
Succincter

Mihai Pǎtraşcu∗

MIT

Abstract

We can represent an array of n values from {0, 1, 2} us-
ing dn log2 3e bits (arithmetic coding), but then we cannot
retrieve a single element efficiently. Instead, we can encode
every block of t elements using dt log2 3e bits, and bound
the retrieval time by t. This gives a linear trade-off between
the redundancy of the representation and the query time.

In fact, this type of linear trade-off is ubiquitous in
known succinct data structures, and in data compression.
The folk wisdom is that if we want to waste one bit per block,
the encoding is so constrained that it cannot help the query
in any way. Thus, the only thing a query can do is to read
the entire block and unpack it.

We break this limitation and show how to use recursion
to improve redundancy. It turns out that if a block is en-
coded with two (!) bits of redundancy, we can decode a
single element, and answer many other interesting queries,
in time logarithmic in the block size.

Our technique allows us to revisit classic problems in
succinct data structures, and give surprising new upper
bounds. We also construct a locally-decodable version of
arithmetic coding.

1 Introduction

1.1 Motivation

Can we represent data close to the information-theoretic
minimum space, and still answer interesting queries effi-
ciently? Two basic examples can showcase the antagonistic
nature of compression and fast queries:

1. Suppose we want to store a bit-vector A[1 . . n], and
answer partial sums queries: RANK(k), which asks for∑k

i=1 A[i]; and SELECT(k), which asks for the index of
the k-th one in the array.

One the one hand, we must store some summaries
(e.g. partial sums at various points) to support fast queries.

∗Supported by a Google Research Award and by MADALGO - Center
for Massive Data Algorithmics, a Center of the Danish National Research
Foundation.

On the other hand, a summary is, almost by definition, re-
dundant. If we store a summary for every block of t bits,
it would appear that the query needs to spend time propor-
tional to t, because no guiding information is available in-
side the block.

2. Suppose we want to represent an array A[1 . . n] of
“trits” (A[i] ∈ {0, 1, 2}), supporting fast access to single
elements A[i]. We can encode the entire array as a number
in {0, . . . , 3n − 1}, but the information about every trit is
“smeared” around, and we cannot decode one trit without
decoding the whole array.

Generalizing trits to symbols drawn independently from
a distribution with entropy H , we can use arithmetic coding
to achieve n ·H + 1 bits on average, but information about
each element is spread around in the encoding. At the other
extreme, we can use Huffman coding to achieve n ·

(
H +

O(1)
)

bits1 of storage, which represents every element in
“its own” memory bits, using a prefix-free code.

The natural solutions to these problems gravitate towards
a linear trade-off between redundancy and query time. We
can store a summary for every block of t elements (in prob-
lem 1.), or we can “round up” the entropy of every block
of t symbols to an integral number of bits (in problem 2.).
In both cases, we are introducing redundancy of roughly n

t ,
and the query time will be proportional to t.

It is not hard to convince oneself that a linear trade-off is
the best possible. If we store t elements with at most O(1)
bits of redundancy, we need a super-efficient encoding that
is essentially fixed due the entropy constraint. Because the
encoding is so constrained, it would appear that it cannot be
useful beyond representing the data itself. Then, the only
way to work with such a super-efficient encoding is to de-
code it entirely, forcing query time proportional to t.

In this paper, we show that this intuition is false: we can
use recursion even inside a super-efficient encoding (if we
are allowed two bits of redundancy). Instead of decoding t
elements to get to one trit, local decoding can be supported
in logarithmic time. This extends to storing an entire aug-
mented tree succinctly, so we can solve RANK/SELECT in

1More precisely, Gallager [11] showed that the redundancy is at most
pmax + 0.086 bits per element, where pmax is the maximum probability
of an element.

1

logarithmic time. At every node of the tree, we can achieve
something nontrivial (store the sum of its subtree), while
introducing just 1

t bits of redundancy.

1.2 Succinct(er) Data Structures

In the field of succinct data structures, the goal is to con-
struct data structures that use space equal to the information
theoretic minimum plus some redundancy R, while sup-
porting various types of queries. The field has been expand-
ing at a remarkable rate in the past decade, exploring a wide
variety of problems and queries.

All of these structures, however, exhibit a linear trade-off
between redundancy and query time. Typically the results
are stated for constant query time, and achieve a fixed re-
dundancy close to linear, most often around O(n

lg n). At a
high enough level of abstraction, this comes from storing
ε lg n elements by an optimal encoding, and using a pre-
computed lookup table of size O(nε) to decode them in
constant time. It can be seen that for any constant query
time, the redundancy will not improve asymptotically (we
can only look at a constant number of blocks).

For many natural problems in the field, our technique can
achieve redundancy O(n/poly log n) with constant running
times, for any desired poly log. This suggests we have to re-
think our expectations and approaches when designing suc-
cinct data structures.

Surprisingly, our constructions are often easier than the
fixed-redundancy data structures they are replacing. It is
not uncommon for succinct data structures to group ele-
ments into chunks, group chucks in superchunks, and finally
group superchunks in megachunks. Each level has different
lookup tables, and different details in the implementation.
By having to do recursion for an unbounded number of lev-
els, we are forced to discover a clean and uniform way to
do it.

The following are a few results that follow from our tech-
nique. We believe however that the main value of this paper
is to demonstrate that redundancy can be improved through
recursion. These particular results are illustrations.

Locally decodable arithmetic codes. Our toy problem of
storing ternary values can be generalized to representing an
array of n elements with zeroth-order entropy H . Matching
zeroth-order entropy is needed at the bottom of almost any
technique attempting to match higher order entropy (includ-
ing, for example, LZ77, the Burrows-Wheeler transform,
JPEG, and MP3). Arithmetic coding can have a notable
advantage over Huffman coding at low rates. For exam-
ple, Shannon estimated the entropy of English to be 1.3
bits/letter, a rate at which a constant redundancy per letter
can increase the encoding size by a significant percentage.

