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ABSTRACT
Understanding users’ behavior at home is central to behav-
ioral research. For example, social researchers are interested
in studying domestic abuse, and healthcare professionals
are interested in caregiver-patient interaction. Today, such
studies rely on diaries and questionnaires, which are subjec-
tive, erroneous, and hard to sustain in longitudinal studies.
We introduce Marko, a system that automatically collects
behavior-related data, without asking people to write diaries
or wear sensors. Marko transmits a low power wireless signal
and analyses its reflections from the environment. It maps
those reflections to how users interact with the environment
(e.g., access to medication cabinet) and with each other (e.g.,
watch TV together). It provides novel algorithms for identi-
fying who-does-what, and bootstrapping the system in new
homes without asking users for new annotations. We evalu-
ate Marko with a one-month deployment in six homes, and
demonstrate its value for studying couple relationships and
caregiver-patient interaction.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mobile
computing systems and tools; • Computing methodologies
→ Neural networks;
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1 INTRODUCTION
Learning users’ behavior in their homes is central to be-
havioral research. Social researchers are interested in how
different family members spend their time at home, and how
they interact [13, 21, 26, 40, 44]. For example, knowing how
a couple balances their work hours to spend time together
helps us understand their relationship. Healthcare profes-
sionals would like to understand patients’ health conditions
and caregiver-patient interaction at home [14, 15, 19, 29, 55].
For example, do the patients take their medications at the
prescribed times every day? Are the patients independent
for most activities of daily living or do they need frequent
help from their caregivers? Knowing the answers to such
questions helps doctors deliver better care, and guide deci-
sions regarding home-stay versus moving the patient to a
nursing home [15, 29, 55].

Current solutions to in-home behavioral sensing relymainly
on self-reporting, i.e., having the subjects write diaries or
answer questionnaires. These techniques, however, are often
prone to subjective biases and inaccuracies [39, 60]. More-
over, keeping a detailed diary or administering question-
naires incurs a significant overhead from the subject and
is not sustainable in long-term studies. An alternative ap-
proach would use wearable sensors or smartphones for be-
havioral sensing [6, 12, 32, 46, 56]. However, older adults
could feel encumbered by wearables and uncomfortable us-
ing them [17, 54]. Further, past studies have shown that
wearable devices lead to adherence problems because people
stop using the wearable sensor with time [10, 16, 33, 34, 51].

Our goal is to provide a tool that minimizes the overhead
associated with in-home longitudinal behavioral studies. We
would like to use the radio (RF) signals that bounce off peo-
ple’s bodies to enable behavioral sensing at home, without
diaries or wearables. We build on past advances in passive
wireless localization, which transmit a low-power wireless
signal and use its reflections to localize people in the vicinity
of the radio [4, 27, 37]. Our intuition is that in-home location
embeds a wealth of information about user behavior. For
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example, if a nurse reaches out to the medication cabinet
then approaches the patient, she is likely giving him his med-
ications. Similarly, if a person reaches out to the fridge, it
indicates a desire to eat. By continuously tracking people’s
trajectories at home and tagging those trajectories with user
identities, one can develop a passive tool for in-home social
and behavioral studies. Such a tool incurs no overhead from
the users, who continue living their lives without having
to wear sensors, answer questionnaires, or write diaries. It
is also minimally invasive in comparison to other passive
solutions, e.g., cameras and microphones. Even in scenar-
ios where the tool does not provide all data necessary for
the study, the tool may still be used to augment and correct
self-reported data, which is known to be incomplete and
error-prone [39, 60].
Developing such a tool is challenging. First, passive RF

localization systems cannot tell the identity of the monitored
person. As a result, measurements from different people are
entangled, making it difficult to provide meaningful insights.
While there has been some initial effort to add identity to
such systems [3, 9, 23, 50, 57, 62, 64], none of the proposed
solutions work in the presence of multiple people (which is
typical in homes). Further, they usually restrict users to walk
along one or a few predetermined lines without stopping,
and fail when users do not follow instructions [9, 57].
To address this challenge we introduce a new algorithm

that combines information over space and time, and operates
over both location data and raw RF signals. Our algorithm
uses continuity in space and time to stitch location measure-
ments into short trajectories, where each trajectory tracks
the motion of one person. It uses these trajectories to spa-
tially separate the received RF signal into multiple signal
components, where each component captures the RF reflec-
tions from one person along one trajectory. The algorithm
provides each trajectory and the corresponding RF compo-
nent to a convolutional neural network (CNN) trained to
recognize user identity. The algorithm works in the presence
of multiple people, and has no assumption on user motion;
hence it works in the wild while users go about their lives.
Another important challenge is: how do we run such a

tool in a new home, without asking the users to write new
annotations? Consider a social researcher who is interested
in deploying our tool with couples to study their routines and
interactions. How would the researcher create a classifier
for each home that identifies the occupants of that particular
home? Does the researcher ask the occupants of the house to
look at a set of trajectories, try to remember who did what,
and label the trajectories? This is clearly cumbersome and
prohibitive. However, in the absence of labeled data, one
cannot train a classifier to identify people in that home.

