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Abstract

We convert cell-probe lower bounds for polynomial space into stronger lower bounds for near-linear
space. Our technique applies to any lower bound proved through the richness method. For example,
it applies to partial match, and to near-neighbor problems, either for randomized exact search, or for
deterministic approximate search (which are thought to exhibit the curse of dimensionality). These
problems are motivated by search in large databases, so near-linear space is the most relevant regime.

Typically, richness has been used to imply Ω(d/ lg n) lower bounds for polynomial-space data struc-
tures, where d is the number of bits of a query. This is the highest lower bound provable through the
classic reduction to communication complexity. However, for space n lgO(1) n, we now obtain bounds
of Ω(d/ lg d). This is a significant improvement for natural values of d, such as lgO(1) n. In the most
important case of d = Θ(lg n), we have the first superconstant lower bound. From a complexity theoretic
perspective, our lower bounds are the highest known for any static data structure problem, significantly
improving on previous records.

1 Introduction

Despite assiduous research, the best known bounds for many geometric problems explode exponentially in
the dimension, a phenomenon known as the “curse of dimensionality”. Establishing in which cases this curse
is real is the holy grail of high-dimensional computational geometry.

Among data structure problems which seem to exhibit the curse, nearest neighbor search is perhaps the
best known example, in no little part due to its central importance to many fields of computer science. To
develop lower bounds, we consider a simplified decision version NNd

n defined as follows. We have n points
in the d-dimensional Hamming cube {0, 1}d, and a distance threshold λ ≤ d. A near neighbor query asks
whether a given point has any neighbor at distance at most λ. If we knew the nearest neighbor we could
trivially answer the near neighbor query for any λ, so a lower bound for the near-neighbor problem implies
a lower bound for the more common nearest-neighbor problem. Similarly, lower bounds for the Hamming
space imply lower bounds for the `1 or `2 distances in Rd.

The approximate near-neighbor problem ANNγ,d
n is defined similarly, except that the query must answer

“yes” when there exists a neighbor within distance λ, “no” when the nearest neighbor is at least γλ away,
and can answer anything otherwise. ANNγ,d

n is related to, and not harder than searching for a γ-approximate
nearest neighbor.

If we allow both approximation and randomization, it is possible to avoid the curse of dimensionality, at
least for constant approximation. If γ = 1 + ε, [8] and [10] provide data structures of size nO(1/ε2) which
can solve the problem with O(1) cell probes. However, prohibiting either randomization or approximation
seems to make the problem much harder. Despite extensive research, all known solutions have either space
or query time growing exponentially in d (see references in [4]).

Another famous problem which seems to exhibit a curse of dimensionality is the partial match problem.
Given n elements in {0, 1}d, and a query in {0, 1, ?}d, the goal is to find a matching element in the database,
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where ? matches anything. For a small number of ? values, the problem can be solved efficiently [7], but the
bounds grow exponentially with the number of wild cards.

Models for lower bounds. Upper bounds are typically designed in the Word RAM, a computational
model meant to describe formally what is possible in a general-purpose programming language like C. The
model allows random access to a memory organized in cells of w bits, where w = Ω(lg n) to permit constant-
time manipulation of pointers and indices. The model also allows common constant-time operations such as
addition, multiplication, and bitwise operations.

For lower bounds, the cell-probe model is preferred. This is a nonuniform model of computation, in which
a querier (CPU) tries to answer a query by reading memory words (cells). The internal computation of the
querier is not bounded, and the cost is only the number of memory accesses. Since any operation inside the
CPU is allowed, the only assumption of the model is the CPU/memory distinction. For this reason, it is
often claimed that lower bounds in the cell-probe model apply to all models of general-purpose computers
deployed today.

For static data structures, most known lower bounds have been shown in an even stronger model: asym-
metric communication complexity. In this model, Alice holds a query, and Bob holds a database. The two
players communicate to answer the query on the database. To obtain a lower bound for data structures,
one converts a cell-probe data structure into a communication protocol. Each round simulates a cell probe:
the querier sends lg S bits, where S is the space (the number of cells used by the data structure), and the
database responds with w bits, where w is the cell size. This model is stronger than the cell-probe model
because Bob can be adaptive (i.e., can remember Alice’s previous messages), whereas a precomputed table
sitting in memory is fixed a priori. The asymmetry in the model refers to the asymmetric message sizes:
usually, lg S � w.

Previous work. Motivated by the conjectured curse of dimensionality, there has been much recent work
on cell-probe lower bounds for the problems discussed above. As mentioned already, these results actually
prove lower bounds for asymmetric communication complexity.

