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Abstract. Motivated by the problem of detecting link-spam, we consider the following graph-theoretic
primitive: Given a webgraph G, a vertex v in G, and a parameter δ ∈ (0, 1), compute the set of all
vertices that contribute to v at least a δ fraction of v’s PageRank. We call this set the δ-contributing
set of v. To this end, we define the contribution vector of v to be the vector whose entries measure the
contributions of every vertex to the PageRank of v. A local algorithm is one that produces a solution
by adaptively examining only a small portion of the input graph near a specified vertex. We give an
efficient local algorithm that computes an ε-approximation of the contribution vector for a given vertex
by adaptively examining O(1/ε) vertices. Using this algorithm, we give a local approximation algorithm
for the primitive defined above. Specifically, we give an algorithm that returns a set containing the δ-
contributing set of v and at most O(1/δ) vertices from the δ/2-contributing set of v, and which does so
by examining at most O(1/δ) vertices. We also give a local algorithm for solving the following problem:
If there exist k vertices that contribute a ρ-fraction to the PageRank of v, find a set of k vertices that
contribute at least a (ρ − ε)-fraction to the PageRank of v. In this case, we prove that our algorithm
examines at most O(k/ε) vertices.

1 Introduction

In numerous applications of PageRank one needs to know, in addition to the rank of a given web page, which
pages or sets of pages contribute most to its rank. These PageRank contributions have been used for link
spam detection [4, 10] and in the classification of web pages [12]. A set of pages that contributes significantly
to the PageRank of a page is often called a contribution set or supporting set of the page [4, 10].

The contribution that a vertex u makes to the PageRank of a vertex v is defined rigorously in terms of
personalized PageRank. For a webgraph G = (V,E) and a teleportation constant α (sometimes called the
restart probability), let PRMα be the matrix whose uth row is the personalized PageRank vector of u. The
PageRank contribution of u to v, written prα(u → v), is defined to be the entry (u, v) of this matrix. The
PageRank of a vertex v is the sum of the vth column of the matrix PRMα, and thus the PageRank of a
vertex can be viewed as the sum of the contributions from all other vertices. The contribution vector of v is
defined to be the vth column of the matrix PRMα, whose entries are the contributions of every vertex to
the PageRank of v.

Given that the web graph is massive and getting larger at a substantial rate, it is essential to compute
contribution vectors and identify supporting sets by examining as small a fraction of the graph as possible.
In particular, it is helpful to design a local algorithm for computing the supporting sets of a particular
vertex. Local algorithms search for a solution near a specified vertex by adaptively examining only a small
subset of the input graph. They have been studied previously in distributed computing [16] and in graph
partitioning and clustering [20, 2]. Personalized PageRank vectors can be approximated locally. Using one
of several possible algorithms [14, 5, 19], it is possible to compute an approximation of the personalized
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PageRank vector of a vertex u by examining only O(1/ε) vertices, where ε is the desired amount of error at
each vertex.

Problem Formulation. Inspired by local algorithms for computing personalized PageRank, and motivated
by the importance of supporting sets in link-spam detection, we consider the problem of directly computing
the contribution vector of a given vertex to quickly identify its supporting sets. In particular, we consider
following graph-theoretic primitive: Given a webgraph G, a vertex v in G, and a parameter δ ∈ (0, 1),
compute the set of all vertices each contributing at least a δ fraction to the PageRank of v. We call this set
the δ-contributing set of v.

Such a primitive is useful for spam detection, since, given a webpage whose PageRank has recently
increased suspiciously, we can quickly identify the set of pages that contribute significantly to the PageRank
of that suspicious page. The above primitive may also be useful for analyzing social networks. In social
networks in which the links capture the influence of vertices on each other, we can identify the nodes with
the most influence to a given node.

Our Results. We give an efficient, local algorithm for computing an ε-approximation of the contribution
vector for a given vertex v, a vector whose difference from the contribution vector is at most ε at each vertex.
We prove that the number of the vertices examined by the algorithm is O(1/ε). The algorithm performs
a sequence of probability-pushing operations on vertices of the graph, which we call pushback operations.
When the pushback operation is applied to a vertex u, we perform a small amount of computation for each in-
neighbor of u. Particularly, we add a fraction of a number stored at u to a number stored at each in-neighbor
of u. The number of such operations that our algorithm performs is O(1/ε), and its running time can be
bounded by the sum of the in-degrees of the vertices from which these operations were performed. To derive
this algorithm, we adapt Jeh and Widom’s technique for computing personalized PageRank vectors [14] to
directly compute contribution vectors. To analyze the algorithm’s running time and error bounds, we use
techniques developed for the local clustering algorithm in [2].