We introduce a new solution that customizes the tool for
new homes without asking users to label any data. Our idea

is simple: the researcher can ask the occupants of the house
to wear an accelerometer for only a few days. We correlate
the acceleration data with the trajectories obtained by our
tool to identify the occupants, and automatically label their
trajectories based on the acceleration data. We use these
labels to train a CNN identity classifier for this home, as
described above. This approach allows for scalable deploy-
ment in many homes at a minimal overhead for both the
researchers and the home occupants. Once the CNN classifier
is trained, the occupants need not wear the accelerometer
any longer, and the system operates purely on RF signals.

We implemented our design as a stand-alone home sensor
called Marko. Once the sensor is connected to the AC power
and the Internet, it can passively collect data for months with-
out any additional user overhead. We deployed this sensor
in 6 homes for a period of one month. The homes have 2 to
4 residents, whose age varies between 21 and 84 years. Each
home is occupied by its actual residents who go about their
lives, without any restrictions on their movements or interac-
tions. We use these deployments to evaluate our algorithms
and demonstrate the accuracy of Marko (Section 6). We il-
lustrate the benefits of our system with case studies. They
show how Marko tracks the interaction between a patient
and his caregiver, provides a doctor with useful information
to adjust medications, and reveals the routine of a couple
and their interaction with each other.

Contributions: This paper makes the following contribu-
tions.
• It introduces the first RF-based passive system that
enables in-home user identification and behavioral
sensing.
• It presents an algorithm for identifying users in their
homes using RF reflections, without any restrictions
on their movements or the presence of multiple people.
• It develops an automatic labeling approach to boot-
strap the system in new homes without additional
human labeling efforts.
• It presents three case studies demonstrating the poten-
tial for performing passive studies of caregiver-patient
interaction, couple’s routine at home, and functional
profiling of patients.

Our system makes the first step toward low-overhead and
passive behavioral sensing in homes using radio reflections.
We believe it can serve as a building block for new HCI capa-
bilities to enable smart environments, non-invasive health
sensing, and understanding user interactions.

2 RELATEDWORK
Self-reporting through diaries and questionnaires is the most
common way to measure people’s behavior in homes. Self-
reporting, however, can often be biased and inaccurate as
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people are forgetful [39, 60]. Further, the overhead of self-
reporting causes subjects to stop reporting in long-term stud-
ies [39, 56]. Researchers have also leveraged smartphones
and wearable sensors for behavioral sensing [6, 12, 32, 46, 56].
These systems use smartphones or wearable devices to col-
lect various sensor data (acceleration, audio, light, etc.) and
classify basic activities (e.g., walking, conversation, sleeping).
While they simplify data collection, past studies have shown
that wearable devices lead to adherence problems because
people stop using the sensors with time [10, 16, 33, 34, 51].
In contrast, Marko uses radio reflections to sense users’ loca-
tions and identities, without requiring users to wear sensors,
write diaries, or answer questionnaires.

Recent advances in passive RF localization [4, 27, 37] pro-
vides new opportunities for in-home behavioral sensing.
These systems transmit a wireless signal and analyze its
reflections to localize nearby users, without any sensor on
their bodies [4, 25, 27, 37]. These systems, however, have no
notion of identity. Marko augments passive RF sensing with
identification. Further, through actual in-homemonitoring of
real users, it demonstrates the potential of RF-based passive
in-home behavioral studies.
The problem of passive RF-based identification has re-

ceived attention in recent years motivated by the increased
applications of passive RF sensing [5, 24, 25, 45, 47, 58, 59].
However, past work on RF-based identification is restricted
to environments with a single user [3, 9, 23, 50, 57, 62, 64]
Further, most prior solutions restrict the user to walking
on one or a few predetermined paths without stopping or
turning [3, 9, 23, 50, 57, 62]. Even small deviations from the
predetermined path (e.g., shifting the walk by 1 meter) can
cause major changes in the signal and a significant reduction
in identification accuracy [9, 57]. We aim to address those
challenges to allow for identifying users in their own homes,
while they live their normal lives, and in the presence of
multiple people in the environment. Further, we develop a
practical solution to automatically label RF data with user
identities for new homes and new users
There is also research on user identification based on

facial recognition, gait, floor or ceiling sensors, ultrasonic
and audio sensors, wearable sensors and on-body RFID tags
[7, 18, 20, 22, 28, 30, 35, 36, 38, 41, 42, 48, 49, 63]. In contrast,
this paper enables identification purely base on RF signals.
Passive RF systems are less intrusive than cameras and audio
systems, making them more suitable for homes and private
spaces. They are also easier to deploy in comparison to instru-
menting the entire floor or ceiling with sensors. They also
do not require users to wear or charge any sensors. Further,
the paper integrate identification within a tool for passive
in-home behavior sensing and demonstrate the benefit of
the design using three case studies.

3 MARKO’S SYSTEM DESIGN
Marko is a wireless sensor that passively collects information
about users’ behavior in the home. Marko transmits an RF
signal and processes its reflections into short clips of RF
videos (RF frames) and short user trajectories (tracklets).
Marko has a convolutional neural network (CNN) that tags
each tracklet with the corresponding user identity. Given the
home floor plan, Marko shows how users interact with space
at home and each other. For example, for a couple living
together, Marko provides enough information to answer
questions of the form: Does the couple sleep in the same
room/bed? Who wakes up first? Who prepares dinner? Does
the couple eat together? etc.
Next, we describe how Marko processes the RF-signal to

extract RF frames and tracklets, and how it identifies people.
Later in the evaluation section, we describe three case studies
where Marko reveals various behavioral patterns.

