)

where om and os are the mean and variance (diagonal entries of the covariance matrix) of the following distribution:

p(o|am,as,Wm,Ws) =

∫
p(a|am,as)p(W|Wm,Ws)p(o|a,W)dadW, (8)

where p(o|a,W) is a Dirac delta distribution centered at aW. These properties turn out to be the key to efficient
computation of marginal negative log-likelihood L(V−Sj |X;θ).

2.2 Proof on the Process of Computing L(V−Sj
|X;θ)

Notation: In the following, we denote a vector of scalar variable (v1, v2, . . . , vk) as vk and assume the high-dimensional
context information is a vector x ∈ RC . We will prove that if each NPN subnetwork has one layer and output the
correct mean and variance, chaining the N networks using the process mentioned above will produce the correct mean
and variance of the joint distribution of vN (given x). Since V−S ⊆ V , the process can also give the correct mean and
variance for the vector (vn)n where vn ∈ V−S . We assume that the n-th NPN subnetwork use the mean and variance
of (x,vn−1) as input and output the mean and variance of vn. Specifically, p(x|φx) is the distribution over x, and

4

p(wn|θn) is the distribution over the weights wn of the n-th NPN subnetwork. Here φx and θn are the parameters
for corresponding distributions. We further define the shorthand Wk = {wi}ki=1 and Θk = {θi}ki=1 for convenience.
Vectors such as v0 are ψ0 empty vectors, which can be ignored during derivation. (·, ·) is used to denote concatenation
of vectors. To prevent clutter, we omit all biases b in the network parameters (note that the theorem still holds with the
biases).

If each NPN subnetwork has only one linear layer, Eqn. 6 and Eqn. 7 for the n-th network can be written as (omitting
the bias terms):

µθ(xm,vn−1,m) = (xm,vn−1,m)wT
m, (9)

sθ(xm,vn−1,m) = (xs,vn−1,s)w
T
s + (xs,vn−1,s)(wm ◦wm)T + ((xm,vn−1,m) ◦ (xm,vn−1,m))wT

s , (10)

where (xm,xs) and (wm,ws) are the mean-variance pairs of the distributions p(x|φx) and p(wn|θn), respectively.
(vn−1,m,vn−1,s) is the mean-variance pair for vn−1.

Theorem 3. Assume all n single-layer NPN subnetworks are correct, namely, the output (µθn(φx,ψn−1), sθn(φx,ψn−1))
of the n-th subnetwork is the mean and variance of the following distribution (where φx can be the mean and variance
of x and ψn−1 can be the mean and variance of vn−1):

p(vn|φx,ψn−1,θn) =

∫
p(x|φx)p(vn−1|ψn−1)p(wn|θn)p(vn|x,vn−1,Wn)dxdvn−1dwn, 1 ≤ n ≤ N (11)

where p(vn|x,vn−1,Wn) a Dirac delta distribution centered at vn = (x,vn−1)wT
n (computed recursively). Consider

the following recursive process (also mentioned at the start of Sec. 2):

• Define the concatenation of tuples ûk = (û1, . . . , ûk) with each tuple ûk as the estimated mean and variance
(output by NPN) of vk given x (note that NPN can take mean-variance pairs as input).

• Let û1 = (µθ1(x), sθ1(x))T .

• For 1 < k ≤ N , let ûk = (µθk(x, ûk−1), sθk(x, ûk−1))T .

Then the computed ûN contains the mean and variance (diagonal entries of the covariance matrix) of the joint
distribution of all variables vN :

p(vN |φx,ΘN) =

∫
p(x|φx)p(WN |ΘN)p(vN |x,WN)dxdWN , (12)

where p(vN |x,WN) a Dirac delta distribution centered at vN = (vn)Nn=1 and vn = (x,vn−1)wT
n (computed

recursively). Specifically ûN,1∗ = (ûn,1)Nn=1 (concatenate the first entries of all tuples to a vector) is the mean, and
similarly ûN,2∗ = (ûn,2)Nn=1 is the variance.