Lower bounds in asymmetric communication complexity have been shown through variants of only two
techniques: richness and round elimination. In general, richness is useful for “harder” problems, and can
show significantly higher bounds than round elimination. Thus, it is more interesting when thinking about
the curse of dimensionality. The richness method shows lower bounds of the following form: either Alice
must send a bits, or Bob must send b bits. If the data structure makes T cell probes to answer the query,
in the communication protocol, Alice sends T lg S bits, and Bob sends Tw bits. Comparing with the lower
bounds, one concludes that the cell-probe complexity must be at least T ≥ min{ a

lg S , b
w}. In general, b is

prohibitively large, so the first bound dominates for reasonable word size.
Note that polynomial changes in the space only affect constant factors in the lower bound on T , as the

bound only depends on lg S. In the rest of the discussion, we assume S = nO(1) for simplicity.
Asymmetric communication complexity was formally introduced by Miltersen et al. [12] in STOC’95,

who also described the richness and round elimination techniques. Using round elimination, they proved an
Ω(
√

lg d) randomized cell-probe lower bound for partial match.
All subsequent lower bounds for the problems we are considering used the richness approach. In STOC’99,

Borodin, Ostrovsky, and Rabani [4] showed that either the querier sends a = Ω(lg d·lg n) bits, or the database
sends b = Ω(n1−ε) bits, for any ε > 0. Furthermore, they observed a very simple reduction from partial
match to near-neighbor search: simply map ? to the value 1

2 (which can be simulated in the Hamming cube
by doubling d). The minimum distance is proportional to the number of stars in the query for a matched
query, and strictly larger otherwise. Thus, both partial match and exact near-neighbor search have cell-probe
complexity Ω(lg d), for any w = O(n1−ε/ lg d).

In STOC’00, Barkol and Rabani [2] revisited randomized near-neighbor search and showed a lower bound
with a = Ω(d) and b = Ω(n1/8−ε). Note that this is optimal with regard to the querier’s communication.
Furthermore, b is still large enough that it is irrelevant for reasonable word size, giving a cell-probe complexity
of Ω(d/ lg n).
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This lower bound did not apply to partial match, but in STOC’03, Jayram et al. [9] analyzed partial
match directly and proved an almost maximal communication bound with a = Ω(d/ lg n) and b = Ω(n1−ε).
Very recently [13], this bound was improved to the optimal a = Ω(d) and b = Ω(n1−ε).

Finally, Liu [11] showed a tight communication lower bound for deterministic O(1)-approximate near
neighbor search, giving a = Ω(d) and b = Ω(nd), hence a cell-probe lower bound of Ω(d/ lg n).

We note that a parallel thread of research has been investigating the randomized approximate nearest
neighbor problem. Remember that when both approximation and randomization are allowed, the near
neighbor problem can be solved with O(1) cell probes. Approximate nearest neighbor can be reduced to
approximate near neighbor with an O(lg lg d) slow-down, by binary searching for an i such that the nearest
neighbor is at a distance between (1 + ε)i and (1 + ε)i+1.

Building on work of Chakrabarti et al. [5] from STOC’99, Chakrabarti and Regev [6] in FOCS’04 showed
a cell-probe lower bound bound of Ω(lg lg d/ lg lg lg d), using a variant of round elimination. Furthermore,
they slightly improved the binary search, obtaining a matching upper bound of O(lg lg d/ lg lg lg d).

Our results. As mentioned above, the lower bounds in the communication model are now optimal. How-
ever, the implications for data structures are far from satisfactory. For example, the entire strategy is, by
design, insensitive to polynomial changes in the space (up to constants in the lower bound). However, the
near-neighbor problems are motivated by searching in large databases. In this context, the difference be-
tween space n lgO(1) n and (say) space O(n3) is plainly the difference between an interesting solution and an
uninteresting one.

To put this in a different light, note that a communication complexity of O(d) bits from the querier
equates data structures of size 2O(d) which solve the problem in constant time, and data structures of size
O(n) which solve the problem in a mere O(d/ lg n) time. Needless to say, this equivalence appears unlikely.
Thus, we need new approaches which can understand the time/space trade-offs in the cell-probe model at a
finer granularity than direct reduction to communication. Our contribution makes progress in this direction,
in the case when the space is n1+o(1).

Interestingly, we do not need to throw out the old work in the communication model. We can take any
lower bound shown by the richness method, for problems with a certain compositional structure, and obtain
a better lower bound for small-space data structures by black-box use of the old result. Thus, we can boost
old bounds for polynomial space, in the case of near-linear space.

Let S be the space in cells used by the data structure. If one uses richness to show a lower bound of Ω(d)
bits for the communication of the querier, the standard approach would imply a cell-probe lower bound of
Ω(d/ lg S). In contrast, we can show a lower bound of Ω(d/ lg Sd

n ), which is an improvement for S = n1+o(1).
In the most interesting case of near-linear space S = n(d lg n)O(1), the bound becomes Ω(d/ lg d). Compared
to Ω(d/ lg n), this is a significant improvement for natural values of d, such as d = lgO(1) n. In particular,
for d = O(lg n), previous lower bounds could not exceed a constant, whereas we obtain Ω(lg n/ lg lg n). Note
that for d = O(lg n) we have constant upper bounds via tabulation, given large enough polynomial space.