Processing RF Signals
Marko processes the RF signals from the radio to extract two
types of data: RF frames and tracklets.

(a) RF frames: As in past passive RF-based localization sys-
tems [3, 4], Marko uses an FMCW radio equipped with two
antenna arrays: a horizontal array and a vertical array. This
combination allows for separating RF signals that arrive from
different locations in space. Specifically, we can compute RF
reflections from different locations in the horizontal plane:

P (d,θ ) =
N∑
n=1

T∑
t=1

sn,te
j2π kd

c te j2π
nl cosθ

λ , (1)

where P (d,θ ) is the signal from distance d and azimuthal
angle θ , N is the number of antennas in the horizontal array,
T is the number of samples in an FMCW chirp, sn,t is the
signal received by antenna n at the t th sample in the chirp
with slope k , l is the antennas spacing, λ is the wavelength,
and c is the speed of light. Similarly, we can project the
received signal on a vertical plane by substituting the signal
from the vertical array in the above equation.
Thus, at each time step, we can represent the RF signal

using its projection on two planes: a horizontal plane and a
vertical plane. Figure 1a shows an example of the RF signal
captured by the two arrays. The RF signal is a complex num-
ber, hence, we plot its magnitude in the figure. The figure
shows that the horizontal plane separates people based on
their locations whereas the vertical plane captures informa-
tion about their height and build. We refer to these planes
as the vertical and horizontal RF frames.

Marko operates on sequences of such horizontal and verti-
cal RF frames. By processing sequences of RF frames, Marko
can capture both spatial features related to people’s heights
and body shapes, and temporal features related to their gait
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(a) Horizontal and vertical RF frames at a given time. Red and
blue pixels refers to large and small values. The frames show
high values at spatial locations that correspond to the two users.
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(b) One tracklet (red) processed from the RF signals. The green
rectangle on the top is Marko’s radio. The black solid lines are
room boundaries.

Figure 1: Visualization of the data Marko operates on: RF frames (left) and tracklet (right).

and the way they move. Note that in contrast to past work
that uses WiFi CSI or Doppler effect, the RF frames have spa-
tial information, providing more explicit information about
user identities.

(b) Tracklets: Marko leverages past work on wireless local-
ization to extract user location from RF signals [4, 27]. The
basic idea is simple, each person appears as a blob in the
horizontal frame, and the location of the user can be esti-
mated as the center of that blob. (For the detailed localization
procedure, please see [4]).
Once we have user locations, we connect location mea-

surements in consecutive frames to create short trajectories
which we call tracklets. We initialize a new tracklet when-
ever there is a big jump in the location (larger than 50 cm).
Otherwise, each tracklet is extended with the closest location
in the next time frame. (Our radio generates 30 frames per
second, hence one can assume continuity of locations.) We
apply a Kalman filter on the location measurements for all
tracklets to handle noisy measurements.

Figure 1b shows an example tracklet along with the floor
plan of the home. The person walks into the coverage area
of Marko at (A), and makes a short turn at (B) to get into the
living room. He then goes to the cabinet (C), probably picks
up something, and turns to the dinning table at (D), stays for
a while, and finally leaves the device’s coverage area at (E).

The tracklet in Figure 1b shows that users do not walk on
straight lines and tend to make unpredictable moves. Also,
it is worth noting that identification has to be performed
repeatedly every time the user exits the coverage area or
when the device loses the person due to occlusion by metallic
obstacles (e.g., mirrors and TV screens). For example, in
Figure 1b, most of the bedroom is outside the coverage area

of the radio, and hence the user has to be re-identified every
time he/she goes to the bedroom and comes back.

Identification with RF Signals
The identification module is based on a convolutional neural
network classifier. It operates over windows of 5 seconds1.
For each window, given the RF frames and the corresponding
tracklets from the same time interval, the identification mod-
ule tags each tracklet in the input window with an identity.

(a) Removing extraneous information: The RF signal
contains a lot of extraneous information that is not useful for
identification. Thus, we first eliminate RF reflections from
static objects (e.g., furniture) by subtracting consecutive RF
frames. This eliminates all static objects whose reflections do
not change over time and leaves signals from moving people.
Still, the RF signal collected from homes corresponds to

many activities and situations. Different activities performed
by the same person may result in much larger differences in
the RF signal than differences in the identity of the person
performing the activity. Asking the CNN to learn all possible
activities and situations is unlikely to work. In that case, the
neural network tends to learn the noise caused by different
human activities and ignore features that actually distinguish
different people. This leads to over-fitting the training data
and poor generalization on test data.

