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Abstract

Various economic interactions can be modeled as two-sided markets. A central
solution concept to these markets are stable matchings, introduced by Gale and
Shapley. It is well known that stable matchings can be computed in polynomial
time, but many real-life markets lack a central authority to match agents. In those
markets, matchings are formed by actions of self-interested agents. Knuth intro-
duced uncoordinated two-sided markets and showed that the uncoordinated better
response dynamics may cycle. However, Roth and Vande Vate showed that the
random better response dynamics converges to a stable matching with probability
one, but did not address the question of convergence time.

In this paper, we give an exponential lower bound for the convergence time of
the random better response dynamics in two-sided markets. We also extend these
results to the best response dynamics, i. e., we present a cycle of best responses, and
prove that the random best response dynamics converges to a stable matching with
probability one, but its convergence time is exponential. Additionally, we identify
the special class of correlated two-sided markets with real-life applications for which
we prove that the random best response dynamics converges in expected polynomial
time.

1 Introduction

One main function of many markets is to match agents of different kinds to one another,
for example men and women, students and colleges [6], interns and hospitals [13, 14],
and firms and workers. Gale and Shapley [6] introduced two-sided markets to model
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these problems. A two-sided market consists of two disjoint groups of agents. Each
agent has some preferences about the agents on the other side and can be matched to
one of them. A matching is stable if it does not contain a blocking pair, i. e., a pair
of agents from different sides who can deviate from this matching and both benefit.
Gale and Shapley [6] showed that stable matchings always exist and can be found
in polynomial time. Besides their theoretical appeal, two-sided matching models have
proved useful in the empirical study of many labor markets such as the National Resident
Matching Program (NRMP). Since the seminal work of Gale and Shapley, there has been
a significant amount of work in studying two-sided markets, especially on extensions to
many-to-one matchings and preference lists with ties [10, 15, 4, 3]. See for example,
the book by Knuth [11], the book by Gusfield and Irving [8], or the book by Roth and
Sotomayor [15].

In many real-life markets, there is no central authority to match agents, and agents
are self-interested entities. This motivates the study of uncoordinated two-sided markets,
first proposed by Knuth [11]. Uncoordinated two-sided markets can be modeled as a
game among agents of one side, which we call the active side. The strategy of each
active agent is to choose one agent from the passive side. Stable matchings correspond
to Nash equilibria of the corresponding games. In these uncoordinated markets, it is
important to analyze better response dynamics among agents, and bound the number
of steps for agents to converge to a stable matching. In this regard, Knuth showed that
a sequence of better responses of agents can cycle, and posed a question concerning the
convergence of this dynamics. Consider the following random better response dynamics:
at each step, pick a blocking pair of agents at random and let the agents in this pair
match to each other. Roth and Vande Vate [16] proved that the random better response
dynamics converges to a stable matching with probability one. However, they do not
address the question of convergence time.

Our first result in this paper is an exponential lower bound for the convergence
time of this better response dynamics in uncoordinated two-sided markets (Theorem 2).
Both Knuth’s cycle [11], and Roth and Vande Vate’s proof [16] hold only for the better
response dynamics, and not for the best response dynamics. We strengthen the results
in [11, 16] to best responses. That is, we illustrate a cycle of best responses of agents
(Theorem 3), and then, using a potential function argument, we show that starting from
any matching, there exists a short sequence of best responses of agents to a stable match-
ing (Theorem 4). Moreover, we study the random best response dynamics and show an
exponential lower bound for its convergence time to stable matchings (Theorem 5).

The above lower bounds show that the decentralized game theoretic approach for
stable matchings does not converge in polynomial time. This motivates studying special
cases of two-sided markets for which the convergence time is polynomial. In this regard,
we consider a natural class of correlated two-sided markets, which are inspired from real-
life one-sided market games in which players have preferences about a set of markets, and
the preferences of markets are correlated with the preferences of players. This special
class of two-sided markets is shown to be a potential game in [2] and complexity related
questions are studied in [1]. Two illustrative examples of these markets are market
sharing games [7], and distributed caching games [5, 12]. These markets have been also
studied for finding stable geometric configurations with applications in VLSI design [9].
In a correlated two-sided market, there is a payoff associated with every possible pair of
active and passive agent. Both active and passive agents are interested in maximizing
their payoff, that is, an agent i prefers an agent j to an agent j′ if the payoff associated
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with pair (i, j) is larger than the payoff associated with pair (i, j′). In contrast to
general two-sided markets, we show that the random best response dynamics converges
in polynomial time to a stable matching in correlated two-sided markets (Theorem 7).