Specifically, our paradigm gives the following results, based on previous richness analyses:

1. Ω(d/ lg Sd
n ) for randomized solutions to partial match, using [13].

2. Ω(d/ lg Sd
n ) for randomized, exact near-neighbor search NNd

n, by reduction from item 1., or by using [2].

3. Ω( d
γ3 / lg Sd

n ) for deterministic, approximate near-neighbor search ANNγ,d
n , using [11].

Like previous lower bounds, our results hold in the Hamming cube, and extend by reductions to Euclidean
spaces. It should be noted that all known lower bounds, including ours, are still very far from the “holy
grail” of showing that the curse of dimensionality is inherent to these problems (for instance, showing that
a query time of O(n1−ε) requires space that is exponential in d).

The case d = O(lg n), where we give the first superconstant lower bound, is particularly interesting
for the exact near neighbor. This is because approximate solutions essentially work by dimensionality
reduction into O( 1

ε2 lg n) dimensions, and applying an exact solution which is exponential in this dimension.
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Thus, understanding exact search in O(lg n) dimensions is also conceptually interesting for the approximate
problem.

Technical contributions. We first describe the intuition for why a lower bound of Ω(d/ lg n) for space
S = nO(1), should also imply a lower bound of Ω(d/ lg d), when the space is S = n · (d lg n)O(1). For very
small databases, namely n = dO(1), the lower bound for polynomial space can be rewritten as Ω(d/ lg d). If
n is larger, one can hope to partition the problem into k = n/dO(1) independent subproblems, each with
database of size N = dO(1). Intuitively, each subproblem “gets” space S/k = (d · lg n)O(1) = NO(1), and
hence it requires Ω(d/ lg d) cell probes.

Transforming this intuition into an actual lower bound is surprisingly simple. Instead of simulating
one query as part of a communication protocol, we will simulate k queries in parallel. In each step, the
queriers need to send the subset of k cells which are probed, among the S cells in memory. Sending this
information requires O(lg

(
S
k

)
) = O(k lg S

k ) bits. This is O(lg S
k ) bits “on average” per query, whereas the

normal reduction sends O(lg S) bits for one query. We will typically use k = n/ lgO(1) n.
The trouble with this approach is that one now needs to show communication lower bounds for a direct-

sum problem, involving k independent copies of the input. Rather than doing this on a per problem basis,
we (essentially) show that the richness measure obeys a direct-sum law: considering k independent copies
increases the communication lower bound by a factor of Ω(k). Thus, any problem which could be analyzed
by the standard reduction to communication and the richness method can also be analyzed in our improved
framework.

Richness comes in two flavors: deterministic and randomized. In the deterministic case, we give a proper
direct-sum result1 for communication complexity. This is essentially at the level of an exercise. Section 2
contains a simple exposition of this result and our general framework.

For the randomized case (Section 3), things become slightly more technical. The heart of our result is
a lemma about combinatorial rectangles, of a clear direct-sum flavor. However, we choose not to state the
result in terms of communication games, because our setup is rather different from the common direct-sum
setup in communication complexity.

Relation to previous techniques. Since it is known that direct-sum properties are not true for arbitrary
functions, recent research has concentrated on proving such properties for specific lower bound measures.
To our knowledge, none of these measures is relevant to asymmetric communication. In the symmetric case,
corruption is the closest analog to our richness measure. A direct product result for corruption was recently
shown by [3]. At a superficial level, the approach of our Lemma 9 resembles the approach of [3].

As mentioned already, the known techniques for showing lower bounds on asymmetric communication
are richness and round elimination (with variants). In STOC’06, we [14] gave the only previous cell-probe
lower bound which could exceed communication complexity. For linear space, our bound was roughly Ω(lg d),
which beats the Ω(d/ lg n) from communication complexity for small d. The approach of that paper can
be seen as showing direct-sum results for round elimination, whereas here we show direct-sum results for
richness.

Round elimination and richness are generally used for rather different sets of problems. Round elimination
leads to a very precise understanding of a restricted class of problems related to predecessor search. (Note
that the bounds of [14] are optimal for predecessor search, and richness does not yield any bound there.) On
the other hand, richness applies to a much larger class of “very hard” problems, for which it shows maximal
lower bounds in the communication model. In the cell-probe model, our Ω(d/ lg d) bounds for these “hard
problems” are exponentially higher than the optimal bound for predecessor search.

1We have learned that Paul Beame and Matthew Cary independently observed this property.
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2 Deterministic Lower Bounds

2.1 Data Structures and Communication

Consider a decision problem f : X×Y → {0, 1}. When interpreting f as a data structure problem, an input
y ∈ Y is given at preprocessing time, and the data structure must store a representation of it in space S. A
query x ∈ X is given at query time, and f(x, y) must be computed through cell probes. For now, we restrict
the preprocessing and query algorithms to be deterministic.