Thus, instead of feeding the neural network all the data, we
focus on walking periods –i.e., periods during which the user
changes location. Of course the person can walk on a curved
trajectory, make turns, slow down, etc. To identify walking
periods, for each time window, we estimate the diameter of a

1We choose 5 seconds since it is long enough to capture user gait but also
short enough to allow for quick identification.
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Figure 2: The identification CNN. The network takes as input a sequence of RF frames and the tracklets from the same time period. It tags
each tracklet by the predicted user identity. The network has spatial filtering masks that allow it to focus on one person at a time. It also has
two branches for processing information from the horizontal and vertical antenna arrays.

circle that bounds the tracklet using the diameter estimation
algorithm in [25]. If the diameter of the tracklet exceeds a
distance threshold (1 meter), we say the user is walking and
pass the RF frames and tracklet to the CNN. As the user
walks, the CNN estimates her/his identity over windows of
5-second wide. If the user stops walking and stays in the
same location, the identity is assumed to persist.

(b) Dealing with multiple users: We need to deal with
scenarios with multiple users. It is quite often that multiple
users can be moving in the same time window. Directly
feeding such data to the CNN is confusing, since it is not clear
which user’s identity the network should learn or predict.
To address this problem, we leverage the tracklet to spatially
separate the RF reflections from each user. We can then
operate on each user’s reflections separately and infer his/her
identity.

Specifically, to focus on the RF signals of a user for a given
tracklet, for each time step, we take a circle of radius r around
her location in the horizontal frame2. For the vertical frame,
we assume that the signals reflected from different elevations
at that circle are from the same person. This process creates
two filtering masks, a horizontal and a vertical mask, that
allow us to focus on the signal from one person at any time.
Below, we reinvestigate these masks and describe how they
interact with the CNN.

(c) CNN architecture: For each home, we train a CNN for
identifying the users. Figure 2 shows a schematic of our
network. The network has two branches, one for horizontal

2Our default r is 50 cm.

frames and another for vertical frames. The two branches are
combined in a final layer that aggregates their information.

Figure 2 also shows that our CNN takes care of separating
RF information from different users so that when multiple
people move together each of them is identified accurately.
Specifically, the figure shows an example of two users mov-
ing at the same time, which is expressed using two tracklets:
red and blue. The example in the figure focuses on the person
moving along the red tracklet. The CNN uses the horizontal
and vertical masks described above, which are illustrated by
the red 3D tubes in the figure. The CNN takes the dot product
of the horizontal and vertical frames with their correspond-
ing masks. This has the effect of keeping only the RF signals
reflected from the person moving along that red tracklet,
while zeroing out all other RF signals. The blue tracklet is
similarly processed using its corresponding masks.
The CNN architecture also takes care of capturing both

spatial features related to a person’s height and build as well
as temporal features related to movement dynamics and gait.
Specifically, each layer in our network uses spatio-temporal
convolutions to aggregate information across space and time.
Each branch in the CNN has 10 layers with a kernel of 5×3×3
on the three dimensions3. Following design practices in vi-
sual recognition [52], we double the number of channels
and halve the dimensions every other layer. We perform
average pooling at the last layer in both the spatial and tem-
poral dimensions to create the feature vector. The output

3The number of layers in a CNN has to be large enough to abstract the
information and small enough to avoid over-fitting. The number of layers
and kernel sizes are chosen empirically based on our data.
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(a) Acceleration sensor (b) Sensor with an ankle strap

Figure 3: The acceleration sensor provides ground truth user iden-
tity for training the identification CNN. The user wears the sensor
only for a few days to collect training data. During the operation
mode, Marko works without any wearables.

features of the two CNNs are concatenated before the final
fully-connected layer, which predicts the identity.

The CNN is trained by minimizing the cross-entropy loss:

min
θ

N∑
n=1

M∑
m=1
−ym,n log ˆpm (xn ;θ ), (2)

where N is the total number of 5-second windows, M is
the number of users to classify, ym,n is the binary indicator
if label m is correct for example xn , and ˆpm (xn ;θ ) is the
predicted probability that example xn is person m given
model parameters θ .

During testing, the personm∗ with the highest predicted
probability given the RF frames xi is used to tag the corre-
sponding tracklet:

m∗ = argmax
m

ˆpm (xi ;θ ). (3)

4 AUTOMATIC LABELING FOR NEW HOMES
Typical studies may deploy the device in tens or hundreds
of homes. Every home has different occupants, and hence
needs a new CNN classifier. Training such a classifier re-
quires labeled data from each home. Asking the subjects
in each home to label a few days of their data for training
creates too much overhead. It is hard for people to look at
trajectories and try to remember who did what and when.
We need a solution that automatically create labeled data for
deployments in new homes.
Next, we present a solution that automatically generates

labeled data for deployments in new homes. When Marko is
deployed in a new home, users interested in being identified
by the system wear a small accelerometer for a few days.
During that period, Marko collects RF signals and acceler-
ation data. It processes the RF signals to extract RF frames
and user tracklets (Section 3). For each tracklet, Marko cor-
relates the motion along the tracklet with the acceleration
from the wearable sensors; it labels the tracklet with the
identity of the user whose acceleration matches the motion
in the tracklet. Once the system has enough labeled data, the

users can stop wearing the accelerometer, and identification
is subsequently performed using RF signals alone. Note that
wearing an accelerometer for a few days to train the system
is significantly less onerous than requiring the user to wear
and charge sensors for an indefinite period of time.

We use a small accelerometer [1] shown in Figure 3a. We
recommend that the user wears the sensor using an ankle
strap as in Figure 3b. The sensor streams acceleration data
to the Marko device using the Bluetooth Low Energy proto-
col. The battery lasts for around one week, longer than the
training phase. Thus, the user does not need to remember to
charge the acceleration sensor.

