
Time-Space Trade-Offs for Predecessor Search

(Extended Abstract)
∗

Mihai Pǎtraşcu
mip@mit.edu

Mikkel Thorup
mthorup@research.att.com

ABSTRACT
We develop a new technique for proving cell-probe lower
bounds for static data structures. Previous lower bounds
used a reduction to communication games, which was known
not to be tight by counting arguments. We give the first
lower bound for an explicit problem which breaks this com-
munication complexity barrier. In addition, our bounds
give the first separation between polynomial and near linear
space. Such a separation is inherently impossible by com-
munication complexity.

Using our lower bound technique and new upper bound
constructions, we obtain tight bounds for searching pre-
decessors among a static set of integers. Given a set Y
of n integers of ` bits each, the goal is to efficiently find
predecessor(x) = max {y ∈ Y | y ≤ x}. For this purpose,
we represent Y on a RAM with word length b using S ≥ n`
bits of space. Defining a = lg S

n
, we show that the optimal

search time is, up to constant factors:

min

8>>>>>>>>><>>>>>>>>>:

logb n

lg `−lg n
a

lg `
a

lg
“

a
lg n

· lg `
a

”
lg `

a

lg

„
lg `

a
/ lg lg n

a

«
In external memory (b > `), it follows that the optimal

strategy is to use either standard B-trees, or a RAM algo-
rithm ignoring the larger block size. In the important case
of b = ` = γ lg n, for γ > 1 (i.e. polynomial universes),

and near linear space (such as S = n · lgO(1) n), the opti-
mal search time is Θ(lg `). Thus, our lower bound implies
the surprising conclusion that van Emde Boas’ classic data
structure from [FOCS’75] is optimal in this case. Note that
for space n1+ε, a running time of O(lg `/ lg lg `) was given
by Beame and Fich [STOC’99].

∗A full version of is available as arXiv:cs.CC/0603043.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’06,May 21–23, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-134-1/06/0005 ...$5.00.

Categories and Subject Descriptors
F.2.3 [Tradeoffs between Complexity Measures]; E.2
[Data Storage Representations]

General Terms
Algorithms, Performance, Theory

Keywords
predecessor search, cell-probe complexity, lower bounds

1. INTRODUCTION
In this paper we provide tight trade-offs between query

time and space of representation for static predecessor search.
This is one of the most basic data structures, and the trade-
off gives the first separation between linear and polynomial
space for any data structure problem.

1.1 The Complexity-Theoretic View
Yao’s cell-probe model [18] is typically the model of choice

for proving lower bounds on data structures. The model as-
sumes the memory is organized in b-bit cells (alternatively
called words). In the case of static data structures, one first
constructs a representation of the input in a table with a
bounded number of cells S (the space complexity). Then, a
query can be answered by probing certain cells. The time
complexity T is defined to be the number of cell probes.
The model allows free nonuniform computation for both con-
structing the input representation, and for the query algo-
rithm. Thus, the model is stronger than the word RAM or
its variants, which are used for upper bounds, implementable
in a programming language like C. In keeping with the stan-
dard assumptions on the upper bound side, we only consider
b = Ω(lg n).

Typically, lower bounds in this model are proved by con-
sidering a two-party communication game. Assume Bob
holds the data structure’s input, while Alice holds the query.
By simulating the cell-probe solution, one can obtain a pro-
tocol with T rounds, in which Alice sends lg S bits and Bob
replies with b bits per round. Thus, a lower bound on the
number of rounds translates into a cell-probe lower bound.

Intuitively, we do not expect this relation between cell-
probe and communication complexity to be tight. In the
communication model, Bob can remember past communi-
cation, and answer new queries based on this. Needless to
say, if Bob is just a table of cells, he cannot remember any-
thing, and his responses must be a function of Alice’s last

message (i.e. the address of the cell probe). By counting ar-
guments, it can be shown [10] that the cell-probe complexity
can be much higher than the communication complexity, for
natural ranges of parameters. However, a separation for an
explicit problem has only been obtained in a very restricted
setting. Gál and Miltersen [9] showed such a separation
when the space complexity is very close to minimum: given
an input of n cells, the space used by the data structure is
n + o(n).

Besides the reduction to communication complexity, and
the approach of [9] for very small space, there are no known
techniques applicable to static cell-probe complexity with
cells of Ω(lg n) bits. In particular, we note that the large
body of work initiated by Fredman and Saks [7] only applies
to dynamic problems, such as maintaining partial sums or
connectivity. In the case of static complexity, there are a
few other approaches developed specifically for the bit-probe
model (b = 1); see [12].

In conclusion, known lower bound techniques for cell-probe
complexity cannot surpass the communication barrier. How-
ever, one could still hope that communication bounds are
interesting enough for natural data structure problems. Un-
fortunately, this is often not the case. Notice that poly-
nomial differences in S only translate into constant fac-
tors in Alice’s message size. In the communication game
model, this can only change constant factors in the number
of rounds, since Alice can break a longer message into a few
separate messages. Unfortunately, this means that commu-
nication complexity cannot be used to separate, say, poly-
nomial and linear space. For many natural data-structure
problems, the most interesting behavior occurs close to lin-
ear space, so it is not surprising that our understanding of
static data-structure problems is rather limited.

In this work, we develop a new lower-bound technique,
the cell-probe elimination lemma, targeted specifically at the
cell-probe model. Using this lemma, we obtain a separation
between space n1+o(1) and space n1+ε for any ε > 0. This
also represents a separation between communication com-
plexity and cell-probe complexity with space n1+o(1). Our
lower bounds hold for predecessor search, one of the most
natural and well-studied problems.

Our lower bound result has a strong direct sum flavor,
which is interesting in its own right. Essentially, we show
that for problems with a certain structure, a data structure
solving k independent subproblems with space k · σ cannot
do better than k data structures solving each problem with
space σ.

1.2 The Data-Structural View
Using our lower bound technique and new upper bound

constructions, we obtain tight bounds for predecessor search.
The problem is to represent an ordered set Y , such that
for any query x we can find efficiently predecessor(x) =
max {y ∈ Y | y ≤ x}. This is one of the most fundamental
and well-studied problems in data structures. For a com-
prehensive list of references, we refer to [3]; here, we only
describe briefly the best known bounds.

1.2.1 The Upper-Bound Story
We focus on the static case, where Y is given in advance

for preprocessing. For example, we can sort Y , and later find
the predecessor of x by binary search using O(lg n) compar-
isons, where n = |Y |.

