
Two-Stage Robust Network Design with Exponential
Scenarios

Rohit Khandekar1, Guy Kortsarz2 ?, Vahab Mirrokni3 ??, and Mohammad R.
Salavatipour4 ? ? ?

1 IBM T.J.Watson research center.
rkhandekar@gmail.com

2 Department of Computer Science, Rutgers University-Camden. Currently visiting IBM
Research at Yorktown Heights
guyk@crab.rutgers.edu

3 Google research, New York, NY, USA
mirrokni@theory.csail.mit.edu

4 Dept. of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
mreza@cs.ualberta.ca

Abstract. We study two-stage robust variants of combinatorial optimization prob-
lems like Steiner tree, Steiner forest, and uncapacitated facility location. The ro-
bust optimization problems, previously studied by Dhamdhere et al. [1], Golovin
et al. [6], and Feige et al. [4], are two-stage planning problems in which the re-
quirements are revealed after some decisions are taken in stage one. One has to
then complete the solution, at a higher cost, to meet the given requirements. In
the robust Steiner tree problem, for example, one buys some edges in stage one
after which some terminals are revealed. In the second stage, one has to buy more
edges, at a higher cost, to complete the stage one solution to build a Steiner tree
on these terminals. The objective is to minimize the total cost under the worst-
case scenario. In this paper, we focus on the case of exponentially many scenarios
given implicitly. A scenario consists of any subset of k terminals (for Steiner tree),
or any subset of k terminal-pairs (for Steiner forest), or any subset of k clients (for
facility location). We present the first constant-factor approximation algorithms
for the robust Steiner tree and robust uncapacitated facility location problems. For
the robust Steiner forest problem on trees and with uniform inflation, we present
a constant approximation and show that the problem on general graphs and with
two inflation factors is impossible to approximate within O(log1/2−ε n) factor,
for any constant ε > 0, unless NP has randomized quasi-polynomial time algo-
rithms. Finally, we show APX-hardness of the robust min-cut problem (even with
singleton-set scenarios), resolving an open question by [1] and [6].

1 Introduction

In a classical optimization problem, we are usually given a system with some known
parameters and constraints and the goal is to find a feasible solution of minimum cost
? Partially supported by NSF Award Grant number 072887.
?? Part of this work was done when the author was at Microsoft research.

? ? ? Supported by NSERC and an Alberta Ingenuity New Faculty award.

(or maximum profit) with respect to the constraints. These parameters and constraints,
which heavily influence the optimum solution, are assumed to be precisely known.
However, in reality, often it is very costly (or maybe impossible) to have an accurate
picture about the values of the parameters or even the constraints of the optimization
problem at hand at the time of planning. Two of the common approaches studied in the
literature to address this uncertainty about future are referred to as robust optimization
and stochastic optimization.

Robust and Stochastic optimization. Robust optimization has been studied in both
decision theory [10] and Mathematical Programming [2] and deals with the uncertainty
in data. In a typical data-robust model, we have a finite set of scenarios that can mate-
rialize and each scenario contains one possible set of data values. The goal is to find a
solution that is good with respect to all or most scenarios. One example in this category
is min-max regret, in which the goal is to minimize the maximum regret over all pos-
sible scenarios, where the regret of a scenario is defined as the difference between the
cost of the solution in that scenario with respect to optimal solution for that scenario.

In Stochastic optimization, we are provided with a probability distribution on the
possible scenarios and the goal is then to find a solution that minimizes the expected
cost over this distribution. This approach is useful if we have a good idea about the
probability distribution (which may be a strong requirement), and we have a repeated
decision making framework. One particular version of stochastic optimization, that has
attracted much attention in the last decade, is two-stage (or multi-stage) stochastic op-
timization, where the solution is built in two stages: in the first stage we have to decide
to build a partial solution based on the probability distribution of possible scenarios. In
stage two, once the actual scenario is revealed, we have to complete our partial solution
to a feasible solution for the given scenario. There has been considerable amount of re-
search focused on two-stage (or multi-stage) stochastic version of classical optimization
problems such as set-cover, Steiner tree, vertex cover, facility location, cut problems,
and other network design problems [11, 13, 7, 8] and efficient approximation algorithms
have been developed for many of these problem. In some cases, the set of possible sce-
narios and the corresponding probabilities are given explicitly [11, 8], and some papers
study a more general model in which the sets of possible scenarios are given implicitly
as the product of a set of independent trials, or by an oracle [1, 7, 9, 13].