(a) Acceleration Data: Figure 4 shows multiple examples
of tracklets and acceleration data recorded at the same time.
To simplify the visualization of a tracklet, we plot how the
distance from the device changes over time. In Figure 4a,
the top graph shows the change in distance for a particular
tracklet, and the bottom graph shows the corresponding 3-
axis acceleration data. It is clear that when the user walks,
the acceleration oscillates with the steps. The acceleration
becomes a flat line once the person stops moving. However,
one should be careful when matching acceleration with mo-
tion as multiple users may be moving at the same time as
in Figure 4b. Also, the acceleration can change when a user
is stationary because he is tapping with his feet or moving
his body in place, as in Figure 4c. Hence, we need a robust
algorithm for matching acceleration with tracklets.

(b) Labeling network: We formulate the labeling problem
asmeasuring the similarity between data from the twomodal-
ities: acceleration and tracklets. We cannot simply correlate
the acceleration with the tracklet to compute their similarity
because they are quite different. Instead, we design a neu-
ral network that takes a tracklet and the acceleration data
from the same time period, and learns to produce a similarity
score. For segments of data with high similarity scores, we
assign the corresponding user identity to the tracklet.

Model design: The architecture of the labeling network
is shown in Figure 5. The neural network takes an entire
tracklet and acceleration data of the same period as input.
For shorter tracklets, we pad zeros to make them the same
length. The network has two branches where one branch
is devoted to modeling acceleration and the other models
tracklets. Both branches of the network use 3 layers of con-
volutions along the temporal dimension with a kernel size of
3. Each convolutional layer is followed by a ReLU activation
and a dropout layer. At the end of the two branches, we have
two feature vectors representing the two data types. We use
the dot product of the feature vectors to represent their sim-
ilarities at each time step. Finally, we perform max pooling
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(b) Two people (red and blue) walking.
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(c) A complicated example of acceleration and
location data of a same person.

Figure 4: Passive RF location data and wearable acceleration data. The top row in each figure shows the location in one dimension, and the
bottom row shows the 3-axis acceleration data.
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Figure 5: The labeling network. A two-branch neural network that
learns a similaritymeasure betweenwearable acceleration data and
tracklets. If the two data streams are similar, the tracklet is labeled
with the identity of the user carrying the acceleration sensor.

in the temporal dimension and use a fully connected layer
to produce a single similarity score for the entire period.

Training: To train the network, we collect acceleration and
tracklets generated by the same person as correct examples.
We also randomly assign acceleration streams to tracklets to
create wrong examples. In training, we set the ground truth
similarity scores for the correct pairs as 1 and wrong pairs
as 0. We train the network by minimizing the cross-entropy
loss between the true and predicted similarity scores using
stochastic gradient descent with Adam optimizer [31].

Finally, we note that once the labeling network is trained,
it can label data automatically from any new home – i.e.,
there is no need to train a labeling network per home. This
is in contrast with the identification network – since each
home has different occupants with their own identities, the

identification CNN has to be trained per home. The nice
thing, however, is training the identification CNN can be
automated using one labeling network.

5 IMPLEMENTATION
We built the FMCW radio using off-the-shelf components
based on the design of [4]. The radio repeatedly generates
a frequency chirp ranging from 5.46 to 7.24 GHz4. The two
antenna arrays are integrated with the radio on a printed
circuit board (PCB)5. A single board computer processes the
RF signals from the PCB, and sends data to the cloud over
WiFi. In the training phase, it also handles the connection
with the acceleration sensor using Bluetooth Low Energy.
All the components are packed in a stand-alone box with a
size of 12 × 15 × 1.5 inches, and can be easily deployed by
hanging it on the wall.

6 EVALUATION
We evaluate Marko through deployments in 6 homes for a pe-
riod of one month6. Our deployments are with users whose
age ranges between 21 and 84. One of the homes is a town-
house with 4 residents. Three of the homes are one-bedroom
apartments each hosting a young couple with no children.
The other two homes are in an assisted living facility, where
the residents live in their own unit and receives frequent
visits from the nurses.

During the deployment, the residents go about their nor-
mal lives with no restrictions. They wear different clothes
every day, are free to stay anywhere inside the home, and
can move furniture or chairs just as they normally do.

4The average power of the radio complies with FCC regulations [11]
5While we build our own radio for flexibility, various FMCW radios with
antenna arrays are also available on the market [2, 61]
6The deployments are approved by our institutional review board (IRB).
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Figure 6: A representative set of tracklets collected byMarko in different homes. The green rectangle box at the top is the location of Marko’s
radio. The black lines are boundaries of different rooms or areas. Different tracklets are plotted in different colors.

Data Collected in the Wild
Before evaluating Marko, we show a representative set of
the tracklets collected in different homes to give the reader
some insight into the underlying motion patterns. Figure 6
shows one day of tracklets from four homes. The figure
shows that people’s trajectories can be quite complex and
far from straight lines.

