(Almost) Optimal Coordination M echanismsfor Unrelated
M achine Scheduling

YOSSIAZAR * KAMAL JAIN f VAHAB MIRROKNI *

Abstract

We investigate the influence of different algorithmic clesion the approximation ratio in self-
ish scheduling. Our goal is to design local policies thatimire the inefficiency of resulting equi-
libria. In particular, we design optimal coordination manfsms for unrelated machine scheduling,
and improve the known approximation ratio fré{m) to ©(log m), wherem is the number of
machines.

A local policy for each machine orders the set of jobs assigned tdytlzased on parameters of
those jobs. Astrongly localpolicy only uses the processing time of jobs on the the sanzhime.
We prove that the approximation ratio of any set of stronghal ordering policies in equilibria
is at least2(m). In particular, it implies that the approximation ratio ofyeeedy shortest-first
algorithm for machine scheduling is at le&xtn). This closes the gap between the known lower
and upper bounds for this problem, and answers an open gueatsed by Ibarra and Kim [16],
and Davis and Jaffe [10]. We then design a local orderingcpokiith the approximation ratio
of ©(logm) in equilibria, and prove that this policy is optimal amonglatal ordering policies.
This policy orders the jobs in the non-decreasing order eif tinefficiency, i.e, the ratio between
the processing time on that machine over the minimum prowgtime. Finally, we show that best
responses of players for the inefficiency-based policy nmyonverge to a pure Nash equilibrium,
and present &)(log2 m) policy for which we can prove fast convergence of best resesito pure
Nash equilibria.

*azar @au. ac. i | . Microsoft Research, Redmond and Tel-Aviv University,-A&lv, 69978, Israel. Research sup-
ported in part by the Israel Science Foundation.

tkamal j @n crosof t. com Microsoft Research, Redmond.

*mi rrokni @ri cr osof t . com Microsoft Research, Redmond.

1 Introduction

In order to study the influence of algorithmic choices in thespnce of selfish users, we need to study
the inefficiency of equilibrium points. The approximatiatio of a decentralized algorithm in lack of
coordination can be captured by the the worst case perfaenaha Nash equilibrium over a global
social optimum, i.e., the price of anarchy [19]. A natura¢sjion is to design decentralized algorithms
to reduce the price of anarchy for selfish users. In theseitigus, a central authority can only design
protocols and define rewarding rules and hope that the imdigpe and selfish choices of the users
-given the rules of the protocols- result in a socially degioutcome. To this end, different approaches
have been proposed such as imposing economic incentivies farin of monetary payments [5, 8, 13],
and using the Stackelberg strategy [4, 18, 22, 25] whichfisreimg strategies upon a fraction of users.
The main disadvantage of these two strategies is that trsyras global knowledge of the system
and thus have high communication complexity. In many sgitiit is important to be able to compute
mechanisms locally. A different approach, which is the afiour paper, is calledoordination mech-
anisms first introduced by Christodoulou, Koutsoupias and Natig¥d A coordination mechanism
is alocal policy that assigns a cost to each strategyhere the cost of is a function of the users who
have chosen.

Consider, for example, theelfish scheduling ganie which there arex jobs owned by independent
users;n machines and a processing time for job on machingj. We concentrate opure strategies
case where each user selects one machine to assign his ghbugea is aware of the decisions made by
other users and behaves selfishly. Specifically, it wishesnanize its completion time by assigning its
job to the machine at which its job would complete first. Thebgl objective however, is to minimize
the make span - maximum completion time. A coordination raaidm [7] for this game is a set of
local policies, one for each machine, that determines hasehedule jobs assigned to that machine. A
machine’s policy is a function only of the jobs assigned tat thhachine. This allows the policy to be
implemented in a completely distributed and local fashion.

We mainly studyorderingpolicies. Ordering policies characterize all determinisbn-preemptive
policies that satisfy the independence of irrelevant méttves or IIA property. We considesstrongly
local policies in which the ordering of jobs on machipenly depends on the processing time of the
set.S; of jobs on maching, andlocal policies in which the ordering for machinedepends on all
parameters of jobs i5;. Two examples of the strongly local ordering policies amShortestFirst
and LongestFirst policies in which we order the jobs in non-decreasing andinoreasing order of
their processing times, respectively.

Several local policies have been studied for machine sdimgdproblems, both in the context of
greedy or local search algorithms for machine scheduligg 12, 23, 10, 1, 3, 6, 26], and also in the
context of coordination mechanisms [19, 9, 7, 17]. Ibarra l&im [16] present a greedy shortest-first
algorithm and proved an upper boundraffor its approximation factor. It has been shown that the
output of this greedy algorithm is equivalent to the pureiNeguilibria of theShortestFirst policy in
selfish scheduling [17]. AR (log m) lower bound has been proved for the approximation factdnief t
algorithm [10].

!For the definition of non-preemptive policies and the IIApedy, see Section 2.

Our Results. In Section 3, we show that any set of strongly local orderiolicies results in the price
of anarchy of2(m). This result implies that th&hortestFirst policy has the price of anarchy 6f(m).
Moreover, this bound closes the gap between the known lomeeupper bounds of the approximation
ratio of the shortest-first greedy algorithm (i.e., Algbnit D by Ibarra and Kim [16]) and answers an
open question originally raised in 1977 [16, 10, 17].

In Section 4, we design a local ordering policy for which thieg of anarchy i®9(log m). Specif-
ically, on each machine, we order the jobs by in the non-@dsing order of theimefficiency i.e., the
ratio of the job’s processing time on this machine to itsdasprocessing time. Also we show that
any deterministic non-preemptive set of local policiess$gng the I1A property results in the price of
anarchy of2(logm). In particular, it shows that the inefficiency-based polgglmost optimal among
local ordering policies. In Section 6, we study existencew® Nash equilibria for ordering policies
and prove convergence to pure Nash equilibria for some alpsases. The main result of this section is
that pure Nash equilibria may not exist for the inefficiet@sed policy and the best responses of play-
ers may not converge to it. Finally, in Section 7, we desigacall policy for which the best-response
dynamics of players converges to a pure Nash equilibriunoipnomial time and the price of anarchy
is O(log? m).