Mitzenmacher [17] uses arithmetic coding to compress
Bloom filters, an application that critically requires local
decodability. He asks for “a compression scheme that also
provided random access,” noting that “achieving random
access, efficiency, and good compression simultaneously is
generally difficult.”

Our results give a version of locally-decodable arith-
metic codes, in which the trade-off between local access
time and redundancy is exponential:

Theorem 1. Consider an array of n elements from an al-
phabet Σ, and let fσ > 0 be the number of occurrences of
letter σ in the array. On a RAM with cells of Ω(lg n) bits,
we can represent the array with:

O(|Σ| lg n) +
∑
σ∈Σ

fσ log2

n

fσ
+ n

/(lg n

t

)t

+ Õ(n3/4)

bits of memory, supporting single-element access in O(t)
time.

Observe that
∑

fσ log2
n
fσ

is the empirical entropy of
the array. Thus, if the elements are generated by a memo-
ryless process with entropy H , the expected space is n ·H ,
plus redundancy decreasing exponentially in t, plus O(|Σ|)
words needed to represent the distribution.

Bit-vectors with RANK/ SELECT. The problem of sup-
porting RANK and SELECT on bit vectors is the bread-and-
butter of succinct data structures, finding use in most other
data structures (for representing trees, graphs, suffix trees
/ suffix arrays etc). Thus, the redundancy needed for this
problem has come under quite a bit of attention.

The seminal papers of Jacobson [15] from FOCS’89,
and Clark and Munro [5] from SODA’96 gave the first data
structures using space n + o(n) and constant query time.
These results were later improved [19, 21, 26].

In several applications, the set of ones is not dense in the
array. Thus, the problem was generalized to storing an array
A[1 . . u], containing n ones and u − n zeros. The optimal
space is B = lg

(
u
n

)
. Note that the problem can solve pre-

decessor search, by running SELECT(RANK(i)). From the
lower bounds of [25], it follows that constant running times
are only possible when the universe is not too much larger
than n, in particular, u = n ·poly log n. Thus, succinct data
structures have focused on this regime of parameters.

Pagh [23] achieved space B + O(n · (lg lg n)2

lg n) for this
sparse problem. Recently, Golynski et al. [13] achieved B+
O(n · lg lg u

lg2 n
). Finally, Golynski et al. [14] have achieved

space B + O(n · lg lg n·lg(u/n)
lg2 n

). That paper conjectures that
their redundancy is the best possible in constant time.

Here, we disprove their conjecture, and show that any
redundancy O(n/poly log n) is achievable.

Theorem 2. On a RAM with cells of Ω(lg u) bits, we can
represent an array A[1 . . u] with n ones and u − n zeros
using log2

(
u
n

)
+ u

(lg u /t)t + Õ(u3/4) bits of memory,
supporting RANK and SELECT queries in O(t) time.

The RANK/SELECT problem has also seen a lot of work
in lower bounds [10, 16, 14, 12], particularly bounds apply-
ing to “systematic encodings.” In this model, the bit vec-
tor is stored separately in plain form, and the succinct data
structure consists of a sublinear size index on the side. Un-
der this requirement, the best achievable redundancy with
query time t is n

t·poly lg n , i.e. the linear trade-off between
redundancy and query time is the best possible. Our re-
sults demonstrate the significant power of not storing data
in plain form.

Dictionaries. The dictionary problem is to store a set S
of n elements from a universe u, and answer membership
queries (is x ∈ S?) efficiently. Improving space has long
been a primary goal in the study of dictionaries. For ex-
ample, classic works put a lot of effort into analyzing linear
probing when the table is close to capacity (if a 1−ε fraction
of the cells are used, how does the “constant” running time
degrade with ε?). Another trend is to study weaker versions
of dictionaries, in the hope of saving space. Examples in-
clude the well known Bloom filters [1, 3, 22], and dictionar-
ies that support retrieval only, sometimes called “Bloomier
filters” [6, 4, 18].

The famous FKS dictionaries [8] were the first to solve
the dictionary problem in linear space, in the sense of using
O(n) cells of size lg u, while supporting queries in O(1)
time in the worst-case. Many data structures with simi-
lar performance have been suggested; in particular, cuckoo
hashing [24] uses (2 + ε)n memory words.

Brodnik and Munro [2] were the first to approach the en-
tropy bound, B = lg

(
u
n

)
. Their data structure used space

B+O(B/ lg lg lg u), and they suggested that getting signifi-
cantly more sublinear bounds might not be possible without
“a more powerful machine model.”

Pagh [23] gave the best known bound, achieving B +
O(n (lg lg n)2

lg n). In fact, his algorithm is reduction to the
RANK problem in vectors of size u = n · poly log n. Thus,
our results immediately imply dictionaries with redundancy
B + O(n/ lgc n), for any constant c.

Balanced parentheses. Our techniques imply results
identical to RANK/SELECT for the problem of storing a
string of 2n balanced parentheses, and answering two
queries:
MATCH(k) : find the parenthesis that matches the one on

position k.
ENCLOSING(k) : find the open parenthesis that encloses

most tightly the one on position k.

The optimal space is given by the Catalan number:
lg

(
1

n+1

(
2n
n

))
= 2n − O(lg n). Due to the natural asso-

ciation between tree structures and balanced parentheses,
this problem has been the crucial building block in most
succinct tree representations.