Evaluation of Automatic Labeling
We start by evaluating the automatic labeling module which
matches acceleration data with tracklets. For each home, we
randomly sample a person and ask the person to wear the
accelerometer. For the homes in the assisted living facility,
we ask the residents to wear the accelerometer. We use that
data to train the matching network.
To obtain the ground-truth labels for matching tracklets

and acceleration, our first attempt was to ask the user to
write a diary of her movements at room level. Unfortunately,
the diaries are incomplete, sometimes missing a full day or
multiple hours in a day. Thus, we ask three human labelers to
manually label the ground truth for each home, while using
the information in the diaries for guidance. We implement a
labeling tool that visualizes both tracklets and acceleration
data as in Figure 4a. The human labelers are asked to label
tracklets whose motion matches the acceleration data. The
three labelers compare their labels and resolve disagreements.
When in doubt, the labelers call the subjects to ensure the
labeling is correct and discard examples with disagreements
that cannot be resolved.

Accuracy of Automatic Labeling: We evaluate the accu-
racy of our automatic labeling network and compare it to
the ground truth obtained by human-labeling as described
above. Recall that the main point of automatic labeling is
to label data in new homes not seen in training. Thus, we
perform leave-one-out evaluation–i.e., for each test home,
we train a model excluding the test home’s data.

Table 1 shows the test accuracy of the automatic labeling
network in each home. The results show that our model has
an average accuracy of 95% when labeling data in a new
home that it has not trained on. The accuracy is close to

Environments Accuracy
Home 1 97%
Home 2 96%
Home 3 95%
Home 4 94%
Home 5 94%
Home 6 94%

Table 1: Accuracy of automatic labeling. The table shows that
the labeling network has high accuracy and works accurately even
when it is trained and tested on different homes.

the inter-labeler agreement rate (which is 96%). In fact, the
misclassified examples are typically those the human labelers
have trouble labeling.

Evaluation of RF-Based Identification
In this section, we evaluate the identification CNN and shed
light on how it works.

(a) Identification Accuracy: We present the identification
results from our deployments in the homes. For each home,
we train a CNN classifier using the data from that place. We
use 80% of the data for training and 20% for testing. Since
the objective of the classifier is to predict the future, we use
earlier data for training and later data for testing. All of the
reported results are test accuracy.

We evaluate our model based on average accuracy where
the average is taken across all classes. We also compare
Marko with a baseline that takes the same input including
the horizontal and vertical masks and uses a random forest
classifier [8] as opposed to our spatio-temporal CNN. For
the baseline classifier to achieve better results, we had to re-
duce the input dimensions by applying Principal Component
Analysis (PCA) on the RF frames and keeping the principal
components that explain 99% of the variance. We experiment
with different baseline parameters (e.g., tree depth, number
of samples in a leaf node, etc.) and report the best results.

Table 2 summarizes the results. Our identification accuracy
ranges between 85% and 95%, and the average across all
homes is 90%. The difference in accuracy between homes
are due to the intrinsic differences between the occupants.
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(b) The patient’s tracklets
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(c) The nurse’s tracklets

Figure 7: One day of tracklets. The figure compares all tracklets of the patient and those of the nurse. The green rectangle on top is the
location of Marko’s radio. The black lines refer to the boundaries between rooms, and the marking of the bed area.

Environments Marko Baseline
Home 1 95% 66%
Home 2 88% 58%
Home 3 92% 57%
Home 4 92% 77%
Home 5 89% 54%
Home 6 85% 59%

Table 2: Identification Accuracy. The table shows that Marko
achieves high accuracy and significantly outperforms a random-
forest baseline that is trained and tested using the same data.

For example, we notice older couples typically have larger
differences between their health conditions than younger
ones, which leads to more distinct movement patterns. In all
cases, however, the accuracy of Marko is much higher than
the baseline. This shows that our spatio-temporal CNN is
better at extracting the complex patterns in RF reflections
that are relevant to identification.

(b) Accuracy with Multiple Moving Users: Most of the
time, the homes in our study have multiple people, and hence
the above results cover multiple users. Here, however, we
focus on the harder case when multiple users in the home are
walking at the same time. Recall that in such cases, we use the
tracklets to create spatial filtering masks that allow the CNN
to focus on one user at any time. We then repeat the process
for each user (see Section 3). Table 3 shows the identification
accuracies with and without our filtering masks. Without
the filtering masks, the accuracy is basically random. This
is because with multiple moving users in the scene, the RF
signal (without the masks) has information about more than
one identity, and hence the CNN can be easily confused.

Users’ Behaviors and Interactions in the Homes
In this section, we demonstrate how Marko enables new
ways of behavioral sensing in homes. We look at three case
studies using data from our deployments. Two studies are in

Scenarios Accuracy
Multiple users (with filtering masks) 81%

Multiple users (without filtering masks) 50%
Table 3: The importance of spatial filtering masks. The table
shows that the filtering masks are necessary to achieve accurate
identification in the presence of multiple users.

the health care domain, where we are interested in caregiver-
patient interaction and functional profiling of a patient. One
study is related to social interactions, where we study how a
couple spent time at home and their interaction.

(a) Case Study I: Caregiver-Patient Interaction: In one
of the homes within the assisted living facility, we monitor
the elderly patient and nurses who take care of him. Both
his family and medical doctors of the facility are interested
in ensuring that the patient receives proper care from the
nurses. Also, they are interested in the overall health condi-
tion of the patient. We use our data to answer some of their
questions.