Consider a vector of problems f = (f1, . . . , fk), where fi : X × Y → {0, 1}. We define another data
structure problem

⊕k f : ([k]×X)× Y k → {0, 1} as follows. The data structure receives a vector of inputs
(y1, . . . , yk) ∈ Y k. The representation depends arbitrarily on all of these inputs. The query is the index of
a subproblem i ∈ [k], and an element x ∈ X. The output of

⊕k f is fi(x, yi).
When interpreting a decision problem f as a communication problem, Alice receives an input x ∈ X,

Bob receives some y ∈ Y , and they must determine f(x, y). For a vector of problems f = (f1, . . . , fk), we
also consider the communication problem

∧k f : Xk × Y k → {0, 1} defined by
∧k f(x, y) =

∏
i fi(xi, yi). In

other words, the output is the logical and of the k component outputs.
The following describes our direct-sum reduction to communication complexity:

Lemma 1. Assume
⊕k f can be solved in the cell-probe model with w-bit cells by a data structure using

space S, making T cell probes. Then
∧k f has a communication protocol in which Alice sends O(Tk lg S

k )
bits and Bob sends Tkw bits.

Proof. Given input (x1, . . . , xk), Alice simulates the k queries (i, xi) in parallel. In each of T rounds, she
sends the set of cells which are probed next by the k queries. Sending the set requires O(lg

(
S
k

)
) = O(k lg S

k )
bits. Bob replies with the contents of the cells, taking kw bits. At the end of T rounds, Alice has simulated
all queries and knows their answers, so she can send their logical and using one more bit.

2.2 Direct Sum for Richness

Consider the truth table of f , where rows are indexed by elements of X, and columns by elements of Y . The
problem f is called [u, v]-rich if at least v columns of the truth table contain at least u one entries.

Central to the analysis of communication protocols is the notion of (combinatorial) rectangles. A rectangle
of a function f is a submatrix of the truth table of f . When all entries of the submatrix are 1, this is called a
1-rectangle. It can be observed that the set of inputs leading to the same bits being communicated between
the players is a rectangle; we call such rectangles canonical rectangles.

Lemma 2 (the richness lemma [12]). Let f be a [u, v]-rich problem. If f has a deterministic protocol in which
Alice sends a bits and Bob sends b bits, then f contains a canonical 1-rectangle of size at least u/2a × v/2a+b.

Thus, to prove a lower bound for a problem f , one shows that f is [u, v]-rich, and that it does not contain
any large 1-rectangle. For a vector of problems where each fi has these properties, we can show a lower
bound for

∧k f via the following new direct-sum result:

Theorem 3. Let f1, . . . , fk : X × Y → {0, 1} be [ρ|X|, v]-rich, and assume
∧k f has a communication

protocol in which Alice sends k · a bits and Bob sends k · b bits. Then some fi has a 1-rectangle of size
ρO(1)|X|/2O(a) × v/2O(a+b).

Note that this theorem is only interesting when the problem is very rich with respect to rows, i.e. u is
close to |X|. This is because the gap between |X| and u = ρ|X| is amplified polynomially. However, this
is not an issue in real applications, since ρ turns out to be large naturally. For example, if the function is
balanced (say, it outputs 1 in a constant fraction of the cases), it is easy to show ρ = Ω(1).

The rest of this section is dedicated to proving the theorem. Without loss of generality, we can assume
|Y | = v. Indeed, we can restrict the problem to only the columns which contain ρ|X| ones. This maintains
richness, and any deterministic protocol which works for the original domain also works for a subdomain.
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Claim 4.
∧k f is [(ρ|X|)k, vk]-rich.

Proof. Since
∧k f only has vk columns, we want to show that all columns contain enough ones. Let y ∈ Y k

be arbitrary. We have {x ∈ Xk |
∧k f(x, y) = 1} =

∏
i{x′ ∈ X | fi(x′, yi) = 1}. But each set in the product

has at least ρ|X| elements by richness of fi.

Now we apply Lemma 2 to find a 1-rectangle of
∧k f of size (ρ|X|)k/2ak × vk/2(a+b)k, which can be

rewritten as ( ρ
2a |X|)k × ( 1

2a+b |Y |)k. Then, we complete the proof of the theorem by applying the following
claim:

Claim 5. If
∧k f contains a 1-rectangle of dimensions (α|X|)k × (β|Y |)k, then there exists i ∈ [k] such

that fi contains a 1-rectangle of dimensions α3|X| × β3|Y |.

Proof. Let X × Y be the 1-rectangle of
∧k f . Also let Xi and Yi be the projections of X and Y on the i-th

coordinate. Note that (∀)i, Xi × Yi is a 1-rectangle for fi. Indeed, for any (x′, y′) ∈ Xi × Yi, there exists
(x, y) ∈ X × Y with xi = x′, yi = y′, hence

∧k f(x, y) =
∏

j fj(xj , yj) = 1, so fi(x′, y′) = 1.
Now note that there must be at least 2

3k dimensions with |Xi| ≥ α3|X|. Otherwise, we would have
|X | ≤

∏
i |Xi| < (α3|X|)k/3 · |X|2k/3 = (α|X|)k = |X |. Similarly, there must be at least 2

3k dimensions
with |Yi| ≥ β3|Y |. Consequently, there must be at an overlap of dimensions, satisfying the statement of the
lemma.