2 Preliminaries and Notations

In this section, we define the problems and notations that will be used throughout the
paper.
Two-sided Markets. A two-sided market consists of two disjoint groups of agents
X and Y, e. g., women and men. Each agent has a preference list over the agents of
the other side. An agent i ∈ X ∪ Y can be assigned to one agent j in the other side.
Then she gets payoff pi(j). If the preference list of agent i is (a1, a2, . . . , an), we say
that agent i has payoff k ∈ {0, . . . , n− 1} if she is matched to agent an−k. Also, we say
that an agent has payoff −1 if she is unmatched. Given a matching M , we denote the
payoff of an agent i in matching M by pi(M). Throughout the paper, we use women
or players as active agents, and men, or resources, or markets as passive agents in the
corresponding market game.

Given a matching M , an agent x ∈ X and an agent y ∈ Y form a blocking pair
if {x, y} /∈ M and px(y) > px(M) and py(x) > py(M). Given a matching M and a
blocking pair (x, y) in M , we say that a matching M ′ is obtained from M by resolving
the blocking pair (x, y) if the following holds: {x, y} ∈ M ′, any partners with whom
x and y are matched in M are unmatched in M ′, and all other edges in M and M ′

coincide. A matching is stable if it does not contain a blocking pair.
Uncoordinated Two-sided Markets. We model the uncoordinated two-sided market
(X ,Y) as a game G(X ,Y) among agents of the active side X . The strategy of each active
agent x ∈ X is to choose one agent y from the passive side Y. The goal of each active
agent x ∈ X is to maximize her payoff px(y). Given a strategy vector of active players,
an active agent x obtains payoff px(y) if she proposes to y, and if she is the winner of
y. Agent x is the winner of y if y ranks x highest among all active agents who currently
propose to her. Additionally, passive agent y obtains py(x) if x is the winner of y.

Remark 1. Stable matchings in an uncoordinated two-sided market (X ,Y) correspond
to pure Nash equilibria of the corresponding game G(X ,Y) and vice versa.

Consider two agents x ∈ X and y ∈ Y. If a blocking pair (x, y) is resolved, we
say that x plays a better response. If there does not exist a blocking pair (x, y′) with
px(y′) > px(y), then we say that x plays a best response when the blocking pair (x, y)
is resolved. In the random better response dynamics at each step a blocking pair is
chosen uniformly at random and resolved. In the random best response dynamics at
each step an active agent from X is chosen uniformly at random and allowed to play a
best response.
Correlated Two-sided Markets. In general, there are no dependencies between
the preference lists of agents. Correlated two-sided markets are examples in which
the preference lists are correlated. Assume that there is a payoff px,y ∈ N associated
with every pair (x, y) of agents x ∈ X and y ∈ Y such that px(y) = py(x) = px,y.
The preference lists of both active and passive agents are then defined according to
these payoffs, e. g., a passive agent y prefers an active agent x to an active agent x′

if px,y > px′,y. We assume that for every agent i, the payoffs associated to all pairs
including agent i are pairwise distinct. Then the preference lists are uniquely determined
by the ordering of the payoffs.
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m1 m2 m3 . . . mn−2 mn−1 mn

w1 1 2 3 . . . n− 2 n− 1 n
w2 n 1 2 . . . n− 3 n− 2 n− 1
w3 n− 1 n 1 . . . n− 4 n− 3 n− 2
...

...
...

...
...

...
...

...
wn−1 3 4 5 . . . n 1 2
wn 2 3 4 . . . n− 1 n 1

Figure 1: The weights of the edges in our construction.

