
Theory & Practice of
Linear Probing

Mihai Pătrașcu

WADS 2011

Good target for theory:
“10% of the code runs 90% of the time”

Understanding can only come from theory
(nonobvious&counterintuitive Maths)

Hashtables

Theory has had a great run.

Used in time-critical code
(e.g. in routers)

Linear Probing
• a b c • • • e • f

x

h(x)

• cache lines
• prefetcher

• interaction among close hashes
• positive feedback in growth of “runs”

Bottom line: linear probing = the ★ of the moment [mem-access + 5%!]

A bit of history

*Samuel, Amdahl, Boehme’54+ invented (IBM 701 asm)

Analysis 1: Assume ideal hashing…

Truly random function

h: U → *m+

x

uniform in [m],
independent of everything else

h(x)h

Cryptographic hash functions

Analysis

*Samuel, Amdahl, Boehme’54+ invented (IBM 701 asm)

[Knuth TR62] E[t] = O(1/ ε2) for load 1-ε
[Pagh2, Ružid STOC07] E[time]=O(1) for load<1.
[P., Thorup’11] E[t] = O(1/ ε2) for load 1-ε a la [PPR]

Following slides: sketch of *PPR’07+
• Assume load ⅓ : m ≥ 3n
• Theorem: E[time / operation] = O(1)

Linear Probing: Analysis

Cost of {query(x), insert(x), delete(x) }

≤ length of run containing h(x)

• f e • • a b c

run of length ℓ=3

x

Linear Probing: Analysis

Consider binary tree on top of array.

• f e • z a b c

Linear Probing: Analysis

level h

spans interval of M=2h

μ= M/3 keys in exp.

• f e • z a b c

Linear Probing: Analysis

Dangerous node: > 2μ keys in subtree

level h

M=2h

μ= M/3 keys in exp.

• f e • z a b c

Linear Probing: Analysis

Intuition If h(x) ∈ run of length [2h-1, 2h)
⇒ h(x) has dangerous ancestor on level ≈ h

level h

M=2h

μ= M/3 keys in exp.

• x e • z a b c

Almost, but not quite

x

Linear Probing: Analysis

Reality: long run could also come from sibling.

• x e • z a b c

Many keys
hash here

Linear Probing: Analysis

Assume: h(x) ∈ run [j..j+ ℓ+, 2h-1 ≤ ℓ < 2h

• run covered by 8–18 nodes on level h-4

Claim Not all these nodes can be safe.
Otherwise, first 4 subtrees:
• span ≥ 3M = 9μ table cells in the run
• have ≤ 8μ keys

j j+ ℓ
M=2h/16
μ= M/3 keys (in exp.)

Linear Probing: Analysis

E*Cost+ ≈ Σh 2
h · Pr[h(x) ∈ run of length 2h-1..2h]

≤ Σh 2
h · (18 · Pr[node on level h-4 dangerous])

≤ Σh 1/ μ

= Σh 2
-h = O(1) QED.

Pr[2 μ instead of μ] ?
Chernoff⇒ Pr ≪ 1/ μ2

The Holy Trinity of Hash Tables

Collision
-Chaining

Linear probing

Cuckoo
hashing

How to Implement Hash-Tables

You will need:

• a student

• coffee

• a hash function

Hashing ≈ (Integer) Hashing
• a x c • • • e • f

“universal”
hashing
[Wikipedia]

integer
hashing

nO(1)

Open: subpolynomial failure probability.

vectors
strings
…

How to Hash Integers

’50s, ’60s complicated functions

Make them “look hard”
… And assume they behave randomly

How to Hash Integers

’50s, ’60s complicated functions

*Carter & Wegman’79+ simple functions

“k-independence”

E.g. Let u=prime. Pick ak, …, a0 randomly

x ↦ [akx
k + ak-1xk-1 + … + a0] (mod u) mod m.

Hash of any k inputs is independent, uniform on [m].