This completes the proof of Theorem 3.

2.3 Application

Recall that ANNγ,d
n is the γ-approximate near neighbor problem on n points in {0, 1}d. We can view ANNγ,d

n

as a partial function, or alternatively as a family of (complete) functions that give the correct output whenever
the partial function is defined. In this section, we slightly abuse notation and write ANNγ,d

n for an arbitrary
member of the family. Also,

⊕k ANNγ,d
n means

⊕k f for an arbitrary vector f = (f1, . . . , fk) such that
(∀)i, fi ∈ ANNγ,d

n .

Theorem 6. Consider a deterministic data structure solving ANNγ,d
n in the cell-probe model with cells of

dO(1) bits, which uses a space of S cells. Assuming d ≥ (1+5γ) lg n, a query requires Ω( d
γ3 / lg Sd

n ) cell probes
in the worst case.

Proof. Assume a solution for ANNγ,d
n using T cell probes. Let D = d/(1+5γ) ≥ lg n and k = n/N for N < n

to be chosen later. We now construct a solution for
⊕k ANNγ,D

N with the same complexity as the solution for
ANNγ,d

n . To do that, consider a code on 5γD bits, with minimum distance γD. By the Gilbert-Varshamov
bound, there exists such a code with 2(1−H(1/5)−0.01)5γD > 2D ≥ n codewords, for sufficiently large D. Since
we work in a nonuniform model, a good code can be hardcoded in the algorithm.

Now we identify each of the k ≤ n subproblems by a unique codeword, and concatenate the 5γD bits of
the codeword to the D bits of each point in the database corresponding to that subproblem. At query time,
the codeword of the subproblem index is also concatenated to the query, and we search for a near neighbor
to this extended query in the entire set of points. Our transformation guarantees that the near neighbor
can only be in the subproblem where the query is intended to run, hence the structure of

⊕k ANNγ,D
N is

respected. Indeed, the nearest neighbor of any query point is at most D − 1 away from the query. Hence,
a γ-approximate answer must be at distance strictly less than γD. But any point in a different subproblem
will be at distance at least γD due to the distance among codewords.

Now that we are working with
⊕k ANNγ,D

N , we can apply our direct-sum framework. Remember that
ANNγ,D

N is the family of functions giving the correct output in the “yes” and “no” cases and any output
when the promise fails. The richness lower bound of Liu [11] applies to any function in this family, and
shows that for any f ∈ ANNγ,D

N :
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• by [11, Claim 10], f is [2D−1, 2ND]-rich.

• by [11, Claim 11], f does not have a 1-rectangle of size 2D−D/(169γ2) × 2ND−ND/(32γ2).

Remember that the query domain is |X| = {0, 1}D, so the problem is [|X|/2, 2ND]-rich. Applying Theorem 3,
we find that if

∧k f is solved by a protocol in which Alice sends ka bits and Bob sends kb bits, either
a = Ω(D/γ2), or a + b = Ω(ND/γ2).

Now, by Lemma 1 we have a protocol in which Alice sends k · O(T lg S
k ) bits, and Bob sends k · Tw

bits. Thus, T = Ω(min{ D
γ2 / lg S

k , ND
γ2 /w}). Fixing N = w = dO(1), the first term is smallest. This means

T = Ω( d
γ3 / lg SN

n ) = Ω( d
γ3 / lg Sd

n ).

3 Randomized Lower Bounds

3.1 Obtaining Big Rectangles

Let us first describe how randomized richness is normally applied to communication games. We say problem
f is α-dense if Ex∈X,y∈Y [f(x, y)] ≥ α, i.e. at least an α fraction of the truth table of f contains ones. Then,
one applies the following lemma:

Lemma 7 ([12]). Let α, ε > 0 be arbitrary constants. If f is α-dense and has a randomized protocol with
error rate ≤ 1

3 in which Alice sends a bits and Bob sends b bits, there is a rectangle of f of dimensions
|X|/2O(a) × |Y |/2O(a+b) in which the density of zeros is at most ε.

In this lemma, and below, the O-notation hides constants depending on α and ε.
Thus, to prove a communication lower bound, one shows f is α-dense, and every large rectangle contains

Ω(1) zeros. Unfortunately, we cannot use this lemma directly because we do not know how to convert k
outputs, some of which may contain errors, into a single meaningful boolean output. Instead, we need a new
lemma, which reuses ideas of the old Lemma 7, but in a more subtle way. A technical difference is that our
new lemma will talk directly about data structures, instead of going through communication complexity.