Using our algorithm for approximating contribution vectors, we give an approximation algorithm to the
primitive defined above. Explicitly, we give a local algorithm that returns a set containing the δ-contributing
set of v and at most O(1/δ) vertices from the δ/2-contributing set of v. Our algorithm applies at most
O(1/δ) pushback operations. We also give a local algorithm for solving the following problem: If there are
k vertices which contribute a ρ-fraction to the PageRank of v, find a set of k vertices which contribute at
least (ρ− ε)-fraction to the PageRank of v. In this case, we prove that our algorithm needs at most O(k/ε)
pushback operations.

Finally, we remark that, in principle, one could directly compute the contribution vector for a vertex v
by approximating the personalized PageRank vector of v in the time-reversal of the random walk Markov
chain. We describe the computation required for this approach, and argue that for most graphs it is not as
efficient as the method we propose.

Related Work. Supporting sets and PageRank contributions have been studied before as a tool for spam
detection, notably in the SpamRank algorithm of Benczúr et al. [4], and in the Spam Mass algorithm of
Gyöngyi et al. [10]. However, none of these papers developed a local algorithm for computing the contribution
vector or supporting set. In the SpamRank algorithm [4], the contribution vectors are computed in the
following way. One computes an approximation of each personalized PageRank vector in the graph to create
an approximate PageRank matrix, and then takes the transpose of this matrix to obtain the approximate
contribution vectors. This method is efficient for the task of computing the contribution vectors for every
vertex in the graph, and it leverages fast algorithms for computing many personalized PageRank vectors
simultaneously [9, 19], but it does not provide an efficient way to compute the contribution vectors of a



few selected suspicious vertices. Furthermore, the relative error in the resulting approximate contribution
vectors may be larger than the relative error in the computed personalized PageRank vectors, since this is
not preserved by the transpose operation.

PageRank contributions have also been used to estimate the PageRank of a target vertex. The algorithm
in [7] heuristically identifies the top contributors to a vertex v by adaptively choosing vertices with high
likelihood of being large contributors, and then locally computes personalized PageRank from those vertices.
This is different from our approach of directly computing the contribution vector, and more difficult to
analyze rigorously.

Local algorithms have been studied in distributed computing [16] and in graph partitioning and clus-
tering [20, 2]. Personalized PageRank vectors can be computed locally using a number of methods [5, 2, 19],
many of which are based on the algorithm of Jeh and Widom [14]. None of these algorithms can be used
directly to compute a contribution vector or supporting set.

There are numerous methods for detecting link spam besides the SpamRank-type algorithms we have
mentioned here. Examples include applying machine learning to link-based features [3], the analysis of page
content [15, 17], TrustRank [11] and Anti-TrustRank [18], and statistical analysis of various page features [8].
Finally, as a followup of this paper, we have used the local algorithm developed in this paper to design several
locally computable link-spam features and report our experimental results for link spam detection [1].

Organization. This paper will be organized as follows. In Section 2, we review the basic concepts used in this
paper, including PageRank, personalized PageRank, and PageRank contribution vectors. In Section 3, we
derive an alternate formula for the PageRank contribution vector. Using this formula, we present an efficient
local algorithm for computing PageRank contribution and analyze its performance. In Section 4, we consider
several notions of supporting sets, which are sets of vertices that contribute significantly to the PageRank
of a target vertex, and show how to efficiently compute approximate supporting sets. In Section 5 we make
a few concluding remarks. We also show that, in principle, the time-reverse Markov chain can be used to
compute the contribution vector, but argue that our method is more efficient.

2 Preliminaries

The web can be modeled by a directed graph G = (V,E) where V are webpages and a directed edge
(u → v) ∈ E represents a hyperlink in u that references v. Although the web graph is usually viewed as an
unweighted graph, our discussion can be extended to weighted models. To deal with the problem of dangling
nodes with no out-edges, we assume an artificial node with a single self-loop has been added to the graph,
and an edge has been added from each dangling node to this artificial node. Let A denote the adjacency
matrix of G. For each u ∈ V , let dout(u) denote the out-degree of u and let din(u) denote the in-degree of u.
Let Dout be the diagonal matrix of out-degrees.

We will now define PageRank vectors and contribution vectors. For convenience, we will view all vectors
as row vectors, unless explicitly stated otherwise.