Related work. Coordination mechanisms are related to local search #hgosi Starting from a
solution, a local search algorithm iteratively moves to mimeor solution which improves the global
objective. This is based on a neighborhood relation thaefsdd on the set of solutions. The local
improvement moves in the local search algorithm correspotite best-response moves of users in the
game defined by the coordination mechanism. The speed oégance and the approximation factor
of local search algorithms for scheduling problems have Istéedied in several papers [10, 11, 12, 16,
23, 24, 26, 1, 3]. Vredeveld surveyed some of the results oal lesearch algorithms for scheduling
problems in his thesis [26].

Ibarra and Kim [16] analyzed several greedy algorithms farelated machine scheduling. In
particular, they proved that the shortest-first greedyrélym is anm-approximation for the maximum
completion time. Davis and Jaffe [10] showed that the appration factor of this greedy algorithm is
at leastlog m. The best known approximation factor is given by a centrapgroximation algorithm
due to Lenstra, Shmoys and Tardos [20].

A widely studied scheduling policy is théakespan policy in which we process all jobs on the same
machine in parallel so that the completion time of a job onrae; is the makespan of machine
The price of anarchy of this policy is unbounded even for twarhmnes. Tight price of anarchy results
for (mixed) Nash equilibria are known for this policy for gi@ cases of the unrelated scheduling
problem [9, 2, 14, 19].

Coordination mechanism design was introduced by Christlodo Koutsoupias and Nanavati [7].
In their paper, they analyzed th@ngestFirst policy for P||Cnax and also studied a selfish routing
game. Immorlica, Li, Mirrokni, and Schulz [17] study fourardination mechanisms for four types of
machine scheduling problems and survey the results foe thieblems. They further study the speed of
convergence to equilibria and existence of pure Nash égailfor theShortestFirst andLongestFirst
policies.

2 Preéliminaries

The unrelated machine scheduling problem R||C.,.x is defined as follows: there are machines
andn users, where user(i = 1,...,n) has a job that can be assigned to any machine. : Job
i = 1,...,n is associated with am-vector p;, wherep;; indicates the processing time of jakf

assigned to maching

Given an instance of thB||C\,,.x problem, we define thglobal optimum(denote it byOPT') to be
the assignment of jobs to machines that minimizes the makesg., the maximum completion time.
We slightly abuse the notation and uS€ T to denote also the value of the optimal solution. The goal
is to find a schedule which minimizes the total makespan.

In selfish schedulingeach job is owned by an independent user whose goal is tomzimithe
completion time of his job. In order to make the selfish useitske globally near-optimal actions, we
can define the following notion afoordination mechanisif¥]. A coordination mechanism is a set of
local scheduling policigsone for each machine. A scheduling poliey for a machingi maps any set
S of jobs on maching to a schedule of all jobs il§. The policy is run locally at a machine, and so
does not have access to information regarding the globial stéhe system, for example the set of jobs
scheduled on other machines. As a result, for any pdlicand a set of jobs' for machinej, each job
i € S'is mapped to a completion tin@; (.S, 7).

A scheduling policyP; is strongly localif it only looks at the processing time of jobs 8} on
machinej and assign each job € S; a completion time. A strongly local polic; may have an
arbitrary tie-breaking rule for jobs of the same procesdinge. In order to formally define thie-
breaking rules we assume that each job hasigique IDand a local policy’s tie breaking rule is a
function of the set of IDs of jobs. Aocal policy looks at all parameters of jobs assigned to machine
J and assigns each jobc S; a completion time . Note that a local policy that is not stigrigcal
may use the processing times of the jobsspbn other machines, but it does not have any information
about other jobs that are not assigned to this machine.

A policy is anon-preemptivepolicy if it processes each job in an un-interrupted fashigtimout
any delay. A policy is goreemptivepolicy if it can interrupt jobs during the scheduling and gaurt
some delay on the machine. We say that a policy satisfidadependence of irrelevant alternatives
[IA property if for any sef5 of jobs and any two jobg i’ € S, if i has a smaller completion time thén
in S, theni should have a smaller completion time tham any setS U {k}. In other words, whether
1 ori’ is preferred should not be changed by the availability ofekjoThe IIA property appears as an
axiom in voting theory, bargaining theory, and logic [27].

A scheduling policy is amrdering policy if for each instance of the scheduling problem, itevsd
the jobs non-preemptively based on a global ordering. Ibishard to show that any deterministic
non-preemptive policy that satisfies the IIA property is adeoing policy. TheShortestFirst and
LongestFirst policies are ordering policies in which we order the jobs anttlecreasing and non-
increasing order of their processing times, respectivdiyte that theShortestFirst andLongestFirst
may have arbitrary tie-breaking rules based on the IDs &f.job

A special class of th&||Cy,.x problem is the machine scheduling festricted assignmef3||Ciax)
in which each jobi can be scheduled on a subsgtof machines, i.e.p;; is equal top; if j €
T; and is equal t@o otherwise.

3 A Lower Bound for Strongly Local Policies

In this section, we show that the approximation ratio of agtya$ strongly local ordering policies is
Q(m). In the next section, we present a local ordering policy #wtieves the facto® (logm) and
will prove a matching lower bound for local policies.

Theorem 3.1 The price of anarchy for any set of deterministic non-pretdrepstrongly local policies
satisfying the IIA property is at least(m).