Demand-robust optimization. More recently, a new notion of robustness has been in-
troduced by Dhamdhere et al. [1] which can be viewed as the worst-case analogue of
the (two-stage) stochastic optimization problem. This model, called demand-robust op-
timization (and we simply call robust optimization in the rest of the paper), deals with
both uncertainty in data as well as constraints of the problem. In a two-stage robust
optimization problem, similar to a two-stage stochastic optimization, we are given a set
of possible scenarios (which can be explicit or implicit) and the goal is to compute a
solution in two stages while minimizing the maximum cost over all possible scenar-
ios. The major difference of this model w.r.t. data-robust model is that each possible
scenario might have a different set of constraints to be satisfied. For example, in the
robust Steiner tree problem, we are given a graph G = (V,E) with a cost function
c : E → R+ on the edges. In the second stage one of m possible scenarios material-

izes; scenario i consists of a set Si ⊆ V of terminals that need to be connected to each
other. We also have an inflation factor λi for edge costs. Each edge e costs ce in the
first stage and λi · ce in the second stage if scenario i materializes. Our goal is to select
a subset of edges E1 ⊆ E in the first stage, and a set E2(i) ⊆ E in the second stage
if scenario i is revealed, so that E1 ∪ E2(i) is a feasible solution for the Steiner tree
problem with terminal set Si; the overall cost paid in scenario i is c(E1)+λi ·c(E2(i)).
The objective function is to minimize this cost over all possible scenarios, i.e., to mini-
mize c(E1) + maxi λi · c(E2(i)). Since in this model of robustness, each scenario has
a different requirement, it allows one to handle uncertainty in the set of constraints. It
also provides a worst-case guarantee unlike only the expected-cost guarantee as in the
two-stage stochastic optimization model. In a very recent work [4] authors consider a
more general model of (two-stage) robust optimization in which scenarios are given
implicitly, and therefore, one can have an exponentially large set of possible scenarios.

1.1 Previous work

We are aware of only three other papers [1, 6, 4] which have studied (demand) robust
optimization. In [1, 6], authors consider the robust problems with polynomially-many
explicitly given scenarios. They present constant factor approximation algorithms for
robust versions of Steiner tree, vertex cover, and Facility location problems. They also
give polylogarithmic approximation for robust min-cut and multi-cut. In the problem
of robust min-cut, we are given a edge-weighted graph G = (V,E), a source s ∈ V ,
and inflation factor λi(e); scenario i consist of a terminal ti ∈ V . The goal is to find
a subset E1 ⊆ E for stage one and E2(i) ⊆ E for stage two (if scenario i arrives) so
that E1 ∪ E2(i) is a s, ti-cut. In [1], the authors present an O(logm)-approximation
where m is the number of scenarios. This was improved to a (1 +

√
2)-approximation

in [6]. In the robust multi-cut, each scenario consists of a set of pairs of nodes that form
a multi-cut problem. For this problem [1] present an O(log rm · log log rm) where m
is the number of scenarios and r is the maximum number of pairs in any scenario.

Feige et al. [4] consider covering problems (such as set cover) where the set of possi-
ble scenarios is given implicitly, and therefore can be exponentially large. For example,
in the robust set cover problem, we are given a universe of elements U = {e1, . . . , em}
and a collection of sets S = {S1, . . . , Sm}, where Si ⊆ U and has cost c(Si), an infla-
tion factor λ, and an integer k. Each scenario is a subset U ′ ⊂ U of size k that needs to
be covered. We have to purchase a collection of sets S1 ⊆ S in stage one. Once a set
U ′ of elements is given in stage two, we have to purchase some (possibly none) other
sets S2(U ′) ⊂ S where the cost of each set now is inflated by λ, so that S1 ∪ S2(U ′)
is a set cover for the given set U ′. The goal is to minimize the maximum total cost over
all possible scenarios. Using an LP rounding method, they give a general framework
for designing approximation algorithms for a class of robust covering problems using
competitive algorithms for online variants of the problems. However, this framework
does not apply to robust network design problems like robust Steiner tree, and gives
logarithmic approximation for robust uncapacitated metric facility location problem.

1.2 Our results

The model we study in this paper is the (demand) robust optimization model with (pos-
sibly) implicit sets of scenarios (which can be exponentially many). We study Steiner
tree, Steiner forest, uncapacitated facility location, and min-cut problems under this
model and present some approximation algorithms and hardness results.

Specifically, we provide the first constant factor approximation algorithms for the
(exponential scenarios) robust Steiner tree and robust facility location problems. Our
algorithms are combinatorial in nature and are based on nice structural properties of the
stage one solution of a near-optimum algorithm.

Theorem 1. There exists a polynomial-time 5.55-approximation algorithm for two-
stage robust Steiner tree problem with a uniform inflation factor. Here a scenario con-
sists of any k terminals out of given terminals.

Theorem 2. There exists a polynomial-time 10-approximation algorithm for robust un-
capacitated facility location problem in which the inflation factor may depend on the
facility. Here a scenario consists of any k clients (perhaps co-located) out of given
clients.