For a teleportation constant α, the PageRank vector prα defined by Brin and Page [6] satisfies the
following equation:

prα = α · 1 + (1− α) · prα ·M, (1)

where M is the random walk transition matrix given by M = D−1
outA and 1 is the row vector of all 1’s (always

of proper size). The PageRank of a page u is then prα(u). When there is no danger of confusion, we may
drop the subscript α. Note that the above definition corresponds to the normalization

∑
u prα(u) = |V |.



Similarly, the personalized PageRank vector ppr(α, u) of a page u ∈ V , defined by Haveliwala [13],
satisfies the following equation.

ppr(α, u) = α · eu + (1− α) · ppr(α, u) ·M, (2)

where eu is the row unit vector whose uth entry is equal to 1.
Let PRMα denote the (personalized) PageRank matrix, whose uth row is the personalized PageRank

vector ppr(α, u). The (global) PageRank vector prα is then 1 · PRMα, the sum of all the personalized
PageRank vectors. The PageRank contribution of u to v is defined to be the (u, v)th entry of PRMα, and
will be written pprα(u → v). The contribution vector cpr(α, v) for the vertex v is defined to be the row
vector whose transpose is the vth column of PRMα. If c = cpr(α, v) is the contribution vector for v, then
we denote by c(S) the total contribution of the vertices in S to the PageRank of v. In particular, we have
c(V ) = prα(v) and c(u) = pprα(u → v).

3 Local Approximation of PageRank Contributions

In this section, we describe an algorithm for computing an approximation of the contribution vector c =
cpr(α, v) of a vertex v.

Definition 1 (Approximate Contribution). A vector c̃ is an ε-approximation of the contribution vector
c = cpr(α, v) if c̃ ≥ 0 and, for all vertices u,

c(u)− ε · prα(v) ≤ c̃(u) ≤ c(u).

A vector c̃ is an ε-absolute-approximation of the contribution vector c = cpr(α, v) if c̃ ≥ 0 and, for all
vertices u,

c(u)− ε ≤ c̃(u) ≤ c(u).

Clearly, an ε-approximation of cpr(α, v) is an (ε · prα(v))-absolute-approximation of cpr(α, v). In the algo-
rithm below, we will focus on the computation of an ε-absolute-approximation of the contribution vector.

The support of a non-negative vector c̃, denoted by Supp(c̃), is the set of all vertices whose entries in c̃
are strictly positive. The vector c has a canonical ε-absolute-approximation. Let c̄ denote the vector

c̄(u) =
{

c(u) if c(u) > ε
0 otherwise .

Clearly, c̄ is the ε-absolute-approximation of c with the smallest support. Moreover, ‖c̄‖1 ≤ ‖c‖1 and thus,
|Supp(c̄)| ≤ ‖c‖1/ε. Our local algorithm attempts to find an approximation c̃ of c which has a similar support
structure to that of c̄.

3.1 High Level Idea of the Local Algorithm

It is well known that for each α, the personalized PageRank vector which satisfies Equation 2 also satisfies

ppr(α, u) = α
∞∑

t=0

(1− α)t ·
(
euM t

)
. (3)

The contribution of u to v can then be written in the following way.



pprα(u → v) = 〈ppr(α, u) , ev 〉 (4)

=

〈
α

∞∑
t=0

(1− α)t(euM t) , ev

〉
(5)

=

〈
eu , α

∞∑
t=0

(1− α)t(evMT )t

〉
. (6)

The standard way to compute the contribution of u to v is based on Equation 5. We refer to this approach
as the time-forward calculation of pprα(u → v). Recall that euM t is the t-step random walk distribution
starting from u. In the time-forward calculation, we emulate the random walk from u step by step and add
up the walk distributions scaled by the power sequence of (1 − α)t. Without knowing in advance which
vertices u make large contributions to v, one may have to perform the time-forward calculation of ppr(α, u)
for many vertices u to obtain a good approximation of cpr(α, v).

To overcome this difficulty, we can directly calculate cpr(α, v) in the manner suggested by Equation 6.
This equation implies that

cpr(α, v) = α
∞∑

t=0

(1− α)t ·
(
ev(MT )t

)
. (7)

Thus, the contribution vector can be computed by starting with ev, iteratively computing ev(MT )t, and
adding up the resulting vectors scaled by the power sequence of (1 − α)t. Note that the matrix MT is no
longer a random walk matrix, since the sum of each row will not generally be equal to 1. Unlike the time-
forward calculation, the direct calculation of cpr(α, v) is no longer an emulation of the random walk starting
from v. This fact complicates the error analysis of the next subsection.

