
UNIFYING THE LANDSCAPE OF CELL-PROBE LOWER BOUNDS∗

MIHAI PǍTRAŞCU†

Abstract. We show that a large fraction of the data-structure lower bounds known today in fact
follow by reduction from the communication complexity of lopsided (asymmetric) set disjointness.
This includes lower bounds for:

• high-dimensional problems, where the goal is to show large space lower bounds.
• constant-dimensional geometric problems, where the goal is to bound the query time for

space O(n · polylogn).
• dynamic problems, where we are looking for a trade-off between query and update time.

(In this case, our bounds are slightly weaker than the originals, losing a lg lgn factor.)

Our reductions also imply the following new results:

• an Ω(lgn/ lg lgn) bound for 4-dimensional range reporting, given space O(n · polylogn).
This is quite timely, since a recent result [39] solved 3D reporting in O(lg2 lgn) time, raising
the prospect that higher dimensions could also be easy.

• a tight space lower bound for the partial match problem, for constant query time.
• the first lower bound for reachability oracles.

In the process, we prove optimal randomized lower bounds for lopsided set disjointness.

Key words. lower bounds, data structures, cell-probe complexity, range queries

1. Introduction. The cell-probe model can be visualized as follows. The mem-
ory is organized into cells (words) of w bits each. A data structure occupies a space of
S cells. The CPU receives queries and, for dynamic data structures, updates online.
The CPU starts executing each individual operation with an empty internal state (no
knowledge about the data structure), and can proceed by reading or writing memory
cells. The running time is defined to be equal to the number of memory probes; any
computation inside the CPU is free.

The predictive power of the cell-probe model (stemming from its machine inde-
pendence and information-theoretic flavor) have long established it as the de facto
standard for data-structure lower bounds. The end of the 80s saw the publication of
two landmark papers in the field: Ajtai’s static lower bound for predecessor search
[1], and the dynamic lower bounds of Fredman and Saks [26]. In the 20 years that
have passed, cell-probe complexity has developed into a mature research direction,
with a substantial bibliography: we are aware of [1, 26, 34, 37, 35, 29, 5, 25, 36, 14,
2, 15, 6, 13, 11, 12, 27, 28, 16, 33, 31, 44, 43, 8, 41, 42, 40, 45, 48].

The topics being studied cluster into three main categories:

Dynamic problems. Here, the goal is to understand the trade-off between the
query time tq, and the update time tu. The best known lower bound [41] implies that
max{tq, tu} = Ω(lg n). Most proofs employ a technique introduced by Fredman and
Saks [26], which divides the time line into “epochs”, and argues that a query needs to
read a cell written in each epoch, lest it will miss an important update that happened
then.

High-dimensional static problems. These are “hard problems,” exhibiting a sharp
phase transition: either the space is linear and the query is very slow (e.g. linear
search); or the space is very large (superpolynomial) and the query is essentially
constant.

∗The conference version of this paper appeared in FOCS’08 under the title (Data) Structures.
†mip@alum.mit.edu. AT&T Labs. Parts of this work were done while the author was at MIT and

IBM Almaden Research Center.

1

2 MIHAI PATRASCU

lopsided set disjointness

reachability oracles

in the butterfly

loses lg lg n

partial match

[36, 14, 31, 43]

(1 + ε)-ANN

in ℓ1, ℓ2 [8]

dyn. marked

ancestor [5]

2D stabbing 3-ANN in ℓ∞

[30]

NN in ℓ1, ℓ2

[11, 14, 43]

worst-case

union-find

[26, 2]

dyn. 1D

stabbing

partial sums

[26, 13, 28, 41, 42]

4D range

reporting

2D range

counting [40]

dyn. NN

in 2D [6]

dyn. 2D range

reporting

dyn. graphs

[37, 25, 29, 41]

Fig. 1.1. Dashed lines indicate reductions that were already known, while solid lines indicate
novel reductions. For problems in bold, we obtain stronger results than what was previously known.

Proofs employ a technique introduced by Miltersen [35], which considers a com-
munication game between a party holding the query, and a party holding the database.
Simulating the CPU’s cell probes, the querier can solve the problem by sending tq lgS
bits. If we lower bound this communication by some a, we conclude that S ≥ 2Ω(a/tq).
The bounds are interesting (often tight) for constant query time, but degrade quickly
for higher tq.

Low-dimensional static problems. These are problems for which we have poly-
logarithmic query bounds, with near linear space. The main research goal (within
reach) has been to find the best query time for space S = O(n · polylogn). The
best known bound [43] implies that tq = Ω(lg n/ lg lgn). The technique used in this
regime, introduced by Pǎtraşcu and Thorup [44], is to consider a direct sum com-
munication game, in which O(n/polylogn) queriers want to communicate with the
database simultaneously.

The cross-over of techniques between the three categories has so far been mini-
mal. At the same time, the diversity inside each category appears substantial, even
to someone well-versed in the field. However, we will see that this appearance is
deceiving.

By a series of well-crafted reductions (Figure 1.1), we are able to unify a large
majority of the known results in each of the three categories. Since the problems
mentioned in Figure 1.1 are rather well known, we do not describe them here. The
reader unfamiliar with the field can consult Appendix A, which introduces these
problems and sketches some of the known reductions.

All our results follow, by reductions, from a single lower bound on the commu-
nication complexity of lopsided (asymmetric) set disjointness. In this problem, Alice
and Bob receive two sets S, respectively T , and they want to determine whether
S ∩ T = ∅. The lopsided nature of the problem comes from the set sizes, |S| ≪ |T |,
and from the fact that Alice may communicate much less than Bob.

For several problems, our unified proof is in fact simpler than the original. This is
certainly true for 2D range counting [40], and arguably so for exact nearest neighbor

CELL-PROBE LOWER BOUNDS 3

[11] and marked ancestor [5] (though for the latter, our bound is suboptimal by a
lg lgn factor).

For 2D stabbing and 4D range reporting, we obtain the first nontrivial lower
bounds, while for partial match, we improve the best previous bound [31] to an
optimal one.

It seems safe to say that the sweeping generality of our results come as a significant
surprise (it has certainly been a major source of surprise for the author). A priori,
it seems hard to imagine a formal connection between such lower bounds for very
different problems, in very different settings. Much of the magic of our results lies in
defining the right link between the problems: reachability queries in butterfly graphs.
Once we decide to use this middle ground, it is not hard to give reductions to and from
set disjointness, dynamic marked ancestor, and static 4-dimensional range reporting.
Each of these reductions is natural, but the combination is no less surprising.

1.1. New Results.
Partial match. Remember that in the partial match problem, we have a data base

of n strings in {0, 1}d, and a query string from the alphabet {0, 1, ⋆}d. The goal is
to determine whether any string in the database matches this pattern, where ⋆ can
match anything. In §4, we show that:

Theorem 1.1. Let Alice hold a string in {0, 1, ⋆}d, and Bob hold n points in
{0, 1}d. In any bounded-error protocol answering the partial match problem, either
Alice sends Ω(d) bits or Bob sends Ω(n1−ε) bits, for any constant ε > 0.

By the standard relation between asymmetric communication complexity and
cell-probe data structures [36] and decision trees [7], this bounds implies that:

• a data structure for the partial match problem with cell-probe complexity t
must use space 2Ω(d/t), assuming the word size is O(n1−ε/t).

• a decision tree for the partial match problem must have size 2Ω(d), assuming
the depth is O(n1−2ε/d) and the predicate size is O(nε).

As usual with such bounds, the cell-probe result is optimal for constant query
time, but degrades quickly with t. Note that in the decision tree model, we have a
sharp transition between depth and size: when the depth is O(n), linear size can be
achieved (search the entire database).

The partial match problem is well investigated [36, 14, 31, 43]. The best previous
bound [31] for Alice’s communication was Ω(d/ lg n) bits, instead of our optimal Ω(d).

Our reduction is a simple exercise, and it seems surprising that the connection
was not established before. For instance, Barkol and Rabani [11] gave a difficult lower
bound for exact near neighbor in the Hamming cube, though it was well known that
partial match reduces to exact near neighbor. This suggests that partial match was
viewed as a “nasty” problem.

By the reduction of [30], lower bounds for partial match also carry over to near
neighbor in ℓ∞, with approximation ≤ 3. See [7] for the case of higher approximation.

Reachability oracles. The following problem appears very hard: preprocess a
sparse directed graph in less than n2 space, such that reachability queries (can u be
reached from v?) are answered efficiently. The problem seems to belong to folklore,
and we are not aware of any nontrivial positive results. By contrast, for undirected
graphs, many oracles are known.

In §5, we show the first lower bound supporting the apparent difficulty of the
problem:

Theorem 1.2. A reachability oracle using space S in the cell probe model with
w-bit cells, requires query time Ω(lgn/ lg Sw

n).

4 MIHAI PATRASCU

The bound holds even if the graph is a subgraph of a butterfly graph, and in fact
it is tight for this special case. If constant time is desired, our bounds shows that the
space needs to be n1+Ω(1). This stands in contrast to undirected graphs, for which
connectivity oracles are easy to implement with O(n) space and O(1) query time.
Note however, that our lower bound is still very far from the conjectured hardness of
the problem.