On computers, we are particularly interested in integer
keys. Thereby we also handle, say, floating point numbers
whose ordering is preserved if they are cast as integers. We
can then use all the instructions on integers available in a
standard programming language such as C, and we are no
longer limited by the Ω(lg n) comparison based lower bound
for searching. A strong motivation for considering inte-
ger keys is that integer predecessor search is asymptotically
equivalent to the IP look-up problem for forwarding pack-
ets on the Internet [6]. This problem is extremely relevant
from a practical perspective. The fastest deployed software
solutions use non-comparison-based RAM tricks [5].

More formally, we will represent Y on a unit-cost word
RAM with a given word length b. We assume each integers
in Y has ` bits, and that lg n ≤ ` ≤ b. On the RAM, the
most natural assumption is ` = b. The case b > ` models the
external memory model with B = b b

`
b keys per page. In this

case, the well-known (comparison-based) B-trees achieve a
search time of O(logB n). For the rest of the discussion,
assume b = `.

Using the classic data structure of van Emde Boas [16]
from 1975, we can represent our integers so that predecessors
can be searched in O(lg `) time. The space is linear if we
use hashing [17].

In the 1990, Fredman and Willard [8] introduced fusion
trees, which requires linear space and can answer queries in
O(log` n) time. Combining with van Emde Boas’ data struc-
ture, they got a search time of O(min { lg n

lg `
, lg `}), which is

always O(
√

lg n).
In 1999, Beame and Fich [3] found an improvement to van

Emde Boas’ data structure bringing the search time down
to O(lg `

lg lg `
). Combined with fusion trees, this gave them a

bound of O(min { lg n
lg `

, lg `
lg lg `

}), which is always O(
q

lg n
lg lg n

).

However, the new data structure of Beame and Fich uses
quadratic space, and they asked if the space could be im-
proved to linear or near-linear.

As a partially affirmative answer to this question, we show
that their O(lg `

lg lg `
) search time can be obtained with space

n1+1/ exp(lg1−ε `) for any ε > 0. However, we also show, as
our main result, that with closer to linear space, such as
n lgO(1) n, one cannot in general improve the old van Emde
Boas bound of O(lg `).

1.2.2 The Lower-Bound Story
Ajtai [1] was the first to prove a superconstant lower

bound for our problem. His results, with a correction by
Miltersen [11], can be interpreted as saying that there ex-
ists n as a function of ` such that the time complexity for
polynomial space is Ω(

√
lg `), and likewise there exists ` a

function of n making the time complexity Ω(3
√

lg n).
Miltersen [11] revisited Ajtai’s work, showing that the

lower bound holds in the communication game model, and
for a simpler colored predecessor problem. In this problem,
the elements of Y have an associated color (say, red or blue),
and the query asks only for the color of the predecessor in
Y . This distinction is important, as one can reduce other
problems to this simpler problem, such as existential range
queries in two dimensions [13] or prefix problems in a cer-
tain class of monoids [11]. Like previous lower bound proofs,
ours also holds for the colored problem, making the lower
bounds applicable to these problems.

Miltersen, Nisan, Safra and Wigderson [13] once again re-

visited Ajtai’s proof, extending it to randomized algorithms.
More importantly, they captured the essence of the proof
in an independent round elimination lemma, which forms a
general tool for proving communication lower bounds. Our
cell-probe elimination lemma is inspired, at a high level, by
this result.

Beame and Fich [3] improved the lower bounds to Ω(lg `
lg lg `

)

and Ω(
q

lg n
lg lg n

) respectively. Sen and Venkatesh [14] later

gave an improved round elimination lemma, which can re-
prove the lower bounds of Beame and Fich, but also for
randomized algorithms. Analyzing the time-space trade-offs
obtained by these proofs, one obtains Ω(lg n

lg b
, lg `

lg lg S
), where

S is the space bound, and possibly b > `.

1.3 The Optimal Trade-Offs
Define lg x = dlog2(x + 2)e, so that lg x ≥ 1 even if x ∈

[0, 1]. Assuming S bits of space are available, and defining
a = lg S

n
, we show that the optimal search time is, up to

constant factors:

min

8>>>>>>>>><>>>>>>>>>:

logb n

lg `−lg n
a

lg `
a

lg
“

a
lg n

· lg `
a

”
lg `

a

lg

„
lg `

a
/ lg lg n

a

«
(1)

The upper bounds are achieved by a deterministic query
algorithm on a RAM. The data structure can be constructed
in expected time O(S) by a randomized algorithm, starting
from a sorted list of integers. The lower bounds hold for
deterministic query algorithms answering the colored pre-
decessor problem in the cell-probe model. When S ≥ n1+ε

for some constant ε > 0, the lower bounds also hold in
the stronger communication game model, even allowing ran-
domization with two-sided error.

1.3.1 External Memory and Branch One
To understand the first branch of the trade-off, first con-

sider the typical case on a RAM, when a word fits exactly
one integer, i.e. b = `. In this case, the bound is log` n,
which describes the performance of fusion trees [8].

To understand the case b > `, consider the external mem-
ory model with B words per page. This model has as a
nonuniform counterpart the cell-probe model with cells of
size b = B`. Observe that only the first branch of our
trade-off depends on b. This branch is logb n = lg n

lg B+lg `
=

Θ(min{log` n, logB n}). The first term describes the perfor-
mance of fusion trees on a RAM with `-bit words, as noted
above. The second term matches the performance of the
B-tree, the fundamental data structure in external memory.

Thus, we show that it is always optimal to either use a
standard B-tree, or the best RAM algorithm which com-
pletely ignores the benefits of external memory. The RAM
algorithm uses `-bit words, and ignores the grouping of words
into pages; this algorithm is the best of fusion trees and the
algorithms from branches 2–4 of the trade-off. Thus, the
standard comparison-based B-tree is the optimal use of ex-
ternal memory, even in a strong model of computation.

1.3.2 Polynomial Universes: Branch Two
For the rest of the discussion, assume the first branch (B-

trees and fusion trees) does not give the minimum. Some of
the most interesting consequences of our results can be seen
in the very important special case when integers come from
a polynomial universe, i.e. ` = O(lg n). In this case, the
optimal complexity is Θ(lg `−lg n

a
), as given by the second

branch of the trade-off.
On the upper bound side, this is achieved by a simple

elaboration of van Emde Boas’ data structure. This data
structure gives a way to reduce the key length from ` to `

2
in

constant time, which immediately implies an upper bound of
O(lg `). To improve that, first note that when ` ≤ a, we can
stop the recursion and use complete tabulation to find the
result. This means only O(lg `

a
) steps are needed. Another

trivial idea, useful for near-linear universes, is to start with
a table lookup based on the first lg n bits of the key, which
requires linear space. Then, continue to apply van Emde
Boas for keys of `− lg n bits inside each subproblem, giving
a complexity of O(lg `−lg n

a
).