Proof: We observe that any deterministic non-preemptive polidisfyéeng the IIA property is an or-
dering policy. As a result, we show that for any strongly laaering policy, the price of anarchy is at
least((m). Letn; = 2553 for 1 < j < mandn = 37", n;. Consider the set of: machines and
a setPy, ..., Py, of strongly local ordering policies on these machines. Given this set of policies,
we construct an instance afjobs for which the price of anarchy i3(m). Since the policyP; is a
strongly local ordering policy, it only looks at the procesgstime of jobs on maching and their IDs.
As a result, if the processing time of all jobs on machijrie equal to(fn%ll))', P; orders the jobs based
on a global ordering of IDs. Let; be this ordering on the IDs of jobs. We construct an instance i
which all jobs that can be scheduled on machirieas the same processing ti ﬁ:11))!1- We define a
family of subsetsSy, . .., .S, such thatS;| = n; for 1 < j < m. Jobs inS; can be scheduled only on
machinesj andj + 1 for 1 < j < m (jobs in.S,, can only go to machine:). The processing time of

all jobs on maching is Y=L\ = 2

(m=1)! = n;°

In order to defineS;’s, we use the following notation. Given any orderingn the IDs ofn jobs,
asetT C {1,...,n} of IDs of jobs, and a numbek, let o*(T") be the set of first: IDs in ordering
o that are in sef’. In particular,o®({1,2,...,n}) is the set of firs& IDs in an orderingr. Also, for
1<) <m,letw; = Z{Zl n¢. Now, we are ready to defing;s as a function of all orderings;, as
follows: S,, is the set of last,,, IDs in the orderingr,,, i.e.,

S = A{om(n),om(n—1),...,0m(n—n;+ 1)}, and My, :={1,2,... ,n}\Sp,.
Also, for eachj (m —1 > j > 1), we have

Mj = O';)j_l(MjJrl), and Sj = Mj+1\Mj.
We claim that the price of anarchy of this instancélisAn optimal solution of this instance schedules
jobs of setS; on machinej for 1 < j < m. The makespan of this scheduleﬁfgzj = 2. We prove the
following Lemma on this instance.

Lemma 3.2 In any pure Nash equilibrium of this instance, the makesganachine; is equal toj for
anyj from1 tom. In particular, half of the jobs of; are scheduled on machineand half of them are
scheduled on maching+ 1 for anyj from1tom — 1.

Proof: By the construction of5; (1 < j < m), policy P; puts all jobs ofS; after all jobs ofS;_;
on machinej, since all jobs of}/; go before all jobs of5; on machinegj andS;_; C M;. We prove
the lemma by induction or. For the base of the induction, defilsg as an empty set and machine

4

0 as a dummy machine. For the induction hypothesis, assumtéatht < j — 1, in any pure Nash
equilibrium, half of the jobs ofS; are scheduled on machikeand half of them are scheduled on
machinek + 1. As a result, the load of machirefor k£ < j — 1 is exactlyk, and the load of machine
j fromjobsinS;_; is "ng n% = j — 1. We prove that in any pure Nash equilibrium, half of jobsSef
go to machinej and half of them go to maching+ 1. We prove the induction step by contradiction.
Ifin a pure Nash equilibrium, less than half of the jobsSinare at maching + 1, then the completion
time of the last joby of S; on machinej is strictly more thary — 1 + %% = j, since all jobs ofS;_;
will be scheduled before all jobs ¢f; on machingj. Since only jobs in5; andS;; can be scheduled
on machinej + 1 andq € S; will be scheduled before any ja#; 1, if ¢ moves to maching + 1,

its completion time is at mos?zl% = j. Therefore,q has incentive to switch to machirge+ 1.

In addition, if in a pure Nash equilibrium, more than half bétobs inS; are scheduled on machine
j + 1, then the completion time of the last job is more thaon machinej + 1 and this job can move
to machinej and improve its completion time. This proves the inductitaps [

The above lemma proves that in any pure Nash equilibrium takespan of maching: is m, and
therefore, the price of anarchy for this instance is at I€asThis completes the proof of the theorem.
]

Since theShortestFirst policy is a strongly local policy, the above theorem implikeat the price
of anarchy of theShortestFirst policy is at leasts. Immorlica et.al. [17] observed that the set of
pure Nash equilibria of th8hortestFirst policy is equivalent to the output of the shortest-first gsee
algorithm of Ibarra and Kim [16]. Therefore, the above loweund implies the lower bound & for
the shortest-first greedy algorithm, and answers an opestiqonaaised by Ibarra and Kim [16], and
Davis and Jaffe [10]. As a result, we have the following tleaor

Theorem 3.3 The price of anarchy of thghortestFirst policy is at leasts . In particular, itimplies that
the approximation factor af proved by Ibarra and Kim [16] for the shortest-first greedgadithm is
almost tight.

It is worth mentioning that the proof of Theorem 3.1 uses jobthe same size and argue about tie
breaking rules. For th8hortestFirst policy, we can actually perturb the example such that alt job
have different sizes, and hence the shortest-first algorighuniquely define. A proof of Theorem 3.3

without jobs of the same size is given in the appendix.

4 A Logarithmic Upper Bound

In this section, we give a deterministic non-preemptivalgolicy with the 11A property for which the
price of anarchy i® (log m). Recall that in the unrelated links model, a jols associated with am-
vectorp; = (pi1, .. -, pim) SPeCifying its processing time on each machine. Denotg; by min; p;;
which is the fastest processing time of that job on any of tlaehines. The inefficiency of jobon
machinej is e;; = p;;/p;. By definitione;; > 1 for all i andj. Themin-weightof a setS of jobs is
equal toy ;¢ p;. Also, letW =", . pi.

The inefficiency-basegbolicy for machinej orders the jobs assigned to it in the non-decreasing
order of their inefficiency;;.

Theorem 4.1 The price of anarchy foR||Cy,.x for the inefficiency-based policy is at m@dbg m+4.