A generic transformation. In fact, all of our results are
shown via a generic transformation, converting a broad
class of data structures based on augmented search trees into
succinct data structures. It seems likely that such a broad re-
sult will have applications beyond the ones explored in this
paper.

The reader is referred to §4 for formal details about the
class of augmented search trees handled by our transforma-
tion.

1.3 Technical Discussion

Our goal is to improve redundancy through recursion, as
opposed to a linear scan. A naı̈ve view for how recursion
might work for the trits problem is the following. We take
w trits, which have entropy w log2 3, and “extract” some
M bits of information (e.g. M = bw log2 3c), which we
store. Then, the remaining δ = w log2 3 − M bits of in-
formation are passed to the second level of the recursion.
At the second level, we aggregate w blocks, for which we
must store wδ bits of information. We store some M ′ bits
(e.g. M ′ = bwδc), and pass δ′ = wδ−M ′ bits to the second
level, etc.

Since we are not willing to waste a bit of redundancy
per block, δ may not be an integer. Unfortunately, “passing
some fractional bits of information” is an intuition that does
not render itself to any obvious implementation.

Our solution for passing a fractional number of entropy
bits is elegant and, in hindsight, quite natural. We will ap-
proximate δ by log2 K, where K is an integer. This means
that passing δ bits of information is almost the same as pass-
ing a number in {0, . . . ,K − 1}. This approach introduces
redundancy (“unused entropy”) of log2 K − δ bits, a quan-
tity that depends on how close δ is to a logarithm of an inte-
ger. Note however, that if K is the best approximation, δ is
sandwiched between log2(K − 1) and log2 K. Thus, if we
choose δ large enough, there is always some K that gives a
good approximation.

At the second level of recursion, the problem will be to
represent an array of n/w values from {0, . . . ,K−1}. This
is just a generalization of the ternary problem to an arbitrary
universe, so the same ideas apply recursively.

It should be noted that the basic technique of storing a
certain number of bits and passing the “spill” to be stored
separately, is not new. It was originally introduced by
Munro et al. [20], and is the basis of the logarithmic im-
provement in redundancy of Golynski et al. [13] (see the

“informative encodings” of that paper). Unfortunately, the
techniques in these papers do no allow recursive composi-
tion, which is the key to our results.

In §2, we formally define the concept of spill-over repre-
sentations, and uses it to prove Theorem 4 for representing
an array of trits.

For less trivial applications, we need to compose
variable-length representations without losing entropy. For
example, we may want to store the sum of n numbers, and
then the numbers themselves, by an efficient encoding that
doesn’t store the sum redundantly. With the right view, we
can give a very usable lemma performing this composition;
see §3. Finally, §4 uses this lemma to derive our main re-
sults in succinct data structures.

2 Spill-Over Representations

Assume we want to represent a value from a set X . Any
representation in a sequence of memory bits will use at least
dlog2 |X |e bits in the worst case, so it will have a redun-
dancy of almost one bit if |X | is not close to a power of
two. To achieve a redundancy much smaller than one for
any value of |X |, we must first define a model of “represen-
tation” where this is possible.

A spill-over representation consists of M memory bits
(stored in our random-access memory), plus a number in
{0, . . . ,K − 1} that is stored by some outside entity. This
number is called the spill, and K is called the spill uni-
verse. Observe that the spill-over representation is ca-
pable of representing K · 2M distinct values. When us-
ing such a representation to store an element in X , with
|X | < K · 2M , we define the redundancy of the representa-
tion to be log2(K ·2M)−log2 |X | = M+log2 K−log2 |X |.
We can think of this as entropy wasted by the representation.

When talking about algorithms that access a spill-over
representation, we assume the spill is provided by the out-
side entity for free, and the algorithm may access the mem-
ory bits by random access in the word memory.

As the most fundamental example of a spill-over repre-
sentation, we have the following:

Lemma 3. Consider an arbitrary set X , and fix r ≤ |X |.
We can represent an element of X by a spill-over encod-
ing with a spill universe K satisfying r ≤ K ≤ 2r, and
redundancy at most 2

r bits.

Proof. We must choose M and K carefully to achieve our
redundancy bound. Specifically, we choose M to satisfy
2M · r ≤ |X | ≤ 2M+1 · r. This fixes the spill universe to be
K =

⌈ |X |
2M

⌉
; observe that r < K ≤ 2r.

Any injective map of X into {0, 1}M × {0, . . . ,K−1}
defines a spill-over scheme. For example, we can divide an
index in X by 2M , store the remainder as M memory bits,

and pass the quotient as the spill. This is decodable by O(1)
arithmetic operations.

Our spill-over scheme is capable of representing 2M ·
K different values, as opposed to the |X | values required.
Thus, we have a redundancy of:

log2

(
K·2M

|X |

)
= log2

(
d |X|

2M e·2M

|X |

)
≤ log2

(
(|X|

2M +1)·2M

|X |

)
= log2

(
1 + 2M

|X |

)
≤ log2

(
1 + 1

r

)
≤ 2

r

2.1 Application: Storing Trits

We now show how to compose spill-over representations
from Lemma 3 recursively, yielding the following bounds
for our toy problem of storing n ternary values:

Theorem 4. On a RAM with w-bit cells, we can rep-
resent an array A[1 . . n] with A[i] ∈ {0, 1, 2} using
dn log2 3e + n

(w/t)t + poly log n bits of memory, while
supporting single-element accesses in O(t) time.

Proof. We first group elements into blocks of w. A block
takes values in a set of size 3w. We apply Lemma 3 with
some parameter r to be determined, and store each block
as M0 memory bits and a spill in a universe K0 ∈ [r, 2r].
Given the spill, we can read the O(w) memory bits and de-
code in constant time:
• first assemble the spill and the memory bits, multiply-

ing the spill by 2M0 , and adding them together.
• now extract the ith trit, dividing by 3i, and taking the

number modulo 3.