3 Better Response Dynamics

In this section, we consider the random better response dynamics and present instances
for which with high probability the better response dynamics takes exponential time.
We present our instances using an edge-weighted bipartite graph with an edge for each
pair of woman and man. A woman w prefers a man m to a man m′ if the weight of the
edge {w,m} is smaller than the weight of {w,m′}. On the other hand, a man m prefers
a woman w to a woman w′ if the weight of the edge {m,w} is larger than the weight
of the edge {m,w′}. The bipartite graph is depicted in Figure 1. Before we analyze the
number of better responses needed to reach a stable matching, we prove a structural
property of the instances we construct.

Lemma 1. For the family of instances of the two-sided market problem that is depicted
in Figure 1, a matching M is stable if and only if it is perfect and every woman has the
same payoff in M .

Proof. First we show that every perfect matching M in which every woman has the same
payoff is stable. One crucial property of our construction is that whenever a woman w
and a man m are married, the sum pw(m) + pm(w) of their payoffs is n− 1. In order to
see this, assume that the edge between w and m has weight l +1. Then there are l men
whom woman w prefers to m, i. e., pw(m) = n− 1− l. Furthermore, there are n− 1− l
women whom man m prefers to w, i. e., pm(w) = l. This implies pw(m)+pm(w) = n−1.
We consider the case that every woman has payoff k and hence every man has a payoff of
n−1−k in M . Assume that there exists a blocking pair (w,m). Currently w has payoff
k, m has payoff n− 1− k, and w and m are not married to each other. Since (w,m) is
a blocking pair, pw(m) > k and hence pm(w) = n − 1 − pw(m) < n − 1 − k = pm(M),
contradicting the assumption that (w,m) is a blocking pair.

Now we have to show that a state M in which not every woman has the same payoff
cannot be a stable matching. We can assume that M is a perfect matching as otherwise
it obviously cannot be stable. Let M be a perfect matching and define l(M) to be
the lowest payoff that one of the women receives, i. e., l(M) = min{pw(M) | w ∈ X}.
Furthermore, by L(M) we denote the set of women receiving payoff l(M), i. e., L(M) =
{w ∈ X | pw(M) = l(M)}. We claim that there exists at least one woman in L(M) who
forms a blocking pair with one of the men.

First we consider the case that the lowest payoff is unique, i. e., L(M) = {w}. Let
m be the man with pw(m) = l(M) + 1. We claim that (w,m) is a blocking pair. To
see this, let M ′ denote the matching obtained from M by resolving (w,m). We have to
show that the payoff pm(M) of man m in matching M is smaller than his payoff pm(M ′)
in M ′. Due to our construction pm(M ′) = n− 1− pw(m) and pm(M) = n− 1− pw′(m),
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where w′ denotes m’s partner in M . Due to our assumption, w is the unique woman
with the lowest payoff in M . Hence, pw′(m) = pw′(M) > pw(M) = pw(m) − 1. This
implies pm(M ′) ≥ pm(M), and hence (w,m) is a blocking pair.

It remains to consider the case that the woman with the lowest payoff is not unique.
We claim that also in this case we can identify one woman in L(M) who forms a blocking
pair. Let w(1) ∈ L(M) be chosen arbitrarily and let m(1) denote her partner in M . Let
m(2) denote the man with pw(1)(m(2)) = pw(1)(m(1)) + 1 and let w(2) denote the woman
married to m(2) in M . If the payoff of w(2) in M is larger than the payoff of w(1) in M ,
then by the same arguments as for the case |L(M)| = 1, it follows that (w(1),m(2)) is
a blocking pair. Otherwise, if pw(1)(M) = pw(2)(M), we continue our construction with
w(2). To be more precise, we choose the man m(3) with pw(2)(m(3)) = pw(2)(m(2)) + 1
and denote by w(3) his partner in M . Again either w(3) ∈ L(M) or (w(2),m(3)) is
a blocking pair. In the former case, we continue the process analogously, yielding a
sequence m(1),m(2),m(3), . . . of men. If the sequence is finite, a blocking pair exists.
Now we consider the case that the sequence is not finite. Let j ∈ {1, . . . , n} be chosen
such that m(1) = mj . Due to our construction, it holds m(i) = m(j−i mod n)+1 for i ∈ N.
Hence, in this case, every man appears in the sequence, and hence every woman has the
same payoff l(M).

Now we can prove that with high probability the number of better responses needed
to reach a stable matching is exponential.