Proof: Given this ordering strategy for each machine and a pure Mgahibrium, we partition the
assignment into layers. For aky> 0, we denote byl/;; all jobs (and parts of jobs) that are processed
on machinej after time2kOPT. Let M, be the union over all machinesof M;;, i.e., M, =
Ui<j<mMp;.

Let Ry; denote the min-weight of jobs My, i.e., Ry; = ZieMkj pi. Specifically if jobi is
partially processed on machiridor x units of time after time&k OPT, then its contribution tdzy; is
z/eij = xpi/pij-

Let By = > < <., s Which is the min-weight of jobs processed after tigieDPT". Note that
Ry = W since it is the total min-weight of all jobs. Our main lemmadhe following:

Lemma4.2 Forall k > 1, R, < 3 - Ry_1.

Proof: Let O; be the set of jobs processed on machjiryy OPT. Let Oy; be the intersection af;

and M. Let f;; be the minimum inefficiency of all jobs i@;; in the equilibrium assignment. Each
job in Oy; could switch to maching. If Oy is not empty, then in the equilibrium assignment, machine
Jj is processing jobs of inefficiency of at mostff; up to time(2k —1) OPT otherwise the job with the
minimum inefficiency in0;,; would move to maching and complete by tim@k —1) OPT + OPT =
2kOPT.

Hence, maching processes jobs of inefficiency at mo&t; between timeg2k — 2) OPT and
(2k — 1) OPT which implies that

Ry_1; — Ri; > OPT/fi; .

On the other hand, all jobs i@;; are processed b PT on machinej with inefficiency of at least
fr; and hence their total min-weight is at masf’7'/ f;,;. By combining the last two inequalities, we
conclude thatk?;,_; ; — Ry, is at least the min-weight of jobs if;;. Summing up over alj, we get
that

Ry_1 — Ry, > Ry,

sinceM;, is the union ofOy,; over all machineg. We conclude thaf?,_; > 2R;, as required.
[|

We are now ready to complete the proof of the Theorem. By apgpljre main lemma; = [log m/]

times we get that

1 W
R, < — Ry=— < OPT.

m m
In particular, this implies that the total processing tinigobs of inefficiencyl in M, is at mostOPT.
Hence each such job ends by tili2) OPT + OPT = (2b+1) OPT. Consider a job that has not been
completed by time@bOPT. Such job has an option to run on a machine of inefficiency.dh that
case it would start no later thd@b + 1) OPT and would finish no later thaf2b + 1) OPT + OPT =
(2b 4+ 2)OPT (since its min-weight is at mog?PT’). Since the assignment is a Nash equilibrium, we
conclude that the maximum completion of any job is at n{pst+ 2) OPT < (2logm + 4)OPT. m

Remark 1 The above proof can be extended to bound the price of anaochyiiked Nash equilibria
of the inefficiency-based policy. We can prove a lemma foedrskrategies similar to Theorem 4.1 with
the bound ofD(log m). Then using the Hoeffding inequality and the framework ldgezl by Czumaj
and Vocking [9] (and also used by Awerbuch et. al. [2]), we gaove that the price of anarchy for
mixed Nash equilibria for this policy ®(log m).

5 A Lower Bound for Local Policies

In Section 3, we proved that the price of anarchy for any gfisofocal ordering set of policies is at
least2(m). Here, we show that the price of anarchy for any set of locdéng policies is at least
Q(log m). As a warm-up example, we show that our analysis is almast tay the inefficiency-based

policy.

Theorem 5.1 The price of anarchy foR||Ci,.x When the ordering strategy is by non-decreasing inef-
ficiency is at leaslog m.

Proof: We use a standard example to show that even for the restastghment modeH||Cyax) the
price of anarchy of this strategy is at le&st m. Not that for B||Cy,ax the inefficiency of every job is
preciselyl on any legal machine for that job. Hence the algorithm maxgiotide jobs on each machine
in any order. In this proof, we assume a global tie breakirg on the order of all jobs. Without loss
of generality a job with a lower index has a higher prioritgh@wise we can rename the jobs). In the
example, there are. = 29 machines andr — 1 jobs. All jobs have unit size. Each job can be assigned
to two machines. The jobs are partitioned ihtg s groups. Forl < k < ¢, there aren/2" jobs

in groupk. Jobl of groupk for 1 < I < m/2* can be assigned to machinkeandm /2" 4 1. The
optimal algorithm can assign that job to maching2* + [and get a makespan of We claim that if
this job is assigned to machingit is a Nash equilibrium and results in a makespaivgfin (machine

1 haslog m completion time). It is easy to verify that all jobs in grohave a completion time ¢
and if they would move to the other option they would still @a completion time ok. Hence this
assignment is a Nash Equilibrium which completes the proof. [

Now, we use the structure of the standard example in Theoréno prove the following general lower
bound:

Theorem 5.2 The price of anarchy for all deterministic non-preemptieedl policies satisfying the
[IA property for R||Cpax is at least2(log m).

Proof: Without loss of generality, we assume that= 2¢. We recall that deterministic non-preemptive
local policies satisfying the IIA property correspond taering the jobs in a certain order according
to all parameters of the jobs assigned to that machine. Thahmthat the order depends on the IDs
of jobs and their full vector of processing times on all maelsi. Given a set of local ordering policies,
we construct an instance similar to the example used in Enedr.1. We start Witﬁﬂgﬂ jobs from
which exactlym — 1 jobs are used in the final instance. In particular, all jolesadunit size and can be
assigned to precisely two machines. Moreover, the ID of giptesjob that can be assigned to machine

j and maching’ is unique (say itisnj + j'). If we restrict ourselves only to these types of jobs, then
there are at most — 1 jobs that can be assigned to each machin&pecifically, these jobs can be
described agj, ;') for all j # j', since all remaining parameters (i.e. ID and the full loadte® are
exact functions of the paifj, j'). A local policy of each maching for any1 < j < m corresponds to
an ordering of these jobs to be processed on maghihet o; be this ordering.