We then present a constant approximation for robust Steiner forest problem when
the underlying graph is a tree. Our algorithm is based on first solving a standard LP
relaxation using a dynamic-programming based separation oracle and then rounding it
to a near-optimum integral solution.

Theorem 3. There exists a polynomial-time 3-approximation algorithm for two-stage
robust Steiner forest problem on trees with a uniform inflation factor. Here a scenario
consists of any k terminal-pairs out of given terminal-pairs.

We next show that the robust Steiner forest problem on general graphs on n ver-
tices and with two inflation factors is impossible to approximate within a factor of
O(log

1
2−ε n), for any constant ε > 0, unless NP has randomized quasi-polynomial time

algorithms. We emphasize that our 3-approximation algorithm of Theorem 3 holds for
exponentially many scenarios (i.e., k source-sink pairs need to be connected in stage 2),
and our hardness result holds for even polynomially many scenarios, in which we have
to connect only one source-sink pair in the second stage. However in the hardness re-
sult, we work with general graphs and allow two possible values for the inflation factors
on the edge-costs.

Theorem 4. For any constant ε > 0, there is noO(log
1
2−ε n)-approximation for robust

Steiner forest on general graphs on n vertices in which only one pair arrives in stage
two, we have only two (distinct) edge costs and two (distinct) inflation factors, unless
NP has randomized quasi-polynomial time algorithms.

Finally, we resolve an open question posed by Dhamdhere et al. [1] and Golovin
et al. [6] about the hardness of the two-stage robust min-cut problem by proving the
following theorem.

Theorem 5. The two-stage robust min-cut problem is APX-hard even with a uniform
inflation factor and which consists of a single source and three sinks.

Organization. The remainder of the paper is organized as follows. In the next sec-
tion, we present our 5.55-approximation algorithm for robust Steiner tree and then 3-
approximation for Steiner forest on trees. Finally we present the proof of Theorem 5.
Due to space limit, we postpone the proofs of Theorems 2 and 4 to the full version of
our paper.

2 A constant approximation for robust Steiner tree problem

In this section we prove Theorem 1. Recall that the input to the Steiner tree problem is
an undirected graph G = (V,E), a cost function c : E → R+, and a subset T ⊆ V
called “terminals”. The objective is to find a connected subgraphH that includes all the
terminals T and has minimum cost c(H) :=

∑
e∈H ce.

In the robust version of the Steiner tree problem, the input also contains an integer
k and a real number λ ≥ 1. There are two stages. In the first stage the algorithm has to
identify a subset E1 ⊆ E of edges to buy. In the second stage, the cost of each edge in
E \E1 increases by a factor of λ and a subset T ′ ⊆ T of at most k terminals is revealed.
We refer to T ′ as a “scenario”. The algorithm, in the second stage, has to augment the
solution E1 by buying edges E2(T ′) so that the resulting graph E1 ∪ E2(T ′) includes
a Steiner tree on terminals T ′. The choice of edges E2(T ′) is allowed to depend on the
subset T ′. The overall cost of this solution is thus

∑
e∈E1

ce + λ ·
∑
e∈E2(T ′)

ce. The
objective is to minimize the maximum overall cost over all scenarios, i.e., to minimize∑

e∈E1

ce + max
T ′⊆T,|T ′|≤k

λ ·
∑

e∈E2(T ′)

ce.

The edge-costs ce induce a shortest-path metric on the vertices V : for any two vertices
u, v ∈ V , we use dG(u, v) to denote the length of the shortest path between u and v,
under costs ce in graph G.

2.1 The algorithm

Let E∗1 and E∗2 (T ′) be the set of edges the optimum buys in the first stage and the
second stage for scenario T ′ respectively. Let OPT = OPT1 + λ ·OPT2 be the overall
cost of the optimum, where OPT1 =

∑
e∈E∗1

ce is its cost in the first stage and OPT2 =
maxT ′⊆T,|T ′|≤k

∑
e∈E∗2 (T ′) ce is the maximum cost in the second stage divided by λ.

First stage. Our algorithm, in the first stage, guesses (an upper bound on) the value
of OPT2.5 It then computes a subset of terminals C = {c1, c2, . . . , cp} ⊆ T called
“centers” and an assignment π : T → C that satisfy:

5 The algorithm in fact tries all guesses of OPT2 that are powers of (1+ ε), for a small constant
ε > 0, and takes the cheapest solution for any of these guesses. We also point out that we can,
in polynomial time, estimate the cost of our solution for a given guess on OPT2. That is, in
polynomial-time, we can find a scenario that maximizes the cost of the solution (or its upper
bound proved). To simplify the presentation, we assume that the guess on OPT2 is exact.