In practice, we want to avoid division by precomputing a
table with the multiplicative inverses of 3i. Note that we do
not need explicit pointers to each block, since the offset at
which the memory bits of a block are stored is equal to M0

times the block index.
Now let B = Θ(w

lg r), with B ≥ 2. At the second level
of recursion, we store the spills of B consecutive blocks.
There are KB

0 ≤ (2r)B = 2O(w) choices for the bottom-
level spills. Using Lemma 3, we can represent this data as
M1 ≤ log2(KB

0) = O(w) memory bits, and a spill in uni-
verse K1 ∈ [r, 2r]. Note that the assumption r ≤ |X | made
by the lemma is indeed satisfied, because |X | = KB

0 ≥ r2.
Since Lemma 3 is applied in identical conditions, K1 and
M1 will be identical for all level-1 blocks.

We can continue to apply this scheme recursively, storing
B spills in universe K1, generating a spill in universe K2 ∈
[r, 2r], etc. We do this for t levels, supporting access queries
in O(t) word probes. At the end of the recursion, we store
each of the final spills with dlog2 Kte bits, paying one bit of
redundancy per spill. Note that the size of the final scheme

is a telescoping sum of the sizes at intermediate levels of
recursion, i.e. the final redundancy is simply the sum of the
redundancies introduced at each step. This gives:

R = O

(
n/w

r
+

n/(Bw)
r

+ · · ·+ n/(Btw)
r

+
n

Btw

)
= O

(n

wr
+

n

w ·Bt

)
To balance the two terms (the redundancy of the spill-
over representations, versus the final redundancy of one
bits per spill), let r = Bt. By our choice of B, we have
B = O(w

lg r) = O(w
t lg B) = O(w/t

lg(w/t)). We thus have

r = Bt =
(

w
t

)Ω(t)
. Adjusting constants, we have a redun-

dancy of R ≤ n
(w/t)t , and query time O(t).

As a header of the data structure, we need to store the
values Ki and Mi for every level of the recursion, which are
needed to navigate the data structure. This adds O(lg2 n)
bits to the redundancy.

3 Composing Variable-Length Encodings

As we have just seen, spill-over encodings of fixed length
can be composed easily in a recursive fashion. However, in
less trivial applications, we need to compose variable-length
encodings without losing entropy. For an illustration of the
concept, assume we want to store an array A[1 . . n] of bits,
such that we can query both any element A[i], and the sum
of the entire array: X =

∑n
j=1 A[j]. If we choose the trivial

encoding as n bits, querying the sum will take linear time.
Conceptually, we must first store the sum, followed by

the array itself, represented by an efficient encoding that
uses knowledge of the sum (i.e. does not contain any re-
dundant information about the sum). This should not lose
entropy, since H(X) + H(A|X) = n.

The trouble is that the bound H(X) can only be achieved
in expectation, by some kind of arithmetic code. Further-
more, since H(A|X) is a function of X , the parameters of
a spill-over representation must also vary with X . Thus, we
need to piece together some kind of arithmetic code for X ,
with a variable-length spill-over representation of A whose
size depends on X . In the end, however, we should obtain
a fixed-length encoding, since the overall entropy is n bits.

The following lemma formalizes this intuition, in a state-
ment that has been crafted carefully for ease of use in appli-
cations:

Lemma 5. Assume we have to represent a variable x ∈
X , and a pair (yM , yK) ∈ {0, 1}M(x) ×

{
0, . . . ,K(x) −

1
}

. Let p(x) be a probability density function on X , and
K(·),M(·) be non-negative functions on X satisfying:

(∀)x ∈ X : log2

1
p(x)

+ M(x) + log2 K(x) ≤ H (1)

We can design a spill-over representation for x, yM and yK

with the following parameters:

• the spill universe is K? with K? ≤ 2r, and the memory
usage is M? bits.

• the redundancy is at most 4
r bits, i.e. M? + log2 K? ≤

H + 4
r .

• if the word size is w = Ω
(
lg |X |+lg r+lg maxK(x)

)
,

x and yK can be decoded with O(1) word probes. The
input bits yM can be read directly from memory, but
only after yK is retrieved.

• given a precomputed table of O(|X |) words that only
depends on the input functions K, M and p, decoding
x and yK takes constant time on the word RAM.

In §3.1, we describe the main details of the construction. To
make the construction implementable, we need to tweak the
distribution p(·) to avoid pathologically rare events; this is
detailed in §3.2. Finally, in §3.3 we describe the constant-
time decoding procedure, which relies on a cute algorithmic
trick. Note that a table of size O(|X |) is optimal, since the
lemma is instantiated for three arbitrary functions on X .

3.1 The Basic Construction

The design of our data structure is remarkably simple.
First, let Mmin = minx∈X M(x). We can decrease each
M(x) to Mmin, by encoding M(x)−Mmin bits of memory
into the spill. This has the technical effect that we may not
access yM prior to decoding yK , as stated in the lemma.
From now on, we assume yM always has Mmin bits, and
yK comes from a universe of K ′(x) = K(x) ·2M(x)−Mmin .

Now let Z be the set of possible pairs (x, yK).

Claim 6. We have log2 |Z|+ Mmin ≤ H .

Proof. We will show |Z| ≤ maxx∈X
K′(x)
p(x) . Since

log2
1

p(x) + log2 K ′(x) + Mmin ≤ H for all x, it follows
that log2 |Z|+ Mmin ≤ H .