Theorem 2. There exists an infinite family of two-sided market instances I1, I2, I3, . . .
and corresponding matchings M1,M2,M3, . . . such that, for n ∈ N, In consists of n
women and n men and a sequence of random better responses starting in Mn needs
2Ω(n) steps to reach a stable matching with probability 1− 2−Ω(n).

Proof. We consider the instances shown in Figure 1. In Lemma 1, we have shown that
in any stable matching all women have the same payoff. For a given matching M , we
are interested in the most common payoff among the women and denote by χ(M) the
number of women having this payoff, i. e.,

χ(M) = max
i∈{0,...,n−1}

|{w ∈ X | pw(M) = i}| .

In the following, we show that whenever χ(M) is at least 15n/16, then χ(M) is more
likely to decrease than to increase. This yields a biased random walk which takes with
high probability exponentially many steps to reach χ(M) = n. If the most common
payoff is unique, which is always the case if χ(M) > n/2, then we denote by X ′(M) the
set of women having this payoff and by Y ′(M) the set of men married to women from
X ′(M).

Let δ = 15/16 and assume that χ(M) ≥ δn. First, we consider the case that the
current matching M is not perfect, i. e., there exists at least one unmatched woman w
and at least one unmatched man m. We call a blocking pair good if for the matching
M ′ obtained from resolving it, χ(M ′) = χ(M) − 1. On the other hand, we call a
blocking pair bad if χ(M ′) = χ(M) + 1 or if M ′ is a perfect matching. We count now
the number of good and of bad blocking pairs. Let k denote the most common payoff.
Both the unmarried woman w and the unmarried man m form a blocking pair which
each person who prefers her/him to his/her current partner. Since the current payoff of
the women in X ′(M) is k, at most k of these women do not improve their marriage by
marrying the unmarried man m. Analogously, since the payoff of the men in Y ′(M) is
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n − 1 − k, at most n − 1 − k of these men do not improve their marriage by marrying
the unmarried woman w. This implies that the number of good blocking pairs is at
least max{δn − k, δn − n + 1 + k} ≥ (δ − 1/2)n. On the other hand, there can be at
most (1 − δ)n + 1 bad blocking pairs. This follows easily because only women from
X \X ′(M) can form bad blocking pairs and each of these women forms at most one bad
blocking pair as there is only one man who is at position n − k in her preference list.
Furthermore, there exists at most one blocking pair which makes the matching perfect.

For a matching M with χ(M) ≥ δn, the ratio of good blocking pairs to bad blocking
pairs is bounded from below by

(δ − 1/2)n
(1− δ)n + 1

≥ 7
2

.

This implies that the conditional probability of choosing a good blocking pair under the
condition that either a good or a bad blocking pair is chosen is bounded from below by
7/9.

If a good blocking pair is chosen, χ decreases by 1. If a bad blocking pair is chosen
χ increases by 1 or the matching obtained is perfect. In the latter case, after the next
step again a matching M ′′ is obtained that is not perfect. For this matching M ′′, we
have χ(M ′′) ≤ χ(M) + 2. Since we are interested in proving a lower bound, we can
pessimistically assume that the current matching is not perfect and that whenever a
bad blocking pair is chosen, χ increases by 2. Hence, we can obtain a lower bound
on the number of better responses needed to reach a stable state, i. e., a state M with
χ(M) = n, by considering a random walk on the set {dδne, dδne+ 1, . . . , n} that starts
at dδne, terminates when it reaches n, and has the transition probabilities as shown
in Figure 2. This is a biased random walk. If we start with an arbitrary matching M

2
9

7
9

. . .

. . .
7
9

7
9

7
9

7
9

7
9

2
9

2
9

2
9

2
9

dδne dδne + 1 dδne + 2 n − 3 n − 2 n − 1 n

Figure 2: Transition probabilities of the random walk.

satisfying χ(M) ≤ δn, then one can show by applying a Chernoff bound that the biased
random walk takes 2Ω(n) steps with probability 1− 2−Ω(n) to reach state n.

4 Best Response Dynamics

In this section, we study the best response dynamics in two-sided markets.

Theorem 3. There exists an instance of the two-sided market problem with three women
and three men in which the best response dynamics can cycle.