Define ρi : X × Y × {0, 1} → {0, 1} by ρi(x, y, z) = 1 if fi(x, y) 6= z, and 0 otherwise. Also let
ρ : Xk × Y k × {0, 1}k → [0, 1] be ρ(x, y, z) = 1

k

∑
i ρi(xi, yi, zi). In other words, ρ measures the fraction of

the outputs from z which are wrong.

Lemma 8. Let ε > 99
k be arbitrary, and f1, . . . , fk be ε-dense. Assume

⊕k f can be solved in the cell-probe
model with w-bit cells, using space S, cell-probe complexity T , and error rate ≤ ε. Then there exists a
canonical rectangle X × Y ⊂ Xk × Y k for some output z ∈ {0, 1}k satisfying:

|X | ≥ |X|k/2O(Tk lg S
k ), |Y| ≥ |Y |k/2O(Tkw)∑

i

zi ≥
ε

3
k, Ex∈X ,y∈Y [ρ(x, y, z)] ≤ ε2.

Proof. First we decrease the error probability of the data structure to ε2

9 . This requires O(1) repetitions, so
it only changes constant factors in S and T . Now we use the easy direction of Yao’s minimax principle to
fix the coins of the data structure (nonuniformly) and maintain the same error over the uniform distribution
on the inputs.

We now convert the data structure to a communication protocol as in Lemma 2. We simulate one query
to each of the k subproblems in parallel. In each round, Alice sends the subset of k cells probed, and Bob
replies with the contents of the cells. As in Lemma 1, Alice sends a total of O(Tk lg S

k ) bits, and Bob a total
of O(Tkw) bits. At the end, the protocol outputs the vector of k answers.

Let Pi(xi, y) be the output of the data structure when running query (i, xi) on input y. Note that
this may depend arbitrarily on the entire input y, but depends only on one query (since the query algo-
rithm cannot consider parallel queries). When the communication protocol receives x and y as inputs, it
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will output P (x, y) = (P1(x1, y), . . . , Pk(xk, y)). Note that some values Pi(xi, y) may be wrong (different
from fi(xi, yi)), hence some coordinates of P (x, y) will contain erroneous answers. To quantify that, note
Ex,y[ρ(x, y, P (x, y))] = Ei,xi,y[ρi(xi, yi, Pi(xi, y))] ≤ ε2

9 , i.e. the average fraction of wrong answers is precisely
the error probability of the data structure.

We now wish to show that the set W = {(x, y) |
∑

i Pi(xi, y) ≥ ε
3k} has density Ω(1) in Xk × Y k. First

consider the set W1 = {(x, y) |
∑

i fi(xi, yi) ≥ 2ε
3 k}. As (x, y) is chosen uniformly from Xk×Y k, fi(xi, yi) are

independent random variables with expectation ≥ ε. Then, by the Chernoff bound, Prx,y[(x, y) ∈ W1] ≥ 1−
ekε/18 ≥ 1−e−99/18 ≥ 2

3 . Now consider W2 = {(x, y) | ρ(x, y, P (x, y)) ≥ ε
3}. Since Ex,y[ρ(x, y, P (x, y))] = ε2

9 ,
the Markov bound shows that the density of W2 is at most ε

3 . Finally, observe that W1 \W2 ⊆ W , so W
has density ≥ 1

3 .
The communication protocol breaks Xk × Y k into disjoint canonical rectangles, over which P (x, y) is

constant. Consider all rectangles for which P (x, y) has at least ε
3k one entries. The union of these rectangles

is W . Now eliminate all rectangles R with E(x,y)∈R[ρ(x, y, P (x, y))] ≥ ε2, and let W ′ be the union of the
remaining ones. Since the average of ρ(x, y, P (x, y)) over Xk × Y k is ε2

9 , a Markov bound shows the total
density of the eliminated rectangles is at most 1

9 . Then, |W ′| ≥ 2
3 |W |.

Now observe that membership in W ′ is [Ω(|X|k),Ω(|Y |k)]-rich. Indeed, since |W ′| = Ω(|X|k|Y |k), a
constant fraction of the rows must contain Ω(|Y |k) elements from W ′. Now note that the communica-
tion protocol can be used to decide membership in W ′, so we apply Lemma 2. This shows that one
of the rectangles reached at the end of the protocol must contain only elements of W ′, and have size
Ω(|X|k)/2O(Tk lg(S/k)) × Ω(|Y |k)/2O(Tkw). In fact, because Lemma 2 finds a large canonical rectangle, this
must be one of the rectangles composing W ′, so we know the answer corresponding to this rectangle has at
least ε

3k ones, and the average ρ(x, y, P (x, y)) over the rectangle is at most ε2.