Quite surprisingly, our lower bound shows that van Emde
Boas’ classic data structure, with these trivial tweaks, is
optimal. In particular, when the space is not too far from

linear (at most n ·2lg1−ε n) and ` ≥ (1+ε) lg n, the standard
van Emde Boas bound of Θ(lg `) is optimal. It was often
conjectured that this bound could be improved.

Note that with space n1+ε, the optimal complexity for
polynomial universes is constant. However, with space n1+o(1),
the bound is ω(1), showing the claimed complexity-theoretic
separations.

1.3.3 The Last Two Branches
The last two branches are relevant for superpolynomial

universes, i.e. ` = ω(lg n). Comparing the two branches, we
see the third one is better than the last one (up to constants)
when a = Ω(lg n). On the other hand, the last branch can
be asymptotically better when a = o(lg n). This bound has
the advantage that in the logarithm in the denominator, the
factor a

lg n
, which is subconstant for a = o(lg n), is replaced

by 1/ lg a
lg n

.
The third branch is obtained by a careful application of

the techniques of Beame and Fich [3], which can improve
over van Emde Boas, but need large space. The last branch
is also based on these techniques, combined with novel ap-
proaches tailored for small space.

1.3.4 Dynamic Updates
Lower bounds for near-linear space easily translate into

interesting lower bounds for dynamic problems. If inserting
an element takes time tu, we can obtain a static data struc-
ture using space O(n ·tu) by simply simulating n inserts and
storing the modified cells in a hash table. This transforma-
tion works even if updates are randomized, but, as before,
we require that queries be deterministic. This model of ran-
domized updates and deterministic queries is standard for
hashing-based data structures. By the discussion above, as
long as updates are reasonably fast, one cannot in general
improve on the O(lg `) query time. It should be noted that
van Emde Boas data structure can handle updates in the
same time as queries, so this classic data structure is also
optimal in the typical dynamic case, when one is concerned
with the slowest operation.

1.4 Contributions
We now discuss our contributions in establishing the tight

results of (1). Our main result is proving the tight lower
bounds for a = o(lg n) (in particular, branches two and four
of the trade-off). As mentioned already, previous techniques
were helpless, since none could even differentiate a = 2 from
a = lg n.

Interestingly, we also show improved lower bounds for
the case a = Ω(lg n), in the classic communication frame-
work. These improvements are relevant to the third branch
of the trade-off. Assuming for simplicity that a ≤ `1−ε, our
bound is min { lg n

lg `
, lg `

lg lg `+lg(a/ lg n)
}, whereas the best previ-

ous lower bound was min { lg n
lg `

, lg `
lg a

}. Our improved bound
is based on a simple, yet interesting twist: instead of using
the round elimination lemma alone, we show how to com-
bine it with the message compression lemma of Chakrabarti
and Regev [4]. Message compression is a refinement of round
elimination, introduced by [4] to prove a lower bound for the
approximate nearest neighbor problem. Sen and Venkatesh [14]
asked whether message compression is really needed, or one
could just use standard round elimination. Our result sheds
an interesting light on this issue, as it shows message com-
pression is even useful for classic predecessor lower bounds.

On the upper bound side, we only need to show the last
two branches of the trade-off. As mentioned already, we
use techniques of Beame and Fich [3]. The third bound was
anticipated1 by the second author in the concluding remarks
of [15]. The last branch of (1), tailored specifically for small
space, is based on novel ideas.

Organization.Due to space limitations, this extended ab-
stract only contains the proof of our cell-probe lower bound
in the simplest case ` = γ lg n, for constant γ ≥ 3. We begin
with a statement of our main technical result, the cell-probe
elimination lemma, in Section 2.1. The rest of Section 2 uses
this result to prove the predecessor lower bound. Section 3
then gives a proof of the cell-probe elimination lemma. The
full version of this paper also contains the cell-probe trade-
offs for general `, the improved communication-complexity
lower bounds, and our tight upper bounds.

1.5 Direct-Sum Interpretations
A very strong consequence of our proofs is the idea that

sharing between subproblems does not help for predecessor
search. Formally, the best cell-probe complexity achievable
by a data structure representing k independent subproblems
(with the same parameters) in space k · σ is asymptotically
equal to the best complexity achievable by a data structure
for one subproblem, which uses space σ. The simplicity and
strength of this statement make it interesting from both the
data-structural and complexity-theoretic perspectives.

At a high level, it is precisely this sort of direct-sum prop-
erty that enables us to beat communication complexity. Say
we have k independent subproblems, and total space S.
While in the communication game Alice sends lg S bits per
round, our results intuitively state that lg S

k
bits are suffi-

cient. Then, by carefully controlling the increase in k and
the decrease in key length (the query size), we can prevent

1As a remark in [15, Section 7.5], it is stated that “it appears
that we can get the following results. . . ”, followed by bounds
equivalent to the third branch of (1).

Alice from communicating her entire input over a supercon-
stant number of rounds.

A nice illustration of the strength of our result are the
tight bounds for near linear universes, i.e. ` = lg n + δ, with
δ = o(lg n). On the upper bound side, the algorithm can
just start by a table lookup based on the first lg n bits of
the key, which requires linear space. Then, it continues to
apply van Emde Boas for δ-bit keys inside each subprob-
lem, which gives a complexity of O(lg δ

a
). Obtaining a lower

bound is just as easy, given our techniques. We first consider
n/2δ independent subproblems, where each has 2δ integers
of 2δ bits each. Then, we prefix the integers in each subprob-
lem by the number of the subproblem (taking lg n− δ bits),
and prefix the query with a random subproblem number.
Because the universe of each subproblem (22δ) is quadrati-
cally bigger than the number of keys, we can apply the usual
proof showing the optimality of van Emde Boas’ bound for
polynomial universes. Thus, the complexity is Ω(lg δ

a
).

2. LOWER BOUNDS FOR SMALL SPACE

2.1 The Cell-Probe Elimination Lemma
An abstract decision data structure problem is defined by

a function f : D × Q → {0, 1}. An input from D is given
at preprocessing time, and the data structure must store
a representation of it in some bounded space. An input
from Q is given at query time, and the function of the two
inputs must be computed through cell probes. We restrict
the preprocessing and query algorithms to be deterministic.
In general, we consider a problem in conjunction with a
distribution D over D×Q. Note that the distribution need
not (and, in our case, will not) be a product distribution. We
care about the probability the query algorithm is successful
under the distributionD, for a notion of success to be defined
shortly.