Proof. Let w1, w2, w3 denote the women and let m1,m2,m3 denote the men. Let the
preference of w1, w2, w3, m1, m2, and m3 be (m2,m3,m1), (m1,m2,m3), (m3,m1,m2),
(w1, w3, w2), (w2, w1, w3), and (w1, w2, w3) respectively. We describe a state by a triple
(x, y, z), meaning that the first woman is married to the man mx, the second woman
to man my, and the third woman to man mz. A value of −1 indicates that the corre-
sponding woman is unmarried. The following sequence of states constitutes a cycle in
the best response dynamics:

(−1, 2, 3) → (3, 2,−1) → (3, 1,−1) → (3,−1, 1) → (2,−1, 1) → (−1, 2, 1) → (−1, 2, 3) .
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Theorem 4. For every two-sided market instance with n women and n men and every
matching M , there exists a sequence of 2n2 best responses starting in M and leading to
a stable matching.

Proof. We divide the sequence of best responses into two phases. In the first phase
only married women are allowed to change their marriages. If no married woman can
improve her marriage anymore, then the second phase starts. In the second phase, all
women are allowed to play best responses in an arbitrary order. In the first phase, we
use the potential function

Φ(M) =
∑
x∈X

(n− px(M)) ,

where X denotes the set of married women. This potential function decreases with
every best response of a married woman by at least 1 because this woman increases her
payoff and the set X can only become smaller. Since Φ is bounded from above by n2,
the first phase terminates after at most n2 best responses in a state in which no married
woman can improve her marriage.

Now consider the second phase. We claim that if we start in a state M ′ in which
no married woman can improve her marriage, then every sequence of best responses
terminates after at most n2 steps in a stable matching. Assume that we start in a
state M ′ in which no married woman can improve her marriage and that an unmarried
woman w plays a best response and marries a man m, leading to state M ′′. Then the
payoff of m can only increase. Hence, man m does not accept proposals in state M ′′

which he did not accept in M ′. This implies that also in M ′′ no married woman can
improve her marriage. Since no married woman becomes unhappy with her marriage,
men are never left and therefore they can only improve their payoffs. With every best
response one man increases his payoff by at least 1. This concludes the proof of the
theorem as each of the n men can increase his payoff at most n times.

Theorem 5. There exists an infinite family of two-sided market instances I1, I2, I3, . . .
and corresponding matchings M1,M2,M3, . . . such that, for n ∈ N, In consists of n
women and n men and a sequence of random best responses starting in Mn needs 2Ω(n)

steps to reach a stable matching with probability 1− 2−Ω(n).

Proof. For every large enough n ∈ N, we construct an instance In with n women and
n men in which the preference lists and the initial state Mn are chosen as shown in
Figure 3.

Let M denote the set of matchings that contain the edges

(w1,m1), . . . , (wj−2,mj−2), (wj ,mj−1), . . . , (wk,mk−1),
(wk+1,mk+1), . . . , (wl,ml), (wl+2,ml+1), . . . , (wn,mn−1)

for some j < k < l with n/16 ≤ k − j ≤ n/4, k < n/4, and l ≥ 5n/8 (cf. Figure 4a).
We claim that if one starts in a matching that belongs to M, then with probability
1− 2−cn, for an appropriate constant c > 0, another matching from M is reached after
Θ(n) many steps. Since no matching from M is stable, this implies the theorem.

If the current matching belongs to M, then there are at most three women who have
an incentive to change their marriage. Woman wj−1 can propose to man mj−1, woman
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. . .

. . .2 3 4

1 2 3 4 n
8 +1

n
8 +1 n

8 +4

n
8 +2

n
8 +3

n
8 +3

n
8 +2

n
8 +4

n-1

n-1

( 7n
8

, . . . , n-1, 1) (1, 2) (2, 3) (3, 4) . . . (n-1, n)

(n). . .(1, 2)(2, 3, 1)(3, 4, 1)

n

n

(n-1, n, 1)

Figure 3: Nodes in the upper and lower row correspond to women and men respectively.
The figure also shows the initial state and the preference lists. The lists are only partially
defined, but they can be completed arbitrarily.

wj−1 wl+1

mk

(a) Matching fromM.

mk

(b) w1 proposes to mk if 7n
8
≤ k < n. (c) A new diagonal is introduced.