Suppose for contradiction that |Z| > K′(x)
p(x) for all x ∈

X . Then, K ′(x) < |Z| · p(x), for all x. We have |Z| =∑
x∈X K ′(x) <

∑
x∈X

(
|Z| · p(x)

)
= |Z|, which gives a

contradiction.

Though the proof of this lemma looks like a technical-
ity, the intuition behind it is quite strong. The space of
encodings Z is partitioned into equivalence classes (x, ?),
giving each element x a fraction equal to K(x)/|Z|. But
log2

1
p(x) + log2 K(x) ≈ H − Mmin, so K(x)/p(x) is

roughly fixed. Thus, the fraction of space assigned to x is
roughly p(x), which is exactly how arithmetic coding oper-
ates (partitioning the real interval [0, 1]).

To complete the representation, we apply Lemma 3 to
the set Z. The resulting spill is passed along as the spill of

our data structure, and the memory bits are stored at the be-
ginning of the data structure, followed by the Mmin bits of
yM . The only redundancy introduced is by this application
of Lemma 3, i.e. 2

r bits.
For this construction to be efficiently decodable, we must

at the very least be able to manipulate a value of Z in con-
stant time, i.e. have a word size of w = Ω(lg |Z|). To
understand this requirement, we bound log2 |Z| ≤ H −
minM(x). For every x, we are free to increase M(x),
padding with zero bits, up to the maximum integer satis-
fying M(x) ≤ H − log2 K(x)− log2

1
p(x) . Thus, M(x) >

H − log2
K(x)
p(x) − 1. This implies the bound log2 |Z| ≤

log2
max K(x)
min p(x) + 1, i.e. |Z| = O

(max K(x)
min p(x)

)
. The statement

of the lemma already assumes w = Ω(lg maxK(x)), since
K(x) is the universe of the input spill. Thus, it remains to
ensure that w = Ω(lg 1

min p(x)).

3.2 Handling Rare Events

Unfortunately, some values x ∈ X can be arbitrar-
ily rare, and in fact, min p(x) is prohibitively small even
for natural applications. Remember our example of rep-
resenting an array A[1 . . n] of bits, together with its sum
x =

∑n
j=1 A[i]. We have min p(x) = p(n) = 2−n, which

means our algorithm wants to manipulate spills of Ω(n)
bits. A word size of Θ(n) bits is an unrealistic assumption.

Our strategy will be to tweak the distribution p(·)
slightly, increasing min p(x) towards 1

|X | , while not losing
too much entropy if we code according to this false distribu-
tion. (In information-theoretic terms, the Kullback-Leibler
divergence between the distributions must be small.)

Formally, we tweak the distribution by adding 1
|X|·r to

every probability, and then normalizing:

p′(x) =
(
p(x) +

1
|X| · r

)/(
1 +

1
r

)
Observe that

∑
x∈X p′(x) =

(∑
x∈X p(x) + |X| ·

1
|X|·r

)/(
1 + 1

r

)
= 1, so p′(·) indeed defines a distribution.

We now have min p′(x) ≥ 1
|X |·r

/
(1 + 1

r) ≥ 1
2r·|X | .

This requires the word size to be w = Ω(lg r + lg |X |), a
reasonable assumption made by the lemma. (In our example
with an n-bit array, |X | = n+1, so we require w = Ω(lg r+
lg n), instead of Ω(n) are before.)

Finally, we must show that the entropy bound in (1) is
not hurt too much if we code according to p′(·) instead of
p(·). Note that:

log2
1

p′(x) ≤ log2
1

p(x)/(1+1/r)

= log2
1

p(x) + log2

(
1 + 1

r

)
≤ log2

1
p(x) + 2

r

We can replace (1) with the following weaker guarantee:

M(x) + log2 K(x) + log2
1

p′(x)

≤ M(x) + log2 K(x) + log2
1

p(x) + 2
r ≤ H + 2

r

Combining with the construction from §3.1, which intro-
duced another 2

r bits of redundancy, we have lost 4
r bits of

redundancy overall.

3.3 Algorithmic Decoding

The heart of the decoding problem lies in recovering x
and yK based on an index in Z (output by Lemma 3). We
could do this with a lookup in a precomputed table of size
|Z|. Remember that we bounded |Z| = O(max K(x)

min p(x)) =
O(|X | · r ·max K(x)), which is not a strong enough bound
for some applications. We now show how to use a table of
size just O(|X |).

From the point of view of x, the space Z is partitioned
into pieces of cardinality K(x), and the query is to find the
piece containing a given codeword. We are free to design
the partition to make decoding efficient. First, we assign to
each x a contiguous interval of Z. Let zx be the left bound-
ary of the interval assigned to x. Decoding x is equivalent to
a predecessor search, locating the codeword among the val-
ues {z1, . . . , z|X |}. Decoding yK simply subtracts zx from
the codeword.

Unfortunately, the optimal bounds for predecessor
search [25] are superconstant in the worst case. To achieve
constant time, we must leverage our ability to choose the
encoding: we must arrange the intervals in an order that
makes predecessor search easy! While this sounds mys-
terious, it turns out that sorting the intervals by increasing
length suffices.

Claim 7. If intervals are sorted by length, i.e. zi+1 − zi ≥
zi − zi−1, predecessor search among the zi’s can be sup-
ported in constant time by a data structure of O(|X |) words.

Proof. Let f(τ) be the smallest interval of length τ ,
i.e. f(τ) = min{i | zi+1 − zi ≥ τ}. Consider the set
of zf(τ), for every τ a power of two. This set has O(w)
values, so we can store it in a fusion tree [9], and support
predecessor search in constant time.