Proof. We first focus on the mean of p(vN |φx,ΘN) and prove it by induction. For the base case, according to Eqn. 11,
û1 = (µθ1(x), sθ1(x)) is the mean and variance of the distribution:

p(v1|φx,Θ1) =

∫
p(x|φx)p(W1|Θ1)p(v1|x,W1)dxdW1 (13)

=

∫
p(x|φx)p(w1|θ1)p(v1|x,w1)dxdw1. (14)

Assume ûn−1,1∗ is the mean of the distribution

p(vn−1|φx,Θn−1) =

∫
p(x|φx)p(Wn−1|Θn−1)p(vn−1|x,Wn−1)dxdWn−1. (15)

Then the mean of the distribution

p(vn|φx,Θn) =

∫
p(x|φx)p(Wn|Θn)p(vn|x,Wn)dxdWn (16)

5

can be written as∫
(vn−1, (x,vn−1)w

T
n) p(x|φx)p(Wn|Θn)p(vn|x,Wn)dxdWn (17)

=

∫
(vn−1, (x,vn−1)w

T
n) p(x|φx)p(wn|θn)p(Wn−1|Θn−1)p(vn−1|x,Wn−1)dxdWn

=

∫
(vn−1, (x,vn−1)w

T
n) p(x|φx)p(wn|θn)(

∫
p(x|φx)dx)p(Wn−1|Θn−1)p(vn−1|x,Wn−1)dWn−1dxdwndvn−1

=

∫
(vn−1, (x,vn−1)w

T
n) p(x|φx)p(wn|θn)(

∫
p(x|φx)p(Wn−1|Θn−1)p(vn−1|x,Wn−1)dxdWn−1)dxdwndvn−1

=

∫
(vn−1, (x,vn−1)w

T
n) p(x|φx)p(wn|θn)p(vn−1|φx,Θn−1)dxdwndvn−1

According to the case of (n− 1) in Eqn. 15, we have the mean of p(vn−1|φx,Θn−1) as∫
vn−1 p(x|φx)p(wn|θn)p(vn−1|φx,Θn−1)dxdwndvn−1

=

∫
(

∫
vn−1 p(vn−1|φx,Θn−1)dvn−1)p(x|φx)p(wn|θn)dxdwn

=

∫
ûn−1,1∗p(x|φx)p(wn|θn)dxdwn

=ûn−1,1∗

∫
p(x|φx)p(wn|θn)dxdwn

=ûn−1,1∗.

Besides, we have ∫
(x,vn−1)wT

n p(x|φx)p(wn|θn)p(vn−1|φx,Θn−1)dxdwndvn−1

=(xm,vn−1,m)wT
m

=µθ(xm,vn−1,m)

=ûn,1.

Hence the mean of the distribution p(vn|φx,Θn) is:∫
(vn−1, (x,vn−1)wT

n) p(x|φx)p(Wn|Θn)p(vn|x,Wn)dxdWn = ûn,1∗,

meaning that ûN,1∗ is the mean of p(vN |φx,ΘN).
Next we use similar techniques to prove that ûN,2∗ is the variance of p(vN |φx,ΘN). For the base case, according

to Eqn. 11, û1 = (µθ1(x), sθ1(x)) is the mean and variance of the distribution:

p(v1|φx,Θ1) =

∫
p(x|φx)p(W1|Θ1)p(v1|x,W1)dxdW1 (18)

=

∫
p(x|φx)p(w1|θ1)p(v1|x,w1)dxdw1. (19)

Assume ûn−1,1∗ and ûn−1,2∗ are the mean and variance of the distribution

p(vn−1|φx,Θn−1) =

∫
p(x|φx)p(Wn−1|Θn−1)p(vn−1|x,Wn−1)dxdWn−1. (20)

Then the covariance matrix of the distribution

p(vn|φx,Θn) =

∫
p(x|φx)p(Wn|Θn)p(vn|x,Wn)dxdWn (21)

6

can be written as∫
((vn−1, (x,vn−1)w

T
n)− ûN,1∗)

T ((vn−1, (x,vn−1)w
T
n)− ûN,1∗) p(x|φx)p(Wn|Θn)p(vn|x,Wn)dxdWn, (22)

=

∫
(vn−1, (x,vn−1)w

T
n)

T (vn−1, (x,vn−1)w
T
n) p(x|φx) p(Wn|Θn)p(vn|x,Wn)dxdWn − ûT

n,1∗ûn,1∗ (23)

=E[diag(v2
n−1, ((x,vn−1)w

T
n)

2)]− E2[diag(vn−1, (x,vn−1)w
T
n)] + An (24)

=diag((ûn−1,2∗, ûn,2)) + An (25)

=diag(ûn,2∗) + An, (26)

where (vn−1, (x,vn−1)wT
n)T (vn−1, (x,vn−1)wT

n) is an n-by-n matrix, and ûn,1∗ is the mean of p(vn|φx,Θn).
v2
n−1 is the element-wise square of vn−1. diag(a) denotes the a diagonal matrix with values in the vector a as the

diagonal entries. Eqn. 25 is due to Eqn. 20 and the fact the assumption that ûn,2 is the variance of the distribution in
Eqn. 11. In Eqn. 24, The expectation is over the distribution p(Wn|Θn)p(vn|x,Wn), and entries of An ∈ Rn×n can
be computed recursively as:

An,ij =

0 1 ≤ i = j ≤ n
An−1,ij i < n and j < n and i 6= j

ûi,2w
(C+i)
n,m i < n and j = n

ûj,2w
(C+j)
n,m i = n and j < n,

where w
(k)
n,m is the k-th entry of wn,m. Hence the diagonal entries of the covariance matrix for the distribution in

Eqn. 21 is ûn,2, which completes the proof for the variance part.

