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Abstract

We study the speed of convergence of decentralized dynamics to approximately optimal
solutions in potential games. We consider α-Nash dynamics in which a player makes a
move if the improvement in his payoff is more than an α factor of his own payoff. Despite
the known polynomial convergence of α-Nash dynamics to approximate Nash equilibria
in symmetric congestion games [7], it has been shown that the convergence time to ap-
proximate Nash equilibria in asymmetric congestion games is exponential [23]. In contrast
to this negative result, and as the main result of this paper, we show that for asymmet-
ric congestion games with delay functions that satisfy a ”bounded jump” condition, the
convergence time of α-Nash dynamics to an approximate optimal solution is polynomial
in the number of players, with approximation ratio that is arbitrarily close to the price
of anarchy of the game. In particular, we show this polynomial convergence under the
minimal liveness assumption that each player gets at least one chance to move in every T
steps. We also prove that the same polynomial convergence result does not hold for (exact)
best-response dynamics, showing the α-Nash dynamics is required. We extend these results
for congestion games to other potential games including weighted congestion games with
linear delay functions, cut games (also called party affiliation games) and market sharing
games as follows.
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1 Introduction

Computational game theory has lead already to many important insights for understanding
Nash equilibria in systems under the control of self-interested agents. Prominent results for the
quality of Nash equilibria include bounds on the price of anarchy, which is the ratio between the
worst Nash equilibrium and the global optimal solution [21, 10, 24, 19], and for computational
complexity [12, 11, 6]. Intuitively, a high price of anarchy a system indicates that it requires a
coordination mechanism to achieve good performance. On the other hand, low price of anarchy
does not necessarily imply good performance of the system [18, 15]. One main reason for this
phenomenon is that in many games with selfish players acting in a decentralized fashion, the
repeated selfish behavior of the players may not lead to a Nash equilibrium [15]. Moreover,
the convergence rate might be very slow [12]. This motivates the question of whether selfish
players acting in a decentralized fashion, converge to approximate solutions in a reasonable
amount of time [18, 15, 8, 5].

In this paper, we address this question for the general class of congestion games, which
are used to model routing, network design and other resource sharing scenarios in distributed
systems [21, 2, 14]. We also consider other potential games. In a congestion game there are n
players and a set of resources. The strategy of a player consists of a subset of these resources.
Each resource possesses a delay function de, which depends on the number of players using
this resource and the delay(cost) of each player is the sum of the delays associated with his
selected resources.

Rosenthal [20] prove that every congestion game has a pure Nash equilibrium, by showing
a potential function that is strictly decreasing after any strict improvement of a player. Thus,
this property, shows that the natural ”Nash Dynamics”, in which players iteratively play
best response converges to a pure Nash Equilibrium. It has been shown that the problem of
finding pure Nash equilibria in congestion games is PLS-complete [12] even with linear latency
functions [1]. This result holds even for symmetric congestion games. These results imply
examples of congestion games and initial states from which in the Nash dynamics all Nash
equilibria have distance exponential in the number of players n. For this reason, Chien and
Sinclair [7] study convergence to approximate equilibria in symmetric congestion games. They
consider α-Nash equilibria which are states in which no player can decrease his cost by more
than a factor of 1 − α by unilaterally changing his strategy. They also investigate α-Nash
dynamics, in which we only allow moves that improve the cost of a player by a factor of more
than 1−α. For symmetric congestion games where each resource delay satisfies the ”bounded
jump assumption”, they show that convergence to α-Nash equilibria occurs within a number
of steps that is polynomial in the number of players [7]. Recently, Skopalik and Vöcking [23]
show examples of asymmetric congestion games with n players and O(n) resources and bounded
jump delay functions such that there are states that have distance exponential in the number
of players n to all α-Nash equilibria. Thus, the results for convergence to α-Nash equilibria
appear in [7] cannot be extended to asymmetric congestion games. These negative results
motivate the study of convergence to approximate solutions in asymmetric congestion games.

Mirrokni and Vetta [18] and Goemans et. al [15] study convergence to approximate solutions
in load balancing games, valid-utility games, and congestion games. Christodoulou et al. [8]
study the speed of convergence to approximate solutions in potential games. They show that
after a constant number of rounds of α-Nash dynamics the approximation factor of the solution
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might be a superconstant. They also show that the approximation factor of a state after one
round of Nash dynamics is Θ(n).
Our Results. In this paper, we study the convergence of unrestricted α-Nash dynamics
to an approximately optimal solution in different classes of asymmetric congestion games and
other potential games. We consider the unrestricted α-Nash dynamics with a liveness property
that no player is prevented from moving for arbitrarily many steps. We consider asymmetric
congestion games with resources satisfying a bounded jump condition. For γ ≥ 1, a resource
e satisfies the γ-bounded jump condition, if its delay function satisfies de(t + 1) ≤ γde(t) for
all t ≥ 1. This condition is rather weak. In particular, a resource with de(t) = γt satisfy the
γ-bounded jump condition.

We show that for asymmetric congestion games with the bounded jump condition, the
unrestricted α-Nash dynamics with a liveness property converges to approximate solutions
with approximation ratio of arbitrarily close to the price of anarchy in time that is polynomial
in the number of players (For details, see Theorem 3.3 and Remark 3.5). This result implies
fast convergence to good approximate solutions for the interesting case of polynomial latency
functions of degree d. These results are in contrast to the negative results that appear in
[12, 1, 23]. We also prove that the same polynomial convergence result does not hold for
(exact) best-response dynamics, showing the α-Nash dynamics is required 3.4. We extend this
result for other potential games. We first extend this result to weighted congestion games with
linear delay functions for which we show that any unrestricted α-Nash dynamics satisfying the
liveness property converges to a (2.618 + ε)-approximate solution after polynomial number of
α-moves. Furthermore, we extend the results to profit maximizing potential games including
cut games (also called party affiliation games) and market sharing games. In these games,
players maximize their payoff instead of minimizing their cost. For these games, we need to
assume that players play a best-response α-moves, i.e., an α-move that has the maximum
possible payoff. For both of these games, we show that any unrestricted α-Nash best-response
dynamics satisfying the liveness property converges to a (2 + ε)-approximate solution after
polynomial number of α-moves. This is in contrast to the negative result of Christodoulou et
al [8] for cut games that shows that convergence time of (exact) best-response dynamics to a
constant-factor solution in this game is exponential.
Related Work. The study of convergence of Nash dynamics is related to local search prob-
lems, and PLS-complete problems introduced by Johnson et. al [16]. Fabrikant et al [12]
proved that finding a pure Nash equilibrium of network congestion games is PLS-complete.
Ackermann et al [1] showed that the same problem for network congestion games with linear
latency functions is PLS-complete as well. Skopalik and Vöcking [23] showed that finding an
approximate Nash equilibrium in congestion games is also PLS-complete.

Mirrokni and Vetta [18] initiated the study of convergence to approximate solutions in the
context of load balancing games and valid-utility games [24]. They consider covering walks of
best responses in which each player has at least one chance to play in each round. Motivated
by studying the Nash dynamics and convergence to approximate solutions, Goemans et al [15]
introduced sink equilibria, and proved that in weighted congestion games, random Nash dy-
namics converges to a constant-factor approximately optimal solution in expected polynomial
time. However, they do not provide any bound for the convergence time of deterministic un-
restricted Nash dynamics. In fact, in Theorem 3.4, we show a lower bound for deterministic
Nash dynamics for these games, showing that the above result only holds for random Nash
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dynamics. Christodoulou et al [8] showed a tight bound of Θ(n) for the approximation factor
of the solution after one round of α-Nash dynamics in congestion games with linear latency
functions. They also showed that for congestion games with linear latency functions, after
a constant rounds of Nash dynamics, players may not converge to an approximate solution.
Here, we show that after a polynomial rounds of α-Nash dynamics, players converge to a
constant-factor solution. Chekuri et al [5] and Charikar et al [4] studied convergence of Nash
dynamics to approximate solutions in network cost sharing games.

The study of α-moves for convergence to approximate solutions has been also considered
by Christoulou [8] in the context of cut games. They show that for any constant α (and not
for an α = o(1)) after one round of α-moves of players in a cut game, the value of the cut
is a constant-factor approximate solution. Their proof does not handle the convergence of
unrestricted dynamics. For a more complete list of results in these areas, see Mirrokni [17].