The discussion above provides a way to directly compute cpr(α, v), but our local algorithm will perform a
different calculation. Instead of iteratively computing the vectors ev(MT )t, we adapt the technique of Jeh and
Widom [14] for computing personalized PageRank to the task of computing contribution vectors. Using this
method, we can compute the contribution vector in a decentralized way, and avoid spending computational
effort manipulating small numerical values. This enables us to bound the running time required to obtain a
fixed level of error.

Equation 7 also enables us to compute the vector of contributions to a specified subset S of vertices,
which we define to be cpr(α, S) =

∑
v∈S cpr(α, v). Let eS =

∑
v∈S ev. Then,

cpr(α, S) = α
∞∑

t=0

(1− α)t ·
(
eS(MT )t

)
. (8)

To further abuse notation, for any non-negative vector s, we define

cpr(α, s) = α
∞∑

t=0

(1− α)t ·
(
s(MT )t

)
. (9)

3.2 The Local Algorithm and its Analysis

The theorem below describes our algorithm ApproxContributions for computing an ε-absolute-approximation
of the contribution vector of a target vertex v. We give an upper bound on the number of vertices examined



by the algorithm that depends on prα(v), ε, and α, but is otherwise independent of the number of vertices
in the graph. The algorithm performs a sequence of operations, which we call pushback operations. Each
pushback operation is performed on a single vertex of the graph, and requires time proportional to the
in-degree of that vertex. We place an upper bound on the number of pushback operations performed by the
algorithm, rather than the total running time of the algorithm. The total running time of the algorithm
depends on the in-degrees of the sequence of vertices on which the pushback operations were performed. The
number of pushback operations is an upper bound on the number of vertices in the support of the resulting
approximate contribution vector.

Theorem 1. The algorithm ApproxContributions(v, α, ε,pmax) has the following properties. The input is
a vertex v, two constants α and ε in the interval (0, 1], and a real number pmax. The algorithm computes a
vector c̃ such that 0 ≤ c̃ ≤ c, and either

1. c̃ is an ε-absolute approximation of cpr(α, v), or
2. ‖c̃‖1 ≥ pmax.

The number of pushback operations P performed by the algorithm satisfies the following bound,

P ≤ min (prα(v),pmax)
αε

+ 1.

The proof of Theorem 1 is based on a series of facts which we describe below. The starting point is the
following observation, which is easy to verify from Equation 9. For any vector s,

cpr(α, s)MT = cpr(α, sMT ). (10)

We can further derive the following equation,

cpr(α, s) = αs + (1− α) · cpr(α, s)MT

= αs + (1− α) · cpr(α, sMT ). (11)

This is the transposed version of the equation that was used Jeh and Widom to compute approximate
personalized PageRank vectors [14]. Very naturally, we will use it to compute approximate contribution
vectors.

The algorithm ApproxContributions(v, α, ε,pmax) maintains a pair of vectors p and r with nonnegative
entries, starting with the trivial approximation p = 0 and r = ev, and applies a series of pushback operations
that increase ‖p‖1 while maintaining the invariant p+cpr(α, r) = cpr(α, v). Each pushback operation picks
a single vertex u, moves an α fraction of the mass at r(u) to p(u), and then modifies the vector r by replacing
r(u)eu with (1−α)r(u)euMT . Note that ‖r‖1 may increase or decrease during this operation. We will define
the pushback operation more formally below, and then verify that each pushback operation does indeed
maintain the invariant.

pushback (u):
Let p′ = p and r′ = r, except for these changes:

1. p′(u) = p(u) + αr(u).
2. r′(u) = 0.
3. For each vertex w such that w → u:

r′(w) = r(w) + (1− α)r(u)/dout(w).



Lemma 1 (Invariant). Let p′ and r′ be the result of performing pushback(u) on p and r. If p and r satisfy
the invariant p + cpr(α, r) = cpr(α, v), then p′ and r′ satisfy the invariant p′ + cpr(α, r′) = cpr(α, v).

Proof. After the pushback operation, we have, in vector notation,

p′ = p + αr(u)eu.

r′ = r− r(u)eu + (1− α)r(u)euMT .

We will apply equation (11) to r(u)eu to show that p + cpr(α, r) = p′ + cpr(α, r′).

cpr(α, r) = cpr(α, r− r(u)eu) + cpr(α, r(u)eu)

= cpr(α, r− r(u)eu) + αr(u)eu + cpr(α, (1− α)r(u)euMT )

= cpr(α, r− r(u)eu + (1− α)r(u)euMT ) + αr(u)eu

= cpr(α, r′) + p′ − p.