Range reporting in 4D. Range reporting in 2D can be solved in O(lg lg n) time
and almost linear space [4]; see [45] for a lower bound on the query time.

Known techniques based on range trees can raise [4] a d-dimensional solution to
a solution in d + 1 dimensions, paying a factor O(lg n/ lg lg n) in time and space.
It is generally believed that this cost for each additional the dimension is optimal.
Unfortunately, we cannot prove optimal lower bounds for large d, since current lower
bound techniques cannot show bounds exceeding Ω(lg n/ lg lgn). Then, it remains to
ask about optimal bounds for small dimension.

Until recently, it seemed safe to conjecture that 3D range reporting would require
Ω(lg n/ lg lgn) query time for space O(n ·polylogn). Indeed, a common way to design
a d-dimensions static data structure is to perform a plane sweep on one coordinate,
and maintain a dynamic data structure for d − 1 dimensions. The data structure is
then made persistent, transforming update time into space. But it was known, via the
marked ancestor problem [5], that dynamic 2D range reporting requires Ω(lg n/ lg lg n)
query time. Thus, static 3D reporting was expected to require a similar query time.

However, this conjecture was refuted by a recent result of Nekrich [39] from
SoCG’07. It was shown that 3D range reporting can be done in doubly-logarithmic
query time, specifically tq = O(lg2 lg n). Without threatening the belief that ulti-
mately the bounds should grow by Θ(lgn/ lg lgn) per dimension, this positive result
raised the intriguing question whether further dimensions might also collapse to nearly
constant time before this exponential growth begins.

Why would 4 dimensions be hard, if 3 dimensions turned out to be easy? The
question has a simple, but fascinating answer: butterfly graphs. By reduction from
reachability on butterfly graphs, we show in §2 that the gap between 3 and 4 dimen-
sions must be Ω̃(lgn):

Theorem 1.3. A data structure for range reporting in 4 dimensions using space
S in the cell probe model with w-bit cells, requires query time Ω(lgn/ lg Sw

n).
For the main case w = O(lg n) and S = n · polylogn, the query time must be

Ω(lg n/ lg lgn). This is almost tight, since the result of Nekrich implies an upper
bound of O(lg n lg lg n).

Range stabbing in 2D. In fact, our reduction from reachability oracles to 4D range
reporting goes through 2D range stabbing, for which we obtain the same bounds as in
Theorem 1.3. There exists a simple reduction from 2D stabbing to 2D range reporting,
and thus, we recover our lower bounds for range reporting [40], with a much simpler
proof.

1.2. Lower Bounds for Set Disjointness. In the set disjointness problem,
Alice and Bob receive sets S and T , and must determine whether S ∩ T = ∅. We
parameterize lopsided set disjointness (LSD) by the size of Alice’s set |S| = N , and
B, the fraction between the universe and N . In other words, S, T ⊆ [N · B]. We do
not impose an upper bound on the size of T , i.e. |T | ≤ N ·B.

Symmetric set disjointness is a central problem in communication complexity.
While a deterministic lower bound is easy to prove, the optimal randomized lower
bound was shown in the celebrated papers of Razborov [46] and Kalyanasundaram and

CELL-PROBE LOWER BOUNDS 5

Fig. 1.2. A butterfly with degree 2 and depth 4.

Schnitger [32], dating to 1992. Bar-Yossef et al. [10] gave a more intuitive information-
theoretic view of the technique behind these proofs.

In their seminal paper on asymmetric communication complexity, Miltersen et
al. [36] proved an (easy) deterministic lower bound for LSD, and left the randomized
lower bound as an “interesting” open problem.

In FOCS’06, we showed [8] a randomized LSD lower bound for the case when B ≥
poly(N). For such large universes, it suffices to consider an independent distribution
for Alice’s and Bob’s inputs, simplifying the proof considerably.

In this paper, we show how to extend the techniques for symmetric set disjointness
to the asymmetric case, and obtain an optimal randomized bound in all cases:

Theorem 1.4. Fix δ > 0. In a bounded error protocol for LSD, either Alice
sends at least δN lgB bits, or Bob sends at least NB1−O(δ) bits.

The proof appears in §6, and is fairly technical. If one is only interested in de-
terministic lower bounds, the proof of Miltersen et al. [36] suffices; this proof is a
one-paragraph counting argument. If one wants randomized lower bounds for par-
tial match and near-neighbor problems, it suffices to use the simpler proof of [8],
since those reductions work well with a large universe. Randomized lower bounds for
reachability oracles and the entire left subtree of Figure 1.1 require small universes
(B ≪ N), and thus need the entire generality of Theorem 1.4.

Organization. The reader unfamiliar with our problems is first referred to Ap-
pendix A, which defines all problems, and summarizes the known reductions (the
dashed lines in Figure 1.1).

The remainder of this paper is organized as a bottom-up, level traversal of the tree
in Figure 1.1. (We find that this ordering builds the most intuition for the results.)

In §2, we explain why butterfly graphs capture the structure hidden in many
problems, and show reductions to dynamic marked ancestor, and static 2D stabbing.

In §3, we consider some special cases of the LSD problem, which are shown to be
as hard as the general case, but are easier to use in reductions. Subsequently, §4 and
§5 reduce set disjointness to partial match, respectively reachability oracles.

Finally, §6 gives the proof of our optimal LSD lower bound.

2. The Butterfly Effect. The butterfly is a well-known graph structure with
high “shuffle abilities.” The graph (Figure 1.2) is specified by two parameters: the
degree b, and the depth d. The graph has d + 1 layers, each having bd vertices. The
vertices on level 0 are sources, while the ones on level d are sinks. Each vertex except
the sinks has out-degree d, and each vertex except the sources has in-degree d. If we

6 MIHAI PATRASCU

view vertices on each level as vectors in [b]d, the edges going out of a vertex on level i
go to vectors that may differ only on the ith coordinate. This ensures that there is a
unique path between any source and any sink: the path “morphs” the source vector
into the sink node by changing one coordinate at each level.

For convenience, we will slightly abuse terminology and talk about “reachability
oracles for G,” where G is a butterfly graph. This problem is defined as follows:
preprocess a subgraph of G, to answer queries of the form, “is sink v reachable from
source u?” The query can be restated as, “is any edge on the unique source–sink path
missing from the subgraph?”

2.1. Reachability Oracles to Stabbing. The reduction from reachability or-
acles to stabbing is very easy to explain formally, and we proceed to do that now.
However, there is a deeper meaning to this reduction, which will be explored in §2.2.

Reduction 2.1. Let G be a butterfly with M edges. The reachability oracle
problem on G reduces to 2-dimensional stabbing over M rectangles.

Proof. If some edge of G does not appear in the subgraph, what source-sink paths
does this cut off? Say the edge is on level i, and is between vertices (· · · , vi−1, vi, vi+1, · · ·)
and (· · · , vi−1, v

′
i, vi+1, · · ·). The sources that can reach this edge are precisely (⋆, · · · , ⋆, vi, vi+1, · · ·),

where ⋆ indicates an arbitrary value. The sinks that can be reached from the edge
are (· · · , vi−1, v

′
i, ⋆, · · ·). The source–sink pairs that route through the missing edge

are the Cartesian product of these two sets.

This Cartesian product has precisely the format of a 2D rectangle. If we read a
source vector (v1, . . . , vd) as a number in base b with the most significant digit being
vd, the set of sources that can reach the edge is an interval of length bi−1. Similarly,
a sink is treated as a number with the most significant digit v1, giving an interval of
length bd−i.

For every missing edge, we define a rectangle with the source and sink pairs that
route through it. Then, a sink is reachable from a source iff no rectangle is stabbed
by the (sink, source) point.

Observe that the rectangles we constructed overlap in complicated ways. This is
in fact needed, because 2-dimensional range stabbing with non-overlapping rectangles
can be solved with query time O(lg2 lgn) [20].

As explained in Appendix A, 2D range stabbing reduces to 2D range counting
and 4D range reporting.

2.2. The Structure of Dynamic Problems. The more interesting reduction
is to the marked ancestor problem. The goal is to convert a solution to the dynamic
problem into a solution to some static problem for which we can prove a lower bound.

A natural candidate would be to define the static problem to be the persistent
version of the dynamic problem. Abstractly, this is defined as follows:

input: an (offline) sequence of updates to a dynamic problem, denoted by u1, . . . , um.
query: a query q to dynamic problem and a time stamp τ ≤ m. The answer should

be the answer to q if it were executed by the dynamic data structure after
updates u1, . . . , uτ .

An algorithm result for making data structures persistent can be used to imply a
lower bound for the dynamic problem, based on a lower bound for the static problem.
The following is a standard persistence result:

Lemma 2.2. If a dynamic problem can be solved with update time tu and query
time tq, its (static) persistent version will have a solution with space O(m · tu) and
query time O(tq · lg lg(m · tu)).