Cut Games (or party affiliation games) are potential games defined on an edge-weighted
graph [12, 22, 8]. Nash dynamics for these games correspond to the local search algorithm for
the Max-Cut problem. Schaffer and Yannakakis [22] proved that finding a Nash equilibrium in
this game is PLS-complete. Christodoulou et. al [8] showed an exponential lower bound for the
convergence time of (exact) best-response dynamics to constant-factor approximate solutions in
these games. In contrast, we show polynomial convergence of α-Nash best-response dynamics
in these games. Market sharing games are a special case of profit maximizing congestion
games and valid-utility games [24] that has been studied for the content distribution in service
provider networks [14]. Mirrokni and Vetta [18] show that after one round of best responses
in which each player get exactly one chance to play best response, players reach an O(log n)-
approximate solution.

2 Preliminaries

2.1 General Definitions

Strategic games. A strategic game (or a normal-form game) Λ =< N, (Σi), (ui) > has a
finite set N = {1, . . . , n} of players. Player i ∈ N has a set Σi of actions (or strategies).
We call a game symmetric if all players share the same set of strategies, otherwise we call it
asymmetric. The joint action set is Σ = Σ1 × · · · × Σn and a joint action S ∈ Σ is also called
a profile or strategy profile. The payoff function of player i is ui : Σ → R, which maps the
joint action S ∈ Σ to a real number. Let S = (S1, . . . , Sn) denote the profile of actions taken
by the players, and let S−i = (S1, . . . , Si−1, Si+1, . . . , Sn) denote the profile of actions taken
by all players other than player i. Note that S = (Si, S−i). An improvement move S′

i for a
player i in a profile S is a move for which ui(S−i, S

′
i) ≥ ui(S). A best response move S′′

i for a
player i in a profile S is an improvement move that has the maximum payoff. In this paper,
we consider two types of games: cost minimizing games and profit maximizing games. In cost
minimizing games, each player i wants to minimize the cost ci(S) = −ui(S) in strategy profile
S. This type of games include congestion games with polynomial latency functions. In profit
maximizing games, each player i wants to maximize the profit pi(S) = ui(S) in strategy profile
S. This type of games include market sharing games and cut games.
Nash equilibria (NE): A joint action S ∈ Σ is a pure Nash equilibrium if no player i ∈ N
can benefit from unilaterally deviating from his action to another action, i.e., ∀i ∈ N ∀S′

i ∈
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Σi : ui(S−i, S
′
i) ≤ ui(S). We can also define α-Nash equilibria as follows. For 1 > α > 0, a

state S is an α-Nash equilibrium if for every player i, ci(S−i, S
′
i) ≥ (1−α)ci(S) for all S′

i ∈ Σi.
State graph. Given any game Λ, the state graph G(Λ) is an arc-labelled directed graph as
follows. Each vertex in the graph represents a joint action S. There is an arc from state S to
state S′ with label i iff there exists player i and action S′

i ∈ Σi such that S′ = (S−i, S
′
i), i.e.,

S′ is obtained from S by a move of a single player i that improves his payoff from S to S′.
Exact potential games. A game is called an exact potential game if there is a function φ
such that for any edge of the state graph (S, S′) with deviation of player i, we have φ(S′) −
φ(S) = ui(S′)− ui(S). We denote the minimal potential of the game by φ∗.
Social function. Given any game Λ, in order to measure the performance of strategy profiles
of players, we define a social function for any strategy profile S. This social function for
minimizing cost games is denoted by cost(S) and we denote by OPT (Λ) the minimal social
cost of a game Λ. i.e., OPT (Λ) = minS∈Σ costΛ(S). We denote by costZ(S), the sum of the
payoffs of the players in the set Z, when the game Λ is clear from the context, i.e., costZ(S) =∑

i∈Z ci(S). For profit maximizing games, the social function is denoted by profit(S) and we
denote by OPT (Λ) the maximal social cost of a game Λ. i.e., OPT (Λ) = maxS∈Σ profitΛ(S).
We denote by profitZ(S), the sum of the payoffs of the players in the set Z, when the game
Λ is clear from the context, i.e., profitZ(S) =

∑
i∈Z pi(S).

α-Nash dynamics. For 0 < α ≤ 1, this dynamics allows only α-moves of the players, where
α-move of a player is a move that improves his cost by a factor more than 1−α, i.e., if player i
moves from action Si to action S′

i then ci(S−i, S
′
i) < (1−α)ci(S). We consider the unrestricted

α-Nash dynamics with liveness property, which allows an adversary to order the players moves
in each round as long as every player has at least one chance to move in each round. The
liveness property requirement is that in each interval of length T every player appears at least
once. For profit maximizing games, an α-move is a move that increases the payoff by a factor
more than 1+α. In these games, we study α-Nash dynamics under the assumption that players
play a best response when they get a chance. We call this dynamics, the α-Nash best-response
dynamics. Also, an α-Nash best-response move is a best response α-move.

α-Nash best-response dynamics is also considered by [17, 8] (called 1 + α-greedy players).
The liveness property have been considered by [7] and [18]. Mirrokni and Vetta [18] call a
round in which each player gets at least a chance to move, a covering walk.
Nice Potential Games. Consider a potential game Λ. Let S be a profile of the players and
let S′

i be the best response for any player i. For each player i, let ∆i(S) = ci(S)− ci(S−i, S
′
i)

and let ∆(S) =
∑

i ∆i(S). Also, for any set of players Z, let ∆Z(S) =
∑

i∈Z ∆i(S). We
may drop the (S) part of the terms and denote these terms by ∆i and ∆Z , if the profile is
determined clearly in the context.

Definition 2.1 An exact potential game Λ with potential function φ is β-nice iff for any state
S, it holds that (i) cost(S) ≤ βOPT (Λ) + 2∆(S), and (ii) φ(S) ≤ cost(S).

We consider exact potential games, which are β-nice, where β is the price of anarchy of
the game. We show that the α-Nash dynamics converges in polynomial time to a state S with
∆(S) that is arbitrarily close to zero. Therefore the approximation ratio of the solution S is
arbitrarily close to the price of anarchy.
Bounded Jump Property.
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Definition 2.2 (γ-Bounded Jump). For any value γ ≥ 1, a game Λ satisfies the γ-bounded
jump condition if for every profile S and every player i with improvement move S′

i, it holds
that

1. cj(S)− cj(S−i, S
′
i) ≤ ci(S).

2. for every improvement action S′
j of player j, it holds cj(S−{i,j}, S

′
i, S

′
j) − cj(S−j , S

′
j) ≤

γ · ci(S−i, S
′
i).

Lemma 4.6 shows that congestion games with resources that satisfy the γ-bounded jump
condition, studied in [7, 23], satisfy the γ-bounded jump property according to definition 2.2.
Therefore it is sufficient to assume the bounded jump property according to definition 2.2 for
this class of games.
ε-approximate α-equilibria. Given a strategy profile S, we call the set of players that
cannot make an α-move, α-equilibrium players.

Definition 2.3 A state S is an ε-approximate α-equilibrium if ∆O(S) ≤ ε · cost(S) where O
is the set of players that can play an α-move.

2.2 Cost Minimizing Congestion Games

In this part, we define cost minimizing congestion games. Since the focus of this paper is on
these games, and for brevity, we call these games, congestion games.
Unweighted Congestion Games. An unweighted congestion game is defined by a tuple
< N,E, (Σi)i∈N , (de)e∈E > where E is a set of facilities, Σi ⊆ 2E the strategy space of player i,
and de : N → Z a delay function associated with resource e. For a joint action S, we define the
congestion ne(S) on resource e by ne(S) = |{i|e ∈ Si}|, that is ne(S) is the number of players
that selected an action containing resource e in S. The cost ci(S) of player i in a joint action
S is ci(S) = −ui(S) =

∑
e∈Si

de(ne(S)). [20] showed that every congestion game possesses at

least one pure Nash equilibrium by considering the potential function φ(S) =
∑

e

∑ne(S)
i=1 de(i).