Say we have located the query between zf(τ) and zf(2τ).
All intervals in this range have width between τ and 2τ ,
i.e. we have constant spread. In this case, predecessor
search can be solved easily in constant time [7]: break the
universe into buckets of size τ , which ensures at most one
value per bucket, and at most three buckets to inspect until
the predecessor is found.

4 Applications to Succinct Data Structures

4.1 Augmented Trees

As mentioned already, our results are based on a generic
transformation of augmented B-trees to succinct data struc-
tures. For some B ≥ 2, we define a class of data structures,
aB-trees, as follows:

• The data structure represents an array A[1 . . n] of el-
ements from some alphabet Σ, where n is a power of
B. The data structure is a B-ary tree with the elements
of A in the leaves.

• Every node is augmented with a value from some al-
phabet Φ. The value of a leaf is a function of its array
element, and the value of an internal node is a function
A of the values of its B children, and the size of the
subtree.

• The query algorithm examines the values of the root’s
children, decides which child to recurse to, examines
all values of that node’s children, recurses to one of
them, etc. When a leaf is examined, the algorithm out-
puts the query answer. We assume the query algorithm
spends constant time per node, if all values of the chil-
dren are given packed in a word.

For instance, the RANK/SELECT problem has a stan-
dard solution through an aB-tree. The alphabet Σ is simply
{0, 1}. Every internal node counts the sum of the leaves
in its subtree (equivalently, the sum of its children), so
Φ = {0, . . . , n}. The queries can be solved in constant
time per node if the values of all children are given packed
in a word. This uses very standard ideas from word-level
parallelism that we omit.

We aim to compress an aB-tree. A natural goal for the
space an aB-tree should use is given by N (n, ϕ), defined as
the number of instances of A[1 . . n] such that the root is la-
beled with ϕ ∈ Φ. Observe that we can write the following
recursion for N (B · n, ϕ):

N (B · n, ϕ) =
∑

ϕ1,...,ϕB :A(ϕ1,...,ϕB ,n)=ϕ

N (n, ϕ1) · · · N (n, ϕB)

Indeed, any instance for the first half is valid, as long as
its aggregate value combines properly with the aggregate of
the second half.

To develop intuition for N , observe that in the
RANK/SELECT example, N (n, ϕ) =

(
n
ϕ

)
, because ϕ was

just the number of ones in the array. Our recursion becomes
the following obvious identity:

N (B · n, ϕ) =
∑

ϕ1+···+ϕB=ϕ

N (n, ϕ1) · · · N (n, ϕB)

We will show the following general result:

Theorem 8. Let B = O(w
lg(n+|Φ|)). We can store an aB-

tree of size n with root value ϕ using log2N (n, ϕ)+2 bits.
The query time is O(logB n), assuming precomputed look-
up tables of O(|Σ|+ |Φ|B+1 +B · |Φ|B) words, which only
depend on n, B and the aB-tree algorithm.

Essentially, this result compresses the entire aB-tree with
only two 2 bits of redundancy. The additional space of the
look-up tables will not matter too much, since we construct
many data structures that share them.

Application to RANK/SELECT. Say we want to solve
RANK and SELECT in time O(t), for an array of size U with
N ones. As mentioned already, RANK and SELECT queries
can be supported by an aB-tree, so Theorem 8 applies. If
the aB-tree has size r, we have |Σ| = 2 and |Φ| = r + 1.

Choose B ≥ 2 such that B lg B = ε lg U
t , and let r =

Bt =
(

lg U
t

)Θ(t)
. We break the array into buckets of size r,

rounding up the size of the last bucket. Each bucket is stored
as a succinct aB-tree. Supporting RANK and SELECT inside
such an aB-tree requires time O(logB r) = O(t).

For each bucket, we store the the index in memory of the
bucket’s memory bits. Let N1, N2, . . . be number of ones in
each subarray. We store a partial sums vector for these val-
ues (to aid RANK), and a predecessor structure on the partial
sums (to aid SELECT). We have at most U/r values from
a universe of U , so the predecessor structure can support
query time O(t) using space U

r ·r
Ω(1/t) ≤ U

r ·B = U/Bt−1

words; see [25]. A query begins by examining these aux-
iliary structures, and then performing a query in the right
aB-tree.

The components of the memory consumption are:

1. a pointer to each bucket, and the partial sums for
the array N1, N2, These occupy O(U

r lg U) =
O

(
U lg U

Bt

)
bits.

2. the predecessor structure, occupying O(U/Bt−1)
words. This dominates item 1., and is U/BΘ(t) bits.

3. the succinct aB-trees, which occupy:∑
i

[
log2

(
r

Ni

)
+ 2

]
≤ log2

∏
i

(
r

Ni

)
+ O

(
U
r

)
≤ log2

(
U+r−1

N

)
+ O

(
U
r

)
≤ log2

(
U
N

)
+ O

(
r + U

r

)
bits. The redundancy can be rewritten as r + U

r =
O(max{U

r ,
√

U}).
4. the look-up tables, of size O((r + 1)B+1 + (r + 1)B ·

B) = 2O(tB lg B) = 2O(ε lg U) = UO(ε). Setting ε
a small enough constant, this contributes negligibly
to the redundancy. The only limitation is B ≥ 2,
so we cannot reduce the lookup tables below O(r3)
words. A redundancy of U

r + O(r3) can be written as
max{U

r , U3/4}.

To summarize, we obtain a redundancy of U/BΘ(t) +
O(U3/4). Readjusting constants in t, the redundancy is
U/

(
lg U

t

)t + O(U3/4).