– The centers are far apart: dG(ci, cj) > r·OPT2
k for all i 6= j, and

– Each terminal is close to its assigned center: dG(t, π(t)) ≤ r·OPT2
k for all t ∈ T ,

where r > 1 is a constant to be determined later. Such a clustering can be computed
as follows. Pick any terminal and name it c1. Assign all terminals within a distance
of r·OPT2

k from c1 to c1 and remove these terminals. Pick any one of the remaining
terminals and name it c2, and so on.

The algorithm then computes an approximate minimum-cost Steiner tree T in G on
the centers C under the costs ce. Currently, the best known polynomial-time algorithm
for the Steiner tree problem is γ-approximate, where γ < 1.55 [12]. The algorithm buys
the edges in the Steiner tree in the first stage.

Second stage. In the second stage, a subset T ′ of at most k terminals is revealed. The
algorithm, in the second stage, buys the shortest path from each terminal t ∈ T ′ to its
assigned center π(t). It is easy to see that the algorithm computes a feasible solution to
the problem.

2.2 The analysis

We first introduce the notion of a “ball” of certain radius around a vertex in a graph.
Consider the graph G = (V,E) with edge-costs ce. We think of each edge e as a
continuous interval of length ce. For a vertex v and a radius R > 0, let BG(v,R)
denote, intuitively speaking, the “moat” of radius R around v. More precisely, B(v,R)
contains

– all the vertices u such that dG(u, v) ≤ R,
– all edges e = (u,w) such that dG(u, v) ≤ R and dG(w, v) ≤ R, and
– for the edges e = (u,w) such that dG(u, v) ≤ R and dG(w, v) > R, the sub-

interval of edge e of length R− dG(u, v) adjacent to vertex u.

Note that since dG(ci, cj) > r·OPT2
k for any two distinct centers in C, the balls

BG(ci, r·OPT2
2k) and BG(cj , r·OPT2

2k) are disjoint. It is easy to see that the algorithm
pays at most λ · r · OPT2 in the second stage. This holds since the distance of any
terminal to its assigned center is at most r·OPT2

k . Since at most k terminals need to be

connected to their centers, the total cost of these connections is at most λ · k · r·OPT2
k .

We now bound the cost of the algorithm in stage one using the following lemma.

Lemma 1. Assuming r > 4, there exists a Steiner tree on centers C in G that has cost
at most r

r−4 · OPT1 + OPT2.

Proof. Recall that E∗1 is the set of edges optimum buys in stage one and OPT1 =∑
e∈E∗1

ce. Let H be a graph obtained from G by shrinking the edges in E∗1 . We now
perform another clustering of the centers C in the shortest-path metric on C induced by
the graph H . For centers ci, cj ∈ C, let dH(ci, cj) denote the shortest-path length under
lengths ce in H . We identify a subset of centers L = {l1, l2, . . . , lt} called “leaders”
and a mapping φ : C → L such that

– The leaders are far apart: dH(li, lj) > 2OPT2/k for all i 6= j, and
– Each center is close to its mapped leader: dH(c, φ(c)) ≤ 2OPT2/k for all centers
c ∈ C.

Such a clustering can be computed as follows. Pick any center and name it l1. For all
centers c ∈ C with dH(c, l1) ≤ 2OPT2/k, define φ(c) = l1. Remove all such centers
from C and repeat.

Analogous to BG(v,R), we use BH(v,R) to denote the ball of radius R centered
at v in the graph H with length ce for e ∈ H . Note that the balls of radii OPT2

k around
the leaders in L are disjoint in H .

Claim. The following inequality holds: |L| ≤ k.

Proof. Assume on the contrary that |L| > k and let T ′ ⊆ L be any subset of size k+1.
Consider the scenario T ′. Since even after shrinking the edges in E∗1 that optimum
bought in the first stage, the balls of radii OPT2

k centered at the centers in T ′ in the
graph H are disjoint. Therefore the minimum Steiner tree on T ′ in H has cost more
than OPT2. This is a contradiction since the optimum pays at most λ · OPT2 in the
second phase to connect all the centers in T ′ after shrinking the edges in E∗1 . Thus the
claim holds.

Since |L| ≤ k, we now consider scenario L. There exists a Steiner tree E∗L on L in
H with cost at most OPT2. Thus E∗1 ∪E∗L has cost at most OPT1 + OPT2 and contains
a Steiner tree on L inG. We now show how to extend this into a subgraph with low cost
and which contains a Steiner tree on C in G.

Now recall that the balls of radii r·OPT2
2k around the centers C are disjoint in G.