Weighted Congestion Games. In weighted congestion games, player i has weighted demand
wi. We denote by le(S), the congestion(load) on resource e in a state S, i.e., le(S) =

∑
i|e∈Si

wi.
The cost of a player in a state S is c′i(S) =

∑
e∈Si

de(le(S)). The total cost is the weighted sum
cost(S) =

∑
i∈N wic

′
i(S) =

∑
e∈E lede(le(S)). Note that congestion games is a special case of

weighted congestion games with wi = 1 for every player i. [13] showed that every weighted con-
gestion game with linear latency functions possesses at least one pure Nash equilibrium by con-
sidering a potential function equivalent to φ(S) = 1

2

(∑
e le(S)de(le(S)) +

∑
i

∑
e∈Si

wide(wi)
)
.

We use the fact that this potential function is an exact potential function if the cost of a player
in a state S is wic

′
i(S). To simplify the presentation of the results we assume that the cost of

any player i in a state S is ci(S) = wic
′
i(S).

2.3 Profit Maximizing Congestion Games

Cut Games. Cut game is a profit maximizing congestion game that is defined on an edge-
weighted undirected graph G(V,E), with n vertices and edge weights w : E(G) → Q+. We
assume that G is connected, simple, and does not contain loops. For each v ∈ V (G), let deg(v)
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be the degree of v, and let Adj(v) be the set of neighbors of v. Let also wv =
∑

u∈Adj(v) wuv. A
cut in G is a partition of V (G) into two sets, T and T̄ = V (G)−T , and is denoted by (T, T̄ ). The
value of a cut is the sum of edges between the two sets T and T̄ , i.e profit(S) =

∑
v∈T,u∈T̄ wuv.

The cut game on a graph G(V,E), is defined as follows: each vertex v ∈ V (G) is a player,
and the strategy of v is to choose one side of the cut, i.e. v can choose Sv = −1 or Sv = 1. A
strategy profile S = (S1, S2, . . . , Sn), corresponds to a cut (T, T̄ ), where T = {i|Si = 1}. The
payoff of player v in a strategy profile S, denoted by pv(S), is equal to the contribution of v
in the cut, i.e. pv(S) =

∑
i:Si 6=Sv

wiv. It follows that the cut value is equal to 1
2

∑
v∈V pv(S).

If S is clear from the context, we use pv instead of pv(S) to denote the payoff of v. We denote
the maximum value of a cut in G, by c(G). These games are exact potential games, and the
potential function is φ(S) = profit(S) =

∑
v∈T,u∈T̄ wuv.

Market Sharing Games. A market sharing game is defined by a tuple < N,M, (Σi)i∈N , (vj)j∈M >
where M is a set of markets, Σi ⊆ 2M the strategy space of player i, and vj the value of market
j. For a joint action S, we define the congestion nj(S) on market j by nj(S) = |{i|j ∈ Si}|, that
is nj(S) is the number of players that selected an action containing market j in S. The payoff
pi(S) of player i in a joint action S is pi(S) = ui(S) =

∑
j∈Si

vj

nj(S) . Market sharing games

are maximization congestion games with potential function φ(S) = 1
log n

∑
j∈M

∑nj(S)
i=1

vj

i . The
social function is the sum of payoff of players or the total value of the market satisfied, i.e.,
profit(S) =

∑
i∈N pi(S) =

∑
j∈∪i∈NSi

vj .

3 Convergence of the α-Nash Dynamics

In this section, we consider the unrestricted α-Nash dynamics with a liveness property for nice
exact potential games satisfying the bounded jump property. Throughout this section, let C
be the set of α-equilibrium players and let O be the set of all other players, i.e., the players
that can make an α-move. First we observe the following simple lemma.

Lemma 3.1 If a state S is in an ε-approximate α-equilibrium, then ∆(S) ≤ (α + ε)cost(S).

Proof: Since C is the set of α-equilibrium players, ∆C(S) ≤ α · costC(S). Thus, ∆(S) =
∆C(S) + ∆O(S) ≤ (α + ε)cost(S).

As a warmup example, we consider a (restricted) basic dynamics, where in each step,
among all players that can play an α-move, we choose the player with the maximum absolute
improvement, and let him move.

Lemma 3.2 Let 1
8 > δ ≥ α. Consider an exact potential game Λ that satisfies the nice

property and any initial state Sinit. The basic dynamics generates a profile S with cost(S) ≤
β(1 + O(δ))OPT (Λ) in at most O

(
n
δ log(φ(Sinit)

φ∗ )
)

steps.

Proof: Consider a step that starts with profile S. Let εO = ∆O(S)/cost(S). By definition 2.3
the state S is an εO-approximate α-equilibrium. Now, there are two cases:
Case 1: εO ≤ δ. It follows from Lemma 3.1 that ∆(S) ≤ (α + εO)cost(S) ≤ (α + δ)cost(S).
Hence, by definition 2.1, the dynamics reached β(1 + 4(α + δ))-approximation of the optimal
cost.

6



Case 2: εO > δ. It follows that ∆O(S) > δ · cost(S). Hence, there exists a player j ∈ O such
that ∆j(S) > δ

ncost(S). Thus, ∆j(S) > δ
nφ(S), since φ(S) ≤ cost(S). Therefore the potential

gain is at least δ
nφ(S). Let φ(t) denote the potential in step t. Then, φ(t) ≤ φ(Sinit)(1− δ

n)t.
Since φ(t) ≥ φ∗, the upper bound on the number of steps follows.

The above basic Nash dynamics requires some coordination that chooses the player with
the maximum gain at each step. Now we show similar results for unrestricted Nash dynamics.

Theorem 3.3 Let 1
8 > δ ≥ 4α. Consider an exact potential game Λ that satisfies the nice

property and the γ-bounded jump condition. For any initial state Sinit, the unrestricted α-Nash
dynamics generates a profile S with cost(S) ≤ β(1+O(δ))OPT (Λ) in at most O

(
γn
αδ log(φ(Sinit)

φ∗ ) · T
)

steps.

Before proving Theorem 3.3 we point out that the α-Nash dynamics is necessary for poly-
nomial time convergence to nearly optimal solutions for nice exact potential games satisfying
the bounded jump property, that is, we show that even after exponentially many steps, the
unrestricted exact Nash dynamics with a liveness property for asymmetric congestion games
with linear delay functions may generate strategy profiles whose social cost is far from the
optimal solution.

Theorem 3.4 There exists an exact potential game Λ that satisfies the nice property and the
γ-bounded jump condition, and an initial state Sinit from which the unrestricted exact best-
response dynamics generates a profile S with cost(S) ≥ Ω(

√
n

log n)OPT after an exponential
number of steps. In particular, this holds for a congestion game with linear latency functions.

The proof of this theorem is based on constructing a long involved example with several
components, and is left to Section A of the appendix. We now present the proof of Theorem

Proof: (of Theorem 3.3) Let α′ = 4α. It is sufficient to consider the case that the players
are not in a δ-approximate α′-equilibrium, since otherwise it follows from Lemma 3.1 and
Definition 2.1 that the dynamics reached a β(1+4(α′ + δ))-approximation of the optimal cost.
We show that in each interval of T steps the potential decreases by a factor of at least αδ

4γn .
Let S0, S1, . . . , ST denote the joint actions of the players in times 0, 1, . . . , T of this interval
respectively. Since S0 is not a δ-approximate α′-equilibrium, there exists a player with an
improvement α′-move. Consider player j with the maximum absolute improvement α′-move
and let S′

j be his best response. Recall that ∆j(S0) = cj(S0)− cj(S0
−j , S

′
j). Let ∆′

j = ∆j(S0)
and let t′ be the first time in this interval that player j is allowed to move. We denote by U
the set of times before time t′, where players made α-moves and we denote by w(t) the player
that moved at time t for each t ∈ U . Let A =

∑
t∈U cw(t)(St) be the sum of the costs of the

moving players when they make their moves. Now, we consider two cases:
Case 1: A ≤ ∆′

j

4γ . By the first condition of the bounded jump property, we have for each t ∈ U

cj(St)− cj(St+1) ≤ cw(t)(S
t). (1)

Summing over all times t ∈ U , we obtain:

cj(S0)− cj(St′) ≤
∑
t∈U

cw(t)(S
t) = A ≤

∆′
j

4γ
≤

∆′
j

4
. (2)
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Where the first inequality follows since the sum of the left hand side of equation (1) telescopes.
Similarly, by the second property of the bounded jump assumption, we obtain

cj(St′
−j , S

′
j)− cj(S0

−j , S
′
j) ≤ γ ·A ≤ γ

∆′
j

4γ
≤

∆′
j

4
. (3)

By summing inequalities (2) and (3), we get

cj(St′)− cj(St′
−j , S

′
j) ≥ cj(S0)− cj(S0

−j , S
′
j)−

∆′
j

2
= ∆′

j −
∆′

j

2
=

∆′
j

2
. (4)

By the second property of the bounded jump assumption we also get

cj(St′) ≤ cj(S0) + γ ·A ≤ cj(S0) + γ
∆′

j

4γ
= cj(S0) +

∆′
j

4
. (5)

Hence,

cj(St′) ≤ cj(S0) +
∆′

j

4
<

∆′
j

α′ +
∆′

j

4
< 2

∆′
j

4α
=

∆′
j

2α
.