Application to arithmetic coding. In this application, Σ
is the alphabet that we wish to encode. Intuitively, a letter
σ ∈ Σ has log2

n
fσ

bits of entropy. We round these values
up to multiples of 1

r , which only adds redundancy n
r over

all symbols.
We construct an aB-tree, in which internal nodes are aug-

mented to store the entropy of the symbols in their subtree.
If the aB-tree has size at most r, the total entropy is at most
O(r lg n), so |Φ| = O(lg r + lg lg n). The query algorithm
is trivial: it just traverses the tree down to the leaf that it
wants to retrieve, ignoring all nodes along the way.

By this definition, N (n, ϕ) is the number of n-letter se-
quences with total entropy exactly ϕ. But there are at most
2ϕ such sequences, by an immediate packing argument.
Thus, an aB-tree of size r having value ϕ at the root can
be compressed to space ϕ + 2. We now proceed as in the
previous example, breaking the array into n/r buckets of
size r, and performing the same calculations for the space
occupied by auxiliary structures.

4.2 Proof of Theorem 8

The proof is by induction on powers of B, aggregating B
spill-over representations for aB-trees of size n/B into one
for an aB-tree of size n. Let K(n, ϕ) be the spill universe
used for a data structure of size n and root label ϕ. Let
M(n, ϕ) be the memory bits used by such a representation.

Let r to be determined. We guarantee inductively that:

K(n, ϕ) ≤ 2r; (2)

M(n, ϕ) + log2 K(n, ϕ) ≤ log2N (n, ϕ) + 4
2n− 1

r
. (3)

Consider the base case, n = 1. The alphabet Σ is parti-
tioned into sets Σϕ of array elements for which the leaf is la-
beled with ϕ. We haveN (1, ϕ) = |Σϕ|. We use a spill-over
encoding as in Lemma 3 to store an index into Σϕ. The en-
coding will use a spill universe K(1, ϕ) ≤ 2r and M(1, ϕ)
bits of memory, such that M(1, ϕ) + log2 K(1, ϕ) ≤
log2 |Σϕ| + 2

r . We store a look-up table that determines
the array value based on the value ϕ and the index into Σϕ.
These look-up tables (for all ϕ) require space O(|Φ|+ |Σ|).

For the induction step, we break the array into B subar-
rays of size n/B. Let ϕ̃ = (ϕ1, . . . , ϕB) denote the values
at the root of each of the B subtrees. We recursively rep-
resent each subarray using M(n

B , ϕi) bits of memory and
spill universe K(n

B , ϕi).
Then, all memory bits from the children are concate-

nated into a bit vector of size M ′ =
∑

i M(n
B , ϕi), and the

spills are combined into a superspill from the universe K ′ =

∏
i K(n

B , ϕi). Since lg K ′ ≤ lg
(
(2r)B

)
= O(B lg r), we

require that B = O(w/ lg r), so that this superspill fits in
a constant number of words. For every possible ϕ̃, we pre-
compute the partial sums of M(n

B , ϕi), so that we know
where the ith child begins in constant time. We also pre-
compute the constant needed to extract the ith spill from
the superspill. These tables require O(B · |Φ|B) words.

Summing the recursive guarantee (3) of every child, we
have:

log2 K ′ + M ′ ≤ log2

∏
i

N
(n

B
,ϕi

)
+ 4 · 2n−B

r

Let ϕ = A(ϕ1, . . . , ϕi, n) be the value at the root. Let p(·)
be the distribution of ϕ̃ given this value of ϕ, that is:

p(ϕ̃) =
∏

i

N
(n

B
,ϕi

) /
N (n, ϕ)

But then:

log2 K ′ + M ′ ≤ log2N (n, ϕ)− log2

1
p(ϕ̃)

+ 4 · 2n−B

r

This satisfies the entropy condition (1) of Lemma 5. We ap-
ply the lemma to represent ϕ̃, the superspill, and the mem-
ory bits of the subarrays. We obtain a representation with
spill universe K? ≤ 2r and M? memory bits, such that:

M? + log2 K? ≤ log2N (n, ϕ) + 4
2n−B

r
+

4
r

≤ log2N (n, ϕ) + 4 · 2n− 1
r

The precomputed table required by Lemma 5 is linear in
the support of p(·), which is |Φ|B . Such a table is stored
for every distinct ϕ, giving space |Φ|B+1. We must have
B = O(w

lg |Φ|).
This completes the induction step. To prove Theorem 8,

we construct the above representation for the required size
n, using the value r = 1

8n . Note that this requires B ≤
O

(
w

lg max{|Φ|,r}
)
.

At the root, the final spill is stored explicitly at the be-
ginning of the data structure. Thus, the space is:

dlog2 K(n, ϕ)e+ M(n, ϕ) ≤ log2N (n, ϕ) + 2

The queries are easy to support. First, we read the final
spill at the root. Then, we decode ϕ̃ and the superspill from
the representation of Lemma 5. The aB-tree query algo-
rithm decides which child to follow recursively based on ϕ̃.
We extract the spill of that child from the superspill, and
recurse. The constants needed to extract the spill and the
position in memory of the child were stored in look-up ta-
bles.

5 Open Problems
It is an important open problem to establish whether our

exponential trade-off between redundancy and query time
is optimal. We conjecture that it is. Unfortunately, prov-
ing this seems beyond the scope of current techniques. The
only lower bound for succinct data structures (without the
systematic assumption) is via a rather simple idea of Gál
and Miltersen [10], which requires that the data structure
have an intrinsic error-correcting property. Such a property
is not characteristic of our problems.

Even if the exponential trade-off cannot be improved, it
would be interesting to establish where this trade-off “bot-
toms.” Due to our need for large precomputed tables, the
smallest redundancy that we can achieve is some O(nα)
bits, where α is a constant close to one (for instance, α =
3/4 for RANK/SELECT). Can this redundancy be reduced
to, say, O(

√
n), or hopefully even O(nε)?