Note however that dH(c, φ(c)) ≤ 2OPT2
k for all centers c ∈ C. Thus at least r·OPT2

2k −
2OPT2

k =
(
r
2 − 2

)
· OPT2

k cost of E∗1 must lie inside the ball of radius r·OPT2
2k around

each center c ∈ C. We can thus extend the subgraph E∗1 ∪ E∗L by adding shortest paths
from each c to φ(c) in H and charge this additional cost to the contribution of E∗1 in the
respective balls around centers c ∈ C. The resulting subgraph clearly contains a Steiner
tree on C in G. The overall cost of this subgraph is thus at most OPT1 + OPT2 +

2
r
2−2 · OPT1 = r

r−4 · OPT1 + OPT2. We remind the reader that OPT2 is the cost of
computing a Steiner tree on the leaders. Hence the proof.

Since we use a γ-approximation algorithm to compute a Steiner tree in stage one,
the overall cost of stage one is at most γ·r

r−4 · OPT1 + γ · OPT2. Combining this with
the second stage cost, the overall cost of our solution is:

γ · r
r − 4

· OPT1 + (γ + λr) · OPT2. (1)

A trivial strategy for solving the robust Steiner tree is to select nothing in stage 1 and
make all the selections in stage 2. Given that every edge is inflated by λ and we use
a γ-approximation for Steiner tree, this strategy will have an approximation factor of
λ · γ. Using the best known approximation algorithm for Steiner tree [12], which has
approximation 1.55, we get a 1.55λ-approximation. For values of λ ≤ 3.51 we use this

trivial strategy which gives an approximation factor of 5.45. For values of λ > 3.51 we
use the above algorithm with parameter r defined below.

Let r = r∗ to be the solution of: γ·r
r−4 = γ

λ+r. Then the two factors in front of OPT1

and OPT2 in the ratio of our algorithm calculated in Equation (1) become equal at

r = r∗ = γλ−γ+4λ+
√
γ2λ2−2γ2λ+8γλ2+γ2+8γλ+16λ2

2λ . Therefore, for r = r∗ and with
γ = 1.55, the ratio of our algorithm becomes: 5.55λ−1.55+

√
30.8025λ2+7.595λ+2.4025

2λ . It
can be verified that this expression is upper bounded by 5.55 (it has a limit of 5.55).
Thus, for values of λ > 3.51, by choosing r = r∗, the ratio of our algorithm presented
will be at most 5.55 and for smaller values of λ we use the trivial strategy which has
ratio at most 5.55 as well. This completes the proof of Theorem 1.

3 A constant approximation for robust Steiner forest problem on
trees

In this section, we prove Theorem 3. The input to the Steiner forest problem is an
undirected graph G = (V,E) with non-negative edge-costs ce. We are also given a set
of terminal-pairs T ⊆ V × V . Similar to the robust Steiner tree problem, the input
also has an integer k and a real number λ ≥ 1. There are two stages. In the first stage
the algorithm has to identify a subset E1 ⊆ E of edges to buy. In the second stage,
the cost of each edge in E \ E1 increases by a factor of λ and a subset T ′ ⊆ T of
at most k terminal-pairs is revealed. We refer to T ′ as a “scenario”. The algorithm,
in the second stage, has to augment the solution E1 by buying edges E2(T ′) so that
the resulting graph E1 ∪ E2(T ′) includes a Steiner forest on terminal-pairs T ′, i.e.,
E1 ∪ E2(T ′) contains a path between each terminal-pair in T ′. The objective is to
minimize the maximum overall cost over all scenarios, i.e., to minimize

∑
e∈E1

ce +
maxT ′⊆T,|T ′|≤k λ ·

∑
e∈E2(T ′)

ce.

In this section, we focus our attention on the special case when the graph G is a tree
T with edge-costs ce. Let dT (u, v) denotes the length of the unique path between u and
v in T .

For a scenario T ′ ⊆ T of at most k terminal pairs, let E(T ′) denote the union of the
unique paths between the terminal-pairs in T ′. We now consider the following integer
linear programming formulation of our problem. Let xe ∈ {0, 1} denote an integer
variable that takes value 1 if edge e is picked in stage one, and 0 otherwise. Note that
any edge e ∈ E(T ′) is picked in stage two for scenario T ′ if and only if xe = 0. Thus
the stage two cost for scenario T ′ is λ ·

∑
e∈E(T ′) ce · (1 − xe). It is now easy to see

that the following integer program is identical to our problem.

min
∑
e ce · xe + λ · C2

s.t.
∑
e∈E(T ′) ce · (1− xe) ≤ C2 ∀ scenarios T ′

xe ∈ {0, 1} ∀ edges e
C2 ≥ 0

(2)

A linear relaxation of the above integer program is obtained by replacing the inte-
grality constraints xe ∈ {0, 1} by 0 ≤ xe ≤ 1 for each edge e. This linear program has

polynomially many variables and exponentially many constraints. We now give an ap-
proximate separation oracle for this program and solve it using the ellipsoid algorithm.

