Theory & Practice of
Linear Probing

Mihai Patrascu
& atat

N — 4

WADS 2011

Hashtables

Good target for theory:
"10% of the code runs 9go% of the time”

Used in time-critical code
(e.g. in routers)

Understanding can only come from theory
/ (nonobvious&counterintuitive Maths)

Theory has had a great run.

Linear Probing

* interaction among close hashes S

* positive feedback in growth of “runs” ¢ cache lines
* prefetcher

Bottom line: linear probing = the of the moment [mem-access + 5%!]

A bit of history

[Samuel, Amdahl, Boehme’54] invented (IBM 701 asm)

Analysis 1: Assume ideal hashing...

h: U= [m]

N

Truly random function J

Cryptographic hash functions

>Chin

uniform in [m],
independent of everything else

Analysis

[Samuel, Amdahl, Boehme’54] invented (IBM 701 asm)

‘Knuth ™62] E[t] = O(1/ €?) for load 1-¢
Pagh?, Ruzi¢ >™°¢07] E[time]=0(1) for load<1.
P., Thorup'11] E[t] = O(1/ €2) for load 1-€ a la [PPR]

Following slides: sketch of [PPR’07]
e Assumeload % : m 2= 3n
* Theorem: E[time / operation] = O(1)

Linear Probing: Analysis

Cost of {query(x), insert(x), delete(x) }
< length of run containing h(x)

f e o o a b C
2 >

/ run of length €=3

Linear Probing: Analysis

Consider binary tree on top of array.

Linear Probing: Analysis

spans interval of M=2"

u= M/3 keys in exp.

Linear Probing: Analysis

Dangerous node: > 2 keys in subtree

Ilevel h

>

f e o Z a b C
< M=2"

u= M/3 keys in exp.

Linear Probing: Analysis

Almost, but not quite

Intuition If h(x) € run of length [21, 2h)

= h(x) has dangerous ancestor on level = h

N

u=M/3 keys in exp.

Linear Probing: Analysis

Reality: long run could also come from sibling.

Many keys
hash here

N
\4

Linear Probing: Analysis

Assume: h(x) € run [j.j+ €], 2"1< 8 < 2N
e run covered by 818 nodes on level h-4

JAVAVAVAVAVAVA

> j+ €

M= 2h/16
Claim Not all these nodes can be safe. *=M/3keys(inexp)
Otherwise, first 4 subtrees:
* span = 3M =9u table cells in the run

* have < 8u keys

Linear Probing: Analysis

E[Cost] = 2, 2" Pr[h(x) € run of length 2"1,.2"]
<2, 2" (18 - Pr[node on level h-4 dangerous])

< zh 1/ IJ. [Pr[2 pninstead of p] ?

Chernoff = Pr «< 1/ p?2
=2,2"=0(1) QED.

The Holy Trinity of Hash Tables

Linear probing

Ml

"3

e

\

Cuckoo
hashing

Collision
-Chaining é" ~1
Z27//d

How to Implement Hash-Tables

You will need:

* astudent

* coffee

* a hash function

Hashing = (Integer) Hashing

d

X

C

e

vectors oy e
strings [EEEDET o

integer
hashing

“Universal”
hashing
[Wikipedia]

Al

nO(L)

Open: subpolynomial failure probability.

How to Hash Integers

’50s, '60s complicated functions

Make them “look hard”
... And assume they behave randomly

How to Hash Integers

’50s, '60s complicated functions
[Carter & Wegman’79] simple functions

E.g. Let u=prime. Pick a,, ..., a; randomly
x - [axk+a_xk1+ .. +a,] (modu) mod m.

“k-independence”

[Hash of any k inputs is independent, uniform on [m].

How to Hash Integers

’50s, '60s complicated functions
[Carter & Wegman’79] simple functions

-
For most things, we want

independence k= lgn ...

-

How to Hash Integers

’50s, '60s complicated functions
Carter & Wegman’79] simple functions
Siegel’89] a complicated function

Lower bound With space u'/c, any k-independent
function needs evaluation time = min{k, c}

How to Hash Integers

’50s, '60s complicated functions
Carter & Wegman’79] simple functions

Siegel’89] a complicated function

Upper bound With space u'/c, a u/c-independent hash
function with evaluation time c©©

Theory summary:
Space n¢, independence n®1 >> poly(log n),
O(1) evaluation. “Only issue” : non-explicit expander

* 2

¢

A

How to Hash Integers

’50s, '60s complicated functions
Carter & Wegman’79] simple functions

Siegel’89] a complicated function
P. Thorup >T0¢11]
We don’t need no, complication
“Simple Tabulation” works for most things

How to Hash Integers

’50s, '60s complicated functions
Carter & Wegman’79] simple functions

Siegel’89] a complicated function
P. Thorup >T0¢11]
We don’t need no, complication

“Simple Tabulation” works for most things
17 oo gy S ul/a hashes picked randomly €[m] A
X > (X, vy Xg)

\h(x) =T,[x] @ ... D T,[x,]

‘T

Simple Tabulation:
“*Uniting Theory and Practice”

Simple & fast enough for practice.

But who needs Proofs, Anyway?

Maybe we’re fine with x = (ax+b)mod p mod m
AR 3 [Mitzenmacher, Vadhan’08] It works for
g - any distribution with high min-entropy
G ‘ But E[time/operation] =O(Ig n) for the set
(. {x,x+1, x+2, .., x+n} [P. Thorup 'CAtP11]

[SQL Slammer Worm’03]

Failure may not be obvious
(“Practice needs Theory”)

X — (ax+b)mod p mod m ondataset{], 2, ..., n}

1 S S S— — T
0.9 :
0.8 | 2 :
c
% 0.7 + /: “ax+b”: with Pr=2%, most operations
S 067 take time 2k
L o05¢t .
3 037 /[Simple tabulation] -
02 i .
01 F i _
0, ' .", iy L , , .
0 200 400 600 800 1000 1200 1400
average time per insert+delete cycle (nanoseconds)

Theory needs Practice
(to understand our targets)

Simple tabulation:

q probes into tables of size ul/a
[use ul/d = 256 = tables in cache]

= time close to a multiplication
Would it be “better” to use

x — [ax2 + bx + c](mod p) mod m ?

Proba bly not... Input = 32-bit 32-bit machine 64-bit machine
Universal (a*x)>>s | 1.87ns 2.33ns
simple tabulation 4.98ns 4.61ns
Input = 64-bit
Universal (a*x)>>s | 7.05ns 3.14ns
Simple tabulation 15.54ns 11.40ns

Sample Result

Lemma

Say m > nl*e

Any bin has at most O(1) balls whp.

(with probability 1-n?, at most C, balls/bin)
Proof

Pr[t independent keys in same bin] < nt/mt?

Sample Result
[Lemmata Among any set S of keys, 3T € S of]

|T| 2 log,|S| keys that hash independently via
simple tabulation.

i = 15t coordinate where not all keys are same
a = least common char on position i
S(s.i) = keys €S with a on position J

pick some x €S,
Observe: h(x) independent of S\ S, ;

remove S, from S, repeat O

Sample Result

Theorem X=#balls in a “designated” bin
uw=E[X] ="/_ vy =constant.
PIIX ¢ (1+68)u] <e™ 2 1 n7

* aon position 1is rare iff |S, 4| <nl-1/e® = ple

* each S ;yis randomly shifted by T,[a]
& contributes at most O(1) to any bin = Chernoff

* remove all such S, ;)’s from S, repeat.
* at most n¥/¢ non-rare values remaining.
e soatthe end, |S| < n?c. Everything is rare. o