CELL-PROBE LOWER BOUNDS 7

Proof. We simulate the updates in order, and record their cell writes. Each cell
in the simulation has a collection of values and timestamps (which indicate when the
value was updated). For each cell, we build a van Emde Boas predecessor structure [50]
over the time-stamps. The structures occupy O(m · tu) space in total, supporting
queries in O(lg lg(mtu)) time. To simulate the query, we run a predecessor query for
every cell read, finding the last update that changed the cell before time τ .

Thus, if the static problem is hard, so is the dynamic problem (to within a doubly
logarithmic factor). However, the reverse is not necessarily true, and the persistent
version of marked ancestor turns out to be easy, at least for the incremental case. To
see that, compute for each node the minimum time when it becomes marked. Then,
we can propagate down to every leaf the minimum time seen on the root-to-leaf path.
To query the persistent version, it suffices to compare the time stamp with this value
stored at the leaf.

As it turns out, persistence is still the correct intuition for generating a hard
static problem. However, we need the stronger notion of full persistence. In partial
persistence, as seen above, the updates create a linear chain of versions (an update
always affects the more recent version). In full persistence, the updates create a tree
of versions, since updates are allowed to modify any historic version.

For an abstract dynamic problem, its fully-persistent version is defined as follows:

input: a rooted tree (called the version tree) in which every node is labeled with a
sequence of update operations. The total number of updates is m.

query: a query q to the dynamic problem, and a node τ of the version tree. The
answer should be the answer to q if it were executed after the sequence of
updates found on the path through the version tree from the root to τ .

Like the partially persistent problem, the fully persistent one can be solved by
efficient simulation of the dynamic problem:

Lemma 2.3. If a dynamic problem can be solved with update time tu and query
time tq, the fully-persistent static problem has a solution with space O(m · tu) and
query time O(tq lg lg(m · tu)).

Proof. For each cell of the simulated machine, consider the various nodes of the
version tree in which the cell is written. Given a “time stamp” (node) τ , we must
determine the most recent change that happened on the path from τ to the root.
This is the longest matching prefix problem, which is equivalent to static predecessor
search. Thus, the simulation complexity is the same as in Lemma 2.2.

We now have to prove a lower bound for the fully-persistent version of marked
ancestor, which we accomplish by a reduction from reachability oracles in the butter-
fly:

Reduction 2.4. Let G be a subgraph of a butterfly with M edges. The reachabil-
ity oracle problem on G reduces to the fully-persistent version of the marked ancestor
problem, with an input of O(M) offline updates. The tree in the marked ancestor
problem has the same degree and depth as the butterfly.

Proof. Our inputs to the fully-persistent problem have the pattern illustrated in
Figure 2.1. At the root of the version tree, we have update operations for the leaves
of the marked ancestor tree. If we desire a lower bound for the incremental marked
ancestor problems, all nodes start unmarked, and we have an update for every leaf
that needs to be marked. If we want a decremental lower bound, all nodes start
marked, and all operations are unmark.

The root has b subversions; in each subversion, the level above the leaves in the
marked ancestor tree is updated. The construction continues similarly, branching our

8 MIHAI PATRASCU

(a)

a0 a1

b0 b1 b2 b3

c0 c1 c2 c3 c4 c5 c6 c7

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9d10d11d12d13d14d15

(b) d0 d1 d2 d3 d4 d5 d6 d7 d8 d9d10d11d12d13d14d15

c0 c1 c2 c3 c4 c5 c6 c7 c0 c1 c2 c3 c4 c5 c6 c7

b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

a0 a1 a0 a1 a0 a1 a0 a1 a0 a1 a0 a1 a0 a1 a0 a1

Fig. 2.1. (a) The marked ancestor problem. (b) An instance of fully-persistent marked ancestor.

more versions at the rate at which level size decreases. Thus, on each level of the
version tree we have bd updates, giving bd · d updates in total.

With this construction of the updates, the structure of the fully persistent marked
ancestor problem is isomorphic to a butterfly. Imagine what happens when we query
a leaf v of the marked ancestor tree, at a leaf t of the version tree. We think of both
v and t as vectors in [b]d, spelling out the root to leaf paths. The path from the root
to v goes through every level of the version tree:

• on the top level, there is a single version (t is irrelevant), in which v is updated.
• on the next level, the subversion we descend to is decided by the first coor-
dinate of t. In this subversion, v’s parent is updated. Note that v’s parent is
determined by the first d− 1 coordinates of v.

• on the next level, the relevant subversion is dictated by the first two coordi-
nates of t. In this subversion, v’s grandparent is updated, which depends on
the first d− 2 coordinates of v.

• etc.
This is precisely the definition of a source-to-sink path in the butterfly graph, mor-
phing the source into the sink one coordinate at a time. Each update will mark a
node if the corresponding edge in the butterfly is missing in the subgraph. Thus, we
encounter a marked ancestor iff some edge is missing.

Let us see how Reduction 2.4 combines with Lemma 2.3 to give a lower bound
for the dynamic marked ancestor problem. Given a butterfly graph with m edges,
we generate at most m updates. From Lemma 2.3, the space of the fully persistent
structure is S = O(m · tu), and the query time O(tq lg lg(mtq)), where tu and tq are

CELL-PROBE LOWER BOUNDS 9

the assumed running times for dynamic marked ancestor. If tu = polylogm, the space
is S = O(mpolylogm).

The lower bound for reachability oracles from Theorem 1.2 implies that for space
O(mpolylogm), the query time must be Ω

(
lgm

lg lgm

)
. But we have an upper bound of

O(tq lg lg(mtq)) for the query time, so tq = Ω
(

lgm
lg2 lgm

)
. This is weaker by a lg lgm

factor compared to the original bound of [5].

3. Adding Structure to Set Disjointness. Just as it is more convenient to
work with Planar-NAE-3SAT that Circuit-SAT for showing NP-completeness, our
reductions use two restricted versions of LSD:
Blocked-LSD: The universe is interpreted as [N]× [B], and elements as pairs (u, v).

It is guaranteed that (∀)x ∈ [N], S contains a single element of the form
(x, ⋆).

2-Blocked-LSD: The universe is interpreted as [NB]× [B]× [B]. It is guaranteed that

for all x ∈ [NB] and y ∈ [B], S contains a single element of the form (x, y, ⋆)
and a single element of the form (x, ⋆, y).

It is possible to reanalyze the lower bound of §6 and show directly that it applies
to these restricted versions. However, in the spirit of the paper, we choose to design
a reduction from general LSD to these special cases.

Lemma 3.1. LSD reduces to Blocked-LSD by a deterministic protocol with com-
munication complexity O(N).

Proof. In the general LSD, Alice’s set S might contain multiple elements in each
block. Alice begins by communicating to Bob the vector (c1, . . . , cN), where ci denotes
the number of elements in block i. The number of distinct possibilities for (c1, . . . , cN)
is
(
2N−1

N

)
, so Alice needs to send O(N) bits (in a possibly non-uniform protocol).

Now Bob constructs a set T ′ in which the i-th block of T is included ci times; a
block with ci = 0 is discarded. Alice considers a set S′ in which block i gets expanded
into ci blocks, with one element from the original block appearing in each of the new
blocks. We now have an instance of Blocked-LSD.

Lemma 3.2. Blocked-LSD reduces to 2-Blocked-LSD by a deterministic protocol
with communication complexity O(N).

Proof. Consider B consecutive blocks of Blocked-LSD. Adjoining these blocks
together, we can view the universe as aB×B matrix. The matrix has one entry in each
column (one entry per block), but may have multiple entries per row. The protocol
from above can be applied to create multiple copies of rows with more elements. After
the protocol is employed, there is one element in each row and each column. Doing
this for every group of B blocks, the total communication will be N

B · O(B) = O(N).

Since the lower bound for LSD says that Alice must communicate ω(N) bits, these
reductions show that Blocked-LSD and 2-Blocked-LSD have the same complexity.

3.1. Reductions. Before proceeding, we must clarify the notion of reduction
from a communication problem to a data-structure problem. In such a reduction,
Bob constructs a database based on his set T , and Alice constructs a set of k queries.
It is then shown that LSD can be solved based on the answer to the k queries on
Bob’s database.

When analyzing data structures of polynomial space or more, we will in fact use
just one query (k = 1). If the data structure has size S and query time t, this reduction
in fact gives a communication protocol for LSD, in which Alice communicates t lgS
bits, and Bob communicates tw bits. This is done by simulating the query algorithm:

10 MIHAI PATRASCU

for each cell probe, Alice sends the address, and Bob sends the content from his
constructed database. At the end, the answer to LSD is determined from the answer
of the query.

If we are interested in lower bounds for space n1+o(1), note that an upper bound of
lg S for Alice’s communication no longer suffices, because S = O(n1+ε) and S = O(n)
yield the same asymptotic bound. The work-around is to reduce to k parallel queries,
for large k. In each cell probe, the queries want to read some k cells from the memory
of size S. Then, Alice can send lg

(
S
k

)
bits, and Bob can reply with k · w. Observe

that lg
(
S
k

)
≪ k lg S, if k is large enough.