During each pushback operation, the quantity ‖p‖1 increases by αr(u). The quantity ‖p‖1 can never
exceed ‖cpr(α, v)‖1, which is equal to prα(v). By performing pushback operations only on vertices where
r(u) ≥ ε, we can ensure that ‖p‖1 increases by a significant amount at each step, which allows us to bound
the number of pushes required to compute an ε-absolute-approximation of the contribution vector. This is
the idea behind the algorithm ApproxContributions.

ApproxContributions(v, α, ε,pmax):

1. Let p = 0, and r = ev.
2. While r(u) > ε for some vertex u:

(a) Pick any vertex u where r(u) ≥ ε.
(b) Apply pushback (u).
(c) If ‖p‖1 ≥ pmax, halt and output c̃ = p.

3. Output c̃ = p.

This algorithm can be implemented by maintaining a queue containing those vertices u satisfying r(u) ≥ ε.
Initially, v is the only vertex in the queue. At each step, we take the first vertex u in the queue, remove it
from the queue, and perform a pushback operation from that vertex. If the pushback operation raises the
value of r(x) above ε for some in-neighbor x of u, then x is added to the back of the queue. This continues
until the queue is empty, at which point all vertices satisfy r(u) < ε, or until ‖p‖1 ≥ pmax. We now show
that this algorithm has the properties promised in Theorem 1.

Proof (Proof of Theorem 1). Let T be the total number of push operations performed by the algorithm,
and let pt and rt be the states of the vectors p and r after t pushes. The initial setting of p0 = 0 and r0 = ev

satisfies the invariant pt + cpr(α, rt) = cpr(α, v), which is maintained throughout the algorithm. Since rt

is nonnegative at each step, the error term cpr(α, rt) is also nonnegative, so we have cpr(α, v)− pt ≥ 0. In
particular, this implies ‖pt‖1 ≤ ‖cpr(α, v)‖1 = prα(v).

Let c̃ = pT be the vector output by the algorithm. When the algorithm terminates, we must have either
‖c̃‖1 ≥ pmax or ‖rT ‖∞ ≤ ε. In the latter case, the following calculation shows that c̃ is an ε-absolute-
approximation of cpr(α, v).

‖cpr(α, v)− c̃‖∞ = ‖cpr(α, rT )‖∞
≤ ‖rT ‖∞
≤ ε.



The fact that ‖cpr(α, rT )‖∞ ≤ ‖rT ‖∞ holds because rT is nonnegative and each row of M sums to 1.
The vector pT−1 must have satisfied ‖pT−1‖1 < pmax, since the algorithm decided to push one more

time. We have already observed that ‖pT−1‖1 ≤ prα(v). Each push operation increased ‖p‖1 by at least αε,
so we have

αε(T − 1) ≤ ‖pT−1‖1 ≤ min (‖cpr(α, v)‖1,pmax).

This gives the desired bound on T .

It is possible to perform a pushback operation on the vertex u, and to perform the necessary queue
updates, in time proportional to din(u). Therefore, the running time of the algorithm is proportional to the
sum over all pushback operations of the in-degree of the pushed vertex.

We can compute an ε-approximation of cpr(α, v), provided that prα(v) is known, by calling the algorithm
ApproxContributions(v, α, ε · prα(v),prα(v)).

Corollary 1 (ε-Approximation of contribution vectors). Given prα(v), an ε-approximation of cpr(α, v),
can be computed with 1

αε + 1 pushback operations.

We also observe that, using Equation 8, our algorithm can be easily adapted to compute an ε-absolute-
approximation and ε-approximation of cpr(α, S) for a group S of vertices, with a similar bound on the
number of pushback operations.

3.3 The Support of the Approximate Contribution Vector

The number of vertices in the support of the ε-approximate contribution vector c̃ is upper bounded by
the number of pushback operations used to compute it, which is at most 1

αε + 1. In this section we give
a stronger upper bound on the size of the support. To do this, we need to modify the pushback operation
slightly. Instead of moving all the mass from r(u) during the pushback operation, we move all but ε/2 units
of mass, and leave ε/2 units on r(u). This increases the running time bound for the algorithm by a factor of
2, but ensures that r(x) ≥ ε/2 at each vertex in Supp(c̃). We use this fact to give a family of bounds on the
size of Supp(c̃).

We will abuse our notation a bit by defining the following,

prα(x → y) = 〈xMα , y 〉,

where Mα = PRMα is the PageRank matrix. In particular, prα(x → eS) is the amount probability from
the PageRank vector with starting distribution x on the set S.

Proposition 1. Let c̃ be the ε-approximate contribution vector for v computed by the modified algorithm
described above, and let S = Supp(c̃). For any nonnegative vector z, we have the following upper bound on
S,

prα(z → eS) ≤ 2
ε
prα(z → ev).