As mentioned before, we work in the cell-probe model,
and let b be the number of bits in a cell. We assume the
query’s input consists of at most b bits, and that the space
bound is at most 2b. For the sake of an inductive argu-
ment, we extend the cell-probe model by allowing the data
structure to publish some bits at preprocessing time. These
are bits depending on the data structure’s input, which the
query algorithm can inspect at no charge. Closely related
to this concept is our model for a query being accepted. We
allow the query algorithm not to return the correct answer,
but only in the following very limited way. After inspecting
the query and the published bits, the algorithm can declare
that it cannot answer the query (we say it rejects the query).
Otherwise, the query is accepted : the algorithm can make
cell probes, and at the end it must answer the query cor-
rectly. Thus, it is not possible to reject later. In contrast
to more common models of error, it actually makes sense to
talk about tiny (close to zero) probabilities of accept, even
for problems with boolean output.

For an arbitrary problem f and an integer k ≤ 2b, we
define a direct-sum problem

Lk f : Dk × ([k]×Q) → {0, 1}
as follows. The data structure receives a vector of inputs
(d1, . . . , dk). The representation depends arbitrarily on all
of these inputs. The query is the index of a subproblem
i ∈ [k], and an element q ∈ Q. The output of

Lk f is

f(q, di). We also define a distribution
Lk D for

Lk f , given
a distribution D for f . Each di is chosen independently at
random from the marginal distribution on D induced by D.

The subproblem i is chosen uniformly from [k], and q is
chosen from the distribution on Q conditioned on di.

Given an arbitrary problem f and an integer h ≤ b, we
can define another problem f (h) as follows. The query is a
vector (q1, . . . , qh). The data structure receives a regular
input d ∈ D, and integer r ∈ [h] and the prefix of the

query q1, . . . , qr−1. The output of f (h) is f(d, qr). Note
that we have shared information between the data structure
and the querier (i.e. the prefix of the query), so f (h) is a
partial function on the domain D ×

St−1
i=0 Qi ×Q. Now we

define an input distribution D(h) for f (h), given an input
distribution D for f . The value r is chosen uniformly at
random. Each query coordinate qi is chosen independently
at random from the marginal distribution on Q induced by
D. Now d is chosen from the distribution on D, conditioned
on qr.

We give the f (h) operator precedence over the direct sum

operator, i.e.
Lk f (h) means

Lk
h
f (h)

i
. Using this nota-

tion, we are ready to state our central cell-probe elimination
lemma:

Lemma 1. There exists a universal constant C, such that
for any problem f , distribution D, and positive integers h
and k, the following holds. Assume there exists a solution
to

Lk f (h) with accept probability α over
Lk D(h), which

uses at most kσ words of space, 1
C

(α
h
)3k published bits and

T cell probes. Then, there exists a solution to
Lk f with

accept probability α
4h

over
Lk D, which uses the same space,

k h
√

σ · Cb2 published bits and T − 1 cell probes.

2.2 Setup for the Predecessor Problem
Let P (n, `) be the colored predecessor problem on n in-

tegers of ` bits each. Remember that this is the decision
version of predecessor search, where elements are colored
red or blue, and a query just returns the color of the pre-
decessor. We first show how to identify the structure of

P (n, `)(h) inside P (n, h`), making it possible to apply our
cell-probe elimination lemma.

Lemma 2. For any integers n, `, h ≥ 1 and distribution
D for P (n, `), there exists a distribution D∗(h) for P (n, h`)

such that the following holds. Given a solution to
Lk P (n, h`)

with accept probability α over
Lk D∗(h), one can obtain

a solution to
Lk P (n, `)(h) with accept probability α overLk D(h), which has the same complexity in terms of space,

published bits, and cell probes.

Proof. We give a reduction from P (n, `)(h) to P (n, h`),

which naturally defines the distribution D∗(h) in terms of

D(h). A query for P (n, `)(h) consists of x1, . . . , xh ∈ {0, 1}`.
Concatenating these, we obtain a query for P (n, h`). In the

case of P (n, `)(h), the data structure receives i ∈ [h], the
query prefix x1, . . . , xi−1 and a set Y of `-bit integers. We
prepend the query prefix to all integers in Y , and append
zeros up to h` bits. Then, finding the predecessor of xi in Y
is equivalent to finding the predecessor of the concatenation
of x1, . . . , xh in this new set.

Observe that to apply the cell-probe elimination lemma,
the number of published bits must be just a fraction of k,
but applying the lemma increases the published bits signif-
icantly. We want to repeatedly eliminate cell probes, so we

need to amplify the number of subproblems each time, mak-
ing the new number of published bits insignificant compared
to the new k.

Lemma 3. For any integers t, `, n ≥ 1 and distribution D
for P (n, `), there exists a distribution D∗t for P (n ·t, `+lg t)
such that the following holds. Starting from a solution toLk P (n · t, ` + lg t) with accept probability α over

Lk D∗t,

one can construct a solution to
Lkt P (n, `) with accept prob-

ability α over
Lkt D, which has the same complexity in

terms of space, published bits, and cell probes.

Proof. We first describe the distribution D∗t. We draw
Y1, . . . , Yt independently from D, where Yi is a set of inte-
gers, representing the data structures input. Prefix all num-
bers in Yj by j using lg t bits, and take the union of all these
sets to form the data structure’s input for P (nt, ` + lg t).
To obtain the query, pick j ∈ {0, . . . , t − 1} uniformly at
random, pick the query from D conditioned on Yj , and pre-

fix this query by j. Now note that
Lkt D and

Lk D∗t are
really the same distribution, except that the lower lg t bits
of the problems index for

Lkt D are interpreted as a prefix

in
Lk D∗t. Thus, obtaining the new solution is simply a

syntactic transformation.

Our goal is to eliminate all cell probes, and then reach a
contradiction. For this, we need the following:

Lemma 4. For any n ≥ 1 and ` ≥ log2(n + 1), there
exists a distribution D for P (n, `) such that the following
holds. For all (∀)0 < α ≤ 1 and k ≥ 1, there does not

exist a solution to
Lk P (n, `) with accept probability α overLk D, which uses no cell probes and less than αk published

bits.

Proof. The distribution D is quite simple: the integers
in the set are always 0 up to n− 1, and the query is n. All
that matters is the color of n− 1, which is chosen uniformly
at random among red and blue. Note that for

Lk P (n, `)
there are only k possible queries, i.e. only the index of the
subproblem matters.

Let p be the random variable denoting the published bits.
Since there are no cell probes, the answers to the queries are
a function of p alone. Let α(p) be the fraction of subprob-
lems that the query algorithm doesn’t reject when seeing the
published bits p. In our model, the answer must be correct
for all these subproblems. Then, Pr[p = p] ≤ 2−α(p)k, as
only inputs which agree with the α(p)k answers of the al-
gorithm can lead to these published bits. Now observe that

α = Ep[α(p)] ≤ Ep

h
1
k

log2
1

Pr[p=p]

i
= 1

k
H(p), where H(·)

denotes binary entropy. Since the entropy of the published
bits is bounded by their number (less than αk), we have a
contradiction.