Where the second inequality follows from the fact that ∆′
j is the improvement of player j

when making his best response, which is an α′-move in step 0. Thus, α · cj(St′) <
∆′

j

2 . As
a result, using this inequality and inequality (4), we get α · cj(St′) < cj(St′) − cj(St′

−j , S
′
j).

Therefore, player j can make an α-move at time t′ and decrease the potential φ by at least
α · cj(St′) ≥ α

∆′
j

2 ≥ αδ
2nφ(S0).

Case 2: A >
∆′

j

4γ . Since A is the sum of the costs of players making an α-move when making

the move, these players decrease the potential φ by at least αA >
α∆′

j

4γ ≥ αδ
4γnφ(S0).

Let φ(i) denote the potential in round i. Then, in both cases φ(i) ≤ φ(Sinit)(1 − αδ
4γn)i.

Since φ(i) ≥ φ∗, the upper bound on the number of steps follows.

Remark 3.5 The above theorem shows that we reach a state with cost at most β(1 +
O(δ)) of the optimum after polynomial number of α-moves. Eventhough after this state the
cost of solutions can increase, it follows from the proof of the theorem that the number of
states in which the cost of the solution is more than a β(1 + O(δ))-approximation is at most
O(γn

αδ log(φ(Sinit)
φ∗ )T ). In addition, since the potential function is always decreasing after any

α-move, the cost can increase by a factor of at most cost(S)
φ(S) . It is not hard to show that the

ratio cost(S)
φ(S) for any strategy profile in congestion games with polynomial delay functions of

degree d is at most O(d) and for weighted congestion games with linear functions is at most
O(1). As a result, for both type of congestion games that we consider in Section 4, the cost
of any state after a polynomial number of steps reach a constant-factor approximate solution
and remains within a constant factor of the optimal solution.

4 Congestion Games

In this section we consider weighted congestion games with linear latency functions and con-
gestion games with linear and polynomial latency functions.
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4.1 Linear Latency Functions

In this section we consider weighed and unweighted congestion games with linear latency func-
tions. Specifically de(x) = aex + be for each resources e ∈ E, where ae and be are nonnegative
reals. For simplicity we only consider the identity function de(x) = x. It is easy to verify that
all the proofs work for the general case as well.

4.1.1 Weighted Congestion Games

We first show that weighted congestion games with linear latency functions are β-nice according
to definition 2.1 with β = 3+

√
5

2 ≈ 2.618.

Lemma 4.1 Congestion games with linear latency functions are β-nice potential games with
β = 3+

√
5

2 .

Next we show that weighted congestion game with linear delay functions satisfy the 1-bounded
jump condition.

Lemma 4.2 Let Λ be a weighted congestion game with linear delay functions. Then, the game
Λ satisfies the 1-bounded jump condition according to definition 2.2.

The proof of the above two lemmas can be found in the appendix. Theorem 3.3 and Lemmas
4.1, 4.2 yield the following corollary.

Corollary 4.3 Let 1
8 > δ ≥ α. Consider a weighted congestion game Λ with linear latency

functions and any initial state Sinit. The unrestricted α-Nash dynamics with liveness property
generates a profile S with cost(S) ≤ 3+

√
5

2 (1+O(δ))OPT (Λ) in at most O
(

n
αδ log(φ(Sinit)

φ∗ ) · T
)

steps.

4.1.2 Unweighted Congestion Games

We first show that congestion games with linear latency functions are β-nice according to
definition 2.1 with β = 2.5. In the proof of this lemma, we use two Lemmas which appear in
[9], and are stated in the appendix.

Lemma 4.4 Congestion games with linear latency functions are β-nice potential games with
β = 2.5.

Next we show that unweighted congestion games with resources that satisfy the γ-bounded
jump condition, satisfy the γ-bounded jump condition according to definition 2.2.

Definition 4.5 (resource γ-bounded jump). Resource e satisfies the γ-bounded jump condition
if its delay function satisfies de(x + 1) ≤ γ · de(x) for every x ≥ 1, for γ ≥ 1.

Lemma 4.6 Let Λ be a congestion game with nonnegative, non-decreasing delay functions in
which every resource has γ-bounded jump. Then, the game Λ satisfies the γ-bounded jump
condition according to definition 2.2.

9



The proof of the above two lemmas can be found in the appendix. Theorem 3.3, Lemmas
4.4, 4.6 and the fact that resource with linear latency function has 2-bounded jump, yield the
following corollary.

Corollary 4.7 Let 1
8 > δ ≥ α. Consider a congestion game Λ with linear latency functions

and any initial state Sinit. The unrestricted α-Nash dynamics with liveness property generates
a profile S with cost(S) ≤ 2.5(1 + O(δ))OPT (Λ) in at mostO

(
n
αδ log(φ(Sinit)

φ∗ ) · T
)

steps.

4.2 Polynomial Latency Functions

In this section, we consider congestion games with polynomial latency functions of degree d.
We show that congestion games with polynomial latency functions are β-nice according to
definition 2.1 with β = dd(1−o(1)). Price of anarchy results which appear in [9] imply that for
β = dd(1−o(1)) and for every profile S equation (??) in definition 2.1 holds.

Lemma 4.8 Congestion games with polynomial latency functions of degree d are β-nice po-
tential games with β = dd(1−o(1)).

Theorem 3.3, Lemmas 4.8, 4.6 and the fact that resource with polynomial of degree d
latency function has 2d-bounded jump, yield the following corollary.

Corollary 4.9 Let 1
8 > δ ≥ α. Consider a congestion game Λ with polynomial latency func-

tions of degree d and any initial state Sinit. The unrestricted dynamics generates a profile S

with cost(S) ≤ dd(1−o(1))(1 + O(δ))OPT (Λ) in at most O
(

2d·n
αδ log(φ(Sinit)

φ∗ ) · T
)

steps.

5 Profit Maximizing Congestion Games

In this section, we extend the results for cost minimizing congestion games to profit maximizing
congestion games. We first define some preliminaries for these games. Consider an exact
potential game Λ. Let S be a profile of the players and let S

′
i be a best response strategy

for player i in strategy profile S. The payoff of player i in strategy profile S is denoted by
pi(S) and each player wants to maximize its payoff. In this setting, for each player i, let
∆i(S) = pi(S−i, S

′
i)− pi(S) and let ∆(S) =

∑
i ∆i(S).

Definition 5.1 An exact potential game Λ with potential function φ is β-nice iff for any state
S it holds that (i) β · (profit(S) + ∆(S)) ≥ OPT (Λ), and (ii) φ(S) ≤ profit(S).

Definition 5.2 (γ-Bounded Jump). Consider any profile S and any player i with improvement
move S′

i. Then, for every player j the following properties hold:

1. pj(S−i, S
′
i)− pj(S) ≤ pi(S−i, S

′
i)

2. for every improvement action S′
j of player j, it holds pj(S−j , S

′
j) − pj(S−{i,j}, S

′
i, S

′
j) ≤

γ · pi(S−i, S
′
i)
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5.1 Convergence of profit maximizing games

Similar to the proof of Theorem 3.3 for convergence of unrestricted α-Nash dynamics in cost
minimizing games, we can prove the following general theorem for convergence time of the
α-Nash best-response dynamics profit maximizing games.

Theorem 5.3 Let 1
8 > δ ≥ 4α. Consider an exact potential game Λ that satisfies the nice

property and the bounded jump condition. For any initial state Sinit the unrestricted α–Nash
best-response dynamics with liveness property generates a profile S with β(1+O(δ))profit(S) ≥
OPT (Λ) in at most O

(
γn
αδ log( φ∗

φ(Sinit)
) · T

)
steps.