Remark: Note that the theorem above is general since we do not assume Gaussian distributions. And since ûN,1∗
and ûN,2∗ are the mean and variance for the joint distribution Eqn. 12 (corresponding to V), respectively, the process in
Theorem 3 also computes the correct mean and variance for the marginal distribution for V−S . Theorem 3 can also be
extended to the case where there is nonlinearity after the linear layer, as long as the mean and variance of the nonlinear
layer can be computed exactly, as in most cases of NPN [20].

2.3 Marginal MAP
Note that using similar techniques above, BIN can be extended to get all marginal MAPs. For example, to get
the marginal MAP of p(v2|X, v3) during inference, we need to marginalize out v1 and compute p(v2, v3|X) =
p(v2|X)p(v3|X, v2). To do this, instead of using a deterministic v1, we use the output mean and variance (µθ1(X), sθ1(X))
of the first subnetwork p(v1|X) as the input to subnetwork p(v2|X, v1) to get the marginal p(v2|X). Marginal
p(v3|X, v2) can be obtained from subnetwork p(v3|X, v1, v2) similarly. Maximizing p(v2|X)p(v3|X, v2) with a fixed
v3 produces the MAP for v2.

3 More Experimental Results

3.1 Toy Inference Tasks
Besides the toy inference task in the main paper, we examine a slightly more complex toy dataset where X is
also considered (here X is a scalar for simplicity). We generate 8 data points {(X(i), v

(i)
1 , v

(i)
2)}8i=1 according to

v1 = 3X + 1 + ε1 and v2 = 0.5v1 −X + 1 + ε2, where ε1 and ε2 are sampled from N (0, 1). X is sampled from a
uniform distribution U(−1, 1). We use similar hyperparameters as the first toy task (see the Supplement for details).
Again, we train BIN according to Eqn. 4 in the paper and CBIN according to Eqn. 8 (J = 1 and VS1 = {v1}) in the
paper. The inference task is to infer VS = {v1} givein X and V−S = {v2}.

Fig. 1(a) and Fig. 1(b) show the contours of µθ2(X, v1) (predicted mean of v2) learned by BIN and CBIN,
respectively, with the original training data points. As we can see in Fig. 1, with a given X there are usually more than
1 local minima of µθ2(X, v1) with respect to v1 (there are even 5 when X is around −0.4) for BIN while there are
much fewer for CBIN. Correspondingly, Fig. 1(c) and Fig. 1(d) show the loss surface of L with respect to VS = {v1}
when inferring v1 given (X(1), v

(1)
2). As expected, BIN is easier to get trapped in poor local optima (shown as green

7

-1 -0.5 0 0.5 1
-2

-1

0

1

2

3

4

(a) BIN

-1 -0.5 0 0.5 1
-2

-1

0

1

2

3

4

(b) CBIN

-2 -1 0 1 2 3 4
0

2

4

6

8

10

(c) BIN

-2 -1 0 1 2 3 4
0

5

10

15

20

(d) CBIN

Figure 1: (a) and (b): µθ2(X, v1) learned by BIN and CBIN. (c) and (d): corresponding loss surface of L with respect
to {v1} when inferring v1 given X(1) and v(1)2 .

Table 1: Accuracy (%) for predicting VS given X and
V−S = {vn}3n=1 \ VS in the SHHS2 dataset.

VS {v1} {v2} {v1, v2} {v1, v3}
SPEN 68.66 67.38 68.33 64.24
eSPEN 69.43 68.31 68.87 64.85
SVAE 67.75 66.77 66.95 62.86
PO 69.74 76.85 64.80 68.13
RI 70.36 70.16 64.42 65.78
BIN 78.19 77.54 71.87 72.53
CBIN 78.50 78.77 72.27 73.91
Retrain 78.86 78.31 71.45 73.72

Table 2: Accuracy (%) when VS = V for the SHHS2
dataset.