4. Set Disjointness to Partial Match.
Reduction 4.1. Blocked-LSD reduces to one partial match query over n = N ·B

strings in dimension d = O(N lgB).
Proof. Consider a constant weight code φ mapping the universe [B] to {0, 1}b. If

we use weight b/2, we have
(

b
b/2

)
= 2Ω(b) codewords. Thus, we may set b = O(lgB).

If S = {(1, s1), . . . , (N, sN)}, Alice constructs the query string φ(s1)φ(s2) · · · ,
i.e. the concatenation of the codewords of each si. We have dimension d = N · b =
O(N lgB).

For each point (x, y) ∈ T , Bob places the string 0(x−1)b φ(y) 0(N−x)b in the
database. Now, if (i, si) ∈ T , the database contains a string with φ(si) at posi-
tion (i − 1)b, and the rest zeros. This string is dominated by the query, which also
has φ(si) at that position. On the other hand, if a query dominates some string in
the database, then for some (i, si) ∈ S and (i, y) ∈ T , φ(si) dominates φ(y). But this
means si = y because in a constant weight code, no codeword can dominate another.

From the lower bound on Blocked-LSD, we know that in a communication protocol
solving the problem, either Alice sends Ω(N lgB) bits, or Bob sends N ·B1−δ ≥ n1−δ

bits. Rewriting this bound in terms of n and d, either Alice sends Ω(d) bits, or Bob
sends n1−δ bits, for constant δ > 0.

This implies that a data structure with query time t requires space 2Ω(d/t), as
long as the word size is w ≤ n1−δ/t. It also implies that any decision tree of depth
n1−δ needs to have size 2Ω(d/t).

5. Set Disjointness to Reachability Oracles. Since we want a lower bound
for near-linear space, we must reduce LSD to k parallel queries on the reachability
oracle. The entire action is in what value of k we can achieve. Note, for instance, that
k = N is trivial, because Alice can pose a query for each item in her set. However, a
reduction with k = N is also useless. Remember that the communication complexity
of Alice is t · lg

(
S
k

)
≥ t lg

(
NB
N

)
. But LSD is trivially solvable with communication

lg
(
NB
N

)
, since Alice can communicate her entire set. Thus, there is no contradiction

with the lower bound.
To get a lower bound on t, k must be made as small as possible compared to N .

Intuitively, a source–sink path in a butterfly of depth d traverses d edges, so it should
be possible to test d elements by a single query. To do that, the edges must assemble
in contiguous source–sink paths, which turns out to be possible if we carefully match
the structure of the butterfly and the 2-Blocked-LSD problem:

Reduction 5.1. Let G be a degree-B butterfly graph with N non-sink vertices
and N ·B edges, and let d be its depth. 2-Blocked-LSD reduces to N

d parallel queries
to a reachability oracle for a subgraph of G.

Proof. Remember that in 2-Blocked-LSD, elements are triples (x, y, z) from the

CELL-PROBE LOWER BOUNDS 11

universe [NB] × [B] × [B]. We define below a bijection between [NB] × [B] and the
non-sink vertices of G. Since (x, y) is mapped to a non-sink vertex, it is natural to
associate (x, y, z) to an edge, specifically edge number z going out of vertex (x, y).

Bob constructs a reachability oracle for the graph G excluding the edges in his
set T . Then, Alice must find out whether any edge from her set S has been deleted.
By mapping the universe [NB]× [B] to the nodes carefully, we will ensure that Alice’s

edges on each level form a perfect matching. Then, her set of N edges form N
d disjoint

paths from sources to sinks. Using this property, Alice can just issue N
d queries for

these paths. If any of the source–sink pairs is unreachable, some edge in S has been
deleted.

To ensure Alice’s edges form perfect matchings at each level, we first decompose
the non-sink vertices of G into N

B microsets of B elements each. Each microset is
associated to some level i, and contains nodes of the form (· · · , vi−1, ⋆, vi+1, ·) on
level i. A value (x, y) is mapped to node number y in a microset identified by x
(through some arbitrary bijection between [NB] and microsets).

Let (x, 1, z1), . . . , (x,B, zB) be the values in S that give edges going out of microset
x. If the nodes of the microset are the vectors (· · · , vi−1, ⋆, vi+1, ·), the nodes to which
the edges of S go are the vectors (· · · , vi−1, zj , vi+1, ·) on the next level, where j ∈ [B].
Observe that edges from different microsets cannot go to the same vertex. Also, edges
from the same microset go to distinct vertices by the 2-Blocked property: for any fixed
x, the zj’s are distinct. Since all edges on a level point to distinct vertices, they form
a perfect matching.

Let us now compute the lower bounds implied by the reduction. We obtain
a protocol for 2-Blocked-LSD in which Alice communicates t lg

(
S
k

)
= O(tk lg S

k) =

O(N · td lg Sd
N) bits, and Bob communicates k·t·w = O(N · td ·w) bits. On the other hand,

the lower bound for 2-Blocked-LSD says that Alice needs to communicate Ω(N lgB)
bits, or Bob needs to communicate NB1−δ, for any constant δ > 0. It suffices to use,
for instance, δ = 1

2 .
Comparing the lower bounds with the reduction upper bound, we conclude that

either t
d lg

Sd
N = Ω(lgB), or t

dw = Ω(
√
B). Set the degree of the butterfly to satisfy

B ≥ w2 and lgB ≥ lg Sd
N . Then, t

d = Ω(1), i.e. t = Ω(d). This is intuitive: it shows
that the query needs to be as slow as the depth, essentially traversing a source to sink
path.

Finally, note that the depth is d = Θ(logB N). Since lgB ≥ max
{
2 lgw, lg Sd

N

}
= Ω

(
lgw+

lg Sd
N

)
= Ω

(
lg Sdw

N

)
. Note that certainly d < w, so lgB = Ω(lg Sw

N). We obtain

t = Ω(d) = Ω(lgN/ lg Sw
N).

6. Proof of the LSD Lower Bounds. Our goal here is to prove Theorem 1.4,
our optimal lower bound for LSD.

6.1. The Hard Instances. We imagine the universe to be partitioned into N
blocks, each containing B elements. Alice’s set S will contain exactly one value from
each block. Bob’s set T will contain B

2 values from each block; more precisely, it will
contain one value from each pair {(j, 2k); (j, 2k + 1)}.

Let S and T be the possible choices for S and T according to these rules. Note
that |S| = BN and |T | = 2NB/2. We denote by Si Alice’s set restricted to block i,
and by Ti Bob’s set restricted to block i. Let Si and Ti be the possible choices for Si

and Ti. We have |Si| = B and |Ti| = 2B/2.
We now define Dyes to be the uniform distribution on pairs (S, T) ∈ S × T with

S∩T = ∅. In each block i, there are two natural processes to generate (Si, Ti) ∈ Si×Ti

12 MIHAI PATRASCU

subject to Si ∩ Ti = ∅:
1. Pick Ti ∈ Ti uniformly at random, i.e. independently pick one element from

each pair {(i, 2k), (i, 2k+1)}. Then, pick the singleton Si uniformly at random
from the complement of Ti. Note that H(Si | Ti) = log2(B/2).

2. Pick Si to be a uniformly random element from block i. Then, pick Ti such
that it doesn’t intersect Si. Specifically, if Si ∩ {2k, 2k + 1} = ∅, Ti contains
a random element among 2k and 2k + 1. Otherwise, Ti gets the element not
in Si. Note that H(Ti | Si) =

B
2 − 1.

To generate the distribution Dyes, we will employ the following process. First,
pick q ∈ {0, 1}N uniformly at random. For each qi = 0, apply process 1. from above
in block i; for each qi = 1, apply process 2. in block i. Now let Q be a random variable
entailing: the vector q; the value Si for every i with qi = 0; and the value Ti for every
i with qi = 1. Intuitively, Q describes the “first half” of each random process.

We now define distributions Dk as follows. In block k (called the designated block),
choose (Sk, Tk) ∈ Sk × Tk uniformly. Notice that Pr[Sk ∩ Tk 6= ∅] = 1

2 . In all other
blocks i 6= k, choose (Si, Ti) ∈ Si×Ti as in the distribution Dyes above. As above, we
have a vector Q−k, containing: qi for i 6= k; all Si such that qi = 0; and all Ti such
that qi = 1.

We are going to prove that:
Theorem 6.1. Fix δ > 0. If a protocol for LSD has error less than 1

9999 on

distribution 1
N

∑N
i=1 Di, then either Alice sends at least δN lgB bits, or Bob sends at

least N · B1−O(δ) bits.
The distribution Dyes will be used to measure various entropies in the proof, which

is convenient because the blocks are independent. However, the hard distribution on
which we measure error is the mixture of Di’s. (Since Dyes only has yes instances,
measuring error on it would be meaningless.) While it may seem counterintutive that
we argue about entropies on one distribution and error on another, remember that
Dyes and Di are not too different: S and T are disjoint with probability 1

2 when
chosen by Di.