The separation oracle: The separation oracle for the above linear program needs
to solve the following problem: given xe ∈ [0, 1] for each edge e, find a scenario T ′

such that
∑
e∈E(T ′) ye is maximized, where ye = ce · (1 − xe). Recall that a scenario

T ′ consists of at most k terminal pairs from T and E(T ′) denotes the union of the
paths between the terminal-pairs in T ′. Thus the separation oracle can be viewed as the
following problem. Given a set of paths T on a tree T with edge-profits ye ≥ 0, find a
subset of at most k paths that maximizes the total profit in the union of the paths.

We now give a dynamic programming based 2-approximation algorithm for the
above problem. Pick any vertex r ∈ T in the tree to be the “root” and imagine that T is
hung from r. Thus we get a natural ancestor-descendant relation between the vertices
of T : vertex u is called an ancestor of vertex v if u lies on the unique path between v
and root r; and vertex v is called a descendant of vertex u if u is an ancestor of v.

Now any path p ∈ T can be expressed as a disjoint union of two paths p1 and
p2 such that the end-points of both p1 and p2 satisfy the ancestor-descendant relation.
We call such paths “up-paths”. We now solve our profit maximization problem on this
collection of up-paths. It is easy to see that the maximum profit of at most k up-paths
obtained in a manner given above is at least half of the maximum profit of at most k
paths in the original problem.

The maximum profit collection of k up-paths can be computed by dynamic pro-
gramming as follows. In what follows, we say that a path p “covers” an edge e if e ∈ p.
For every vertex v ∈ T , let Tv be the subtree rooted at v. For each v ∈ T , for each of
its ancestors u ∈ T , and for each integer 0 ≤ l ≤ k, let p(v, u, l) denote the maximum
profit that can be accrued in the subtree Tv by at most l paths that together cover each
edge on the path between v and u in T . We compute the values of p from leaves up.
Below, we only consider triplets (v, u, l) where u is an ancestor of v (possibly, u = v)
and l is an integer (possibly l < 0 to simplify the description). We first initialize the
values of p(v, u, l) to −∞.

To simplify the exposition, we assume that each vertex has at most two children.
This assumption can be made without loss of generality as described below. Consider
a vertex v with c > 2 children v1, . . . , vc. We expand v into a binary tree with c leaves
corresponding to its c children. The profit of any new edge on this binary tree is set to
zero. The original paths can be extended naturally. It is easy to see that the maximum
achievable profit in the new instance is same as that in the original instance.

Now for the base case of the dynamic program, we set p(v, u, l) where v is a leaf
and l ≥ 0 to 0. Now consider any internal vertex v ∈ T and assume that we have
already computed (and stored) the values of p(v′, u, l) for all children v′ of v.

We first explain how to compute p(v, u, l) when v has only one child v1. Let e =
(v, v1). If u = v, we set p(v, v, l) = max{p(v1, v1, l),p(v1, v, l)+ye,p(v1, v1, l−1)+
ye}. For u 6= v, we let p(v, u, l) = max{p(v1, u, l) + ye,maxu′ p(v1, u′, l − 1) + ye}
where the maximum is taken over vertices u′ on the path between v1 and u such that
there is a path between u′ and one of its ancestor that covers the path between u′ and u.

Now we explain how to compute p(v, u, l) when v has exactly two children v1
and v2. First consider the case when u = v. Let e1 = (v, v1) and e2 = (v, v2).

We set p(v, v, l) to be the maximum of the following different ways of accruing a
profit. Below the maximum is taken over l′ where 0 ≤ l′ ≤ l. The maximum profit
without covering edges e1 and e2 is maxl′(p(v1, v1, l′) + p(v2, v2, l − l′)). The maxi-
mum profit covering e1 but not e2 is maxl′(max{p(v1, v, l′),p(v1, v1, l′− 1)}+ ye1 +
p(v2, v2, l − l′)). Similarly, the maximum profit covering e2 but not e1 is maximum
of maxl′(max{p(v2, v, l′),p(v2, v2, l′ − 1)} + ye2 + p(v1, v1, l − l′)). Similarly, the
maximum profit covering both e1 and e2 is maxl′(max{p(v1, v, l′),p(v1, v1, l′−1)}+
ye1 + max{p(v2, v, l − l′),p(v2, v2, l − l′ − 1)}+ ye2).