How to Hash Integers

’50s, ’60s complicated functions

*Carter & Wegman’79+ simple functions

For most things, we want
independence k ≈ lg n …

How to Hash Integers

’50s, ’60s complicated functions

*Carter & Wegman’79+ simple functions

*Siegel’89+ a complicated function

Lower bound With space u1/c, any k-independent
function needs evaluation time ≥ min,k, c-

How to Hash Integers

’50s, ’60s complicated functions

*Carter & Wegman’79+ simple functions

*Siegel’89+ a complicated function

Upper bound With space u1/c, a u1/c²-independent hash
function with evaluation time cO(c)

Theory summary:
Space nε, independence nΩ(1) ≫ poly(log n),
O(1) evaluation. “Only issue” : non-explicit expander

How to Hash Integers

’50s, ’60s complicated functions

*Carter & Wegman’79+ simple functions

*Siegel’89+ a complicated function

[P. Thorup STOC11]
We don’t need no, complication

“Simple Tabulation” works for most things

How to Hash Integers

’50s, ’60s complicated functions

*Carter & Wegman’79+ simple functions

*Siegel’89+ a complicated function

[P. Thorup STOC11]
We don’t need no, complication

“Simple Tabulation” works for most things
T1, …, Tq = u1/q hashes picked randomly ∈[m]
x ↦ (x1, …, xq)
h(x) = T1[x1] ⊕ … ⊕ Tq[xq]

Chernoff bounds ⇒ chaining, linear probing

Simple Tabulation:
“Uniting Theory and Practice”

Cuckoo Hashing

Simple & fast enough for practice.

But with good mathematical guarantees:

But who needs Proofs, Anyway?

Maybe we’re fine with x ↦ (ax+b)mod p mod m

[Mitzenmacher, Vadhan’08+ It works for
any distribution with high min-entropy

But E[time/operation] =Θ(lg n) for the set
{ x, x+1, x+2, …, x+n } [P. Thorup ICALP11]

*SQL Slammer Worm’03+

Failure may not be obvious
(“Practice needs Theory”)

x ↦ (ax+b)mod p mod m on data set ,1, 2, …, n-

“ax+b”: with Pr=2-k, most operations
take time 2k

Simple tabulation

Theory needs Practice
(to understand our targets)

Simple tabulation:
q probes into tables of size u1/q

Would it be “better” to use

x ↦ [ax2 + bx + c](mod p) mod m ?

Probably not…

use u1/q = 256 ⇒ tables in cache
⇒ time close to a multiplication

Input = 32-bit 32-bit machine 64-bit machine

Universal (a*x)>>s 1.87ns 2.33ns

simple tabulation 4.98ns 4.61ns

Input = 64-bit

Universal (a*x)>>s 7.05ns 3.14ns

Simple tabulation 15.54ns 11.40ns

Sample Result

Lemma

Say m > n1+ε

Any bin has at most O(1) balls whp.

(with probability 1-n-γ , at most Cγ balls/bin)

Proof
Pr*t independent keys in same bin+ ≤ nt/mt-1

Sample Result

• i = 1st coordinate where not all keys are same

• α = least common char on position i

• S(α,i) = keys ∈S with α on position i

• pick some x ∈ S(α,i)

Observe: h(x) independent of S\ S(α,i)

• remove S(α,i) from S, repeat □

Lemmata Among any set S of keys, ∃ T ⊆ S of
|T| ≥ log2|S| keys that hash independently via

simple tabulation.

Sample Result

Theorem X = #balls in a “designated” bin
μ = E[X] = n/m γ = constant.

• α on position 1 is rare iff |S(α,1)| ≤n1-1/c² = n1-ε

• each S(α,1) is randomly shifted by T1[α]
& contributes at most O(1) to any bin ⇒ Chernoff

• remove all such S(α,1)’s from S, repeat.

• at most n1/c² non-rare values remaining.

• so at the end, |S| ≤ n1/c. Everything is rare. □

 neX)(2

])1(Pr[

32