2.3 Deriving the Trade-Offs
Because we will only be dealing with ` = b = O(lg n), the

bounds do not change if the space is S words instead of S
bits. To simplify calculations, the exposition in this section
assume the space is S words.

Our proof starts assuming that we for any possible dis-
tribution have a solution to P (n, `) which uses n · 2a space,
no published bits, and successfully answers all queries in
T probes, where T is small. We will then try to apply T
rounds of the cell-probe elimination from Lemma 1 and 2

followed by the problem amplification from Lemma 3. Af-
ter T rounds, we will be left with a non-trivial problem but
no cell probes, and then we will reach a contradiction with
Lemma 4. Below, we first run this strategy ignoring de-
tails about the distribution, but analyzing the parameters
for each round. Later in Lemma 5, we will present a formal
inductive proof using these parameters in reverse order, de-
riving difficult distributions for more and more cell probes.

We denote the problem parameters after i rounds by a
subscript i. We have the key length `i and the number of
subproblems ki. The total number of keys remains n, so
the have n/ki keys in each subproblem. Thus, the problem

we deal with in round i + 1 is
Lki P (n

ki
, `i), and we will

have some target accept probability αi. The number of cells
per subproblem is σi = n

ki
2a. We start the first round with

`0 = `, α0 = 1, k0 = 1 and σ0 = n · 2a.
For the cell probe elimination in Lemma 1 and 2, our

proof will use the same value of h ≥ 2 in all rounds. Then
αi+1 ≥ αi

4h
, so αi ≥ (4h)−i. To analyze the evolution of `i

and ki, we let ti be the factor by which we increase the num-
ber of subproblems in round i when applying the problem
amplification from Lemma 3. We now have ki+1 = ti · ki

and `i+1 = `i
h
− lg ti.

When we start the first round, we have no published bits,
but when we apply Lemma 1 in round i+1, it leaves us with
up to ki

h
√

σi · Cb2 published bits for round i + 2. We have
to choose ti large enough to guarantee that this number
of published bits is small enough compared to the num-
ber of subproblems in round i + 2. To apply Lemma 1
in round i + 2, the number of published bits must be at

most 1
C

(
αi+1

h
)3ki+1 =

α3
i ti

64Ch6 ki. Hence we must set ti ≥
h
√

σi · 64C2b2h6(1
αi

)3. Assume for now that T = O(lg `).

Using h ≤ `, and αi ≥ (4h)−T ≥ 2O(lg2 `), we conclude it is
enough to set:

(∀)i : ti ≥ h

r
n

ki
· 2a/h · b2 · 2Θ(lg2 `) (2)

Now we discuss the conclusion reached at the end of the
T rounds. We intend to apply Lemma 4 to deduce that
the algorithm after T stages cannot make zero cell probes,
implying that the original algorithm had to make more than
T probes. Above we made sure that we after T rounds had
1
C

(αT
h

)3kT < αT kT published bits, which are few enough
compared to the number kT of subproblems. The remaining
conditions of Lemma 4 are:

`T ≥ 1 and
n

kT
≥ 1 (3)

Since `i+1 ≤ `i
2

, this condition entails T = O(lg `), as as-
sumed earlier.

Lemma 5. With the above parameters satisfying (2) and
(3), for i = 0, . . . , T , there is a distribution Di for P (n

ki
, `i)

so that no solution for
Lki P (n

ki
, `i) can have accept proba-

bility αi over
Lki Di using n · 2a space, 1

C
(αi

h
)3ki published

bits, and T − i cell probes.

Proof. The proof is by induction over T − i. A distri-
bution that defies a good solution as in the lemma is called
difficult. In the base case i = T , the space doesn’t matter,
and we get the difficult distribution directly from (3) and
Lemma 4. Inductively, we use a difficult distribution Di to
construct a difficult distribution Di−1.

Recall that ki = ki−1ti−1. Given our difficult distribution
Di, we use the problem amplification in Lemma 3, to con-

struct a distribution D∗ti−1
i for P (n

ki
· ti−1, `i + lg ti−1) =

P (n
ki−1

, `i + lg ti−1), which guarantees that no solution forLki−1 P (n
ki−1

, `i + lg ti−1) can have accept probability αi

over
Lki−1 D∗ti−1

i using n · 2a space, 1
C

(αi
h

)3ki published
bits, and T − i cell probes.

Recall that (2) implies ki−1 h
√

σi−1·Cb2 ≤ 1
C

(αi
h

)3ki, hence
that ki−1 h

√
σi−1 is less than the number of bits allowed

published for our difficult distribution D∗ti−1
i . Also, recall

that σjkj = n · 2a for all j. We can therefore use the cell
probe elimination in Lemma 1, to construct a distribution“
D∗ti−1

i

”(h)

for P (n
ki−1

, `i + lg ti−1)
(h) so that no solution

for
Lki−1 P (n

ki−1
, `i + lg ti−1)

(h) can have accept probabil-

ity αi−1 ≥ hαi over
Lki−1

“
D∗ti−1

i

”(h)

using n · 2a space,
1
C

(
αi−1

h
)3ki−1 published bits, and T − i + 1 cell probes.

Finally, using Lemma 2, we use
“
D∗ti−1

i

”(h)

to construct

the desired difficult distribution Di−1 for P (n
ki−1

, h(`i +

lg ti−1)) = P (n
ki−1

, `i−1).

We now show how to choose h and ti in order to maximize
the lower bound T , under the conditions of (2) and (3).
In this extended abstract, we only consider the case ` =
b = γ lg n, for constant γ ≥ 3. In this case, it is enough
to set h = 2 and ti = (n

ki
)3/4. Then, n

ki+1
= (n

ki
)1/4, so

lg n
ki

= 4−i lg n and lg ti = 3
4
4−i lg n. By our recursion

for `i, we have `i+1 = `i
2
− 3

4
4−i lg n. Given `0 ≥ 3 lg n,

it can be seen by induction that `i ≥ 3 · 4−i lg n. Indeed,
`i+1 ≥ 3 · 4−i · 1

2
lg n − 3

4
4−i lg n ≥ 3 · 4−(i+1) lg n. By the

above, (3) is satisfied for T ≤ Θ(lg lg n). Finally, note that
condition (2) is equivalent to:

lg ti ≥ 1

h
lg

n

ki
+

a

h
+ Θ(lg b + lg2 `)

⇔ 3

4
4−i lg n ≥ 1

2
4−i lg n +

a

2
+ Θ(lg2 lg n)

⇔ T ≤ Θ

„
lg min

lg n

a
,

lg n

lg2 lg n

ff«
= Θ

„
lg

lg n

a

«
Since (2) and (3) are satisfied, we can apply Lemma 5 with
i = 0 and the initial parameters `0 = b, α0 = 1, k0 = 1. We
conclude that there is a difficult distribution D0 for P (n, `)
with no solution getting accept probability 1 using n · 2a

space, 0 published bits, and T cell probes. Thus we have
proved:

Theorem 6. In any solution to the static colored prede-
cessor problem on n `-bit keys, if ` = γ lg n for constant
γ ≥ 3, and we are allowed n · 2a space, then there are data
instances for which some queries take Ω

`
lg lg n

a

´
cell probes.