Let A° = {1,...,m} andJ® = (). Fork from 1 to logm, we constructd* and J* from A*~!
as follows: first, letA* = (), and.J* = (. We perform the following proces: times: Choose an
arbitrary maching/ from A*~!. Find the job of the highest priority to run on machifp@mong all
jobs (5, 7") wherej’ € A*~1, and denote its ID byj, m* (7)), i.e., (j,m*(5)) is the first job ino;
among jobgj, j') € A*~1 x A*=1. Then, letA* = A* U {5} andJ* = J* U {(4,m"(4))}. Also, let
AL = AR\ {j,mF(j)}. At the end of the process}*~! becomes emptyd* hasZ: indices, and
J¥ hasZt jobs.

The set of jobs for the final instance is the union of the jdtﬁsfor 1 < k < logm, ie.,
Ulgkglogmjk. Hence we have:—1 jobs in the resulting instance. The following solution ofkegpan
1 is the optimal solution: assign jalj, m*(j)) € J* to machinem(j). Consider an assignment
in which each joh(j, m*(j)) € J* is assigned to maching We prove that this assignment is a pure
Nash equilibrium.

Using induction onk, we prove that for eaclk from 1 to logm, in assignment4, each job
(,mk(j)) € J* is completed exactly at timg on machinej. Moreover, if it switches to machine
mF (), its completion time is not less than For the base of induction, jaly, m'(5)) € J! has more
priority than all jobs(j, m*' (5)) € J¥ for 2 < k’ < logm, and hence, its completion time is 1. Also,
this job would not want to switch to machime!(j). The proof of the induction step is similar to the
base case and follow from the fact that by the constructiof*okach job(j, m*(j)) € J* has more
priority than job(j, m* (j)) € J* for anyk < k’. This inductive argument proves that assignmént
is a pure Nash equilibrium, and its makespalogsm. Specifically, maching* € Al°2™ has makespan

log m, since one job from each of, .J2, ..., .J'°¢™ is scheduled on this machine. This instance shows
that for any set of local ordering policies, there is an ins&afor which the price of anarchy is at least
Q(logm).]

6 Existence of Pure Nash Equilibria

Pure Nash equilibria may not exist for some strategic gamaes,even if they exist, a sequence of
best responses of players may not converge to thBatential gamesre games for which we can
find a potential functionthat maps any state (or any set of strategies) in the game tonaar (or a
vector) such that after any best response of any player tlne @ the function strictly decreases (or
lexicographically decreases). Potential games possesdNash equilibria and any random sequence
of best responses of players converge to pure Nash eqailbtih probability one.

We can prove the corresponding game of any ordering policyBioC,,.x IS @ potential game
and thus, possess pure Nash equilibria, but this is not the foa R||Ci,.x €ven for two machines.
Moreover, we can prove that the game corresponding to thigcieacy-based policy for two machines
always possess pure Nash equilibria, but this is not truarfigrnumber of machines. Here, we only
prove the main result of this section, and leave the restavhtto the appendix.

11213 4
A20]| 00| 00| o
Bl 2 12| 00| 1.98
Cl 4 241251 3.95
D 5 128 | 00| 4.9

Table 1: An example without pure Nash equilibria: The preoegstime of four jobs on four machines.

Theorem 6.1 The corresponding game to inefficiency-based policyR€ . may not possess any
pure Nash equilibrium.

Proof: Consider an instance &f||C\,,.x With 4 machines and 5 job4, B, C, D, andT". JobT can only
be scheduled on machine 4 and its processing time is 50. Teeing on machine 4§, B, C, D, A.
The processing times of job$, B, C, D on machined, 2, 3, 4 are depicted in Table 1.

As a result, the ordering of jobs in the inefficiency-baseticgdor machine 1 iS(A, B,C, D, T,
and for machine 2 i$D, B,C, A, T), and for machine 3 i$C, A, B, D,T'). We claim that no pure
Nash equilibria exist for this example. We have found thiaregle by solving a mathematical pro-
gram that captures the inequalities required to prove thgiure Nash equilibrium exists. Here, we
give a brief description of why this instance does not hawe@re Nash equilibrium. Jo' is al-
ways scheduled on machine 4 and no other job wants to go toineadh We can show a schedule
on four machines as a sequence of subsets of jobs in eachmaaéti example, if jobsA, B, and
C are on machine 1, jolv is on machine, and jobT is on machinel, the corresponding sequence
is (ABC, D, ,T). From this schedule, job' has incentive to switch to machine 3, and the resulting
schedule is (AB,D,C,T). This move is shown briefly &4BC, D, ,T) — (AB, D, C,T). Similarly,
(ABD, ,C,T) — (ABD,C, ,T) — (AD,BC, ,T) — (ACD,B, ,T) — (AD,DB, ,T) —
(ABC,D, ,T) — (AB,D,C,T) — (ABD, ,C,T). Also (AD,B,C,T) — (ACD,B, ,T).
Checking that no other pure Nash equilibrium exists is ghthorward. [

This theorem indicates the need for a coordination mechamigh small price of anarchy for
which we can prove convergence to pure Nash equilibria.

7 A Polylogarithmic Upper Bound with Fast Convergence

In Section 4, we designed a scheduling policy for each macthiat has a low price of anarchy. How-
ever, in Section 6, we proved there may be no (pure) Nash iBquih for the jobs and the system
may not converge. In this section, we show that we can inerghghtly the price of anarchy from
O(logm) to O(log?m), but guarantee existence of Nash Equilibria as well as egenee to pure
Nash equilibria.