6.2. A Direct Sum Argument. We now wish to use a direct-sum argument to
obtain a low-communication protocol for a single subproblem on Si × Ti. Intuitively,
if the LSD problem is solved by a protocol in which Alice and Bob communicate a,
respectively b bits, we might hope to obtain a protocol for some subproblem i in which
Alice communicates O(a

N) bits and Bob communicates O(b
N) bits.

Let π be the transcript of the communication protocol. If Alice sends a bits and
Bob b bits, we claim that IDyes

(S : π | Q) ≤ a and IDyes
(T : π | Q) ≤ b. Indeed,

once we condition on Q, S and T are independent random variables: in each block,
either S is fixed and T is random, or vice versa. The independence implies that all
information about S is given by Alice’s messages, and all information about T by
Bob’s messages.

Define S<i = (S1, . . . , Si−1). We can decompose the mutual information as fol-

lows: IDyes
(S : π | Q) =

∑N
i=1 IDyes

(Si : π | Q,S<i). The analogous relation holds for
T . By averaging, it follows that for at least half of the values of i, we simultaneously
have:

I
Dyes

(Si : π | Q,S<i) ≤
4a

N
and I

Dyes

(Ti : π | Q, T<i) ≤
4b

N
. (6.1)

Remember that the average error on 1
N

∑
iDi is 1

9999 . Then, there exists k among
the half satisfying (6.1), such that the error on Dk is at most 2

9999 . For the remainder

CELL-PROBE LOWER BOUNDS 13

of the proof, fix this k.
We can now reinterpret the original protocol for LSD as a new protocol for the

disjointness problem in block k. This protocol has the following features:
Inputs: Alice and Bob receive Sk ∈ Sk, respectively Tk ∈ Tk.
Public coins: The protocol employs public coins to select Q−k. For every i < k with

qi = 0, Si is chosen publicly to be disjoint from Ti (which is part of Q−k).
For every i < k with qi = 1, Ti is chosen publicly to be disjoint from Si.

Private coins: Alice uses private coins to select Si for all i > k with qi = 0. Bob
uses private coins to select Ti for all i > k with qi = 1. As above, Si is
chosen to be disjoint from Ti (which is public knowledge, as part of Q−k),
and analogously for Ti.

Error: When Sk and Tk are chosen independently from Sk × Tk, the protocol com-
putes the disjointness of Sk and Tk with error at most 2

9999 . Indeed, the
independent choice of Sk and Tk, and the public and private coins realize
exactly the distribution Dk.

Message sizes: Unfortunately, we cannot conclude that the protocol has small com-
munication complexity in the regular sense, i.e. that the messages are small.
We will only claim that the messages have small information complexity,
namely that they satisfy (6.1).

Observe that the disjointness problem in one block is actually the indexing prob-
lem: Alice receives a single value (as the set Sk) and she wants to determined whether
that value is in Bob’s set. Since |Sk| = 1, we note that Sk ∩ Tk = ∅ iff Sk 6⊂ Tk.

6.3. Understanding Information Complexity. In normal communication
lower bounds, one shows that if the protocol communicates too few bits, it must
make a lot of errors. In our case, however, we must show that a protocol with small
information complexity (but potentially large messages) must still make a lot of error.

Let us see what the information complexity of (6.1) implies. We have:

I
Dyes

(Sk : π | Q,S<i) =
1
2 · I

Dyes

(Sk : π | qk = 1, Tk, Q−k, S<i)

+ 1
2 · I

Dyes

(Sk : π | qk = 0, Sk, Q−k, S<i)

The second term is zero, since H(Sk | Sk) = 0. Thus, the old bound IDyes
(Sk : π |

Q,S<i) ≤ 4a
N can be rewritten as IDyes

(Sk : π | qk = 1, Tk, Q−k, S<i) ≤ 8a
N . We will

now aim to simplify the left hand side of this expression.
First observe that we can eliminate qk = 1 from the conditioning: IDyes

(Sk : π |
qk = 1, Tk, Q−k, S<i) = IDyes

(Sk : π | Tk, Q−k, S<i). Indeed, π is a function of S and
T alone. In other words, it is a function of the public coins Q−k, the private coins,
Sk, and Tk. But the distribution of the inputs is the same for qk = 1 and qk = 0. In
particular, the two processes for generating Sk and Tk (one selected by qk = 0, the
other by qk = 1) yield the the same distribution.

Now remember that Dyes is simply Dk conditioned on Sk ∩ Tk = ∅. Thus, we
can rewrite the information under the uniform distribution for Sk and Tk: I(Sk : π |
Q−k, Tk, Sk 6⊂ Tk, S<k) ≤ 8a

N . (To alleviate notation, we drop subscripts for I and H
whenever uniform distributions are used.) We are now measuring information under
the same distribution used to measure the error.

Analogously, it follows that I(Tk : π | Q−k, Sk, Sk 6⊂ Tk, T<k) ≤ 8b
N . We can now

apply three Markov bounds, and fix the public coins (Q−k, S<k, and T<k) such that
all of the following hold:

1. the error of the protocol is at most 8
9999 ;

14 MIHAI PATRASCU

2. I(Sk : π | Tk, Sk 6⊂ Tk) ≤ 32a
N ;

3. I(Tk : π | Sk, Sk 6⊂ Tk) ≤ 32b
N .

To express the guarantee of 1., define a random variable E which is one if the
protocol makes an error, and zero otherwise. Note that E is a function E : Sk × CA ×
Tk × CB → {0, 1}, where we defined CA as the set of private coin outcomes for Alice
and CB as the private coin outcomes for Bob. By 1., we have E[E] ≤ 8

9999 .
We can rewrite 2. by expanding the definition of information:

I(Sk : π | Tk, Sk 6⊂ Tk) = H(Sk | Tk, Sk 6⊂ Tk)− H(Sk | Tk, π, Sk 6⊂ Tk)

= log2
B
2 −H(Sk | Tk, π, Sk 6⊂ Tk)

Applying a similar expansion to Tk, we conclude that:

log2
B
2 −H(Sk | Tk, π, Sk 6⊂ Tk) ≤ 32a

N (6.2)

(B2 − 1)−H(Tk | Sk, π, Sk 6⊂ Tk) ≤ 32b
N (6.3)

Consider some transcript π̃ of the communication protocol. A standard obser-
vation in communication complexity is that the set of inputs for which π = π̃ is a
combinatorial rectangle in the truth table of the protocol: one side is a subset of
Sk × CA, and the other a subset of Tk × CB. In any rectangle, the output of the
protocol is fixed.

Observe that the probability that the output of the protocol is “no” is at most 1
2

(the probability that Sk and Tk intersect) plus 8
9999 (the probability that the protocol

makes an error). Discard all rectangles on which the output is “no.” Further discard
all rectangles that fail to satisfy any of the following:

E[E | π = π̃] ≤ 64
9999

log2
B
2 −H(Sk | Tk, Sk 6⊂ Tk, π = π̃) ≤ 256a

N

(B2 − 1)−H(Tk | Sk, Sk 6⊂ Tk, π = π̃) ≤ 256b
N

By the Markov bound, the mass of rectangles failing each one of these tests is at most
1
8 . In total, at most 1

2 +
8

9999 +3 · 1
8 < 1 of the mass got discarded. Thus, there exists

a rectangle π̃ with answer “yes” that satisfies all three constraints.
Let σ be the distribution of Sk conditioned on π = π̃, and τ be the distribution

of Tk conditioned on π = π̃. With this notation, we have:
1. Eσ,τ [E] ≤ 64

9999 , thus Prσ,τ [Sk ∩ Tk 6= ∅] ≤ 64
9999 .

2. Hσ,τ (Sk | Tk, Sk 6⊂ Tk) ≥ log2
B
2 − 256a

N .

3. Hσ,τ (Sk | Tk, Sk 6⊂ Tk) ≥ (B2 − 1)− 256b
N .

In the next section, we shall prove that in every “large enough” rectangle (in the
sense of entropy) the probability that Sk and Tk intersect is noticeable:

Lemma 6.2. Let γ > 0. Consider probability distributions σ on support Sk, and
τ on support Tk. The following cannot be simultaneously true:

Pr
σ×τ

[Sk ∩ Tk 6= ∅] ≤ 1
42 (6.4)

H
σ×τ

(Sk | Tk, Sk 6⊂ Tk) ≥ (1− γ) log2 B (6.5)

H
σ×τ

(Tk | Sk, Sk 6⊂ Tk) ≥ B
2 − 1

840 ·B1−7γ (6.6)

CELL-PROBE LOWER BOUNDS 15

Since 64
9999 ≤ 1

42 , one of the following must hold:

log2
B
2 − 256a

N ≤ (1− γ) log2 B ⇒ a ≥ γ
257 ·N log2 B

(B2 − 1)− 256b
N ≤ B

2 − 1
840 · B1−7γ ⇒ b ≥ 1

216000 ·N · B1−7γ

For N and B greater than a constant, it follows that either Alice sends at least δN lgB
bits, or Bob must send at least 1

216000N · B1−1799·δ bits.