3. PROOF OF CELL-PROBE ELIMINATION
We assume a solution to

Lk f (h), and use it to construct

a solution to
Lk f . The new solution uses the query algo-

rithm of the old solution, but skips the first cell probe made
by this algorithm. A central component of our construc-
tion is a structural property about any query algorithm forLk f (h) with the input distribution

Lk D(h). We now de-

fine and claim this property. Section 3.1 uses it to construct
a solution for

Lk f , while Section 3.2 gives the proof.
We first introduce some convenient notation. Remember

that the data structure’s input for
Lk f (h) consists of a

vector (d1, . . . , dk) ∈ Dk, a vector selecting the interesting
segments (r1, . . . , rk) ∈ [h]k and the query prefixes Qi

j for all

j ∈ [ri−1]. Denote by d, r and Q the random variables giv-
ing these three components of the input. Also let p be the
random variable representing the bits published by the data
structure. Note that p can also be understood as a func-
tion p(d, r,Q). The query consists of an index i selecting
the interesting subproblem, and a vector (q1, . . . , qh) with a
query to that subproblem. Denote by i and q these random
variables. Note that in our probability space

Lk f (h), we
have qj = Qi

j , (∀)j < ri.
Fix some instance p of the published bits and a subprob-

lem index i ∈ [k]. Consider a prefix (q1, . . . , qj) for a query
to this subproblem. Depending on qj+1, . . . , qh, the query
algorithm might begin by probing different cells, or might
reject the query. Let Γi(p; q1, . . . , qj) be the set of cells that
could be inspected by the first cell probe. Note that this set
could be ∅, if all queries are rejected.

Now define:

δi(p) =

(
0, iff Γi(p;Qi) = ∅
Pr

h
|Γi(p;q1, . . . ,qri)| ≥ min{σ,|Γi(p;Qi)|}

h√σ
| i = i

i
(4)

The probability space is that defined by
Lk D(h) when the

query is to subproblem i. In particular, such a query will
satisfy qj = Qi

j , (∀)j < ri, because the prefix is known to the
data structure. Note that this definition completely ignores
the suffix qri+1, . . . ,qh of the query. The intuition behind
this is that for any choice of the suffix, the correct answer to
the query is the same, so this suffix can be “manufactured”
at will. Indeed, an arbitrary choice of the suffix is buried in
the definition of Γi.

With these observations, it is easier to understand (4). If
the data structure knows that no query to subproblem i will
be accepted, δi = 0. Otherwise, we compare two sets of cells.
The first contains the cells that the querier might probe
given what the data structure knows: Γi(p,Qi) contains
all cells that could be probed for various qi

ri and various
suffixes. The second contains the cells that the querier could
choose to probe considering its given input qi

ri (the querier
is only free to choose the suffix). Obviously, the second set
is a subset of the first. The good case, whose probability
is measured by δi, is when it is a rather large subset, or at
least large compared to σ.

For convenience, we define δ∗(p) = Ei[δ
i(p)] = 1

k

P
i δi(p).

Using standard notation from probability theory, we write
δi(p | E), when we condition on some event E in the prob-
ability of (4). We also write δi(p | X) when we condition
on some random variable X, i.e. δi(p | X) is a function
x 7→ δi(p | X = x). We are now ready to state our claim, to
be proven in Section 3.2.

Lemma 7. There exist r and Q, such that:

Ed[δ∗(p(r, Q,d) | r = r,Q = Q,d)] ≥ α

2h

3.1 The Solution forLk f

As mentioned before, we use the solution for
Lk f (h), and

try to skip the first cell probe. To use this strategy, we need

to extend an instance of
Lk f to an instance of

Lk f (h).
This is done using the r and Q values whose existence is
guaranteed by Lemma 7. The extended data structure’s
input consists of the vector (d1, . . . , dk) given to

Lk f , and

the vectors r and Q. A query’s input for
Lk f is a problem

index i ∈ [k] and a q ∈ Q. We extend this to (q1, . . . , qh) by
letting qj = Qi

j , (∀)j < ri, and qri = q, and manufacturing
a suffix qri+1, . . . , qh as described below.

First note that extending an input of
Lk f to an input ofLk f (h) by this strategy preserves the desired answer to a

query (in particular, the suffix is irrelevant to the answer).
Also, this transformation is well defined because r and Q
are “constants”, defined by the input distribution

Lk D(h).
Since our model is nonuniform, we only care about the ex-
istence of r and Q, and not about computational aspects.

To fully describe a solution to
Lk f , we must specify how

to obtain the data structure’s representation and the pub-
lished bits, and how the query algorithm works. The data
structure’s representation is identical to the representation
for

Lk f (h), given the extended input. The published bits

for
Lk f consist of the published bits for

Lk f (h), plus a
number of published cells from the data structure’s repre-
sentation. Which cells are published will be detailed below.
We publish the cell address together with its contents, so
that the query algorithm can tell whether a particular cell
is available.

The query algorithm is now simple to describe. Remem-
ber that q1, . . . , qri−1 are prescribed by Q, and qri = q is

the original input of
Lk f . We now iterate through all pos-

sible query suffixes. For each possibility, we simulate the
extended query using the algorithm for

Lk f (h). If this
algorithm rejects the query, or the first probed cell is not
among the published cells, we continue trying suffixes. Oth-
erwise, we stop, obtain the value for the first cell probe from
the published cells and continue to simulate this query using
actual cell probes. If we don’t find any good suffix, we reject
the query. It is essential that we can recognize accepts in
the old algorithm by looking just at published bits. Then,
searching for a suffix that would not be rejected is free, as
it does not involve any cell probes.