Figure 4: One phase of the best response dynamics.

wk+1 can propose to man mk, and, if l < n, woman wl+1 can propose to man ml+1.
Intuitively, as long as we are in a state that belongs to M, there exists one block of
diagonal marriages in the first half, and possibly a second block at the right end of the
construction. In every step the left end of the first block, the right end of the first block,
and the left end of the second block move with the same probability one position to the
right. Since the length of the first block is Ω(n), one can show by a standard application
of a Chernoff bound that the probability that the first block vanishes, i. e., its left end
catches up with its right end, before its right end reaches man mn is exponentially
small. Furthermore, since the distance between the first and the second block is Ω(n),
the probability that the right end of the first block catches up with the left end of the
second block before the second block has vanished is also exponentially small.

When the right end of the first block has reached man m7n/8, i. e., m7n/8 is unmar-
ried, then with probability exponentially close to 1, the second block has already van-
ished (see Figure 4b) because the initial distance between the two blocks is at least 3n/8
and only with probability 2−Ω(n) it decreases to n/8 before the second block vanishes. As
long as the right end of the second block lies in the interval {7n/8, . . . , n−1}, woman w1

has an incentive to change her marriage since she prefers mk with k ∈ {7n/8, . . . , n−1}
to m1. Once she has changed her strategy, a new block of diagonals can be created
on the left end of the construction (see Figure 4c). In particular, woman w1 will only
return to m1 if no man mk with k ∈ {7n/8, . . . , n − 1} is unmarried, that is, she will
only return to m1 if the right end of the first block has reached man mn. Since it is as
likely that a new diagonal at the beginning is inserted as it is that the right end of the
block moves one position further to the right, the expected length of the newly created
block is n/8− 2. By Lemma 6 it follows that the length of the new block lies with high
probability in the interval [n/16, n/4]. Only with exponentially small probability the
left end of the block has not passed man m5n/8 when the right end has reached man mn

because this would imply that the length of the block has increased from at most n/4
to 3n/8. If none of these exponentially unlikely failures events occurs, we are again in
a matching from M.
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Lemma 6. Let X be the sum of n/8 geometric random variables with parameter p = 1/2.
There exists a constant c > 0 such that

Pr [X /∈ [n/16, n/4]] ≤ 2e−cn .

Proof. The random variable X is negative binomially distributed with parameters n/8
and 1/2. For a series of independent Bernoulli trials with success probability 1/2,
the random variable X describes the number of failures before the (n/8)th success is
obtained. For a ∈ N, let Ya be a binomially distributed random variable with parameters
a and 1/2. Then

Pr [X > n/4] = Pr
[
Y3n/8 < n/8

]
= Pr

[
Y3n/8 <

2
3
E

[
Y3n/8

]]
≤ e−cn ,

where the last inequality follows, for an appropriate constant c > 0, from a Chernoff
bound. Furthermore

Pr [X < n/16] = Pr
[
Y3n/16 > n/8

]
= Pr

[
Y3n/16 >

4
3
E

[
Y3n/16

]]
≤ e−cn .

5 Correlated Two-Sided Markets

In this section, we show that, in contrast to general two-sided markets, the conver-
gence time of the random best response dynamics in correlated two-sided markets is
polynomial.

Theorem 7. In every correlated two-sided market the random best response dynamics
converges to a stable matching in polynomial time with high probability.

Proof. We denote by a round a consecutive sequence of best responses such that every
player is activated at least once. Due to the coupon collector’s problem, each round has
length Θ(n log n) with high probability. Let p denote the highest possible payoff that
can be achieved. After the first round there will be a pair (x, y) ∈ X × Y contained
in the matching such that py(x) = p because players play best responses. After the
value p occurs in the potential function Φ, player x will never leave market y again.
Furthermore, x cannot be displaced from y since no player is strictly preferred to x by
resource y. Hence, the assignment of x to y can be fixed and we can remove x and
y from the game. Now we can inductively apply the same argument to the remaining
game. This implies that after at most n rounds a stable state is reached. Hence, the
best response dynamics terminates after O(n2 log n) steps in expectation and with high
probability.

Acknowledgements. We thank Fuhito Kojima and and Yuval Peres for pointing out
related work.
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