6.4. Analyzing a Rectangle. The goal of this section is to show Lemma 6.2.
Let µσ and µτ be the probability density functions of σ and τ . We define S⋆ as
the set of values of Sk that do not have unusually high probability according to σ:
S⋆ =

{
Sk | µσ(Sk) ≤ 1

/
B1−7γ

}
. We first show that significant mass is left in S⋆:

Claim 6.3. µσ(S⋆) ≥ 1
5 .

Proof. Our proof will follow the following steps:
1. We find a column T̂k in which the function is mostly one (i.e. typically Sk 6⊂

T̂k), and in which the entropy Hσ(Sk | Sk 6⊂ T̂k) is large.
2. The mass of elements outside S⋆ is bounded by the mass of elements outside

S⋆ and disjoint from T̂k, plus the mass of elements intersecting T̂k. The latter
is small by point 1.

3. There are few elements outside S⋆ and disjoint from T̂k, because they each
have high probability. Thus, if their total mass were large, their low entropy
would drag down the entropy of Hσ(Sk | Sk 6⊂ T̂k), contradiction.

To achieve step 1., we rewrite (6.4) and (6.5) as:

Pr
σ×τ

[Sk ⊂ Tk] = E
τ

[
Pr
σ
[Sk ⊂ Tk]

]
≤ 1

10

log2 B − H
σ×τ

(Sk | Tk, Sk 6⊂ Tk) = E
τ

[
log2 B −H

σ
(Sk | Sk 6⊂ Tk)

]
≤ γ log2 B

Applying two Markov bounds on Tk, we conclude that there exists some T̂k such that:

Pr
σ
[Sk ⊂ T̂k] ≤ 3

10 ; H
σ
(Sk | Sk 6⊂ T̂k) ≥ (1 − 3γ) log2 B (6.7)

Define σ̂ to be the distribution σ conditioned on Sk 6⊂ T̂k.
With regards to step 2., we can write µσ(S⋆) ≥ 1 − Prσ[Sk 6∈ S⋆ ∧ Sk 6⊂

T̂k] − Prσ[Sk ⊂ T̂k]. The latter term is at most 3
10 . In step 3., we will upper bound

the former term by 1
2 , implying µσ(S⋆) ≥ 1

5 .
For any variable X and event E, we can decompose:

H(X) ≤ Pr[E] ·H(X | E) + Pr[¬E] · H(X | ¬E) + Hb(Pr[E]), (6.8)

where Hb(·) ≤ 1 is the binary entropy function. We apply this relation to the variable
Sk under the distrubtion σ̂, choosing S⋆ as our event E. We obtain:

H
σ̂
(Sk) ≤ Pr

σ̂

[
S⋆

]
·H
σ̂
(Sk | Sk ∈ S⋆) + Pr

σ̂

[
S⋆

]
· H
σ̂
(Sk | Sk /∈ S⋆) + 1

We have Hσ̂(Sk | Sk ∈ S⋆) ≤ log2
B
2 since there are at most B

2 choices for Sk disjoint

from T̂k. On the other hand, Hσ̂(Sk | Sk /∈ S⋆) ≤ (1 − 7γ) log2 B. Indeed, there are
at most B1−7γ distinct values outside S⋆, since each must have probability exceeding
1
/
B1−7γ . We thus obtain:

H
σ̂
(Sk) ≤ Pr

σ̂

[
S⋆

]
· log2 B

2 + Pr
σ̂

[
S⋆

]
· (1 − 7γ) log2 B + 1

16 MIHAI PATRASCU

If we had Prσ̂[S⋆] ≥ 1
2 , we would have Hσ̂(Sk) ≤ (1 − 3.5γ) log2 B + 1 < (1 −

3γ) log2 B for large enough B. But this would contradict (6.7), which states that
Hσ̂(Sk) ≥ (1− 3γ) log2 B.

Since σ̂ was the distribution σ conditioned on Sk 6⊂ T̂k, Bayes’ rule tells us that
Prσ[Sk 6∈ S⋆ ∧ Sk 6⊂ T̂k] ≤ Prσ̂[Sk /∈ S⋆] ≤ 1

2 .

Let us now consider the function f(Tk) = Eσ[|Sk ∩ Tk|]. By linearity of expec-
tation, f(Tk) =

∑
x∈Tk

Prσ[x ∈ Sk] =
∑

x∈Tk
µσ(x), since Sk has a single element.

Since |Sk ∩ Tk| ∈ {0, 1}, we can write:

Pr
σ,τ

[Sk ∩ Tk 6= ∅] = E
σ,τ

[
|Sk ∩ Tk|

]
= E

τ

[
E
σ
[|Sk ∩ Tk|]

]
= E

τ
[f(Tk)]

Thus, to reach a contradiction with (6.4), we must lower bound the expectation
of f(·) over distribution τ . Since we do not have a good handle on τ , we will approach
this goal indirectly: at first, we will completely ignore τ , and analyze the distribution
of f(Tk) when Tk is chosen uniformly at random from Tk. After this, we will use the
high entropy of τ , in the sense of (6.6), to argue that the behavior on τ cannot be
too different from the behavior on the uniform distribution.

The expectation of f(·) over the uniform distribution is simple to calculate:
ETk∈Tk

[f(Tk)] =
∑

x PrTk∈Tk
[x ∈ Tk] · µσ(x) =

∑
x

1
2µσ(x) = 1

2 . In the sums, x
ranges over elements in block k, each of which appears in Tk with probability 1

2 . Note
that µσ is a probability density function, so

∑
x µσ(x) = 1.

Our goal now is to show that when Tk is uniform in Tk, the distribution of f(·) is
tightly concentrated around its mean of 1

2 , and, in particular, away from zero. We will
employ a Chernoff bound: we have f(Tk) =

∑
x∈Tk

µσ(x), and each x ∈ Tk is chosen
independently among two distinct values. Thus, f(Tk) is the sum of B/2 random
elements of µσ, each chosen independently.

The limitation in applying the Chernoff bound is the value of maxs µσ(x), which
bounds the variance of each sample. The set S⋆ now comes handy, since we can
restrict our attention to elements x with small µσ. Formally, consider f⋆(Tk) =∑

x∈Tk∩S⋆ µσ(x). Clearly f⋆(Tk) is a lower bound for f(Tk).

The mean of f⋆(·) is ETk∈Tk
[f⋆(Tk)] =

∑
x∈S⋆ PrTk∈Tk

[x ∈ Tk]·µσ(x) =
1
2µσ(S⋆) ≥

1
10 . When Tk is uniform, f⋆(Tk) is the sum of B/2 independent random variables,
each of which is bounded by 1

/
B1−7γ . By the Chernoff bound,

Pr
Tk∈Tk

[f⋆(Tk) <
1
20] < e−B1−7γ

· 1

10
· 1
8 ≤ e−B1−7γ/80 (6.9)

Now we are ready to switch back to distribution τ :

Claim 6.4. Prτ [f
⋆(Tk) <

1
20] ≤ 1

2 .

Proof. The main steps of our proof are:

1. As in the analysis of S⋆, we find a row Ŝk in which the function is mostly one
(i.e. typically Ŝk 6⊂ Tk), and in which the entropy Hτ (Tk | Ŝk 6⊂ Tk) is large.

2. Prτ [f
⋆(Tk) < 1

20] is bounded by Prτ [f
⋆(Tk) < 1

20 ∧ Ŝk 6⊂ Tk], plus the

probability that Ŝk ⊂ Tk. The latter is small by point 1.
3. There are few distinct values of Tk for which f⋆(Tk) < 1

20 . If these values

had a large mass conditioned on Ŝk 6⊂ Tk, they would drag down the entropy
of Hτ (Tk | Ŝk 6⊂ Tk).

CELL-PROBE LOWER BOUNDS 17

To achieve step 1., we rewrite (6.4) and (6.6) as:

Pr
σ×τ

[Sk ⊂ Tk] = E
τ

[
Pr
σ
[Sk ⊂ Tk]

]
≤ 1

10

B
2 − H

σ×τ
(Tk | Sk, Sk 6⊂ Tk) = E

σ

[
B
2 −H

τ
(Tk | Sk 6⊂ Tk)

]
≤ 1

840 · B1−7γ

Applying two Markov bounds on Sk, we conclude that there exists some Ŝk such that:

Pr
τ
[Ŝk ⊂ Tk] ≤ 3

10 ; H
τ
(Tk | Ŝk 6⊂ Tk) ≥ B

2
− 1

280 ·B1−7γ (6.10)

Define τ̂ to be the distribution τ conditioned on Ŝk 6⊂ Tk.