3.1.1 Publishing cells
It remains to describe which cells the data structure chooses

to publish, in order to make the query algorithm accept with
the desired probability. Let p be the bits published by theLk f (h) solution. Note that in order for query (i, q) to be
accepted, we must publish one cell from Γi(p; Qi, q). Here,
we slightly abuse notation by letting Qi, q denote the ri en-
tries of the prefix Qi, followed by q. We will be able to
achieve this for all (i, q) satisfying:

Γi(p; Qi) 6= ∅, |Γi(p; Qi, q)| ≥ min{σ, |Γi(p;Qi)|}
h
√

σ
(5)

Comparing to (4), this means the accept probability is at
least δ∗(p | r = r,Q = Q,d = (d1, . . . , dk)). Then on av-

erage over possible inputs (d1, . . . , dk) to
Lk f , the accept

probability will be at least α
2h

, as guaranteed by Lemma 7.
We will need the following standard result:

Lemma 8. Consider a universe U 6= ∅ and a family of

sets F such that (∀)S ∈ F we have S ⊂ U and |S| ≥ |U|
B

.
Then there exists a set T ⊂ U, |T | ≤ B ln |F| such that
(∀)S ∈ F , S ∩ T 6= ∅.

We distinguish three types of subproblems, parallel to (5).
If Γi(p; Qi) = ∅, we make no claim (the accept probability
can be zero). Otherwise, if |Γi(p; Qi)| < σ, we handle sub-
problem i using a local strategy. Consider all q such that

|Γi(p; Qi, q)| ≥ |Γi(p;Qi)|
h√σ

. We now apply Lemma 8 with the

universe Γi(p; Qi) and the family Γi(p; Qi, q), for all inter-
esting q’s. There are at most 2b choices of q, bounding the
size of the family. Then, the lemma guarantees that the data
structure can publish a set of O(h

√
σ · b) cells which contains

at least one cell from each interesting set. This means that
each interesting q can be handled by the algorithm.

We handle the third type of subproblems, namely those
with |Γi(p; Qi)| ≥ σ, in a global fashion. Consider all “in-

teresting” pairs (i, q) with |Γi(p; Qi, q)| ≥ σ1−1/h. We now
apply Lemma 8 with the universe consisting of all kσ cells,
and the family being Γi(p; Qi, q), for interesting (i, q). The
cardinality of the family is at most 2b, since i and q form a
query, which takes at most one word. Then by Lemma 8,
the data structure can publish a set of O(k h

√
σ · b) cells,

which contains at least one cell from each interesting set.
With these cells, the algorithm can handle all interesting
(i, q) queries.

The total number of cells that we publish is O(k h
√

σ · b).
Thus, we publish O(k h

√
σ · b2) new bits, plus O(k) bits from

the assumed solution to
Lk f (h). For big enough C, this is

at most k h
√

σ · Cb2.

3.2 An Analysis ofLk f (h): Proof of Lemma 7
Our analysis has two parts. First, we ignore the help given

by the published bits, by assuming they are constantly set
to some value p. As ri and Qi are chosen randomly, we
show that the conditions of (4) are met with probability at
least 1

h
times the accept probability for subproblem i. This

is essentially a lower bound on δi, and hence on δ∗.
Secondly, we show that the published bits do not really

affect this lower bound on δ∗. The intuition is that there
are two few published bits (much fewer than k) so for most
subproblems they are providing no information at all. That
is, the behavior for that subproblem is statistically close
to when the published bits would not be used. Formally,
this takes no more than a (subtle) application of Chernoff
bounds. The gist of the idea is to consider some setting p
for the published bits, and all possible inputs (not just those
leading to p being published). In this probability space, δi

are independent for different i, so the average is close to δ∗

with overwhelmingly high probability. Now pessimistically
assume all inputs where the average of δi is not close to
δ∗ are possible inputs, i.e. input for which p would be the
real published bits. However, the probability of this event
is so small, that even after a union bound for all p, it is still
negligible.

We now proceed to the first part of the analysis. Let αi(p)
be the probability that the query algorithm accepts when re-
ceiving a random query for subproblem i. Formally, αi(p) =
Pr[Γi(p;q) 6= ∅ | i = i]. We define αi(p | E), αi(p | X) and
α∗(·) similar to the functions associated to δi. Observe that
the probability of correctness guaranteed by assumption is
α = Er,Q,d[α∗(p(r,Q,d) | r,Q,d)].

Lemma 9. For any i and p, we have δi(p) ≥ αi(p)
h

.

Proof. Let us first recall the random experiment defin-
ing δi(p). We select a uniformly random r ∈ [h] and random

q1, . . . , qr−1. First we ask whether Γi(p; q1, . . . , qr−1) = ∅.
If not, we ask about the probability that a random qr is
good, in the sense of (4). Now let us rephrase the probability
space as follows: first select q1, . . . , qh at random; then select
r ∈ [h] and use just q1, . . . , qr as above. The probability that
the query (q1, . . . , qh) is accepted is precisely αi(p). Let’s
assume it doesn’t. Then, for any r, Γi(p; q1, . . . , qr−1) 6= ∅
because there is at least one suffix which is accepted. We
will now show that there is at least one choice of r such that
qr is good when the prefix is q1, . . . , qr−1. When averaged

over q1, . . . , qr−1, this gives a probability of at least αi(p)
h

To show one good r, let φr = min{|Γi(p; q1, . . . , qr−1)|, σ}.
Now observe that φ1

φ2
· φ2

φ3
· · · · · φh−1

φh
= φ1

φh
≤ φ1 ≤ σ. By

the pigeonhole principle, (∃)r : φr
φr+1

≤ σ1/h. This implies

|Γi(p; q1, . . . , qr)| ≥ min{σ,|Γi(p;q1,...,qr−1)|
h√σ

, as desired.

Note that if the algorithm uses zero published bits, we
are done. Thus, for the rest of the analysis we may assume
1
C

(α
h
)3k ≥ 1. We now proceed to the second part of the

analysis, showing that δ∗ is close to the lower bound of the
previous lemma, even after a union bound over all possible
published bits.

Lemma 10. With probability at least 1− α
8h

over random

r,Q and d, we have (∀)p : δ∗(p | r,Q,d) ≥ α∗(p)
h

− α
4h

Proof. Fix p arbitrarily. By definition, δ∗(p | r,Q,d) =
1
k

P
i δi(p | r,Q,d). By Lemma 9, E[δi(p | r,Q,d)] =

δi(p) ≥ αi(p)
h

, which implies δ∗(p) ≥ α∗(p)
h

. Thus, our con-
dition can be rephrased as:

1

k

X
i

δi(p | r,Q,d) ≥ E

"
1

k

X
i

δi(p | r,Q,d)

#
− α

4h

Now note that δi(p | r,Q,d) only depends on ri,Qi and
di, since we are looking at the behavior of a query to sub-
problem i for a fixed value of the published bits; see the
definition of δi in (4). Since (ri,Qi,di) are independent for
different i, it follows that δi(p | r,Q,d) are also indepen-
dent. Then we can apply a Chernoff bound to analyze the
mean δ∗(p | r,Q,d) of these independent random variables.
We use an additive Chernoff bound [2]:

Pr
r,Q,d

h
δ∗(p | r,Q,d) < δ∗(p)− α

4h

i
< e−Ω(k(α

h
)2)

Now we take a union bound over all possible choices p
for the published bits. The probability of the bad event

becomes 2
1
C

(α
h

)3ke−Ω((α
h

)2k). For large enough C, this is
exp(−Ω((α

h
)2k)), for any α and h. Now we use that 1

C
(α

h
)3k ≥

1, from the condition that there is at lest one published bit,
so this probability is at most e−Ω(Ch/α). Given that h

α
≥ 1,

this is at most α
8h

for large enough C.