The algorithm is as follows. Each machine simuldtes [log m]| sub-machines. Sub-machihe
for 0 <1 < b— 1 of machinej runs only jobs of inefficiency of at leagt and less thag!*!. Machine
j allocates continuously the same time for each of its subhmas even if there are no jobs to process

on some sub-machines (this requires preemption and ide tifajob assigned to machirewill run
on sub-machiné of machinej wherel = |e;; | given thate;; < m. If e;; > m, the job will be delayed
for ever on maching. To complete the description of the processing strategynees to define the
order in which each sub-machine processes its jobs. If ihiarbitrary order, we call the family of
strategiesSplit & Any. If it is ordered according t6hortestFirst we call it Split & Shortest

Given an instance of th&||Ci,.x problem onm machines, we create a corresponding instance of
those jobs tanb sub-machines as follows: if in the original instance jobas processing timg;;,
then it would have processing tindg;; on sub-machineg; of machinej wherel; = |e;;| given that
ei; < m. On all other sub-machines gf(in casee;; > m on all sub-machines of) the processing
time is infinite. We start with the following lemma

Lemma 7.1 Given an instance to th&||C,.x problem and its corresponding instance orb sub-
machines.

1. Given an assignment for the original instance onshenachines, we can get an assignment for
the corresponding instance on thé sub-machines while increasing the makespan by a factor
of at most2b. In particular, the optimal makespan increases by a facfatanost2b.

2. Given an assignment for the corresponding instance omtheub-machines, we can get an
assignment for the original instance where the completiore tof each job remains the same
(and in particular the makespan does not increase).
Now, we can easily prove the following:

Theorem 7.2 The price of anarchy foR||Cp,ax Using Split & Any is O(log?m). In particular, the
price of anarchy for unrelated machines usi@glit & Shortests O(log® m).

Now, we show that our analysis is tight.

Theorem 7.3 The price of anarchy foR||Ci,ax UsingSplit & Shortests at leastlog? m.

Finally, we show that this policy converges to a Nash equilib very fast.

Theorem 7.4 The corresponding game for ti8plit & Shortestpolicy is a potential game. Moreover,

any sequence of best responses of players consistingrainds of all players converges to a pure
Nash equilibrium.

8 Open Problems

In this paper, we proved that the best achievable price atthgpay strongly local and local ordering
policies ared(m) and© (log m). Ordering policies characterize all deterministic noegmptive poli-
cies satisfying the IIA property. An interesting open prghlis to design preemptive or randomized
policies with a constant price of anarchy, or to prove thatighnot possible. Another interesting open
problem is the speed of convergence to approximate sofufimmthe inefficiency-based policy [21].

10

Finally, since pure Nash equilibria for the inefficiencysbd policy do not necessarily exist, it would
be interesting to bound the approximation ratio of the supkiléria [15].

Acknowledgements. We thank Allan Borodin for interesting discussions aboldtesl work.

References

[1] Aspnes, Y. Azar, A. Fiat, S. Plotkin, and Waarts. On-loeting of virtual circuits with applica-
tions to load balancing and machine schedulihgACM 44 3, 1997.
[2] B. Awerbuch, Y. Azar, Y. Richter, and Dekel Tsur. Tradsah worst-case equilibria. 2003.

[3] Y. Azar, J. Naor, and R. Rom. The competitiveness of oe-Assignmentslournal of Algorithms
18:221-237, 1995.

[4] A.Bagchi. Stackelberg differential games in economizdels. Springer-Verlag 1984.

[5] M. Beckman, C. B. McGuire, and C. B. Winsterstudies in the Economics of Transportation
Yale University Press, 1956.

[6] A. Borodin, M. Nielsen, and C. Rackoff. (incrementaljgity algorithms. INSODA pages 752
— 761, 2002.

[7] G. Christodoulou, E. Koutsoupias, and A. Nanavati. @omation mechanisms. pages 345-357,
Turku, Finland, 12-16 July 2004.

[8] R. Cole, Y. Dodis, and T. Roughgarden. How much can taeds elfish routing? I&EC, pages
98-107, 2003.

[9] A. Czumaj and B. Vocking. Tight bounds for worst-case iégtia. In SODA pages 413-420,
2002.

[10] E. Davis and J.M. Jaffe. Algorithms for scheduling sk unrelated processorsl. ACM
28(4):721-736, 1981.

[11] E. Even-dar, A. Kesselman, and Y. Mansour. Convergdmee to nash equilibria. IMCALP,
pages 502-513, 2003.

[12] G. Finn and E. Horowitz. A linear time approximation afghm for multiprocessor scheduling.
BIT, 19:312-320, 1979.

[13] L. Fleischer, K. Jain, and M. Mahdian. Tolls for heteeagous selfish users in multicommodity
networks and generalized congestion game&OICS pages 277-285, 2004.

[14] M. Gairing, T. Lucking, M. Mavronicolas, and B. MonieBomputing nash equilibria for schedul-
ing on restricted parallel links. IBTOG pages 613—-622, 2004.

[15] M.X. Goemans, V.S. Mirrokni, and A. Vetta. Sink equiii® and convergence. Rroceedings of
the 46th Annual IEEE Symposium on Foundations of Computen&(FOCS)pages 142-154,
2005.

11

[16] O.H. Ibarra and C.E. Kim. Heuristic algorithms for sdiaéng independent tasks on nonidentical
processorsJ. ACM 24(2):280-289, 1977.

[17] N.Immorlica, L. Li, V. Mirrokni, and A. Schulz. Coordation mechanisms for selfish scheduling.
In Workshop of Internet and Economi@905.

[18] Y.A. Korilis, A.A. Lazar, and A. Orda. Achieving netwkroptima using Stackelberg routing
strategieslEEE/ACM Transactions on Networking(1):161-173, 1997.