VS {v1} {v1, v2} {v1, v2, v3} {vn}8n=1

SPEN - 67.26 65.28 65.35
eSPEN - 68.56 65.54 66.13
SVAE - 68.14 65.71 65.90
BIN - 68.64 66.05 66.32
CBIN - 69.04 66.35 66.26
Retrain 71.21 68.11 65.63 66.09

diamonds) than CBIN. Note that since L in Fig. 1(c) is a quadratic function of µθ2(X, v1) in Fig. 1(a), local minima in
Fig. 1(a) do not correspond to local opitma in Fig. 1(c).

3.2 Experiments on the SHHS2 Dataset
Table 2 shows the accuracy in forward inference cases where VS = V with different V . We can see that SVAE, SPEN,
and eSPEN achieve similar or slightly better accuracy than the retrained specific models which essentially assumes
conditional independence between variables in V given X. Compared to retrained models, BIN and CBIN consider
also the conditional dependence among variables, making the predictions more accurate.

Fig. 2(left) shows the number of inference iterations needed to predict VS = {v1, v2} given V−S = {v3} versus
number of inner loop iterations during training (Tin in Algorithm 1 of the main paper) with different λc. Fig. 2(right)
shows the corresponding accuracy versus Tin. The horizontal lines show the number of inference iterations and accuracy

8

0 50 100 150 200 250 300
Number of Inner Loop Iterations

100

200

300

400

500
N

um
be

r
of

 In
fe

re
nc

e
Ite

ra
tio

ns

0 100 200 300
Number of Inner Loop Iterations

71.8

71.9

72

72.1

72.2

72.3

A
cc

ur
ac

y
(%

)

Figure 2: Left: Number of inference iterations needed during testing versus number of inner loop iterations during
training (Tin in Algorithm 1) with different λc. The horizontal line the number for BIN (without Lj). Right: Accuracy
versus Tin. Similarly the horizontal line shows the accuracy of the corresponding BIN.

Table 3: Standard error for accuracy (%) of predicting VS given X and V−S = {vn}8n=1 \ VS in the SHHS2 dataset.
VS {v1, v3} {v4, v5} {v1, v3, v6, v7} {v2, v6, v7} {v3, v5, v8} {v4, v5, v6} {v4, v6, v7}
SVAE 0.16 0.19 0.11 0.13 0.13 0.13 0.20
DNADE 0.19 0.10 0.20 0.09 0.19 0.21 0.08
PO 0.18 0.11 0.16 0.17 0.10 0.17 0.19
RI 0.08 0.09 0.08 0.11 0.11 0.20 0.10
BIN 0.15 0.17 0.15 0.16 0.12 0.11 0.14
CBIN 0.10 0.08 0.20 0.09 0.08 0.10 0.11
Retrain 0.14 0.15 0.12 0.13 0.18 0.13 0.17

Table 4: Standard error for RMSE of predicting VS given X
and V−S = {vn}3n=1 \ VS in the Dermatology dataset.

VS {v1} {v2} {v1, v2} {v1, v3}
SVAE 0.0108 0.0040 0.0147 0.0140
DNADE 0.0054 0.0025 0.0047 0.0066
PO 0.0142 0.0137 0.0011 0.0141
RI 0.0144 0.0121 0.0074 0.0145
BIN 0.0049 0.0044 0.0095 0.0113
CBIN 0.0083 0.0039 0.0051 0.0105
Retrain 0.0068 0.0019 0.0065 0.0091

Table 5: Standard error for RMSE when VS = V
for the Dermatology dataset.

VS {v1} {v1, v2} {v1, v2, v3}
SVAE - 0.0130 0.0103
DNADE - 0.0136 0.0117
BIN - 0.0138 0.0049
CBIN - 0.0099 0.0112
Retrain 0.0052 0.0115 0.0023

for BIN. As we can see: (1) CBIN needs much fewer iterations during testing if Tin is large enough to get better
estimates of VS during training. (2) CBIN consistently outperforms BIN in a wide range of Tin. Results for other VS
(and V) are consistent with Fig. 2.

3.3 Standard Errors
In this section we provide the standard errors (of three trials of different random seeds) in Table 3, Table 4, and Table 5
corresponding to results in the main paper. As we can see, most differences between BIN/CBIN and baselines in
accuracy/RMSE are larger than three times the standard errors.