Now consider the case when u 6= v. Again let e1 = (v, v1) and e2 = (v, v2). We set
p(v, u, l) to be the maximum of the following different ways of accruing a profit. Below
the maximum is taken over l′ where 0 ≤ l′ ≤ l. The maximum profit without covering
edges e1 and e2 is maxl′(p(v1, v1, l′) + p(v2, v2, (l − l′′) − l′)) if l′′ is the minimum
number of paths needed to cover the edges on path between v and u. The maximum
profit covering e1 but not e2 is maxl′(p(v1, u, l′) + ye1 + p(v2, v2, l − l′)). Similarly,
the maximum profit covering e2 but not e1 is maximum of maxl′(p(v2, u, l′) + ye2 +
p(v1, v1, l−l′)). Similarly, the maximum profit covering both e1 and e2 is the maximum
of maxl′(p(v1, u, l′) + ye1 + p(v2, v, l − l′) + ye2) and maxl′(p(v2, u, l′) + ye2 +
p(v1, v, l − l′) + ye1).

The rounding: Since there is a 2-approximation to the separation oracle, we can
compute, using the ellipsoid algorithm, a feasible solution ({x∗e}, C∗2) to (2) such that∑
e ce · x∗e + λ · C

∗
2
2 ≤ OPT∗ ≤

∑
e ce · x∗e + λ · C∗2 where OPT∗ denotes the cost

of the optimum fractional solution to (2). We round this solution to an integral feasible
solution to the Steiner forest problem on trees as follows: pick e ∈ E in stage one if and
only if x∗e ≥ 1

3 . In stage two, given a scenario T ′, pick the remaining edges in E(T ′) to
form a feasible solution.

The cost of the stage one of our solution is
∑
e:x∗e≥1/3 ce ≤ 3

∑
e ce · x∗e . The stage

two cost of scenario T ′ is λ ·
∑
e:x∗e<1/3 ce ≤

3
2λ ·

∑
e:x∗e<1/3 ce · (1− x∗e) ≤

3
2λ ·C

∗
2 .

Thus the overall cost of our solution is at most 3
∑
e ce ·x∗e+ 3

2λ ·C
∗
2 ≤ 3 ·OPT∗. Since

OPT∗ is at most the optimum integral solution, our algorithm is a 3-approximation.

4 APX-hardness of the robust min-cut problem

In this section, we prove Theorem 5. In the robust min-cut problem we are given an
undirected graph G = (V,E) with edge-costs ce ≥ 0, a source s ∈ V , a collection
of sinks T ⊆ V , and a inflation factor λi ≥ 1 for every ti ∈ T . There are two stages
in the algorithm. The algorithm has to choose edges E0 ⊆ E in the first stage. We
are then given a single sink ti ∈ T . We call ti a “scenario”. In such a scenario, the
cost of each edge e ∈ E \ E0 becomes λi · ce. The algorithm, then, has to pick edges
E1(ti) ⊆ E\E0 such that s and ti are not connected in the graph (V,E\{E0∪E1(ti)}).
The objective is to minimize the maximum cost of the solution under any scenario:
c(E0) + maxti∈T λi · c(E1(ti)), where c(X) =

∑
e∈X ce for X ⊆ E.

In [11], the authors give (1 +
√

2)-approximation algorithm for this problem and
pose as an open question to determine if this problem is NP-hard. We show that the
special case, in which there are only three sinks and all inflation factors λi are equal,

is already APX-hard. We reduce the APX-hard problem of finding multi-way cut to our
problem. The input to the multi-way cut problem is an undirected graph G = (V,E)
with edge-costs ce ≥ 0 and a collection T ⊆ V of terminals. The problem is to find a
subset E′ ⊆ E of minimum total cost c(E′) such that all terminals in T lie in different
connected components in (V,E \ E′). In [5] the following theorem is proved.

Theorem 6. [5] There exists a universal constant α > 0, value of which is known,
such that given an instance of the multi-way cut problem on 3 terminals, it is NP-hard
to distinguish between the following cases: (i)“yes-instance”: there exists a multi-way
cut of cost at most 1, or (ii)“no-instance”: all multi-way cuts have cost at least 1 + α.

Given an instance of the multi-way cut problem I = {G = (V,E), {ce}, T =
{t1, t2, t3}}, we construct a new graph G′ from G by adding a new vertex s and edges
e1 = (s, t1), e2 = (s, t2), e3 = (s, t3). We let λ = 2. In the instance for the robust
min-cut problem, s serves as a source, T serves as a collection of terminals, and the
edge-costs as given by ce for e ∈ E and ce1 = ce2 = ce3 = 1 + α, where α is the
constant from Theorem 6. Let β = 1 + α.

Lemma 2. If I is a yes-instance then the optimum cost of the robust min-cut is at most
1 + 2β.

Proof. Let E∗ be the minimum multi-way cut in G. We pick E∗ in stage one. Then
given any terminal ti ∈ T as a scenario, we pick the edge ei in stage two. This clearly
forms a feasible solution with cost c(E∗) + λ · β ≤ 1 + 2β.

Lemma 3. If I is a no-instance then the optimum cost of the robust min-cut is at least
min{3β, 1 + 2β + α}.