Proof. Note that ppr(α, v) = evMα and cpr(α, v) = evMT
α . We know that cpr(α, r) ≤ cpr(α, ev), which

can also be written rMT
α ≤ evMT

α . Let S = Supp(c̃) and recall that r(x) ≥ ε/2 for any vertex x ∈ S. Then,

〈 zMα , ev 〉 =
〈
z , evMT

α

〉
≥

〈
z , rMT

α

〉
= 〈 zMα , r 〉 ≥ (ε/2)〈 zMα , eS 〉.

In the second step we needed z to be nonnegative, and in the last step we needed zMα to be nonnegative,
which is true whenever z is nonnegative.



In words, this proposition states that for any starting vector z, the amount of probability from the
PageRank vector ppr(α, z) on the set S = Supp(c̃) is at most 2/ε times the amount on the vertex v. If we
let z = eV , then we obtain a bound on the amount of global PageRank on the set S,

prα(S) ≤ 2
ε
prα(v).

To see that this bound is at least as strong as what we knew before, recall that the PageRank of any given
vertex is at least α. If we make the pessimistic assumption that prα(u) = α for each u ∈ Supp(c̃), then the
bound we have just proved reduces to our earlier bound on the number of pushback operations,

|Supp(c̃)| ≤ 2prα(v)/αε.

4 Computing Supporting Sets

In this section, we use our local algorithm for approximating contribution vectors to compute approximate
supporting sets, sets of vertices that contribute significantly to the PageRank of a target vertex. There are
several natural notions of supporting sets, which we define below. For a vertex v, let πv be the permutation
that orders the entries cpr(α, v) from the largest to the smallest. Ties may be broken arbitrarily.

– top k contributors: the first k pages of πv.
– δ-significant contributors: {u | pprα(u → v) > δ}.
– ρ-supporting set: a set S of pages such that

pprα(S → v) ≥ ρ · prα(v).

In addition, let kρ(v) be the smallest integer such that

pprα(πv(1 : kρ(v)) → v) ≥ ρ · prα(v).

Clearly the set of the first kρ(v) pages of πv is the minimum size ρ-supporting set for v. Also, we define
ρk(v) = pprα(πv(1 : k) → v)/prα(v) to be the fraction of v’s PageRank contributed by its top k contributors.

4.1 Approximating Supporting Sets

Without precisely computing cpr(α, v) it might be impossible to identify supporting sets exactly, so we
consider approximate supporting sets. For a precision parameter ε, we define the following.

– ε-precise top k contributors: a set of k pages that contains all pages whose contribution to v is at least
pprα(πv(k) → v) + ε · prα(v), but no page with contribution to v less than pprα(πv(k) → v)− ε · prα(v).

– ε-precise δ-significant contributors: a set that contains the set of δ-significant contributors and is
contained in the set of (δ − ε)-significant contributors.

The results in the remainder of this section assume that prα(v) is known.

Theorem 2. An ε-precise set of top k contributors of a vertex v can be found by performing 1/αε + 1
pushback operations.



Proof. Call c̃ = ApproxContributions(v, α, ε · prα(v),prα(v)). Let C = Supp(c̃). If |C| > k, then return
the vertices with the top k entries in c̃; otherwise, return C together with k − Supp(c̃) arbitrarily chosen
vertices not in C. Consider a page u with cpr(u, v) ≥ cpr(πv(k), v) + ε · prα(v). Clearly u ∈ C because
c̃(u) ≥ cpr(πv(k), v), implying c̃(u) is among the top k entries in c̃. On the other hand, c̃(πv(j)) is at least
cpr(πv(k), v) − ε · prα(v) for all j ∈ [1 : k]. Thus, each of the vertices with the top k entries in c̃ must
contribute at least cpr(πv(k), v)− ε · prα(v) to v.

Theorem 3. An ε-precise δ-significant contributing set of a vertex v can be found by performing 1/αε + 1
pushback operations.

Proof. Call c̃ = ApproxContributions(v, α, ε · prα(v),prα(v)) and return the vertices whose entries in c̃
are at least (δ − ε) · prα(v). Clearly, the set contains the δ-contributing set of v and is contained in the
(δ − ε)-supporting set of v. Moreover, the number of pages not in the δ-supporting set that are included is
at most 1/(δ − ε).

In the remainder of this section, we consider the computation of approximate ρ-supporting sets. We give
two different algorithms, one for finding a supporting set on a fixed number of vertices with the largest
contribution possible, and one for finding a supporting set with a fixed contribution on as few vertices as
possible.