4 Intuition and an Illustrative Example for CBIN
As an illustrative example, assume we want to learn a function v2 = fθ(v1) (ignoring X for simplicity), given 4 data
points {v(i)1 , v

(i)
2 }4i=1. Fig. 3 shows the model v2 = fθ(v1) in the current epoch and the original 4 data points. In the Ti

inner loops of Algorithm 1, v̂(i)1 will be inferred given v(i)2 . For example, given v(1)2 , Algorithm 1 (in the main paper)

9

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

v
1

f θ
(v

1
)

Current Model

Original Data

y = v
2

(1)

Augmented Data

Local Minimum

-3 -2 -1 0 1 2 3

0

5

10

15

v
1

L e

Current Model

Local Minimum

Global Minimum

Figure 3: Left: The model v2 = fθ(v1) in the current epoch, original data points, and augmented data points given by
CL terms. Right: Loss surface of Le when inferring v̂(1)1 given v(1)2 and the current model fθ(·). The Ti inner loops
will try to find the global minimum according to ∂Lc

∂v1
and use it as v̂(1)1 . If Ti is too small, it is more possible to get

trapped in local minima.

will infer v̂(1)1 by iteratively computing ∂Le
∂v1

and updating v1, where Le = (fθ(v1)− v(1)2)2, as shown in Fig. 3(right).

As we can see, the current model has many local optima when inferring v̂1. Since the resulting (v̂
(i)
1 , v

(i)
2) can be

viewed as augmented data points, if (v̂
(i)
1 , v

(i)
2) is closer to the current v2 = fθ(v1) curve, it can make v2 = fθ(v1)

smoother after updating θ in the current epoch, leading to a loss surface Le more friendly to backward inference (for
v1). For instance, we will have the augmented data points as shown in Fig. 3(left) if all v̂(i)1 can reach the global minima
in the inner loops. Incorporating these points (in black) can make v2 = fθ(v1) much smoother after updating θ.

As mentioned in Eqn. 9 of the paper, the augmented data V̂Sj is an approximation instead of the true minimizer.
Hence in practice the augmented data points may not be exactly on the v2 = fθ(v1) curve as shown in Fig. 3(left).
Empirically however, we did not find this to be an issue because V̂Sj tends to be close enough to the curve if we have
sufficient number of inner loop iterations Tin, as shown in Fig. 2(b) of the main paper and in Fig. 1(b).

Besides local optima, it is worth noting that when VS has more than 1 element, the gradient-based optimization
can also be affected by saddle points [6]. Potentially this problem can also be alleviated by extending BIN to CBIN,
because the optimization landscape of the objective L with respect to VS can be improved if V̂S (inferred using the
inner loops of Algorithm 1 in the paper) can successfully escape the saddle points in certain iterations during training.

5 BIN/CBIN for Other Types of Distributions
As mentioned in Sec. of the paper, our model naturally generalizes to arbitrary exponential-family distributions (e.g.,
gamma distributions), due to the properties of NPN. In this section we briefly introduce BIN/CBIN with gamma
distributions and Poisson distributions. Note that it is also possible to have a hybrid BIN/CBIN, where subnetworks
belongs to different types of NPNs (e.g., some are Gaussian NPNs and others are gamma NPNs).

5.1 Gamma BIN/CBIN
Essentially gamma BIN/CBIN would replace the Gaussian NPN used in the main paper with gamma NPN. Specifically,
the negative log-likelihood in Sec. of the paper:

− log p(vn|X, Vn−1;θn) =
‖µθn(X, Vn−1)− vn‖22

2sθn(X, Vn−1)
+

1

2
log sθn(X, Vn−1) (27)

becomes

− log p(vn|X, Vn−1;θn) = log Γ(c)− c log d− (c− 1) log vn + dvn, (28)

10

where

c =
µθn(X, Vn−1)2

sθn(X, Vn−1)
, d =

µθn(X, Vn−1)

sθn(X, Vn−1)
.

The computation of the hidden layers in gamma NPN is the same as that in [20].

5.2 Poisson BIN/CBIN
Besides gamma distributions, BIN/CBIN can also model counts (e.g., word counts in documents). Similar to gamma
BIN/CBIN, Eqn. 27 in Poisson BIN/CBIN becomes:

− log p(vn|X, Vn−1;θn) = −vn log c+ c+ log(vn!), (29)

where vn is a nonnegative integer and

c =
1

4
(2µθn(X, Vn−1)− 1 +

√
(2µθn(X, Vn−1)− 1)2 + 8sθn(X, Vn−1)).

In practice we need to relax the nonnegative integer vn to be a nonnegative real value and replace vn! with Γ(vn + 1) to
enable BP. During inference, the predicted real-valued vn is then transformed back to a nonnegative integer in the end.

6 More Experiment Details and Hyperparameters
We use the published code of [1, 2] implemented in Torch 7 [5] for experiments on SPEN and eSPEN, while our models
BIN/CBIN, ‘Retrain’ (NPN), and other baselines are implemented using PyTorch3.