The direct-sum result that we want will rely on the following key combinatorial lemma, whose proof is
deferred to Section 3.2:

Lemma 9. For i ∈ [d], consider a family of functions φi : X × Y → {0, 1}, and define φ : Xd × Y d → [0, 1]
by φ(x, y) = 1

d

∑
i φi(xi, yi). Let X ⊂ Xd,Y ⊂ Y d with |X | ≥ (|X|/α)d, |Y| ≥ (|Y |/β)d, where α, β ≥ 2.

Then there exists i ∈ [d] and a rectangle A × B ⊂ X × Y with |A| ≥ |X|
/
αO(1), |B| ≥ |Y |

/
βO(1), such that

Ea∈A,b∈B [φi(a, b)] = O(Ex∈X ,y∈Y [φ(x, y)]).

Using this technical result, we can show our main direct-sum property:

Theorem 10. Let ε > 99
k be arbitrary, and f1, . . . , fk be ε-dense. Assume

⊕k f can be solved in the cell-probe
model with w-bit cells, using space S, cell-probe complexity T , and error ε. Then some fi has a rectangle of
dimensions |X|/2O(T lg(S/k)) × |Y |/2O(Tw) in which the density of zeros is at most ε.

Proof. First we apply Lemma 8, yielding a rectangle X × Y. By reordering coordinates, assume the first
d = ε

3k elements of z are ones. We now wish to fix xd+1, . . . , xk and yd+1, . . . , yk such that the remaining
d-dimensional rectangle is still large, and the average of ρ(x, y, z) over it is small. There are at most |X|k−d

choices for fixing the x elements. We can eliminate all choices which would reduce the rectangle by a factor
of at least 3|X|k−d. In doing so, we have lost a 1

3 fraction of the density. Similarly, we eliminate all choices
for the y elements which would reduce the rectangle by a factor of 3|Y |k−d.

We still have a third of the mass remaining, so the average of ρ(x, y, z) can only have increased by a
factor of 3. That means Ei∈[k][ρi(xi, yi, zi)] ≤ 3ε2, which implies Ei∈[d][ρi(xi, yi, zi)] ≤ 3ε2 · k

d = 9ε. We now
fix xd+1, . . . , xk and yd+1, . . . , yk among the remaining choices, such that this expected error is preserved.
Thus, we have found a rectangle X ′×Y ′ ⊂ Xd×Y d with |X ′| ≥ |X|d/2O(Tk lg(S/k)) and |Y ′| ≥ |Y |d/2O(Tkw).
Since d = Θ(k), we can freely substitute d for k in these exponents. Besides largeness, the rectangle satisfies
Ei∈[d],x∈X ′,y∈Y′ [ρi(xi, yi, 1)] ≤ 9ε.

We now apply Lemma 9 on the rectangle X ′ × Y ′, with α = 2O(T lg(S/k)), β = 2O(Tw) and φi(x, y) =
ρi(x, y, 1). We obtain a rectangle A × B ⊂ X × Y of dimensions |A| ≥ |X|/2O(T lg(S/k)), |B| ≥ |Y |/2O(Tw),
which has the property Ea∈A,b∈B [ρi(a, b, 1)] = O(ε), i.e. Pra∈A,b∈B [fi(a, b) = 0] = O(ε).
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3.2 Proof of Lemma 9

Define Xi to be the weighted projection of X on dimension i (i.e. a distribution giving the frequency of every
value on coordinate i). Thus, Xi is a distribution on X with density function ℘Xi(z) = |{x∈X|xi=z}|

|X | .
We identify sets like X and Y with the uniform distributions on the sets. Treating φ and φi as random

variables (measuring some error to be minimized), let ε = EX×Y [φ] = 1
d

∑
i EXi×Yi [φi].

We now interpret the lower bound on the size of X as bounding the entropy, and use submodularity of
the Shannon entropy H to write:∑

i

H(Xi) ≥ H(X ) ≥ d · (lg |X| − lg α) ⇒ 1
d
·
∑

i

(
lg |X| −H(Xi)

)
≤ lg α

Observe that each term in the sum is positive, since H(Xi) ≤ lg |X|. We can conclude that:

(∃)i : lg |X| −H(Xi) ≤ 3 lg α; lg |Y | −H(Yi) ≤ 3 lg β; EXi×Yi [φi] ≤ 3ε,

because there are strictly less than d
3 coordinates that violate each of these three constraints. For the

remainder of the proof, fix some i satisfying these constraints.
Let A′ be the set of elements z ∈ X with ℘Xi(z) ≤ α8/|X|, where ℘Xi is the density function of the

distribution Xi. In the probability space on which distribution Xi is observed, A′ is an event. We have:

H(Xi) = H(A′) + Pr[A′] ·H(Xi | A′) + (1− Pr[A′]) ·H(Xi | ¬A′)

≤ 1 + Pr[A′] · lg |X| +
(
1− Pr[A′]

)
· lg |X|

α8
= lg |X|+ 1−

(
1− Pr[A′]