The proof of this theorem is very similar to that of Theorem 3.3 and is left to Section C in the
appendix.

6 Cut Games and Market Sharing Games

Using Theorem 5.3, in order to prove polynomial convergence of α-Nash best-response dynam-
ics in cut games and market sharing games, we can show that both of these games satisfy
the 2-nice and 1-bounded jump properties. The proofs of these properties can be found in
Sections D and E of the appendix.

Corollary 6.1 Let 1
8 > δ ≥ 4α. Consider a cut game or a market sharing game Λ with and

any initial state Sinit. The unrestricted α–Nash best-response dynamics with liveness property
generates a profile S with profit 1

(2+O(δ))OPT (Λ) in at most O
(

n
αδ log( φ∗

φ(Sinit)
) · T

)
steps.
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[10] Artur Czumaj and Berthold Vöcking. Tight bounds for worst-case equilibria. In SODA,
pages 413–420, 2002.

[11] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The com-
plexity of computing a nash equilibrium. In Proceedings of the thirty-eighth annual ACM
symposium on Theory of computing, pages 71–78, 2006.

[12] Alex Fabrikant, Christos Papadimitriou, and Kunal Talwar. The complexity of pure
nash equilibria. In Proceedings of the thirty-sixth annual ACM symposium on Theory of
computing, pages 604–612, 2004.

[13] D. Fotakis, S. Kontogiannis, and P. Spirakis. Selfish unsplittable flows. Theoretical Com-
puter Science, Special Issue on ICALP 2004, 348:226–239, 2005.

[14] M. Goemans, L. Li, V.S.Mirrokni, and M. Thottan. Market sharing games applied to
content distribution in ad-hoc networks. In MOBIHOC, 2004.

[15] M. Goemans, V. S. Mirrokni, and A. Vetta. Sink equilibria and convergence. In FOCS,
2005.

[16] D. Johnson, C.H. Papadimitriou, and M. Yannakakis. How easy is local search? Journal
of Computer and System Sciences, 37:79–100, 1988.

[17] V. S. Mirrokni. Approximation Algorithms for Distributed and Selfish Agents. Massa-
chusetts Institute of Technology, 2005.

[18] V.S. Mirrokni and A. Vetta. Convergence issues in competitive games. In RANDOM-
APPROX, pages 183–194, 2004.

[19] Christos Papadimitriou. Algorithms, Games, and the Internet. In Proceedings of 33rd
STOC, pages 749–753, 2001.

[20] R. W. Rosenthal. A class of games possesing pure-strategy nash equilibria. International
Journal of Game Theory, 2:65–67, 1973.

[21] T. Roughgarden and Eva Tardos. How bad is selfish routing? Journal of the ACM,
49(2):236 – 259, 2002.

[22] A. Schaffer and M. Yannakakis. Simple local search problems that are hard to solve. SIAM
journal on Computing, 20(1):56–87, 1991.

12
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A Convergence of the exact Nash Dynamics

Here, we consider the unrestricted exact Nash dynamics with a liveness property for nice exact
potential games satisfying the bounded jump property. We show that even after exponentially
many steps, the exact Nash dynamics for linear congestion games may generate strategy profiles
whose social cost is far from the optimal solution.

Theorem A.1 After exponentially many steps of the exact Nash dynamics of congestion
games with linear latency functions, we may reach solutions whose cost is more than Ω(

√
n

log n)OPT .

Proof: We construct a congestion game Γn consisting of four types of players: (i) counter
players representing a binary counter, (ii) congestion players consisting of a group of A-players
and one C-player, (iii) bit players denoted by B-players, and (iv) trigger players consisting
of T -players, R-players, and a Q-player. For a large integer number M , we show that there
exists a best-response sequence of exponential length in which the the counter players have
delays of at least M . However, each of the counter players has a strategy with one unique
extra resource with the delay function `(x) = 5M√

n
x. But each time a counter player has the

chance to change his strategy, his extra resource is congested by
√

n congestion players. In
each step of the counter, the congestion players successively allocate all extra resources of the
counter players. Thus, after each step, every counter player gets a chance to deviate but it
does not have an incentive to change to its extra resource. However, in the optimal solution,
the counter players can deviate to their extra strategy that has delay of M√

n
. The cost of the

optimal solution is dominated by the cost of the
√

n congestion players that have delay of
O(log n)M . Thus, even after an exponentially long sequence of best response, the social cost
is at least Ω( n√

n log n
)OPT = Ω(

√
n

log n)OPT .
First we describe the high-level idea of the construction of the congestion game. A main

component of this game is an n-bit counter consisting of 4n counter players. This counter
is similar to existing examples, e.g., [?]. The best response sequence of the counter players
count downwards from 2n − 1 to 0. In each counting step of the counter, we give all players
a chance to move. For each player, there exists an extra a-resource and an additional Alt
strategy that consists of only this resource. If a player changes to that strategy and no other
player is on that resource, he can decrease his delay by a factor of k =

√
n. However, there

are k =
√

n congestion players, denoted by A-players, that are on that resource making a
deviation of a counter player not favorable In addition, in each counting step of the counter,
we let the C-player successively occupy the c-resources of the bits of the counter that are 1.
This prevents these bits from switching to 0. Thus, we can give all counter players a chance
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Player Strategies Resources Delays
Initi One r1

i 4M + 8δi

Zero r2
i M/M + 2δi

r3
i M/M + 4δi

ci M/2M
r5
i M/M + 9δi

Alt a1
i

5M
k x

Changei One r2
i M/M + 2δi

r M

Zero r4
i M/M + 3δi

q 100n(n + 1)x
r6
i−1 M + 10δi−1

Alt a2
i

5M
k x

Player Strategies Resources Delays
Donei One r3

i M/M + 4δi

Zero r4
i M/M + 3δi

Alt a3
i

5M
k x

Reseti One r6
i M + 10δi

r M

Zero r5
i M + 9δi

r6
i−1 M + 10δi−1

Alt a4
i

5M
k x

Figure 1: The strategies of the four counter players for the i-th bit. For delay functions, if they
have x in the description, the delay function f(x) is given in terms of the congestion x. If the
resource is used only by one or two players, the delay function is denoted by r1/r2 where r1 and
r2 are delays for congestion 1 and 2 respectively. The scaling factor δ is at least 200n(n + 1).

to move. To ensure that all the A-players pile up on the same a-resources, we have log4n B-
players that encode binary numbers corresponding to the a-resources which are to be allocated
by the A-players. This way, we make sure that the only profitable deviation of the A-players
is to allocate this particular a-resource, since the delay of the other strategies is higher due to
the B-players. Finally, the delay of the trigger players increases by the counter players in each
step of the counter. Their best responses increase the delays of the bit and congestion players
such that the all the aforementioned strategy changes are best responses.

We now describe the construction of the game. We say a player is activated or we activate
a player if we let him play his best response. We first describe the details of the n-bit counter.
For each bit i with 1 ≤ i ≤ n we have 4 players, see Figure A for the complete description of
their strategies and of the resources.

We say the i-th bit of the counter is 1 if player Initi plays his One-strategy and 0 otherwise.
We construct a best-response sequence that consist of exponentially many rounds. We start
the sequence with all counter players playing One and we ensure that no counter player changes
to Alt until the end of the process. In each round, all players are activated at least once.

In order to prove the result, we make certain assumptions on the usage of certain resources
by other players. We will later show, that these assumptions hold throughout the process. Let
x be the value of the counter and i be the bit that flips from 1 to 0 when changing to x − 1.
Throughout the process, we make sure that the following three conditions hold:

1. (A1) Each time we activate a player, the a-resource in his Alt strategy is congested by k
A-players.

2. (A2) If we activate a player Initi′ with i′ 6= i and Initi′ plays One, then the resource bi′

is allocated by another player.
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3. (A3) The resource q is allocated by at most one other player.

activated player best response
1 Initi+1, . . . ,Initn unchanged
2 Donei+1, . . . ,Donen One if his Init player plays One, Zero otherwise.
3 Changei+1, . . . ,Changen One
4 Reseti, . . . ,Resetn One
5 Initi Zero
6 Triggeri Zero
7 Reseti−1, . . . ,Reset1 Zero
8 Initi−1, . . . ,Init1 One
9 Donei−1, . . . ,Done1 One
10 Triggeri−1, . . . ,Trigger1 One
11 Donei Zero
12 Triggeri One

Figure 2: Sequence of activations and best responses of one round four counter players. This
round corresponds to one step of the counter in which the i-th bit switches from 1 to 0.