Theorem 4. Given a vertex v and an integer k, a set of k vertices that is a (ρk − ε)-supporting set for v
can be found by performing k/αε + 1 pushback operations.

Proof. Compute c̃ = ApproxContributions(v, α, εprα(v)/k, prα(v)). Let Sk be the set of k top contributors
to v, which are the k vertices with the highest values in c, and let S̃k be the set of k vertices with the highest
values in c̃. The set S̃k meets the requirements of the theorem, since we have

c̃(S̃k) ≥ c(Sk)− k(εprα(v)/k)
≥ ρk · prα(v)− ε · prα(v)
= prα(v)(ρk − ε).

Theorem 5. Assume we are given ρ but not kρ. A set of at most kρ vertices that is a (ρ− ε)-supporting set
for v can be found by performing O(kρ log kρ/αε) pushback operations.

Proof. The challenge here is that we do not know kρ, so we need to use a binary search procedure to find a
proxy for kρ. We will proceed in two phases. In the first phase, we guess a value of k, starting with k = 1, and
compute c̃ = ApproxContributions(v, α, ε·prα(v)/k, prα(v)). As in Theorem 4, let S̃k be the set of k vertices
with the highest values in c̃, which we know satisfies c̃(S̃k) ≥ (ρk − ε). If we observe that c̃(S̃k) < (ρ − ε),
then we double k and repeat the procedure. If we observe that c̃(S̃k) ≥ (ρ− ε), then we halt and proceed to
the second phase, and set k1 to be the value of k for which this happens. We must have k1 ≤ 2kρ, since we
are guaranteed to halt if k ≥ kρ.

Let k0 = k1/2 be the value of k from the step before the first phase halted. In the second phase, we perform
binary search within the interval [k0, k1] to find the smallest integer kmin for which c̃(S̃kmin

) ≥ (ρ− ε), which
must satisfy kmin ≤ kρ. We output S̃kmin .

Each time we call the subroutine c̃ = ApproxContributions(v, α, εprα(v)/k,prα(v)), it requires k/αε+1
push operations. In the first phase we call this subroutine with a sequence of k values that double from 1
up to at most 2kρ, so the number of push operations performed is O(kρ/αε + log kρ). In the second phase,
the binary search makes at most log kρ calls to the subroutine, with k set to at most 2kρ in each step, so
the number of push operations performed is O(kρ log kρ/αε + log kρ). The total number of push operations
performed in both phases is O(kρ log kρ/αε).



4.2 Local Estimation of PageRank

Up to this point, we have assumed when computing the supporting set of a vertex that its PageRank is
known. We now consider how to apply our approximate contribution algorithm when nothing is known
about the PageRank of the target vertex. In particular, we consider the problem of computing a lower bound
on the PageRank of a vertex using local computation.

A natural lower bound on the PageRank prα(v) is provided by the contribution to v of its top k contribu-
tors, pk = cpr(πv(1 : k), v). The theorem below shows we can efficiently certify that prα(v) is approximately
as large as pk without prior knowledge of prα(v) or pk. This should be contrasted with the algorithms from
the previous section, for which we needed to know the value prα(v) in order to set ε to obtain the stated
running times.

Theorem 6. Given k and δ, we can compute a real number p such that

pk(1 + δ)−2 ≤ p ≤ prα(v),

where pk = cpr(πv(1 : k), v), by performing 10k log(k/αδ)/α pushback operations.

Proof. Fix k and δ, choose a value of p, and compute c̃ = ApproxContributions(v, α, ε, p) with ε = δp/k.
The number of pushback operations performed is at most

1 + p/αε = 1 + p/α(δp/k) = 1 + 10k/α.

When the algorithm halts, we either have ‖c̃‖1 ≥ p, in which case we have certified that prα(v) ≥ p, or
else we have ‖c̃− cpr(α, v)‖∞ ≤ δp/k, in which case we have certified that pk ≤ (1 + δ)p, by the following
calculation:

pk = cpr(πv(1 : k), v) ≤ c̃(πv(1 : k), v) + (δp/k)k ≤ p + δp.

We now perform binary search over p in the range [α, k]. Let plow be the largest value of p for which
we have certified that prα(v) ≥ p, and let phigh be the smallest value of p for which we have certified that
pk ≤ (1 + δ)p. We perform binary search until phigh ≤ plow(1 + δ), which requires at most log(k/αδ) steps.
Then, plow has the property described in the theorem,

prα(v) ≥ plow ≥ phigh(1 + δ)−1 ≥ pk(1 + δ)−2.