)
· 8 lg α

We claim that Pr[A′] ≥ 1
2 . Otherwise, we would have H(Xi) ≤ lg |X| + 1 − 4 lg α, contradicting the lower

bound H(Xi) ≥ lg |X| − 3 lg α, given α ≥ 2.
Now let X ′ be the distribution Xi conditioned on A′ (equivalently, the distribution restricted to the

support A′). Performing an analogous analysis on Yi, we define a support B′ and restricted distribution Y ′.
Observe that:

EX ′×Y′ [φi] = EXi×Yi
[φi | A′ ∧B′] ≤ EXi×Yi [φi]

Pr[A′ ∧B′]
≤ 4 ·EXi×Yi

[φi] ≤ 12ε

We now want to conclude that EA′×B′ [φi] is small. This is not necessarily true, because changing from
some distribution X ′ on support A′ to the uniform distribution on A′ may increase the average error. To
fix this, we consider a subset A ⊆ A′, discarding from A′ every value x with E{x}×Y′ [φi] > 24ε. Since the
expectation over x is 12ε, a Markov bound implies that Pr[A] ≥ 1

2 Pr[A′] ≥ 1
4 . We now have a bound for every

x ∈ A, and thus EA×Y′ [φi] ≤ 24ε. Now perform a similar pruning of B, concluding that EA×B [φi] ≤ 48ε.
Finally, we must show that |A| ≥ |X|/αO(1). This follows because PrXi [A] ≥ 1

4 , and for any x ∈ A we
had ℘Xi(x) ≤ α8/|X|. The same analysis holds for |B|.

3.3 Applications

In this section, we discuss our applications to exact near neighbor and partial match. Recall that NNd
n is the

exact near neighbor problem on a database of n points in {0, 1}d. Similarly, let PMd
n be the partial match

problem with a query in {0, 1, ?}d and a database of n strings in {0, 1}d.

Theorem 11. Consider a bounded error (Monte Carlo) data structure solving PMd
n in the cell-probe model

with cells of dO(1) bits, using space S. Assuming d ≥ 2 lg n, the cell-probe complexity of a query must be
Ω(d/ lg Sd

n ).

Proof. It is easy to convert a solution to PMd
n into a solution to

⊕k PMD
N , where N = n/k and D = d−lg k ≥

d/2. One simply prefixes query and database strings with the subproblem number, taking lg k bits.

9



In [13], it is shown how a lower bound for the communication complexity of partial match can be obtained
by a very simple reduction from a lower bound for lopsided set disjointness. A lower bound for set disjointness
was described earlier [1], and this lower bound is by richness. Interpreting this richness lower bound in the
context of partial match, we see that on a certain domain X × Y for PMD

N , we have:

• By [1, Lemma 4], PMD
N is 1

2 -dense.

• By [1, Lemma 5] (more specifically, the variant claimed in the full version of that paper), for any δ > 0,
in any rectangle of size |X|/2O(δD) × |Y |/2O(N1−δ/D2), the density of zeros is Ω(1).

For concreteness, set δ = 1
2 in the above result. Applying Theorem 10 to

⊕k PMD
N , we obtain that either

T lg S
k = Ω(D), or T ′w = Ω(

√
N/D2). Setting N = w2 · D4 · d = dO(1), the second inequality becomes

T = Ω(d), while the first becomes T = Ω(lg Sd
n ). We thus conclude that T ≥ min{Ω(d), Ω(d/ lg Sd

n )} =
Ω(d/ lg Sd

n ).

By the well-known reduction from partial match to exact near neighbor (outlined in the introduction),
we immediately conclude that:

Corollary 12. There exists a constant C such that the following holds. Consider a bounded error (Monte
Carlo) data structure solving NNd

n in the cell-probe model with cells of dO(1) bits, using space S. Assuming
d ≥ C lg n, the cell-probe complexity of a query must be Ω(d/ lg Sd

n ).

This result can also be obtained without going through the partial match problem: use the earlier lower
bound for NNd

n by Barkol and Rabani [2], in the same manner we used a partial match lower bound above.

4 Conclusions

While randomized (1 + ε)-approximate near neighbor does not suffer from the curse of dimensionality, all
known solutions require space nO(1/ε2), which significantly limits applications. Showing that small-space
solutions do not exist for constant approximation is a very interesting problem. Recent independent work
by [1] presents a richness lower bound for this problem, showing that the querier must send Ω( 1

ε2 lg n)
bits. But this suffers from the inherent limitations of communication bounds, and cannot disprove that a
linear-space data structure can solve the problem in constant time with constant approximation.

Though the bound of [1] is through richness, we obtain nothing interesting by combining it with our
framework. This is not a coincidence, but reflects a deep fact about the structure of randomized ANN:
dimensionality reduction can bring the problem down to logarithmic dimension, regardless of the original
dimension. Thus, if we break the problem into subproblems, we gain nothing, because the dimension can be
reduced corresponding to the size of the subproblem.

Acknowledgements. We are grateful for a suggestion by an anonymous referee, which simplified the proof
of Lemma 9 considerably.
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