The activation sequence of counter players is described in Figure A. Essentially, the players
corresponding to bits greater than i do not change their strategies. The player Initi changes
to Zero. This results in a sequence of best responses in which the less significant bits change
to 1. Thus, under the above assumptions, the value of the counter decreases by exactly one in
each step. Note, that during each step one trigger player allocates the resource T and leaves
it again. We will now describe the next component, a set of trigger players that make use of
this fact.

The trigger component consists of a large set of trigger players. We use these player
to repeatedly increase and decrease the delay on some resources of the components that we
describe later. Trigger players consist of one player Q and several T -players and R-players.
Each trigger player has two strategies Wait and Trigger. See Figure A for a detailed description
of the strategies and resources. Only player Q is interested in resource q. Hence, condition A3
is satisfied.

The best response for Q is Wait, if none of the players of the counter allocates the resource
q, otherwise his best response is Trigger. The best response for a R-player is Wait, if Q is on
Wait, otherwise his best response is Trigger. The best response for a T -player is Wait if Q
is on Wait or the R-player with the same index is on Trigger, otherwise his best response is
Trigger.

Assume all players play Wait except player Q who plays Trigger. Then there is a best-
response sequence that can be divided to n + 1 segments. Each segment contains contains
strategy profiles S1, . . . , S6 with Si occurs before Si+1. These strategy profiles have the follow-
ing properties:

(S1) For an arbitrary set I ⊆ {0, . . . , n}, each resource in {tCi}i∈I is allocated by one T -player.
Each resource in {tCi}i6∈I is not allocated by any T -player.

(S2) No resource tAj is allocated by any T -player.
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Player Strategies Resources Delays
Q Wait q 100n(n + 1)x

Trigger rT 100n(n + 1)
qj
Ci

5x

pj
Ci

7x

qAi 5kx
pAi 7kx
pB0

i
7mx

pB1
i

7mx

qB0
i

5mx

qB1
i

5mx

T j
Ci

for each 1 ≤ i ≤ n

and 1 ≤ j ≤ n + 1 Wait qj
Ci

5x

Trigger tCi 2x

rj
Ci

5x

Rj
Ci

for each 1 ≤ i ≤ n

and 1 ≤ j ≤ n + 1 Wait pj
Ci

7x

Reset rj
Ci

5x

3
TAi for each 1 ≤ i ≤ n + 1 Wait qAi 5kx

Trigger tAj for all 1 ≤ j ≤ k 2x
rAi 5kx

RAifor each 1 ≤ i ≤ n + 1 Wait pAi 7kx

Reset rAi 5kx
3k

TB0
i
for each 1 ≤ i ≤ n + 1 Wait qB0

i
5mx

Trigger tB0
j

for all 1 ≤ j ≤ m 2x

rB0
i

5mx

RB0
i
for each 1 ≤ i ≤ n + 1 Wait pB0

i
7mx

Reset rB0
i

5mx

3k

TB1
i
for each 1 ≤ i ≤ n + 1 Wait qB1

i
5mx

Trigger tB1
j

for all 1 ≤ j ≤ m 2x

rB1
i

5mx

RB1
i
for each 1 ≤ i ≤ n + 1 Wait pB1

i
7mx

Reset rB1
i

5mx

3k

Figure 3: Description of all trigger players. The description of delay functions f(x) is given in
terms of the congestion x.
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(S3) Each resource tB0
j

is allocated by one T -player. No resource tB1
j

is allocated by any
T -player.

(S4) Each resource tB1
j

is allocated by one T -player. No resource tB0
j

is allocated by any
T -player.

(S5) Each resource tAj is allocated by one T -player.

(S6) No resource tCi is allocated by any T -player.

Note that during each step of the counter, the resource q is allocated by a player of the
counter. At the end of each step, it is no longer allocated by any player of the counter. We
therefore assume that during each step of the counter, there exist a best-response sequence of
the trigger players consisting of n + 1 of the aforementioned segments.

We are now ready to describe the remaining component consisting of bit players and con-
gestion players. In this part, we make use of sequence of strategy profiles of the trigger players
and show that the desired assumptions for the counter are met. There are m = dlog 4ne bit
players, denoted by B-players, that encode which of the a-resources are to be allocated by
k = d

√
ne A-players. Furthermore, there is one C-player that allocates one of the c-resources.

The complete description of these players and their strategies can be found in Figure A.

Player Strategies Resources Delays
Aj Zero rA 6mM + 5M

k j
for each 1 ≤ j ≤ k tAj 2x

(i, l) aj
i

5M
k x

for each 1 ≤ i ≤ n b0
y if the y-th bit of 4i + l is 0 6Mx

and 1 ≤ l ≤ 4 b1
y if the y-th bit of 4i + l is 1 6Mx

r 3
Bj Zero b0

j 3Mx

for each 1 ≤ j ≤ m tB0
j

2x

One b1
j 3Mx

tB1
j

2x

C Zero rC M
tC0 2x

i ci Mx
for each 1 ≤ i ≤ n tCi 2x

Figure 4: The A-, B-, and C-players and their strategies. The description of delay functions
f(x) is given in terms of the congestion x.

Now we describe another condition involving B-players that is met through the process.

Condition C1 No other player except the B-players allocate any b-resource.

Consider a strategy profile corresponding to S3. In this case, the best response of every
B-player is One. Consider a strategy profile corresponding to S4. Then the best response of
every B-player is Zero. Thus, in each of the n + 1 segments of the best-response sequence of
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the Trigger players, there is a best response sequence of the B-players that leads to a strategy
profile in which the B-player encode an arbitrary number.

We now show, that given a segment of best-responses by the Trigger players there is a best
response sequence such that all k A-players allocate an arbitrary resource aj

i We start with
a strategy profile S2 and activate the A players in ascending order starting with A1. Each
player’s best response is Zero. This satisfies condition C1. In the profile S3 and S4 the B-
players encode the number i ∗ 4 + j. In S5 we active the A players in ascending order starting
with A1. Each player’s best response is (i, j). Thus, in each step of the counter, the A-players
successively allocate n+1 arbitrary a-resources. We choose the a-resources such that condition
A1 is satisfied.

Finally, there is exists C-player that is used to make sure that condition A2 is satisfied.
Given a strategy profile S1 in which exactly one resource tCi is not allocated by a trigger player,
his best response is the strategy i. Thus, there is a best-response sequence in which in every
step of the counter the C-player successively allocate n + 1 arbitrary c-resources. We choose
the latency functions of c-resources in a way to make sure that condition A2 is satisfied.

B Missing Proofs of Section 4

Proof of Lemma 4.2 The proof require the following two Lemmas. The first lemma appears
in [3] and the second lemma is a simple fact.

Lemma B.1 Consider a weighted congestion game Λ with linear delay functions. Let S be
any profile and S∗ be a profile of the optimal solution, then∑

i

ci(S−i, S
∗
i ) ≤

√
cost(S)

√
cost(S∗) + cost(S∗).

Lemma B.2 For every pair of nonnegative integers x, y, if x2 ≤ x+1+y, then x2 ≤ 3+
√

5
2 +2y.

Proof: Let S∗ be a profile of the optimal solution and let S be any profile. Applying
Lemma B.1, we get

∑
i ci(S−i, S

∗
i ) ≤

√
cost(S)

√
cost(S∗) + cost(S∗). Note that cost(S) −∑

i ci(S−i, S
∗
i ) ≤ ∆(S), since for any player i with best response S′

i, ci(S−i, S
′
i) ≤ ci(S−i, S

∗
i ).

Thus, by adding ∆(S) to both sides of the inequality, we get cost(S) ≤
√

cost(S)
√

cost(S∗) +

cost(S∗) + ∆(S). Let x =
√

cost(S)
cost(S∗) and let y = ∆(S)

cost(S∗) . Now, we divide the above inequality

by cost(S∗) and express the result in terms of x and y. Thus, x2 ≤ x+1+y. Applying Lemma
B.2, we get x2 ≤ 3+

√
5

2 + 2y. This completes the proof of the Lemma.