For step 2., we can write:

Pr
τ

[
f⋆(Tk) <

1
20

]
= Pr

τ

[
f⋆(Tk) <

1
20 ∧ Ŝk 6⊂ Tk

]
+ Pr

τ

[
f⋆(Tk) <

1
20 ∧ Ŝk ⊂ Tk

]

≤ Pr
τ

[
f⋆(Tk) <

1
20 | Ŝk 6⊂ Tk

]
+ Pr

τ

[
Ŝk ⊂ Tk

]
≤ Pr

τ̂

[
f⋆(Tk) <

1
20

]
+ 3

10

We now wish to conclude by proving that Prτ̂ [f
⋆(Tk) <

1
20] ≤ 1

5 . We apply the
relation (6.8) to the variable Tk distributed according to τ̂ , with the event E chosen
to be f⋆(Tk) <

1
20 :

Hτ̂ (Tk) ≤ Pr
τ̂

[
f⋆(Tk) <

1
20

]
·Hτ̂

(
Tk | f⋆(Tk) <

1
20

)
+ Pr

τ̂

[
f⋆(Tk) ≥ 1

20

]
· B

2 + 1

By (6.9), there are at most 2B/2/eB
1−7γ/80 distinct choices of Tk such that f⋆(Tk) <

1
20 . Thus, Hτ̂ (Tk | f⋆(Tk) <

1
20) ≤ B

2 −B1−7γ · log
2
e

80 .

If Prτ̂ [f
⋆(Tk) <

1
20] ≥ 1

5 , then Hτ̂ (Tk) ≤ B
2 −B1−7γ · log2

e
400 +1 < B

2 −B1−7γ/280
for sufficiently large B. But this contradicts (6.10).

We have just shown that Prσ,τ [Sk ∩ Tk 6= ∅] = Eτ [f(Tk)] ≥ Eτ [f
⋆(Tk)] ≥ 1

20 · 1
2 =

1
40 . This contradicts (6.4). Thus, at least one of (6.4), (6.5), and (6.6) must be false.

This concludes the proof of Lemma 6.2 and of Theorem 6.1.

7. Conclusion. We have shown that many important lower bounds can be de-
rived from a single core problem, through a series of clean, conceptual reductions. It
is unclear what the ultimate value of this discovery will be, but the following thoughts
come to mind:

1. We are gaining understanding into the structure of the problems at hand.

2. We simplify several known proofs. For example, we sidestep the technical
complications in the previous lower bounds for 2D range counting [40] and exact
nearest neighbor [11].

3. We can now teach data-structure lower bounds to a broad audience. Even
“simple” lower bounds are seldom light on technical details. By putting all the work
in one bound, we can teach many interesting results through clean reductions. (If we
are satisfied with deterministic bounds, the lower bound for set disjointness from [36]
is a one-paragraph counting argument.)

4. Our results hint at a certain degree of redundancy in our work so far. In doing
so, they also mark the borders of our understanding particularly well, and challenge
us to discover surprising new paths that go far outside these borders.

18 MIHAI PATRASCU

Acknowledgements. The author would like to thank Yakov Nekrich and Marek
Karpinsky for useful discussions on the range reporting problem, and Alex Andoni
and T.S. Jayram for useful discussions on the randomized LSD lower bound.

REFERENCES

[1] Miklós Ajtai, A lower bound for finding predecessors in Yao’s cell probe model, Combinator-
ica, 8 (1988), pp. 235–247.

[2] Stephen Alstrup, Amir M. Ben-Amram, and Theis Rauhe, Worst-case and amortised op-
timality in union-find, in Proc. 31st ACM Symposium on Theory of Computing (STOC),
1999, pp. 499–506.

[3] Stephen Alstrup, Gerth S. Brodal, Inge Li Gørtz, and Theis Rauhe, Time and space effi-
cient multi-method dispatching, in Proc. 8th Scandinavian Workshop on Algorithm Theory
(SWAT), 2002, pp. 20–29.

[4] Stephen Alstrup, Gerth S. Brodal, and Theis Rauhe, New data structures for orthogonal
range searching, in Proc. 41st IEEE Symposium on Foundations of Computer Science
(FOCS), 2000, pp. 198–207.

[5] Stephen Alstrup, Thore Husfeldt, and Theis Rauhe, Marked ancestor problems, in Proc.
39th IEEE Symposium on Foundations of Computer Science (FOCS), 1998, pp. 534–543.

[6] , A cell probe lower bound for dynamic nearest-neighbor searching, in Proc. 12th
ACM/SIAM Symposium on Discrete Algorithms (SODA), 2001, pp. 779–780.

[7] Alexandr Andoni, Dorian Croitoru, and Mihai Pǎtraşcu, Hardness of nearest-neighbor
search under l-infinity, in Proc. 49th IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), 2008.

[8] Alexandr Andoni, Piotr Indyk, and Mihai Pǎtraşcu, On the optimality of the dimen-
sionality reduction method, in Proc. 47th IEEE Symposium on Foundations of Computer
Science (FOCS), 2006, pp. 449–458.

[9] David Applegate, Gruia Calinescu, David S. Johnson, Howard J. Karloff, Katrina

Ligett, and Jia Wang, Compressing rectilinear pictures and minimizing access con-
trol lists, in Proc. 18th ACM/SIAM Symposium on Discrete Algorithms (SODA), 2007,
pp. 1066–1075.

[10] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar, An information statistics
approach to data stream and communication complexity, Journal of Computer and System
Sciences, 68 (2004), pp. 702–732. See also FOCS’02.

[11] Omer Barkol and Yuval Rabani, Tighter lower bounds for nearest neighbor search and
related problems in the cell probe model, Journal of Computer and System Sciences, 64
(2002), pp. 873–896. See also STOC’00.

[12] Paul Beame and Faith E. Fich, Optimal bounds for the predecessor problem and related prob-
lems, Journal of Computer and System Sciences, 65 (2002), pp. 38–72. See also STOC’99.

[13] Amir M. Ben-Amram and Zvi Galil, A generalization of a lower bound technique due to
Fredman and Saks, Algorithmica, 30 (2001), pp. 34–66. See also FOCS’91.

[14] Allan Borodin, Rafail Ostrovsky, and Yuval Rabani, Lower bounds for high dimensional
nearest neighbor search and related problems, in Proc. 31st ACM Symposium on Theory
of Computing (STOC), 1999, pp. 312–321.

[15] Amit Chakrabarti, Bernard Chazelle, Benjamin Gum, and Alexey Lvov, A lower bound
on the complexity of approximate nearest-neighbor searching on the hamming cube, in
Proc. 31st ACM Symposium on Theory of Computing (STOC), 1999, pp. 305–311.

[16] Amit Chakrabarti and Oded Regev, An optimal randomised cell probe lower bound for
approximate nearest neighbour searching, in Proc. 45th IEEE Symposium on Foundations
of Computer Science (FOCS), 2004, pp. 473–482.

[17] Moses Charikar, Piotr Indyk, and Rina Panigrahy, New algorithms for subset query,
partial match, orthogonal range searching, and related problems, in Proc. 29th International
Colloquium on Automata, Languages and Programming (ICALP), 2002, pp. 451–462.

[18] Bernard Chazelle, A functional approach to data structures and its use in multidimensional
searching, SIAM Journal on Computing, 17 (1988), pp. 427–462. See also FOCS’85.

[19] Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein, Dictionary matching and index-
ing with errors and don’t cares, in Proc. 36th ACM Symposium on Theory of Computing
(STOC), 2004, pp. 91–100.

[20] Mark de Berg, Marc J. van Kreveld, and Jack Snoeyink, Two- and three-dimensional
point location in rectangular subdivisions, Journal of Algorithms, 18 (1995), pp. 256–277.
See also SWAT’92.

CELL-PROBE LOWER BOUNDS 19

[21] David Eppstein and S. Muthukrishnan, Internet packet filter management and rectangle
geometry, in Proc. 12th ACM/SIAM Symposium on Discrete Algorithms (SODA), 2001,
pp. 827–835.

[22] Anja Feldmann and S. Muthukrishnan, Tradeoffs for packet classification, in Proc. IEEE
INFOCOM, 2000, pp. 1193–1202.

[23] Paolo Ferragina and S. Muthukrishnan, Efficient dynamic method-lookup for object ori-
ented languages, in Proc. 4th European Symposium on Algorithms (ESA), 1996, pp. 107–
120.

[24] Paolo Ferragina, S. Muthukrishnan, and Mark de Berg, Multi-method dispatching: A
geometric approach with applications to string matching problems, in Proc. 31st ACM
Symposium on Theory of Computing (STOC), 1999, pp. 483–491.

[25] Michael L. Fredman and Monika Rauch Henzinger, Lower bounds for fully dynamic con-
nectivity problems in graphs, Algorithmica, 22 (1998), pp. 351–362.

[26] Michael L. Fredman and Michael E. Saks, The cell probe complexity of dynamic data
structures, in Proc. 21st ACM Symposium on Theory of Computing (STOC), 1989, pp. 345–
354.

[27] Anna Gál and Peter Bro Miltersen, The cell probe complexity of succinct data structures, in
Proc. 30th International Colloquium on Automata, Languages and Programming (ICALP),
2003, pp. 332–344.

[28] Thore Husfeldt and Theis Rauhe, New lower bound techniques for dynamic partial sums
and related problems, SIAM Journal on Computing, 32 (2003), pp. 736–753. See also
ICALP’98.

[29] Thore Husfeldt, Theis Rauhe, and Søren Skyum, Lower bounds for dynamic transitive
closure, planar point location, and parentheses matching, in Proc. 5th Scandinavian Work-
shop on Algorithm Theory (SWAT), 1996, pp. 198–211.