6.1 Toy Inference Tasks
For the first toy inference task, models are trained for 100 epochs with a minibatch size of 1. We use Adam with a
learning rate of 0.005. For CBIN, we set λc = 1, the number of inner loop iterations Tin = 10, and the number of
warmup epochs Tw = 10. For the second toy inference task, we use Adam [12] with a learning rate of 0.01 in the
training loop and a learning rate of 0.05 in the inner loop. For CBIN, we set λc = 1, the number of inner loop iterations
Tin = 20, and the number of warmup epochs Tw = 10. For simplicity, sθ2(·) is ignored (set to a constant 1) in both
tasks. We use multi-layer perceptrons (MLP) with 2 hidden layers of 64 neurons.

6.2 Experiments on Real-world Datasets
In the experiments, all subnetworks (e.g., θ1 and θ2) share the same encoder which encodes X into a 512-dimensional
(fixed-length) vector. We use 75% of the dataset for training and the rest for testing. Cross validation is performed to
determine the best network structures and hyperparameters (see the Supplement for details). We use NPN subnetworks
with one hidden layer of 50 neurons after the encoder. For iterative inference on the test set, we perform the same type
of inference on the validation set to decide the number of inference iterations. Note that for the inference in the inner
loop (with Tin iterations) of Algorithm 1 (in the main paper), one can dramatically speed up the computation by treating
all data points as one single minibatch.

For the experiments on SHHS2, the fixed-length encodings (256, 128, and 128 dimensions for breathing, EEG, and
ECG respectively) produced by three encoders, along with Vk, are concatenated to a (512 + k)-dimensional vector,
followed by a hidden NPN layer of 50 neurons and an output NPN layer that produces the mean and variance of vn. Note
that the encoder part is shared across different NPN subnetworks and that the model is trained in an end-to-end fashion.
For both real-world datasets, we use the default ordering of variables in the datasets except that we move forward the
variable ‘general health’ of SHHS2 from the last to the third, for convenience of evaluation when V = {vn}3n=1. For
SHHS2 we tried different ordering when V = {vn}8n=1, and the results are very similar and consistent to Table 1 in the
paper. For Dermatology, v1, v2, and v3 are ‘vacuolisation and damage of basal layer’, ‘saw-tooth appearance of retes’,
and ‘elongation of the rete ridges’4.

3https://github.com/pytorch/pytorch
4We choose 3 histopathological attributes with the the largest average covariance.

11

Table 6: Network structure for encoders of EEG Xe and ECG Xc.
Kernel Stride Channel In Channel Middle Channel Out Type Number

5 1 Cin 128 128 ResBlock 1
5 1 128 64 128 ResBlock 3
5 3 128 64 256 ResBlock 1
- - 256 - 256 SRU 1
3 2 256 128 512 ResBlock 1
- - 512 - 512 SRU 1
3 2 512 256 512 ResBlock 1
- - 512 - 512 SRU 1

Table 7: Additional layers for encoders of breathing signals Xb.
Kernel Stride Channel In Channel Middle Channel Out Type Number

11 5 Cin - 64 Conv 1
5 1 64 32 64 ResBlock 3
5 2 64 32 64 ResBlock 1

For the experiments on Dermatology, we use 80% of the data for training and the rest for testing. Cross validation is
performed to decide hyperparameters. Since X in Dermatology is low-dimensional features, Gaussian NPNs with one
hidden layer of 50 neurons are used as subnetworks and no shared encoder is needed. As preprocessing, all attributes
are normalized into [0, 1].

In the experiments, the number of warmup epochs Tw = 1 and the number of inner loop iterations Tin = 150. We
use Adam with a learning rate of 1× e−4 during training and 1× e−3 during inference. The minibatch size is set to 4.
For fairness in the number of free parameters, we also try a larger number of hidden neurons (50 ∼ 400) in the hidden
layer of ‘Retrain’, SVAE, DNADE, SPEN, and eSPEN, and the best performance is used in the tables of the main papers
(50 is the best choice most of the time). As mentioned in the paper, we assume Gaussian distributions for the variables
in both datasets. For the classification task in SHHS2, we use a threshold of 0.5 to process the predicted values.

6.3 Network Architecture for Encoders
Table 6 shows the neural network architecture for the encoders of EEG Xe and ECG Xc. Since the breathing signal
Xb is 10 times the length of Xe and Xc, additional layers (as shown in Table 7) are needed to align Xb with Xe and
Xc. We use 1D convolution since X is time series with multiple channels. ‘ResBlock’ refers to the ResNet block as
used in [10]. We use simple recurrent units [3, 15] as a simplified version of gated recurrent units [4] as our recurrent
neural network (RNN) components. ‘Number’ in the tables indicates the number of corresponding blocks stacked in the
network. The output of the last SRU will then go through a self-attention layer [16] to output a fix-length encoding,
which later are shared as inputs by all NPN subnetworks of BIN/CBIN. The network is trained in an end-to-end fashion.