[19] E. Koutsoupias and C. Papadimitriou. Worst-case dayidl In STACSpages 404—-413, 1999.

[20] J.Lenstra, D. Shmoys, atkd Tardos. Approximation algorithms for scheduling uniedgparallel
machines Mathematical Programmingd6:259—-271, 1990.

[21] V.S. Mirrokni and A. Vetta. Convergence issues in cotiipe games. IPAPPROX pages 183—
194, 2004.

[22] T. Roughgarden. Stackelberg scheduling strategieSTDC pages 104-113, 2001.

[23] S. Sahni and Y. Cho. Bounds for list schedules on unifprocessors.Siam J. of Computing
9:91-103, 1980.

[24] P. Schuurman and T. Vredeveld. Performance guarameéscal search for multiprocessor
scheduling. INPCO, pages 370-382, 2001.

[25] H. von Stackelberg. Marktform und Gleichgewicl8pringer-Verlag 1934. English translation
entitledThe Theory of the Market Economy

[26] T. Vredeveld.Combinatorial approximation algorithms. Guaranteed wergxperimental perfor-
mance 2002. Ph.D. thesis.

[27] Wikipedia. http://en.wikipedia.org/wiki/Indepeadceof_irrelevantalternatives.

Appendix

A Proof of Theorem 3.3

Proof: In order not to deal with the issue of breaking ties (whiclypla major role in the general lower

bound), we would make all jobs of different size. We congtthe following instance. There are — 1
(m—1)!

types of jobs. Foj = 1tom — 1, there aren; = QW jobs of typej. Jobk for 1 < k < n; of type
j has processing tim%(l +ep;) = éi‘—_%’,(l +€1;) on maching and%(l +erj) = #_!1)!(1 +ekj)

on machinej + 1 and infinite (or large enough) on all other machines. We oh0os. ¢;; < ¢ for
some small enoughj + 1 whereey; < g 41,; forall k andj ande,, ; < e1,j41-

The optimal solution may use the following assignment. @ssill »; jobs of typej on machinej.
This assignment results in completion time of at ni{st+ <) for each machine (except the'th one
which remains empty).

12

Consider the following assignment. Half of the jobs of tyjpgre assigned to machireand half to
machinej 4 1 (we later specify which half). Then Machinet 1 for j = 1 to m — 2 would have a load
of slightly more than(n;/2)(2;j/n;) = j of jobs of typej and slightly more thaitn;/2)(2/n;) = 1 of
jobs of typej + 1. Machinel has a load of slightly more thain(type 1 jobs) and machine: a load of
slightly more thann — 1 (typem — 1 jobs).

Note that all jobs on each machine have approximately the sare. Since we sef,; < €/ j11
for all j andk, k&’ this implies that jobs of typé are processed before jobs of type- 1 (on machine
Jj+1).

Finally, we have to specify which set of jobs are actuallygrssd to each machine. This assignment
defines the order of jobs on each machine. Assume for a momat,t would have bee. This
would define a set of completion times for all jobs of tyjpen machineg andj + 1. Assign the jobs
of type j to the two machinesj(and; + 1) in non-decreasing order of the IDaccording to the non-
decreasing order of completion time of that jobs. We claiat this assignment is a Nash Equilibrium.
Moreover the price of anarchy is abou/2.

Immorlica et.al. [17] observed that the set of pure Nashldxjig of the ShortestFirst policy is
equivalent to the output of the shortest-first greedy atboriof Ibarra and Kim [16]. Therefore, the
above lower bound implies the lower bound#ffor the shortest-first greedy algorithm.]

B PureNash equilibria for Special Cases

In this section, we investigate the existence of pure Nasiilieda for general ordering policies and
for some special cases. In particular, we prove the follgwireorems.

Theorem B.1 The corresponding game of any ordering policy is a potemfhe forB||Cp,ax. Thus,
it has pure Nash equilibria foB||Cp,ax. Also, if the global ordering for all machines is the samerth
pure Nash equilibria exist for the corresponding game of Big},.x. However, forR||Chax, there
are ordering policies without any pure Nash equilibria efentwo machines.

Proof: Letw(i, j) be the position orank of job i in the global ordering of maching i.e., jobi is at the
w(i, j)s position in the global ordering of machirie Given a schedul& of jobs on all machines, let
m; be the machine of jobandT; be the starting time of jol In order to define the potential function
for S, we add a dummy jold; of lengthoo to the end of each machine The rank of the dummy job
d; on machinej isn + 1, i.e.,w(d;,j) = n + 1, andm,, = j. After adding these dummy jobs, we
find the potential function for scheduleas follows: sort the jobs in the non-decreasing order of thei
starting time, and if there are ties between the startingginsort them in the non-decreasing order of
their ranksw(i, m;). Since we added a dummy job for each machine, the length ofetier of the
potential function is: + m. Let the vector of jobs in this order W@, 2, ... ,n + m). Therefore, by
definition, 77 < Ty < ... < Ty and if Ty = Tj44, thenw(l,my) < w(l + 1,my4+1). The potential
function for this schedule is (w(1,m1), w(2,m2),...,w(n +m,myiym)). If job k plays his best
response and goes to machimg instead of machineny, the starting time of jolk decreases (since
for B||Chax When a job improves its completion time, it improves itstitgrtime as well). As a result,
job k occupies an earlier position in the corresponding vectth@hew schedule. Jdbcannot be the
last job on machinen;, since each machine has a dummy job who is the last. Lét'jbb the job after

13

k on machinem|, after k moves (note that’ might be a dummy job). The rank of jobis less than
the rank of jobk” on machinen;.. This proves that the potential function decreases lexaggcally.
Therefore, the game is a potential game.

