Theory & Practice of Linear Probing

Mihai Pătrașcu

WADS 2011

Hashtables

Good target for theory: "10% of the code runs 90% of the time"

> Used in time-critical code (e.g. in routers)

> > Understanding can only come from theory (nonobvious&counterintuitive Maths)

Theory has had a great run.

Linear Probing \bullet a b c \bullet \bullet \bullet \bullet \bullet \bullet \bullet \circ **x** $h(x)$

- interaction among close hashes
- positive feedback in growth of "runs"

• cache lines • prefetcher

A bit of history

[Samuel, Amdahl, Boehme'54] invented (IBM 701 asm)

Analysis

[Samuel, Amdahl, Boehme'54] invented (IBM 701 asm)

[Knuth ^{TR}62] E[t] = $O(1/\epsilon^2)$ for load 1- ϵ [Pagh², Ružić $^{STOC}O7$] E[time]=O(1) for load<1. [P., Thorup'11] $E[t] = O(1/\epsilon^2)$ for load 1- ϵ a la [PPR]

Following slides: sketch of [PPR'07]

- Assume load ⅓ : m ≥ 3n
- Theorem: E[time / operation] = $O(1)$

Cost of $\{query(x), insert(x), delete(x)\}\$ \leq length of run containing h(x)

Consider binary tree on top of array.

Dangerous node: > 2μ keys in subtree

μ= M/3 keys in exp.

Reality: long run could also come from sibling.

Assume: $h(x) \in run [j..j+l], 2^{h-1} \leq l \leq 2^h$

run covered by 8-18 nodes on level h-4

Claim Not all these nodes can be safe. Otherwise, first 4 subtrees:

- $span \geq 3M = 9\mu$ table cells in the run
- have $\leq 8\mu$ keys

 $E[Cost] \approx \sum_h 2^h \cdot Pr[h(x) \in run \ of \ length \ 2^{h-1}..2^h]$

≤ Σ_h 2^h · (18 · Pr[node on level *h-4* dangerous])

 $\leq \sum_{h} 1/\mu$

 $= \sum_{h} 2^{-h} = O(1)$ **QED.**

The Holy Trinity of Hash Tables

How to Implement Hash-Tables

You will need:

- a student
- coffee
- a hash function

Hashing ≈ (Integer) Hashing

Open: *subpolynomial* failure probability.

'50s, '60s complicated functions

Make them "look hard"

… And assume they behave randomly

'50s, '60s complicated functions [Carter & Wegman'79] simple functions

E.g. Let u=prime. Pick a_{k} , ..., a_{0} randomly $x \mapsto [a_k x^k + a_{k-1} x^{k-1} + ... + a_0]$ (mod u) mod m.

"*k*-independence"

Hash of any k inputs is independent, uniform on [m].

'50s, '60s complicated functions [Carter & Wegman'79] simple functions

For most things, we want independence $k \approx lg n$...

'50s, '60s complicated functions [Carter & Wegman'79] simple functions [Siegel'89] a complicated function

Lower bound With space $u^{1/c}$, any k-independent function needs evaluation time \geq min{k, c}

'50s, '60s complicated functions [Carter & Wegman'79] simple functions

[Siegel'89] a complicated function

Upper bound With space $u^{1/c}$, a u^{1/c^2} -independent hash function with evaluation time c^{O(c)}

Theory summary: Space n^ε, independence n^{Ω(1)} \gg poly(log n), O(1) evaluation. "Only issue" : non-explicit expander

- '50s, '60s complicated functions
- [Carter & Wegman'79] simple functions
- [Siegel'89] a complicated function
- $[P. Thorup ^{STOC}11]$
	- We don't need no, complication
		- "Simple Tabulation" works for most things

- '50s, '60s complicated functions
- [Carter & Wegman'79] simple functions
- [Siegel'89] a complicated function
- [P. Thorup STOC11]
	- We don't need no, complication

"Simple Tabulation" works for most things T_{1} , ..., T_{q} = u^{1/q} hashes picked randomly E[m] $x \mapsto (x_1, ..., x_q)$ $h(x) = T_1[x_1] \oplus ... \oplus T_q[x_q]$

Simple Tabulation: "Uniting Theory and Practice"

Simple & fast enough for practice.

But with good mathematical guarantees:

Chernoff bounds \Rightarrow chaining, linear probing

Cuckoo Hashing

But who needs Proofs, Anyway?

Maybe we're fine with $x \mapsto (ax+b) \mod p$ mod m

Failure may not be obvious ("Practice needs Theory")

 $x \mapsto (ax+b) \mod p \mod m$ on data set $\{1, 2, ..., n\}$

Theory needs Practice (to understand our targets)

Simple tabulation:

q probes into tables of size $u^{1/q}$

use u^{1/q} = 256 ⇒ tables in cache

⇒ time close to a multiplication

Would it be "better" to use

 $x \mapsto [ax^2 + bx + c] \pmod{p} \text{ mod } m$?

Probably not…

Sample Result

Lemma

Say $m > n^{1+\epsilon}$

Any bin has at most $O(1)$ balls whp.

(with probability 1-n^{-γ}, at most C_γ balls/bin)

Proof

Pr[t independent keys in same bin] $\leq n^{t}/m^{t-1}$

Sample Result

Lemmata Among any set S of keys, ∃ T ⊆ S of $|T| \geq log_2 |S|$ keys that hash independently via simple tabulation.

- \bullet $i = 1$ st coordinate where not all keys are same
- α = least common char on position *i*
- $S_{(\alpha,i)}$ = keys ES with α on position *i*
- pick some $x \in S_{(\alpha,i)}$ Observe: h(x) independent of S\ $S_{(q,i)}$
- remove $S_{(\alpha,i)}$ from S, repeat \Box

Sample Result

Theorem $X = #$ balls in a "designated" bin $\mu = E[X] = \frac{n}{m} \gamma = constant.$

 $\Pr[X \not\in (1 \pm \delta) \mu] < e^{-\Omega(\delta^2 \mu)} + n^{-\gamma}$

- α on position 1 is *rare* iff $|S_{(\alpha,1)}| \leq n^{1-1/c^2} = n^{1-\epsilon}$
- each $S_{(\alpha,1)}$ is randomly shifted by $T_1[\alpha]$ & contributes at most $O(1)$ to any bin \Rightarrow Chernoff
- remove all such $S_{(\alpha,1)}$'s from S, repeat.
- at most n^{1/c^2} non-rare values remaining.
- so at the end, $|S| \leq n^{1/c}$. Everything is rare. \Box