6.4 Details on the SVAE Baseline
As a baseline in the experiments, we combine SVAE [11, 13] and our method to enable BP-based inference and avoid
O(2N) networks. Specifically, we train the model by maximizing

log p(V |X) = log

∫
penc(z|X)pdec(V |z)dz

≥
∫
penc(z|X) log pdec(V |z)dz

= Epenc(X|z)[log pdec(V |z)],

where z is the latent variable, penc(z|X) can be seen as the prior on z using X as input, and V = VS ∪ V−S is the set of
all variables. Similar to [11, 13], penc(z|X) and pdec(V |z) can be learned using BP and the reparameterization trick.
Note that since we have the prior penc(z|X) on z, the recognition model q(z|V) is not needed here.

During the inference phase, using MAP and BP as in BIN, one can infer any subset VS from V and V−S by finding

argmax
VS ,z

penc(z|X)pdec(VS , V−S |z),

12

where penc(z|X) provides regularization when updating z during inference, and pdec(VS , V−S |z) provides the main
gradient, similar to the inferential procedure of BIN.

Note that a learned inferential procedure q(z|X, V−S) would be subset-specific, meaning O(2N) models of
q(z|X, V−S) for O(2N) possible subsets; so a feasible method would have to involve an MAP inference over z
as well as VS , as shown above. This ”augmentation” step within MAP can introduce looseness, however. In fact, the
same idea is used in sampling methods precisely to avoid getting stuck in local rigid configurations. In contrast, the
Bayesian network formulation in BIN captures even rigid interactions very directly.

7 Configuration of VSj
As mentioned in the paper, for CBIN, one challenge is that there are 2N − 1 configurations of VSj , including all 2N − 1

terms of Lj during training is obviously impractical. In our experiments, we let J = N − 1 and VSj = Vj = {vn}jn=1.
Doing this has the effect of both self-correction and improving the optimization landscape: (1) Self-correction: For
example, when N = 3 and j = 2, we have V̂Sj = {v̂1, v̂2} and V−Sj = {v3}. Since (a) (v̂1, v̂2) is different from
(v1, v2), and (b) (v̂1, v̂2) is the current best estimate for (v1, v2) given the true v3, using (v̂1, v̂2, v3) as ‘augmented
data’ to train the N = 3 subnetworks (p(v1|X), p(v2|X, v1), and p(v3|X, v1, v2)) in CBIN has the effect of guiding the
subnetworks to perform self-correction collaboratively. Here the inner loop inferring (v̂1, v̂2) can be seen as searching
for the best path for self-correction. (2) Optimization landscape: The effect of improving the optimization landscape
comes from using inner loops to infer V̂j given V \ Vj and using (V̂j , V \ Vj) during training. Note that the generated
V̂j is used as input for N − j subnetworks (e.g., subnetworks p(v2|X, v1), and p(v3|X, v1, v2) both use v̂1 as input).
Hence using N − 1 extra terms is sufficient to cover N subnetworks.

8 Alternative Building Blocks and Related Work
It may be tempting to use probabilistic NN such as [14, 9] as building blocks. However: (1) These methods are designed
for binary variables (and assume Bernoulli distributions) while NPN [20] can handle different kinds of variables (e.g.,
binary variables or continuous variables) and arbitrary exponential-family distributions. (2) More importantly, they do
not output the prediction variance, which is crucial to naturally trade off the influence of the prior terms and the terms
that provide the main gradient as mentioned in Sec. of the main paper. Besides the choice about building blocks, note
that [14, 9] model the joint distributions of binary variables in a deterministic way (models such as [19] can be seen as
extension of [14, 9] for real values). Hence they can only predict variables using a feedforward pass and cannot perform
inference for the values of an arbitrary set of variables. The best [14, 9, 19] can do is to predict V \ Vk given X and Vk,
which covers only N − 1 of the 2N − 1 cases.

Note that BIN and NADE-based models (including the orderless and real-valued version [18, 17]) are substantially
different: (1) BIN performs inference mainly with backpropagation, while NADEs perform inference the usual way with
feedforward. (2) NADEs use parameter sharing to parameterize different conditionals with a single network while BIN
parameterizes each conditional with an NPN; (3) BIN supports arbitrary Bayesian Network structures while NADEs
do not; this allows convenient incorporation of domain knowledge; (4) BIN can be extended to CBIN to improve
accuracy/efficiency. Finally, the large performance gap in Table 2∼4 empirically verifies these differences.