It is not hard to prove that if the global ordering for all maws is the same, then pure Nash
equilibria exist for the corresponding game of tREC,,,.x and the game is a potential game. If the
global ordering on all machines($, 2, . .., n) and the completion time of jobin scheduleS is C;(S),
then the potential function in this case for schedsilis (C(S), C2(S5), ..., Cn(S5)).

Finally, for R||Cax, there are examples even for two machines for which the sporeding game
does not have any pure Nash equilibrium. Consider an exawifildwo machines 1 and 2, and three
jobs A, B, C. The global ordering for machine 1(sl, B, C') and the global ordering for machine 2 is
(C, A, B). The processing time of jobs on machines aige = 12, pp1 = 16, pc1 = 2, pa2 = 10,
ppe = 10, pco = 16. It is not hard to check that no set of strategies of playera mire Nash
equilibrium in this game. [

The above theorem shows that an arbitrary set of orderingigelmay not have pure Nash equilibria
even for two machines. We showed that the corresponding géamhe inefficiency-based policy may
not possess pure Nash equilibria. The following theorenwshiat the inefficiency-based policy
always have pure Nash equilibria for two machines.

Theorem B.2 The inefficiency-based mechanism always possess pure jadibrea for two ma-
chines.

Proof: The proof is by induction. The base of induction is for one fobwhich the proof is trivial.
Consider the most inefficient job on both machines and cdll MVe do not let4 go on the machine for
which it is less efficient, say machine 1. The induction islmnumber of pairs of jobs and machines
(i,4) such that jobi can be scheduled on machifie For the instance for which jobl cannot be
scheduled on machine 1, we find a pure Nash equilibriuby induction. For the induction step, we
would like to change this equilibriurf to an equilibrium for the original instance. The only pog#ib

is that job A in S wants to switch to machine 1. If we let move to machine 1, no other job from
machine 2 wants to move to machine 1. We claim that jobs frorohina 1 do not want to switch
to machine 2 either. Note that job is larger on machine 1 than on machine 2 and hence machine 1
ends in schedul& (without job A) before jobA starts on machine 2, otherwisewould not like to
move from machine 2. Hence no jobs from machine 1 want to noweetchine 2 (although joH left
machine 2), since they would finish later if they move.]

C Proofsof Section 7

Proof of Lemma 7.1. The second part of the lemma is easy. Each machine simulaésstb-
machines continuously and provide# of the time for each. Since the processing time of each job in
the corresponding instancetisimes its original processing time then the completion toheach job
remains the same as needed.

Next, we prove the first part of the lemma. Given the an assgnrio the original instance we
create a feasible assignment to the new instance with ipeli@amakespan by factor of at m@st We

14

do it in two steps. In the first step we create a new assignneenhé original instance where no jeb
runs on maching with e;; > m. This will (at most) double double the makespan. We do it bypdy
moving each jol that runs on machingwith e;; > m to the best machine for that job, i.e., to machine
J' wheree;;; = 1. Let I be the set of such jobs. Clearly the makespan has increaséwelgt by at
most) . p; (even if all these jobs were to go on the same machine). Haweye; p;; > >, mp;.
Hence the original makespan was at least

%Zpij > %Zmpz = Zpi

icl il il
which means that the makespan at most doubled.

In the second step, we create from the modified assignmenssagnanent for the sub-machines
instance by increasing the makespan by a multiplicativeofaaf . This is easily done by assigning
job ¢ that is assigned to machineto the sub-machiné = |e;; | of machinej which is feasible and
always exists since;; < m. The load of each sub-machine of machjngoes not increase since the
jobs were split among the sub-machines. However, sincerteegsing time is multiplied by, the
completion time is scaled up by a factortofHence, after applying the two steps the makespan for the
corresponding instance is increased by at rBosts required. O

Proof of Theorem 7.2. We can viewSplit & Anyfor the original instance as processing the jobs
on the corresponding instance in ‘almost’ non-decreashndgroof the inefficiency. All jobs on each
sub-machine have ‘almost’ the same (i.e. up to factor of gjficiency. If we change the size of
jobs to have precisely the same inefficiency then by usingiiém 5.1 the price of anarchy is at most
O(log m) with respect to the optimal assignment for the correspantfistance (with the original size
we lose only additional factor of 2). Nevertheless, the rspk@ of the optimal assignment for the
corresponding instance is at m@stlog m) times the the makespan of the optimal assignment of the
original instance. Hence the price of anarchygglit & Anyis O(log? m) with respect to its optimum.
Since,Split & Shortestbelongs to the family oSplit & Anyits price of anarchy is not larger. O

Proof of Theorem 7.3. We use again a variation on the standard example from Thebrein show
that even for the restricted assignment mod#| C.,.x) the price of anarchy of this strategy is at least
log® m. Note again that foB||Cp.., the inefficiency of every job is preciselyon any legal machine
for that job. Hence, only the first sub-machine of each maztsmoing any work. We use the example
from Theorem 5.1 but we slightly perturb the job sizes. Aligare of processing time slightly smaller
than1 where all jobs in clasg are slightly shorter than all jobs in classt+ 1. Hence the algorithm
may order the jobs on each machine (on the first sub-machiweyding to classes and hence we get a
similar (up to a small perturbation) example as in Theoreln Since only one sub-machine is active,
the makespan of the example described is multiplietbyr and becomekg? m where the optimum
remains the samei.e., 1. O

Proof of Theorem 7.4. The completion time of each job Bplit & Shortesis precisely equal to the
completion time of each job in the corresponding instancéhemnb sub-machines. That instance is
ShortestFirst on each sub-machine. Hence, any sequential improvemecgegg@onverges to a Nash
equilibrium [11, 17]. A potential function for th&hortestFirst policy is the vector of the completion
time (sorted in non-decreasing order) of all jobs which dases lexicographically after each best

15

response. Also itis proved in [17] that at mastounds of best responses of players converges to pure
Nash equilibria in this game. O

16