Unfortunately, this lemma is not exactly what we would
want, since it provides a lower bound in terms of α∗(p). This
accept probability is measured in the original probability
space. As we condition on r,Q and d, the probability space
can be quite different. However, we show next that in fact
α∗ cannot change too much. As before, the intuition is that
there are too few published bits, so for most subproblems
they are not changing the query distribution significantly.

Lemma 11. With probability at least 1 − α
8

over random
r,Q and d, we have: (∀)p : α∗(p | r,Q,d) ≤ α∗(p) + α

4

Proof. The proof is very similar to that of Lemma 10.
Fix p arbitrarily. By definition, α∗(p | r,Q,d) is the average
of αi(p | r,Q,d). Note that for fixed p, αi depends only on
ri,Qi and di. Hence, the αi values are independent for
different i, and we can apply a Chernoff bound to say the
mean is close to its expectation. The rest of the calculation
is parallel to that of Lemma 10.

We combine Lemmas 10 and 11 by a union bound. We
conclude that with probability at least 1 − α

4
over random

r,Q and d, we have that (∀)p:

δ∗(p | r,Q,d) ≥ α∗(p)
h

− α
4h

α∗(p | r,Q,d) ≤ α∗(p) + α
4

)
⇒

⇒ δ∗(p | r,Q,d)− α∗(p | r,Q,d)

h
≥ − α

2h
(6)

Since this holds for all p, it also holds for p = p, i.e. the
actual bits p(r,Q,d) published by the data structure given
its input. Now we want to take the expectation over r,Q and
d. Because δ∗(·), α∗(·) ∈ [0, 1], we have δ∗(·)− 1

h
α∗(·) ≥ − 1

h
.

We use this as a pessimistic estimate for the cases of r,Q
and d where (6) does not hold. We obtain:

E

»
δ∗(p | r,Q,d) − α∗(p | r,Q,d)

h

–
≥ − α

2h
− α

4
· 1

h

⇒ E
ˆ
δ∗(p | r,Q,d)

˜
≥ 1

h
E

ˆ
α∗(p | r,Q,d)

˜
− 3α

4h

=
1

h
α− 3α

4h
=

α

4h

4. CONCLUSIONS
We have presented the cell-probe elimination lemma, a

new technical result useful for showing cell-probe lower bounds.
Using it, we have shown an Ω(lg lg n

a
) lower bound for pre-

decessor search, when b = ` = γ lg n for γ > 3. In the full
version of this paper, we also prove the cell-probe trade-offs
for general ` and b, the improved communication-complexity
lower bounds, and our tight upper bounds.

Our cell-probe elimination lemma and the lower bounds
derived by it hold for deterministic query algorithms. In
recent work, we were able to extend our lower bound tech-
nique to randomized algorithms with two-sided error, show-
ing that the trade-offs presented here are also tight in the
randomized case.

An interesting question that remains unresolved is whether
one can reduce the update time for dynamic data structures
below the optimal search time, without a large blow-up in
the search complexity. We conjecture this is impossible, but
proving it appears beyond the scope of current techniques.

5. REFERENCES
[1] M. Ajtai. A lower bound for finding predecessors in

Yao’s cell probe model. Combinatorica, 8(3):235–247,
1988.

[2] N. Alon and J. Spencer. The Probabilistic Method.
John Wiley, 2nd edition, 2000.

[3] P. Beame and F. E. Fich. Optimal bounds for the
predecessor problem and related problems. Journal of
Computer and System Sciences, 65(1):38–72, 2002. See
also STOC’99.

[4] A. Chakrabarti and O. Regev. An optimal randomised
cell probe lower bound for approximate nearest
neighbour searching. In Proc. 45th IEEE Symposium
on Foundations of Computer Science (FOCS), pages
473–482, 2004.

[5] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink.
Small forwarding tables for fast routing lookups. In
Proc. ACM SIGCOMM, pages 3–14, 1997.

[6] A. Feldmann and S. Muthukrishnan. Tradeoffs for
packet classification. In Proc. IEEE INFOCOM, pages
1193–1202, 2000.

[7] M. L. Fredman and M. E. Saks. The cell probe
complexity of dynamic data structures. In Proc. 21st
ACM Symposium on Theory of Computing (STOC),
pages 345–354, 1989.

[8] M. L. Fredman and D. E. Willard. Surpassing the
information theoretic bound with fusion trees. Journal
of Computer and System Sciences, 47(3):424–436,
1993. See also STOC’90.

[9] A. Gál and P. B. Miltersen. The cell probe complexity
of succinct data structures. In Proc. 30th International
Colloquium on Automata, Languages and
Programming (ICALP), pages 332–344, 2003.

[10] P. B. Miltersen. The bit probe complexity measure
revisited. In 10th Symposium on Theoretical Aspects of
Computer Science (STACS), pages 662–671, 1993.

[11] P. B. Miltersen. Lower bounds for Union-Split-Find
related problems on random access machines. In 26th
ACM Symposium on Theory of Computing (STOC),
pages 625–634, 1994.

[12] P. B. Miltersen. Cell probe complexity - a survey. In
19th Conference on the Foundations of Software
Technology and Theoretical Computer Science
(FSTTCS), 1999. Advances in Data Structures
Workshop.

[13] P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson.
On data structures and asymmetric communication
complexity. Journal of Computer and System
Sciences, 57(1):37–49, 1998. See also STOC’95.

[14] P. Sen and S. Venkatesh. Lower bounds for
predecessor searching in the cell probe model.
arXiv:cs.CC/0309033. See also ICALP’01, CCC’03,
2003.

[15] M. Thorup. Space efficient dynamic stabbing with fast
queries. In Proc. 35th ACM Symposium on Theory of
Computing (STOC), pages 649–658, 2003.

[16] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design
and implementation of an efficient priority queue.
Mathematical Systems Theory, 10:99–127, 1977.
Announced by van Emde Boas alone at FOCS’75.

[17] D. E. Willard. Log-logarithmic worst-case range
queries are possible in space Θ(N). Information
Processing Letters, 17(2):81–84, 1983.

[18] A. C.-C. Yao. Should tables be sorted? Journal of the
ACM, 28(3):615–628, 1981. See also FOCS’78.