9 Figures in the Paper
In this section we provide additional illustrative figures in Fig. 4 (an example inference process of BIN) and larger
versions of some figures in the main paper for readers’ convenience in Fig. 5.

13

𝑋 𝑣1
𝑣2𝜇𝜃1(𝑋)

𝑠𝜃1(𝑋)

𝜇𝜃2(𝑋, 𝑣1)

𝑠𝜃2(𝑋, 𝑣1)

Loss: − log 𝑝(𝑣1|𝑋; 𝜃1)

Loss: − log 𝑝(𝑣2|𝑋, 𝑣1; 𝜃2)
N

P
N

 1

N
P

N
 2

FF provides prior (regularization) for 𝑣1 BP provides main gradients for 𝑣1

Figure 4: Illustration of the inference process of BIN when VS = {v1} and V−S = {v2}. FF provides prior (regulariza-
tion) for v1 and BP provides the main gradients to update v1. Circles and rectangles in grey indicates observed variables
and fixed networks parameters, respectively.

14

𝑣1 𝑣2 𝑣3

𝑋

Step 1: Iterative FF/BP to infer 𝑣1

Step 2: One-pass FF

to predict 𝑣3
NPN 1

NPN 2

NPN 3

𝑣1 𝑣2

𝑣4

𝑋𝑉−𝑆

𝑣3 𝑣5

𝑣6
𝑉𝑆

Single step: One-pass FF to predict {𝑣5, 𝑣6}

𝑣1 𝑣2

𝑣4

𝑋

𝑣3 𝑣5

𝑣6

Step 1: Iterative FF/BP to infer {𝑣1, 𝑣3}

Step 2: One-pass FF

to predict {𝑣5, 𝑣6}

Figure 5: Top: An example for hybrid inference when VS = {v1, v3} and V−S = {v2}. Edges in different colors
correspond to different NPN subnetworks. Best viewed in color. Middle: An example for forward prediction of a more
general BN structure. Bottom: An example for hybrid inference of a more general BN structure.

15

References
[1] David Belanger and Andrew McCallum. Structured prediction energy networks. In ICML, pages 983–992, 2016.

[2] David Belanger, Bishan Yang, and Andrew McCallum. End-to-end learning for structured prediction energy
networks. In ICML, pages 429–439, 2017.

[3] James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. Quasi-recurrent neural networks. CoRR,
abs/1611.01576, 2016.

[4] Kyunghyun Cho, Bart van Merrienboer, cCaglar Gülccehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation.
In EMNLP, pages 1724–1734, 2014.

[5] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-like environment for machine
learning. In BigLearn, NIPS workshop, 2011.

[6] Yann N. Dauphin, Razvan Pascanu, cCaglar Gülccehre, KyungHyun Cho, Surya Ganguli, and Yoshua Bengio.
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In NIPS, pages
2933–2941, 2014.

[7] Sudhakar Dharmadhikari and Kumar Joag-Dev. Unimodality, convexity, and applications. Elsevier, 1988.

[8] Gabriel Frahm. Generalized elliptical distributions: theory and applications. PhD thesis, Universität zu Köln,
2004.

[9] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: masked autoencoder for distribution
estimation. In ICML, pages 881–889, 2015.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
CVPR, pages 770–778, 2016.

[11] Matthew Johnson, David K Duvenaud, Alex Wiltschko, Ryan P Adams, and Sandeep R Datta. Composing
graphical models with neural networks for structured representations and fast inference. In NIPS, pages 2946–
2954, 2016.

[12] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.

[13] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114, 2013.

[14] Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. In AISTATS, pages 29–37,
2011.

[15] Tao Lei, Yu Zhang, and Yoav Artzi. Training RNNs as fast as CNNs. CoRR, abs/1709.02755, 2017.

[16] Zhouhan Lin, Minwei Feng, Cı́cero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua Bengio.
A structured self-attentive sentence embedding. CoRR, abs/1703.03130, 2017.

[17] Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo Larochelle. Neural autoregressive
distribution estimation. JMLR, 17:205:1–205:37, 2016.

[18] Benigno Uria, Iain Murray, and Hugo Larochelle. RNADE: the real-valued neural autoregressive density-estimator.
In NIPS, pages 2175–2183, 2013.

[19] Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. In ICML,
pages 1747–1756, 2016.

[20] Hao Wang, Xingjian Shi, and Dit-Yan Yeung. Natural-parameter networks: A class of probabilistic neural
networks. In NIPS, pages 118–126, 2016.

16