The total number of pushback operations performed during the calls to ApproxContributions during the
binary search is at most 10k log(k/αδ)/α.

5 Final Remarks

5.1 Improving the Dependency on In-Degrees

In our performance analysis, we give a bound of prα(v)/(αε)+1 on the total number of pushback operations
performed by our algorithm. In a pushback at a vertex u, we update the entry for u in the vector p as well
the as entries in r for all vertices that point to u. As a result, the overall time complexity of our algorithm
is proportional to the sum of the in-degrees of the sequence of vertices that we pushback from. A possible
direction for future research is to devise an algorithm whose running time can be bounded in terms of the
total in-degree of the supporting set that the algorithm attempts to approximate. This type of bound would
offer stronger control over the running time than the result obtained in this paper, where the number of
pushback operations operations is bounded in terms of the number of vertices in the supporting set, but
the running time depends on the in-degrees of the vertices from which the sequence of push operations is
performed.



5.2 Computing Contribution Vectors via the Time-Reverse Chain

As noted earlier, the matrix MT in the formula of Equation 7 may not be Markov. It is natural ask whether
the time-reverse Markov chain of the random walk matrix M may be used to compute the contribution
vector for a vertex v, and, if so, whether this method is efficient.

For the following discussion, we assume that M has a unique stationary distribution, which will not be
true for general directed graphs. Recall that,

Definition 2 (Time-reverse chain). Given a Markov chain M with transition probability mij, and sta-
tionary distribution π, the time-reverse chain is the Markov chain R with transition probability rij =
π(j)mji/π(i).

In other words, let Π be the matrix whose (i, j)th entry is π(j)/π(i), then R = Π · ∗MT , where the
operation ·∗ is the component-wise multiplication of two matrices. The time-reverse chain has the following
properties.

– R has the same stationary distribution as M ,
– for all i, k, and t, consider the t-step random walk starting from i in M and k in R, then

〈
eiM

t , ek

〉
=

(
π(k)
π(i)

) 〈
ekRt , ei

〉
(12)

Recall 〈 eiM
t , ek 〉 is equal to the probability that k is the vertex reached by a t-step random walk from i.

Let pprM
α (u → v) denote the personalized PageRank contribution from u to v in a Markov chain M .

Theorem 7. Suppose a Markov chain M has a stationary distribution π and R is its time-reverse chain.
Then

pprM
α (u → v) =

(
π(v)
π(u)

)
pprR

α (v → u). (13)

Proof. The result follows from Equations 5 and 12.

Thus, if the stationary distribution exists, we can in principle compute the contribution vector of M by
computing the personalized PageRank vector for v in the time-reverse chain. We argue that the method
we presented in Section 3 is preferable to the time-reverse Markov chain method for the following reasons.
Our method does not require that M has a stationary distribution. Computing a personalized PageRank
vector in the time-reverse Markov chain requires that we first compute the stationary distribution π of M ,
which may be computationally expensive. Perhaps most important is the difference in the error analysis. If
the stationary distribution exists, one can compute an ε-approximate contribution vector by computing a
personalized PageRank vector in R for which the error at each vertex i is at most επ(i). If π(i) is extremely
small at some vertices, and it may be exponentially small in the number of vertices in the graph, this will
require a large amount of computation.

We prefer the method presented in Section 3 to the time-reverse method for most graphs that are likely to
be encountered in practice. However, there are special cases where the time-reverse method will be efficient.
In particular, if the Markov chain has a stationary distribution that is nearly proportional to the in-degrees
of the vertices, as it would be in an undirected graph, then computing a personalized PageRank vector in
the time-reverse chain is an efficient way to compute a contribution vector.
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12. Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. Web content categorization using link information. Technical
report, Stanford University, 2006.

13. T. H. Haveliwala. Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. IEEE Trans.
Knowl. Data Eng., 15(4):784–796, 2003.

14. G. Jeh and J. Widom. Scaling personalized web search. In Proceedings of the 12th World Wide Web Conference
(WWW), pages 271–279, 2003.

15. G. Mishne and D. Carmel. Blocking blog spam with language model disagreement, 2005.
16. M. Naor and L. Stockmeyer. What can be computed locally? SIAM J. Comput., 24(6):1259–1277, 1995.
17. A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly. Detecting spam web pages through content analysis. In

WWW ’06: Proceedings of the 15th international conference on World Wide Web, pages 83–92, New York, NY,
USA, 2006. ACM Press.

18. R. Raj and V. Krishnan. Web spam detection with anti-trust rank. In Proc. of the 2nd International Worshop
on Adversarial Information Retreival on the Web, pages 381–389, 2006.
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