[30] Piotr Indyk, On approximate nearest neighbors under ℓ∞ norm, Journal of Computer and
System Sciences, 63 (2001), pp. 627–638. See also FOCS’98.

[31] T. S. Jayram, Subhash Khot, Ravi Kumar, and Yuval Rabani, Cell-probe lower bounds for
the partial match problem, Journal of Computer and System Sciences, 69 (2004), pp. 435–
447. See also STOC’03.

[32] Bala Kalyanasundaram and Georg Schnitger, The probabilistic communication complexity
of set intersection, SIAM Journal on Discrete Mathematics, 5 (1992), pp. 545–557. See
also Structures’87.

[33] Ding Liu, A strong lower bound for approximate nearest neighbor searching, Information Pro-
cessing Letters, 92 (2004), pp. 23–29.

[34] Peter Bro Miltersen, The bit probe complexity measure revisited, in Proc. 10th Symposium
on Theoretical Aspects of Computer Science (STACS), 1993, pp. 662–671.

[35] , Lower bounds for Union-Split-Find related problems on random access machines, in
Proc. 26th ACM Symposium on Theory of Computing (STOC), 1994, pp. 625–634.

[36] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson, On data struc-
tures and asymmetric communication complexity, Journal of Computer and System Sci-
ences, 57 (1998), pp. 37–49. See also STOC’95.

[37] Peter Bro Miltersen, Sairam Subramanian, Jeffrey S. Vitter, and Roberto Tamas-

sia, Complexity models for incremental computation, Theoretical Computer Science, 130
(1994), pp. 203–236. See also STACS’93.

[38] S. Muthukrishnan and Martin Müller, Time and space efficient method-lookup for object-
oriented programs, in Proc. 7th ACM/SIAM Symposium on Discrete Algorithms (SODA),
1996, pp. 42–51.

[39] Yakov Nekrich, A data structure for multi-dimensional range reporting, in Proc. 23rd ACM
Symposium on Computational Geometry (SoCG), 2007, pp. 344–353.

[40] Mihai Pǎtraşcu, Lower bounds for 2-dimensional range counting, in Proc. 39th ACM Sym-
posium on Theory of Computing (STOC), 2007, pp. 40–46.

[41] Mihai Pǎtraşcu and Erik D. Demaine, Logarithmic lower bounds in the cell-probe model,
SIAM Journal on Computing, 35 (2006), pp. 932–963. See also SODA’04 and STOC’04.

[42] Mihai Pǎtraşcu and Corina Tarniţǎ, On dynamic bit-probe complexity, Theoretical Com-
puter Science, 380 (2007), pp. 127–142. See also ICALP’05.

[43] Mihai Pǎtraşcu and Mikkel Thorup, Higher lower bounds for near-neighbor and further rich
problems, in Proc. 47th IEEE Symposium on Foundations of Computer Science (FOCS),
2006, pp. 646–654.

[44] , Time-space trade-offs for predecessor search, in Proc. 38th ACM Symposium on Theory
of Computing (STOC), 2006, pp. 232–240.

[45] , Randomization does not help searching predecessors, in Proc. 18th ACM/SIAM Sym-

20 MIHAI PATRASCU

posium on Discrete Algorithms (SODA), 2007, pp. 555–564.
[46] Alexander A. Razborov, On the distributional complexity of disjointness, Theoretical Com-

puter Science, 106 (1992), pp. 385–390.
[47] Ronald L. Rivest, Partial-match retrieval algorithms, SIAM Journal on Computing, 5 (1976),

pp. 19–50. See also FOCS’74 and Stanford PhD thesis.
[48] Pranab Sen and Srinivasan Venkatesh, Lower bounds for predecessor searching in the cell

probe model, Journal of Computer and System Sciences, 74 (2008), pp. 364–385. See also
ICALP’01, CCC’03.

[49] Mikkel Thorup, Space efficient dynamic stabbing with fast queries, in Proc. 35th ACM Sym-
posium on Theory of Computing (STOC), 2003, pp. 649–658.

[50] Peter van Emde Boas, R. Kaas, and E. Zijlstra, Design and implementation of an efficient
priority queue, Mathematical Systems Theory, 10 (1977), pp. 99–127. Conference version
by van Emde Boas alone in FOCS’75.

Appendix A. Catalog of Problems.

Range Queries. Given a set of n queries in d-dimensional space (say, [n]d), we
can ask two classic queries: report the points inside a range [a1, b1] × · · · × [ad, bd],
or simply count the number of points in the range. These queries lie at the heart of
database analysis, and any course on SQL is bound to start with an example of the
form: “find employees born between 1980 and 1989, whose salary is between $80,000
and $90,000.”

Note that if there are k points inside the range, reporting them necessarily takes
time Ω(k). To avoid this technicality, in this paper we only consider the decision
version of reporting: is there a point inside the range?

Stabbing queries. A dual of range queries is stabbing: preprocess a set of n boxes
of the form [a1, b1]×· · ·× [ad, bd], such that we can quickly find the box(es) containing
a query point.

Stabbing is a very important form of classification queries. For instance, network
routers have rules applying to packets coming from some IP range, and heading to
another IP range. A query is needed for every packet passing through the router,
making this a critical problem. This application has motivated several theoretically-
minded papers [49, 22, 9, 21], as well as a significant body of practically-minded ones.

Another important application of stabbing is method dispatching, in experimen-
tal object oriented languages that (unlike, say, Java and C++) allow dynamic dis-
patching on more arguments than the class. This application has motivated several
theoretically-minded papers [38, 3, 23, 24], as well as a number of practically-minded
ones.

Our lower bounds for 2D stabbing are the first for this problem, and in fact,
match the upper bound of [18].

It is easy to see that stabbing in d dimensions reduces to range reporting in 2d
dimensions, since boxes can be expressed as 2d-dimensional points.

The decision version of stabbing in 2D also reduces to (weighted) range counting
in 2D by the following neat trick. We replace a rectangle [a1, b1]× [a2, b2] by 4 points:
(a1, b1) and (a2, b2) with weight +1, and (a1, b2) and (a2, b1) with weight −1. To test
whether (q1, q2) stabs a rectangle, query the sum in the range [0, q1] × [0, q2]. If the
query lies inside a rectangle, the lower-left corner contributes +1 to count. If the
query point is outside, the corners cancel out.

With a bit of care, the reduction can be made to work for unweighted range
counting, by ensuring the query never stabs more than one rectangle. Then, it suffices
to count points mod 2.

Partial match. The problem is to preprocess a data base of n strings in {0, 1}d.
Then, a query string from the alphabet {0, 1, ⋆}d is given, and we must determine

CELL-PROBE LOWER BOUNDS 21

whether any string in the database matches this pattern (where ⋆ can match anything).
This is equivalent to a problem in which the query is in {0, 1}d, and we must test
whether any string in the database is dominated by the query (where a dominates b
if on every coordinate ai ≥ bi).

The first upper bounds for partial match was obtained by Rivest [47], who showed
that the trivial 2d space can be slightly improved when d ≤ 2 lgn. Charikar, Indyk,
and Panigrahy [17] showed that query time O(n/2τ) can be achieved with space

n · 2O(d lg2 d/
√

τ/ lgn). It is generally conjectured that the problem follows from the
curse of dimensionality, in the following sense: there is no constant ε > 0, such that
query time O(n1−ε) can be supported with space poly(m) · 2O(d1−ε).

If the problem is parameterized by the number of stars k, it is trivial to achieve
space O(n) and query time O(2k) by exploiting the binary alphabet. In the more in-
teresting case when the alphabet can be large, Cole, Gottlieb, Lewenstein [19] achieve
space O(n lgk n) and time O(lgk n · lg lgn) for any constant k.

Partial match can be reduced [30] to exact near neighbor in ℓ1 or ℓ2, and to
3-approximate near neighbor in ℓ∞. This is done by applying the following transfor-
mation to each coordinate of the query: 0 7→ − 1

2 ; ⋆ 7→ 1
2 ; 1 7→ 3

2 .
Marked ancestor. In this problem, defined by Alstrup, Husfeldt, and Rauhe [5],

we are to maintain a complete tree of degree b and depth d, in which vertices have
a mark bit. The updates may mark or unmark a vertex. The query is given a leaf
v, and must determine whether the path from the root to v contains any marked
node. In our reduction, we work with the version of the problem in which edges are
labeled, instead of nodes. However, note that the problems are identical, because we
can attach the label of an edge to the lower endpoint.

Marked ancestor reduces to dynamic stabbing in 1D, by associating each vertex
with an interval extending from the leftmost to the rightmost leaf in its subtree.
Marking a node adds the interval to the set, and unmarking removes it. Then, an
ancestor of a leaf is marked iff the leaf stabs an interval currently in the set.

The decremental version, in which we start with a fully marked tree and may only
unmark, can be reduced to union-find. Each time a node is unmarked, we union it
with its parent. Then, a root-to-leaf path contains no marked nodes iff the root and
the leaf are in the same set.

The lower bounds of this paper work for both the decremental and incremental
variants.