We use Marko to distinguish tracklets of the patient from
those of the nurses. Figure 7a plots one day of tracklets, and
Figure 7b and Figure 7c show the differences between the
patient’s tracklets and those of the nurse. The green filled
rectangle on top of each figure is the location of theMarko de-
vice. The black lines refer to the boundaries between rooms,
and the marking of the bed area.

Interestingly, once we separate the tracklets of the patient
from those of the nurse, we discover distinct behavioral
patterns. For example, we discover that the elderly resident
never goes to the lower left corner of his bedroom, which
is marked as the cabinet in Figure 7b and Figure 7c. After
we talked to the doctor at the facility, we learned that the
medication cabinet is locked in a closet at that corner. Only
the nurse is allowed to give medication to the patient. By
tracking when the nurse visits that corner and then attends
to the patient, we can infer if the patient took his medications
at the prescribed times. Similarly by tracking identity, we
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Figure 8: Times of nurse visits in a week.

can tell when the patient goes to bed and distinguish that
from the nurse making the bed. We can also see tracklets
going to the TV stand and infer whether the patient usually
turns the TV on/off on his own or the nurse did it for him.
We can also analyze the visit patterns of the nurse. We

look at one week of data and plot the visit times for each day
in Figure 8. The figure shows that every day the nurse visits
the resident around 6 am and 7 pm. Those are the times when
the nurse wakes the patient up in the morning and helps him
get to bed in the evening. She also administers medications
at those times. The nurse also administers medication at 1pm.
The rest of the visit are less regular and spread throughout
the day. On some the days, there are more visits than usual.
It is because the frequency of the nurse’s visits typically
depends on the resident’s health condition.

For example, we notice that the nurse visited on Thursday
and Sunday night around 3 am and 1 am, which are the times
when the resident is typically asleep. After checking with
the facility, we learned that on those days the resident was
wandering at night. The nurse came and helped him get back
to his room. By analyzing the tracklets tagged with identities,
we can estimate the level of care a patient receives.

(b) Case Study II: Functional Profiling of a Patient: The
resident in the second home in the assisted living facility is a
patient who suffers from dementia and severe agitation. To
adjust her agitation medications, the doctor typically asks
the nurses how agitated she seems. However, he has no way
to objectively quantify her agitation.

We useMarko to monitor the patient behavior and look for
signs of agitation. A key symptom of agitation is pacing [53].
Thus, we separate tracklets of the patient from those of the
nurses. We consider tracklets that show a pacing behavior
where the patient repeatedly moves back an forth between
two locations. We discover that the patient repeatedly goes
from the door to the bed and back, and keeps moving back
and forth along this path more than 100 times per day. We
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Figure 9: Number of pacing events across a month.

plot the number of such pacing events per day in Figure 9.
The figure shows that the patient paces excessively, which
reveals a high level of agitation. Further, occasionally, there is
a surge in her pacing behavior that lasts for 2 to 3 days. After
matching her pacing behavior with her medical record, the
doctor discovered that she paces more on the days following
a visit from her family. An example of such surge happens on
on July 10th. This shows that Marko provides a new passive
way for functional health profiling of patients at home.

(c) Case Study III: Couple’s Routines and Interaction:
In this study, we use Marko’ data to analyze the daily behav-
ior of a couple at home. We pick one representative day of a
particular couple from our deployments. We look through
the identified tracklets and plot how the man and woman
spend time at home in Figure 10. The figure shows that the
couple has very different schedules. Both of them get up
early around 8 am as they leave the bedroom. The woman
has regular work hours as she always leaves around 9 am
and comes back at 6 pm. After coming home, she makes her
dinner in the kitchen and spends time in the living room. On
the other hand, the man has longer work hours and rarely
has dinner at home. He leaves at 8 am and comes back at
9 pm. Despite long work hours, the couple still spend time
together in the living room before going to sleep. Interest-
ingly, the woman wakes up after mid-night and stays in the
living room for a few hours. We later found that the woman
could not fall asleep on that night. She was watching TV and
eventually fell asleep on the sofa.

9:00 18:00 21:00 23:005:00 1:00 4:00

Bedroom

Kitchen

Living
Room

Hallway Woman
Man

Figure 10:A timeline for a day of a couple. It shows how the couple
has different daily schedules, different ways to spend time at home,
and when and where they interact.
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Additional Analyses and Evaluation
We present additional analyses of how the labeling and iden-
tification network operate, and evaluate our design choices
in the supplementary materials.

7 CONCLUSION AND DISCUSSION
This paper introduces Marko, the first system that uses pas-
sive RF reflections to enable identification and behavioral
sensing in homes. It also provides a solution to customiz-
ing the system to new homes without asking users to an-
notate any data. We evaluate Marko through real-world
deployments in 6 homes over a period of one month, and
demonstrate its value for studying couple relationships and
caregiver-patient interaction.
We would also like to note the importance of ensuring

the technology does not get misused to infringe on privacy.
Research in this domain must follow IRB regulations and
abide by users’ signed consent that specifies data access and
storage policies. General policies about the use of personal
data similar to those taken by Europe are also helpful [43].
Overall, we believe this work takes an important step

towards low-overhead and passive behavioral sensing in
homes. As such it enables new HCI capabilities for smart
environments, continuous health sensing, and understanding
users’ routines and interactions.
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SUPPLEMENTARY MATERIALS
We present additional analyses and evaluation of our system
to shed light on how the neural networks work and our
design decisions.