Acknowledgments. This work was initiated while the au-
thor was visiting the Max Planck Institut für Informatik,
Saarbrücken, in June 2005. I wish to thank Seth Pettie for
telling me about the problem on that occasion, and for initial
discussions. I also wish to thank Rasmus Pagh and Rajeev
Raman for helping me understand previous work.

References
[1] Burton H. Bloom. Space/time trade-offs in hash coding with

allowable errors. Communications of the ACM, 13(7):422–
426, 1970.

[2] Andrej Brodnik and J. Ian Munro. Membership in constant
time and almost-minimum space. SIAM Journal on Comput-
ing, 28(5):1627–1640, 1999. See also ESA’94.

[3] Larry Carter, Robert Floyd, John Gill, George Markowsky,
and Mark Wegman. Exact and approximate membership
testers. In Proc. 10th ACM Symposium on Theory of Com-
puting (STOC), pages 59–65, 1978.

[4] Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and Ayellet
Tal. The Bloomier filter: an efficient data structure for static
support lookup tables. In Proc. 15th ACM/SIAM Symposium
on Discrete Algorithms (SODA), pages 30–39, 2004.

[5] David R. Clark and J. Ian Munro. Efficient suffix trees on
secondary storage. In Proc. 7th ACM/SIAM Symposium on
Discrete Algorithms (SODA), pages 383–391, 1996.

[6] Erik D. Demaine, Friedhelm Meyer auf der Heide, Ras-
mus Pagh, and Mihai Pǎtraşcu. De dictionariis dynamicis
pauco spatio utentibus (lat. on dynamic dictionaries using lit-
tle space). In Proc. Latin American Theoretical Informatics
(LATIN), pages 349–361, 2006.

[7] Erik D. Demaine, Thouis Jones, and Mihai Pǎtraşcu. In-
terpolation search for non-independent data. In Proc. 15th
ACM/SIAM Symposium on Discrete Algorithms (SODA),
pages 522–523, 2004.

[8] Michael L. Fredman, János Komlós, and Endre Szemerédi.
Storing a sparse table with 0(1) worst case access time. Jour-
nal of the ACM, 31(3):538–544, 1984. See also FOCS’82.

[9] Michael L. Fredman and Dan E. Willard. Surpassing the
information theoretic bound with fusion trees. Journal of
Computer and System Sciences, 47(3):424–436, 1993. See
also STOC’90.

[10] Anna Gál and Peter Bro Miltersen. The cell probe com-
plexity of succinct data structures. In Proc. 30th Interna-
tional Colloquium on Automata, Languages and Program-
ming (ICALP), pages 332–344, 2003.

[11] Robert G. Gallager. Variations on a theme by huffman. IEEE
Transactions on Information Theory, 24(6):668–674, 1978.

[12] Alexander Golynski. Optimal lower bounds for rank and
select indexes. Theoretical Computer Science, 387(3):348–
359, 2007. See also ICALP’06.

[13] Alexander Golynski, Roberto Grossi, Ankur Gupta, Rajeev
Raman, and S. Srinivasa Rao. On the size of succinct in-
dices. In Proc. 15th European Symposium on Algorithms
(ESA), pages 371–382, 2007.

[14] Alexander Golynski, Rajeev Raman, and S. Srinivasa Rao.
On the redundancy of succinct data structures. In Proc. 11th
Scandinavian Workshop on Algorithm Theory (SWAT), 2008.

[15] Guy Jacobson. Space-efficient static trees and graphs. In
Proc. 30th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 549–554, 1989.

[16] Peter Bro Miltersen. Lower bounds on the size of selection
and rank indexes. In Proc. 16th ACM/SIAM Symposium on
Discrete Algorithms (SODA), pages 11–12, 2005.

[17] Michael Mitzenmacher. Compressed bloom filters.
IEEE/ACM Transactions on Networking, 10(5):604–612,
2002. See also PODC’01.

[18] Christian Worm Mortensen, Rasmus Pagh, and Mihai
Pǎtraşcu. On dynamic range reporting in one dimension.
In Proc. 37th ACM Symposium on Theory of Computing
(STOC), pages 104–111, 2005.

[19] J. Ian Munro. Tables. In Proc. 16th Conference on the Foun-
dations of Software Technology and Theoretical Computer
Science (FSTTCS), pages 37–40, 1996.

[20] J. Ian Munro, Rajeev Raman, Venkatesh Raman, and
S. Srinivasa Rao. Succinct representations of permutations.
In Proc. 30th International Colloquium on Automata, Lan-
guages and Programming (ICALP), pages 345–356, 2003.

[21] J. Ian Munro, Venkatesh Raman, and S. Srinivasa Rao. Space
efficient suffix trees. Journal of Algorithms, 39(2):205–222,
2001. See also FSTTCS’98.

[22] Anna Pagh, Rasmus Pagh, and S. Srinivasa Rao. An optimal
Bloom filter replacement. In Proc. 16th ACM/SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 823–829, 2005.

[23] Rasmus Pagh. Low redundancy in static dictionaries
with constant query time. SIAM Journal on Computing,
31(2):353–363, 2001. See also ICALP’99.

[24] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing.
J. Algorithms, 51(2):122–144, 2004. See also ESA’01.

[25] Mihai Pǎtraşcu and Mikkel Thorup. Time-space trade-offs
for predecessor search. In Proc. 38th ACM Symposium on
Theory of Computing (STOC), pages 232–240, 2006.

[26] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao.
Succinct indexable dictionaries with applications to encod-
ing k-ary trees and multisets. In Proc. 13th ACM/SIAM Sym-
posium on Discrete Algorithms (SODA), 233–242, 2002.