Proof of Lemma 4.2
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Proof: Consider any profile S and any player i with improving action S′
i. We first show the

first property in definition 2.2. Consider any player j. Then,

cj(S)− cj(S−i, S
′
i) ≤ wj

∑
e∈(Si\S′

i)∩Sj

le(S)− (le(S)− wi)

= wj

∑
e∈(Si\S′

i)∩Sj

wi = wi

∑
e∈(Si\S′

i)∩Sj

wj

≤ wi

∑
e∈(Si\S′

i)∩Sj

le(S) ≤ wi

∑
e∈Si

le(S)

= ci(S).

For the second property in definition 2.2. Consider any player j with action S′
j . Then,

cj(S−{i,j}, S
′
i, S

′
j)− cj(S−j , S

′
j) ≤ wj

∑
e∈(S′

i\Si)∩S′
j

(le(S−j , S
′
j) + wi)− le(S−j , S

′
j)

= wj

∑
e∈(S′

i\Si)∩S′
j

wi = wi

∑
e∈(S′

i\Si)∩S′
j

wj

≤ wi

∑
e∈(S′

i\Si)∩S′
j

le(S−i, S
′
i) ≤ wi

∑
e∈S′

i

le(S−i, S
′
i)

= ci(S−i, S
′
i).

Proof of Lemma 4.4 To present the proof of Lemma 4.4, we need requires the following
two Lemmas which appear in [9].

Lemma B.3 Consider a congestion game Λ with nonnegative, non-decreasing delay functions.
Let S be any profile and let S∗ be a profile of the optimal solution, then∑

i

ci(S−i, S
∗
i ) ≤

∑
e∈E

ne(S∗)de(ne(S) + 1).

Lemma B.4 For every pair of nonnegative integers x, y, it holds x(y + 1) ≤ 5
3x2 + 1

3y2.

Proof: Let S∗ be a profile of the optimal solution and let S be any profile. Applying Lemma
B.3, we obtain

∑
i ci(S−i, S

∗
i ) ≤

∑
e∈E ne(S∗)de(ne(S) + 1). Applying Lemma B.4, we get∑

i

ci(S−i, S
∗
i ) ≤

∑
e∈E

(
5
3
ne(S∗)2 +

1
3
ne(S)2

)
=

5
3

∑
e∈E

ne(S∗)2 +
1
3

∑
e∈E

ne(S)2

=
5
3
cost(S∗) +

1
3
cost(S).

Recall that cost(S) −
∑

i ci(S−i, S
∗
i ) ≤ ∆(S), where S′

i is the best response of any player i.
Thus, by multiplying the inequality by 3/2, adding ∆(S) to both sides and rearranging the
terms, we get

∑
i ci(S−i, S

∗
i ) ≤ 2.5·cost(S∗)+ ∆(S)

2 . Therefore, cost(S) ≤ 2.5·cost(S∗)+ 3
2∆(S).
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Proof of Lemma 4.6

Proof: Consider any profile S and any player i with improving action S′
i. We first show the

first property in definition 2.2. Consider any player j. Then,

cj(S)− cj(S−i, S
′
i) ≤

∑
e∈Si∩Sj

de(ne(S)) ≤ ci(S).

For the second property in definition 2.2. Consider any player j with action S′
j . Then,

cj(S−{i,j}, S
′
i, S

′
j)− cj(S−j , S

′
j) ≤

∑
e∈(S′

i\Si)∩S′
j

de(ne(S−i, S
′
i) + 1)

≤
∑

e∈(S′
i\Si)∩S′

j

γ · de(ne(S−i, S
′
i))

≤ γ · ci(S−i, S
′
i).

Where the second inequality uses the assumption that each resource e has γ-bounded jump.

C Convergence in Profit Maximizing Games

In this section, we prove general convergence results for profit maximizing games. First, we give
some definitions. Throughout this section, let C be the set of players that cannot make an α-
move; we call these players α-equilibrium players, and let O be the set of all other players, i.e.,
the players that can make an α-move. Let ∆C(S) =

∑
i∈C ∆i(S) and let ∆O(S) =

∑
i∈O ∆i(S).

Definition C.1 A state S is a ε-approximate α-equilibrium if ∆O(S) ≤ ε · profit(S).

Now, we observe the following simple lemma.

Lemma C.2 If a state S is in ε-approximate α-equilibrium, then ∆(S) ≤ (α + ε)profit(S).

Proof: Since C is the set of players in α-equilibrium, ∆C(S) ≤ α · profitC(S). Thus,

∆(S) = ∆C(S) + ∆O(S) ≤ (α + ε)profit(S).

As a warmup example, we prove the following lemma about the (restricted) basic best-
response dynamics in which at each step we choose a player that can play a best-response
α-move. We denote the maximal potential of the game by φ∗.

Lemma C.3 Let 1
8 > δ ≥ α. Consider an exact potential game Λ that satisfies the nice

property and any initial state Sinit. The basic best-response dynamics generates a profile S
with β(1 + O(δ))profit(S) ≥ OPT (Λ) in at most O(n

δ log( φ∗

φ(Sinit)
) steps.
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Proof: Consider a step that starts with profile S. Let εO = ∆O(S)
profit(S) . By definition C.1, the

state S is in εO-approximate α-equilibrium. Now, there are two cases:
Case 1: εO ≤ δ. It follows from Lemma C.2 that ∆(S) ≤ (α+εO)profit(S) ≤ (α+δ)profit(S).
Hence, by definition 5.1, the dynamics reached β(1+α+δ)-approximation of the optimal cost.
Case 2: εO > δ. It follows that ∆O(S) > δ · profit(S). Hence, there exists a player j ∈ O such
that ∆j(S) > δ

nprofit(S). Thus, ∆j(S) > δ
nφ(S), since φ(S) ≤ profit(S).

Therefore the potential gain is at least δ
nφ(S). Let φ(t) denote the potential in step t. Then,

φ(t) ≥ φ(Sinit)(1 + δ
n)t. Since φ(t) ≤ φ∗, the upper bound on the number of steps follows.

The following Theorem is the main result of this section.

Theorem C.4 Let 1
8 > δ ≥ 4α. Consider an exact potential game Λ that satisfies the nice

property and the bounded jump condition. For any initial state Sinit the unrestricted α-Nash
best-response dynamics with liveness property generates a profile S with β(1+O(δ))profit(S) ≥
OPT (Λ) in at most O

(
γn
αδ log( φ∗

φ(Sinit)
) · T

)
steps.

Proof: Let α′ = 4α. It is sufficient to consider the case that the players are not in a δ-
approximate α′-equilibrium, since otherwise it follows from Lemma C.2 and Definition 5.1
that the dynamics reached a β(1+O(δ))-approximation of the optimal profit. We show that in
each interval of T steps the potential increases by a factor of at least αδ

8γn . Let S0, S1, . . . , ST

denote the joint actions of the players in times 0, 1, . . . , T of this interval respectively. Since
S0 is not a δ-approximate α′-equilibrium, there exists a player with an improvement α′-move.
Consider player j with the maximum absolute improvement α′-move and let S′

j be his best
response. Recall that ∆j(S0) = pj(S0

−j , S
′
j) − pj(S0). Let ∆′

j = ∆j(S0) and let t′ be the first
time in this interval that player j is allowed to move. We denote by U the set of times before
time t′, where players made a best-response α-moves and we denote by w(t) the player that
moved at time t for each t ∈ U . Let A =

∑
t∈U pw(t)(St+1) be the sum of the profits of the

moving players after they make their moves. Now, we consider two cases:
Case 1: A ≤ ∆′

j

4γ . By the first property of the bounded jump assumption we have

pj(St′) ≤ pj(S0) + A ≤ pj(S0) +
∆′

j

4γ
≤ pj(S0) +

∆′
j

4
. (6)

By the second property of the bounded jump assumption we have

pj(St′
−j , S

′
j) ≥ pj(S0

−j , S
′
j)− γ ·A ≥ pj(S0

−j , S
′
j)− γ

∆′
j

4γ
= pj(S0

−j , S
′
j)−

∆′
j

4
.