Proof. Fix an optimum algorithm, say OPT. We consider four cases depending upon
whether OPT picks zero, one, two, or three of the edges e1, e2, e3 in stage one. If OPT
picks exactly one edge, say e1, in stage one, we consider scenario t2. Since OPT has to
pick e2 in stage two for this scenario, the overall cost is at least ce1 +λ ·ce2 = β+2β =
3β. If OPT picks exactly two edges, say {e1, e2}, in stage one, we consider scenario
t3. Since OPT has to pick e3 in stage two for this scenario, the overall cost is at least
2β+λ ·β = 4β. Similarly, if OPT picks three edges in stage one, its cost is at least 3β.

Now consider the case where OPT does not pick any edge out of e1, e2, e3 in stage
one. Let E0 be the set of edges OPT picks in stage one. Let H = (V,E \ E0). Let
E123 ⊆ E\E0 the minimum multi-way cut separating t1, t2, t3 inH . Note that c(E0)+
c(E123) ≥ 1+α and hence c(E123) ≥ 1+α− c(E0). For i = 1, 2, 3, let Ei denote the
minimum cut separating ti from the other two terminals inH . Note that each ofE1∪E2,
E2 ∪ E3, and E3 ∪ E1 form a multi-way cut separating the terminals in H . Therefore,
c(E1) + c(E2) ≥ c(E123), c(E2) + c(E3) ≥ c(E123), and c(E3) + c(E1) ≥ c(E123).
Thus c(E1) + c(E2) + c(E3) ≥ 3

2 · c(E123) and hence maxi c(Ei) ≥ c(E123)/2 ≥
(1 + α− c(E0))/2.

Without loss of generality, let c(E1) = maxi c(Ei). Now consider scenario t1.
In stage two, OPT must pick edge e1. Moreover OPT either picks a cut separating t1
from the other terminals in H or picks at least one edge out of e2, e3. If OPT picks
a cut, its overall cost is at least c(E0) + λ · ce1 + λc(E1) ≥ c(E0) + 2β + 2 · (1 +

α − c(E0))/2 = 2β + 1 + α. In the other case, the overall cost of OPT is at least
c(E0) + λ · ce1 + λmin{ce2 , ce3} ≥ 4β. This completes the proof.

Since β = 1 + α, we get that the ratio of costs of the robust min-cuts in a yes-
instance and a no-instance is at least 3+3α

3+2α . This completes the proof of Theorem 5.

Acknowledgments

We thank Viswanath Nagarajan for pointing out an error in an earlier draft of the paper.

References

1. K. Dhamdhere, V. Goyal, R. Ravi, and M. Singh, How to pay, come what may: Approxi-
mation Algorithms for Demand-Robust Covering Problems, In Proc. of 46th IEEE FOCS,
2005.

2. G. B. Dantzig, Linear programming under uncertainty, Management Sci., 1:197-206, 1955.
3. J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbitrary metrics

by tree metrics, J. Comput. Syst. Sci. 69(3): 485–497, 2004.
4. U. Feige, K. Jain, M. Mahdian, and V. Mirrokni, Robust Combinatorial Optimization with

Exponential Scenarios, In Proc. of IPCO 2007.
5. E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and. M Yannakakis. The Complexity

of Multiterminal Cuts. SIAM J. Comput. 23(4): 864-894 1994
6. D. Golovin, V. Goyal, and R. Ravi, Pay Today for a Rainy Day: Improved Approximation

Algorithms for Demand-Robust Min-Cut and Shortest Path Problems, In Proc. of STACS
,206-217,2006

7. A. Gupta, M. Pál, R. Ravi, and A. Sinha, Boosted sampling: approximation algorithms for
stochastic optimization, In Proc. of 36th ACM STOC, 2004.

8. A. Gupta, R. Ravi, and A. Sinha, An edge in time Saves nine: LP Rounding Approximation
Algorithms for Stochastic Network Design, In Proc. of 45th IEEE FOCS, 2004.

9. N. Immorlica, D. Karger, M. Minkoff, and V. Mirrokni, On the costs and benefits of procras-
tination: approximation algorithms for stochastic combinatorial optimization problems, In
Proc. of SODA 2004.

10. J. W. Milnor, Games against nature, in R. M. Thrall, C. H. Coomb, and R. L. Davis, editors,
Decision Processes. Wiley.

11. R. Ravi and A. Sinha, Hedging uncertainty: Approximation algorithms for stochastic opti-
mization problems, In Proc. of IPCO 2004.

12. G. Robins and A. Zelikovsky, Improved Steiner tree approximation in graphs, In Proc. of
SODA 2000, 770-779.

13. D. Shmoys and C. Swamy, Stochastic optimization is (almost) as easy as deterministic opti-
mization, In Proc. of 45th IEEE FOCS 2004.