Analyzing the Labeling Network

To understand how different input examples impact the sim-
ilarity scores between the two data streams, we analyze how
the network’s output similarity score changes as it processes
longer stretches of a tracklet. Figure 11 shows a scenario
where the acceleration data and the tracklet are the result
of movements from two different people. We compute the
predicted score of the labeling network at time t by giving it
the data from the beginning up to time t .

The figure shows that as time goes by, the model sees more
data and its output similarity score also changes accordingly.
In particular, in the first 10 seconds, the two data streams
correlate well. The person is moving and at the same time
we can see changes in the acceleration that are indicative of
a person’s walking. The network correctly increases its score
that these two streams are from the same person. However,
after the 10th second, the person stops and turns, but we still
see some steps so the network decreases its score. Shortly
after the 20th second, the acceleration is completely static
but the person moves significantly. As a result, the similarity
score drops significantly. From 40 to 60 seconds, it is clear
now that the person is stationary while the acceleration
keeps changing; hence, the score stays low. This shows that
even if both data streams seem correlated in the beginning,
the labeling network correctly predicts that the person in
the tracklet is not the user wearing the accelerometer.
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Figure 11: The output similarity score of the labeling network over
time. The labeling network correctly predicts that the two streams
are not from the same person. The output of the network adjusts
correctly as it sees more data over time.

Analyzing the Identification Network

Walking vs. Stationary Periods.
We analyze the impact of training the identification CNN
on walking periods. We earlier argued the importance of
focusing on walking periods where the user’s gait can help
in differentiating users. Further, the user may be sitting or
sleeping during stationary periods and hence information
about her height is noisier. Table 4 compares identification
accuracy as we include more stationary periods in the train-
ing data for Home 6. It shows that training the CNN on
non-walking periods significantly degrades the performance.
In particular, when the training data has 3x more stationary
periods than walking periods, the testing accuracy degrades
from 85% to 61%. Adding more stationary data to the train-
ing set makes it even worse, reducing the accuracy to 55%.
This is because, as discussed in Section 3, different activi-
ties performed by the same user may result in much larger
differences in RF reflections than differences due the user’s
identity. This makes it difficult for the network to glean the
key features that are related to identity.

Training Data (Home 6) Accuracy
Walking periods 85%

Walking + Stationary ( 3x amount of data) 61%
Walking + Stationary (13x amount of data) 55%

Table 4: The importance of removing stationary periods from the
training data. The table shows that stationary periods have noisy in-
formation about identity. It is better to identify users as they move
around and let the identities persist while they are stationary.

Model’s confidence over time.
To better understand how the identification network makes
predictions, we analyze the model’s confidence as a person
walks from one room to another. Recall that we compute
the identity over windows of 5 seconds. In this experiment,
we focus on a particular tracklet and the corresponding RF
signal. We apply the identification model to sliding windows
of 5-second each, with a step of 0.2 second. We plot the
confidence scores (the predicted probability in Eq. 3) of our
identification network as the window slides in Figure 12.
Figure 12a shows the floor map with the studied tracklet.
The tracklet starts in the bed (position A) and walks to the
bathroom (position B). The confidence is shown as the inten-
sity of the color. Figure 12b shows the confidence score and
location as functions of time. For simplicity, we only show
the location along the y-axis.
The figure shows that the CNN has higher confidence

when the person is walking between the bed and the bath-
room. In contrast, it has low confidence in the beginning (0
to 2 seconds) when the person is stepping out of bed. This
is expected since when the person is still in bed it is harder



for the network to identify him because it cannot extract
information about gait or height. Similarly, around the end
of the tracklet (12 to 14 seconds), the person makes small
movements in place while in the bathroom. During that time
the confidence is lower than that when he was walking. This
is likely because it is easier for the CNN to identify people
by modeling their gait during walking periods.
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(a) Tracklet. Darker color refers to higher confidence.
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(b) Prediction confidence in time.

Figure 12: Identification confidence for different points along a
tracklet. While the CNN identifies the user accurately, its confi-
dence is higher when it is looking at time windows that contain
only walking and no idling or in bed motion.

Accuracy as a function of the input time window.
The identification CNN takes a sequence of RF frames that
span, by default, a 5-second window. Here, we analyze how
the window length affects identification accuracy. Figure 13
shows the accuracy forHome 6with differentwindow lengths,
ranging from a single frame to 6.6 seconds. As expected, a
single frame leads to worse accuracy (71%) since only spatial
features are captured (e.g., height and build) but no temporal
information (e.g., gait) is present. As the window size in-
creases, the accuracy improves (85% for 5-second windows),
showing that temporal information in the RF signal helps
with identification. Increasing the window size beyond 5-
second starts degrading the performance. The reason is that
much of the walking done inside the home takes less than 5
seconds. Thus, if one uses only longer periods, the training
dataset becomes significantly smaller. Since deep learning
naturally requires a large training set, as the training set
becomes smaller, the CNN starts over-fitting the training
data and cannot learn as effectively.
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Figure 13: Identification accuracy vs. window lengths (Home 6).