Hence,

pj(St′
−j , S

′
j)− pj(St′) ≥ pj(S0

−j , S
′
j)− pj(S0)−

∆′
j

2
≥ ∆′

j −
∆′

j

2
=

∆′
j

2
. (7)

By equation (6) we get

pj(St′) ≤ pj(S0) +
∆′

j

4
<

∆′
j

α′ +
∆′

j

4
< 2

∆′
j

4α
=

∆′
j

2α
.
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Where the second inequality follows from the fact that ∆′
j is the improvement of player j when

making his best response, which is an α′-move in step 0. Thus,

α · pj(St′) <
∆′

j

2
. (8)

By inequalities (7) and (8) we have

α · pj(St′) < pj(St′
−j , S

′
j)− pj(St′)

Therefore, player j can make a best response α-move at time t′ and increase the potential φ

by at least
∆′

j

2 ≥ δ
2nφ(S0).

Case 2: A >
∆′

j

4γ . Since A is the sum of the profits of players making a best-response α-move

after making the move, these players increase the potential φ by at least α
1+αA > α

1+α · ∆′
j

4γ ≥
α∆′

j

8γ ≥ αδ
8γnφ(S0).

Let φ(i) denote the potential in round i. Then, in both cases φ(i) ≥ φ(Sinit)(1 + αδ
8γn)i.

Since φ(i) ≤ φ∗, the upper bound on the number of steps follows.

Remark C.5 The above theorem shows that we reach a state with profit at least 1
β(1+O(δ))

of the optimum after a polynomial number of best-response α-moves. Eventhough after this
state, the profit of solutions can decrease, it follows from the proof of the theorem that the
number of states in which the profit of the solution is less than β(1 + O(δ))-approximation is
at most O(γn

αδ log(φ(Sinit)
φ∗ ) · T ). In addition, since the potential function is always increasing

after any α-move, the profit can decrease by a factor of at most profit(S)
φ(S) . It is not hard to

show that the ratio profit(S)
φ(S) for any strategy profile in cut games and market sharing games

are exactly 1 and at most log(n) respectively. As a result, for cut games, the profit of any
state after a polynomial number of steps reach a 2+O(δ)-approximate solution and remains
within this factor afterwards. Also for market sharing games, the profit of any state after a
polynomial number of steps reach a 2+O(δ)-approximate solution and remains within a factor
of O(log n) of the optimal solution.

D Cut Games

In this section, we study convergence in cut games (also called the party affiliation games).
We show that these games are nice games that satisfy the bounded jump condition. First, we
show that cut games are 2-nice according to definition 5.1.

Lemma D.1 Cut games are β-nice potential games with β = 2.

Proof: We need to show that for any strategy profile S, 2(profit(S) + ∆(S)) ≥ OPT . To
do so, we show that 2(profit(S) + ∆(S)) ≥

∑
v∈V (G) wv. Given any strategy profile S, for

any player v, either pv(S) > wv
2 , or if pv(S) < wv

2 , then ∆v(S) ≥ wv − pv(S) − pv(S), thus
2(pv(S)+∆(S)) ≥ 2(wv−pv(S)) ≥ 2(wv− wv

2 ) = wv. Therefore, the cut game is a 2-nice game.
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Lemma D.2 Cut games satisfy the 1-bounded jump property.

Proof: For two players u and v, if player u changes his strategy and goes to the same side as
v, then payoff of v does not increase at all, thus pv(S−u, S′

u) ≤ pv(S)+pu(S−u, S′
u). Otherwise,

if player u changes his strategy to the other side of player v, the increase in the payoff of player
v is at most wu,v. Thus, pv(S−u, S′

u) ≤ pv(S) + wu,v ≤ pv(S) + pu(S−u, S′
u). This implies the

first condition of the bounded jump property.
Now, consider a strategy profile S and two players u and v with two new strategies S′

u and
S′

v. When player u changes his strategy to S′
u, if he decreases the payoff of strategy S′

v for player
v, then it decreases this payoff by at most wu,v. In this case, the payoff of u from switching to
his strategy is at least wu,v, therefore, pv(S−{u,v}, S

′
u, S′

v) ≥ pv(S−v, S
′
v)− pu(S−u, S′

u) which is
the second condition of the bounded jump property.

Corollary D.3 Let 1
8 > δ ≥ 4α. Consider a cut game Λ with and any initial state Sinit. The

unrestricted α-Nash best-response dynamics with a liveness property generates a profile S with
profit at least 1

(2+O(δ))OPT (Λ) in at mostO
(

n
αδ log(φ(Sinit)

φ∗ ) · T
)

steps.

E Market Sharing Games

In this section we consider market sharing games. We show that these games are 2-nice games
that satisfy the 1-bounded jump condition. First, we show that congestion games with linear
latency functions are 2-nice according to definition 5.1.

Lemma E.1 Market sharing games are β-nice potential games with β = 2.

Proof: We need to show that for any strategy profile S, 2(profit(S) + ∆) ≥ OPT . To do
so, we can show that profit(S) +

∑
i∈N pi(S−i, S

′
i) ≥ OPT where S′

i is the best response of
player i in strategy profile S. Let S∗ be the strategy profile of the optimal solution. Then
pi(S−i, S

′
i) ≥ pi(S−i, S

∗
i ). Let T be the set of markets that are satified in the optimal solution

, i.e., OPT =
∑

j∈T vj . Let R be the set of markets in T that are satisfied in S and L be
the rest of markets in T . All of markets in R are satisfied in S, thus the sum of profits of
markets in R is less than profit(S). Moreover, for any market j in L, if j ∈ S∗

i , then the profit
pi(S−i, S

∗
i ) contains the whole value vj of market j, since no other player plays this market.

Therefore,
∑

j∈L vj ≤
∑

i∈N pi(S−i, S
∗
i ) ≤

∑
i∈N pi(S−i, S

′
i). The above inequalities imply the

2-nice property as follows:

OPT =
∑
j∈T

vj =
∑
j∈R

vj +
∑
j∈L

vj ≤ profit(S) +
∑
i∈N

pi(S−i, S
′
i) ≤ 2(profit(S) + ∆).

Lemma E.2 Market sharing games satisfy the 1-bounded jump property.
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Proof: Consider two players i and i′ in strategy profile S. If player i′ changes his best response
strategy to S′

i′ , the congestion of each market j changes from vector nj to n′
j where nj − 1 ≤

n′
j ≤ nj + 1. Then the increase in the payoff of player i is at most

∑
j∈Si∩(Si′\S′

i′ )
( vj

nj−1 −
vj

nj
).

The payoff of player i′ after changing his strategy from Si to S′
i′ is at least

∑
j∈Si′

vj

nj
. For a

market j ∈ Si ∩ (Si′\S′
i′), at least two players i and i′ are playing market j in S, thus nj ≥ 2,

thus ( vj

nj−1 −
vj

nj
) ≤ vj

nj
. Therefore,∑

j∈Si∩(Si′\S′
i′ )

(
vj

nj − 1
− vj

nj
) ≤

∑
j∈Si∩(Si′\S′

i′ )

vj

nj
≤

∑
j∈Si′

vj

nj
= pi′(S).

This implies the first condition of the bounded jump property, i.e, the increase in the payoff
of player i is at most the payoff i′.

Consider a strategy profile S and two players i and i′ with two best response strategies S′
i

and S′
i′ . When player i′ changes his strategy to S′

i′ , if he decreases the payoff of strategy S′
i

for player i, then it decreases this payoff by at most
∑

j∈S′
i∩(S′

i′\Si′ )
( vj

nj
− vj

nj+1). In this case,

the payoff of i′ from switching to his strategy is at least
∑

j∈S′
i′

vj

nj+1 . Since for any market

j ∈ S′
i∩ (S′

i′\Si′), we have nj ≥ 1, thus, vj

nj+1 ≥
vj

nj
− vj

nj+1 . These inequalities imply the second
condition of the 1-bounded jump property as follows:

pi(S−i, S
′
i)− pi(S−{i,i′}, S

′
i, S

′
i′) ≤

∑
j∈S′

i∩(S′
i′\Si′ )

(
vj

nj
− vj

nj + 1
) ≤

∑
j∈S′

i′

vj

nj + 1
≤ pi′(S−i′ , S

′
i′).

Corollary E.3 Let 1
8 > δ ≥ 4α. Consider a market sharing game Λ with and any initial

state Sinit. The unrestricted α–Nash best-response dynamics with liveness property generates
a profile S with profit 1

(2+O(δ))OPT (Λ) in at most O
(

n
αδ log( φ∗

φ(Sinit)
) · T

)
steps.
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